prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np import pytest from pandas import Series import pandas._testing as tm @pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum]) def test_expanding_apply_consistency_sum_nans(consistency_data, min_periods, f): x, is_constant, no_nans = consistency_data if f is np.nansum and min_periods == 0: pass elif f is np.sum and not no_nans: pass else: expanding_f_result = x.expanding(min_periods=min_periods).sum() expanding_apply_f_result = x.expanding(min_periods=min_periods).apply( func=f, raw=True ) tm.assert_equal(expanding_f_result, expanding_apply_f_result) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() if ddof == 0: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = (x * x).expanding(min_periods=min_periods).mean() mean_x = x.expanding(min_periods=min_periods).mean() tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var_constant(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data if is_constant: count_x = x.expanding(min_periods=min_periods).count() var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if ddof == 1: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_var_std_cov(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) assert not (var_x < 0).any().any() std_x = x.expanding(min_periods=min_periods).std(ddof=ddof) assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) cov_x_x = x.expanding(min_periods=min_periods).cov(x, ddof=ddof) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("ddof", [0, 1]) def test_expanding_consistency_series_cov_corr(consistency_data, min_periods, ddof): x, is_constant, no_nans = consistency_data if isinstance(x, Series): var_x_plus_y = (x + x).expanding(min_periods=min_periods).var(ddof=ddof) var_x = x.expanding(min_periods=min_periods).var(ddof=ddof) var_y = x.expanding(min_periods=min_periods).var(ddof=ddof) cov_x_y = x.expanding(min_periods=min_periods).cov(x, ddof=ddof) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
pandas._testing.assert_equal
import pandas as pd import os directory = "C:/HRRR" observed_data = pd.read_csv("C:/Users/<NAME>/Documents/HRSD GIS/Site Data/MMPS_043_no_blanks.csv", index_col="Datetime", parse_dates=True, infer_datetime_format=True) # create blank dataframes mmps043_hrrr = pd.DataFrame() mmps125_hrrr = pd.DataFrame() mmps129_hrrr = pd.DataFrame() mmps153_hrrr = pd.DataFrame() mmps155_hrrr =
pd.DataFrame()
pandas.DataFrame
import utils import json import os from pathlib import Path import pandas as pd import datetime # initialize logger log = utils.set_logging() starttime = datetime.datetime.now() log.info('Loading input data') ### loading scraped schools df_scrape = utils.load_scraped_data() ### loading mappings of shl and scraped schools path_mapping = Path(__file__) / "../data/matching_shl_data_enriched.json" with open(path_mapping, encoding="utf8") as json_file: data = json.load(json_file) df_shl_enriched =
pd.json_normalize(data)
pandas.json_normalize
from __future__ import print_function import os import datetime import sys import pandas as pd import numpy as np import requests import copy # import pytz import seaborn as sns from urllib.parse import quote import monetio.obs.obs_util as obs_util """ NAME: cems_api.py PGRMMER: <NAME> ORG: ARL This code written at the NOAA air resources laboratory Python 3 ################################################################# The key and url for the epa api should be stored in a file called .epaapirc in the $HOME directory. The contents should be key: apikey url: https://api.epa.gov/FACT/1.0/ TO DO ----- Date is in local time (not daylight savings) Need to convert to UTC. This will require an extra package or api. Classes: ---------- EpaApiObject - Base class EmissionsCall FacilitiesData MonitoringPlan Emissions CEMS Functions: ---------- addquarter get_datelist findquarter sendrequest getkey """ def test_end(endtime, current): # if endtime None return True if isinstance(endtime, pd._libs.tslibs.nattype.NaTType): return True elif not endtime: return True # if endtime greater than current return true elif endtime >= current: return True # if endtime less than current time return true elif endtime < current: return False else: return True def get_filename(fname, prompt): """ determines if file exists. If prompt is True then will prompt for new filename if file does not exist. """ if fname: done = False iii = 0 while not done: if iii > 2: done = True iii += 1 if os.path.isfile(fname): done = True elif prompt: istr = "\n" + fname + " is not a valid name for Facilities Data \n" istr += "Please enter a new filename \n" istr += "enter None to load from the api \n" istr += "enter x to exit program \n" fname = input(istr) # print('checking ' + fname) if fname == "x": sys.exit() if fname.lower() == "none": fname = None done = True else: fname = None done = True return fname # def get_timezone_offset(latitude, longitude): # """ # uses geonames API # must store username in the $HOME/.epaapirc file # geousername: username # """ # username = getkey() # print(username) # username = username["geousername"] # url = "http://api.geonames.org/timezoneJSON?lat=" # request = url + str(latitude) # request += "&lng=" # request += str(longitude) # request += "&username=" # request += username # try: # data = requests.get(request) # except BaseException: # data = -99 # # jobject = data.json() # print(jobject) # print(data) # # raw offset should give standard time offset. # if data == -99: # return 0 # else: # offset = jobject["rawOffset"] # return offset def getkey(): """ key and url should be stored in $HOME/.epaapirc """ dhash = {} homedir = os.environ["HOME"] fname = "/.epaapirc" if os.path.isfile(homedir + fname): with open(homedir + fname) as fid: lines = fid.readlines() for temp in lines: temp = temp.split(" ") dhash[temp[0].strip().replace(":", "")] = temp[1].strip() else: dhash["key"] = None dhash["url"] = None dhash["geousername"] = None return dhash def sendrequest(rqq, key=None, url=None): """ Method for sending requests to the EPA API Inputs : -------- rqq : string request string. Returns: -------- data : response object """ if not key or not url: keyhash = getkey() apiurl = keyhash["url"] key = keyhash["key"] if key: # apiurl = "https://api.epa.gov/FACT/1.0/" rqq = apiurl + rqq + "?api_key=" + key print("Request: ", rqq) data = requests.get(rqq) print("Status Code", data.status_code) if data.status_code == 429: print("Too many requests Please Wait before trying again.") sys.exit() else: print("WARNING: your api key for EPA data was not found") print("Please obtain a key from") print("https://www.epa.gov/airmarkets/field-audit-checklist_tool-fact-api") print("The key should be placed in $HOME/.epaapirc") print("Contents of the file should be as follows") print("key: apikey") print("url: https://api.epa.gov/FACT/1.0/") sys.exit() return data def get_lookups(): """ Request to get lookups - descriptions of various codes. """ getstr = "emissions/lookUps" # rqq = self.apiurl + "emissions/" + getstr # rqq += "?api_key=" + self.key data = sendrequest(getstr) jobject = data.json() dstr = unpack_response(jobject) return dstr # According to lookups MODC values # 01 primary monitoring system # 02 backup monitoring system # 03 alternative monitoring system # 04 backup monitoring system # 06 average hour before/hour after # 07 average hourly # 21 negative value replaced with 0. # 08 90th percentile value in Lookback Period # 09 95th precentile value in Lookback Period # etc. # it looks like values between 1-4 ok # 6-7 probably ok # higher values should be flagged. def quarter2date(year, quarter): if quarter == 1: dt = datetime.datetime(year, 1, 1) elif quarter == 2: dt = datetime.datetime(year, 4, 1) elif quarter == 3: dt = datetime.datetime(year, 7, 1) elif quarter == 4: dt = datetime.datetime(year, 11, 1) return dt def addquarter(rdate): """ INPUT rdate : datetime object RETURNS newdate : datetime object requests for emissions are made per quarter. Returns first date in the next quarter from the input date. """ quarter = findquarter(rdate) quarter += 1 year = rdate.year if quarter > 4: quarter = 1 year += 1 month = 3 * quarter - 2 newdate = datetime.datetime(year, month, 1, 0) return newdate def get_datelist_sub(r1, r2): rlist = [] qt1 = findquarter(r1) yr1 = r1.year qt2 = findquarter(r2) yr2 = r2.year done = False iii = 0 while not done: rlist.append(quarter2date(yr1, qt1)) if yr1 > yr2: done = True elif yr1 == yr2 and qt1 == qt2: done = True qt1 += 1 if qt1 > 4: qt1 = 1 yr1 += 1 iii += 0 if iii > 30: break return rlist def get_datelist(rdate): """ INPUT rdate : tuple of datetime objects (start date, end date) RETURNS: rdatelist : list of datetimes covering range specified by rdate by quarter. Return list of first date in each quarter from startdate to end date. """ if isinstance(rdate, list): rdatelist = get_datelist_sub(rdate[0], rdate[1]) else: rdatelist = [rdate] return rdatelist def findquarter(idate): if idate.month <= 3: qtr = 1 elif idate.month <= 6: qtr = 2 elif idate.month <= 9: qtr = 3 elif idate.month <= 12: qtr = 4 return qtr def keepcols(df, keeplist): tcols = df.columns.values klist = [] for ttt in keeplist: if ttt in tcols: # if ttt not in tcols: # print("NOT IN ", ttt) # print('Available', tcols) # else: klist.append(ttt) tempdf = df[klist] return tempdf def get_so2(df): """ drop columns that are not in keep. """ keep = [ # "DateHour", "time local", # "time", "OperatingTime", # "HourLoad", # "u so2_lbs", "so2_lbs", # "AdjustedFlow", # "UnadjustedFlow", # "FlowMODC", "SO2MODC", "unit", "stackht", "oris", "latitude", "longitude", ] df = keepcols(df, keep) if not df.empty: df = df[df["oris"] != "None"] return df class EpaApiObject: def __init__(self, fname=None, save=True, prompt=False, fdir=None): """ Base class for all classes that send request to EpaApi. to avoid sending repeat requests to the api, the default option is to save the data in a file - specified by fname. fname : str fdir : str save : boolean prompt : boolean """ # fname is name of file that data would be saved to. self.status_code = None self.df = pd.DataFrame() self.fname = fname self.datefmt = "%Y %m %d %H:%M" if fdir: self.fdir = fdir else: self.fdir = "./apifiles/" if self.fdir[-1] != "/": self.fdir += "/" # returns None if filename does not exist. # if prompt True then will ask for new filename if does not exist. fname2 = get_filename(self.fdir + fname, prompt) self.getstr = self.create_getstr() # if the file exists load data from it. getboolean = True if fname2: print("Loading from file ", self.fdir + self.fname) self.fname = fname2 self.df, getboolean = self.load() elif fname: self.fname = self.fdir + fname # if it doesn't load then get it from the api. # if save is True then save. if self.df.empty and getboolean: # get sends request to api and processes data received. self.df = self.get() if save: self.save() def set_filename(self, fname): self.fname = fname def load(self): chash = {"mid": str, "oris": str} df = pd.read_csv(self.fname, index_col=[0], converters=chash, parse_dates=True) # df = pd.read_csv(self.fname, index_col=[0]) return df, True def save(self): """ save to a csv file. """ print("saving here", self.fname) if not self.df.empty: self.df.to_csv(self.fname, date_format=self.datefmt) else: with open(self.fname, "w") as fid: fid.write("no data") def create_getstr(self): # each derived class should have # its own create_getstr method. return "placeholder" + self.fname def printall(self): data = sendrequest(self.getstr) jobject = data.json() rstr = self.getstr + "\n" rstr += unpack_response(jobject) return rstr def return_empty(self): return pd.DataFrame() def get_raw_data(self): data = sendrequest(self.getstr) if data.status_code != 200: return self.return_empty() else: return data def get(self): data = self.get_raw_data() try: self.status_code = data.status_code except: self.status_code = "None" try: jobject = data.json() except BaseException: return data df = self.unpack(jobject) return df def unpack(self, data): # each derived class should have # its own unpack method. return pd.DataFrame() class EmissionsCall(EpaApiObject): """ class that represents data returned by one emissions/hourlydata call to the restapi. Attributes """ def __init__(self, oris, mid, year, quarter, fname=None, calltype='CEM', save=True, prompt=False): self.oris = oris # oris code of facility self.mid = mid # monitoring location id. self.year = str(year) self.quarter = str(quarter) calltype = calltype.upper().strip() if calltype=='F23': calltype='AD' if not fname: fname = "Emissions." + self.year + ".q" + self.quarter if calltype=='AD': fname += '.AD' fname += "." + str(self.mid) + "." + str(oris) + ".csv" self.dfall = pd.DataFrame() self.calltype= calltype if calltype.upper().strip() == "AD": self.so2name = "SO2ADReportedSO2MassRate" elif calltype.upper().strip() == "CEM": self.so2name = "SO2CEMReportedSO2MassRate" elif calltype.upper().strip() == "LME": # this should probably be so2mass??? TO DO. self.so2name = "LMEReportedSO2Mass" else: self.so2name = "SO2CEMReportedSO2MassRate" self.so2nameB = "UnadjustedSO2" super().__init__(fname, save, prompt) # if 'DateHour' in df.columns: # df = df.drop(['DateHour'], axis=1) def create_getstr(self): # for locationID in unitra: # efile = "efile.txt" if self.calltype.upper().strip() == "AD": estr = "emissions/hourlyFuelData/csv" elif self.calltype.upper().strip() == "LME": estr = "emissions/hourlyData/csv" else: estr = "emissions/hourlyData/csv" getstr = quote( "/".join([estr, str(self.oris), str(self.mid), self.year, self.quarter]) ) return getstr def load(self): # Emissions call # datefmt = "%Y %m %d %H:%M" datefmt = self.datefmt datefmt2 = "%Y %m %d %H:%M:%S" chash = {"mid": str, "oris": str, "unit": str} df = pd.read_csv(self.fname, index_col=[0], converters=chash, parse_dates=False) # if not df.empty: if not df.empty: self.status_code = 200 print("SO2 DATA EXISTS") temp = df[df['so2_lbs']>0] if temp.empty: print('SO2 lbs all zero') # check for two date formats. # ----------------------------------------- def newdate(x): rval = x["time local"] if isinstance(rval, float): if np.isnan(rval): return pd.NaT rval = rval.replace("-", " ") rval = rval.strip() fail = 0 try: rval = datetime.datetime.strptime(rval, datefmt) except: fail = 1 if fail == 1: try: rval = datetime.datetime.strptime(rval, datefmt2) except: fail = 2 print(self.fname) print("WARNING: Could not parse date " + rval) return rval # ----------------------------------------- df["time local"] = df.apply(newdate, axis=1) # if 'DateHour' in df.columns: # df = df.drop(['DateHour'], axis=1) # df = pd.read_csv(self.fname, index_col=[0]) else: print("NO SO2 DATA in FILE") return df, False def return_empty(self): return None def get(self): data = self.get_raw_data() try: self.status_code = data.status_code except: self.status_code = None if data: df = self.unpack(data) else: df = pd.DataFrame() return df def unpack(self, data): logfile = "warnings.emit.txt" iii = 0 cols = [] tra = [] print('----UNPACK-----------------') for line in data.iter_lines(decode_unicode=True): #if iii < 5: #print('LINE') #print(line) # 1. Process First line temp = line.split(',') if temp[-1] and self.calltype=='LME': print(line) if iii == 0: tcols = line.split(",") # add columns for unit id and oris code tcols.append("unit") tcols.append("oris") # add columns for other info (stack height, latitude etc). # for edata in data2add: # tcols.append(edata[0]) # 1a write column headers to a file. verbose = True if verbose: with open("headers.txt", "w") as fid: for val in tcols: fid.write(val + "\n") # print('press a key to continue ') # input() # 1b check to see if desired emission variable is in the file. if self.so2name not in tcols: with open(logfile, "a") as fid: rstr = "ORIS " + str(self.oris) rstr += " mid " + str(self.mid) + "\n" rstr += "NO adjusted SO2 data \n" if self.so2name not in tcols: rstr += "NO SO2 data \n" rstr += "------------------------\n" fid.write(rstr) print("--------------------------------------") print("ORIS " + str(self.oris)) print("UNIT " + str(self.mid) + " no SO2 data") print(self.fname) print("--------------------------------------") # return empty dataframe return pd.DataFrame() else: cols = tcols print("--------------------------------------") print("ORIS " + str(self.oris)) print("UNIT " + str(self.mid) + " YES SO2 data") print(self.fname) print("--------------------------------------") # 2. Process rest of lines else: lt = line.split(",") # add input info to line. lt.append(str(self.mid)) lt.append(str(self.oris)) # for edata in data2add: # lt.append(edata[1]) tra.append(lt) iii += 1 # with open(efile, "a") as fid: # fid.write(line) # ---------------------------------------------------- df = pd.DataFrame(tra, columns=cols) df.apply(pd.to_numeric, errors="ignore") df = self.manage_date(df) if self.calltype == 'AD': df['SO2MODC'] = -8 if self.calltype == 'LME': df['SO2MODC'] = -9 df = self.convert_cols(df) df = self.manage_so2modc(df) df = get_so2(df) # the LME data sometimes has duplicate rows. # causing emissions to be over-estimated. if self.calltype == 'LME': df = df.drop_duplicates() return df # ---------------------------------------------------------------------------------------------- def manage_date(self, df): """DateHour field is originally in string form 4/1/2016 02:00:00 PM Here, change to a datetime object. # also need to change to UTC. # time is local standard time (never daylight savings) """ # Using the %I for the hour field and %p for AM/Pm converts time # correctly. def newdate(xxx): fmt = "%m/%d/%Y %I:%M:%S %p" try: rdt = datetime.datetime.strptime(xxx["DateHour"], fmt) except BaseException: # print("LINE WITH NO DATE :", xxx["DateHour"], ":") rdt = pd.NaT return rdt df["time local"] = df.apply(newdate, axis=1) df = df.drop(["DateHour"], axis=1) return df def manage_so2modc(self,df): if "SO2CEMSO2FormulaCode" not in df.columns.values: return df def checkmodc(formula, so2modc, so2_lbs): # if F-23 is the formula code and # so2modc is Nan then change so2modc to -7. if not so2_lbs or so2_lbs==0: return so2modc if so2modc!=0 or not formula: return so2modc else: if 'F-23' in str(formula): return -7 else: return -10 df["SO2MODC"] = df.apply(lambda row: checkmodc(row["SO2CEMSO2FormulaCode"], row['SO2MODC'], row['so2_lbs']), axis=1) return df def convert_cols(self, df): """ All columns are read in as strings and must be converted to the appropriate units. NaNs or empty values may be present in the columns. OperatingTime : fraction of the clock hour during which the unit combusted any fuel. If unit, stack or pipe did not operate report 0.00. """ # three different ways to convert columns # def toint(xxx): # try: # rt = int(xxx) # except BaseException: # rt = -99 # return rt def tostr(xxx): try: rt = str(xxx) except BaseException: rt = "none" return rt def simpletofloat(xxx): try: rt = float(xxx) except BaseException: rt = 0 return rt # calculate lbs of so2 by multiplying rate by operating time. # checked this with FACTS def getmass(optime, cname): # if operating time is zero then emissions are zero. if float(optime) < 0.0001: rval = 0 else: try: rval = float(cname) * float(optime) except BaseException: rval = np.NaN return rval def lme_getmass(cname): try: rval = float(cname) except BaseException: rval = np.NaN return rval df["SO2MODC"] = df["SO2MODC"].map(simpletofloat) # map OperatingTime to a float df["OperatingTime"] = df["OperatingTime"].map(simpletofloat) # map Adjusted Flow to a float #df["AdjustedFlow"] = df["AdjustedFlow"].map(simpletofloat) # df["oris"] = df["oris"].map(toint) df["oris"] = df.apply(lambda row: tostr(row["oris"]), axis=1) # map SO2 data to a float # if operating time is zero then map to 0 (it is '' in file) optime = "OperatingTime" cname = self.so2name if self.calltype=='LME': df["so2_lbs"] = df.apply(lambda row: lme_getmass(row[cname]), axis=1) else: df["so2_lbs"] = df.apply(lambda row: getmass(row[optime], row[cname]), axis=1) temp = df[["time local", "so2_lbs", cname, optime]] temp = df[df["OperatingTime"] > 1.0] if not temp.empty: print("Operating Time greater than 1 ") print( temp[ ["oris", "unit", "OperatingTime", "time local", "so2_lbs", self.so2name] ] ) # ------------------------------------------------------------- # these were checks to see what values the fields were holding. # temp is values that are not valid # temp = temp[temp["OperatingTime"] > 0] # print("Values that cannot be converted to float") # print(temp[cname].unique()) # print("MODC ", temp["SO2MODC"].unique()) # ky = "MATSSstartupshutdownflat" # if ky in temp.keys(): # print("MATSSstartupshutdownflat", temp["MATSStartupShutdownFlag"].unique()) # print(temp['date'].unique()) # ky = "Operating Time" # if ky in temp.keys(): # print("Operating Time", temp["OperatingTime"].unique()) # if ky in df.keys(): # print("All op times", df["OperatingTime"].unique()) # for line in temp.iterrows(): # print(line) # ------------------------------------------------------------- return df class Emissions: """ class that represents data returned by emissions/hourlydata call to the restapi. Attributes self.df : DataFrame Methods __init__ add see https://www.epa.gov/airmarkets/field-audit-checklist-tool-fact-field-references#EMISSION class that represents data returned by facilities call to the restapi. # NOTES # BAF - bias adjustment factor # MEC - maximum expected concentraiton # MPF - maximum potential stack gas flow rate # monitoring plan specified monitor range. # FlowPMA % of time flow monitoring system available. # SO2CEMReportedAdjustedSO2 - average adjusted so2 concentration # SO2CEMReportedSO2MassRate - average adjusted so2 rate (lbs/hr) # AdjustedFlow - average volumetric flow rate for the hour. adjusted for # bias. # It looks like MassRate is calculated from concentration of SO2 and flow # rate. So flow rate should be rate of all gasses coming out of stack. """ def __init__(self): self.df = pd.DataFrame() self.orislist = [] self.unithash = {} # self.so2name = "SO2CEMReportedAdjustedSO2" self.so2name = "SO2CEMReportedSO2MassRate" self.so2nameB = "UnadjustedSO2" def add(self, oris, locationID, year, quarter, method, logfile="warnings.emit.txt", ): """ oris : int locationID : str year : int quarter : int ifile : str data2add : list of tuples (str, value) str is name of column. value to add to column. """ if oris not in self.orislist: self.orislist.append(oris) if oris not in self.unithash.keys(): self.unithash[oris] = [] self.unithash[oris].append(locationID) with open(logfile, "w") as fid: dnow = datetime.datetime.now() fid.write(dnow.strftime("%Y %m %d %H:%M/n")) # if locationID == None: # unitra = self.get_units(oris) # else: # unitra = [locationID] if int(quarter) > 4: print("Warning: quarter greater than 4") sys.exit() # for locationID in unitra: locationID = str(locationID) #print('call type :', method) ec = EmissionsCall(oris, locationID, year, quarter, calltype=method) df = ec.df # print('EMISSIONS CALL to DF', year, quarter, locationID) # print(df[0:10]) if self.df.empty: self.df = df elif not df.empty: self.df = self.df.append(df) # self.df.to_csv(efile) return ec.status_code def save(self): efile = "efile.txt" self.df.to_csv(efile) def merge_facilities(self, dfac): dfnew = pd.merge( self.df, dfac, how="left", left_on=["oris", "unit"], right_on=["oris", "unit"], ) return dfnew def plot(self): import matplotlib.pyplot as plt df = self.df.copy() temp1 = df[df["date"].dt.year != 1700] sns.set() for unit in df["unit"].unique(): temp = temp1[temp1["unit"] == unit] temp = temp[temp["SO2MODC"].isin(["01", "02", "03", "04"])] plt.plot(temp["date"], temp["so2_lbs"], label=str(unit)) print("UNIT", str(unit)) print(temp["SO2MODC"].unique()) # for unit in df["unit"].unique(): # temp = temp1[temp1["unit"] == unit] # temp = temp[temp["SO2MODC"].isin( # ["01", "02", "03", "04"]) == False] # plt.plot(temp["date"], temp["so2_lbs"], label="bad " + str(unit)) # print("UNIT", str(unit)) # print(temp["SO2MODC"].unique()) ax = plt.gca() handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) plt.show() for unit in df["unit"].unique(): temp = temp1[temp1["unit"] == unit] print("BAF", temp["FlowBAF"].unique()) print("MODC", temp["FlowMODC"].unique()) print("PMA", temp["FlowPMA"].unique()) #plt.plot(temp["date"], temp["AdjustedFlow"], label=str(unit)) plt.show() class MonitoringPlan(EpaApiObject): """ Stack height is converted to meters. Request to get monitoring plans for oris code and locationID. locationIDs for an oris code can be found in The monitoring plan has locationAttributes which include the stackHeight, crossAreaExit, crossAreaFlow. It also includes monitoringSystems which includes ststeymTypeDescription (such as So2 Concentration) QuarterlySummaries gives so2Mass each quarter. # currently stack height is the only information # we want to get from monitoring plan # request string # date which indicates quarter of request # oris # mid # stack height ------------------------------------------------------------------------------ 6.0 Monitoring Method Data March 11, 2015 Environmental Protection Agency Monitoring Plan Reporting Instructions -- Page 37 If a location which has an SO2 monitor combusts both high sulfur fuel (e.g., coal or oil) and a low sulfur fuel, and uses a default SO2 emission rate in conjunction with Equation F-23 for hours in which very low sulfur fuel is combusted (see ?75.11(e)(1)), report one monitor method record for parameter SO2 with a monitoring methodology code CEMF23. If only low-sulfur fuel is combusted and the F-23 calculation is used for every hour, report the SO2 monitoring method as F23 ------------------------------------------------------------------------------ """ def __init__(self, oris, mid, date, fname="Mplans.csv", save=True, prompt=False): self.oris = oris # oris code of facility self.mid = mid # monitoring location id. self.date = date # date self.dfall = pd.DataFrame() self.dfmt="%Y-%m-%dT%H:%M:%S" super().__init__(fname, save, prompt) def to_dict(self, unit=None): if self.df.empty: return None if unit: df = self.df[self.df["name"] == unit] else: df = self.df.copy() try: mhash = df.reset_index().to_dict("records") except: mhash = None return mhash def get_stackht(self, unit): #print(self.df) df = self.df[self.df["name"] == unit] #print(df) stackhts = df['stackht'].unique() #print('get stackht', stackhts) return stackhts def get_method(self, unit, daterange): # TO DO. pick method code based on dates. temp = self.df[self.df["name"] == unit] sdate = daterange[0] edate = daterange[1] temp = temp[temp["beginDateHour"] <= sdate] if temp.empty: return None temp["testdate"] = temp.apply( lambda row: test_end(row["endDateHour"], edate), axis=1 ) temp = temp[temp["testdate"] == True] method = temp['methodCode'].unique() return method def load(self): # Multiple mplans may be saved to the same csv file. # so this may return an emptly dataframe # returns empty dataframe and flag to send request. # return pd.DataFrame(), True # df = super().load() chash = {"mid": str, "oris": str, "name": str} def parsedate(x, sfmt): if not x: return pd.NaT elif x=='None': return pd.NaT else: try: return pd.to_datetime(x, format=sfmt) except: print('time value', x) return pd.NaT df = pd.read_csv(self.fname, index_col=[0], converters=chash, parse_dates=['beginDateHour','endDateHour'], date_parser=lambda x: parsedate(x, self.dfmt)) self.dfall = df.copy() df = df[df["oris"] == self.oris] df = df[df["mid"] == self.mid] if not df.empty: self.status_code = 200 return df, True def save(self): # do not want to overwrite other mplans in the file. df =
pd.DataFrame()
pandas.DataFrame
# BSD 3-Clause License # Copyright (c) 2022- , <NAME> <<EMAIL>> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, json, itertools import altair as alt import datetime as dt import pandas as pd # Overall layout GRAPH_WIDTH = 800 GRAPH_BAR_HEIGHT = 10 GRAPH_BAR_SPACE = 35 GRAPH_BAR_OPACITY = 0.8 # Shift milestone text below marker, date lower EVENT_DESC_OFFSET_X = 5 EVENT_DESC_OFFSET_Y = 15 EVENT_DATE_DESC_OFFSET_X = 5 EVENT_DATE_DESC_OFFSET_Y = 24 # Only plot 5 quarters: [-1, +4] RANGE_START = (pd.Timestamp.today() - pd.tseries.offsets.QuarterEnd(2) + pd.Timedelta(days = 1)).strftime('%Y-%m-%d') RANGE_END = (pd.Timestamp.today() + pd.tseries.offsets.QuarterEnd(4)).strftime('%Y-%m-%d') # Chart background and text color CHART_COLOR_BG = '#E7EFF1' CHART_COLOR_FG = '#000000' TODAY_COLOR = '#43C59E' # Chart header (quarter & month) color QUARTER_COLOR_BG = '#000000' QUARTER_COLOR_FG = '#FFFFFF' MONTH_COLOR_BG = itertools.cycle(['#A3B0BB', '#60696B']) MONTH_COLOR_FG = '#000000' class ProgramChart(): head_bar_list_q = [] head_bar_list_m = [] chart_today = None chart_header = [] chart_program = [] def __init__(self, ps): self.ps = ps self.name = ps.description def PrepareQuarterHeader(self): self.head_bar_list_q = [] for quarter in pd.date_range(RANGE_START, RANGE_END, freq = 'QS'): q_start = quarter.strftime('%Y-%m-%d') q_end = (quarter + pd.tseries.offsets.QuarterEnd(1)).strftime('%Y-%m-%d') q_entry = {'Program': 'Quarter', 'Index': 0, 'Start': pd.to_datetime(q_start), 'End': pd.to_datetime(q_end), 'BGColor': QUARTER_COLOR_BG, 'FGColor': QUARTER_COLOR_FG, 'Description': str(quarter.year) + 'Q' + str(quarter.quarter) } self.head_bar_list_q.append(q_entry) def PrepareMonthHeader(self): self.head_bar_list_m = [] for month in pd.date_range(RANGE_START, RANGE_END, freq = 'MS'): m_start = month.strftime('%Y-%m-%d') m_end = (month + pd.tseries.offsets.MonthEnd(1)).strftime('%Y-%m-%d') m_entry = {'Program': 'Month', 'Index': 1, 'Start': pd.to_datetime(m_start), 'End': pd.to_datetime(m_end), 'BGColor': next(MONTH_COLOR_BG), 'FGColor': MONTH_COLOR_FG, 'Description': month.strftime('%m')} self.head_bar_list_m.append(m_entry) def PrepareChartHeader(self): self.PrepareQuarterHeader() self.PrepareMonthHeader() def PlotMonthQuarterBlock(self): self.chart_header.append( alt.Chart(pd.DataFrame(self.head_bar_list_q + self.head_bar_list_m)).mark_bar( opacity = GRAPH_BAR_OPACITY, cornerRadius = 5 ).encode( x = alt.X('Start', scale = alt.Scale(domain = [RANGE_START, RANGE_END]), axis = alt.Axis(title = self.name, labelAngle = 0, format = ('%m'), tickCount = {'interval': 'month', 'step': 1}, orient = 'top', labels = False, ticks = False, ), timeUnit = 'yearmonth', ), x2 = 'End', y = alt.Y('Index:N', axis = alt.Axis(title = None, labels = False, ticks = False ), sort = alt.SortField(field = 'Index', order = 'ascending') ), color = alt.Color('BGColor:N', scale = None) ).properties(width = GRAPH_WIDTH) ) def PlotQuarterText(self): self.chart_header.append( alt.Chart(pd.DataFrame(self.head_bar_list_q)).mark_text(dx = 80, align = 'center', color = QUARTER_COLOR_FG).encode( x = 'Start', x2 = 'End', y = 'Index:N', detail = 'site:N', text = alt.Text('Description') ) ) def PlotMonthText(self): self.chart_header.append( alt.Chart(pd.DataFrame(self.head_bar_list_m)).mark_text(dx = 25, align = 'center', color = MONTH_COLOR_FG).encode( x = 'Start', x2 = 'End', y = 'Index:N', detail = 'site:N', text = alt.Text('Description') ) ) def PlotChartToday(self): self.chart_today = alt.Chart(pd.DataFrame({'Date': [pd.Timestamp.today().strftime('%Y-%m-%d')], 'Color': [TODAY_COLOR]}) ).mark_rule(strokeWidth = 2, strokeDash=[5, 3]).encode( x = alt.X('Date:T', scale = alt.Scale(domain = [RANGE_START, RANGE_END])), color = alt.Color('Color:N', scale = None) ).properties(width = GRAPH_WIDTH) def PlotChartHeader(self): self.PlotMonthQuarterBlock() self.PlotQuarterText() self.PlotMonthText() self.PlotChartToday() def PlotProgramPhase(self): legend_domain = [] legend_range = [] for p in self.ps.phases: legend_domain.append(p['Description']) legend_range.append(p['BGColor']) self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_range_list)).mark_bar( opacity = GRAPH_BAR_OPACITY, size = GRAPH_BAR_HEIGHT, cornerRadius = 5 ).encode( x = alt.X('Start', scale = alt.Scale(domain = [RANGE_START, RANGE_END]), axis = alt.Axis(title = '', labelAngle=0, format = ('%m'), tickCount = {'interval': 'month', 'step': 1}, orient = 'top', labels = False, ticks = False, ), ), x2 = 'End', y = alt.Y('Index:N', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), color = alt.Color('Type:N', title = 'Phase', scale = alt.Scale(domain = legend_domain, range = legend_range), legend = alt.Legend(orient = 'right') ), ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotProgramName(self): self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_name_list)).mark_text(dx = -5, align = 'right').encode( x = alt.value(0), y = alt.Y('Index:N', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), color = alt.Color('FGColor:N', scale = None, legend = None), text = 'Program:N' ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotProgramPhaseDescription(self): self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_range_list)).mark_text(dx = 5, align = 'left').encode( x = alt.X('Start', scale = alt.Scale(domain=[RANGE_START, RANGE_END])), y = alt.Y('Index:N', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), color = alt.Color('FGColor:N', scale = None, legend = None), text = 'Description:N' ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotProgramEvent(self): legend_domain = [] legend_range = [] for e in self.ps.events: legend_domain.append(e['Description']) legend_range.append(e['BGColor']) self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_event_list)).mark_point(filled = True, size = 100, yOffset = 10).encode( x = alt.X('Date', scale = alt.Scale(domain=[RANGE_START, RANGE_END])), y = alt.Y('Index:O', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), shape = alt.Shape('Type:N', title = 'Milestone', scale = alt.Scale(domain = legend_domain, range = ['triangle-up'])), color = alt.Color('Type:N', title = 'Milestone', scale = alt.Scale(domain = legend_domain, range = legend_range), legend = alt.Legend(orient = 'right') ), ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotProgramEventDescription(self): self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_event_list)).mark_text(dx = EVENT_DESC_OFFSET_X, dy = EVENT_DESC_OFFSET_Y, align = 'left').encode( x = alt.X('Date', scale = alt.Scale(domain = [RANGE_START, RANGE_END])), y = alt.Y('Index:N', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), color = alt.Color('FGColor:N', scale = None, legend = None), text = 'Description' ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotProgramEventDate(self): self.chart_program.append( alt.Chart(pd.DataFrame(self.ps.program_bar_event_list)).mark_text(dx = EVENT_DATE_DESC_OFFSET_X, dy = EVENT_DATE_DESC_OFFSET_Y, align = 'left').encode( x = alt.X('Date', scale = alt.Scale(domain=[RANGE_START, RANGE_END])), y = alt.Y('Index:N', axis = alt.Axis(title = None, ticks = False, labels = False), sort = alt.EncodingSortField(field = 'Index', order = 'ascending'), ), color = alt.Color('FGColor:N', scale = None, legend = None), text = 'Date_Short' ).properties(width = GRAPH_WIDTH, height = (GRAPH_BAR_SPACE * len(self.ps.schedule_data['Data']))) ) def PlotChartBody(self): self.PlotProgramPhase() self.PlotProgramName() self.PlotProgramPhaseDescription() self.PlotProgramEvent() self.PlotProgramEventDescription() self.PlotProgramEventDate() def PlotShow(self): alt.renderers.enable('altair_viewer') alt.vconcat(alt.layer( self.chart_header[0], self.chart_header[1], self.chart_header[2], self.chart_today ), alt.layer( self.chart_program[0], self.chart_program[1], self.chart_program[2], self.chart_program[3], self.chart_program[4], self.chart_program[5], self.chart_today ).resolve_scale( color = 'independent', shape = 'independent' ) ).configure( background = CHART_COLOR_BG ).configure_concat( spacing = 0 ).show() class ProgramSchedule(): schedule_data = json.dumps({'key': 1}) description = 'Program Details' phases = [] events = [] program_bar_name_list = [] program_bar_range_list = [] program_bar_event_list = [] def __init__(self, name): self.name = name def ParseDataFromJSON(self, file): with open(file) as f: try: self.schedule_data = json.load(f) if 'Data' not in self.schedule_data: print('JSON %s doesn\'t have valid data for schedule and event' %(file)) exit() if 'Phase_List' not in self.schedule_data: print('JSON %s doesn\'t have valid Phase definition' %(file)) exit() if 'Event_List' not in self.schedule_data: print('JSON %s doesn\'t have valid Event definition' %(file)) exit() if 'Description' in self.schedule_data: self.description = self.schedule_data['Description'] except ValueError as err: print('Invalid JSON for %s' %(file)) exit() print(self.description, 'Loaded from JSON') def PreparePhaseList(self): self.phases = [] for phase_def in self.schedule_data['Phase_List']: self.phases.append({'Type': phase_def['Type'], 'Description': phase_def['Description'], 'BGColor': phase_def['BGColor'], 'FGColor': phase_def['FGColor']}) def PrepareEventList(self): self.events = [] for event_def in self.schedule_data['Event_List']: self.events.append({'Type': event_def['Type'], 'Description': event_def['Description'], 'BGColor': event_def['BGColor'], 'FGColor': event_def['FGColor']}) def ProcessProgramDetails(self): self.program_bar_name_list = [] self.program_bar_range_list = [] self.program_bar_event_list = [] for program_data in self.schedule_data['Data']: # Prepare all program name to be shown on y-axis self.program_bar_name_list.append({'Program': program_data['Program'], 'Index': program_data['Index'], 'FGColor': CHART_COLOR_FG}) # Prepare phase bar if 'Phase' in program_data: for program_phase in program_data['Phase']: # Decide current phase type unsupported = True for p in self.phases: if (p['Type'] == program_phase['Type']): unsupported = False break if (unsupported): print('Unsupported Phase type %d for %s' %(program_phase['Type'], program_data['Program'])) exit() entry = {'Program': program_data['Program'], 'Index': program_data['Index'], 'Type': p['Description'], # Use description as Type for legend label 'Start': ((pd.to_datetime(RANGE_START)) if (pd.to_datetime(program_phase['Start']) < pd.to_datetime(RANGE_START)) else (pd.to_datetime(program_phase['Start']))) if (program_phase['Start'] != '') else (pd.to_datetime(RANGE_START)), 'End' : ((pd.to_datetime(RANGE_END)) if (pd.to_datetime(program_phase['End']) > pd.to_datetime(RANGE_END)) else (pd.to_datetime(program_phase['End']))) if (program_phase['End'] != '') else (pd.to_datetime(RANGE_END)), 'BGColor': p['BGColor'], 'FGColor': p['FGColor'], 'Description': '' } if (('End_Today' in program_phase) and program_phase['End_Today']): entry['End'] = pd.to_datetime(pd.Timestamp.today().strftime('%Y-%m-%d')) # Hide phase description if (not program_phase['Hide_Description']): entry['Description'] = (p['Description'] + str(program_phase['Additional Info'])) if ('Additional Info' in program_phase) else (p['Description']) self.program_bar_range_list.append(entry) # Prepare event marker if 'Event' in program_data: for program_event in program_data['Event']: # Decide current event type unsupported = True for e in self.events: if (e['Type'] == program_event['Type']): unsupported = False break if (unsupported): print('Unsupported Event type %d for %s' %(program_event['Type'], program_data['Program'])) exit() entry = {'Program': program_data['Program'], 'Index': program_data['Index'], 'Type': e['Description'], # Use description as Type for legend label 'Date': pd.to_datetime(program_event['Date']), 'BGColor': e['BGColor'], 'FGColor': e['FGColor'], 'Description': (e['Description'] + str(program_event['Additional Info'])) if ('Additional Info' in program_event) else (e['Description']), 'Date_Short': str(
pd.to_datetime(program_event['Date'])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 22 10:16:42 2021 @author: tungbioinfo """ import argparse import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import time from sklearn.model_selection import train_test_split from sklearn.utils import shuffle import pickle import os, sys from joblib import Parallel, delayed import PCA_Analysis as pca import RF_Analysis_Multiclass as rfc import RF_Analysis_Binary as rfb from Auto_ML_Multiclass import AutoML_classification ############################################################################### ############################## Read data set ################################## ############################################################################### rumi = pd.read_csv("rumi.csv") rumi = rumi.drop(rumi[rumi["Depressiongroup"]==1].index, axis=0).reset_index(drop=True) depre_gr = rumi["Depressiongroup"].apply(lambda x: "BPD" if x == 2 else "H" if x == 0 else "MDD") sex = rumi["Gender_1_male"].apply(lambda x: 0 if x == 2 else 1) rumi = rumi.drop(columns = ["Depressiongroup", "Gender_1_male"]) rumi = pd.concat([depre_gr, sex, rumi], axis = 1) rumi = shuffle(rumi).reset_index(drop=True) rumi_meta = rumi[['MRI_expID', 'MRI_ordID', 'CurrentDepression', 'Depressiongroup', 'TIV', 'Age', 'Gender_1_male', 'BDI_Total', 'RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Dep_PastEpisodes', 'Dep_Duration']] rumi_meta = rumi_meta.set_index('MRI_expID') sns.pairplot(rumi_meta[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Depressiongroup']], hue="Depressiongroup") rumi_meta_bdp = rumi_meta.loc[rumi_meta['Depressiongroup'] == "BPD"] rumi_meta_mdd = rumi_meta.loc[rumi_meta['Depressiongroup'] == 'MDD'] sns.pairplot(rumi_meta_bdp[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'CurrentDepression']], hue="CurrentDepression") sns.pairplot(rumi_meta_mdd[['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'CurrentDepression']], hue="CurrentDepression") rumi_region = rumi.drop(columns = ['MRI_ordID', 'CurrentDepression', 'Depressiongroup', 'TIV', 'Age', 'Gender_1_male', 'BDI_Total', 'RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination', 'RRS_Total', 'Dep_PastEpisodes', 'Dep_Duration']) rumi_region = rumi_region.set_index('MRI_expID') rumi_region_T = rumi_region.T rumi_region_bdp = rumi_region.loc[rumi_meta_bdp.index] rumi_region_mdd = rumi_region.loc[rumi_meta_mdd.index] y = rumi_meta["Depressiongroup"].apply(lambda x: 0 if x == "MDD" else 1 if x == "BPD" else 2) class_name = ["MDD", "BPD", 'Healthy'] X_train, X_test, y_train, y_test = train_test_split(rumi_region, y, test_size=0.3, random_state=42) ############################################################################### ######################## Step 1 - Run Auto_ML ################################# ############################################################################### automl = AutoML_classification() result = automl.fit(X_train, y_train, X_test, y_test) ############################################################################### ################### Step 2 - Run selected models ############################## ############################################################################### log_best, _, _, _, _ = automl.LogisticRegression(X_train, y_train, X_test, y_test) evaluate_dt = automl.evaluate_multiclass(log_best, X_train, y_train, X_test, y_test, model = "Logistics_regression", num_class=3, class_name = class_name) sgd_best, _, _, _, _ = automl.Stochastic_Gradient_Descent(X_train, y_train, X_test, y_test) evaluate_dt = automl.evaluate_multiclass(sgd_best, X_train, y_train, X_test, y_test, model = "Stochastic_Gradient_Descent", num_class=3, class_name = class_name) rf_best, _, _, _, _ = automl.Random_Forest(X_train, y_train, X_test, y_test) evaluate_rf = automl.evaluate_multiclass(rf_best, X_train, y_train, X_test, y_test, model = "Random Forest", num_class=3, top_features=20, class_name = class_name) ############################################################################### ########## Step 3.1 - Run forward algorithm + Random Forest ################### ############################################################################### import itertools from scipy import interp from itertools import cycle from sklearn.preprocessing import label_binarize from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn import metrics from sklearn.metrics import roc_curve, auc from sklearn.metrics import accuracy_score from sklearn.metrics import plot_confusion_matrix from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_validate from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import KFold, RepeatedStratifiedKFold, RepeatedKFold from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import TimeSeriesSplit, GridSearchCV, RandomizedSearchCV from xgboost import XGBClassifier from datetime import datetime as dt import warnings warnings.filterwarnings("ignore") st_t = dt.now() n_samples, n_features = X_train.shape n_estimators = [5, 10, 50, 100, 150, 200, 250, 300] max_depth = [5, 10, 25, 50, 75, 100] min_samples_leaf = [1, 2, 4, 8, 10] min_samples_split = [2, 4, 6, 8, 10] max_features = ["auto", "sqrt", "log2", None] hyperparameter = {'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_leaf': min_samples_leaf, 'min_samples_split': min_samples_split, 'max_features': max_features, } base_model_rf = RandomForestClassifier(criterion = "gini", random_state=42) n_iter_search = 30 scoring = "accuracy" n_selected_features = 240 # selected feature set, initialized to be empty F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator=base_model_rf, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, #cv=cv_timeSeries, cv=2, scoring=scoring, n_jobs=-1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) acc = metrics.accuracy_score(y_test, y_pred) F.pop() if acc > max_acc: max_acc = acc idx = i best_model = best_estimator F.append(idx) count += 1 print("The current number of features: {} - Accuracy: {}%".format(count, round(max_acc*100, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) all_info = pd.concat([c, a, f["All"]], axis=1) all_info.columns = ['Num_feature', 'Accuracy', 'Feature'] all_info = all_info.sort_values(by='Accuracy', ascending=False).reset_index(drop=True) all_info.to_csv("CDI_subset_accuracy.csv", index=False) f.to_csv("CDI_subset.csv") with open("CDI_models.txt", "wb") as fp: pickle.dump(all_model, fp) ############################################################################### ################# Step 3.1 - Run forward algorithm + SGD ###################### ############################################################################### from sklearn.linear_model import SGDClassifier st_t = dt.now() n_samples, n_features = X_train.shape # Loss function loss = ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"] penalty = ["l2", "l1", "elasticnet"] # The higher the value, the stronger the regularization alpha = np.logspace(-7, -1, 100) # The Elastic Net mixing parameter l1_ratio = np.linspace(0, 1, 100) epsilon = np.logspace(-5, -1, 100) learning_rate = ["constant", "optimal", "invscaling", "adaptive"] eta0 = np.logspace(-7, -1, 100) hyperparameter = {"loss": loss, "penalty": penalty, "alpha": alpha, "l1_ratio": l1_ratio, "epsilon": epsilon, "learning_rate": learning_rate, "eta0": eta0} model = SGDClassifier(n_jobs = -1) n_iter_search = 30 scoring = "accuracy" n_selected_features = 240 # selected feature set, initialized to be empty F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator = model, param_distributions = hyperparameter, cv = 2, scoring = scoring, n_iter = n_iter_search, n_jobs = -1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) acc = metrics.accuracy_score(y_test, y_pred) F.pop() if acc > max_acc: max_acc = acc idx = i best_model = best_estimator F.append(idx) count += 1 print("The current number of features: {} - Accuracy: {}%".format(count, round(max_acc*100, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) ############################################################################### ######## Step 4.1 - Run forward algorithm + Random_Forest_regression ########## ############################################################################### from Auto_ML_Regression import AutoML_Regression from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error from sklearn.metrics import mean_absolute_percentage_error import math y = rumi_meta["RRS_Brooding"] rumi_region_plus = pd.concat([rumi_meta[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region], axis=1) #------- y = rumi_meta_bdp["BDI_Total"] rumi_region_bdp_plus = pd.concat([rumi_meta_bdp[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region_bdp], axis=1) X_train, X_test, y_train, y_test = train_test_split(rumi_region_bdp_plus, y, test_size=0.3, random_state=42) # ------ y = rumi_meta_bdp["BDI_Total"] rumi_region_mdd_plus = pd.concat([rumi_meta_mdd[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region_mdd], axis=1) X_train, X_test, y_train, y_test = train_test_split(rumi_region_mdd_plus, y, test_size=0.3, random_state=42) # ------ ress_BPD_brain = pd.read_csv("BPD_brain.csv", header=None) ress_BPD_brain.columns = rumi_region.columns ress_BPD_meta = pd.read_csv("BPD_rrs.csv", header=None) ress_BPD_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_BPD_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(BPD_subset, y, test_size=0.3, random_state=42) # ------ ress_MDD_brain = pd.read_csv("MDD_brain.csv", header=None) ress_MDD_brain.columns = rumi_region.columns ress_MDD_meta = pd.read_csv("MDD_rrs.csv", header=None) ress_MDD_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_MDD_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(ress_MDD_brain, y, test_size=0.3, random_state=42) # ------ ress_HC_brain = pd.read_csv("Health_brain.csv", header=None) ress_HC_brain.columns = rumi_region.columns ress_HC_meta = pd.read_csv("Health_rrs.csv", header=None) ress_HC_meta.columns = ['RRS_Brooding', 'RRS_Reflection', 'RRS_DepressiveRumination','RRS_Total'] y = ress_HC_meta["RRS_Brooding"] X_train, X_test, y_train, y_test = train_test_split(ress_HC_brain, y, test_size=0.3, random_state=42) automl = AutoML_Regression() result = automl.fit(X_train, y_train, X_test, y_test) result.to_csv("AutoML_RRS_total_rumi_region_plus.csv", index = False) ress_BPD_meta["Label"] = "BPD" ress_MDD_meta["Label"] = "MDD" ress_HC_meta["Label"] = "HC" ress = pd.concat([ress_BPD_meta, ress_MDD_meta, ress_HC_meta]).reset_index(drop=True) sns.pairplot(ress, hue="Label") #------------------------------------------------------------------------------ automl = AutoML_Regression() lasso_best, _, _, _ = automl.Random_Forest(X_train, y_train, X_test, y_test) lasso_best.fit(X_train, y_train) y_pred = lasso_best.predict(X_test) plt.scatter(y_pred, y_test, s=8) plt.plot([min(y_pred), max(y_pred)], [min(y_test), max(y_test)], '--k') plt.ylabel('True RRS_total') plt.xlabel('Predicted RRS_total') #plt.text(s='Random Forest without Forward varible', x=1, # y=2, fontsize=12, multialignment='center') plt.text(min(y_pred), max(y_test) - 5, r'$R^2$ = %.2f' % (r2_score(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 10, r'MSE = %.2f' % (mean_squared_error(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 15, r'Accuracy = %.2f %' % (100 - 100*mean_absolute_percentage_error(y_test, y_pred))) #plt.ticklabel_format(axis="both", style="sci", scilimits=(0, 0)) errors = abs(y_pred - y_test) mean_err = np.stack(errors/y_test) mean_err = mean_err[np.isfinite(mean_err)] mape = 100 * np.mean(mean_err) acc = 100 - mape #------------------------------------------------------------------------------ n_samples, n_features = X_train.shape n_estimators = [5, 10, 50, 100, 150, 200, 250, 300] max_depth = [5, 10, 25, 50, 75, 100] min_samples_leaf = [1, 2, 4, 8, 10] min_samples_split = [2, 4, 6, 8, 10] max_features = ["auto", "sqrt", "log2", None] hyperparameter = {'n_estimators': n_estimators, 'max_depth': max_depth, 'min_samples_leaf': min_samples_leaf, 'min_samples_split': min_samples_split, 'max_features': max_features, } my_cv = RepeatedKFold(n_splits=10, n_repeats=10, random_state=42) base_model_rf = RandomForestRegressor(criterion = "mse", random_state=42) n_iter_search = 30 scoring = "neg_mean_squared_error" n_selected_features = 240 F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_mse = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 min_err = np.inf time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 rsearch_cv = RandomizedSearchCV(estimator=base_model_rf, random_state=42, param_distributions=hyperparameter, n_iter=n_iter_search, #cv=my_cv, cv=5, scoring=scoring, n_jobs=-1) rsearch_cv.fit(X_train_tmp, y_train) best_estimator = rsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) mse = mean_squared_error(y_test, y_pred) #acc = metrics.accuracy_score(y_test, y_pred) F.pop() if mse < min_err: min_err = mse idx = i best_model = best_estimator #errors = abs(y_pred - y_test) #mean_err = np.stack(errors/y_test) #mean_err = mean_err[np.isfinite(mean_err)] mape = mean_absolute_percentage_error(y_test, y_pred) max_acc = 100 - (100*mape) F.append(idx) count += 1 print("The current number of features: {} - MSE: {}".format(count, round(min_err, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) all_mse.append(min_err) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) e = pd.DataFrame(all_mse) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) all_info = pd.concat([c, e, a, f["All"]], axis=1) all_info.columns = ['Num_feature', 'Mean_Squared_Error', 'Accuracy', 'Feature'] all_info = all_info.sort_values(by='Accuracy', ascending=False).reset_index(drop=True) all_info.to_csv("RRS_total_subset_RF_accuracy.csv", index=False) f.to_csv("RRS_total_subset_RF.csv") with open("RRS_total_RF_models.txt", "wb") as fp: pickle.dump(all_model, fp) ############################################################################### ############# Step 4.2 - Run forward algorithm + Ridge_regression ############# ############################################################################### from sklearn.linear_model import Ridge, SGDRegressor from sklearn.linear_model import ElasticNet, LarsCV, Lasso, LassoLars from sklearn.linear_model import MultiTaskElasticNet, MultiTaskLasso y = rumi_meta["RRS_Brooding"] rumi_region_plus = pd.concat([rumi_meta[['CurrentDepression', 'TIV', 'Age','Gender_1_male']], rumi_region], axis=1) X_train, X_test, y_train, y_test = train_test_split(rumi_region_plus, y, test_size=0.3, random_state=42) alphas = np.logspace(-5, 5, 100) tuned_parameters = [{"alpha": alphas}] my_cv = RepeatedKFold(n_splits=10, n_repeats=10, random_state=42) model = Lasso() scoring = "neg_mean_squared_error" n_selected_features = 240 F = [] count = 0 ddict = {} all_F = [] all_c = [] all_acc = [] all_mse = [] all_model = [] start = time.time() while count < n_selected_features: max_acc = 0 min_err = np.inf time_loop = time.time() for i in X_train.columns: if i not in F: F.append(i) X_train_tmp = X_train[F] acc = 0 gsearch_cv = GridSearchCV(estimator = model, param_grid = tuned_parameters, scoring = "neg_mean_squared_error", cv = my_cv, n_jobs=-1) gsearch_cv.fit(X_train_tmp, y_train) best_estimator = gsearch_cv.best_estimator_ y_pred = best_estimator.predict(X_test[F]) mse = mean_squared_error(y_test, y_pred) #acc = metrics.accuracy_score(y_test, y_pred) F.pop() if mse < min_err: min_err = mse idx = i best_model = best_estimator #errors = abs(y_pred - y_test) #mean_err = np.stack(errors/y_test) #mean_err = mean_err[np.isfinite(mean_err)] mape = mean_absolute_percentage_error(y_test, y_pred) max_acc = 100 - (100*mape) F.append(idx) count += 1 print("The current number of features: {} - MSE: {}".format(count, round(min_err, 2))) print("Time for computation: {}".format(time.time() - time_loop)) all_F.append(np.array(F)) all_c.append(count) all_acc.append(max_acc) all_model.append(best_model) all_mse.append(min_err) c = pd.DataFrame(all_c) a = pd.DataFrame(all_acc) f = pd.DataFrame(all_F) e = pd.DataFrame(all_mse) f["All"] = f[f.columns[0:]].apply( lambda x: ', '.join(x.dropna().astype(str)), axis=1) all_info = pd.concat([c, e, a, f["All"]], axis=1) all_info.columns = ['Num_feature', 'Mean_Squared_Error', 'Accuracy', 'Feature'] all_info = all_info.sort_values(by='Mean_Squared_Error', ascending=True).reset_index(drop=True) # ============================================================================= # Test accuracy model # ============================================================================= all_features_grid = pd.read_csv("RRS_total_subset_RF.csv") all_info_grid = pd.read_csv("RRS_total_subset_RF_accuracy.csv") with open("RRS_total_RF_models.txt", "rb") as fp: load_grid_model = pickle.load(fp) subset = all_features_grid.drop(columns = ["Unnamed: 0", "All"]) best_model_55 = load_grid_model[25] subset = subset.iloc[25].dropna() region_subset = rumi_region_plus[subset] X_train, X_test, y_train, y_test = train_test_split(region_subset, y, test_size=0.3, random_state=42) best_model_55.fit(X_train, y_train) y_pred = best_model_55.predict(X_test) errors = abs(y_pred - y_test) mean_err = np.stack(errors/y_test) mean_err = mean_err[np.isfinite(mean_err)] mape = 100 * np.mean(mean_err) acc = 100 - mape plt.scatter(y_pred, y_test, s=8) plt.plot([min(y_pred), max(y_pred)], [min(y_test), max(y_test)], '--k') plt.ylabel('True RRS_total') plt.xlabel('Predicted RRS_total') #plt.text(s='Random Forest without Forward varible', x=1, # y=2, fontsize=12, multialignment='center') plt.text(min(y_pred), max(y_test) - 1, r'$R^2$ = %.2f' % (r2_score(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 6, r'MSE = %.2f' % (mean_squared_error(y_test, y_pred))) plt.text(min(y_pred), max(y_test) - 11, r'Accuracy = %.2f' % acc) importances = best_model_55.feature_importances_ indices = np.argsort(importances)[::-1] feature_tab = pd.DataFrame({"Features": list(X_train.columns), "Importance": importances}) feature_tab = feature_tab.sort_values("Importance", ascending = False).reset_index(drop=True) index = feature_tab["Features"].iloc[:26] importance_desc = feature_tab["Importance"].iloc[:26] feature_space = [] for i in range(indices.shape[0]-1, -1, -1): feature_space.append(X_train.columns[indices[i]]) fig, ax = plt.subplots(figsize=(20,20)) ax = plt.gca() plt.title("Feature importances", fontsize=30) plt.barh(index, importance_desc, align="center", color="blue", alpha=0.6) plt.grid(axis="x", color="white", linestyle="-") plt.xlabel("The average of decrease in impurity", fontsize=20) plt.ylabel("Features", fontsize=20) plt.yticks(fontsize=30) plt.xticks(fontsize=20) plt.show() RRS_region_plus = pd.concat([rumi_meta["RRS_Total"], region_subset], axis=1) RRS_corr = RRS_region_plus.corr(method = "spearman").sort_values(by = "RRS_Total", ascending=False) RRS_corr = RRS_corr["RRS_Total"] sns.jointplot(data = RRS_region_plus, y = "RRS_Total", x = "BNA067lPCLA4ll", kind = "reg") ## BPD_subset = pd.read_csv("BPD_19.csv") MDD_feature = pd.read_csv("Feature_Importance_MDD.csv") HC_feature = pd.read_csv("Feature_Importace_HC.csv") BPD_MDD_feature = MDD_feature[MDD_feature.index.isin(BPD_subset.columns)] MDD_subset = ress_MDD_brain[MDD_feature.index] HC_subset = ress_HC_brain[HC_feature.index] BPD_subset_corr = pd.concat([ress_BPD_meta["RRS_Brooding"], BPD_subset], axis=1) BPD_subset_corr_ = BPD_subset_corr.corr(method = "spearman").sort_values(by = "RRS_Brooding", ascending=False) BPD_subset_corr_ = BPD_subset_corr_.drop("RRS_Brooding", axis=0) BPD_subset_corr_ = BPD_subset_corr_["RRS_Brooding"] MDD_subset_corr = pd.concat([ress_MDD_meta["RRS_Brooding"], MDD_subset], axis=1) MDD_subset_corr_ = MDD_subset_corr.corr(method = "spearman").sort_values(by = "RRS_Brooding", ascending=False) MDD_subset_corr_ = MDD_subset_corr_.drop("RRS_Brooding", axis=0) MDD_subset_corr_ = MDD_subset_corr_["RRS_Brooding"] HC_subset_corr = pd.concat([ress_HC_meta["RRS_Brooding"], HC_subset], axis=1) HC_subset_corr_ = HC_subset_corr.corr(method = "spearman").sort_values(by = "RRS_Brooding", ascending=False) HC_subset_corr_ = HC_subset_corr_.drop("RRS_Brooding", axis=0) HC_subset_corr_ = HC_subset_corr_["RRS_Brooding"] MDD_tha = MDD_feature.loc[['BNA231lThamPFtha', 'BNA242rThaOtha', 'BNA244rThacTtha', 'BNA240rThaPPtha']] BPD_tha = ress_BPD_brain[['BNA245lThalPFtha', 'BNA243lThacTtha', 'BNA234rThamPMtha', 'BNA236rThaStha']] HC_tha = HC_feature.loc[["BNA242rThaOtha", "BNA232rThamPFtha", "BNA239lThaPPtha"]] MDD_cin = MDD_feature.loc[['BNA186rCingA23c', 'BNA218rHippcHipp']] HC_cin = HC_feature.loc[['BNA187lCingA32sg', 'BNA184rCingA24cd', 'BNA217lHippcHipp']] MDD_fjg = MDD_feature.loc[['BNA030rIFGA44d']] tha_3types =
pd.concat([MDD_tha, HC_tha, MDD_cin, HC_cin], axis=0)
pandas.concat
from time import sleep import pandas as pd from Bio import Entrez # Helper functions def chunks(l, n): for i in range(0, len(l), n): yield l[i : i + n] def extract(d, keys): return dict((k, d[k]) for k in keys if k in d) COLUMNS = [ "Id", "PubDate", "EPubDate", "Source", "AuthorList", "LastAuthor", "Title", "Volume", "Issue", "Pages", "LangList", "NlmUniqueID", "ISSN", "ESSN", "PubTypeList", "RecordStatus", "PubStatus", "ArticleIds", "DOI", "History", "References", "HasAbstract", "PmcRefCount", "FullJournalName", "ELocationID", "SO", ] # Import document summaries ds = pd.read_csv(snakemake.input[0], sep=",") # Get list of pubmed ids pids = ds["PubMedIds"].tolist() pids = [i for i in pids if str(i) != "nan"] pids = [i.split(";") for i in pids] pids = [i for sublist in pids for i in sublist] pids = list(set(pids)) # Setup query params Entrez.email = snakemake.params.get("email", None) if Entrez.email is None: raise ValueError("An email must be provided") api_key = snakemake.params.get("api_key", None) if api_key is None: print( "Personal API key from NCBI. If not set, only 3 queries per second are allowed. 10 queries per seconds otherwise with a valid API key." ) sleeptime = 1 / 3 else: Entrez.api_key = api_key sleeptime = 1 / 10 db = "pubmed" batch_size = snakemake.params.get("batch_size", 1) chunked_ids = chunks(pids, batch_size) # Fetch and parse summaries with open(snakemake.output[0], "a") as f: for chunk in chunked_ids: summary = Entrez.esummary(db=db, id=",".join(chunk), retmode="xml") docsums = pd.DataFrame(columns=COLUMNS) for record in Entrez.parse(summary): record = extract(record, COLUMNS) docsums = docsums.append( {k: v for k, v in record.items()}, ignore_index=True ) for col in docsums.columns: if "List" in col: docsums[col] = docsums[col].apply( lambda x: ";".join(
pd.Series(x, dtype="str")
pandas.Series
import pandas as pd from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") AddReference("QuantConnect.Indicators") from System import * from QuantConnect import * from QuantConnect.Algorithm import * from QuantConnect.Algorithm.Framework import * from QuantConnect.Algorithm.Framework.Risk import * from QuantConnect.Algorithm.Framework.Alphas import * from QuantConnect.Algorithm.Framework.Execution import * from QuantConnect.Algorithm.Framework.Portfolio import * from QuantConnect.Algorithm.Framework.Selection import * from QuantConnect.Data import SubscriptionDataSource from QuantConnect.Python import PythonData from datetime import timedelta, datetime, date from sklearn.ensemble import RandomForestClassifier from sklearn.utils import resample, shuffle class RunConfig: """This class contains major parameters for running algorithm """ # Start date for back-testing StartDate = date(2009, 5, 1) # End date for backtesting EndDate = date(2019, 12, 1) # Initial Cash StrategyCash = 200000 # Selection of long only (True) or long-short (False) LongOnly = True # Position holding period, days PositionLifetime = timedelta(days=25) # Vertical barrier, days (25 or 35 days for QC platform) VertBarDays = 25 # For running on LEAN locally please provide a path to folder with data PathToLocalFolder = "" class QCTickDataStrategy(QCAlgorithm): """ This algo implements RF triple barrier strategy based on raw tick data. """ def __init__(self): # symbols of assets from MOEX self.assets_keys = ['AFKS', 'ALRS', 'CHMF', 'GAZP', 'GMKN', 'LKOH', 'MGNT', 'MTSS', 'NVTK', 'ROSN', 'RTKM', 'SBER', 'SNGS', 'TATN', 'VTBR', 'YNDX'] # features to store in dataframe for ML self.colsU = ['Logret', 'Momone', 'Momtwo', 'Momthree', 'Momfour', 'Momfive', 'Volatilityfifty', 'Volatilitythirtyone', 'Volatilityfifteen', 'Autocorrone', 'Autocorrtwo', 'Autocorrthree', 'Autocorrfour', 'Autocorrfive', 'Logtone', 'Logttwo', 'Logtthree', 'Logtfour', 'Logtfive', 'Bin', 'Side'] # dictionary to store custom asset objects self.assets = {} # dictionary to store pandas DataFrames with features for ML self.features_dict = {} # dictionary to store ML classifier (RandomForest) self.clf_dict = {} # dictionary to store end holding time for each position self.stop_time_dict = {} def Initialize(self): # setting start and end date to run algorithm self.SetStartDate(RunConfig.StartDate) self.SetEndDate(RunConfig.EndDate) # setting initial funds self.SetCash(RunConfig.StrategyCash) # creating custom assets from AdvancedBars class for each symbol self.assets = {i: self.AddData(AdvancedBars, i) for i in self.assets_keys} # creating empty dataframes for each symbol self.features_dict = {i: pd.DataFrame(columns=self.colsU) for i in self.assets_keys} # creating a dictionary of classifiers with initial None value self.clf_dict = {i: None for i in self.assets_keys} # creating a dictionary with stoptimes for each symbol self.stop_time_dict = {i: self.Time for i in self.assets_keys} # setting a schedule to run ML training self.Schedule.On(self.DateRules.MonthStart(), self.TimeRules.At(13, 10), Action(self.TrainML)) def OnData(self, data): """OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. Arguments: data: Slice object keyed by symbol containing the stock data """ for k in self.assets_keys: cond1 = (self.Time > self.stop_time_dict[k]) # if holding time is over cond2 = self.Portfolio[k].Invested # if the position open if cond1 and cond2: self.Log(f", {k}, to liq, {self.Portfolio[k].Quantity}, {self.Portfolio[k].Price}") self.Liquidate(k) # liquidate open position for k in self.assets_keys: if not data.ContainsKey(k): continue dat = data[k] time = dat.Time # saving data into feature for ML try: self.features_dict[k].loc[time] = [dat.Logret, dat.Momone, dat.Momtwo, dat.Momthree, dat.Momfour, dat.Momfive, dat.Volatilityfifty, dat.Volatilitythirtyone, dat.Volatilityfifteen, dat.Autocorrone, dat.Autocorrtwo, dat.Autocorrthree, dat.Autocorrfour, dat.Autocorrfive, dat.Logtone, dat.Logttwo, dat.Logtthree, dat.Logtfour, dat.Logtfive, dat.Bin, dat.Side] except AttributeError as e: continue if self.clf_dict[k] is not None: # feed data into ML if RF classifier was created # features X = self.features_dict[k].drop(["Bin"], axis=1).loc[time].values.reshape(1, -1) # predicted value y_pred = self.clf_dict[k].predict(X) if y_pred > .8: # for probably enough decision to trade # decision of trade direction is based on sma if dat.Side == 1: # long position # set new stop time for position holding self.stop_time_dict[k] = self.Time + RunConfig.PositionLifetime if not self.Portfolio[k].IsLong: # if no long position invested if self.Portfolio[k].Invested: # if short position self.Liquidate(k) else: continue elif dat.Side == -1 and not RunConfig.LongOnly: # if not long only portfolio, and if short side # set new stop time for position holding self.stop_time_dict[k] = self.Time + RunConfig.PositionLifetime if self.Portfolio[k].IsLong: self.Liquidate(k) else: continue size = dat.Side * min((self.Portfolio.Cash / self.Portfolio.TotalPortfolioValue) * 0.90, 0.1) self.SetHoldings(k, size) # store trade to log self.Log(f", {k}, pos, {self.Portfolio[k].Quantity}, {self.Portfolio[k].Price}") def Balancing(self, X, y): """Module to make equial amount of labels. This code is sampled from 'mlfinlab' package """ train_df = pd.concat([y, X], axis=1, join='inner') # Upsample the training data to have a 50 - 50 split # https://elitedatascience.com/imbalanced-classes majority = train_df[train_df['Bin'] == 0] minority = train_df[train_df['Bin'] == 1] if len(majority) < len(minority): majority, minority = minority, majority new_minority = resample(minority, replace=True, # sample with replacement n_samples=majority.shape[0], # to match majority class random_state=42) train_df =
pd.concat([majority, new_minority])
pandas.concat
import os from typing import List import pandas as pd import numpy as np from tqdm import tqdm_notebook as tqdm from .dataset import Dataset DATA_DIR = "data" NYSE_PRICES = os.path.join(DATA_DIR, 'nyse', 'prices-split-adjusted.csv') # TODO: Currently only using open for one less dimension # FEATURES = ['date', 'symbol', 'open', 'close', 'low', 'high', 'volume'] FEATURES = ['date', 'symbol'] TIME_FEATURES = ['open', 'close', 'low', 'high', 'volume', 'movement', 'gspc', 'vix'] DEFAULT_TIME_FEATURES = ['open', 'close'] START_DATE = pd.to_datetime('2010-01-04') TRAIN_VAL_SPLIT = pd.to_datetime('2014-01-04') TRAIN_TEST_SPLIT = pd.to_datetime('2016-01-04') END_DATE = pd.to_datetime('2016-12-30') FINAL_TEST_SPLIT = pd.to_datetime('2012-12-31') TEXT_END = pd.to_datetime('2013-11-29') # last article is on 26 but we take the whole week # These companies have no available stock prices before the FINAL_TEST_SPLIT COMPANIES_MISSING_IN_TRAIN = [ 'ABBV', 'ALLE', 'CFG', 'COTY', 'CSRA', 'DLPH', 'EVHC', 'FB', 'FBHS', 'FTV', 'HCA', 'HPE', 'KHC', 'KMI', 'KORS', 'MNK', 'MPC', 'NAVI', 'NLSN', 'NWS', 'NWSA', 'PSX', 'PYPL', 'QRVO', 'SYF', 'TDG', 'TRIP', 'WLTW', 'WRK', 'XYL', 'ZTS'] COMPANIES_JOINING_DURING_TRAIN = [ 'CHTR', # 2010-01-05 'LYB', # 2010-04-28 'GM', # 2010-11-18 ] COMPANIES_JOINING_DURING_TEST = [ 'ZTS', # 2013-02-01 'COTY', # 2013-06-13 'MNK', # 2013-06-17 'NWS', 'NWSA', # 2013-06-19 'EVHC', # 2013-08-14 'ALLE', # 2013-11-18 'CFG', 'NAVI', 'QRVO', 'SYF', # 2015-01-02 'WRK', # 2015-06-24 'KHC', 'PYPL', # 2015-07-06 'HPE', # 2015-10-19 'CSRA', # 2015-11-16 'WLTW', # 2016-01-05 'FTV', # 2016-07-05 ] class NyseStocksDataset(Dataset): def __init__(self, name: str = 'NyseStocksDataset', file_path: str = NYSE_PRICES, epsilon: int = 0.01, # Good classes distribution: 0.004 look_back: int = 7, forecast_out: int = 1, features: List[str] = DEFAULT_TIME_FEATURES, companies: List[int] = None, load: bool = False, incl_test: bool = False, only_test: bool = False): super().__init__(name) self.prices = None self.file_path = file_path self.file_dir, _ = os.path.split(self.file_path) self.epsilon = epsilon self.incl_test = incl_test self.only_test = only_test assert look_back > 0 self.look_back = look_back assert forecast_out > 0 self.forecast_out = forecast_out self.features = features self.companies = companies if load: self.load() def load(self): """Load data""" self.logger.debug( 'Reading NYSE stocks data (takes about 43 seconds)...') prices =
pd.read_csv(self.file_path)
pandas.read_csv
import torch import numpy as np import pandas as pd import os import sys from torchsummary import summary import torch.nn as nn from collections import defaultdict import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt matplotlib.style.use('ggplot') from matplotlib import cm import seaborn as sns sns.set( font_scale=1.5, style="whitegrid", rc={ 'text.usetex' : False, 'lines.linewidth': 2 } ) # sns.set_theme() # sns.set_style('whitegrid') import glob import copy import math import models import random import torch.optim import torch import argparse import utils from sklearn.linear_model import LogisticRegression try: from tqdm import tqdm except: def tqdm(x): return x """ Plot the data contained in quant (keys: the name of the experiments), agains the reference (contained in stats_ref) dirname: the output directory name """ def process_df(quant, dirname, stats_ref=None, args=None, args_model=None, save=True, split=False): global table_format col_names = ["experiment", "stat", "set", "layer"] quant = utils.assert_col_order(quant, col_names, id_vars="var") keys = list(quant.columns.levels[0].sort_values()) output_root = os.path.join(dirname, f"merge_" + "_".join(keys)) os.makedirs(output_root, exist_ok=True) idx = pd.IndexSlice cols_error = idx[:, 'error', :, :] N_L = len(quant.columns.unique(level="layer")) # number of hidden layers # errors = quant["error"] # losses = quant["loss"] quant.drop("val", axis=1,level="set", inplace=True, errors='ignore') quant.drop(("test", "loss"), axis=1, inplace=True, errors='ignore') if save: quant.to_csv(os.path.join(output_root, 'merge.csv')) if stats_ref is not None: stats_ref.to_csv(os.path.join(output_root, 'stats_ref.csv')) quant.sort_index(axis=1, inplace=True) quant.loc[:, cols_error] *= 100 # in % quant.groupby(level=["experiment", "stat", "set"], axis=1, group_keys=False).describe().to_csv(os.path.join(output_root, 'describe.csv')) quant_ref = None Ts = { -1: 0, 0: 0, 1: 12.71, 2: 4.303, 3: 3.182, 4: 2.776, 9: 2.262} # quant.where(quant != 0, 6.1*10**(-5), inplace=True) if args.yscale == "log": quant_log = np.log10(quant) # quant_log.loc[:, Idx['B', "loss", :, 10]] if stats_ref is not None: # the reference to plot against N_S = len(stats_ref.columns) quant_ref_merge = pd.DataFrame() stats_ref.loc[:, "error"] = stats_ref["error"].values * 100 if "layer" in stats_ref.columns.names: stats_ref.columns = stats_ref.columns.droplevel('layer') # confidence intervals for the reference loss quant_ref = stats_ref.agg(['mean', 'count', 'std']) quant_ref.loc['se'] = quant_ref.loc['std'] / np.sqrt(quant_ref.loc['count']) # standard error quant_ref.loc['ci95'] = [ Ts[n-1] * se for (n, se) in zip(quant_ref.loc['count'], quant_ref.loc['se']) ] # 95% CI if args.yscale == "log": quant_ref_log = np.log10(stats_ref).agg(['mean', 'count', 'std']) quant_ref_log.loc['se'] = quant_ref_log.loc['std'] / np.sqrt(quant_ref_log.loc['count']) quant_ref_log.loc['ci95'] = [ Ts[n-1] * se for (n, se) in zip(quant_ref_log.loc['count'], quant_ref_log.loc['se']) ] # 95% CI # if args_model is not None: # else: xlabels=[str(i) for i in range(N_L)] logstr = "_log" if args.yscale == "log" else "" has_ref = quant_ref is not None # if len(keys) <= 2: palette=sns.color_palette(n_colors=len(keys)) if not split: fig, axes = plt.subplots(2, 1, figsize=(4, 8), sharex=False) # sns.set(font_scale=1,rc={"lines.linewidth":3}) k = 0 # the confidence intervals df_ci = quant.describe() df_ci.loc["ymax", :] = [mean + Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci.loc["mean", :], df_ci.loc["std", :], df_ci.loc["count", :])] df_ci.loc["ymin", :] = [mean - Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci.loc["mean", :], df_ci.loc["std", :], df_ci.loc["count", :])] #confidence intervals for the log plot if args.yscale == "log": df_ci_log = quant_log.describe() df_ci_log.loc["ymax", :] = [mean + Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci_log.loc["mean", :], df_ci_log.loc["std", :], df_ci_log.loc["count", :])] df_ci_log.loc["ymin", :] = [mean - Ts[int(n-1)] / np.sqrt(n) * std for (mean, std, n) in zip(df_ci_log.loc["mean", :], df_ci_log.loc["std", :], df_ci_log.loc["count", :])] #rp.set_axis_labels("layer", "Loss", labelpad=10) #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="") for i, stat in enumerate(["loss","error" ]): for j, setn in enumerate(["train","test"]): if stat == "loss" and setn=="test": continue if stat == "error" and setn=="train": continue # axes[k] = rp.axes[j,i] log_plot = args.yscale == "log" and setn == "train" if split: fig, ax = plt.subplots(1, 1, figsize=(4, 4), sharex=False) else: ax = axes.flatten()[k] if log_plot: df_plot = quant_log.loc[:, Idx[:, stat, setn, :]] df_ci_plot = df_ci_log else: df_plot = quant.loc[:, Idx[:, stat, setn, :]]#.min(axis=0).to_frame(name="value") df_ci_plot = df_ci df_plot = pd.melt(df_plot.reset_index(), id_vars="var") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci=None, palette=palette, #style='layer', markers=False, ax=ax, dashes=True, # linewidth=3., #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) for j, exp in enumerate(keys): xs =quant.loc[:, Idx[exp, stat, setn, :]].columns.get_level_values('layer').unique() df_ci_pplot = df_ci_plot.loc[:, Idx[exp, stat, setn, xs]] ax.fill_between(xs, df_ci_pplot.loc["ymax",:].values, df_ci_pplot.loc["ymin", :].values, color=ax.lines[j].get_color(), alpha=0.3) # else: # lp.set_xticklabels(len(xlabels)*[None]) if not split: ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*"ing", stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) if setn == "test": ax.set_ylim(df_plot["value"].min(), df_plot["value"].max()) if log_plot: # set the axis in power of 10 values ax.get_yaxis().get_major_formatter().set_useMathText(True) ax.get_yaxis().set_major_formatter(lambda x, pos: "$10^{" + f"{int(x)}" + "}$") if has_ref: # data_ref = quant_ref[stat, setn].reset_index() if not log_plot: ax.axline((0,quant_ref[stat, setn][0]), (1, quant_ref[stat, setn][0]), ls=":", zorder=2, c='g') # for the mean y1 = quant_ref.loc['mean', (stat, setn)] + quant_ref.loc['ci95', (stat, setn)]#quant_ref.loc['std', (stat, setn)] # y2 = quant_ref.loc['mean', (stat, setn)] - quant_ref.loc['ci95', (stat, setn)] #quant_ref.loc['ci95', (stat, setn)] ax.axhspan(y1, y2, facecolor='g', alpha=0.5) else: ax.axline((0,quant_ref_log[stat, setn][0]), (1, quant_ref_log[stat, setn][0]), ls=":", zorder=2, c='g') # for the mean y1 = quant_ref_log.loc['mean', (stat, setn)] + quant_ref_log.loc['ci95', (stat, setn)]#quant_ref_log.loc['std', (stat, setn)] # y2 = quant_ref_log.loc['mean', (stat, setn)] - quant_ref_log.loc['ci95', (stat, setn)] #quant_ref_log.loc['ci95', (stat, setn)] ax.axhspan(y1, y2, facecolor='g', alpha=0.5) # data_ref.index = pd.Index(range(len(data_ref))) # ax=ax, # if setn == "train": # ax.set_yscale(args.yscale) if split: # if k == 1: labels=keys + has_ref*["ref."] if setn == "test": # reset the name (not log) logstr = "" fig.legend(handles=ax.lines, labels=labels, # title="Exp.", loc="upper right", borderaxespad=0, bbox_to_anchor=(0.9,0.9))#, bbox_transform=fig.transFigure) # fig.tight_layout() plt.margins() plt.savefig(fname=os.path.join(output_root, f"{setn}_{stat}{logstr}.pdf"), bbox_inches='tight') k += 1 # fig.subplots_adjust(top=0.85) # if is_vgg: if not split: labels=keys + has_ref*["ref."] fig.legend(handles=ax.lines, labels=labels, # title="Exp.", loc="upper right", borderaxespad=0, bbox_to_anchor=(0.9,0.9))#, bbox_transform=fig.transFigure) fig.tight_layout() # plt.margins() fig.savefig(fname=os.path.join(output_root, f"train_loss_test_error{logstr}.pdf"), bbox_inches='tight') k=0 # sns.set(font_scale=1,rc={"lines.linewidth":3}) fig, axes = plt.subplots(1, 1, figsize=(4, 4), sharex=False) for i, stat in enumerate(["error"]): for j, setn in enumerate(["train"]): if stat == "loss" and setn=="test": continue if stat=="error" and setn=="test": continue # axes[k] = rp.axes[j,i] ax = axes # df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value") df_plot = quant.loc[:, Idx[:, stat, setn, :]]#.min(axis=0).to_frame(name="value") df_plot = pd.melt(df_plot.reset_index(), id_vars="var") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci=95, palette=palette, #style='layer', markers=False, ax=ax, dashes=True, #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels)) lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) if not split: ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*'ing', stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) if setn == "train": ax.set_yscale(args.yscale) if quant_ref is not None: # data_ref = quant_ref[stat, setn].reset_index() ax.axline((0,quant_ref[stat, setn][0]), (1,quant_ref[stat, setn][0]), ls=":", zorder=2, c='g') # data_ref.index = pd.Index(range(len(data_ref))) # sns.lineplot( # data=data_ref, # repeat the datasaet N_L times # ax=ax, # # x=range(len(data_ref)), # # y="value", # # xc np.tile(np.linspace(1, N_L, num=N_L), 2), # # x='', # # hue='r', # # color='red', # palette=['red'], # # style='set', # # x='index', # # dashes=True, # legend=False, # # y="value" # ) # for ax in ax.lines[-1:]: # the last two # ax.set_linestyle('--') k += 1 # fig.subplots_adjust(top=0.85) # if is_vgg: labels=keys + ["ref."] fig.legend(handles=ax.lines, labels=keys, #title="Exp.", loc="upper right", bbox_to_anchor=(0.9,0.9),borderaxespad=0)#, bbox_transform=fig.transFigure) plt.margins() plt.savefig(fname=os.path.join(output_root, f"error_train{logstr}.pdf"), bbox_inches='tight') if "B" in keys: df_B = quant["B"] elif "B2" in keys: df_B = quant["B2"] else: return n_draws = len(df_B.index) # vary_draw=copy.deepcopy(df_B) df_B_plot = pd.melt(df_B.reset_index(), id_vars="var") cp = sns.FacetGrid( data=df_B_plot, # hue="experiment", # hue_order=["A", "B"], col="stat", col_order=["loss", "error"], row="set", row_order=["train", "test"], # x="layer", # y="value", # kind='line', # legend="full", # style='set', # ci='sd', # palette=palette, #style='layer', # markers=False, # dashes=True, #legend_out=True, # facet_kws={ sharey= False, sharex= True, #y="value", ) styles=['dotted', 'dashed', 'dashdot', 'solid'] # for i_k, k in enumerate([10, 50, 100, 200]): draws = len(df_B.index) df_bound = pd.DataFrame(columns=df_B.columns) # df_bound.columns = df_B.columns # for k in range(1, draws+1): # # df_cut = pd.melt(df_B[:k].reset_index(), id_vars="draw") # df_bound.loc[k, :] = df_B[:k].min(axis=0) # # idx_min = df_cut.query('stat=="loss"idxmin") # fig, axes= plt.subplots(2,2,figsize=(12,12), sharex=True) # for i, stat in enumerate(["loss", "error"]): # for j, setn in enumerate(["train", "test"]): # df_bound_plot = df_bound[stat,setn].max(axis=1) # ax=axes[i,j] # ax.set_title("{} {}".format(setn.title(), stat.title())) # sns.lineplot( # data=df_bound_plot, # ax=ax, # ) # # cp.axes[j,i].set_title("{} {}".format(setn.title(), stat.title())) # plt.savefig(fname=os.path.join(output_root, "comp_draws.pdf"), bbox_inches='tight') plt.close('all') # ylabel = stat if stat == "loss" else "error (%)" # cp.axes[j,i].set_ylabel(ylabel) # cp.axes[j,i].set_xlabel("layer index l") # df_cut_plot = pd.melt(df_cut_min.query(f'stat=="{stat}" & set=="{setn}"')) # if quant_ref is not None: # data_ref = quant_ref[stat, setn].reset_index() # data_ref.index = pd.Index(range(len(data_ref))) # sns.lineplot( # data=df_cut_plot, repeat the datasaet N_L times # ax=cp.axes[j,i], # x=range(len(data_ref)), # y="value", # xc np.tile(np.linspace(1, N_L, num=N_L), 2), # x='layer', # hue='r', # color='red', # palette=['red'], # style='set', # x='index', # dashes=True, # legend=False, # y="value" # ) # for ax in cp.axes[j,i].lines[-1:]: the last two # ax.set_linestyle(styles[i_k]) def process_csv(file_csv): '''Read and process a previously computed result stored inside a checkpoint''' idx = pd.IndexSlice quant =
pd.read_csv(file_csv, header=[0,1], index_col=0)
pandas.read_csv
import copy import importlib import itertools import os import sys import warnings import numpy as np import pandas as pd try: import ixmp has_ix = True except ImportError: has_ix = False from pyam import plotting from pyam.logger import logger from pyam.run_control import run_control from pyam.utils import ( write_sheet, read_ix, read_files, read_pandas, format_data, pattern_match, years_match, isstr, islistable, cast_years_to_int, META_IDX, YEAR_IDX, REGION_IDX, IAMC_IDX, SORT_IDX, LONG_IDX, ) from pyam.timeseries import fill_series class IamDataFrame(object): """This class is a wrapper for dataframes following the IAMC format. It provides a number of diagnostic features (including validation of data, completeness of variables provided) as well as a number of visualization and plotting tools. """ def __init__(self, data, **kwargs): """Initialize an instance of an IamDataFrame Parameters ---------- data: ixmp.TimeSeries, ixmp.Scenario, pd.DataFrame or data file an instance of an TimeSeries or Scenario (requires `ixmp`), or pd.DataFrame or data file with IAMC-format data columns. A pd.DataFrame can have the required data as columns or index. Special support is provided for data files downloaded directly from IIASA SSP and RCP databases. If you run into any problems loading data, please make an issue at: https://github.com/IAMconsortium/pyam/issues """ # import data from pd.DataFrame or read from source if isinstance(data, pd.DataFrame): self.data = format_data(data.copy()) elif has_ix and isinstance(data, ixmp.TimeSeries): self.data = read_ix(data, **kwargs) else: self.data = read_files(data, **kwargs) # cast year column to `int` if necessary if not self.data.year.dtype == 'int64': self.data.year = cast_years_to_int(self.data.year) # define a dataframe for categorization and other metadata indicators self.meta = self.data[META_IDX].drop_duplicates().set_index(META_IDX) self.reset_exclude() # execute user-defined code if 'exec' in run_control(): self._execute_run_control() def __getitem__(self, key): _key_check = [key] if isstr(key) else key if set(_key_check).issubset(self.meta.columns): return self.meta.__getitem__(key) else: return self.data.__getitem__(key) def __setitem__(self, key, value): _key_check = [key] if isstr(key) else key if set(_key_check).issubset(self.meta.columns): return self.meta.__setitem__(key, value) else: return self.data.__setitem__(key, value) def __len__(self): return self.data.__len__() def _execute_run_control(self): for module_block in run_control()['exec']: fname = module_block['file'] functions = module_block['functions'] dirname = os.path.dirname(fname) if dirname: sys.path.append(dirname) module = os.path.basename(fname).split('.')[0] mod = importlib.import_module(module) for func in functions: f = getattr(mod, func) f(self) def head(self, *args, **kwargs): """Identical to pd.DataFrame.head() operating on data""" return self.data.head(*args, **kwargs) def tail(self, *args, **kwargs): """Identical to pd.DataFrame.tail() operating on data""" return self.data.tail(*args, **kwargs) def models(self): """Get a list of models""" return pd.Series(self.meta.index.levels[0]) def scenarios(self): """Get a list of scenarios""" return pd.Series(self.meta.index.levels[1]) def regions(self): """Get a list of regions""" return pd.Series(self.data['region'].unique(), name='region') def variables(self, include_units=False): """Get a list of variables Parameters ---------- include_units: boolean, default False include the units """ if include_units: return self.data[['variable', 'unit']].drop_duplicates()\ .reset_index(drop=True).sort_values('variable') else: return pd.Series(self.data.variable.unique(), name='variable') def append(self, other, ignore_meta_conflict=False, inplace=False, **kwargs): """Append any castable object to this IamDataFrame. Columns in `other.meta` that are not in `self.meta` are always merged, duplicate region-variable-unit-year rows raise a ValueError. Parameters ---------- other: pyam.IamDataFrame, ixmp.TimeSeries, ixmp.Scenario, pd.DataFrame or data file An IamDataFrame, TimeSeries or Scenario (requires `ixmp`), pandas.DataFrame or data file with IAMC-format data columns ignore_meta_conflict : bool, default False If False and `other` is an IamDataFrame, raise an error if any meta columns present in `self` and `other` are not identical. inplace : bool, default False If True, do operation inplace and return None """ ret = copy.deepcopy(self) if not inplace else self if not isinstance(other, IamDataFrame): other = IamDataFrame(other, **kwargs) ignore_meta_conflict = True diff = other.meta.index.difference(ret.meta.index) intersect = other.meta.index.intersection(ret.meta.index) # merge other.meta columns not in self.meta for existing scenarios if not intersect.empty: # if not ignored, check that overlapping meta dataframes are equal if not ignore_meta_conflict: cols = [i for i in other.meta.columns if i in ret.meta.columns] if not ret.meta.loc[intersect, cols].equals( other.meta.loc[intersect, cols]): conflict_idx = ( pd.concat([ret.meta.loc[intersect, cols], other.meta.loc[intersect, cols]] ).drop_duplicates() .index.drop_duplicates() ) msg = 'conflict in `meta` for scenarios {}'.format( [i for i in pd.DataFrame(index=conflict_idx).index]) raise ValueError(msg) cols = [i for i in other.meta.columns if i not in ret.meta.columns] _meta = other.meta.loc[intersect, cols] ret.meta = ret.meta.merge(_meta, how='outer', left_index=True, right_index=True) # join other.meta for new scenarios if not diff.empty: # sorting not supported by ` pd.append()` prior to version 23 sort_kwarg = {} if int(pd.__version__.split('.')[1]) < 23 \ else dict(sort=False) ret.meta = ret.meta.append(other.meta.loc[diff, :], **sort_kwarg) # append other.data (verify integrity for no duplicates) ret.data.set_index(LONG_IDX, inplace=True) other.data.set_index(LONG_IDX, inplace=True) ret.data = ret.data.append(other.data, verify_integrity=True)\ .reset_index(drop=False) if not inplace: return ret def pivot_table(self, index, columns, values='value', aggfunc='count', fill_value=None, style=None): """Returns a pivot table Parameters ---------- index: str or list of strings rows for Pivot table columns: str or list of strings columns for Pivot table values: str, default 'value' dataframe column to aggregate or count aggfunc: str or function, default 'count' function used for aggregation, accepts 'count', 'mean', and 'sum' fill_value: scalar, default None value to replace missing values with style: str, default None output style for pivot table formatting accepts 'highlight_not_max', 'heatmap' """ index = [index] if isstr(index) else index columns = [columns] if isstr(columns) else columns df = self.data # allow 'aggfunc' to be passed as string for easier user interface if isstr(aggfunc): if aggfunc == 'count': df = self.data.groupby(index + columns, as_index=False).count() fill_value = 0 elif aggfunc == 'mean': df = self.data.groupby(index + columns, as_index=False).mean()\ .round(2) aggfunc = np.sum fill_value = 0 if style == 'heatmap' else "" elif aggfunc == 'sum': aggfunc = np.sum fill_value = 0 if style == 'heatmap' else "" df = df.pivot_table(values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value) return df def interpolate(self, year): """Interpolate missing values in timeseries (linear interpolation) Parameters ---------- year: int year to be interpolated """ df = self.pivot_table(index=IAMC_IDX, columns=['year'], values='value', aggfunc=np.sum) # drop year-rows where values are already defined if year in df.columns: df = df[np.isnan(df[year])] fill_values = df.apply(fill_series, raw=False, axis=1, year=year) fill_values = fill_values.dropna().reset_index() fill_values = fill_values.rename(columns={0: "value"}) fill_values['year'] = year self.data = self.data.append(fill_values, ignore_index=True) def as_pandas(self, with_metadata=False): """Return this as a pd.DataFrame Parameters ---------- with_metadata : bool, default False if True, join data with existing metadata """ df = self.data if with_metadata: df = (df .set_index(META_IDX) .join(self.meta) .reset_index() ) return df def timeseries(self): """Returns a dataframe in the standard IAMC format """ return ( self.data .pivot_table(index=IAMC_IDX, columns='year') .value # column name .rename_axis(None, axis=1) ) def reset_exclude(self): """Reset exclusion assignment for all scenarios to `exclude: False`""" self.meta['exclude'] = False def set_meta(self, meta, name=None, index=None): """Add metadata columns as pd.Series, list or value (int/float/str) Parameters ---------- meta: pd.Series, list, int, float or str column to be added to metadata (by `['model', 'scenario']` index if possible) name: str, optional meta column name (defaults to meta pd.Series.name); either a meta.name or the name kwarg must be defined index: pyam.IamDataFrame, pd.DataFrame or pd.MultiIndex, optional index to be used for setting meta column (`['model', 'scenario']`) """ if (name or (hasattr(meta, 'name') and meta.name)) in [None, False]: raise ValueError('Must pass a name or use a named pd.Series') # check if meta has a valid index and use it for further workflow if hasattr(meta, 'index') and hasattr(meta.index, 'names') \ and set(META_IDX).issubset(meta.index.names): index = meta.index # if no valid index is provided, add meta as new column `name` and exit if index is None: self.meta[name] = list(meta) if islistable(meta) else meta return # EXIT FUNCTION # use meta.index if index arg is an IamDataFrame if isinstance(index, IamDataFrame): index = index.meta.index # turn dataframe to index if index arg is a DataFrame if isinstance(index, pd.DataFrame): index = index.set_index(META_IDX).index if not isinstance(index, pd.MultiIndex): raise ValueError('index cannot be coerced to pd.MultiIndex') # raise error if index is not unique if index.duplicated().any(): raise ValueError("non-unique ['model', 'scenario'] index!") # create pd.Series from meta, index and name if provided meta = pd.Series(data=meta, index=index, name=name) meta.name = name = name or meta.name # reduce index dimensions to model-scenario only meta = ( meta .reset_index() .reindex(columns=META_IDX + [name]) .set_index(META_IDX) ) # check if trying to add model-scenario index not existing in self diff = meta.index.difference(self.meta.index) if not diff.empty: error = "adding metadata for non-existing scenarios '{}'!" raise ValueError(error.format(diff)) self._new_meta_column(name) self.meta[name] = meta[name].combine_first(self.meta[name]) def categorize(self, name, value, criteria, color=None, marker=None, linestyle=None): """Assign scenarios to a category according to specific criteria or display the category assignment Parameters ---------- name: str category column name value: str category identifier criteria: dict dictionary with variables mapped to applicable checks ('up' and 'lo' for respective bounds, 'year' for years - optional) color: str assign a color to this category for plotting marker: str assign a marker to this category for plotting linestyle: str assign a linestyle to this category for plotting """ # add plotting run control for kind, arg in [('color', color), ('marker', marker), ('linestyle', linestyle)]: if arg: run_control().update({kind: {name: {value: arg}}}) # find all data that matches categorization rows = _apply_criteria(self.data, criteria, in_range=True, return_test='all') idx = _meta_idx(rows) if len(idx) == 0: logger().info("No scenarios satisfy the criteria") return # EXIT FUNCTION # update metadata dataframe self._new_meta_column(name) self.meta.loc[idx, name] = value msg = '{} scenario{} categorized as `{}: {}`' logger().info(msg.format(len(idx), '' if len(idx) == 1 else 's', name, value)) def _new_meta_column(self, name): """Add a column to meta if it doesn't exist, set to value `np.nan`""" if name is None: raise ValueError('cannot add a meta column `{}`'.format(name)) if name not in self.meta: self.meta[name] = np.nan def require_variable(self, variable, unit=None, year=None, exclude_on_fail=False): """Check whether all scenarios have a required variable Parameters ---------- variable: str required variable unit: str, default None name of unit (optional) years: int or list, default None years (optional) exclude: bool, default False flag scenarios missing the required variables as `exclude: True` """ criteria = {'variable': variable} if unit: criteria.update({'unit': unit}) if year: criteria.update({'year': year}) keep = _apply_filters(self.data, self.meta, criteria) idx = self.meta.index.difference(_meta_idx(self.data[keep])) n = len(idx) if n == 0: logger().info('All scenarios have the required variable `{}`' .format(variable)) return msg = '{} scenario does not include required variable `{}`' if n == 1 \ else '{} scenarios do not include required variable `{}`' if exclude_on_fail: self.meta.loc[idx, 'exclude'] = True msg += ', marked as `exclude: True` in metadata' logger().info(msg.format(n, variable)) return pd.DataFrame(index=idx).reset_index() def validate(self, criteria={}, exclude_on_fail=False): """Validate scenarios using criteria on timeseries values Parameters ---------- criteria: dict dictionary with variable keys and check values ('up' and 'lo' for respective bounds, 'year' for years) exclude_on_fail: bool, default False flag scenarios failing validation as `exclude: True` """ df = _apply_criteria(self.data, criteria, in_range=False) if not df.empty: msg = '{} of {} data points to not satisfy the criteria' logger().info(msg.format(len(df), len(self.data))) if exclude_on_fail and len(df) > 0: self._exclude_on_fail(df) return df def rename(self, mapping, inplace=False): """Rename and aggregate column entries using `groupby.sum()` on values. When renaming models or scenarios, the uniqueness of the index must be maintained, and the function will raise an error otherwise. Parameters ---------- mapping: dict for each column where entries should be renamed, provide current name and target name {<column name>: {<current_name_1>: <target_name_1>, <current_name_2>: <target_name_2>}} inplace: bool, default False if True, do operation inplace and return None """ ret = copy.deepcopy(self) if not inplace else self for col, _mapping in mapping.items(): if col in ['model', 'scenario']: index = pd.DataFrame(index=ret.meta.index).reset_index() index.loc[:, col] = index.loc[:, col].replace(_mapping) if index.duplicated().any(): raise ValueError('Renaming to non-unique {} index!' .format(col)) ret.meta.index = index.set_index(META_IDX).index elif col not in ['region', 'variable', 'unit']: raise ValueError('Renaming by {} not supported!'.format(col)) ret.data.loc[:, col] = ret.data.loc[:, col].replace(_mapping) ret.data = ret.data.groupby(LONG_IDX).sum().reset_index() if not inplace: return ret def convert_unit(self, conversion_mapping, inplace=False): """Converts units based on provided unit conversion factors Parameters ---------- conversion_mapping: dict for each unit for which a conversion should be carried out, provide current unit and target unit and conversion factor {<current unit>: [<target unit>, <conversion factor>]} inplace: bool, default False if True, do operation inplace and return None """ ret = copy.deepcopy(self) if not inplace else self for current_unit, (new_unit, factor) in conversion_mapping.items(): factor = pd.to_numeric(factor) where = ret.data['unit'] == current_unit ret.data.loc[where, 'value'] *= factor ret.data.loc[where, 'unit'] = new_unit if not inplace: return ret def check_aggregate(self, variable, components=None, units=None, exclude_on_fail=False, multiplier=1, **kwargs): """Check whether the timeseries data match the aggregation of components or sub-categories Parameters ---------- variable: str variable to be checked for matching aggregation of sub-categories components: list of str, default None list of variables, defaults to all sub-categories of `variable` units: str or list of str, default None filter variable and components for given unit(s) exclude_on_fail: boolean, default False flag scenarios failing validation as `exclude: True` multiplier: number, default 1 factor when comparing variable and sum of components kwargs: passed to `np.isclose()` """ # default components to all variables one level below `variable` if components is None: components = self.filter(variable='{}|*'.format(variable), level=0).variables() if not len(components): msg = '{} - cannot check aggregate because it has no components' logger().info(msg.format(variable)) return # filter and groupby data, use `pd.Series.align` for matching index df_variable, df_components = ( _aggregate_by_variables(self.data, variable, units) .align(_aggregate_by_variables(self.data, components, units)) ) # use `np.isclose` for checking match diff = df_variable[~np.isclose(df_variable, multiplier * df_components, **kwargs)] if len(diff): msg = '{} - {} of {} data points are not aggregates of components' logger().info(msg.format(variable, len(diff), len(df_variable))) if exclude_on_fail: self._exclude_on_fail(diff.index.droplevel([2, 3])) diff = pd.concat([diff], keys=[variable], names=['variable']) return diff.unstack().rename_axis(None, axis=1) def check_aggregate_regions(self, variable, region='World', components=None, units=None, exclude_on_fail=False, **kwargs): """Check whether the region timeseries data match the aggregation of components Parameters ---------- variable: str variable to be checked for matching aggregation of components data region: str region to be checked for matching aggregation of components data components: list of str, default None list of regions, defaults to all regions except region units: str or list of str, default None filter variable and components for given unit(s) exclude_on_fail: boolean, default False flag scenarios failing validation as `exclude: True` kwargs: passed to `np.isclose()` """ var_df = self.filter(variable=variable, level=0) if components is None: components = var_df.filter(region=region, keep=False).regions() if not len(components): msg = ( '{} - cannot check regional aggregate because it has no ' 'regional components' ) logger().info(msg.format(variable)) return None # filter and groupby data, use `pd.Series.align` for matching index df_region, df_components = ( _aggregate_by_regions(var_df.data, region, units) .align(_aggregate_by_regions(var_df.data, components, units)) ) df_components.index = df_components.index.droplevel( "variable" ) # Add in variables that are included in region totals but which # aren't included in the regional components. # For example, if we are looking at World and Emissions|BC, we need # to add aviation and shipping to the sum of Emissions|BC for each # of World's regional components to do a valid check. different_region = components[0] variable_components = self.filter( variable="{}|*".format(variable) ).variables() for var_to_add in variable_components: var_rows = self.data.variable == var_to_add region_rows = self.data.region == different_region var_has_regional_info = (var_rows & region_rows).any() if not var_has_regional_info: df_var_to_add = self.filter( region=region, variable=var_to_add ).data.groupby(REGION_IDX).sum()['value'] df_var_to_add.index = df_var_to_add.index.droplevel("variable") if len(df_var_to_add): df_components = df_components.add(df_var_to_add, fill_value=0) df_components = pd.concat([df_components], keys=[variable], names=['variable']) # use `np.isclose` for checking match diff = df_region[~np.isclose(df_region, df_components, **kwargs)] if len(diff): msg = ( '{} - {} of {} data points are not aggregates of regional ' 'components' ) logger().info(msg.format(variable, len(diff), len(df_region))) if exclude_on_fail: self._exclude_on_fail(diff.index.droplevel([2, 3])) diff = pd.concat([diff], keys=[region], names=['region']) return diff.unstack().rename_axis(None, axis=1) def check_internal_consistency(self, **kwargs): """Check whether the database is internally consistent We check that all variables are equal to the sum of their sectoral components and that all the regions add up to the World total. If the check is passed, None is returned, otherwise a dictionary of inconsistent variables is returned. Note: at the moment, this method's regional checking is limited to checking that all the regions sum to the World region. We cannot make this more automatic unless we start to store how the regions relate, see [this issue](https://github.com/IAMconsortium/pyam/issues/106). Parameters ---------- kwargs: passed to `np.isclose()` """ inconsistent_vars = {} for variable in self.variables(): diff_agg = self.check_aggregate(variable, **kwargs) if diff_agg is not None: inconsistent_vars[variable + "-aggregate"] = diff_agg diff_regional = self.check_aggregate_regions(variable, **kwargs) if diff_regional is not None: inconsistent_vars[variable + "-regional"] = diff_regional return inconsistent_vars if inconsistent_vars else None def _exclude_on_fail(self, df): """Assign a selection of scenarios as `exclude: True` in meta""" idx = df if isinstance(df, pd.MultiIndex) else _meta_idx(df) self.meta.loc[idx, 'exclude'] = True logger().info('{} non-valid scenario{} will be excluded' .format(len(idx), '' if len(idx) == 1 else 's')) def filter(self, filters=None, keep=True, inplace=False, **kwargs): """Return a filtered IamDataFrame (i.e., a subset of current data) Parameters ---------- keep: bool, default True keep all scenarios satisfying the filters (if True) or the inverse inplace: bool, default False if True, do operation inplace and return None filters by kwargs or dict (deprecated): The following columns are available for filtering: - metadata columns: filter by category assignment in metadata - 'model', 'scenario', 'region', 'variable', 'unit': string or list of strings, where ``*`` can be used as a wildcard - 'level': the maximum "depth" of IAM variables (number of '|') (exluding the strings given in the 'variable' argument) - 'year': takes an integer, a list of integers or a range note that the last year of a range is not included, so ``range(2010,2015)`` is interpreted as ``[2010, ..., 2014]`` - 'regexp=True' overrides pseudo-regexp syntax in `pattern_match()` """ if filters is not None: warnings.warn( '`filters` keyword argument in filters() is deprecated and will be removed in the next release') kwargs.update(filters) _keep = _apply_filters(self.data, self.meta, kwargs) _keep = _keep if keep else ~_keep ret = copy.deepcopy(self) if not inplace else self ret.data = ret.data[_keep] idx = pd.MultiIndex.from_tuples( pd.unique(list(zip(ret.data['model'], ret.data['scenario']))), names=('model', 'scenario') ) if len(idx) == 0: logger().warning('Filtered IamDataFrame is empty!') ret.meta = ret.meta.loc[idx] if not inplace: return ret def col_apply(self, col, func, *args, **kwargs): """Apply a function to a column Parameters ---------- col: string column in either data or metadata func: functional function to apply """ if col in self.data: self.data[col] = self.data[col].apply(func, *args, **kwargs) else: self.meta[col] = self.meta[col].apply(func, *args, **kwargs) def _to_file_format(self): """Return a dataframe suitable for writing to a file""" df = self.timeseries().reset_index() df = df.rename(columns={c: str(c).title() for c in df.columns}) return df def to_csv(self, path, index=False, **kwargs): """Write data to a csv file Parameters ---------- index: boolean, default False write row names (index) """ self._to_file_format().to_csv(path, index=False, **kwargs) def to_excel(self, path=None, writer=None, sheet_name='data', index=False, **kwargs): """Write timeseries data to Excel using the IAMC template convention (wrapper for `pd.DataFrame.to_excel()`) Parameters ---------- excel_writer: string or ExcelWriter object file path or existing ExcelWriter sheet_name: string, default 'data' name of the sheet that will contain the (filtered) IamDataFrame index: boolean, default False write row names (index) """ if (path is None and writer is None) or \ (path is not None and writer is not None): raise ValueError('Only one of path and writer must have a value') if writer is None: writer = pd.ExcelWriter(path) self._to_file_format().to_excel(writer, sheet_name=sheet_name, index=index, **kwargs) def export_metadata(self, path): """Export metadata to Excel Parameters ---------- path: string path/filename for xlsx file of metadata export """ writer = pd.ExcelWriter(path) write_sheet(writer, 'meta', self.meta, index=True) writer.save() def load_metadata(self, path, *args, **kwargs): """Load metadata exported from `pyam.IamDataFrame` instance Parameters ---------- path: string xlsx file with metadata exported from `pyam.IamDataFrame` instance """ if not os.path.exists(path): raise ValueError("no metadata file '" + path + "' found!") if path.endswith('csv'): df = pd.read_csv(path, *args, **kwargs) else: xl = pd.ExcelFile(path) if len(xl.sheet_names) > 1 and 'sheet_name' not in kwargs: kwargs['sheet_name'] = 'meta' df = pd.read_excel(path, *args, **kwargs) req_cols = ['model', 'scenario', 'exclude'] if not set(req_cols).issubset(set(df.columns)): e = 'File `{}` does not have required columns ({})!' raise ValueError(e.format(path, req_cols)) # set index, filter to relevant scenarios from imported metadata file df.set_index(META_IDX, inplace=True) idx = self.meta.index.intersection(df.index) n_invalid = len(df) - len(idx) if n_invalid > 0: msg = 'Ignoring {} scenario{} from imported metadata' logger().info(msg.format(n_invalid, 's' if n_invalid > 1 else '')) if idx.empty: raise ValueError('No valid scenarios in imported metadata file!') df = df.loc[idx] # Merge in imported metadata msg = 'Importing metadata for {} scenario{} (for total of {})' logger().info(msg.format(len(df), 's' if len(df) > 1 else '', len(self.meta))) for col in df.columns: self._new_meta_column(col) self.meta[col] = df[col].combine_first(self.meta[col]) # set column `exclude` to bool self.meta.exclude = self.meta.exclude.astype('bool') def line_plot(self, x='year', y='value', **kwargs): """Plot timeseries lines of existing data see pyam.plotting.line_plot() for all available options """ df = self.as_pandas(with_metadata=True) # pivot data if asked for explicit variable name variables = df['variable'].unique() if x in variables or y in variables: keep_vars = set([x, y]) & set(variables) df = df[df['variable'].isin(keep_vars)] idx = list(set(df.columns) - set(['value'])) df = (df .reset_index() .set_index(idx) .value # df -> series .unstack(level='variable') # keep_vars are columns .rename_axis(None, axis=1) # rm column index name .reset_index() .set_index(META_IDX) ) if x != 'year' and y != 'year': df = df.drop('year', axis=1) # years causes NaNs ax, handles, labels = plotting.line_plot(df, x=x, y=y, **kwargs) return ax def stack_plot(self, *args, **kwargs): """Plot timeseries stacks of existing data see pyam.plotting.stack_plot() for all available options """ df = self.as_pandas(with_metadata=True) ax = plotting.stack_plot(df, *args, **kwargs) return ax def bar_plot(self, *args, **kwargs): """Plot timeseries bars of existing data see pyam.plotting.bar_plot() for all available options """ df = self.as_pandas(with_metadata=True) ax = plotting.bar_plot(df, *args, **kwargs) return ax def pie_plot(self, *args, **kwargs): """Plot a pie chart see pyam.plotting.pie_plot() for all available options """ df = self.as_pandas(with_metadata=True) ax = plotting.pie_plot(df, *args, **kwargs) return ax def scatter(self, x, y, **kwargs): """Plot a scatter chart using metadata columns see pyam.plotting.scatter() for all available options """ xisvar = x in self.data['variable'].unique() yisvar = y in self.data['variable'].unique() if not xisvar and not yisvar: df = self.meta.reset_index() elif xisvar and yisvar: # filter pivot both and rename dfx = ( self .filter(variable=x) .as_pandas() .rename(columns={'value': x, 'unit': 'xunit'}) .set_index(YEAR_IDX) .drop('variable', axis=1) ) dfy = ( self .filter(variable=y) .as_pandas() .rename(columns={'value': y, 'unit': 'yunit'}) .set_index(YEAR_IDX) .drop('variable', axis=1) ) df = dfx.join(dfy).reset_index() else: # filter, merge with meta, and rename value column to match var var = x if xisvar else y df = ( self .filter(variable=var) .as_pandas(with_metadata=True) .rename(columns={'value': var}) ) ax = plotting.scatter(df, x, y, **kwargs) return ax def map_regions(self, map_col, agg=None, copy_col=None, fname=None, region_col=None, remove_duplicates=False, inplace=False): """Plot regional data for a single model, scenario, variable, and year see pyam.plotting.region_plot() for all available options Parameters ---------- map_col: string The column used to map new regions to. Common examples include iso and 5_region. agg: string, optional Perform a data aggregation. Options include: sum. copy_col: string, optional Copy the existing region data into a new column for later use. fname: string, optional Use a non-default region mapping file region_col: string, optional Use a non-default column name for regions to map from. remove_duplicates: bool, optional, default: False If there are duplicates in the mapping from one regional level to another, then remove these duplicates by counting the most common mapped value. This option is most useful when mapping from high resolution (e.g., model regions) to low resolution (e.g., 5_region). inplace : bool, default False if True, do operation inplace and return None """ models = self.meta.index.get_level_values('model').unique() fname = fname or run_control()['region_mapping']['default'] mapping = read_pandas(fname).rename(str.lower, axis='columns') map_col = map_col.lower() ret = copy.deepcopy(self) if not inplace else self _df = ret.data columns_orderd = _df.columns # merge data dfs = [] for model in models: df = _df[_df['model'] == model] _col = region_col or '{}.REGION'.format(model) _map = mapping.rename(columns={_col.lower(): 'region'}) _map = _map[['region', map_col]].dropna().drop_duplicates() _map = _map[_map['region'].isin(_df['region'])] if remove_duplicates and _map['region'].duplicated().any(): # find duplicates where_dup = _map['region'].duplicated(keep=False) dups = _map[where_dup] logger().warning(""" Duplicate entries found for the following regions. Mapping will occur only for the most common instance. {}""".format(dups['region'].unique())) # get non duplicates _map = _map[~where_dup] # order duplicates by the count frequency dups = (dups .groupby(['region', map_col]) .size() .reset_index(name='count') .sort_values(by='count', ascending=False) .drop('count', axis=1)) # take top occurance dups = dups[~dups['region'].duplicated(keep='first')] # combine them back _map =
pd.concat([_map, dups])
pandas.concat
from decimal import Decimal, getcontext from typing import Dict, Tuple import numpy as np import pandas as pd import ftx.data._precisions as prec getcontext().prec = 6 def decimal_with_precision(x: str, precision: int) -> Decimal: return round(Decimal(x), precision) def convert_futures_size(futures_fills: pd.DataFrame) -> pd.DataFrame: futures_fills.loc[:, 'size'] = futures_fills.loc[:, ['size']].astype('str') for mkt in futures_fills['market'].unique(): mkt = mkt.split('-')[0] # Will error if there is no entry in the Precisions Dict. futures_fills.loc[futures_fills['market'].str.contains(mkt), 'size'] = futures_fills.loc[futures_fills['market'].str.contains(mkt), 'size'].apply(decimal_with_precision, args=(prec.FUTURES_SIZE[mkt], )) return futures_fills def convert_futures_price(futures_fills: pd.DataFrame) -> pd.DataFrame: futures_fills.loc[:, 'price'] = futures_fills.loc[:, ['price']].astype('str') for mkt in futures_fills['market'].unique(): mkt = mkt.split('-')[0] futures_fills.loc[futures_fills['market'].str.contains(mkt), 'price'] = futures_fills.loc[futures_fills['market'].str.contains(mkt), 'price'].apply(decimal_with_precision, args=(prec.FUTURES_PRICE[mkt], )) return futures_fills def convert_futures_fee(futures_fills: pd.DataFrame) -> pd.DataFrame: futures_fills.loc[:, 'fee'] = futures_fills.loc[:, ['fee']].astype('str') for mkt in futures_fills['market'].unique(): mkt = mkt.split('-')[0] futures_fills.loc[futures_fills['market'].str.contains(mkt), 'fee'] = futures_fills.loc[futures_fills['market'].str.contains(mkt), 'fee'].apply(decimal_with_precision, args=(prec.FUTURES_FEE, )) return futures_fills def convert_futures_feeRate(futures_fills: pd.DataFrame) -> pd.DataFrame: futures_fills.loc[:, 'feeRate'] = futures_fills.loc[:, ['feeRate']].astype('str') futures_fills.loc[:, 'feeRate'] = futures_fills.loc[:, 'feeRate'].apply(decimal_with_precision, args=(prec.FUTURES_FEERATE, )) return futures_fills def compute_deltas(fills: pd.DataFrame) -> pd.DataFrame: fills['size'] = fills['size'].mask(fills['side'] == 'sell', -fills['size']) fills['delta'] = fills['size'].cumsum() return fills def preprocess_fills(fills: pd.DataFrame) -> Tuple[pd.DataFrame, pd.DataFrame, Dict[str, pd.DataFrame], Dict[str, pd.DataFrame]]: # Convert unique identifiers to string fills['id'] = fills['id'].astype('str') fills['orderId'] = fills['orderId'].astype('str') fills['tradeId'] = fills['tradeId'].astype('str') fills['time'] = pd.to_datetime(fills['time']) # Sort fills by time and id fills.sort_values(['time', 'id'], inplace=True, axis=0, ignore_index=True) # Add volume column fills['volume'] = fills['size'] * fills['price'] # Split spot and futures spot = fills[(fills['future'].isnull()) & (fills['type'] != 'otc')].copy() futures = fills[fills['future'].notnull()].copy() # Drop unused columns in futures futures.drop('baseCurrency', axis=1, inplace=True) futures.drop('quoteCurrency', axis=1, inplace=True) # Convert size to Decimal futures = convert_futures_size(futures) # Split futures by market futures_by_market = {mkt: futures[futures['market'] == mkt].copy() for mkt in futures['market'].unique()} spot_by_market = {mkt: spot[spot['market'] == mkt].copy() for mkt in spot['market'].unique()} return spot, futures, futures_by_market, spot_by_market def preprocess_funding(funding: pd.DataFrame) -> pd.DataFrame: # Convert time funding['time'] =
pd.to_datetime(funding['time'])
pandas.to_datetime
import requests import urllib3 import utilities import pandas as pd from bs4 import BeautifulSoup # Disable Insecure Request Warning urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) def main(): # Make dataframe to hold links. df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Author: <NAME>, <NAME>, 2017 """ import numpy as np import pandas as pd import pastas as ps class TestGXG(object): def test_ghg(self): idx = pd.to_datetime(['20160114', '20160115', '20160128', '20160214']) s = pd.Series([10., 3., 30., 20.], index=idx) v = ps.stats.ghg(s, min_n_meas=1, min_n_years=1) assert v == 30.0 def test_ghg_ffill(self): idx = pd.to_datetime(['20160101', '20160115', '20160130']) s = pd.Series([0., 0., 10.], index=idx) v = ps.stats.ghg(s, fill_method='ffill', limit=15, min_n_meas=1, min_n_years=1) assert v == 0. def test_ghg_bfill(self): idx = pd.to_datetime(['20160101', '20160115', '20160130']) s = pd.Series([0., 0., 10.], index=idx) v = ps.stats.ghg(s, fill_method='bfill', limit=15, min_n_meas=1, min_n_years=1) # TODO is this correct? assert v == 10. def test_ghg_linear(self): idx = pd.to_datetime(['20160101', '20160110', '20160120', '20160130']) s = pd.Series([0., 0., 10., 10.], index=idx) v = ps.stats.ghg(s, fill_method='linear', min_n_meas=1, min_n_years=1, limit=8) # TODO is this correct? assert v == 10. def test_ghg_len_yearly(self): idx = pd.date_range('20000101', '20550101', freq='d') s = pd.Series(np.ones(len(idx)), index=idx) v = ps.stats.ghg(s, output='yearly') assert v.notna().sum() == 55 def test_glg(self): idx = pd.date_range('20000101', '20550101', freq='d') s = pd.Series([x.month + x.day for x in idx], index=idx, ) v = ps.stats.glg(s, year_offset='a') assert v == 16. def test_glg_fill_limit(self): idx = pd.to_datetime(['20170115', '20170130', '20200101']) s = pd.Series(np.ones(len(idx)), index=idx) v = ps.stats.glg(s, fill_method='linear', limit=15, output='yearly', year_offset='a', min_n_meas=1) assert v.notna().sum() == 2 def test_glg_fill_limit_null(self): idx = pd.to_datetime(['20170101', '20170131', '20200101']) s = pd.Series(np.ones(len(idx)), index=idx) v = ps.stats.glg(s, fill_method='linear', limit=None, output='yearly', year_offset='a', min_n_meas=1) assert v.notna().sum() == 3 def test_gvg(self): idx =
pd.to_datetime(['20170314', '20170328', '20170414', '20170428'])
pandas.to_datetime
import os import h5py from glob import glob import numpy as np from tqdm import tqdm import pandas as pd import os.path as osp from datetime import datetime, timedelta import sys import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split plt.switch_backend('agg') ''' Pre-processing functions. Most of these were only run once, for example, to load data, modify it, and save it. The functions are saved here for possible future use. ''' hand_features = ['name','vs0', 'PSLV_v2', 'PSLV_v3', 'PSLV_v4', 'PSLV_v5', 'PSLV_v6', 'PSLV_v7', 'PSLV_v8', 'PSLV_v9', 'PSLV_v10', 'PSLV_v11', 'PSLV_v12', 'PSLV_v13', 'PSLV_v14', 'PSLV_v15', 'PSLV_v16', 'PSLV_v17', 'PSLV_v18', 'PSLV_v19', 'MTPW_v2', 'MTPW_v3', 'MTPW_v4', 'MTPW_v5', 'MTPW_v6', 'MTPW_v7', 'MTPW_v8', 'MTPW_v9', 'MTPW_v10', 'MTPW_v11', 'MTPW_v12', 'MTPW_v13', 'MTPW_v14', 'MTPW_v15', 'MTPW_v16', 'MTPW_v17', 'MTPW_v18', 'MTPW_v19', 'MTPW_v20', 'MTPW_v21', 'MTPW_v22', 'IR00_v2', 'IR00_v3', 'IR00_v4', 'IR00_v5', 'IR00_v6', 'IR00_v7', 'IR00_v8', 'IR00_v9', 'IR00_v10', 'IR00_v11', 'IR00_v12', 'IR00_v13', 'IR00_v14', 'IR00_v15', 'IR00_v16', 'IR00_v17', 'IR00_v18', 'IR00_v19', 'IR00_v20', 'IR00_v21', 'CSST_t24', 'CD20_t24', 'CD26_t24', 'COHC_t24', 'DTL_t24', 'RSST_t24', 'U200_t24', 'U20C_t24', 'V20C_t24', 'E000_t24', 'EPOS_t24', 'ENEG_t24', 'EPSS_t24', 'ENSS_t24', 'RHLO_t24', 'RHMD_t24', 'RHHI_t24', 'Z850_t24', 'D200_t24', 'REFC_t24', 'PEFC_t24', 'T000_t24', 'R000_t24', 'Z000_t24', 'TLAT_t24', 'TLON_t24', 'TWAC_t24', 'TWXC_t24', 'G150_t24', 'G200_t24', 'G250_t24', 'V000_t24', 'V850_t24', 'V500_t24', 'V300_t24', 'TGRD_t24', 'TADV_t24', 'PENC_t24', 'SHDC_t24', 'SDDC_t24', 'SHGC_t24', 'DIVC_t24', 'T150_t24', 'T200_t24', 'T250_t24', 'SHRD_t24', 'SHTD_t24', 'SHRS_t24', 'SHTS_t24', 'SHRG_t24', 'PENV_t24', 'VMPI_t24', 'VVAV_t24', 'VMFX_t24', 'VVAC_t24', 'HE07_t24', 'HE05_t24', 'O500_t24', 'O700_t24', 'CFLX_t24', 'DELV-12', 'dvs24'] def path2arr(path): h5 = h5py.File(path, 'r') return h5['matrix'].value def get_nan_fracs(arr): nan_fracs = [] for c in range(arr.shape[-1]): nan_fracs.append(np.sum(np.isnan(arr[:, :, c])) / np.product(arr[:, :, c].shape)) return np.array(nan_fracs) def clean_nans(arr): ''' Input is a 2d array possibly containing nans Output is same 2d array with nans replaced by nearest non-nan neighbor ''' def get_neighbor_val(i,j): d = 0 while True: d += 1 for a in range(-d, d+1): if i+a < 0: continue # dont end-index for b in range(-d, d+1): if j+b < 0: continue # dont end-index if abs(a) != d and abs(b) != d: continue # only iterate over perimeter try: val = arr[i+a,j+b] except IndexError: continue else: if not np.isnan(val): return val arr_clean = np.copy(arr) for i,j in np.argwhere(np.isnan(arr)): arr_clean[i,j] = get_neighbor_val(i,j) return arr_clean def extract_images(): ''' Extract images from original big dataset and save separately. Remove two middle channels. Don't save images with a lot of nans. If image has a small number of nans then replace with nearest neighbor values ''' h5_filename = '/raid/data/hurricane/TCIR-ALL_2017.h5' output_basepath = '/raid/data/hurricane/images_64_2017' h5 = h5py.File(h5_filename, 'r') df =
pd.read_hdf(h5_filename, key="info", mode='r')
pandas.read_hdf
import logging import pandas import os import numpy from scipy import stats from .. import Constants from .. import Utilities from .. import MatrixManager from ..PredictionModel import WDBQF, WDBEQF, load_model, dataframe_from_weight_data from ..misc import DataFrameStreamer from . import AssociationCalculation class SimpleContext(AssociationCalculation.Context): def __init__(self, gwas, model, covariance): self.gwas = gwas self.model = model self.covariance = covariance def get_weights(self, gene): w = self.model.weights w = w[w.gene == gene] return w def get_covariance(self, gene, snps): return self.covariance.get(gene, snps, strict_whitelist=False) def get_n_in_covariance(self, gene): return self.covariance.n_ids(gene) def get_gwas(self, snps): g = self.gwas g = g[g[Constants.SNP].isin(snps)] return g def get_model_snps(self): return set(self.model.weights.rsid) def get_data_intersection(self): return _data_intersection(self.model, self.gwas) def provide_calculation(self, gene): w = self.get_weights(gene) gwas = self.get_gwas(w[WDBQF.K_RSID].values) i = pandas.merge(w, gwas, left_on="rsid", right_on="snp") if not Constants.BETA in i: i[Constants.BETA] = None i = i[[Constants.SNP, WDBQF.K_WEIGHT, Constants.ZSCORE, Constants.BETA]] snps, cov = self.get_covariance(gene, i[Constants.SNP].values) # fast subsetting and aligning d_columns = i.columns.values if snps is not None and len(snps): d = {x[0]: x for x in i.values} d = [d[snp] for snp in snps] d = list(zip(*d)) d = {d_columns[i]:d[i] for i in range(0, len(d_columns))} i = pandas.DataFrame(d) else: i = pandas.DataFrame(columns=d_columns) return len(w.weight), i, cov, snps def get_model_info(self): return self.model.extra class OptimizedContext(SimpleContext): def __init__(self, gwas, model, covariance, MAX_R): self.covariance = covariance self.genes, self.weight_data, self.snps_in_model = _prepare_weight_data(model, MAX_R) self.gwas_data = _prepare_gwas_data(gwas) self.extra = model.extra self.last_gene = None self.data_cache = None self.pedantic = MAX_R is None def _get_weights(self, gene): w = self.weight_data[gene] w = {x[WDBQF.RSID]:x[WDBQF.WEIGHT] for x in w} return w def get_weights(self, gene): w = self.weight_data[gene] w = dataframe_from_weight_data(list(zip(*w))) return w def get_model_snps(self): return set(self.snps_in_model) def _get_gwas(self, snps): snps = set(snps) g = self.gwas_data g = [g[x] for x in snps if x in g] g = {x[0]:(x[1], x[2]) for x in g} return g def get_gwas(self, snps): snps = set(snps) g = self.gwas_data g = [g[x] for x in snps if x in g] if len(g): g = list(zip(*g)) g = pandas.DataFrame({Constants.SNP:g[0], Constants.ZSCORE:g[1], Constants.BETA:g[2]}) else: g = pandas.DataFrame(columns=[Constants.SNP, Constants.ZSCORE, Constants.BETA]) return g def get_data_intersection(self): return _data_intersection_3(self.weight_data, self.gwas_data, self.extra.gene.values, self.pedantic) def provide_calculation(self, gene): if gene != self.last_gene: #dummy while(True) to emulate go/to while True: w = self._get_weights(gene) gwas = self._get_gwas(list(w.keys())) type = [numpy.str, numpy.float64, numpy.float64, numpy.float64] columns = [Constants.SNP, WDBQF.K_WEIGHT, Constants.ZSCORE, Constants.BETA] d = {x: v for x, v in w.items() if x in gwas} snps, cov = self.get_covariance(gene, list(d.keys())) if snps is None: d = pandas.DataFrame(columns=columns) self.data_cache = len(w), d, cov, snps self.last_gene = gene break d = [(x, w[x], gwas[x][0], gwas[x][1]) for x in snps] d = list(zip(*d)) if len(d): d = {columns[i]:numpy.array(d[i], dtype=type[i]) for i in range(0,len(columns))} else: d = {columns[i]:numpy.array([]) for i in range(0,len(columns))} self.data_cache = len(w), d, cov, snps self.last_gene = gene break return self.data_cache def get_model_info(self): return self.extra def _data_intersection(model, gwas): weights = model.weights k =
pandas.merge(weights, gwas, how='inner', left_on="rsid", right_on="snp")
pandas.merge
import glob import os import sys # these imports and usings need to be in the same order sys.path.insert(0, "../") sys.path.insert(0, "TP_model") sys.path.insert(0, "TP_model/fit_and_forecast") from Reff_functions import * from Reff_constants import * from sys import argv from datetime import timedelta, datetime from scipy.special import expit import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib matplotlib.use("Agg") def forecast_TP(data_date): from scenarios import scenarios, scenario_dates from params import ( num_forecast_days, alpha_start_date, delta_start_date, omicron_start_date, truncation_days, start_date, sim_start_date, third_start_date, mob_samples, ) data_date = pd.to_datetime(data_date) # Define inputs sim_start_date = pd.to_datetime(sim_start_date) # Add 3 days buffer to mobility forecast num_forecast_days = num_forecast_days + 3 # data_date = pd.to_datetime('2022-01-25') print("============") print("Generating forecasts using data from", data_date) print("============") # convert third start date to the correct format third_start_date = pd.to_datetime(third_start_date) third_end_date = data_date - timedelta(truncation_days) # a different end date to deal with issues in fitting third_end_date_diff = data_date - timedelta(18 + 7 + 7) third_states = sorted(["NSW", "VIC", "ACT", "QLD", "SA", "TAS", "NT", "WA"]) # third_states = sorted(['NSW', 'VIC', 'ACT', 'QLD', 'SA', 'NT']) # choose dates for each state for third wave # NOTE: These need to be in date sorted order third_date_range = { "ACT": pd.date_range(start="2021-08-15", end=third_end_date).values, "NSW": pd.date_range(start="2021-06-25", end=third_end_date).values, "NT": pd.date_range(start="2021-12-20", end=third_end_date).values, "QLD": pd.date_range(start="2021-07-30", end=third_end_date).values, "SA": pd.date_range(start="2021-12-10", end=third_end_date).values, "TAS": pd.date_range(start="2021-12-20", end=third_end_date).values, "VIC": pd.date_range(start="2021-07-10", end=third_end_date).values, "WA": pd.date_range(start="2022-01-01", end=third_end_date).values, } # Get Google Data - Don't use the smoothed data? df_google_all = read_in_google(Aus_only=True, moving=True, local=True) third_end_date = pd.to_datetime(data_date) - pd.Timedelta(days=truncation_days) results_dir = ( "results/" + data_date.strftime("%Y-%m-%d") + "/" ) # Load in vaccination data by state and date which should have the same date as the # NNDSS/linelist data use the inferred VE vaccination_by_state_delta = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_delta = vaccination_by_state_delta[["state", "date", "effect"]] vaccination_by_state_delta = vaccination_by_state_delta.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_delta_array = vaccination_by_state_delta.to_numpy() vaccination_by_state_omicron = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_omicron = vaccination_by_state_omicron[["state", "date", "effect"]] vaccination_by_state_omicron = vaccination_by_state_omicron.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_omicron_array = vaccination_by_state_omicron.to_numpy() # Get survey data surveys = pd.DataFrame() path = "data/md/Barometer wave*.csv" for file in glob.glob(path): surveys = surveys.append(pd.read_csv(file, parse_dates=["date"])) surveys = surveys.sort_values(by="date") print("Latest microdistancing survey is {}".format(surveys.date.values[-1])) surveys.loc[surveys.state != "ACT", "state"] = ( surveys.loc[surveys.state != "ACT", "state"] .map(states_initials) .fillna(surveys.loc[surveys.state != "ACT", "state"]) ) surveys["proportion"] = surveys["count"] / surveys.respondents surveys.date = pd.to_datetime(surveys.date) always = surveys.loc[surveys.response == "Always"].set_index(["state", "date"]) always = always.unstack(["state"]) # fill in date range idx = pd.date_range("2020-03-01",
pd.to_datetime("today")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 21 03:31:16 2018 @author: burhanusman """ #Importing the required Packages import os os.chdir('/Users/burhanusman/Documents/Competitions/Data_supremacy') import lightgbm as lgb import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelEncoder #Function for label encoding the columns of a dataframe def label_encode_df(dataframe,cols): for col in cols: le=LabelEncoder() dataframe[col]=le.fit_transform(dataframe[col].astype(str)) #Function for target encoding categorical variables #df_fit is the dataframe from where the target encoding variables are obtained #df_tranform is the dataframe where the target encoded variables are imputed to def target_encode_mean(df_fit,df_transform,col,target): group_mean=pd.DataFrame(df_fit.groupby([col])[target].mean()) group_mean.columns=[col+"_"+target+"_mean"] group_mean.reset_index(inplace=True) df_transform=df_transform.merge(group_mean,how="left",on=[col]) return df_transform #Reading the train data train = pd.read_csv("train.csv") #Creating folds to out-of-fold predictions stacking train["fold"]=0 i=1 for tr,ts in KFold(n_splits=5,shuffle=True,random_state=5).split(train): train.loc[list(ts),"fold"]=i i=i+1 #Reading the test data test = pd.read_csv("test.csv") #Stacking dataframe to hold the predicted outputs stack=pd.DataFrame() stack["enrollee_id"]=train.enrollee_id stack["fold"]=train.fold stack["target"]=train.target #Defining catboost models to be stacked(Only used one model in the final submisson) model1={"model_name" : "CatBoost1", "n_estimators":540,"model_vars" :['city', 'gender', 'relevent_experience', 'enrolled_university', 'education_level', 'major_discipline', 'experience', 'company_size', 'company_type', 'last_new_job', 'training_hours','NA_type'],"cat_vars" :12, "seed" :30} models=[model1] #Loop for iteratively training on 4folds and predicing on the 5th #We obtain a dataframe where no. of columns = number of models used, and no. of rows = rows in train data for model in models: stack[model["model_name"]]=0 comb=pd.concat([train,test]) comb.reset_index(inplace=True,drop=True) NA_cols=["company_size","company_type","education_level","enrolled_university","experience","gender", "last_new_job","major_discipline"] for col in NA_cols: comb["isna_"+col]=comb[col].isna().astype(int) comb["NA_type"]='' for col in NA_cols: comb["NA_type"]=comb["NA_type"].astype(str)+"_"+comb[col].isna().astype(int).astype(str) label_encode_df(comb,model["model_vars"][0:model["cat_vars"]]) for col in model["model_vars"][0:model["cat_vars"]]: comb[col]=comb[col].astype(str) for i in range(1,6): print("Running Model " +model["model_name"]+" for fold "+str(i)) comb["dataset"]="train" len_train=18359 comb.loc[len_train:,"dataset"]="test" comb.loc[comb.fold==i,"dataset"]="valid" y=comb.loc[comb.dataset=="train","target"].values y_test=comb.loc[comb.dataset=="valid","target"].values x=comb.loc[comb.dataset=="train",model["model_vars"]].values x_test=comb.loc[comb.dataset=="valid",model["model_vars"]].values cat_model=CatBoostClassifier(eval_metric="AUC",n_estimators=model["n_estimators"],random_state=model["seed"]) cat_model.fit(x,y,cat_features=list(range(0,model["cat_vars"])),verbose=False) stack.loc[stack.fold==i,model["model_name"]]=cat_model.predict_proba(comb.loc[comb.dataset=="valid",model["model_vars"]].values)[:,1] #Training the above models on the full train dataset and predicting for the test data #We obtain a dataframe where no. of columns = number of models used, and no. of rows = rows in test data stack_test=pd.DataFrame() stack_test["enrollee_id"]=test.enrollee_id for model in models: stack_test[model["model_name"]]=0 comb=
pd.concat([train,test])
pandas.concat
import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.lines import Line2D from matplotlib import cm import pandas as pd from dataset.min_max_scaling_operation import MinMaxScaling from dataset.biometric_dataset import BioDataSet from classifiers.random_forest_classifier import RandomForestClassifier from classifiers.svm_classifier import SvmClassifier from classifiers.knn_classifier import KnnClassifier from metrics.confusion_matrix import ConfusionMatrix from metrics.roc_curve import RocCurve from metrics.gini_coefficient import GiniCoef from metrics.fcs import FCS from analytics.dataoverlap_interval import OverLapInt from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D from synth_data_gen.gauss_blob_generator import GaussBlob from pathlib import Path import os import math """ Data and metrics saving path """ root_path = Path(__file__).parent.parent.parent.parent data_metric_save_path = os.path.join(root_path, 'experiment_results\\neg_class_contained_center_edge2_03D_02U\\') """ Generating Isometric Gaussian data, in this example data is generated with three features """ rand_state_1 = 42 features = 3 users = 1 neg_users = 1 samples_pos = 1000 outlier_filter_x_std = 2 samples_neg = math.ceil(samples_pos / neg_users) center_pos_class = [np.zeros(features)] center_neg_class_1 = np.ones(features) * 1.5 # center_neg_class_2 = np.ones(features) * -1 # center_neg_class_3 = np.ones(features) * 0.9 # center_neg_class_4 = np.ones(features) * -12 # center_neg_class_5 = np.ones(features) * 0.7 # center_neg_class_6 = np.ones(features) * -2 # center_neg_class_7 = np.ones(features) * -0.8 # center_neg_class_8 = np.ones(features) * 0.9 # center_neg_class_9 = np.ones(features) * 1 centers_neg_class = [] centers_neg_class.extend((value for name, value in globals().items() if name.startswith('center_neg_class_'))) labels_pos = ['pos_class'] labels_neg = ['neg_class_u%02d' % i for i in range(neg_users)] std_dev_pos = [1] # std_dev_neg = [1.75, 1.5, 1, 1, 1, 1, 1, 1, 2] std_dev_neg = [1] std_dev_neg_df =
pd.DataFrame(labels_neg)
pandas.DataFrame
from string import Template import pandas as pd import numpy as np import utils.log_util as logger class TransformationUtil: too_few_distinct_values_message = Template("INFO: Dropping column $col " + \ "because it doesn't have at least two distinct values.") too_few_samples_message = Template("INFO: Dropping column $col " + \ "because it doesn't have at least $min_num_samples samples for 0 and for 1.") converting_message = Template("INFO: Converting binary column $col " + \ "to 0/1 encoding.") expanding_message = Template("INFO: Expanding categoric column $col " + \ "as indicator variables.") @staticmethod def encode_as_binary(input_df, min_num_samples): """ Converts each column of the input dataframe to binary encoding. Intended for use with dataframes whose columns are binary or categorical, but it will not throw an exception if given numeric or free-text data; such columns will usually be excluded from the output due to the `min_num_samples` filtering. For each column, let `num_distinct_values` be the number of distinct values, excluding NA, in the column. - If `num_distinct_values` < 2, drop the column from the output. - If `num_distinct_values` == 2 and the two distinct values are 0 and 1, leave the column unchanged in the output. - If `num_distinct_values` == 2 and the two distinct values are not 0 and 1, convert the column for the output as follows: Replace all instances of one of the distinct values with 0 and replace all instances of the other distinct value with 1. Any missing values will remain unchanged. Edit the column name to indicate which of the original values is now represented by 1. - If `num_distinct_values` > 2, expand the column into `num_distinct_values` indicator columns in the output; any NAs will be preserved Finally, for each of the binary columns present at the end of the above procedure, count the number of samples having value 0 and the number of samples having value 1. If either of those counts is less than `min_num_samples`, drop the column from the output. Args: input_df (pandas.DataFrame): the dataframe to process. min_num_samples (int): the minimum number of samples that must have value 0 and that must have value 1 in each of the output columns. Returns: pandas.DataFrame: a new dataframe derived from the input as described. """ # create an empty df for output output_df = pd.DataFrame({}, index=input_df.index) # encode all columns as binary for col in input_df: s_col_values = input_df[col] # determine number of distinct values for this column s_value_counts = s_col_values.value_counts() # first ensure 0/1 encoding, including indicator variables for categorical case if len(s_value_counts) < 2: logger.logging.append(\ TransformationUtil.too_few_distinct_values_message.substitute(col=col)) elif len(s_value_counts) == 2: if sorted(s_value_counts.index.values) == [0, 1]: # column is already 0/1 encoded; add to output df output_df = pd.concat([output_df, s_col_values], axis=1) else: logger.logging.append(\ TransformationUtil.converting_message.substitute(col=col)) # convert to 0/1 encoding and then add to output df output_col = pd.get_dummies(s_col_values, prefix=col, \ drop_first=True) # note drop_first=True to get 1 col back # preserve NAs output_col.loc[s_col_values.isnull(), :] = np.nan output_df =
pd.concat([output_df, output_col], axis=1)
pandas.concat
import matplotlib.pyplot as plt import math import numpy as np import pandas as pd import cv2 from utils.geometry import line_polar_to_cart ##################### Network ##################### def plotImages(x, y, img_n, WAYP_VALUE = 255): """ BATCH Take as input a batch from the generator and plt a number of images equal to img_n Default columns equal to max_c. At least inputs of batch equal two """ max_c = 5 if img_n <= max_c: r = 1 c = img_n else: r = math.ceil(img_n/max_c) c = max_c fig, axes = plt.subplots(r, c, figsize=(15,15)) axes = axes.flatten() for x, y, ax in zip(x, y, axes): canvas = x.copy()[...,None].astype('uint8') canvas = np.concatenate((canvas,canvas,canvas), axis=-1) row, col = np.where(y==WAYP_VALUE) for r, c in zip(row, col): canvas = cv2.circle(canvas, (c,r), 3, (50,255,250), -1) ax.imshow(cv2.bitwise_not(canvas)) ax.grid() plt.tight_layout() plt.show() def plotHistory(history): """ Plot the loss and accuracy curves for training and validation """
pd.DataFrame(history.history)
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import altair as alt from requests import get import re import os from bs4 import BeautifulSoup from urllib.request import Request, urlopen import datetime import time import matplotlib.pyplot as plt import statsmodels.api as sm from geopy.geocoders import Nominatim from geopy.distance import geodesic geolocator = Nominatim(user_agent='myuseragent') import lxml import plotly.express as px from PIL import Image #with open("styles/style.css") as f: # st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) st.set_page_config( page_title="O/U Hockey Analytics", page_icon=":ice_hockey_stick_and_puck:" ) #Dummy data to get the header to display correctly st.markdown("""<Head> <Title> Test Title</Title><link rel="shortcut icon" href="favicon.ico" type="image/x-icon"> </Head>""",unsafe_allow_html=True) #Title/Header st.markdown("""<h1 style="text-align:center;color:white;font-weight:bolder;font-size:70px;font-family:helvetica; background: -webkit-linear-gradient(#a73305,#000000,#093ff0); -webkit-background-clip: text;-webkit-text-fill-color: transparent;">NHL<br>Wager<br>Analytics</h1>""",unsafe_allow_html=True) # Load data data_load_state = st.text('Checking and Fetching Data...') ##################################### #### Data Gathering and Cleaning #### ##################################### master_df = pd.read_csv('master_df.csv') master_df = master_df.dropna(thresh=10) start = pd.to_datetime(master_df.Date[-1:]).dt.date.values[0]+datetime.timedelta(days=1) today = datetime.date.today() yesterday = today-datetime.timedelta(days = 1) #Function to covert dates to string def covert_dates(date1, date2): covert_list = [] days = pd.date_range(date1, date2, freq='d') for i in range(len(days)): covert_list.append(int(days[i].strftime('%Y%m%d'))) return covert_list #Function to fetch missing data @st.cache def get_data(date1, date2): new_df = pd.DataFrame() for day in covert_dates(date1, date2): site = f"https://sportsdatabase.com/nhl/query?output=default&sdql=date%3D{day}&submit=++S+D+Q+L+%21++" hdr = {'User-Agent': 'Mozilla/5.0'} req = Request(site, headers=hdr) page = urlopen(req) soup = BeautifulSoup(page) tables = soup.find('table', attrs={'id':'DT_Table'}) page_df = pd.read_html(str(tables))[0] new_df = pd.concat([new_df, page_df]) time.sleep(1) return new_df #Check if the data needs updating if start <= today: new_data = get_data(start, today) master_df = pd.concat([master_df, new_data]) #Save updated data as csv #master_df.to_csv("master_df.csv", index=False) def clean_data(df): df.Date =pd.to_datetime(df.Date) df= df.sort_values(by=['Team', 'Date']).reset_index() df.insert(2, "Date_Prev", df.Date.shift(1)) df.insert(2, "Days_Rest", (df.Date_Prev-df.Date)*-1) df = df.drop(['index','Season', 'P1', 'P2', 'P3'], axis=1) return df #Fucntion to identify a team change to break streak counts def trips(home_or_away, TeamChange, Site): list =[] x = 0 for i, j in zip(TeamChange, Site): if i == False: x = x else: x = 0 if j == home_or_away: x += 1 else: x = 0 list.append(x) return list #Function to calculate the distance the road team is from home def distance_calc(df): df.insert(4,"Team_City", df.Team.map(team_dict['City'])) df.insert(6,"Opp_City", df.Opp.map(team_dict['City'])) df.insert(9,"Team_point", df.Team.map(team_dict['Citypoint'])) df.insert(10,"Opp_point", df.Opp.map(team_dict['Citypoint'])) df['Distance'] = df.apply(lambda x: geodesic(x['Team_point'],x['Opp_point']).km, axis=1) df['Team_distance'] = df.apply(lambda x: 0 if x.Site == "home" else x.Distance, axis=1) df['Opp_distance'] = df.apply(lambda x: 0 if x.Site == "away" else x.Distance, axis=1) df = df.drop(['Team_point','Distance','Opp_point'], axis=1) return df #Function to count the current streak of home or games def road_trips(df): df.insert(4, "TeamChange", df["Team"].shift(1, fill_value=df["Team"].head(1)) != df["Team"]) df.insert(10, "Home_Stand", trips("home", df.TeamChange, df.Site)) df.insert(11, "Road_Trip", trips("away", df.TeamChange, df.Site)) df.Days_Rest = df.Days_Rest.dt.days df.Days_Rest = df.Days_Rest.fillna(5) df.Days_Rest = df.Days_Rest.astype(int)-1 df.loc[df.Days_Rest < 0, 'Days_Rest'] = 5 df = df.drop('TeamChange', axis=1) return df #Function to pair games into a singel record -- for O/U analysis def opp_func (df): df.insert(2,"Opp_Days_Rest", eda_df.Oppkey.map(opp_days_rest)) df.insert(10,"Opp_home_stand", eda_df.Oppkey.map(opp_home_stand)) df.insert(11,"Opp_road_trip", eda_df.Oppkey.map(opp_road_trip)) return df #Func to calculate the unit return of each game and team def unit_value(Line, Result): if Line < 0 and Result == 'W': return 1 elif Line < 0 and Result == 'L': return Line/100 elif Line > 0 and Result == 'W': return Line/100 elif Line > 0 and Result == 'L': return -1 nhltable= pd.read_csv('nhltable.csv') team_dict = nhltable.set_index('Team').to_dict() eda_df = clean_data(master_df) eda_df = distance_calc(eda_df) eda_df = road_trips(eda_df) #Adding Division eda_df = pd.merge(eda_df, nhltable[['Team', 'Division']], on='Team', how="left" ) #Create keys for pairing Teamkey = [] Oppkey = [] for i in range(len(eda_df.Date)): Teamkey.append(str(covert_dates(eda_df.Date[i], eda_df.Date[i])[0])+eda_df.Team[i]) Oppkey.append(str(covert_dates(eda_df.Date[i], eda_df.Date[i])[0])+eda_df.Opp[i]) eda_df['Oppkey'] = Oppkey opp_days_rest = dict(zip(Teamkey, eda_df.Days_Rest)) opp_home_stand = dict(zip(Teamkey, eda_df.Home_Stand)) opp_road_trip = dict(zip(Teamkey, eda_df.Road_Trip)) opp_func(eda_df) eda_df.Final = eda_df.Final.fillna('0-0') eda_df = eda_df.fillna(0) eda_df = pd.concat([eda_df, pd.get_dummies(eda_df.OUr)], axis=1) goals_df = eda_df['Final'].str.split('-', expand=True).rename(columns={0:'Team_Goals', 1:'Opp_Goals'}).astype(int) eda_df = pd.concat([eda_df, goals_df], axis=1) eda_df['total_O'] = eda_df.groupby('Team')['O'].cumsum() eda_df['total_U'] = eda_df.groupby('Team')['U'].cumsum() eda_df['total_P'] = eda_df.groupby('Team')['P'].cumsum() eda_df['total_Team_goals'] = eda_df.groupby('Team')['Team_Goals'].cumsum() eda_df['total_Opp_goals'] = eda_df.groupby('Team')['Opp_Goals'].cumsum() #eda_df = eda_df.loc[eda_df['OUr']!='P'] #eda_df['y'] = (eda_df.OUr=='O').astype(int) eda_df['Team_U'] = eda_df.groupby('Team')['total_U'].transform('max') eda_df['Team_O'] = eda_df.groupby('Team')['total_O'].transform('max') eda_df['Opp_U'] = eda_df.groupby('Opp')['total_U'].transform('max') eda_df['Opp_O'] = eda_df.groupby('Opp')['total_O'].transform('max') eda_df['Team_Goals_Scored'] = eda_df.groupby('Team')['total_Team_goals'].transform('max') eda_df['Team_Goals_Allowed'] = eda_df.groupby('Team')['total_Opp_goals'].transform('max') eda_df['Opp_Goals_Scored'] = eda_df.groupby('Opp')['total_Team_goals'].transform('max') eda_df['Opp_Goals_Allowed'] = eda_df.groupby('Opp')['total_Opp_goals'].transform('max') #eda_df['Units'] = eda_df.apply(lambda x: unit_value(x.Line, x.SUr), axis=1) #Tonight's games data today_np = np.datetime64(today) tonight_df= eda_df[['Team','Opp','Total','Home_Stand','Opp_road_trip','Days_Rest','Opp_Days_Rest', 'Opp_distance', 'Team_U', 'Opp_U','Team_O', 'Opp_O','Team_Goals_Scored', 'Opp_Goals_Scored','Team_Goals_Allowed', 'Opp_Goals_Allowed', "Date",'Site']] tonight_df = tonight_df.loc[(tonight_df['Date']==today_np) & (tonight_df['Site']=='home')].reset_index(drop=True) #Seperating the two EDA dataframes eda_OU = eda_df.loc[(eda_df['Site']=='home') & (eda_df['Date']<today_np)] eda_OU.insert(3, "Combined_Rest", eda_OU.loc[:,'Days_Rest'] + eda_OU.loc[:,'Opp_Days_Rest']) cut_labels = [500, 1000, 1500, 2000, 3000, 4000] cut_bins = [0, 500, 1000, 1500, 2000, 3000, 4000] eda_OU['Distance'] =
pd.cut(eda_OU.loc[:,'Opp_distance'], bins=cut_bins, labels= cut_labels)
pandas.cut
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import re import logging import json import math from ConfigReader import configuration import mysql.connector from common import constants as constant from mysql.connector import errorcode from datetime import datetime import pandas as pd import jaydebeapi class source(object): def __init__(self): logging.debug("Initiating schemaReader.source()") def removeNewLine(self, _data): if _data == None: return None else: return _data def readTableColumns(self, JDBCCursor, serverType = None, database = None, schema = None, table = None): logging.debug("Executing schemaReader.readTableColumns()") query = None result_df = pd.DataFrame() if serverType == constant.MSSQL: query = "select " query += " SchemaName = CAST((TBL.TABLE_SCHEMA) AS NVARCHAR(4000)), " query += " TableName = CAST((TBL.TABLE_NAME) AS NVARCHAR(4000)), " query += " TableDescription = CAST((tableProp.value) AS NVARCHAR(4000)), " query += " ColumnName = CAST((COL.COLUMN_NAME) AS NVARCHAR(4000)), " query += " ColumnDataType = CAST((COL.DATA_TYPE) AS NVARCHAR(4000)), " query += " ColumnLength = COL.CHARACTER_MAXIMUM_LENGTH, " query += " ColumnDescription = CAST((colDesc.ColumnDescription) AS NVARCHAR(4000)), " query += " ColumnPrecision = CAST((COL.numeric_precision) AS NVARCHAR(128)), " query += " ColumnScale = COL.numeric_scale, " query += " IsNullable = CAST((COL.Is_Nullable) AS NVARCHAR(128)), " query += " TableType = CAST((TBL.TABLE_TYPE) AS NVARCHAR(4000)), " query += " CreateDate = sysTables.create_date " query += "FROM INFORMATION_SCHEMA.TABLES TBL " query += "INNER JOIN INFORMATION_SCHEMA.COLUMNS COL " query += " ON COL.TABLE_NAME = TBL.TABLE_NAME " query += " AND COL.TABLE_SCHEMA = TBL.TABLE_SCHEMA " query += "LEFT JOIN sys.tables sysTables " query += " ON sysTables.object_id = object_id(TBL.TABLE_SCHEMA + '.' + TBL.TABLE_NAME) " query += "LEFT JOIN sys.extended_properties tableProp " query += " ON tableProp.major_id = object_id(TBL.TABLE_SCHEMA + '.' + TBL.TABLE_NAME) " query += " AND tableProp.minor_id = 0 " query += " AND tableProp.name = 'MS_Description' " query += "LEFT JOIN ( " query += " SELECT " query += " sc.object_id, " query += " sc.column_id, " query += " sc.name, " query += " colProp.[value] AS ColumnDescription " query += " FROM sys.columns sc " query += " INNER JOIN sys.extended_properties colProp " query += " ON colProp.major_id = sc.object_id " query += " AND colProp.minor_id = sc.column_id " query += " AND colProp.name = 'MS_Description' " query += " ) colDesc " query += " ON colDesc.object_id = object_id(TBL.TABLE_SCHEMA + '.' + TBL.TABLE_NAME) " query += " AND colDesc.name = COL.COLUMN_NAME " query += "WHERE lower(TBL.TABLE_TYPE) in ('base table','view') " query += " AND COL.TABLE_SCHEMA = '%s' "%(schema) if table != None: query += " AND COL.TABLE_NAME = '%s' "%(table) query += "ORDER BY TBL.TABLE_SCHEMA, TBL.TABLE_NAME,COL.ordinal_position" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[4] in ("numeric", "decimal"): if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4],row[7], row[8] ) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], row[5]) elif row[4] in ("geometry", "image", "ntext", "text", "xml"): line_dict["SOURCE_COLUMN_TYPE"] = "%s"%(row[4]) elif row[4] == "varbinary": if row[7] != None and row[7] > -1: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4],row[7], row[8] ) else: line_dict["SOURCE_COLUMN_TYPE"] = row[4] else: if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = row[4] else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if row[6] == "" or row[6] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[6]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[9] line_dict["TABLE_TYPE"] = row[10] try: line_dict["TABLE_CREATE_TIME"] = datetime.strptime(row[11], '%Y-%m-%d %H:%M:%S.%f') except: line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.ORACLE: # First determine if column ORIGIN_CON_ID exists in ALL_TAB_COMMENTS. If it does, we need to take that into consideration oracle_OriginConId_exists = True oracle_OriginConId = None # query = "SELECT ORIGIN_CON_ID FROM ALL_TAB_COMMENTS WHERE 1 = 0" query = "SELECT ORIGIN_CON_ID FROM ALL_TAB_COMMENTS " query += "WHERE OWNER = '%s' "%(schema) if table != None: query += " AND TABLE_NAME = '%s' "%(table) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: if "invalid identifier" in str(errMsg): oracle_OriginConId_exists = False else: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df if oracle_OriginConId_exists == True: rowCount = 0 for row in JDBCCursor.fetchall(): oracle_OriginConId = row[0] rowCount += 1 if rowCount != 1: # If there are more than one originConId, it's impossible to determine what we will use. So then we go to default oracle_OriginConId = None query = "SELECT " query += " ALL_TAB_COLUMNS.OWNER SCHEMA_NAME, " query += " ALL_TAB_COLUMNS.TABLE_NAME, " query += " ALL_TAB_COMMENTS.COMMENTS TABLE_COMMENT, " query += " ALL_TAB_COLUMNS.COLUMN_NAME, " query += " ALL_TAB_COLUMNS.DATA_TYPE, " query += " ALL_TAB_COLUMNS.DATA_LENGTH, " query += " ALL_COL_COMMENTS.COMMENTS COLUMN_COMMENT, " query += " ALL_TAB_COLUMNS.CHAR_LENGTH, " query += " ALL_TAB_COLUMNS.DATA_PRECISION, " query += " ALL_TAB_COLUMNS.DATA_SCALE, " query += " ALL_TAB_COLUMNS.NULLABLE, " query += " ALL_OBJECTS.OBJECT_TYPE, " query += " ALL_OBJECTS.CREATED " query += "FROM ALL_TAB_COLUMNS ALL_TAB_COLUMNS " query += "LEFT JOIN ALL_TAB_COMMENTS ALL_TAB_COMMENTS " query += " ON ALL_TAB_COLUMNS.OWNER = ALL_TAB_COMMENTS.OWNER " query += " AND ALL_TAB_COLUMNS.TABLE_NAME = ALL_TAB_COMMENTS.TABLE_NAME " if oracle_OriginConId_exists == True: if oracle_OriginConId == None: query += " AND ALL_TAB_COMMENTS.ORIGIN_CON_ID <= 1 " else: query += " AND ALL_TAB_COMMENTS.ORIGIN_CON_ID = %s "%(oracle_OriginConId) query += "LEFT JOIN ALL_COL_COMMENTS ALL_COL_COMMENTS " query += " ON ALL_TAB_COLUMNS.OWNER = ALL_COL_COMMENTS.OWNER " query += " AND ALL_TAB_COLUMNS.TABLE_NAME = ALL_COL_COMMENTS.TABLE_NAME " query += " AND ALL_TAB_COLUMNS.COLUMN_NAME = ALL_COL_COMMENTS.COLUMN_NAME " if oracle_OriginConId_exists == True: if oracle_OriginConId == None: query += " AND ALL_COL_COMMENTS.ORIGIN_CON_ID <= 1 " else: query += " AND ALL_COL_COMMENTS.ORIGIN_CON_ID = %s "%(oracle_OriginConId) query += "LEFT JOIN ALL_OBJECTS ALL_OBJECTS " query += " ON ALL_TAB_COLUMNS.OWNER = ALL_OBJECTS.OWNER " query += " AND ALL_TAB_COLUMNS.TABLE_NAME = ALL_OBJECTS.OBJECT_NAME " query += " AND ALL_OBJECTS.OBJECT_TYPE IN ('TABLE', 'VIEW') " query += "WHERE ALL_TAB_COLUMNS.OWNER = '%s' "%(schema) if table != None: query += " AND ALL_TAB_COLUMNS.TABLE_NAME = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, ALL_TAB_COLUMNS.TABLE_NAME, ALL_TAB_COLUMNS.COLUMN_ID" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = row[4] else: if re.search('TIMESTAMP', row[4]) or row[4] in ("CLOB", "DATE", "LONG", "BLOB", "NCLOB", "LONG RAW"): line_dict["SOURCE_COLUMN_TYPE"] = row[4] elif row[4] in ("VARCHAR", "VARCHAR2", "CHAR", "NCHAR", "NVARCHAR2"): line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], int(row[7])) elif row[4] in ("NUMBER", "FLOAT", "BINARY_FLOAT", "BINARY_DOUBLE"): if row[8] == None: line_dict["SOURCE_COLUMN_TYPE"] = row[4] elif row[8] == 0: #("DATA_PRECISION") == 0) then use char_length line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], int(row[7])) elif row[9]== None or row[9] == 0: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], int(row[8])) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4], int(row[8]), int(row[9])) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], int(row[5])) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if row[6] == "" or row[6] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[6]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[10] line_dict["TABLE_TYPE"] = row[11] try: line_dict["TABLE_CREATE_TIME"] = datetime.strptime(row[12], '%Y-%m-%d %H:%M:%S') except: line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.MYSQL: query = "select " query += " c.table_schema as table_schema, " query += " c.table_name, " query += " t.table_comment, " query += " c.column_name, " query += " c.data_type, " query += " c.character_maximum_length, " query += " c.column_comment, " query += " c.is_nullable, " query += " c.numeric_precision, " query += " c.numeric_scale, " query += " t.table_type, " query += " t.create_time " query += "from information_schema.columns c " query += "left join information_schema.tables t " query += " on c.table_schema = t.table_schema and c.table_name = t.table_name " query += "where c.table_schema = '%s' "%(database) if table != None: query += " and c.table_name = '%s' "%(table) query += "order by c.table_schema,c.table_name, c.ordinal_position " logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[4] == "decimal": line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(self.removeNewLine(row[4]), row[8], row[9]) elif row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = self.removeNewLine(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(self.removeNewLine(row[4]), row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if row[6] == None or row[6] == "": line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[6]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[7] line_dict["TABLE_TYPE"] = row[10] try: line_dict["TABLE_CREATE_TIME"] = datetime.strptime(row[11], '%Y-%m-%d %H:%M:%S') except: line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.DB2_UDB: query = "SELECT " query += " TRIM(ST.CREATOR) as SCHEMA_NAME, " query += " TRIM(ST.NAME) as TABLE_NAME, " query += " TRIM(ST.REMARKS) as TABLE_COMMENT, " query += " TRIM(SC.NAME) as SOURCE_COLUMN_NAME, " query += " TRIM(SC.COLTYPE) SOURCE_COLUMN_TYPE, " query += " SC.LENGTH as SOURCE_COLUMN_LENGTH, " query += " SC.SCALE as SOURCE_COLUMN_SCALE, " query += " TRIM(SC.REMARKS) as SOURCE_COLUMN_COMMENT, " query += " SC.NULLS as IS_NULLABLE, " query += " ST.TYPE as TABLE_TYPE, " query += " ST.CTIME as CREATE_TIME " query += "FROM SYSIBM.SYSTABLES ST " query += "LEFT JOIN SYSIBM.SYSCOLUMNS SC " query += " ON ST.NAME = SC.TBNAME " query += " AND ST.CREATOR = SC.TBCREATOR " query += "WHERE " query += " ST.CREATOR = '%s' "%(schema) if table != None: query += " AND ST.NAME = '%s' "%(table) query += "ORDER BY ST.CREATOR, ST.NAME" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[4] == "DECIMAL": line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4], row[5], row[6]) elif row[4] in ("DOUBLE", "REAL", "SMALLINT", "DATE", "BLOB", "INTEGER", "TIMESTMP", "BIGINT", "CLOB"): line_dict["SOURCE_COLUMN_TYPE"] = self.removeNewLine(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(self.removeNewLine(row[4]), row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if row[7] == "" or row[7] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[7]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[8] line_dict["TABLE_TYPE"] = row[9] try: line_dict["TABLE_CREATE_TIME"] = datetime.strptime(row[10], '%Y-%m-%d %H:%M:%S.%f') except: line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.DB2_AS400: query = "SELECT " query += " TRIM(ST.TABLE_SCHEMA) as SCHEMA_NAME, " query += " TRIM(ST.TABLE_NAME) as TABLE_NAME, " query += " ST.LONG_COMMENT as TABLE_COMMENT, " query += " TRIM(SC.COLUMN_NAME) as SOURCE_COLUMN_NAME, " query += " SC.TYPE_NAME as SOURCE_COLUMN_TYPE, " query += " SC.COLUMN_SIZE as SOURCE_COLUMN_LENGTH, " query += " SC.DECIMAL_DIGITS as SOURCE_COLUMN_SCALE, " query += " SC.REMARKS as SOURCE_COLUMN_COMMENT, " query += " SC.IS_NULLABLE, " query += " ST.TABLE_TYPE, " # ST.LAST_ALTERED_TIMESTAMP is not really correct, but it's the best we got # https://www.ibm.com/support/knowledgecenter/SSAE4W_9.6.0/db2/rbafzcatsystbls.htm query += " ST.LAST_ALTERED_TIMESTAMP " query += "FROM QSYS2.SYSTABLES ST " query += "LEFT JOIN SYSIBM.SQLCOLUMNS SC " query += " ON ST.TABLE_SCHEMA = SC.TABLE_SCHEM " query += " AND ST.TABLE_NAME= SC.TABLE_NAME " query += "WHERE " query += " ST.TABLE_SCHEMA = '%s' "%(schema) if table != None: query += " AND SC.TABLE_NAME = '%s' "%(table) query += "ORDER BY ST.TABLE_SCHEMA, SC.TABLE_NAME, SC.ORDINAL_POSITION" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[4] == "DECIMAL": line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4], row[5], row[6]) elif row[4] in ("DOUBLE", "REAL", "SMALLINT", "DATE", "BLOB", "INTEGER", "TIMESTMP", "BIGINT", "CLOB"): line_dict["SOURCE_COLUMN_TYPE"] = self.removeNewLine(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(self.removeNewLine(row[4]), row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if self.removeNewLine(row[7]) == "" or row[7] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[7]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[8] line_dict["TABLE_TYPE"] = row[9] try: line_dict["TABLE_CREATE_TIME"] = datetime.strptime(row[10], '%Y-%m-%d %H:%M:%S.%f') except: line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.POSTGRESQL: query = "SELECT " query += " tab_columns.table_schema, " query += " tab_columns.table_name, " query += " pg_catalog.col_description(c.oid, 0::int) as table_comment, " query += " tab_columns.column_name, " query += " data_type, " query += " character_maximum_length, " query += " pg_catalog.col_description(c.oid, tab_columns.ordinal_position::int) as column_comment, " query += " is_nullable, " query += " tab_tables.table_type " query += "FROM information_schema.columns AS tab_columns " query += "LEFT JOIN pg_catalog.pg_class c " query += " ON c.relname = tab_columns.table_name " query += "LEFT JOIN information_schema.tables AS tab_tables " query += " ON tab_tables.table_catalog = tab_columns.table_catalog " query += " AND tab_tables.table_schema = tab_columns.table_schema " query += " AND tab_tables.table_name = tab_columns.table_name " query += "WHERE tab_columns.table_catalog = '%s' "%(database) query += " AND tab_columns.table_schema ='%s' "%(schema) if table != None: query += " AND tab_columns.table_name = '%s' "%(table) query += "ORDER BY table_schema, table_name" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = self.removeNewLine(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(self.removeNewLine(row[4]), row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if row[6] == "" or row[6] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[6]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["IS_NULLABLE"] = row[7] line_dict["TABLE_TYPE"] = row[8] line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.PROGRESS: query = "SELECT " query += " tab_tables.OWNER, " query += " tab_tables.TBL, " query += " tab_tables.DESCRIPTION AS TBL_Commnets, " query += " COL, " query += " COLTYPE, " query += " WIDTH, " query += " SCALE, " query += " tab_columns.DESCRIPTION, " query += " tab_columns.NULLFLAG, " query += " tab_tables.TBLTYPE " query += "FROM sysprogress.SYSCOLUMNS_FULL tab_columns " query += "LEFT JOIN SYSPROGRESS.SYSTABLES_FULL tab_tables " query += " ON tab_tables.TBL = tab_columns.TBL " query += " AND tab_tables.OWNER = tab_columns.OWNER " query += "WHERE " query += " tab_columns.OWNER = '%s' "%(schema) if table != None: query += " AND tab_columns.TBL = '%s' "%(table) query += "ORDER BY tab_tables.OWNER, tab_tables.TBL" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = self.removeNewLine(row[0]) line_dict["TABLE_NAME"] = self.removeNewLine(row[1]) if row[2] == "" or row[2] == None: line_dict["TABLE_COMMENT"] = None else: line_dict["TABLE_COMMENT"] = self.removeNewLine(row[2]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') line_dict["SOURCE_COLUMN_NAME"] = self.removeNewLine(row[3]) if row[4] in ("decimal", "numeric"): if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = "%s"%(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s,%s)"%(row[4], row[5], row[6]) else: if row[5] == None: line_dict["SOURCE_COLUMN_TYPE"] = "%s"%(row[4]) else: line_dict["SOURCE_COLUMN_TYPE"] = "%s(%s)"%(row[4], row[5]) line_dict["SOURCE_COLUMN_LENGTH"] = row[5] if self.removeNewLine(row[7]) == "" or row[7] == None: line_dict["SOURCE_COLUMN_COMMENT"] = None else: try: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[7]).encode('ascii', 'ignore').decode('unicode_escape', 'ignore') except UnicodeDecodeError: line_dict["SOURCE_COLUMN_COMMENT"] = self.removeNewLine(row[7]) line_dict["IS_NULLABLE"] = row[8] line_dict["TABLE_TYPE"] = row[9] line_dict["TABLE_CREATE_TIME"] = None line_dict["DEFAULT_VALUE"] = None rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) logging.debug(result_df) logging.debug("Executing schemaReader.readTable() - Finished") return result_df def readTableKeys(self, JDBCCursor, serverType = None, database = None, schema = None, table = None): logging.debug("Executing schemaReader.readTableKeys()") query = None result_df = pd.DataFrame() if serverType == constant.MSSQL: query = "SELECT " query += " CAST(oParentColDtl.TABLE_SCHEMA AS VARCHAR(4000)) as SCHEMA_NAME, " query += " CAST(PKnUTable.name AS VARCHAR(4000)) as TABLE_NAME, " query += " CAST(PKnUKEY.name AS VARCHAR(4000)) as CONSTRAINT_NAME, " # query += " CAST(PKnUKEY.type_desc AS VARCHAR(4000)) as CONSTRAINT_TYPE, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " CAST(PKnUKEYCol.name AS VARCHAR(4000)) as COL_NAME, " query += " oParentColDtl.DATA_TYPE as COL_DATA_TYPE, " query += " oParentColDtl.CHARACTER_MAXIMUM_LENGTH as COL_LENGTH, " query += " '' as REFERENCE_SCHEMA_NAME, " query += " '' as REFERENCE_TABLE_NAME, " query += " '' as REFERENCE_COL_NAME, " query += " PKnUColIdx.key_ordinal as ORDINAL_POSITION " query += "FROM sys.key_constraints as PKnUKEY " query += "INNER JOIN sys.tables as PKnUTable " query += " ON PKnUTable.object_id = PKnUKEY.parent_object_id " query += "INNER JOIN sys.index_columns as PKnUColIdx " query += " ON PKnUColIdx.object_id = PKnUTable.object_id " query += " AND PKnUColIdx.index_id = PKnUKEY.unique_index_id " query += "INNER JOIN sys.columns as PKnUKEYCol " query += " ON PKnUKEYCol.object_id = PKnUTable.object_id " query += " AND PKnUKEYCol.column_id = PKnUColIdx.column_id " query += "INNER JOIN INFORMATION_SCHEMA.COLUMNS oParentColDtl " query += " ON oParentColDtl.TABLE_NAME=PKnUTable.name " query += " AND oParentColDtl.COLUMN_NAME=PKnUKEYCol.name " query += "WHERE oParentColDtl.TABLE_SCHEMA = '%s' "%(schema) if table != None: query += " and PKnUTable.name = '%s' "%(table) query += " and PKnUKEY.type_desc = 'PRIMARY_KEY_CONSTRAINT' " query += "UNION ALL " query += "SELECT " query += " CAST(oParentColDtl.TABLE_SCHEMA AS VARCHAR(4000)) as SCHEMA_NAME, " query += " CAST(oParent.name AS VARCHAR(4000)) as TABLE_NAME, " query += " CAST(oConstraint.name AS VARCHAR(4000)) as CONSTRAINT_NAME, " # query += " CONSTRAINT_TYPE = 'FK', " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.FOREIGN_KEY) query += " CAST(oParentCol.name AS VARCHAR(4000)) as COL_NAME, " query += " oParentColDtl.DATA_TYPE as COL_NAME_DATA_TYPE, " query += " oParentColDtl.CHARACTER_MAXIMUM_LENGTH as COL_LENGTH, " query += " CAST(OBJECT_SCHEMA_NAME(T.[object_id],DB_ID()) AS VARCHAR(4000)) as REFERENCE_SCHEMA_NAME, " query += " CAST(oReference.name AS VARCHAR(4000)) as REFERENCE_TABLE_NAME, " query += " CAST(oReferenceCol.name AS VARCHAR(4000)) as REFERENCE_COL_NAME, " query += " '' as ORDINAL_POSITION " query += "FROM sys.foreign_key_columns FKC " query += "INNER JOIN sys.sysobjects oConstraint " query += " ON FKC.constraint_object_id=oConstraint.id " query += "INNER JOIN sys.sysobjects oParent " query += " ON FKC.parent_object_id=oParent.id " query += "INNER JOIN sys.all_columns oParentCol " query += " ON FKC.parent_object_id=oParentCol.object_id " query += " AND FKC.parent_column_id=oParentCol.column_id " query += "INNER JOIN sys.sysobjects oReference " query += " ON FKC.referenced_object_id=oReference.id " query += "INNER JOIN INFORMATION_SCHEMA.COLUMNS oParentColDtl " query += " ON oParentColDtl.TABLE_NAME=oParent.name " query += " AND oParentColDtl.COLUMN_NAME=oParentCol.name " query += "INNER JOIN sys.all_columns oReferenceCol " query += " ON FKC.referenced_object_id=oReferenceCol.object_id " query += " AND FKC.referenced_column_id=oReferenceCol.column_id " query += "INNER JOIN sys.[tables] AS T ON T.[object_id] = oReferenceCol.[object_id] " query += "WHERE oParentColDtl.TABLE_SCHEMA = '%s' "%(schema) if table != None: query += " and oParent.name = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, TABLE_NAME, CONSTRAINT_TYPE, ORDINAL_POSITION" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = row[0] line_dict["TABLE_NAME"] = row[1] line_dict["CONSTRAINT_NAME"] = row[2] line_dict["CONSTRAINT_TYPE"] = row[3] line_dict["COL_NAME"] = row[4] # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = row[7] line_dict["REFERENCE_TABLE_NAME"] = row[8] line_dict["REFERENCE_COL_NAME"] = row[9] line_dict["COL_KEY_POSITION"] = row[10] rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.ORACLE: query = "SELECT " query += " DISTINCT CAST (acc.OWNER AS VARCHAR(4000)) AS SCHEMA_NAME, " query += " CAST (acc.TABLE_NAME AS VARCHAR(4000)) AS TABLE_NAME, " query += " CAST(ac.CONSTRAINT_NAME AS VARCHAR(4000)) AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " CAST ( acc.COLUMN_NAME AS VARCHAR(4000)) AS COL_NAME, " query += " CAST(atc.data_type AS VARCHAR(4000)) AS COL_NAME_DATA_TYPE, " query += " atc.DATA_LENGTH, " query += " '' AS REFERENCE_OWNER_NAME, " query += " '' AS REFERENCE_TABLE_NAME, " query += " '' AS REFERENCE_COL_NAME, " query += " acc.POSITION AS COL_KEY_POSITION, " query += " atc.DATA_PRECISION, " query += " atc.CHAR_LENGTH " query += "FROM ALL_CONSTRAINTS ac " query += "JOIN ALL_CONS_COLUMNS acc " query += " ON ac.CONSTRAINT_NAME = acc.CONSTRAINT_NAME " query += "JOIN all_tab_cols atc " query += " ON ac.owner = atc.owner " query += " AND ac.table_name = atc.TABLE_NAME " query += " AND acc.COLUMN_NAME = atc.COLUMN_NAME " query += "WHERE ac.CONSTRAINT_TYPE = 'P' " query += " AND acc.OWNER = '%s' "%(schema) if table != None: query += " AND acc.TABLE_NAME = '%s' "%(table) query += "UNION ALL " query += "select " query += " b.owner AS SCHEMA_NAME, " query += " b.table_name AS TABLE_NAME, " query += " a.constraint_name AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.FOREIGN_KEY) query += " b.column_name AS COL_NAME , " query += " atc.data_type AS COL_NAME_DATA_TYPE, " query += " atc.DATA_LENGTH, " query += " c.owner AS REFERENCE_SCHEMA_NAME, " query += " c.table_name AS REFERENCE_TABLE_NAME, " query += " c.column_name AS REFERENCE_COL_NAME, " query += " b.position AS COL_KEY_POSITION, " query += " atc.DATA_PRECISION, " query += " atc.CHAR_LENGTH " query += "from all_cons_columns b " query += "left join all_cons_columns c " query += " on b.position = c.position " query += "left join all_constraints a " query += " on b.constraint_name = a.constraint_name " query += " AND a.owner = b.owner " query += " AND c.constraint_name = a.r_constraint_name " query += " AND c.owner = a.r_owner " query += "left join all_tab_cols atc " query += " on b.owner = atc.owner " query += " AND b.table_name = atc.table_name " query += " AND b.column_name = atc.column_name " query += "where " query += " a.constraint_type = 'R' " query += " AND b.OWNER = '%s' "%(schema) if table != None: query += " AND b.TABLE_NAME = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, TABLE_NAME,CONSTRAINT_TYPE,CONSTRAINT_NAME,COL_KEY_POSITION" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = row[0] line_dict["TABLE_NAME"] = row[1] line_dict["CONSTRAINT_NAME"] = row[2] line_dict["CONSTRAINT_TYPE"] = row[3] line_dict["COL_NAME"] = row[4] # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = row[7] line_dict["REFERENCE_TABLE_NAME"] = row[8] line_dict["REFERENCE_COL_NAME"] = row[9] line_dict["COL_KEY_POSITION"] = int(row[10]) rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.MYSQL: query = "SELECT kcu.CONSTRAINT_SCHEMA AS SCHEMA_NAME, " query += " kcu.table_name AS TABLE_NAME, " query += " kcu.constraint_name AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " kcu.column_name AS COL_NAME, " query += " cols.data_type AS COL_DATA_TYPE, " query += " cols.character_maximum_length AS COL_MAX_LENGTH, " query += " kcu.referenced_table_schema AS REFERENCE_TABLE_SCHEMA, " query += " kcu.referenced_table_name AS REFERENCE_TABLE_NAME, " query += " kcu.referenced_column_name AS REFERENCE_COL_NAME, " query += " kcu.ORDINAL_POSITION AS COL_KEY_POSITION " query += "FROM information_schema.key_column_usage kcu " query += "left join information_schema.columns cols " query += " on kcu.table_name = cols.table_name and kcu.column_name = cols.column_name " query += "WHERE " query += " kcu.referenced_table_name IS NULL " query += " AND (CONSTRAINT_NAME='PRIMARY' OR CONSTRAINT_NAME='UNIQUE') " query += " AND kcu.CONSTRAINT_SCHEMA = '%s' "%(database) if table != None: query += " AND kcu.table_name = '%s' "%(table) query += "UNION " query += "SELECT " query += " kcu.CONSTRAINT_SCHEMA AS SCHEMA_NAME, " query += " kcu.table_name AS TABLE_NAME, " query += " kcu.constraint_name AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.FOREIGN_KEY) query += " kcu.column_name AS COL_NAME, " query += " cols.data_type AS COL_DATA_TYPE, " query += " cols.character_maximum_length AS COL_MAX_LENGTH, " query += " kcu.referenced_table_schema AS REFERENCE_TABLE_SCHEMA, " query += " kcu.referenced_table_name AS REFERENCE_TABLE_NAME, " query += " kcu.referenced_column_name AS REFERENCE_COL_NAME, " query += " kcu.ORDINAL_POSITION AS COL_KEY_POSITION " query += "FROM information_schema.key_column_usage kcu " query += "left join information_schema.columns cols " query += " on kcu.referenced_table_name = cols.table_name and referenced_column_name = cols.column_name " query += "WHERE " query += " kcu.referenced_table_name IS NOT NULL " query += " AND kcu.CONSTRAINT_SCHEMA = '%s' "%(database) if table != None: query += " AND kcu.table_name = '%s' "%(table) query += "order by schema_name, table_name, CONSTRAINT_TYPE, COL_KEY_POSITION" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = row[0] line_dict["TABLE_NAME"] = row[1] line_dict["CONSTRAINT_NAME"] = row[2] line_dict["CONSTRAINT_TYPE"] = row[3] line_dict["COL_NAME"] = row[4] # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = row[7] line_dict["REFERENCE_TABLE_NAME"] = row[8] line_dict["REFERENCE_COL_NAME"] = row[9] line_dict["COL_KEY_POSITION"] = row[10] rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.DB2_UDB: query = "select " query += " TRIM(SI.TBCREATOR) as SCHEMA_NAME, " query += " TRIM(SI.TBNAME) as TABLE_NAME, " query += " TRIM(SI.NAME) as CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " TRIM(SC.NAME) as COL_NAME, " query += " TRIM(SC.COLTYPE) as COL_DATA_TYPE, " query += " SC.LENGTH as COL_DATA_LENGTH, " query += " SC.SCALE as COL_DATA_SCALE, " query += " '' as REFERENCE_SCHEMA_NAME, " query += " '' as REFERENCE_TABLE_NAME, " query += " '' as REFERENCE_COL_NAME, " query += " SI.COLCOUNT as ORDINAL_POSITION " query += "FROM SYSIBM.SYSINDEXES SI " query += "LEFT JOIN SYSIBM.SYSCOLUMNS SC " query += " ON SI.TBCREATOR = SC.TBCREATOR " query += " AND SI.TBNAME = SC.TBNAME " query += "WHERE " query += " SI.COLNAMES = CONCAT('+',SC.NAME) " query += " AND SI.uniquerule = 'P'" query += " AND SI.TBCREATOR = '%s' "%(schema) if table != None: query += " AND SI.TBNAME = '%s' "%(table) query += "UNION ALL " query = "SELECT " query += " TRIM(R.tabschema) as SCHEMA_NAME, " query += " TRIM(R.tabname) as TABLE_NAME, " query += " TRIM(R.constname) as CONSTRAINT_NAME, " query += " 'F' AS CONSTRAINT_TYPE, " query += " TRIM(C.COLNAME) as COL_NAME, " query += " SC.COLTYPE as COL_DATA_TYPE, " query += " SC.LENGTH as COL_DATA_LENGTH, " query += " SC.SCALE as COL_DATA_SCALE, " query += " TRIM(R.reftabschema) as REFERENCE_SCHEMA_NAME, " query += " TRIM(R.reftabname) as REFERENCE_TABLE_NAME, " query += " TRIM(Cref.COLNAME) as REFERENCE_COL_NAME, " query += " C.COLSEQ as ORDINAL_POSITION " query += "FROM syscat.references R " query += "LEFT JOIN syscat.keycoluse C " query += " ON R.constname = C.constname " query += "LEFT JOIN syscat.keycoluse Cref " query += " ON R.refkeyname = Cref.constname " query += " AND C.COLSEQ = Cref.COLSEQ " query += "LEFT JOIN SYSIBM.SYSCOLUMNS SC " query += " ON R.tabschema = SC.TBCREATOR " query += " AND R.tabname = SC.TBNAME " query += " AND TRIM(SC.NAME)= TRIM(R.FK_COLNAMES) " query += "WHERE " query += " R.tabschema = '%s' "%(schema) if table != None: query += " AND R.tabname = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, TABLE_NAME, CONSTRAINT_TYPE, ORDINAL_POSITION " logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = row[0] line_dict["TABLE_NAME"] = row[1] line_dict["CONSTRAINT_NAME"] = row[2] line_dict["CONSTRAINT_TYPE"] = row[3] line_dict["COL_NAME"] = row[4] # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = row[8] line_dict["REFERENCE_TABLE_NAME"] = row[9] line_dict["REFERENCE_COL_NAME"] = row[10] line_dict["COL_KEY_POSITION"] = int(row[11]) rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.DB2_AS400: query = "SELECT " query += " TRIM(SPK.TABLE_SCHEM) as SCHEMA_NAME, " query += " TRIM(SPK.TABLE_NAME) as TABLE_NAME, " query += " TRIM(SPK.PK_NAME) as CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " TRIM(SC.COLUMN_NAME) as COL_NAME, " query += " SC.TYPE_NAME as COL_DATA_TYPE, " query += " SC.COLUMN_SIZE as COL_DATA_LENGTH, " query += " SC.DECIMAL_DIGITS as COL_DATA_SCALE, " query += " '' as REFERENCE_SCHEMA_NAME, " query += " '' as REFERENCE_TABLE_NAME, " query += " '' as REFERENCE_COL_NAME, " query += " SPK.KEY_SEQ as ORDINAL_POSITION " query += "FROM SYSIBM.SQLPRIMARYKEYS SPK " query += "LEFT JOIN SYSIBM.SQLCOLUMNS SC " query += " ON SPK.TABLE_CAT = SC.TABLE_CAT " query += " AND SPK.TABLE_SCHEM = SC.TABLE_SCHEM " query += " AND SPK.TABLE_NAME = SC.TABLE_NAME " query += " AND SPK.COLUMN_NAME=SC.COLUMN_NAME " query += "WHERE " query += " SPK.TABLE_SCHEM = '%s' "%(schema) if table != None: query += " AND SPK.TABLE_NAME = '%s' "%(table) query += "UNION ALL " query += "SELECT " query += " TRIM(SFK.FKTABLE_SCHEM) as SCHEMA_NAME, " query += " TRIM(SFK.FKTABLE_NAME) as TABLE_NAME, " query += " TRIM(SFK.FK_NAME) as CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.FOREIGN_KEY) query += " TRIM(SFK.FKCOLUMN_NAME) as COL_NAME, " query += " SC.TYPE_NAME as COL_DATA_TYPE, " query += " SC.COLUMN_SIZE as COL_DATA_LENGTH, " query += " SC.DECIMAL_DIGITS as COL_DATA_SCALE, " query += " SFK.PKTABLE_SCHEM as REFERENCE_SCHEMA_NAME, " query += " SFK.PKTABLE_NAME as REFERENCE_TABLE_NAME, " query += " SFK.PKCOLUMN_NAME as REFERENCE_COL_NAME, " query += " SFK.KEY_SEQ as ORDINAL_POSITION " query += "FROM SYSIBM.SQLFOREIGNKEYS SFK " query += "LEFT JOIN SYSIBM.SQLCOLUMNS SC " query += " ON SFK.FKTABLE_CAT = SC.TABLE_CAT " query += " AND SFK.FKTABLE_SCHEM = SC.TABLE_SCHEM " query += " AND SFK.FKTABLE_NAME = SC.TABLE_NAME " query += " AND SFK.FKCOLUMN_NAME = SC.COLUMN_NAME " query += "WHERE " query += " SFK.FKTABLE_SCHEM = '%s' "%(schema) if table != None: query += " AND SFK.FKTABLE_NAME = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, TABLE_NAME, CONSTRAINT_TYPE, ORDINAL_POSITION" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} if table == None: line_dict["SCHEMA_NAME"] = row[0] line_dict["TABLE_NAME"] = row[1] line_dict["CONSTRAINT_NAME"] = row[2] line_dict["CONSTRAINT_TYPE"] = row[3] line_dict["COL_NAME"] = row[4] # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = row[8] line_dict["REFERENCE_TABLE_NAME"] = row[9] line_dict["REFERENCE_COL_NAME"] = row[10] line_dict["COL_KEY_POSITION"] = int(row[11]) rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.POSTGRESQL: query = "SELECT " query += " distinct kcu.constraint_schema AS SCHEMA_NAME, " query += " kcu.table_name AS TABLE_NAME, " query += " c.conname AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.PRIMARY_KEY) query += " CASE WHEN pg_get_constraintdef(c.oid) LIKE 'PRIMARY KEY %' " query += " THEN substring(pg_get_constraintdef(c.oid), 14, position(')' in pg_get_constraintdef(c.oid))-14) " query += " END AS COL_NAME, " query += " '' AS REFERENCE_SCHEMA_NAME, " query += " '' AS REFERENCE_TABLE_NAME, " query += " '' AS REFERENCE_COL_NAME " query += "FROM pg_catalog.pg_constraint c " query += "LEFT JOIN information_schema.key_column_usage kcu " query += " ON c.conname = kcu.constraint_name " query += "LEFT JOIN information_schema.tables ist " query += " ON ist.table_schema = kcu.constraint_schema " query += " AND ist.table_name = kcu.table_name " query += "WHERE " query += " c.contype = 'p' " query += " AND pg_get_constraintdef(c.oid) LIKE 'PRIMARY KEY %' " query += " AND ist.table_catalog = '%s' "%(database) query += " AND kcu.constraint_schema ='%s' "%(schema) if table != None: query += " AND kcu.table_name = '%s' "%(table) query += "UNION " query += "SELECT " query += " kcu.constraint_schema AS SCHEMA_NAME, " query += " kcu.table_name AS TABLE_NAME, " query += " c.conname AS CONSTRAINT_NAME, " query += " '%s' AS CONSTRAINT_TYPE, "%(constant.FOREIGN_KEY) query += " CASE WHEN pg_get_constraintdef(c.oid) LIKE 'FOREIGN KEY %' " query += " THEN substring(pg_get_constraintdef(c.oid), 14, position(')' in pg_get_constraintdef(c.oid))-14) " query += " END AS COL_NAME, " query += " '' AS REFERENCE_SCHEMA_NAME," query += " CASE WHEN pg_get_constraintdef(c.oid) LIKE 'FOREIGN KEY %' " query += " THEN substring(pg_get_constraintdef(c.oid), position(' REFERENCES ' in pg_get_constraintdef(c.oid))+12, position('(' in substring(pg_get_constraintdef(c.oid), 14))-position(' REFERENCES ' in pg_get_constraintdef(c.oid))+1) " query += " END AS REFERENCE_TABLE_NAME, " query += " CASE WHEN pg_get_constraintdef(c.oid) LIKE 'FOREIGN KEY %' " query += " THEN substring(pg_get_constraintdef(c.oid), position('(' in substring(pg_get_constraintdef(c.oid), 14))+14, position(')' in substring(pg_get_constraintdef(c.oid), position('(' in substring(pg_get_constraintdef(c.oid), 14))+14))-1) " query += " END AS REFERENCE_COL_NAME " query += "FROM pg_catalog.pg_constraint c " query += "LEFT JOIN information_schema.key_column_usage kcu " query += " ON c.conname = kcu.constraint_name " query += "LEFT JOIN information_schema.tables ist " query += " ON ist.table_schema=kcu.constraint_schema " query += " AND ist.table_name=kcu.table_name " query += "WHERE " query += " c.contype = 'f' AND contype IN ('f', 'p') " query += " AND pg_get_constraintdef(c.oid) LIKE 'FOREIGN KEY %' " query += " AND ist.table_catalog = '%s' "%(database) query += " AND kcu.constraint_schema ='%s' "%(schema) if table != None: query += " AND kcu.table_name = '%s' "%(table) query += "ORDER BY SCHEMA_NAME, TABLE_NAME,CONSTRAINT_TYPE " logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} schemaName = row[0] tableName = row[1] constraintName = row[2] constraintType = row[3] colName = row[4].strip('"') refSchemaName = row[5] refTableName = row[6].strip('"') refColName = row[7].strip('"') colKeyPosition = 1 if constraintType == constant.FOREIGN_KEY: if refSchemaName == "" and "." in refTableName: refArray = refTableName.split(".") refSchemaName = refArray[0] refTableName = refArray[1] if refSchemaName == "": refSchemaName = "public" colNameList = colName.split(",") refColNameList = refColName.split(",") for i, column in enumerate(colNameList): colName = colNameList[i] refColName = refColNameList[i] if table == None: line_dict["SCHEMA_NAME"] = schemaName line_dict["TABLE_NAME"] = tableName line_dict["CONSTRAINT_NAME"] = constraintName line_dict["CONSTRAINT_TYPE"] = constraintType line_dict["COL_NAME"] = colName # line_dict["COL_DATA_TYPE"] = line.split('|')[5] line_dict["REFERENCE_SCHEMA_NAME"] = refSchemaName line_dict["REFERENCE_TABLE_NAME"] = refTableName line_dict["REFERENCE_COL_NAME"] = refColName line_dict["COL_KEY_POSITION"] = colKeyPosition rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) # In some cases, we get duplicate Foreign Keys. This removes all duplicate entries result_df.drop_duplicates(keep="first", inplace=True) logging.debug(result_df) logging.debug("Executing schemaReader.readKeys() - Finished") return result_df def readTableIndex(self, JDBCCursor, serverType = None, database = None, schema = None, table = None): logging.debug("Executing schemaReader.readTableColumns()") query = None result_df = pd.DataFrame() if serverType == constant.MSSQL: query = "" query += "select i.name," query += " i.type, " query += " i.is_unique, " query += " col.name, " query += " ic.index_column_id, " query += " col.is_nullable " query += "from sys.objects t " query += " inner join sys.indexes i " query += " on t.object_id = i.object_id " query += " inner join sys.index_columns ic " query += " on ic.object_id = t.object_id " query += " and ic.index_id = i.index_id " query += " inner join sys.columns col " query += " on col.object_id = t.object_id " query += " and col.column_id = ic.column_id " query += "where schema_name(t.schema_id) = '%s' "%(schema) query += "and t.name = '%s' "%(table) query += "order by i.object_id, i.index_id" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df uniqueDict = { 0: "Not unique", 1: "Unique" } indexTypeDict = { 1: "Clustered index", 2: "Nonclustered unique index", 3: "XML index", 4: "Spatial index", 5: "Clustered columnstore index", 6: "Nonclustered columnstore index", 7: "Nonclustered hash index" } rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} line_dict["Name"] = row[0] line_dict["Type"] = indexTypeDict.get(row[1], row[1]) line_dict["Unique"] = uniqueDict.get(int(row[2]), int(row[2])) line_dict["Column"] = row[3] line_dict["ColumnOrder"] = row[4] line_dict["IsNullable"] = row[5] rows_list.append(line_dict) result_df = pd.DataFrame(rows_list) if serverType == constant.ORACLE: query = "" query += "SELECT " query += " ai.index_name, " query += " ai.index_type, " query += " ai.uniqueness, " query += " aic.column_name, " query += " aic.column_position, " query += " atc.nullable " query += "FROM all_indexes ai " query += "INNER JOIN all_ind_columns aic " query += " ON ai.owner = aic.index_owner " query += " AND ai.index_name = aic.index_name " query += "INNER JOIN all_tab_columns atc " query += " ON ai.owner = atc.owner " query += " AND ai.table_name = atc.table_name " query += " AND aic.column_name = atc.column_name " query += "WHERE ai.owner = UPPER('%s') "%(schema) query += " AND ai.table_name = UPPER('%s') "%(table) query += "ORDER BY aic.column_position" logging.debug("SQL Statement executed: %s" % (query) ) try: JDBCCursor.execute(query) except jaydebeapi.DatabaseError as errMsg: logging.error("Failure when communicating with JDBC database. %s"%(errMsg)) return result_df rows_list = [] for row in JDBCCursor.fetchall(): logging.debug(row) line_dict = {} line_dict["Name"] = row[0] line_dict["Type"] = row[1].capitalize() if row[2] == "NONUNIQUE": line_dict["Unique"] = "Not unique" else: line_dict["Unique"] = row[2].capitalize() line_dict["Column"] = row[3] line_dict["ColumnOrder"] = row[4] if row[5] == "N": line_dict["IsNullable"] = 0 else: line_dict["IsNullable"] = 1 rows_list.append(line_dict) result_df =
pd.DataFrame(rows_list)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from statsmodels.stats.outliers_influence import variance_inflation_factor class DimensionalityReduction: def __init__(self): pass def fit(self, df, target, label_encoding=False): self.df = df.copy() self.target = target self.missing = [] self.multico = [] self.var = [] if label_encoding == True: self.cat = [i for i in df.columns if i not in df.describe().columns] for c in self.cat: self.df[c].replace(self.df[c].dropna().unique(), range(self.df[c].nunique()), inplace=True) def plot(self, plot='dash'): if plot == 'dash': fig, ax = plt.subplots(2, 2, figsize=(12, 10)) ax = ax.flatten() plt.style.use('fivethirtyeight') plt.suptitle('Dimensionality Reduction Dash Board') #------------------------------%Missing------------------------------ if plot == '%missing' or plot == 'dash': desc = self.df.describe().T desc['%missing'] = (1 - (desc['count']/len(self.df))) * 100 if plot == 'dash': sns.barplot( data=desc.sort_values('%missing', ascending=False), x='%missing', y=desc.sort_values('%missing', ascending=False).index, ax=ax[0], color='orange').set(title='%Missing'.title(), xlabel=' ') if plot != 'dash': fig, ax = plt.subplots(figsize=(14, 6)) sns.barplot( data=desc.sort_values('%missing', ascending=False), x='%missing', y=desc.sort_values('%missing', ascending=False).index, color='orange').set(title='%Missing'.title(), xlabel=' ') self.missing = desc['%missing'][desc['%missing'] > 95] #------------------------------Amount of Variation------------------------------ if plot == 'var' or plot == 'dash': std_df = self.df.drop(self.target, axis=1) std_df = (std_df.describe().T['std'] - std_df.min())/ (std_df.max() - std_df.min()) std_df.sort_values(ascending=False, inplace=True) if plot == 'dash': sns.lineplot( data=std_df, x=[i + 1 for i in range(len(std_df.index))], y=std_df.values, linewidth=2, ax=ax[1]).set(title='Amount of Variation'.title(), xlabel=' ') if plot != 'dash': fig, ax = plt.subplots(figsize=(14, 6)) sns.lineplot( data=std_df, x=[i + 1 for i in range(len(std_df.index))], y=std_df.values, linewidth=2).set(title='Amount of Variation'.title(), xlabel=' ') #------------------------------Multicolinearity------------------------------ if plot == 'multico' or plot == 'dash': eig=[] for i,j in zip(self.df.isnull().sum().index, self.df.isnull().sum()): if j == 0: eig.append(i) # Selecting columns that do not contain any NaNs and inf. values eigen_matrix = self.df[eig].corr().iloc[1:, 1:] w, v = np.linalg.eig(eigen_matrix) # eigen values & eigen vectors CI=np.round((w.max()/w)**0.5) # Condition Index CI_index = ['U' + str(i) + ' = ' + str(j) for i, j in zip(range(len(eigen_matrix.columns)),CI)] Multicolinearity_matrix=round(pd.DataFrame(v,columns=[eigen_matrix.columns],index=CI_index), 1) Multicolinearity_matrix.sort_index(level=1,ascending=False,inplace=True) cmap = sns.diverging_palette(0, 230, 90, 60, as_cmap=True) if plot == 'dash': sns.heatmap( Multicolinearity_matrix, cmap=cmap, annot=False, ax=ax[2]).set(title='Condition Index', xlabel=' ', ylabel=' ') if plot != 'dash': fig, ax = plt.subplots(figsize=(14, 6)) sns.heatmap( Multicolinearity_matrix, cmap=cmap, annot=True).set(title='Condition Index', xlabel=' ', ylabel=' ') self.multico = [feat for idx, feat in zip(CI, self.df.corr().iloc[1:, 1:].columns) if idx > 30] #-------------------------------------------VIF------------------------------------------------- # the independent variables set X = self.df.drop(self.target, axis=1) # VIF dataframe vif_data = pd.DataFrame() vif_data["feature"] = X.columns # calculating VIF for each feature VIF = {feat:variance_inflation_factor(X.dropna().values, i) for i, feat in zip(range(len(X.columns)), X.columns)} self.VIF =
pd.DataFrame(VIF, index=['VIF'])
pandas.DataFrame
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import codecs import csv from datetime import datetime from io import StringIO import os import platform from tempfile import TemporaryFile from urllib.error import URLError import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas import DataFrame, Index, MultiIndex, Series, compat, concat import pandas._testing as tm from pandas.io.parsers import CParserWrapper, TextFileReader, TextParser def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self): self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return CParserWrapper._set_noconvert_columns(self) data = """a,b,c,d,e 0,1,20140101,0900,4 0,1,20140102,1000,4""" parse_dates = [[1, 2]] cols = { "a": [0, 0], "c_d": [Timestamp("2014-01-01 09:00:00"), Timestamp("2014-01-02 10:00:00")], } expected = DataFrame(cols, columns=["c_d", "a"]) parser = MyTextFileReader() parser.options = { "usecols": [0, 2, 3], "parse_dates": parse_dates, "delimiter": ",", } parser._engine = MyCParserWrapper(StringIO(data), **parser.options) result = parser.read() tm.assert_frame_equal(result, expected) def test_empty_decimal_marker(all_parsers): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = "Only length-1 decimal markers supported" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), decimal="") def test_bad_stream_exception(all_parsers, csv_dir_path): # see gh-13652 # # This test validates that both the Python engine and C engine will # raise UnicodeDecodeError instead of C engine raising ParserError # and swallowing the exception that caused read to fail. path = os.path.join(csv_dir_path, "sauron.SHIFT_JIS.csv") codec = codecs.lookup("utf-8") utf8 = codecs.lookup("utf-8") parser = all_parsers msg = "'utf-8' codec can't decode byte" # Stream must be binary UTF8. with open(path, "rb") as handle, codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter ) as stream: with pytest.raises(UnicodeDecodeError, match=msg): parser.read_csv(stream) def test_read_csv_local(all_parsers, csv1): prefix = "file:///" if compat.is_platform_windows() else "file://" parser = all_parsers fname = prefix + str(os.path.abspath(csv1)) result = parser.read_csv(fname, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) def test_1000_sep(all_parsers): parser = all_parsers data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({"A": [1, 10], "B": [2334, 13], "C": [5, 10.0]}) result = parser.read_csv(StringIO(data), sep="|", thousands=",") tm.assert_frame_equal(result, expected) def test_squeeze(all_parsers): data = """\ a,1 b,2 c,3 """ parser = all_parsers index = Index(["a", "b", "c"], name=0) expected = Series([1, 2, 3], name=1, index=index) result = parser.read_csv(StringIO(data), index_col=0, header=None, squeeze=True) tm.assert_series_equal(result, expected) # see gh-8217 # # Series should not be a view. assert not result._is_view def test_malformed(all_parsers): # see gh-6607 parser = all_parsers data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = "Expected 3 fields in line 4, saw 5" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data), header=1, comment="#") @pytest.mark.parametrize("nrows", [5, 3, None]) def test_malformed_chunks(all_parsers, nrows): data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ parser = all_parsers msg = "Expected 3 fields in line 6, saw 5" reader = parser.read_csv( StringIO(data), header=1, comment="#", iterator=True, chunksize=1, skiprows=[2] ) with pytest.raises(ParserError, match=msg): reader.read(nrows) def test_unnamed_columns(all_parsers): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ parser = all_parsers expected = DataFrame( [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64, columns=["A", "B", "C", "Unnamed: 3", "Unnamed: 4"], ) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_csv_mixed_type(all_parsers): data = """A,B,C a,1,2 b,3,4 c,4,5 """ parser = all_parsers expected = DataFrame({"A": ["a", "b", "c"], "B": [1, 3, 4], "C": [2, 4, 5]}) result = parser.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) def test_read_csv_low_memory_no_rows_with_index(all_parsers): # see gh-21141 parser = all_parsers if not parser.low_memory: pytest.skip("This is a low-memory specific test") data = """A,B,C 1,1,1,2 2,2,3,4 3,3,4,5 """ result = parser.read_csv(StringIO(data), low_memory=True, index_col=0, nrows=0) expected = DataFrame(columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) def test_read_csv_dataframe(all_parsers, csv1): parser = all_parsers result = parser.read_csv(csv1, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738], [1.047916, -0.041232, -0.16181208307, 0.212549], [0.498581, 0.731168, -0.537677223318, 1.346270], [1.120202, 1.567621, 0.00364077397681, 0.675253], [-0.487094, 0.571455, -1.6116394093, 0.103469], [0.836649, 0.246462, 0.588542635376, 1.062782], [-0.157161, 1.340307, 1.1957779562, -1.097007], ], columns=["A", "B", "C", "D"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), datetime(2000, 1, 10), datetime(2000, 1, 11), ], name="index", ), ) tm.assert_frame_equal(result, expected) def test_read_csv_no_index_name(all_parsers, csv_dir_path): parser = all_parsers csv2 = os.path.join(csv_dir_path, "test2.csv") result = parser.read_csv(csv2, index_col=0, parse_dates=True) expected = DataFrame( [ [0.980269, 3.685731, -0.364216805298, -1.159738, "foo"], [1.047916, -0.041232, -0.16181208307, 0.212549, "bar"], [0.498581, 0.731168, -0.537677223318, 1.346270, "baz"], [1.120202, 1.567621, 0.00364077397681, 0.675253, "qux"], [-0.487094, 0.571455, -1.6116394093, 0.103469, "foo2"], ], columns=["A", "B", "C", "D", "E"], index=Index( [ datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), datetime(2000, 1, 6), datetime(2000, 1, 7), ] ), ) tm.assert_frame_equal(result, expected) def test_read_csv_wrong_num_columns(all_parsers): # Too few columns. data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ parser = all_parsers msg = "Expected 6 fields in line 3, saw 7" with pytest.raises(ParserError, match=msg): parser.read_csv(StringIO(data)) def test_read_duplicate_index_explicit(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data), index_col=0) expected = DataFrame( [ [2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], ], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"], name="index"), ) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(all_parsers): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame( [ [2, 3, 4, 5], [7, 8, 9, 10], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], [12, 13, 14, 15], ], columns=["A", "B", "C", "D"], index=Index(["foo", "bar", "baz", "qux", "foo", "bar"]), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data,kwargs,expected", [ ( "A,B\nTrue,1\nFalse,2\nTrue,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]), ), ( "A,B\nYES,1\nno,2\nyes,3\nNo,3\nYes,3", dict(true_values=["yes", "Yes", "YES"], false_values=["no", "NO", "No"]), DataFrame( [[True, 1], [False, 2], [True, 3], [False, 3], [True, 3]], columns=["A", "B"], ), ), ( "A,B\nTRUE,1\nFALSE,2\nTRUE,3", dict(), DataFrame([[True, 1], [False, 2], [True, 3]], columns=["A", "B"]), ), ( "A,B\nfoo,bar\nbar,foo", dict(true_values=["foo"], false_values=["bar"]), DataFrame([[True, False], [False, True]], columns=["A", "B"]), ), ], ) def test_parse_bool(all_parsers, data, kwargs, expected): parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) def test_int_conversion(all_parsers): data = """A,B 1.0,1 2.0,2 3.0,3 """ parser = all_parsers result = parser.read_csv(StringIO(data)) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]], columns=["A", "B"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [3, 3.0]) def test_read_nrows(all_parsers, nrows): # see gh-10476 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ expected = DataFrame( [["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15]], columns=["index", "A", "B", "C", "D"], ) parser = all_parsers result = parser.read_csv(StringIO(data), nrows=nrows) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("nrows", [1.2, "foo", -1]) def test_read_nrows_bad(all_parsers, nrows): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ msg = r"'nrows' must be an integer >=0" parser = all_parsers with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), nrows=nrows) @pytest.mark.parametrize("index_col", [0, "index"]) def test_read_chunksize_with_index(all_parsers, index_col): parser = all_parsers data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ reader = parser.read_csv(StringIO(data), index_col=0, chunksize=2) expected = DataFrame( [ ["foo", 2, 3, 4, 5], ["bar", 7, 8, 9, 10], ["baz", 12, 13, 14, 15], ["qux", 12, 13, 14, 15], ["foo2", 12, 13, 14, 15], ["bar2", 12, 13, 14, 15], ], columns=["index", "A", "B", "C", "D"], ) expected = expected.set_index("index") chunks = list(reader) tm.assert_frame_equal(chunks[0], expected[:2]) tm.assert_frame_equal(chunks[1], expected[2:4]) tm.assert_frame_equal(chunks[2], expected[4:]) @pytest.mark.parametrize("chunksize", [1.3, "foo", 0]) def test_read_chunksize_bad(all_parsers, chunksize): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers msg = r"'chunksize' must be an integer >=1" with pytest.raises(ValueError, match=msg): parser.read_csv(StringIO(data), chunksize=chunksize) @pytest.mark.parametrize("chunksize", [2, 8]) def test_read_chunksize_and_nrows(all_parsers, chunksize): # see gh-15755 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=chunksize, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), expected) def test_read_chunksize_and_nrows_changing_size(all_parsers): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0, nrows=5) reader = parser.read_csv(StringIO(data), chunksize=8, **kwargs) expected = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(reader.get_chunk(size=2), expected.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), expected.iloc[2:5]) with pytest.raises(StopIteration, match=""): reader.get_chunk(size=3) def test_get_chunk_passed_chunksize(all_parsers): parser = all_parsers data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" reader = parser.read_csv(StringIO(data), chunksize=2) result = reader.get_chunk() expected = DataFrame([[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kwargs", [dict(), dict(index_col=0)]) def test_read_chunksize_compat(all_parsers, kwargs): # see gh-12185 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers reader = parser.read_csv(StringIO(data), chunksize=2, **kwargs) result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(concat(reader), result) def test_read_chunksize_jagged_names(all_parsers): # see gh-23509 parser = all_parsers data = "\n".join(["0"] * 7 + [",".join(["0"] * 10)]) expected = DataFrame([[0] + [np.nan] * 9] * 7 + [[0] * 10]) reader = parser.read_csv(StringIO(data), names=range(10), chunksize=4) result = concat(reader) tm.assert_frame_equal(result, expected) def test_read_data_list(all_parsers): parser = all_parsers kwargs = dict(index_col=0) data = "A,B,C\nfoo,1,2,3\nbar,4,5,6" data_list = [["A", "B", "C"], ["foo", "1", "2", "3"], ["bar", "4", "5", "6"]] expected = parser.read_csv(StringIO(data), **kwargs) parser = TextParser(data_list, chunksize=2, **kwargs) result = parser.read() tm.assert_frame_equal(result, expected) def test_iterator(all_parsers): # see gh-6607 data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ parser = all_parsers kwargs = dict(index_col=0) expected = parser.read_csv(StringIO(data), **kwargs) reader = parser.read_csv(StringIO(data), iterator=True, **kwargs) first_chunk = reader.read(3) tm.assert_frame_equal(first_chunk, expected[:3]) last_chunk = reader.read(5)
tm.assert_frame_equal(last_chunk, expected[3:])
pandas._testing.assert_frame_equal
# encoding: utf-8 ################################################## # This script shows how to collect data from remote sources and create line plots # Find extra documentation for the source code here: # https://github.com/diegopajarito/COVID19_datavis # Note: the project does not have changes after mid 2019 ################################################## # ################################################## # Author: <NAME> # Copyright: Copyright 2021, IAAC # Credits: [Institute for Advanced Architecture of Catalonia - IAAC, Advanced Architecture group] # License: Apache License Version 2.0 # Version: 1.0.0 # Maintainer: <NAME> # Email: <EMAIL> # Status: development ################################################## # We need to import pandas library import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np # Setting up data sources (files and web) gdp_growth = pd.read_csv('../data/WB_GDP_growth_anual.csv', skiprows=4) jhu_link_confirmed = 'https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' jhu_link_deaths = 'https://github.com/CSSEGISandData/COVID-19/raw/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' confirmed =
pd.read_csv(jhu_link_confirmed)
pandas.read_csv
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # if we are not a slice, then we are done if not isinstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'getitem': """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used anywhere if start is not None: i = self.get_loc(start) # noqa if stop is not None: j = self.get_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs['_convert_arr_indexer'] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr _index_shared_docs['_convert_index_indexer'] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs['_convert_list_indexer'] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) from pandas.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key))) def get_duplicates(self): """ Extract duplicated index elements. Returns a sorted list of index elements which appear more than once in the index. .. deprecated:: 0.23.0 Use idx[idx.duplicated()].unique() instead Returns ------- array-like List of duplicated indexes. See Also -------- Index.duplicated : Return boolean array denoting duplicates. Index.drop_duplicates : Return Index with duplicates removed. Examples -------- Works on different Index of types. >>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() [2, 3] >>> pd.Index([1., 2., 2., 3., 3., 3., 4.]).get_duplicates() [2.0, 3.0] >>> pd.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).get_duplicates() ['b', 'c'] Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex: >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None) Sorts duplicated elements even when indexes are unordered. >>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() [2, 3] Return empty array-like structure when all elements are unique. >>> pd.Index([1, 2, 3, 4]).get_duplicates() [] >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex([], dtype='datetime64[ns]', freq=None) """ warnings.warn("'get_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated()].unique() instead", FutureWarning, stacklevel=2) return self[self.duplicated()].unique() def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._ndarray_values, len(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _get_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def _is_memory_usage_qualified(self): """ return a boolean if we need a qualified .info display """ return self.is_object() def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ _index_shared_docs['__contains__'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False _index_shared_docs['contains'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): hash(key) try: return key in self._engine except (TypeError, ValueError): return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key) key = com._values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name): """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError('all inputs must be Index') names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return _concat._concat_index_asobject(to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class """ # must be overridden in specific classes return _concat._concat_index_asobject(to_concat, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value) else: if allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.format(self.__class__.__name__)) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken @cache_readonly def _isnan(self): """ return if each value is nan""" if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._isnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ if self._can_hold_na: return self._isnan.any() else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). .. versionadded:: 0.20.0 Returns ------- numpy.ndarray A boolean array of whether my values are NA See Also -------- pandas.Index.notna : boolean inverse of isna. pandas.Index.dropna : omit entries with missing values. pandas.isna : top-level isna. Series.isna : detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. .. versionadded:: 0.20.0 Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See also -------- Index.notnull : alias of notna Index.isna: inverse of notna pandas.notna : top-level notna Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep='NaN', **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify='left')) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalent(com._values_from_object(self), com._values_from_object(other)) except Exception: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and all((getattr(self, c, None) == getattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- get_loc : asof is a thin wrapper around get_loc with method='pad' """ try: loc = self.get_loc(label, method='pad') except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- pandas.Series.sort_values : Sort values of a Series. pandas.DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_values(return_indexer=True, ascending=ascending) def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index shifted index See Also -------- Series.shift : Shift values of Series. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".format(typ=type(self).__name__)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _get_consensus_name(self, other): """ Given 2 indexes, give a consensus name meaning we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shallow_copy(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_consensus_name(other) if len(self) == 0: return other._get_consensus_name(self) # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workaround can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = _concat._concat_compat((lvals, other_diff)) try: lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = lvals try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def intersection(self, other): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`, preserving the order of the calling index. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._get_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return self._shallow_copy([]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) _index_shared_docs['get_loc'] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('get_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = getattr(series, '_values', None) if isinstance(s, (ExtensionArray, Index)) and is_scalar(key): # GH 20825 # Unify Index and ExtensionArray treatment # First try to convert the key to a location # If that fails, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if is_integer(key): return s[key] s = com._values_from_object(series) k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') try: return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return libindex.get_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(com._values_from_object(arr), com._values_from_object(key), value) def _get_level_values(self, level): """ Return an Index of values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index ``self``, as there is only one level in the Index. See also --------- pandas.MultiIndex.get_level_values : get values for a level of a MultiIndex """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- index : Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_labels = list(self.labels) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_labels.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_labels[0] == -1 result = new_levels[0].take(new_labels[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) _index_shared_docs['get_indexer'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. """ @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = _ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return _ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer(ptarget, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer(target, method=method, limit=limit, tolerance=tolerance) if not self.is_unique: raise InvalidIndexError('Reindexing only valid with uniquely' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == 'nearest': indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexing') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') indexer = self._engine.get_indexer(target._ndarray_values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(target._ndarray_values, indexer, tolerance) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer _index_shared_docs['get_indexer_non_unique'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array """ @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = _ensure_index(target) if is_categorical(target): target = target.astype(target.dtype.categories.dtype) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if self.is_all_dates: self = Index(self.asi8) tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return _ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ guaranteed return of an indexer even when non-unique This dispatches to get_indexer or get_indexer_nonunique as appropriate """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works from pandas.core.indexes.datetimes import DatetimeIndex if self.inferred_type == 'date' and isinstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.astype('object'), other.astype('object') return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if isinstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super(Index, self)._map_values( mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get('name'): names = [attributes.get('name')] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes['copy'] = False if not new_values.size: # empty attributes['dtype'] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], labels=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _can_reindex(self, indexer): """ *this is an internal non-public method* Check if we are allowing reindexing with this particular indexer Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, 'name') # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop('freq', None) # don't preserve freq target = self._simple_new(None, dtype=self.dtype, **attrs) else: target = _ensure_index(target) if level is not None: if method is not None: raise TypeError('Fill method not supported if level passed') _, indexer, _ = self._join_level(target, level, how='right', return_indexers=True) else: if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer(target, method=method, limit=limit, tolerance=tolerance) else: if method is not None or limit is not None: raise ValueError("cannot reindex a non-unique index " "with a method or limit") indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ *this is an internal non-public method* Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ target = _ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = _ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = _ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = _ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = 0 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels, freq=None) return new_index, indexer, new_indexer _index_shared_docs['join'] = """ *this is an internal non-public method* Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : boolean, default False sort : boolean, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword) .. versionadded:: 0.20.0 Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs['join']) def join(self, other, how='left', level=None, return_indexers=False, sort=False): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level(other, level, how=how, return_indexers=return_indexers) other = _ensure_index(other) if len(other) == 0 and how in ('left', 'outer'): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ('right', 'outer'): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {'right': 'left', 'left': 'right'}.get(how, how) result = other.join(self, how=how, level=level, return_indexers=return_indexers) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic(other, how=how, return_indexers=return_indexers) else: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic(other, how=how, return_indexers=return_indexers) except TypeError: pass if how == 'left': join_index = self elif how == 'right': join_index = other elif how == 'inner': join_index = self.intersection(other) elif how == 'outer': join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # figure out join names self_names = com._not_none(*self.names) other_names = com._not_none(*other.names) overlap = list(set(self_names) & set(other_names)) # need at least 1 in common, but not more than 1 if not len(overlap): raise ValueError("cannot join with no level specified and no " "overlapping names") if len(overlap) > 1: raise NotImplementedError("merging with more than one level " "overlap on a multi-index is not " "implemented") jl = overlap[0] # make the indices into mi's that match if not (self_is_mi and other_is_mi): flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {'right': 'left', 'left': 'right'}.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how, return_indexers=return_indexers) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result # 2 multi-indexes raise NotImplementedError("merging with both multi-indexes is not " "implemented") def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers([self._ndarray_values], [other._ndarray_values], how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level(self, other, level, how='left', return_indexers=False, keep_order=True): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If `keep_order` == True, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ returns sorter for the inner most level while preserving the order of higher levels """ if labels[0].size == 0: return np.empty(0, dtype='int64') if len(labels) == 1: lab = _ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = _ensure_int64(labels[-1]) return lib.get_level_sorter(lab, _ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError('Join on level between two MultiIndex objects ' 'is ambiguous') left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {'right': 'left', 'left': 'right'}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError('Index._join_level on non-unique index ' 'is not implemented') new_level, left_lev_indexer, right_lev_indexer = \ old_level.join(right, how=how, return_indexers=True) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.labels[:level + 1]) join_index = left[left_indexer] else: left_lev_indexer = _ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_labels = algos.take_nd(rev_indexer, left.labels[level], allow_fill=False) new_labels = list(left.labels) new_labels[level] = new_lev_labels new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_labels != -1 if not mask.all(): new_labels = [lab[mask] for lab in new_labels] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_labels.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_labels, ngroups) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0]:] new_labels = [lab[left_indexer] for lab in new_labels] else: # sort the leaves mask = new_lev_labels != -1 mask_all = mask.all() if not mask_all: new_labels = [lab[mask] for lab in new_labels] left_indexer = _get_leaf_sorter(new_labels[:level + 1]) new_labels = [lab[left_indexer] for lab in new_labels] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex(levels=new_levels, labels=new_labels, names=left.names, verify_integrity=False) if right_lev_indexer is not None: right_indexer = algos.take_nd(right_lev_indexer, join_index.labels[level], allow_fill=False) else: right_indexer = join_index.labels[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = (None if left_indexer is None else _ensure_platform_int(left_indexer)) right_indexer = (None if right_indexer is None else _ensure_platform_int(right_indexer)) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how='left', return_indexers=False): if self.equals(other): ret_index = other if how == 'right' else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == 'left': join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == 'right': join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == 'left': join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == 'right': join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else _ensure_platform_int(lidx) ridx = None if ridx is None else _ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Index(joined, name=name) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples --------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index then try to cast to an int if equivalent """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ if we are positional indexer validate that we have appropriate typed bounds must be an integer """ assert kind in ['ix', 'loc', 'getitem', 'iloc'] if key is None: pass elif is_integer(key): pass elif kind in ['iloc', 'getitem']: self._invalid_indexer(form, key) return key _index_shared_docs['_maybe_cast_slice_bound'] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ['ix'] and (self.holds_integer() or self.is_floating())): self._invalid_indexer('slice', label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer('slice', label) return label def _searchsorted_monotonic(self, label, side='left'): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted(label, side='right' if side == 'left' else 'left') return len(self) - pos raise ValueError('index must be monotonic increasing or decreasing') def _get_loc_only_exact_matches(self, key): """ This is overridden on subclasses (namely, IntervalIndex) to control get_slice_bound. """ return self.get_loc(key) def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} """ assert kind in ['ix', 'loc', 'getitem', None] if side not in ('left', 'right'): raise ValueError("Invalid value for side kwarg," " must be either 'left' or 'right': %s" % (side, )) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self._get_loc_only_exact_matches(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view('u1')) else: slc = lib.maybe_indices_to_slice(slc.astype('i8'), len(self)) if isinstance(slc, np.ndarray): raise KeyError("Cannot get %s slice bound for non-unique " "label: %r" % (side, original_label)) if isinstance(slc, slice): if side == 'left': return slc.start else: return slc.stop else: if side == 'right': return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int Notes ----- This method only works if the index is monotonic or unique. Examples --------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) See Also -------- Index.get_loc : Get location for a single label """ inc = (step is None or step >= 0) if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start start_slice = None if start is not None: start_slice = self.get_slice_bound(start, 'left', kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, 'right', kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if is_scalar(item) and isna(item): # GH 18295 item = self._na_value _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors='raise'): """ Make new Index with passed list of labels deleted Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If none of the labels are found in the selected axis """ arr_dtype = 'object' if self.dtype == 'object' else None labels = com._index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != 'ignore': raise KeyError( 'labels %s not contained in axis' % labels[mask]) indexer = indexer[~mask] return self.delete(indexer) _index_shared_docs['index_unique'] = ( """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex) .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """) @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super(Index, self).unique() return self._shallow_copy(result) def drop_duplicates(self, keep='first'): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : equivalent method on Series DataFrame.drop_duplicates : equivalent method on DataFrame Index.duplicated : related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super(Index, self).drop_duplicates(keep=keep) def duplicated(self, keep='first'): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) Returns ------- numpy.ndarray See Also -------- pandas.Series.duplicated : Equivalent method on pandas.Series pandas.DataFrame.duplicated : Equivalent method on pandas.DataFrame pandas.Index.drop_duplicates : Remove duplicate values from Index """ return super(Index, self).duplicated(keep=keep) _index_shared_docs['fillna'] = """ Fill NA/NaN values with the specified value Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns ------- filled : %(klass)s """ @Appender(_index_shared_docs['fillna']) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs['dropna'] = """ Return Index without NA/NaN values Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs['dropna']) def dropna(self, how='any'): if how not in ('any', 'all'): raise ValueError("invalid how option: {0}".format(how)) if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() def _evaluate_with_timedelta_like(self, other, op): # Timedelta knows how to operate with np.array, so dispatch to that # operation and then wrap the results other = Timedelta(other) values = self.values with np.errstate(all='ignore'): result = op(values, other) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op == divmod: return Index(result[0], **attrs), Index(result[1], **attrs) return Index(result, **attrs) def _evaluate_with_datetime_like(self, other, op): raise TypeError("can only perform ops with datetime like values") def _evaluate_compare(self, other, op): raise com.AbstractMethodError(self) @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ add in the numeric add/sub methods to disable """ cls.__add__ = make_invalid_op('__add__') cls.__radd__ = make_invalid_op('__radd__') cls.__iadd__ = make_invalid_op('__iadd__') cls.__sub__ = make_invalid_op('__sub__') cls.__rsub__ =
make_invalid_op('__rsub__')
pandas.core.ops.make_invalid_op
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calendar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries import offsets from pandas._libs.tslibs import conversion from pandas._libs.tslibs.timezones import get_timezone, dateutil_gettz as gettz from pandas.errors import OutOfBoundsDatetime from pandas.compat import long, PY3 from pandas.compat.numpy import np_datetime64_compat from pandas import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert isinstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert getattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert getattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calendar.day_name[0].capitalize() expected_month = calendar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.isnan(nan_ts.day_name(time_locale)) assert np.isnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert isinstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result = Timestamp(d).week expected = 1 # ISO standard assert result == expected d = datetime(2008, 12, 28) result = Timestamp(d).week expected = 52 # ISO standard assert result == expected d = datetime(2009, 12, 31) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 1) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 3) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected result = np.array([Timestamp(datetime(*args)).week for args in [(2000, 1, 1), (2000, 1, 2), ( 2005, 1, 1), (2005, 1, 2)]]) assert (result == [52, 52, 53, 53]).all() class TestTimestampConstructors(object): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc # This should be 2013-11-01 05:00 in UTC # converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" # noqa assert repr(result) == expected assert result == eval(repr(result)) # This should be 2013-11-01 05:00 in UTC # converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" assert repr(result) == expected assert result == eval(repr(result)) # GH11708 # This should be 2015-11-18 10:00 in UTC # converted to Asia/Katmandu result = Timestamp("2015-11-18 15:45:00+05:45", tz="Asia/Katmandu") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:45:00+0545', tz='Asia/Katmandu')" assert repr(result) == expected assert result == eval(repr(result)) # This should be 2015-11-18 10:00 in UTC # converted to Asia/Kolkata result = Timestamp("2015-11-18 15:30:00+05:30", tz="Asia/Kolkata") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata')" assert repr(result) == expected assert result == eval(repr(result)) def test_constructor_invalid(self): with tm.assert_raises_regex(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assert_raises_regex(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_constructor_invalid_tz(self): # GH#17690 with tm.assert_raises_regex(TypeError, 'must be a datetime.tzinfo'): Timestamp('2017-10-22', tzinfo='US/Eastern') with tm.assert_raises_regex(ValueError, 'at most one of'): Timestamp('2017-10-22', tzinfo=utc, tz='UTC') with tm.assert_raises_regex(ValueError, "Invalid frequency:"): # GH#5168 # case where user tries to pass tz as an arg, not kwarg, gets # interpreted as a `freq` Timestamp('2012-01-01', 'US/Pacific') def test_constructor_tz_or_tzinfo(self): # GH#17943, GH#17690, GH#5168 stamps = [Timestamp(year=2017, month=10, day=22, tz='UTC'), Timestamp(year=2017, month=10, day=22, tzinfo=utc), Timestamp(year=2017, month=10, day=22, tz=utc), Timestamp(datetime(2017, 10, 22), tzinfo=utc), Timestamp(datetime(2017, 10, 22), tz='UTC'), Timestamp(datetime(2017, 10, 22), tz=utc)] assert all(ts == stamps[0] for ts in stamps) def test_constructor_positional(self): # see gh-10758 with pytest.raises(TypeError): Timestamp(2000, 1) with pytest.raises(ValueError): Timestamp(2000, 0, 1) with pytest.raises(ValueError): Timestamp(2000, 13, 1) with pytest.raises(ValueError): Timestamp(2000, 1, 0) with pytest.raises(ValueError): Timestamp(2000, 1, 32) # see gh-11630 assert (repr(Timestamp(2015, 11, 12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(2015, 11, 12, 1, 2, 3, 999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_keyword(self): # GH 10758 with pytest.raises(TypeError): Timestamp(year=2000, month=1) with pytest.raises(ValueError): Timestamp(year=2000, month=0, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=13, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=0) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=32) assert (repr(Timestamp(year=2015, month=11, day=12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(year=2015, month=11, day=12, hour=1, minute=2, second=3, microsecond=999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_fromordinal(self): base = datetime(2000, 1, 1) ts = Timestamp.fromordinal(base.toordinal(), freq='D') assert base == ts assert ts.freq == 'D' assert base.toordinal() == ts.toordinal() ts = Timestamp.fromordinal(base.toordinal(), tz='US/Eastern') assert Timestamp('2000-01-01', tz='US/Eastern') == ts assert base.toordinal() == ts.toordinal() # GH#3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) assert ts.to_pydatetime() == dt # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(), tz='US/Eastern') assert ts.to_pydatetime() == dt_tz @pytest.mark.parametrize('result', [ Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, minute=4, second=5, microsecond=6, nanosecond=1), Timestamp(year=2000, month=1, day=2, hour=3, minute=4, second=5, microsecond=6, nanosecond=1, tz='UTC'), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, None), Timestamp(2000, 1, 2, 3, 4, 5, 6, 1, pytz.UTC)]) def test_constructor_nanosecond(self, result): # GH 18898 expected = Timestamp(datetime(2000, 1, 2, 3, 4, 5, 6), tz=result.tz) expected = expected + Timedelta(nanoseconds=1) assert result == expected @pytest.mark.parametrize('arg', ['year', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond']) def test_invalid_date_kwarg_with_string_input(self, arg): kwarg = {arg: 1} with pytest.raises(ValueError): Timestamp('2010-10-10 12:59:59.999999999', **kwarg) def test_out_of_bounds_value(self): one_us = np.timedelta64(1).astype('timedelta64[us]') # By definition we can't go out of bounds in [ns], so we # convert the datetime64s to [us] so we can go out of bounds min_ts_us = np.datetime64(Timestamp.min).astype('M8[us]') max_ts_us = np.datetime64(Timestamp.max).astype('M8[us]') # No error for the min/max datetimes Timestamp(min_ts_us) Timestamp(max_ts_us) # One us less than the minimum is an error with pytest.raises(ValueError): Timestamp(min_ts_us - one_us) # One us more than the maximum is an error with pytest.raises(ValueError):
Timestamp(max_ts_us + one_us)
pandas.Timestamp
import pandas as pd from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import SGDClassifier import argparse rate = "0.5" # 默认为6:4的正负样本比例,若要改为1:1则取rate=“0.5” class SGD: def __init__(self, trainfile, validfile, testfile): super(SGD, self).__init__() train: pd.DataFrame = pd.read_csv(trainfile) train: pd.DataFrame = train[train['label'].notna()] valid: pd.DataFrame =
pd.read_csv(validfile)
pandas.read_csv
from helper import find_csv,find_sigma import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm import os import re import numpy as np linewidth = 4 fontsize = 20 figsize = [10,8] font = {'family' : 'monospace', 'weight' : 'bold', 'size' : fontsize } plt.rc('font', **font) # pass in the font dict as kwargs from matplotlib import cycler #plt.rcParams['axes.prop_cycle'] = cycler(linestyle=['-','-.','--',':','-','-.','--',':'],color= ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728','#9467bd', '#8c564b', '#e377c2', '#7f7f7f']) from helper import format_func_dimensionla_potential def getTafelRegion(CV,start=0.05, end = 0.15): df = pd.read_csv(CV,header=None) cv_forward = df[:int(len(df)/2)] min_current = cv_forward[1].min() min_current_index = cv_forward[1].idxmin() cv_before_peak = cv_forward.iloc[:min_current_index] cv_tafel = cv_before_peak[(cv_before_peak[1]<start*min_current)&(cv_before_peak[1]>end*min_current)] flux = pd.DataFrame(cv_tafel[1]) cv_tafel[1] = np.log(-cv_tafel[1]) x = pd.DataFrame(cv_tafel[0]) y= pd.DataFrame(cv_tafel[1]) #X Theta #Y Log(J) Gradient = pd.DataFrame(columns=['Theta','flux','LnFlux','Gradient']) Gradient['Theta'] = x[0] Gradient['LnFlux'] = y Gradient['flux'] = flux for index, value in enumerate(Gradient['Theta']): if index < len(Gradient['Theta'])-2: Gradient['Gradient'].iloc[index] = (Gradient['LnFlux'].iloc[index+1] - Gradient['LnFlux'].iloc[index])/(Gradient['Theta'].iloc[index+1]-Gradient['Theta'].iloc[index]) #print(index,Gradient['Gradient'].iloc[index]) else: Gradient['Gradient'].iloc[index] = Gradient['Gradient'].iloc[index-1] Gradient['Gradient'] = -Gradient['Gradient'] Gradient_name = 'Gradient' + CV Gradient.to_csv(Gradient_name,index=False) def plotTafelRegion(CV): if 'One Electron Reduction' in CV: Gradient = pd.read_csv(CV) offset = Gradient.iloc[0,0] Gradient['Theta'] = Gradient['Theta'] - offset Transfer_coefficient_at_5pct = Gradient['Gradient'][0] Transfer_coefficient_at_30pct = Gradient['Gradient'].iloc[-1] Gradient.plot(x='Theta',y='Gradient',ax=ax,linewidth = linewidth, label = f'One Electron Reduction',ls='--',color='k') else: Gradient =
pd.read_csv(CV)
pandas.read_csv
# -*- coding: utf-8 -*- import re import numpy as np import pytest from pandas.core.dtypes.common import ( is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64tz_dtype, is_datetimetz, is_dtype_equal, is_interval_dtype, is_period, is_period_dtype, is_string_dtype) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, registry) import pandas as pd from pandas import ( Categorical, CategoricalIndex, IntervalIndex, Series, date_range) from pandas.core.sparse.api import SparseDtype import pandas.util.testing as tm @pytest.fixture(params=[True, False, None]) def ordered(request): return request.param class Base(object): def setup_method(self, method): self.dtype = self.create() def test_hash(self): hash(self.dtype) def test_equality_invalid(self): assert not self.dtype == 'foo' assert not is_dtype_equal(self.dtype, np.int64) def test_numpy_informed(self): pytest.raises(TypeError, np.dtype, self.dtype) assert not self.dtype == np.str_ assert not np.str_ == self.dtype def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert not len(self.dtype._cache) assert result == self.dtype class TestCategoricalDtype(Base): def create(self): return CategoricalDtype() def test_pickle(self): # make sure our cache is NOT pickled # clear the cache type(self.dtype).reset_cache() assert not len(self.dtype._cache) # force back to the cache result = tm.round_trip_pickle(self.dtype) assert result == self.dtype def test_hash_vs_equality(self): dtype = self.dtype dtype2 = CategoricalDtype() assert dtype == dtype2 assert dtype2 == dtype assert hash(dtype) == hash(dtype2) def test_equality(self): assert is_dtype_equal(self.dtype, 'category') assert is_dtype_equal(self.dtype, CategoricalDtype()) assert not is_dtype_equal(self.dtype, 'foo') def test_construction_from_string(self): result = CategoricalDtype.construct_from_string('category') assert is_dtype_equal(self.dtype, result) pytest.raises( TypeError, lambda: CategoricalDtype.construct_from_string('foo')) def test_constructor_invalid(self): msg = "Parameter 'categories' must be list-like" with pytest.raises(TypeError, match=msg): CategoricalDtype("category") dtype1 = CategoricalDtype(['a', 'b'], ordered=True) dtype2 = CategoricalDtype(['x', 'y'], ordered=False) c = Categorical([0, 1], dtype=dtype1, fastpath=True) @pytest.mark.parametrize('values, categories, ordered, dtype, expected', [ [None, None, None, None, CategoricalDtype()], [None, ['a', 'b'], True, None, dtype1], [c, None, None, dtype2, dtype2], [c, ['x', 'y'], False, None, dtype2], ]) def test_from_values_or_dtype( self, values, categories, ordered, dtype, expected): result = CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) assert result == expected @pytest.mark.parametrize('values, categories, ordered, dtype', [ [None, ['a', 'b'], True, dtype2], [None, ['a', 'b'], None, dtype2], [None, None, True, dtype2], ]) def test_from_values_or_dtype_raises(self, values, categories, ordered, dtype): msg = "Cannot specify `categories` or `ordered` together with `dtype`." with pytest.raises(ValueError, match=msg): CategoricalDtype._from_values_or_dtype(values, categories, ordered, dtype) def test_is_dtype(self): assert CategoricalDtype.is_dtype(self.dtype) assert CategoricalDtype.is_dtype('category') assert CategoricalDtype.is_dtype(CategoricalDtype()) assert not CategoricalDtype.is_dtype('foo') assert not CategoricalDtype.is_dtype(np.float64) def test_basic(self): assert is_categorical_dtype(self.dtype) factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) s = Series(factor, name='A') # dtypes assert is_categorical_dtype(s.dtype) assert is_categorical_dtype(s) assert not is_categorical_dtype(np.dtype('float64')) assert is_categorical(s.dtype) assert is_categorical(s) assert not is_categorical(np.dtype('float64')) assert not is_categorical(1.0) def test_tuple_categories(self): categories = [(1, 'a'), (2, 'b'), (3, 'c')] result = CategoricalDtype(categories) assert all(result.categories == categories) @pytest.mark.parametrize("categories, expected", [ ([True, False], True), ([True, False, None], True), ([True, False, "a", "b'"], False), ([0, 1], False), ]) def test_is_boolean(self, categories, expected): cat = Categorical(categories) assert cat.dtype._is_boolean is expected assert is_bool_dtype(cat) is expected assert is_bool_dtype(cat.dtype) is expected class TestDatetimeTZDtype(Base): def create(self): return DatetimeTZDtype('ns', 'US/Eastern') def test_alias_to_unit_raises(self): # 23990 with tm.assert_produces_warning(FutureWarning): DatetimeTZDtype('datetime64[ns, US/Central]') def test_alias_to_unit_bad_alias_raises(self): # 23990 with pytest.raises(TypeError, match=''): DatetimeTZDtype('this is a bad string') with pytest.raises(TypeError, match=''): DatetimeTZDtype('datetime64[ns, US/NotATZ]') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = DatetimeTZDtype('ns', 'US/Eastern') dtype3 = DatetimeTZDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) dtype4 = DatetimeTZDtype("ns", "US/Central") assert dtype2 != dtype4 assert hash(dtype2) != hash(dtype4) def test_construction(self): pytest.raises(ValueError, lambda: DatetimeTZDtype('ms', 'US/Eastern')) def test_subclass(self): a = DatetimeTZDtype.construct_from_string('datetime64[ns, US/Eastern]') b = DatetimeTZDtype.construct_from_string('datetime64[ns, CET]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_compat(self): assert is_datetime64tz_dtype(self.dtype) assert is_datetime64tz_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_any_dtype(self.dtype) assert is_datetime64_any_dtype('datetime64[ns, US/Eastern]') assert is_datetime64_ns_dtype(self.dtype) assert is_datetime64_ns_dtype('datetime64[ns, US/Eastern]') assert not is_datetime64_dtype(self.dtype) assert not is_datetime64_dtype('datetime64[ns, US/Eastern]') def test_construction_from_string(self): result = DatetimeTZDtype.construct_from_string( 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, result) pytest.raises(TypeError, lambda: DatetimeTZDtype.construct_from_string('foo')) def test_construct_from_string_raises(self): with pytest.raises(TypeError, match="notatz"): DatetimeTZDtype.construct_from_string('datetime64[ns, notatz]') with pytest.raises(TypeError, match="^Could not construct DatetimeTZDtype$"): DatetimeTZDtype.construct_from_string(['datetime64[ns, notatz]']) def test_is_dtype(self): assert not DatetimeTZDtype.is_dtype(None) assert DatetimeTZDtype.is_dtype(self.dtype) assert DatetimeTZDtype.is_dtype('datetime64[ns, US/Eastern]') assert not DatetimeTZDtype.is_dtype('foo') assert DatetimeTZDtype.is_dtype(DatetimeTZDtype('ns', 'US/Pacific')) assert not DatetimeTZDtype.is_dtype(np.float64) def test_equality(self): assert is_dtype_equal(self.dtype, 'datetime64[ns, US/Eastern]') assert is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'US/Eastern')) assert not is_dtype_equal(self.dtype, 'foo') assert not is_dtype_equal(self.dtype, DatetimeTZDtype('ns', 'CET')) assert not is_dtype_equal(DatetimeTZDtype('ns', 'US/Eastern'), DatetimeTZDtype('ns', 'US/Pacific')) # numpy compat assert is_dtype_equal(np.dtype("M8[ns]"), "datetime64[ns]") def test_basic(self): assert is_datetime64tz_dtype(self.dtype) dr = date_range('20130101', periods=3, tz='US/Eastern') s = Series(dr, name='A') # dtypes assert is_datetime64tz_dtype(s.dtype) assert is_datetime64tz_dtype(s) assert not is_datetime64tz_dtype(np.dtype('float64')) assert not is_datetime64tz_dtype(1.0) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s) assert is_datetimetz(s.dtype) assert not is_datetimetz(np.dtype('float64')) assert not is_datetimetz(1.0) def test_dst(self): dr1 = date_range('2013-01-01', periods=3, tz='US/Eastern') s1 = Series(dr1, name='A') assert is_datetime64tz_dtype(s1) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s1) dr2 = date_range('2013-08-01', periods=3, tz='US/Eastern') s2 = Series(dr2, name='A') assert is_datetime64tz_dtype(s2) with tm.assert_produces_warning(FutureWarning): assert is_datetimetz(s2) assert s1.dtype == s2.dtype @pytest.mark.parametrize('tz', ['UTC', 'US/Eastern']) @pytest.mark.parametrize('constructor', ['M8', 'datetime64']) def test_parser(self, tz, constructor): # pr #11245 dtz_str = '{con}[ns, {tz}]'.format(con=constructor, tz=tz) result = DatetimeTZDtype.construct_from_string(dtz_str) expected = DatetimeTZDtype('ns', tz) assert result == expected def test_empty(self): with pytest.raises(TypeError, match="A 'tz' is required."): DatetimeTZDtype() class TestPeriodDtype(Base): def create(self): return PeriodDtype('D') def test_hash_vs_equality(self): # make sure that we satisfy is semantics dtype = self.dtype dtype2 = PeriodDtype('D') dtype3 = PeriodDtype(dtype2) assert dtype == dtype2 assert dtype2 == dtype assert dtype3 == dtype assert dtype is dtype2 assert dtype2 is dtype assert dtype3 is dtype assert hash(dtype) == hash(dtype2) assert hash(dtype) == hash(dtype3) def test_construction(self): with pytest.raises(ValueError): PeriodDtype('xx') for s in ['period[D]', 'Period[D]', 'D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day() assert is_period_dtype(dt) for s in ['period[3D]', 'Period[3D]', '3D']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Day(3) assert is_period_dtype(dt) for s in ['period[26H]', 'Period[26H]', '26H', 'period[1D2H]', 'Period[1D2H]', '1D2H']: dt = PeriodDtype(s) assert dt.freq == pd.tseries.offsets.Hour(26) assert is_period_dtype(dt) def test_subclass(self): a = PeriodDtype('period[D]') b = PeriodDtype('period[3D]') assert issubclass(type(a), type(a)) assert issubclass(type(a), type(b)) def test_identity(self): assert PeriodDtype('period[D]') == PeriodDtype('period[D]') assert PeriodDtype('period[D]') is PeriodDtype('period[D]') assert PeriodDtype('period[3D]') == PeriodDtype('period[3D]') assert PeriodDtype('period[3D]') is
PeriodDtype('period[3D]')
pandas.core.dtypes.dtypes.PeriodDtype
from __future__ import print_function # In python 2.7 from flask import Flask, session, render_template, make_response, jsonify, request, send_from_directory, g, url_for from flask_limiter import Limiter from flask_limiter.util import get_remote_address import json from sklearn.naive_bayes import GaussianNB import numpy as np import pickle as pkl from sklearn.externals import joblib import pandas as pd from decimal import Decimal from werkzeug.utils import secure_filename import logging from flask import escape from flask_expects_json import expects_json import math import operator from more_itertools import unique_everseen from uuid import uuid4 import difflib import os import uuid import requests import sys from helper import vector_cos5, isValid, isInDB, get_model, findFeatures, findSymptom, findDisease, syInData, getDetails with open('en_Labels.js') as dataFile: json_data = dataFile.read() data = json.loads(json_data) nameToCUI = {} for i in data: nameToCUI[i['label'].lower()] = i['value'] app = Flask( __name__ ) class SetEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) return json.JSONEncoder.default(self, obj) def get_model(): model_file = 'data/all-files-for-ml/' + 'all_mnb' + '.pkl' mnb = joblib.load(open(model_file, 'rb')) data =
pd.read_csv("data/all-files-for-ml/all_x.csv")
pandas.read_csv
# coding=utf-8 # /usr/bin/env python ''' Author: wenqiangw Email: <EMAIL> Date: 2020-04-23 17:59 Desc: 卡方分箱 【迭代依次查找(合并分箱后卡方最小的两个箱)进行合并】 连续特征值观测值过多的可以先进行等频率分箱 from https://zhuanlan.zhihu.com/p/115267395 1.初始化阶段:首先按照属性值的大小进行排序(对于非连续特征,需要先做数值转换,比如转为坏人率,然后排序),然后每个属性值单独作为一组。 2、合并阶段: (1)对每一对相邻的组,计算卡方值。 (2)根据计算的卡方值,对其中最小的一对邻组合并为一组。 (3)不断重复(1),(2)直到计算出的卡方值都不低于事先设定的阈值,或者分组数达到一定的条件(如最小分组数5,最大分组数8)并且每箱都包含正负多个label。 >>> df = pd.DataFrame([[1,2,3,4,5,5,5,3,3,3,2,1,5,7],[1,1,0,0,0,0,0,1,1,0,1,1,1,1]]).T >>> df.columns=['field','label'] >>> df_field, df_label = df['field'],df['label'] >>> aa = chi_blocks(df_field, df_label, box_num=5, dfree=4, cf=0.1) >>> print(aa) [-inf, 4.0, 5.0, inf] ''' import pandas as pd import numpy as np from scipy.stats import chi2 from pynovice.score_card.src.data_boxing import frequence_blocks def get_chi2(df_field,df_label): ''' 计算卡方统计量 :param df_field: 需分箱的字段 Series :param df_label: 样本的标签 Series :return: 各箱样本频率,期望频率,卡发值 ''' df_field.reset_index(drop=True,inplace=True) df_label.reset_index(drop=True,inplace=True) df_concat = pd.concat([df_field,df_label],axis=1) df_concat.columns = ['field','label'] df_concat.sort_values(by='field',ascending= True,inplace=True) dict_label_ratio = dict(df_label.value_counts() / df_label.count()) _group = df_concat.groupby('field') group_cnt = [] group_except_cnt = [] for i,j in dict_label_ratio.items(): iterm = _group.agg([(i, lambda x: sum(x == i))]) group_cnt.append(iterm) iterm_expect = _group.agg([(i, lambda x: len(x)*j)]) group_except_cnt.append(iterm_expect) df_pos_cnt =
pd.concat(group_cnt,axis=1)
pandas.concat
# import necessary libraries import pandas as pd import os import matplotlib.pyplot as plt from itertools import combinations from collections import Counter def get_city(address): return address.split(',')[1] def get_state(address): return address.split(',')[2].split(' ')[1] # plt.style.use('fivethirtyeight') # Merging 12 months of sales data into a singe file data1 = pd.read_csv('D:/Phyton Code/Contoh dari Github/Pandas-Data-Science-\ Tasks-master/SalesAnalysis/Sales_Data/Sales_April_2019.csv') all_data = pd.DataFrame() files = [file for file in os.listdir('D:/Phyton Code/Contoh dari Github/\ Pandas-Data-Science-Tasks-master/SalesAnalysis/Sales_Data')] for file in files: temp =
pd.read_csv('D:/Phyton Code/Contoh dari Github/Pandas-Data-Science-\ Tasks-master/SalesAnalysis/Sales_Data/' + file)
pandas.read_csv
# Copyright 2021 ABSA Group Limited # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from copy import deepcopy from datetime import date from decimal import Decimal from typing import Optional import pandas as pd import pytest from pydantic import BaseModel from py2k.creators import PandasModelCreator from py2k.record import PandasToRecordsTransformer, KafkaRecord class _TestData(BaseModel): name: str id: int value: float decimal_val: Decimal bool_val: bool def __str__(self): return f"Name = ${self.name}, " \ f"Id = ${self.id}, " \ f"Value = ${self.value}, " \ f"Decimal Val = ${self.decimal_val}," \ f" bool_val = ${self.bool_val}" def __hash__(self): return hash(self.__str__()) def __eq__(self, other): return self.__hash__() == other.__hash__() class _TestDataWithOptional(BaseModel): name: Optional[str] id: int def __str__(self): return f"Name = ${self.name}, Id = ${self.id}" def __hash__(self): return hash(self.__str__()) def __eq__(self, other): return self.__hash__() == other.__hash__() def test_return_empty_if_df_empty(test_df): with pytest.warns(UserWarning) as record: empty_df = test_df.head(0) model = PandasToRecordsTransformer(test_df, 'TestModel') created_df = model.from_pandas(empty_df) assert len(created_df) == 0 expected_message = "Unable to create kafka model from an empty dataframe." assert len(record) == 1 assert record[0].message.args[0] == expected_message def test_dynamically_convert_from_pandas(test_data, test_df): model = PandasToRecordsTransformer(test_df, 'TestModel') records = model.from_pandas(test_df) _assert_records(records, test_data) def test_convert_from_constructed_dataframe_by_default(test_data, test_df): model = PandasToRecordsTransformer(test_df, 'TestModel') records = model.from_pandas() _assert_records(records, test_data) def test_fields_names_and_titles_are_the_same(test_df): model = PandasToRecordsTransformer(test_df, 'TestModel') records = model.from_pandas(test_df) for name, definition in records[0].__fields__.items(): assert name == definition.name def test_use_default_defaults_if_none_informed(test_df): model = PandasToRecordsTransformer(test_df, 'TestModel') records = model.from_pandas(test_df) # expected defaults by field expected = { field: PandasModelCreator._SCHEMA_TYPES_DEFAULTS.get(type(value)) for field, value in records[0].dict().items()} _assert_schema_defaults(records[0], expected) def test_all_defaults_from_field_name(test_df): expected = {"name": "default name", "id": 8, "value": 8.8, "decimal_val": 8.8, "bool_val": True} model = PandasToRecordsTransformer(test_df, 'TestModel', fields_defaults=expected) records = model.from_pandas(test_df) _assert_schema_defaults(records[0], expected) def test_some_defaults_from_field_name(test_df): local_defaults = {"name": "default name", "value": 8.8, "decimal_val": Decimal(12), "bool_val": True} model = PandasToRecordsTransformer(test_df, 'TestModel', fields_defaults=local_defaults) records = model.from_pandas(test_df) expected = {**local_defaults, "id": PandasModelCreator._SCHEMA_TYPES_DEFAULTS.get(int)} _assert_schema_defaults(records[0], expected) def test_all_defaults_from_field_type(test_df): expected = {str: "default name", int: 8, float: 8.8, bool: True} model = PandasToRecordsTransformer(test_df, 'TestModel', types_defaults=expected) records = model.from_pandas(test_df) _assert_schema_defaults(records[0], expected, by_name=False) def test_some_defaults_from_field_type(test_df): local_defaults = {int: 8, float: 8.8, bool: True} model = PandasToRecordsTransformer(test_df, 'TestModel', types_defaults=local_defaults) records = model.from_pandas(test_df) expected = {**local_defaults, str: PandasModelCreator._SCHEMA_TYPES_DEFAULTS.get(str)} _assert_schema_defaults(records[0], expected, by_name=False) def test_optional_fields_specified_by_param(test_df_with_nones): model = PandasToRecordsTransformer(test_df_with_nones, 'TestModel', optional_fields=['name']) records = model.from_pandas(test_df_with_nones) expected = {"name": Optional[str], "id": int} _assert_schema_types(records[0], expected) _raw_types_test_cases = [ (10, int), ("aa", str), (12.4, float), (True, bool), (Decimal(10.), float), (date(2020, 1, 10), date), (pd.Timestamp('2020-01-01T12'), pd.Timestamp), ] _optional_types_test_cases = [(value, Optional[_type]) for (value, _type) in _raw_types_test_cases] @pytest.mark.parametrize("value,_type", _raw_types_test_cases) def test_supported_types(value, _type): df = pd.DataFrame({'column_1': [value]}) model = PandasToRecordsTransformer(df, 'TestModel') records = model.from_pandas(df) expected = {'column_1': _type} _assert_schema_types(records[0], expected) @pytest.mark.parametrize("value,_type", _optional_types_test_cases) def test_supported_optional_types(value, _type): df = pd.DataFrame({'column_1': [value]}) model = PandasToRecordsTransformer(df, 'TestModel', optional_fields=['column_1']) records = model.from_pandas(df) expected = {'column_1': _type} _assert_schema_types(records[0], expected) def test_specification_of_key_fields(): df =
pd.DataFrame({'column_1': [1], 'key': ['key_val']})
pandas.DataFrame
import sys import pandas as pd import numpy as np import json from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' This function load the datasets messages and categories and merge based on id column. Params: messages_filepath (str): String that contain the path to messages file categories_filepath (str): String that contain the path to categories file Returns: df (pandas DataFrame): DataFrame with columns: id,message,original,genre,categories row: A single messages columns: id-->Id for each message messages--> Text of message categories --> A single column containing the categories marks for the message ''' messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = messages.merge(categories, on="id") return df def clean_data(df): ''' This function clean the files messages and categories. The cleaning operations are: 1. Split the single categorie column in multiple categories columns 2. Rename the categories columns using the first row 3. Convert the categories columns in ints variables. 4. Drop the single original categorie column and replace it with multiples categories columns 5. Remove duplicates rows. 6. Remove constant columns. 7. Set "related" categorie to binary (it has some values that are not 0,1) Params: df (pandas DataFrame): DataFrame over the cleaning operations are made. Returns df (pandas DataFrame): DataFrame cleaned. ''' # create a dataframe of the 36 individual category categories = df.categories.str.split(';', expand=True) #Rename the categories columns row = categories.iloc[0,] category_colnames = row.apply(lambda x: x[:-2]) categories.columns = category_colnames #Convert columns to ints for column in categories: # set each value to be the last character of the string categories[column] = categories[column].apply(lambda x: x[-1]) # convert column from string to numeric categories[column] = categories[column].astype(int) #Remove original categorie column df = df.drop(columns=['categories']) #Insert the categories columns created df =
pd.concat([df,categories],axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Work with result files from the EIT-40/160 tomograph (also called medusa). Data structure of .mat files: EMD(n).fm frequency EMD(n).Time point of time of this measurement EMD(n).ni number of the two excitation electrodes (not the channel number) EMD(n).nu number of the two potential electrodes (not the channel number) EMD(n).Zt3 array with the transfer impedances (repetition measurement) EMD(n).nni number of injection EMD(n).cni number of channels used to inject current EMD(n).cnu number of channels used to measure voltage EMD(n).Is3 injected current (A) (calibrated) EMD(n).II3 leakage current (A) EMD(n).Yg1 Admitance of first injection path EMD(n).Yg2 Admitance of second injection path EMD(n).As3 Voltages at shunt resistors (defined in .mcf files: NA1 - NA2) EMD(n).Zg3 Impedance between injection electrodes Import pipeline: * read single-potentials from .mat file * read quadrupoles from separate file or provide numpy array * compute mean of three impedance measurement repetitions (Z1-Z3) for each ABM * compute quadrupole impedance via superposition using * a) averaged Z-values * b) the single repetitions Z1-Z3 * (I think we don't need the next step because of np.arctan2) check for correct quadrant in phase values, correct if necessary (is this required if we use the arctan2 function?) * compute variance/standard deviation from the repetition values Open questions: * should we provide a time delta between the two measurements? """ print('WARNING: DONt use this module anymore!. Use the eit_fzj module!') import numpy as np import scipy.io as sio import pandas as pd import datetime import reda.utils.geometric_factors as redaK def _add_rhoa(df, spacing): """a simple wrapper to compute K factors and add rhoa """ df['k'] = redaK.compute_K_analytical(df, spacing=spacing) df['rho_a'] = df['r'] * df['k'] if 'Zt' in df.columns: df['rho_a_complex'] = df['Zt'] * df['k'] return df def import_medusa_data(mat_filename, config_file): """Import measurement data (a .mat file) of the FZJ EIT160 system. This data format is identified as 'FZJ-EZ-2017'. Parameters ---------- mat_filename: string filename to the .mat data file. Note that only MNU0 single-potentials are supported! config_file: string filename for configuration file. The configuration file contains N rows with 4 columns each (a, b, m, n) Returns ------- """ df_emd, df_md = _read_mat_mnu0(mat_filename) # 'configs' can be a numpy array or a filename if not isinstance(config_file, np.ndarray): configs = np.loadtxt(config_file).astype(int) else: configs = config_file # construct four-point measurements via superposition print('constructing four-point measurements') quadpole_list = [] if df_emd is not None: index = 0 for Ar, Br, M, N in configs: # print('constructing', Ar, Br, M, N) # the order of A and B doesn't concern us A = np.min((Ar, Br)) B = np.max((Ar, Br)) # first choice: correct ordering query_M = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, M )) query_N = df_emd.query('a=={0} and b=={1} and p=={2}'.format( A, B, N )) if query_M.size == 0 or query_N.size == 0: continue index += 1 # keep these columns as they are (no subtracting) keep_cols = [ 'datetime', 'frequency', 'a', 'b', 'Zg1', 'Zg2', 'Zg3', 'Is', 'Il', 'Zg', 'Iab', ] df4 = pd.DataFrame() diff_cols = ['Zt', ] df4[keep_cols] = query_M[keep_cols] for col in diff_cols: df4[col] = query_M[col].values - query_N[col].values df4['m'] = query_M['p'].values df4['n'] = query_N['p'].values quadpole_list.append(df4) if quadpole_list: dfn = pd.concat(quadpole_list) Rsign = np.sign(dfn['Zt'].real) dfn['r'] = Rsign * np.abs(dfn['Zt']) dfn['Vmn'] = dfn['r'] * dfn['Iab'] dfn['rpha'] = np.arctan2( np.imag(dfn['Zt'].values), np.real(dfn['Zt'].values) ) * 1e3 else: dfn = pd.DataFrame() return dfn, df_md def _read_mat_mnu0(filename): """Import a .mat file with single potentials (a b m) into a pandas DataFrame Also export some variables of the MD struct into a separate structure """ print('read_mag_single_file: {0}'.format(filename)) mat = sio.loadmat(filename, squeeze_me=True) # check the version version = mat['MP']['Version'].item() if version != 'FZJ-EZ-2017': raise Exception( 'This data format is not supported (expected: FZJ-EZ-2017)' + ' got: {}'.format(version) ) df_emd = _extract_emd(mat, filename=filename) df_md = _extract_md(mat) return df_emd, df_md def _extract_md(mat): md = mat['MD'].squeeze() # Labview epoch epoch = datetime.datetime(1904, 1, 1) def convert_epoch(x): timestamp = epoch + datetime.timedelta(seconds=x.astype(float)) return timestamp dfl = [] # loop over frequencies for f_id in range(0, md.size): # print('Frequency: ', emd[f_id]['fm']) fdata = md[f_id] # for name in fdata.dtype.names: # print(name, fdata[name].shape) timestamp = np.atleast_2d( [convert_epoch(x) for x in fdata['Time'].squeeze()] ).T df = pd.DataFrame( np.hstack(( timestamp, fdata['cni'], fdata['Cl3'], fdata['Zg3'], fdata['As3'][:, 0, :].squeeze(), fdata['As3'][:, 1, :].squeeze(), fdata['As3'][:, 2, :].squeeze(), fdata['As3'][:, 3, :].squeeze(), fdata['Is3'], fdata['Yl3'], )) ) df.columns = ( 'datetime', 'a', 'b', 'Cl1', 'Cl2', 'Cl3', 'Zg1', 'Zg2', 'Zg3', 'ShuntVoltage1_1', 'ShuntVoltage1_2', 'ShuntVoltage1_3', 'ShuntVoltage2_1', 'ShuntVoltage2_2', 'ShuntVoltage2_3', 'ShuntVoltage3_1', 'ShuntVoltage3_2', 'ShuntVoltage3_3', 'ShuntVoltage4_1', 'ShuntVoltage4_2', 'ShuntVoltage4_3', 'Is1', 'Is2', 'Is3', 'Yl1', 'Yl2', 'Yl3', ) df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
# coding: utf-8 """The GBRV results for binary and ternary compunds""" import os import json import numpy as np from collections import defaultdict, Counter from monty.io import FileLock from monty.string import list_strings from monty.termcolor import cprint from atomicfile import AtomicFile from pandas import DataFrame from monty.collections import dict2namedtuple from pymatgen.core.periodic_table import Element from abipy.tools.plotting import add_fig_kwargs, get_ax_fig_plt from pseudo_dojo.core.pseudos import DojoTable, OfficialDojoTable from pseudo_dojo.refdata.gbrv.database import gbrv_database, gbrv_code_names, species_from_formula from pseudo_dojo.pseudos import as_dojo_path from pseudo_dojo.util.dojo_eos import EOS import logging logger = logging.getLogger(__name__) def sort_symbols_by_Z(symbols): """ Given a list of element symbols, sort the strings according to Z, Return sorted list. >>> assert sort_symbols_by_Z(["Si", "H"]) == ["H", "Si"] """ return list(sorted(symbols, key=lambda s: Element(s).Z)) def print_frame(x): import pandas as pd with pd.option_context('display.max_rows', len(x), 'display.max_columns', len(list(x.keys()))): print(x) class GbrvRecord(dict): """ Example of entry of LiCl: "rocksalt": { "LiCl" = { formula: "LiCl", pseudos_metadata: { "Li": {basename: "Li-s-high.psp8", md5: 312}, "Cl": {basename: "Cl.psp8", md5: 562}], } normal: results, high: results, }, } where results is the dictionary: {"ecut": 6, "v0": 31.72020565768123, "a0": 5.024952898489712, "b0": 4.148379951739942, "num_sites": 2 "etotals": [-593.3490598305451, ...], "volumes": [31.410526411353832, ...], } """ ACCURACIES = ("normal", "high") STATUS_LIST = (None, "scheduled" ,"failed") def __init__(self, struct_type, formula, pseudos_or_dict, dojo_pptable): """ Initialize the record for the chemical formula and the list of pseudopotentials. """ keys = ("basename", "Z_val", "l_max", "md5") #if isinstance(pseudos_or_dict, (list, tuple)): if all(hasattr(p, "as_dict") for p in pseudos_or_dict): def get_info(p): """Extract the most important info from the pseudo.""" #symbol = p.symbol d = p.as_dict() return {k: d[k] for k in keys} meta = {p.symbol: get_info(p) for p in pseudos_or_dict} pseudos = pseudos_or_dict else: meta = pseudos_or_dict for v in meta.values(): assert set(v.keys()) == set(keys) def pmatch(ps, esymb, d): return (ps.md5 == d["md5"] and ps.symbol == esymb and ps.Z_val == d["Z_val"] and ps.l_max == d["l_max"]) pseudos = [] for esymb, d in meta.items(): for p in dojo_pptable.pseudo_with_symbol(esymb, allow_multi=True): if pmatch(p, esymb, d): pseudos.append(p) break else: raise ValueError("Cannot find pseudo:\n %s\n in dojo_pptable" % str(d)) super(GbrvRecord, self).__init__(formula=formula, pseudos_metadata=meta, normal=None, high=None) self.pseudos = DojoTable.as_table(pseudos) self.dojo_pptable = dojo_pptable self.struct_type = struct_type #def __str__(self): # return json.dumps(self.as_dict(), indent=4, sort_keys=False) #@property #def formula(self): # return self["formula"] @add_fig_kwargs def plot_eos(self, ax=None, accuracy="normal", **kwargs): """ Plot the equation of state. Args: ax: matplotlib :class:`Axes` or None if a new figure should be created. Returns: `matplotlib` figure. """ ax, fig, plt = get_ax_fig_plt(ax) if not self.has_data(accuracy): return fig d = self["accuracy"] num_sites, volumes, etotals = d["num_sites"], np.array(d["volumes"]), np.array(d["etotals"]) # Perform quadratic fit. eos = EOS.Quadratic() eos_fit = eos.fit(volumes/num_sites, etotals/num_sites) label = "ecut %.1f" % d["ecut"] eos_fit.plot(ax=ax, text=False, label=label, show=False) # color=cmap(i/num_ecuts, alpha=1), return fig class GbrvOutdb(dict): """ Stores the results for the GBRV tests (binary and ternary compounds). This object is usually created via the class methods: GbrvOutdb.from_file and GbrvOutdb.new_from_table. """ # The structures stored in the database. struct_types = ["rocksalt", "ABO3", "hH"] # The name of the json database should start with prefix. prefix = "gbrv_compounds_" @classmethod def new_from_table(cls, table, djson_path): """ Initialize the object from an :class:`OfficialDojoTable` and a djson file. """ djson_path = os.path.abspath(djson_path) dirname = os.path.dirname(djson_path) new = cls(path=os.path.join(dirname, cls.prefix + os.path.basename(djson_path)), djson_path=djson_path, xc_name=table.xc.name) # Init subdictionaries e.g. {'ABO3': {'KHgF3': None, 'SbNCa3': None}, "hH": {...}} # These dictionaries will be filled afterwards with the GBRV results. gbrv = gbrv_database(xc=table.xc) for struct_type in cls.struct_types: new[struct_type] = {k: None for k in gbrv.tables[struct_type]} # Get a reference to the table. new.table = table return new @classmethod def from_file(cls, filepath): """ Initalize the object from a file in json format. """ with open(filepath, "rt") as fh: d = json.load(fh) new = cls(**d) #new["xc"] = new["xc"] #print("keys", new.keys()) # Construct the full table of pseudos # Translate djson_path into path insides pseudos djpath = as_dojo_path(new["djson_path"]) new.table = OfficialDojoTable.from_djson_file(djpath) return new def iter_struct_formula_data(self): """Iterate over (struct_type, formula, data).""" for struct_type in self.struct_types: for formula, data in self[struct_type].items(): yield struct_type, formula, data @property def path(self): return self["path"] def json_write(self, filepath=None): """ Write data to file in JSON format. If filepath is None, self.path is used. """ filepath = self.path if filepath is None else filepath with open(filepath, "wt") as fh: json.dump(self, fh, indent=-1, sort_keys=True) @classmethod def insert_results(cls, filepath, struct_type, formula, accuracy, pseudos, results): """ Update the entry in the database. """ with FileLock(filepath): outdb = cls.from_file(filepath) old_dict = outdb[struct_type][formula] if not isinstance(old_dict, dict): old_dict = {} old_dict[accuracy] = results outdb[struct_type][formula] = old_dict with AtomicFile(filepath, mode="wt") as fh: json.dump(outdb, fh, indent=-1, sort_keys=True) #, cls=MontyEncoder) def find_jobs_torun(self, max_njobs): """ Find entries whose results have not been yet calculated. Args: select_formulas: """ jobs, got = [], 0 for struct_type, formula, data in self.iter_struct_formula_data(): if got == max_njobs: break if data in ("scheduled", "failed"): continue if data is None: symbols = list(set(species_from_formula(formula))) pseudos = self.table.pseudos_with_symbols(symbols) job = dict2namedtuple(formula=formula, struct_type=struct_type, pseudos=pseudos) self[struct_type][formula] = "scheduled" jobs.append(job) got += 1 # Update the database. if jobs: self.json_write() return jobs def get_record(self, struct_type, formula): """ Find the record associated to the specified structure type and chemical formula. Return None if record is not present. """ d = self.get(struct_type) if d is None: return None data = d.get(formula) if data is None: return None raise NotImplementedError() #return GbrvRecord.from_data(data, struct_type, formula, pseudos) # TODO def check_update(self): """ Check consistency between the pseudo potential table and the database and upgrade it This usually happens when new pseudopotentials have been added to the dojo directory. (very likely) or when pseudos have been removed (unlikely!) Returns: namedtuple with the following attributes. nrec_removed nrec_added """ nrec_removed, nrec_added = 0, 0 missing = defaultdict(list) for formula, species in self.gbrv_formula_and_species: # Get **all** the possible combinations for these species. comb_list = self.dojo_pptable.all_combinations_for_elements(set(species)) # Check consistency between records and pseudos! # This is gonna be slow if we have several possibilities! records = self[formula] recidx_found = [] for pseudos in comb_list: for i, rec in enumerate(records): if rec.matches_pseudos(pseudos): recidx_found.append(i) break else: missing[formula].append(pseudos) # Remove stale records (if any) num_found = len(recidx_found) if num_found != len(records): num_stale = len(records) - num_found print("Found %s stale records" % num_stale) nrec_removed += num_stale self[formula] = [records[i] for i in recidx_found] if missing: for formula, pplist in missing.items(): for pseudos in pplist: nrec_removed += 1 self[formula].append(GbrvRecord(self.struct_type, formula, pseudos, self.dojo_pptable)) if missing or nrec_removed: print("Updating database.") self.json_write() return dict2namedtuple(nrec_removed=nrec_removed, nrec_added=nrec_added) def reset(self, status_list="failed", write=True): """ Reset all the records whose status is in `status_list` so that we can resubmit them. Return the number of records that have been resetted. """ status_list = list_strings(status_list) count = 0 for struct_type, formula, data in self.iter_struct_formula_data(): if data in status_list: self[struct_type][formula] = None count += 1 # Update the database. if count and write: self.json_write() return count ############################# ### Post-processing tools ### ############################# def get_pdframe(self, reference="ae", accuracy="normal", pptable=None, **kwargs): """ Build and return a :class:`GbrvCompoundDataFrame` with the most important results. Args: reference: pptable: :class:`PseudoTable` object. If given. the frame will contains only the entries with pseudopotential in pptable. Returns: frame: pandas :class:`DataFrame` """ #def get_df(p): # dfact_meV, df_prime = None, None # if p.has_dojo_report: # try: # data = p.dojo_report["deltafactor"] # high_ecut = list(data.keys())[-1] # dfact_meV = data[high_ecut]["dfact_meV"] # df_prime = data[high_ecut]["dfactprime_meV"] # except KeyError: # pass # return dict(dfact_meV=dfact_meV, df_prime=df_prime) #def get_meta(p): # """Return dict with pseudo metadata.""" # meta = {"basename": p.basename, "md5": p.md5} # meta.update(get_df(p)) # return meta gbrv = gbrv_database(xc=self["xc_name"]) rows, miss = [], 0 for struct_type, formula, data in self.iter_struct_formula_data(): if not isinstance(data, dict): miss += 1 continue try: a0 = data[accuracy]["a0"] except KeyError: print("No entry with accuracy %s for %s" % (accuracy, formula)) a0 = None row = dict(formula=formula, struct_type=struct_type, this=a0, accuracy=accuracy, #basenames=set(p.basename for p in rec.pseudos), #pseudos_meta={p.symbol: get_meta(p) for p in rec.pseudos}, #symbols={p.symbol for p in rec.pseudos}, ) # Add results from the database. entry = gbrv.get_entry(formula, struct_type) row.update({code: getattr(entry, code) for code in gbrv_code_names}) #row.update({code: getattr(entry, code) for code in ["ae", "gbrv_paw"]}) rows.append(row) if miss: print("There are %d missing entries in %s\n" % (miss, self.path)) # Build sub-class of pandas.DataFrame and add relative error wrt AE results. frame = GbrvCompoundDataFrame(rows) frame["rel_err"] = 100 * (frame["this"] - frame["ae"]) / frame["ae"] return frame def make_open_notebook(self, nbpath=None, foreground=False): """ Generate an ipython notebook and open it in the browser. Args: nbpath: If nbpath is None, a temporay file is created. foreground: By default, jupyter is executed in background and stdout, stderr are redirected to devnull. Use foreground to run the process in foreground Return: system exit code. Raise: RuntimeError if jupyter is not in $PATH """ nbpath = self.write_notebook(nbpath=nbpath) if foreground: cmd = "jupyter notebook %s" % nbpath return os.system(cmd) else: cmd = "jupyter notebook %s &> /dev/null &" % nbpath print("Executing:", cmd) import subprocess try: from subprocess import DEVNULL # py3k except ImportError: DEVNULL = open(os.devnull, "wb") process = subprocess.Popen(cmd.split(), shell=False, stdout=DEVNULL) #, stderr=DEVNULL) cprint("pid: %s" % str(process.pid), "yellow") def write_notebook(self, nbpath): """ Write an ipython notebook. If `nbpath` is None, a temporay file is created. Returns: The path to the ipython notebook. See also: http://nbviewer.jupyter.org/github/maxalbert/auto-exec-notebook/blob/master/how-to-programmatically-generate-and-execute-an-ipython-notebook.ipynb """ frame = self.get_pdframe() import nbformat nbv = nbformat.v4 nb = nbv.new_notebook() nb.cells.extend([ nbv.new_markdown_cell("# This is an auto-generated notebook"), nbv.new_code_cell("""\ from __future__ import print_function, division, unicode_literals from IPython.display import display import seaborn as sns import pandas as pd import pylab %matplotlib notebook pd.options.display.float_format = '{:,.3f}'.format # disable table reduction pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) sns.set(font_scale=1.6) sns.set_style("whitegrid") pylab.rcParams['figure.figsize'] = (12.0, 6.0)"""), nbv.new_code_cell("""\ from pseudo_dojo.dojo.gbrv_outdb import GbrvOutdb outdb = GbrvOutdb.from_file('%s') frame = outdb.get_pdframe(accuracy='normal') display(frame.code_errors())""" % as_dojo_path(self.path)), nbv.new_code_cell("""\ with open('gbrv_errors.tex', 'w') as f: f.write(frame.code_errors().to_latex())"""), nbv.new_code_cell("display(frame)"), ]) for struct_type in frame.struct_types(): nb.cells += [ nbv.new_markdown_cell("## GBRV results for structure %s:" % struct_type), nbv.new_code_cell("""\ fig = frame.plot_errors_for_structure('%s') pylab.tight_layout()""" % struct_type), nbv.new_code_cell("""\ fig = frame.plot_hist('%s') pylab.tight_layout()""" % struct_type), nbv.new_code_cell("display(frame.select_bad_guys(reltol=0.35, struct_type='%s'))" % struct_type), ] nb.cells += [ nbv.new_markdown_cell("## GBRV Compounds: relative errors as function of chemical element"), nbv.new_code_cell("""\ fig = frame.plot_errors_for_elements() pylab.tight_layout()"""), nbv.new_code_cell("fig.savefig('gbrv.elements.eps', bbox_inches='tight')"), nbv.new_markdown_cell("## Bad guys:"), nbv.new_code_cell("bad = frame.select_bad_guys(reltol=0.25)"), nbv.new_code_cell("display(bad.sort_values(by='rel_err'))"), nbv.new_code_cell("""\ with open('gbrv_compounds_outliers.tex', 'w') as f: f.write(bad.to_latex())"""), nbv.new_code_cell("print(bad.symbol_counter)"), nbv.new_code_cell("""\ from IPython.display import HTML HTML('''<script> code_show=true; function code_toggle() { if (code_show){ $('div.input').hide(); } else { $('div.input').show(); } code_show = !code_show } $( document ).ready(code_toggle); </script> The code cells for this IPython notebook is by default hidden for easier reading. To toggle on/off the raw code, click <a href="javascript:code_toggle()">here</a>.''')""") ] import io, tempfile if nbpath is None: _, nbpath = tempfile.mkstemp(suffix='.ipynb', text=True) with io.open(nbpath, 'wt', encoding="utf8") as f: nbformat.write(nb, f) return nbpath class GbrvCompoundDataFrame(DataFrame): """ Extends pandas :class:`DataFrame` by adding helper functions. The frame has the structure: ae formula gbrv_paw gbrv_uspp pslib struct_type this vasp 0 4.073 AlN 4.079 4.079 4.068 rocksalt 4.068777 4.070 1 5.161 LiCl 5.153 5.151 5.160 rocksalt 5.150304 5.150 2 4.911 YN 4.909 4.908 4.915 rocksalt 4.906262 4.906 TODO: column with pseudos? basenames set(Cs_basename, Cl_basename) {...} """ ALL_ACCURACIES = ("normal", "high") def struct_types(self): """List of structure types available in the dataframe.""" return sorted(set(self["struct_type"])) def code_names(self): """List of code names available in the dataframe.""" codes = sorted(c for c in self.keys() if c in gbrv_code_names) # Add this return ["this"] + codes def code_errors(self, choice="rms", **kwargs): """Return frame with the rms of the different codes.""" index, rows = [], [] ref_code = "ae" for struct_type in self.struct_types(): new = self[self["struct_type"] == struct_type].copy() index.append(struct_type) row = {} for code in self.code_names(): if code == ref_code: continue values = (100 * (new[code] - new[ref_code]) / new[ref_code]).dropna() if choice == "rms": row[code] = np.sqrt((values**2).mean()) elif choice == "mare": row[code] = values.abs().mean() else: raise ValueError("Wrong value of choice: %s" % choice) rows.append(row) frame = DataFrame(rows, index=index) return frame def select_bad_guys(self, reltol=0.4, struct_type=None): """Return new frame with the entries whose relative errors is > reltol.""" new = self[abs(100 * (self["this"] - self["ae"]) / self["ae"]) > reltol].copy() new["rel_err"] = 100 * (self["this"] - self["ae"]) / self["ae"] if struct_type is not None: new = new[new.struct_type == struct_type] new.__class__ = self.__class__ count = Counter() for idx, row in new.iterrows(): for symbol in set(species_from_formula(row.formula)): count[symbol] += 1 new.symbol_counter = count return new def remove_bad_guys(self, reltol=0.4): """Return new frame in which the entries whose relative errors is > reltol are removed.""" new = self[abs(100 * (self["this"] - self["ae"]) / self["ae"]) <= reltol].copy() new.__class__ = self.__class__ new["rel_err"] = 100 * (self["this"] - self["ae"]) / self["ae"] return new def select_symbol(self, symbol): """ Extract the rows whose formula contain the given element symbol. Return new `GbrvCompoundDataFrame`. """ rows = [] for idx, row in self.iterrows(): if symbol not in species_from_formula(row.formula): continue rows.append(row) return self.__class__(rows) @add_fig_kwargs def plot_errors_for_structure(self, struct_type, ax=None, **kwargs): """ Plot the errors for a given crystalline structure. """ ax, fig, plt = get_ax_fig_plt(ax=ax) data = self[self["struct_type"] == struct_type].copy() if not len(data): print("No results available for struct_type:", struct_type) return None colnames = ["this", "gbrv_paw"] for col in colnames: data[col + "_rel_err"] = 100 * (data[col] - data["ae"]) / data["ae"] #data[col + "_rel_err"] = abs(100 * (data[col] - data["ae"]) / data["ae"]) data.plot(x="formula", y=col + "_rel_err", ax=ax, style="o-", grid=True) labels = data['formula'].values ax.set_ylabel("relative error %% for %s" % struct_type) ticks = list(range(len(data.index))) ticks1 = range(min(ticks), max(ticks)+1, 2) ticks2 = range(min(ticks)+1, max(ticks)+1, 2) labels1 = [labels[i] for i in ticks1] labels2 = [labels[i] for i in ticks2] #ax.tick_params(which='both', direction='out') #ax.set_ylim(-1, 1) ax.set_xticks(ticks1) ax.set_xticklabels(labels1, rotation=90) ax2 = ax.twiny() ax2.set_zorder(-1) ax2.set_xticks(ticks2) ax2.set_xticklabels(labels2, rotation=90) ax2.set_xlim(ax.get_xlim()) return fig @add_fig_kwargs def plot_hist(self, struct_type, ax=None, errtxt=True, **kwargs): """ Histogram plot. """ #if codes is None: codes = ["ae"] ax, fig, plt = get_ax_fig_plt(ax) import seaborn as sns codes = ["this", "gbrv_paw"] #, "gbrv_uspp", "pslib", "vasp"] new = self[self["struct_type"] == struct_type].copy() ypos = 0.8 for i, code in enumerate(codes): values = (100 * (new[code] - new["ae"]) / new["ae"]).dropna() sns.distplot(values, ax=ax, rug=True, hist=False, label=code) # Add text with Mean or (MARE/RMSRE) if errtxt: text = []; app = text.append #app("%s MARE = %.2f" % (code, values.abs().mean())) app("%s RMSRE = %.2f" % (code, np.sqrt((values**2).mean()))) ax.text(0.6, ypos, "\n".join(text), transform=ax.transAxes) ypos -= 0.1 ax.grid(True) ax.set_xlabel("relative error %") ax.set_xlim(-0.8, 0.8) return fig @add_fig_kwargs def plot_errors_for_elements(self, ax=None, **kwargs): """ Plot the relative errors associated to the chemical elements. """ dict_list = [] for idx, row in self.iterrows(): rerr = 100 * (row["this"] - row["ae"]) / row["ae"] for symbol in set(species_from_formula(row.formula)): dict_list.append(dict( element=symbol, rerr=rerr, formula=row.formula, struct_type=row.struct_type, )) frame =
DataFrame(dict_list)
pandas.DataFrame
from .utils import Atom, Residue, ActiveSite import pandas as pd import numpy as np from scipy import spatial import collections from sklearn.cluster import AgglomerativeClustering from scipy.cluster.hierarchy import dendrogram, linkage # format the active site data into a df with the active sites as # index and a list of unit vectors for the residues def format_data(active_sites): # active sites contain residues, contain atoms, contain coords # collect the residue, max/min coords for each active site collect_vector_coords = [] for s in active_sites: for r in s.residues: collect_bb = [str(s),r.type] collect_a = [] for a in r.atoms[:3]: # r.atoms[:3] are N, CA, C collect_a.append(a.coords) x_vals = [item[0] for item in collect_a] y_vals = [item[1] for item in collect_a] z_vals = [item[2] for item in collect_a] collect_vals = [max(x_vals),max(y_vals),max(z_vals),min(x_vals),min(y_vals),min(z_vals)] collect_bb.append(collect_vals) collect_vector_coords.append(collect_bb) # collect the active site, residue, and max/min coords into df pd_backbone = pd.DataFrame(collect_vector_coords,columns=['activesite','aminoacid','mmcoords']) pd_backbone[['x_max','y_max','z_max','x_min','y_min','z_min']] = pd.DataFrame(pd_backbone.mmcoords.values.tolist(), index= pd_backbone.index) pd_backbone.drop('mmcoords',inplace=True,axis=1) # get the distance between the max and min for each residue pd_backbone['x_dist'] = pd_backbone['x_max']-pd_backbone['x_min'] pd_backbone['y_dist'] = pd_backbone['y_max']-pd_backbone['y_min'] pd_backbone['z_dist'] = pd_backbone['z_max']-pd_backbone['z_min'] pd_backbone.drop(['x_max','x_min','y_max','y_min','z_max','z_min'],inplace=True,axis=1) # make a vector for the min/max coords pd_backbone['vector'] = pd_backbone[['x_dist','y_dist','z_dist']].values.tolist() pd_backbone.drop(['x_dist','y_dist','z_dist'],inplace=True,axis=1) # convert to unit vector pd_backbone['unit_v'] = pd_backbone['vector'].apply(lambda x: x/np.linalg.norm(x)) pd_backbone.drop('vector',inplace=True,axis=1) # list the residues and max/min coords for each active site group_bb = pd_backbone.groupby(['activesite']).agg(lambda x: list(x)) group_bb.drop(['aminoacid'],inplace=True,axis=1) # get average of vectors group_bb['ave'] = group_bb['unit_v'].apply(lambda x: [float(sum(col))/len(col) for col in zip(*x)]) group_ave = group_bb[['ave']] return group_ave # make matrix comparing every active site to every other active site def make_distance_matrix(df_sites): collect_comp = [] collect_names = [] # compare every active site distance matrix value to every other for indexone, rowone in df_sites.iterrows(): collect_names.append(indexone) collect = [] site_a = rowone['ave'] for indextwo, rowtwo in df_sites.iterrows(): site_b = rowtwo['ave'] collect.append(compute_similarity(site_a, site_b)) collect_comp.append(collect) df_matrix =
pd.DataFrame(collect_comp,columns=collect_names,index=collect_names)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT, Timedelta('1s')]) expected = Series([NaT, NaT], dtype='timedelta64[ns]') ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) res = ser - pd.NaT tm.assert_equal(res, expected) def test_td64arr_add_timedeltalike(self, two_hours, box): # only test adding/sub offsets as + is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng + two_hours tm.assert_equal(result, expected) def test_td64arr_sub_timedeltalike(self, two_hours, box): # only test adding/sub offsets as - is now numeric rng = timedelta_range('1 days', '10 days') expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') rng = tm.box_expected(rng, box) expected = tm.box_expected(expected, box) result = rng - two_hours tm.assert_equal(result, expected) # ------------------------------------------------------------------ # __add__/__sub__ with DateOffsets and arrays of DateOffsets # TODO: this was taken from tests.series.test_operators; de-duplicate def test_timedelta64_operations_with_DateOffset(self): # GH#10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) tm.assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)])
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import pandas as pd import numpy as np train_data = pd.read_csv("./dataset/train.csv", encoding="euc-kr") train_data["DateTime"] =
pd.to_datetime(train_data.DateTime)
pandas.to_datetime
#%% import time from pathlib import Path import colorcet as cc import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.feature_selection import VarianceThreshold from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from graspologic.plot import pairplot from sparse_decomposition import SparseComponentAnalysis from sparse_new_basis.plot import savefig, set_theme #%% fig_dir = Path("sparse_new_basis/results/try_genes") def stashfig(name, *args, **kwargs): savefig(fig_dir, name, *args, **kwargs) set_theme() #%% data_dir = Path("sparse_new_basis/data/BP_Barabasi_Share/ScRNAData") #%% # gene expression data sequencing_loc = data_dir / "Celegans_ScRNA_OnlyLabeledNeurons.csv" sequencing_df = pd.read_csv(sequencing_loc, skiprows=[1]) currtime = time.time() sequencing_df = sequencing_df.pivot(index="genes", columns="neurons", values="Count") sequencing_df = sequencing_df.T.fillna(0) print(f"{time.time() - currtime} elapsed to load sequencing data") sequencing_df # TODO drop the background RNA from table S2 in the paper #%% # info about the genes themselves gene_loc = data_dir / "GSE136049_gene_annotations.csv" gene_df = pd.read_csv(gene_loc) gene_df["genes"] = range(1, len(gene_df) + 1) gene_df = gene_df.set_index("genes") gene_df = gene_df.loc[sequencing_df.columns] # some gene #s werent used gene_df #%% sequencing_df.rename(columns=gene_df["gene_symbol"], inplace=True) sequencing_df #%% # annotations for the individual genes annotation_genes = pd.read_csv(data_dir / "annotation_genes.csv") nt_annotation_genes = annotation_genes.melt( id_vars=["neuron_class", "neuron_type"], value_vars=[f"nt_gene_{i}" for i in range(3)], value_name="gene", ).dropna(axis=0) nt_annotation_genes = nt_annotation_genes.drop("variable", axis=1) nt_annotation_genes["gene_type"] = "neurotransmitter" other_annotation_genes = annotation_genes.melt( id_vars=["neuron_class", "neuron_type"], value_vars=[f"gene_{i}" for i in range(12)], value_name="gene", ).dropna(axis=0) other_annotation_genes = other_annotation_genes.drop("variable", axis=1) other_annotation_genes["gene_type"] = "other" annotation_genes = pd.concat((nt_annotation_genes, other_annotation_genes), axis=0) annotation_genes #%% # metadata for each neuron in the gene expression data class_map_loc = data_dir / "Labels2_CElegansScRNA_onlyLabeledNeurons.csv" scrna_meta =
pd.read_csv(class_map_loc)
pandas.read_csv
from datetime import datetime from datetime import timedelta import json import pandas as pd import logging logging.info('Started') # Do I have the right or not, if I have right for how long # Given a date, for how long I stay in Schengen countries? def transform_data(ref_date, entries, exits): logging.info( 'Control if Reference Date is Null and default to today if so') today = datetime.now() if ref_date == '': # or is None reference_date = today else: reference_date = datetime.strptime(ref_date, '%Y-%m-%d') logging.info('Control if Reference Date is past date, not interesting') if reference_date < today: exit() # need a function generating json response logging.info('Create reference date/entries/exists dataframe') df_entries = pd.DataFrame.from_dict(entries) df_entries['Coef'] = 1 df_exits = pd.DataFrame.from_dict(exits) df_exits['Coef'] = 0 df_raw_input = df_entries.append(df_exits, ignore_index=True, sort=True) df_raw_input.columns = ['Date', 'Coef'] df_raw_input['Date'] = pd.to_datetime(df_raw_input['Date']) data_ref = {'Date': [reference_date], 'Coef': [0]} df_reference_date =
pd.DataFrame(data=data_ref)
pandas.DataFrame
""" Title: Exploratory Data Analysis of Hand Data Author: <NAME> Created on Tue Mar 23 16:07:25 2021 """ # Import necessary libraries import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from scipy import stats import seaborn as sns from pathlib import Path, PureWindowsPath from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn import tree from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import plot_precision_recall_curve #%% # Load project data project_dir = 'C:/Users/kcmma/github/blackjack/blackjack/data/' filename = 'hand_data.csv' basic_strategy = 'basic_strategy.csv' # Get file path file_path = Path(project_dir + filename) basic_strategy_path = Path(project_dir + basic_strategy) # Convert path to Windows format windows_path = PureWindowsPath(file_path) windows_path_2 = PureWindowsPath(basic_strategy_path) # Read csv to dataframe hand_df = pd.read_csv(windows_path) basic_strategy_df =
pd.read_csv(windows_path_2)
pandas.read_csv
"""Preprocessing WSDM Dataset. Author: DHSong Last Modified At: 2020.07.07 Preprocessing WSDM Dataset. """ import os from collections import Counter from tqdm import tqdm import pandas as pd import matplotlib.font_manager as fm import matplotlib.pyplot as plt import seaborn as sns class PreprocessingWorker: """Worker for Preprocessing. Worker for Preprocessing. Attributes: train_raw: pandas Dataframe for Train Dataset(train.csv). test_raw: pandas Dataframe for Train Dataset(test.csv). sample_submission_raw: pandas Dataframe for Submission Dataset(sample_submission.csv). songs_raw: pandas Dataframe for Song Dataset(songs.csv). members_raw: pandas Dataframe for Member Dataset(members.csv). song_extra_info_raw: pandas Dataframe for Additional Song Dataset(song_extra_info.csv). """ def __init__(self, data_dirname='./data', font_path='./static/fonts/D2Coding.ttc'): """Inits Dataframe for data in data directory.""" self._matplotlib_setting(font_path) self.train_raw = pd.read_csv(os.path.join(data_dirname, 'train.csv')) self.test_raw = pd.read_csv(os.path.join(data_dirname, 'test.csv')) self.sample_submission_raw = pd.read_csv(os.path.join(data_dirname, 'sample_submission.csv')) self.songs_raw = pd.read_csv(os.path.join(data_dirname, 'songs.csv')) self.members_raw = pd.read_csv(os.path.join(data_dirname, 'members.csv')) self.song_extra_info_raw = pd.read_csv(os.path.join(data_dirname, 'song_extra_info.csv')) def _matplotlib_setting(self, font_path): """set matplotlib fonts and style.""" font_family = fm.FontProperties(fname=font_path).get_name() plt.rcParams['font.family'] = font_family plt.rcParams['font.size'] = 14 plt.style.use('seaborn-darkgrid') def _barplot(self, df, column, horizontal=True): plt.figure(figsize=(16, 9)) if horizontal: sns.countplot(y=column, hue='target', data=df, order=df[column].value_counts().index) else: sns.countplot(x=column, hue='target', data=df, order=df[column].value_counts().index) plt.title('{} Distribution by target'.format(column)) plt.legend(loc='upper right') plt.savefig('./figures/preprocessing-barplot-{}'.format(column)) def preprocess_train_test(self): """Preprocess train.csv and test.csv. preprocess train.csv and test.csv. Select values to be considered. Arags: Return: train: Pandas Dataframe. Select values to be considered in train.csv. test: Pandas Dataframe. Select values to be considered in test.csv. """ train = self.train_raw.fillna('<blank>') test = self.test_raw.fillna('<blank>') selected_values_by_columns = { 'source_system_tab': [ '<blank>', '<not selected>', 'my library', 'discover', 'search', 'radio' ], 'source_screen_name': [ '<blank>', '<not selected>', 'Local playlist more', 'Online playlist more', 'Radio', 'Album more', 'Search', 'Artist more', 'Discover Feature', 'Discover Chart', 'Others profile more' ], 'source_type': [ '<blank>', '<not selected>', 'local-library', 'online-playlist', 'local-playlist', 'radio', 'album', 'top-hits-for-artist' ] } for column, values in selected_values_by_columns.items(): train.loc[~train[column].isin(values), column] = '<not selected>' test.loc[~test[column].isin(values), column] = '<not selected>' for column in selected_values_by_columns.keys(): self._barplot(train, column) return train, test def preprocess_members(self): """Preprocess members.csv. preprocess members.csv. Select values to be considered. Arags: Return: members: Pandas Dataframe. Select values to be considered in members.csv. """ # fill all the NA with <blank>. members = self.members_raw.fillna('<blank>') # calculate membership days. members['registration_init_time'] = pd.to_datetime(members.registration_init_time, format='%Y%m%d') members['expiration_date'] = pd.to_datetime(members.expiration_date, format='%Y%m%d') members['membership_days'] = (members.expiration_date - members.registration_init_time).dt.days # binning membership days. invalid_membership_days = members.membership_days < 0 members.loc[invalid_membership_days, 'membership_days'] = -1 members.loc[invalid_membership_days, 'membership_dyas_bin'] = '<invalid>' members.loc[~invalid_membership_days, 'membership_dyas_bin'] = pd.qcut(members.loc[~invalid_membership_days, 'membership_days'], 3) # binning bd(age). invalid_bd = (members.bd < 0) | (members.bd >= 100) members.loc[invalid_bd, 'bd'] = -1 members.loc[invalid_bd, 'bd_bin'] = '<invalid>' members.loc[~invalid_bd, 'bd_bin'] = pd.cut(members.loc[~invalid_bd, 'bd'], 5) selected_values_by_columns = { 'city': [ '<blank>', '<not selected>', '1', '13', '5', '4', '15', '22' ], 'registered_via': [ '<blank>', '<not selected>', '4', '7', '9', '3' ] } for column, values in selected_values_by_columns.items(): members[column] = members[column].astype('str') members.loc[~members[column].isin(values), column] = '<not selected>' members_train = pd.merge(left=members, right=self.train_raw, how='inner') for column in selected_values_by_columns.keys(): self._barplot(members_train, column) self._barplot(members_train, 'bd_bin') self._barplot(members_train, 'gender') self._barplot(members_train, 'membership_dyas_bin') return members def preprocess_songs(self): """Preprocess songs.csv. preprocess songs.csv. Select values to be considered. Arags: Return: songs: Pandas Dataframe. Select values to be considered in songs.csv. """ # fill all the NA with <blank>. songs = self.songs_raw.fillna('<blank>') # binning song length. invalid_song_length = songs.song_length < 0 songs.loc[invalid_song_length, 'song_length'] = -1 songs.loc[invalid_song_length, 'song_length_bin'] = '<invalid>' songs.loc[~invalid_song_length, 'song_length_bin'] = pd.qcut(songs.loc[~invalid_song_length, 'song_length'], 3) songs['song_length_bin'] = songs.song_length_bin.astype('str') # select only top genres. genre_list = list() for genres in tqdm(songs.genre_ids.str.split('|')): for genre in genres: if genre.isdigit(): genre_list.append(genre) counter = Counter(genre_list) top_genres = [genre for genre, freq in counter.most_common(5)] for genre in tqdm(top_genres): name = 'genre_{}'.format(genre) values = list() for genres in songs.genre_ids: value = 0 if genre in genres.split('|'): value = 1 values.append(value) songs[name] = values selected_values_by_columns = { 'language': [ '<blank>', '<not selected>', '52', '3', '27', '24', '31', '10' ] } songs.loc[songs.language == '<blank>', 'language'] = -1 songs['language'] = songs.language.astype('int') songs.loc[songs.language == -1, 'language'] = '<blank>' for column, values in selected_values_by_columns.items(): songs[column] = songs[column].astype('str') songs.loc[~songs[column].isin(values), column] = '<not selected>' songs_train = pd.merge(left=songs, right=self.train_raw, how='inner') for column in selected_values_by_columns.keys(): self._barplot(songs_train, column) self._barplot(songs_train, 'song_length_bin') for genre in top_genres: name = 'genre_{}'.format(genre) self._barplot(songs_train, name) return songs def preprocess_song_extra_info(self): """Preprocess songs.csv. preprocess songs.csv. Select values to be considered. Arags: Return: songs: Pandas Dataframe. Select values to be considered in songs.csv. """ def isrc_to_country(isrc): if isrc != '<blank>': return isrc[:2] else: return isrc def isrc_to_year(isrc): if isrc != '<blank>': year = isrc[5:7] if int(year) > 18: return int('19' + year) else: return int('20' + year) else: return -1 # fill all the NA with <blank>. song_extra_info = self.song_extra_info_raw.fillna('<blank>') song_extra_info['country'] = song_extra_info.isrc.apply(lambda x: isrc_to_country(x)) song_extra_info['year'] = song_extra_info.isrc.apply(lambda x: isrc_to_year(x)) blank_year = (song_extra_info.year == -1) song_extra_info.loc[blank_year, 'year_bin'] = '<blank>' song_extra_info.loc[~blank_year, 'year_bin'] = pd.qcut(song_extra_info.loc[~blank_year, 'year'], 5) selected_values_by_columns = { 'country': [ '<blank>', 'US', 'GB', 'DE', 'FR', 'TC', 'JP' ] } for column, values in selected_values_by_columns.items(): song_extra_info[column] = song_extra_info[column].astype('str') song_extra_info.loc[~song_extra_info[column].isin(values), column] = '<not selected>' song_extra_info_train = pd.merge(left=song_extra_info, right=self.train_raw, how='inner') for column in selected_values_by_columns.keys(): self._barplot(song_extra_info_train, column) self._barplot(song_extra_info_train, 'year_bin') return song_extra_info if __name__ == '__main__': worker = PreprocessingWorker(data_dirname='./data', font_path='./static/fonts/D2Coding.ttc') print('*****Preprocess train.csv and test.csv*****') train, test = worker.preprocess_train_test() print('\n*****Preprocess members.csv*****') members = worker.preprocess_members() print('\n*****Preprocess songs.csv*****') songs = worker.preprocess_songs() print('\n*****Preprocess song_extra_info.csv*****') song_extra_info = worker.preprocess_song_extra_info() members = members.drop(columns=['bd', 'registration_init_time', 'expiration_date', 'membership_days']) songs = songs.drop(columns=['song_length', 'genre_ids', 'artist_name', 'composer', 'lyricist']) song_extra_info = song_extra_info.drop(columns=['name', 'isrc', 'year']) merged = pd.merge(left=train, right=members, how='left', on='msno') merged = pd.merge(left=merged, right=songs, how='left', on='song_id') merged = pd.merge(left=merged, right=song_extra_info, how='left', on='song_id') genre_columns = ['genre_465', 'genre_958', 'genre_1609', 'genre_2022', 'genre_2122'] for column in genre_columns: merged[column] = merged[column].fillna(0) merged[column] = merged[column].astype('int') merged = merged.fillna('<blank>') merged['registered_via'] = merged.registered_via.astype('str') merged.to_csv('./data/train_merged.csv', index=False) merged = pd.merge(left=test, right=members, how='left', on='msno') merged =
pd.merge(left=merged, right=songs, how='left', on='song_id')
pandas.merge
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re from collections.abc import Iterable from datetime import datetime, timedelta from unittest import TestCase import numpy as np import pandas as pd import statsmodels from kats.consts import TimeSeriesData from kats.detectors.detector_consts import ( AnomalyResponse, ChangePointInterval, ConfidenceBand, PercentageChange, SingleSpike, ) statsmodels_ver = float( re.findall("([0-9]+\\.[0-9]+)\\..*", statsmodels.__version__)[0] ) class SingleSpikeTest(TestCase): def test_spike(self) -> None: spike_time_str = "2020-03-01" spike_time = datetime.strptime(spike_time_str, "%Y-%m-%d") spike = SingleSpike(time=spike_time, value=1.0, n_sigma=3.0) self.assertEqual(spike.time_str, spike_time_str) class ChangePointIntervalTest(TestCase): def test_changepoint(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(15)] current_length = 10 current_seq = [ previous_seq[10] + timedelta(days=x) for x in range(current_length) ] previous_values = np.random.randn(len(previous_seq)) current_values = np.random.randn(len(current_seq)) # add a very large value to detect spikes current_values[0] = 100.0 # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame({"time": previous_seq, "value": previous_values}) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame({"time": current_seq, "value": current_values}) ) previous_extend = TimeSeriesData( pd.DataFrame({"time": previous_seq[9:], "value": previous_values[9:]}) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_end`. self.current_end = current_seq[-1] + timedelta(days=1) previous_int = ChangePointInterval(self.prev_start, self.prev_end) previous_int.data = self.previous # tests whether data is clipped property to start and end dates np.testing.assert_array_equal(previous_values[0:9], previous_int.data) # test extending the data # now the data is extended to include the whole sequence previous_int.end_time = previous_seq[-1] + timedelta(days=1) previous_int.extend_data(previous_extend) self.assertEqual(len(previous_int), len(previous_seq)) current_int = ChangePointInterval(self.current_start, self.current_end) current_int.data = self.current current_int.previous_interval = previous_int # check all the properties self.assertEqual(current_int.start_time, self.current_start) self.assertEqual(current_int.end_time, self.current_end) self.assertEqual( current_int.start_time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) self.assertEqual( current_int.end_time_str, datetime.strftime(self.current_end, "%Y-%m-%d") ) self.assertEqual(current_int.mean_val, np.mean(current_values)) self.assertEqual(current_int.variance_val, np.var(current_values)) self.assertEqual(len(current_int), current_length) self.assertEqual(current_int.previous_interval, previous_int) # check spike detection spike_list = current_int.spikes # pyre-fixme[16]: `List` has no attribute `value`. self.assertEqual(spike_list[0].value, 100.0) self.assertEqual( # pyre-fixme[16]: `List` has no attribute `time_str`. spike_list[0].time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) def test_multichangepoint(self) -> None: # test for multivariate time series np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(15)] current_length = 10 current_seq = [ previous_seq[10] + timedelta(days=x) for x in range(current_length) ] num_seq = 5 previous_values = [np.random.randn(len(previous_seq)) for _ in range(num_seq)] current_values = [np.random.randn(len(current_seq)) for _ in range(num_seq)] # add a very large value to detect spikes for i in range(num_seq): current_values[i][0] = 100 * (i + 1) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq}, **{f"value_{i}": previous_values[i] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame( { **{"time": current_seq}, **{f"value_{i}": current_values[i] for i in range(num_seq)}, } ) ) previous_extend = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq[9:]}, **{f"value_{i}": previous_values[i][9:] for i in range(num_seq)}, } ) ) # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # `current_start`. # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `ChangePointIntervalTest` has no attribute `current_end`. self.current_end = current_seq[-1] + timedelta(days=1) previous_int = ChangePointInterval(self.prev_start, self.prev_end) previous_int.data = self.previous # tests whether data is clipped property to start and end dates for i in range(num_seq): self.assertEqual( # pyre-fixme[16]: Optional type has no attribute `__getitem__`. previous_int.data[:, i].tolist(), previous_values[i][0:9].tolist(), ) # test extending the data # now the data is extended to include the whole sequence except the last point previous_int.end_time = previous_seq[-1] # + timedelta(days=1) previous_int.extend_data(previous_extend) self.assertEqual(len(previous_int) + 1, len(previous_seq)) # let's repeat this except without truncating the final point previous_int2 = ChangePointInterval(self.prev_start, self.prev_end) previous_int2.data = self.previous previous_int2.end_time = previous_seq[-1] + timedelta(days=1) previous_int2.extend_data(previous_extend) self.assertEqual(len(previous_int2), len(previous_seq)) # let's extend the date range so it's longer than the data # this should not change the results previous_int3 = ChangePointInterval(self.prev_start, self.prev_end) previous_int3.data = self.previous previous_int3.end_time = previous_seq[-1] + timedelta(days=2) previous_int3.extend_data(previous_extend) self.assertEqual(len(previous_int3), len(previous_seq)) # let's construct the current ChangePointInterval current_int = ChangePointInterval(self.current_start, self.current_end) current_int.data = self.current current_int.previous_interval = previous_int # check all the properties self.assertEqual(current_int.start_time, self.current_start) self.assertEqual(current_int.end_time, self.current_end) self.assertEqual(current_int.num_series, num_seq) self.assertEqual( current_int.start_time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) self.assertEqual( current_int.end_time_str, datetime.strftime(self.current_end, "%Y-%m-%d") ) self.assertEqual( # pyre-fixme[16]: `float` has no attribute `tolist`. current_int.mean_val.tolist(), [np.mean(current_values[i]) for i in range(num_seq)], ) self.assertEqual( current_int.variance_val.tolist(), [np.var(current_values[i]) for i in range(num_seq)], ) self.assertEqual(len(current_int), current_length) self.assertEqual(current_int.previous_interval, previous_int) # check spike detection spike_array = current_int.spikes self.assertEqual(len(spike_array), num_seq) for i in range(num_seq): # pyre-fixme[16]: `SingleSpike` has no attribute `__getitem__`. self.assertEqual(spike_array[i][0].value, 100 * (i + 1)) self.assertEqual( spike_array[i][0].time_str, datetime.strftime(self.current_start, "%Y-%m-%d"), ) class PercentageChangeTest(TestCase): def test_perc_change(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(30)] current_length = 31 # offset one to make the new interval start one day after the previous one ends current_seq = [ previous_seq[-1] + timedelta(days=(x + 1)) for x in range(current_length) ] previous_values = 1.0 + 0.25 * np.random.randn(len(previous_seq)) current_values = 10.0 + 0.25 * np.random.randn(len(current_seq)) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `previous`. self.previous = TimeSeriesData( pd.DataFrame({"time": previous_seq, "value": previous_values}) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current`. self.current = TimeSeriesData( pd.DataFrame({"time": current_seq, "value": current_values}) ) # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_start`. self.prev_start = previous_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `prev_end`. self.prev_end = previous_seq[9] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_start`. self.current_start = current_seq[0] # pyre-fixme[16]: `PercentageChangeTest` has no attribute `current_end`. self.current_end = current_seq[-1] previous_int = ChangePointInterval( previous_seq[0], (previous_seq[-1] + timedelta(days=1)) ) previous_int.data = self.previous current_int = ChangePointInterval( current_seq[0], (current_seq[-1] + timedelta(days=1)) ) current_int.data = self.current current_int.previous_interval = previous_int perc_change_1 = PercentageChange(current=current_int, previous=previous_int) previous_mean = np.mean(previous_values) current_mean = np.mean(current_values) # test the ratios ratio_val = current_mean / previous_mean self.assertEqual(perc_change_1.ratio_estimate, ratio_val) ratio_estimate = perc_change_1.ratio_estimate assert isinstance(ratio_estimate, float) self.assertAlmostEqual(ratio_estimate, 10.0, 0) self.assertEqual(perc_change_1.perc_change, (ratio_val - 1) * 100) self.assertEqual(perc_change_1.direction, "up") self.assertEqual(perc_change_1.stat_sig, True) self.assertTrue(perc_change_1.p_value < 0.05) self.assertTrue(perc_change_1.score > 1.96) # test a detector with false stat sig second_values = 10.005 + 0.25 * np.random.randn(len(previous_seq)) second = TimeSeriesData(
pd.DataFrame({"time": previous_seq, "value": second_values})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ## Thank you for visiting my Karnel ! # I have just started with this dataset that impiles House Sales in King County, USA. My Karnel will be sometime updated by learning from many excellent analysts. # # * I am not native in English, so very sorry to let you read poor one. # ## 1.Read libraries and the dataset # Read libraries and the dataset before analysing.Especially we should care about strange points of the dataset. # # ## 2.Data Cleaning and Visualizations # I need to conduct nulls and duplications including strange points above. We also see the relation between 'price' as the target and other valuables from visualizations. We try to evaluate 1st model before feature engineering because of seeing the progress. Then, as explanatory variables increase through feature engineering, multicollinearities are detected. # # * 2-1.Exploring nulls and duplications into the dataset. # * 2-2.Visualizing the price # * 2-3.Model building(1st) # * 2-4-1. Feature engineering: "date" # * 2-4-2. Feature engineering: "renovation" # * 2-4-3. Feature engineering: "zipcode" # * 2-4-4. New dataset # * 2-4-5. Detecing multicollinearity # # ## 3.Model building and Evaluation # The model will be built by using train dataset after detecting multicollinearity. In addition, it is evaluated on the correlation^2 between predicted values (y_pred) and actual values(y_test), MSE(mean_squared_error) and MAE(mean_squared_error) # ## 1.Read libraries and the dataset # Anaylsis will be started by reading librariese and the datasets. # In[ ]: import pandas as pd import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error # ## 1-1. Load the dataset # In[ ]: df = pd.read_csv("../input/kc_house_data.csv") df.head() # In[ ]: df.tail() # ****Dataset shows that the target is 'price' and the other explanatory variables are 20. # In[ ]: print(df.shape) print('------------------------') print(df.nunique()) print('------------------------') print(df.dtypes) # ![](http://)Dataset's shape implies 21,613 lines * 21 columns where are composes as be said above. # #### It is found that the number of lines(21,613) and id(21,436) is different by 176 except the 1st column of explanatory valuables. It should be caused by some nulls or/and duplications. # ## 2.Data Cleaning and Visualisation # ### 2-1.Exploring nulls and duplications into the dataset. # In[ ]: df.isnull().sum() # In[ ]: df['id'].value_counts() # In[ ]: sum((df['id'].value_counts()>=2)*1) # It becomes cleared that the difference is cased by **DUPLICATION**, NOT nulls. # * Also, on other variables, there are NOT nulls which we have to care. # When my goal is set to predict 'price', show the distribution and fundamental statistics of 'price' and the correlation between 'price' and other valuables except 'id'. # ### 2-2. Visualizing the price # Firstly seeing the distribution of price. It may not be directly useful for prediction, however, the clarification of target data is important. # In[ ]: plt.hist(df['price'],bins=100) # In[ ]: # Seeing the fundamental statistics of price. df.describe()['price'] # ![](http://)Distribution of price is distorted to the right. The large difference between minimum and maximum price. More than 100 times!! # * Nextly, seeing the correlation matrix and the scatter plots between "price" and other variables except 'date'. # * **'date' is needed to change significantly.** # In[ ]: df.corr().style.background_gradient().format('{:.2f}') # In[ ]: for i in df.columns: if (i != 'price') & (i != 'date'): df[[i,'price']].plot(kind='scatter',x=i,y='price') # Though the dtypes of 'yr_renovated' and 'zipcode' are int64, they might be needed to be feature engineered because 'yr_renovated' is focused on around 0 and 2000 from seeing scatter plots above and 'zipcode' is just number. # ### 2-3. Model Building (1st) # * Try to biuild 1st model, that the target is 'price' and X are other valuables except 'id', 'date', 'yr_renovated' and 'zipcode'. # In[ ]: from sklearn.linear_model import LinearRegression X = df.drop(['price','id','date','yr_renovated','zipcode'],axis=1) y = df['price'] regr = LinearRegression(fit_intercept=True).fit(X,y) print("model_1_score:{:.4f}".format(regr.score(X,y))) # ### 2-4-1. Feature engineering: "date" # Firstly, as be said , 'date' will be feature engineered to be significant because 'price' may be related with day of week ('dow') and month. # In[ ]: df.date.head() # In[ ]: pd.to_datetime(df.date).map(lambda x:'dow'+str(x.weekday())).head() # ** dow:day of week, 0=Monday, 7=Sunday # In[ ]: pd.to_datetime(df.date).map(lambda x:'month'+str(x.month)).head() # ** month1=January, 12=December # In[ ]: df['dow'] = pd.to_datetime(df.date).map(lambda x:'dow'+str(x.weekday())) df['month'] = pd.to_datetime(df.date).map(lambda x:'month'+str(x.month)) # > Nextly, as the values of 'dow' and 'month' are categorilized, they are changed to be one hot encoding. # In[ ]: pd.get_dummies(df['dow']).head() # In[ ]:
pd.get_dummies(df['month'])
pandas.get_dummies
import pandas as pd import numpy as np import matplotlib.pyplot as plt from datetime import datetime class readWeather: def __init__(self, filename): self.filename = filename def generatePlot(self, requestedDate): self.store = pd.HDFStore(self.filename) temp = {} humid = {} fromTime = requestedDate + " 00:00:01" toTime = requestedDate + " 23:59:59" where = 'index > fromTime & index < toTime' self.dataRequested = self.store.select('Weather1',where = where, columns = ['Temp']) self.dataRequested1 = self.store.select('Weather1',where = where, columns = ['Humidity']) self.index1 = self.dataRequested.index.values.tolist() self.index_time = [pd.to_datetime(dt).strftime("%H:%M") for dt in self.index1] self.index_time = list( self.index_time[i] for i in np.arange(0,len(self.index1),28)) temp['30min'] = pd.rolling_mean(self.dataRequested['Temp'], window=6) temp['5min'] = self.dataRequested['Temp'] humid['30min'] = pd.rolling_mean(self.dataRequested1['Humidity'], window=6) humid['5min'] = self.dataRequested1['Humidity'] x = np.arange(len(self.index1)) x1 = np.arange(0,len(self.index1),28) plt.xkcd() fig, [ax_temp, ax_hum] = plt.subplots(2,1, figsize=(8,7)) fig.suptitle('Temperature, Humidity on '+ requestedDate, fontsize = 15) ax_temp.plot(x, temp['30min'], label = '30min_movAvg') ax_temp.plot(x, temp['5min'], 'r--', label = '5min_interval') #ax_temp.set_title('Temperature on '+ requestedDate) ax_temp.legend(loc='best') #ax_temp.set_xlabel("Time", fontsize = 12) ax_temp.set_ylabel("Temp (C)", fontsize = 12) #plt.xticks(x1, self.index_time, rotation = 45) #ax_temp.tick_params(labelsize=10) ax_hum.plot(x, humid['30min'], label = '30min_movAvg') ax_hum.plot(x, humid['5min'], 'r--', label = '5min_interval') #ax_hum.set_title('Humidity on '+ requestedDate) ax_hum.legend(loc='best') ax_hum.set_xlabel("Time", fontsize = 12) ax_hum.set_ylabel("Humidity (%)", fontsize = 12) plt.xticks(x1, self.index_time, rotation = 45) ax_hum.tick_params(labelsize=10) #make x-axis ticks invisible for temp plt.setp(ax_temp.get_xticklabels(), visible=False) #plt.xticks(x1, self.index_time, rotation = 45) plt.savefig('static/temp_humid_' + requestedDate + '.png') self.store.close() def generateTempPlot(self, requestedDate): self.store =
pd.HDFStore(self.filename)
pandas.HDFStore
import glob import math import os import pickle import shutil import time from typing import List, Dict import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.io from PIL import Image, ImageDraw N = 5 ERROR_THRESHOLD = 5.0 MASK_COORDS = [(225, 360), (335, 130)] PATH_TO_SCENES = "images" ANALYZE_DATA = False PATH_TO_HIGHLIGHTS = "large_variations" NUM_HIGHLIGHTS = 10 FOLD_VARIATIONS = 0 NUM_FOLDS = 0 def mask_ground_truth(path_to_frame: str): img = Image.open(path_to_frame).convert('RGB') mask = img.copy() draw = ImageDraw.Draw(mask) draw.rectangle(MASK_COORDS, fill="black") return Image.blend(img, mask, 1) def process_sequence(frame_idx: int, scene_paths: List, path_to_seq: str, images_gt: Dict): ground_truths, errors = [], [] for i in range(N): path_to_frame = scene_paths[frame_idx - i] print("\t * Preceding frame {}: {}".format(str(abs(i - N)), path_to_frame)) masked_frame = mask_ground_truth(path_to_frame) masked_frame.save(os.path.join(path_to_seq, str(abs(i - N)) + ".jpg")) current_gt = images_gt[path_to_frame] ground_truths = [current_gt] + ground_truths if i < N - 1: preceding_gt = images_gt[scene_paths[frame_idx - i - 1]] error = angular_error(current_gt, preceding_gt) errors.insert(0, angular_error(current_gt, preceding_gt)) if error >= ERROR_THRESHOLD: print("\n\t -> Detected angle change {:.2f} >= {:.2f} between frames {} and {} \n" .format(error, ERROR_THRESHOLD, frame_idx - i, frame_idx - i - 1)) mean_error, std_error = np.mean(errors), np.std(errors) plt.plot(range(1, N), errors) plt.title("AVG: {:.4f} - STD DEV: {:.4f}".format(mean_error, std_error)) plt.xticks(range(1, N + 1)) plt.xlabel("Frame Index") plt.ylabel("Angular Error w.r.t. Preceding Frame") plt.savefig(os.path.join(path_to_seq, "color_trend.png"), bbox_inches='tight', dpi=200) plt.clf() return ground_truths, mean_error, std_error def angular_error(f1: np.ndarray, f2: np.ndarray) -> float: return np.arccos(np.dot(f1, f2) / (np.linalg.norm(f1) * np.linalg.norm(f2))) * (180 / math.pi) def main(): images = np.array([x.strip() for x in open("images_gt_order.lst").readlines()]) ground_truths = scipy.io.loadmat("groundtruth.mat")["real_rgb"].tolist() pd.DataFrame({"image": images, "ground_truth": ground_truths}).to_csv("images_gt.csv", index=False) images_gt = {img: gt for img, gt in zip(images, ground_truths)} path_to_sequences = os.path.join("raw", "{}f_seqs".format(N)) os.makedirs(path_to_sequences, exist_ok=True) print("\n--------------------------------------------------------------------------------------------\n") print("\tPreprocessing SFU Gray Ball for N = {}".format(N)) print("\n--------------------------------------------------------------------------------------------\n") num_sequences, variations, test_scenes = 0, [], [] for scene_name in os.listdir(PATH_TO_SCENES): print("\n *** Processing scene {} ***".format(scene_name)) scene_paths = sorted(glob.glob(os.path.join(PATH_TO_SCENES, scene_name, "*.jpg"))) print(scene_paths) for frame_idx, path_to_file in enumerate(scene_paths): if frame_idx < N - 1: continue path_to_seq = os.path.join(path_to_sequences, scene_name, str(frame_idx)) os.makedirs(path_to_seq, exist_ok=True) print("\n Processing seq {} - file {}".format(path_to_seq, path_to_file)) ground_truths, mean_var, std_var = process_sequence(frame_idx, scene_paths, path_to_seq, images_gt) variations.append((scene_name, frame_idx, path_to_file.split(os.sep)[-1], mean_var, std_var)) pickle.dump(ground_truths, open(os.path.join(path_to_seq, 'seq_ground_truth.pkl'), "wb")) gt = np.array(images_gt[path_to_file]) np.savetxt(os.path.join(path_to_seq, 'ground_truth.txt'), gt, delimiter=',') num_sequences += 1 print("\n--------------------------------------------------------------------------------------------\n") print("\t Generated {} sequences of length N = {} at {}".format(num_sequences, N, path_to_sequences)) print("\n--------------------------------------------------------------------------------------------\n") if ANALYZE_DATA: path_to_save = "{}_{}".format(PATH_TO_HIGHLIGHTS, time.time()) os.makedirs(path_to_save) s, f, fn, mv, sdv = zip(*variations) path_to_csv = os.path.join(path_to_save, "data.csv")
pd.DataFrame({"scene": s, "frame": f, "file_name": fn, "mean_var": mv, "std_dev_var": sdv})
pandas.DataFrame
""" Skfold Test ============= Example """ # General import numpy as np import pandas as pd # Specific from sklearn.model_selection import StratifiedKFold # --------------------------------------------------- # # --------------------------------------------------- def repeated_splits(X, y, n_loops=2, n_splits=5): """This method... """ # Record for comparison records = [] # Split for i in range(n_loops): # Create dataframe dataframe = pd.DataFrame() # Create splitter skf = StratifiedKFold(n_splits=n_splits) # Loop for j, (train, test) in enumerate(skf.split(X, y)): dataframe['fold_{0}'.format(j)] = \ np.concatenate((train, test)) # Append records.append(dataframe) # Return return records # --------------------------------------------------- # Artificial example # --------------------------------------------------- # Size n = 20 n_splits = 5 n_loops = 5 # Create dataset X = np.arange(n).reshape(-1,1) y = np.vstack((np.ones((10,1)), np.zeros((10,1)))) # Create splits records = repeated_splits(X, y, n_loops=n_loops, n_splits=n_splits) # Compare if all records are equal for i in range(len(records)-1): print('{0} == {1} : {2}'.format(i, i+1, \ records[i].equals(records[i+1]))) # --------------------------------------------------- # Rel example # --------------------------------------------------- # Read dataset dataset =
pd.read_csv('dataset.csv')
pandas.read_csv
from datetime import datetime import numpy as np import pandas as pd import pytest import responses import blueskyapi @pytest.fixture() def client(): return blueskyapi.Client() default_result = [{"forecast_moment": "2021-12-27T18:00:00Z"}] def add_api_response(path, *, result=default_result, status=200, api_key=None): matchers = [] if api_key is not None: matchers.append( responses.matchers.header_matcher({"Authorization": f"Bearer {api_key}"}) ) responses.add( responses.GET, blueskyapi.default_config.base_url + path, json=result, status=status, match=matchers, ) def describe_init(): def test_defaults(mocker): mocker.patch.multiple( "blueskyapi.default_config", base_url="the base url", api_key="the api key", ) client = blueskyapi.Client() assert client.base_url == "the base url" assert client.api_key == "the api key" def test_with_args(): client = blueskyapi.Client("api-key", base_url="https://example.com/api") assert client.base_url == "https://example.com/api" assert client.api_key == "api-key" def describe_with_api_key(): @responses.activate def when_valid(): client = blueskyapi.Client(api_key="the-key") add_api_response("/forecasts/latest?lat=53.5&lon=13.5", api_key="the-key") client.latest_forecast(53.5, 13.5) @responses.activate def when_invalid(): client = blueskyapi.Client(api_key="the-key") add_api_response( "/forecasts/latest?lat=53.5&lon=13.5", api_key="the-key", result={"detail": "Invalid API key"}, status=401, ) with pytest.raises(blueskyapi.errors.InvalidApiKey, match="401"): client.latest_forecast(53.5, 13.5) def describe_latest_forecast(): @responses.activate def test_defaults(client): add_api_response("/forecasts/latest?lat=53.5&lon=13.5") client.latest_forecast(53.5, 13.5) def describe_forecast_distances(): @responses.activate def with_array(client): add_api_response( "/forecasts/latest?lat=53.5&lon=13.5&forecast_distances=0,24" ) client.latest_forecast(53.5, 13.5, forecast_distances=[0, 24]) @responses.activate def with_string(client): add_api_response( "/forecasts/latest?lat=53.5&lon=13.5&forecast_distances=0,24" ) client.latest_forecast(53.5, 13.5, forecast_distances="0,24") @responses.activate def with_invalid_value(client): with pytest.raises(TypeError, match="forecast_distances should be"): client.latest_forecast(53.5, 13.5, forecast_distances=1.5) def describe_columns(): @responses.activate def with_array(client): add_api_response("/forecasts/latest?lat=53.5&lon=13.5&columns=col_a,col_b") client.latest_forecast(53.5, 13.5, columns=["col_a", "col_b"]) @responses.activate def with_string(client): add_api_response("/forecasts/latest?lat=53.5&lon=13.5&columns=col_a,col_b") client.latest_forecast(53.5, 13.5, columns="col_a,col_b") @responses.activate def with_invalid_value(client): with pytest.raises(TypeError, match="columns should be"): client.latest_forecast(53.5, 13.5, columns=1) @responses.activate def test_over_rate_limit(client): add_api_response( "/forecasts/latest?lat=53.5&lon=13.5", result={"the": "error"}, status=429, ) with pytest.raises(blueskyapi.errors.OverRateLimit, match="429"): client.latest_forecast(53.5, 13.5) @responses.activate def test_result(client): add_api_response( "/forecasts/latest?lat=53.5&lon=13.5", result=[{"forecast_moment": "2021-12-27T18:00:00Z", "some_column": 5}], ) result = client.latest_forecast(53.5, 13.5) assert np.all( result.forecast_moment == [pd.to_datetime("2021-12-27T18:00:00Z")] ) assert np.all(result.some_column == [5]) @pytest.mark.vcr() def test_integration(client): result = client.latest_forecast(53.5, 13.5) assert len(result.columns) == 35 assert len(result) == 15 assert str(result.forecast_moment.dtype) == "datetime64[ns, UTC]" assert np.all(result.forecast_moment ==
pd.to_datetime("2022-03-04T00:00:00Z")
pandas.to_datetime
import pickle from os import rename, remove from os.path import join, dirname, realpath, isfile import keras.backend as K import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from keras.callbacks import ModelCheckpoint from keras.layers import BatchNormalization, Dropout from keras.layers import Concatenate from keras.layers import Conv2D from keras.layers import Dense from keras.layers import Flatten from keras.layers import Input from keras.models import Model from keras.models import load_model from sklearn.externals import joblib from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.utils import shuffle import datasets from logger_config import logger MODEL_FILENAME = "model.h5" SCALER_FILENAME = "scaler.dump" FRAME_LENGTH = 10 FRAME_COLUMNS = 5 N_FEATURES = 5 PRICE_DELTA = 200 MAX_MODELS_COUNT = 3 LABELS = [ 0, # short 1, # long 2 # others ] LABELS_TITLES = [ "DOWN", "UP", "NOTHING" ] DROP_COLUMNS = [ 'time' ] def copy_sub_frame(start, end, src, dest): line = [] for j in range(start, end): line.append(src[j]) line = np.asarray(line) dest.append(line) def get_labels(label, shape): arr = np.zeros(shape) for n in range(len(arr)): arr[n][label] = 1 return arr def create_scaler_filename(instrument, period): dir_path = join(dirname(realpath(__file__)), datasets.DATASET_DIR) return dir_path + "/" + str(instrument) + "_" + str(period) + "_" + SCALER_FILENAME def create_model_filename(instrument, period, temp=False, index=None): dir_path = join(dirname(realpath(__file__)), datasets.DATASET_DIR) index_str = "" if index is None else (str(index) + "_") if temp: return dir_path + "/TEMP_" + str(instrument) + "_" + str(period) + "_" + index_str + MODEL_FILENAME else: return dir_path + "/" + str(instrument) + "_" + str(period) + "_" + index_str + MODEL_FILENAME # https://www.kaggle.com/guglielmocamporese/macro-f1-score-keras def f1(y_true, y_predict): y_pred_rnd = K.round(y_predict) tp = K.sum(K.cast(y_true * y_pred_rnd, 'float'), axis=0) # tn = K.sum(K.cast((1-y_true)*(1-y_pred), 'float'), axis=0) fp = K.sum(K.cast((1 - y_true) * y_pred_rnd, 'float'), axis=0) fn = K.sum(K.cast(y_true * (1 - y_pred_rnd), 'float'), axis=0) p = tp / (tp + fp + K.epsilon()) r = tp / (tp + fn + K.epsilon()) f1_res = 2 * p * r / (p + r + K.epsilon()) f1_res = tf.where(tf.is_nan(f1_res), tf.zeros_like(f1_res), f1_res) return K.mean(f1_res) def build_classifier(input_shape): inp = Input(shape=input_shape) filters = [(1, N_FEATURES - 1), (FRAME_LENGTH, 1), (1, 2), (1, 3), (3, 3), (2, 2), (2, 3), (3, 4), (3, 5)] conv_layers = [] for f in filters: conv = Conv2D(32, f, kernel_initializer='he_normal', activation='relu', padding='valid')(inp) conv = BatchNormalization()(conv) conv = Flatten()(conv) conv_layers.append(conv) x = Concatenate(axis=1)(conv_layers) x = Dense(units=256, kernel_initializer='he_normal', activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.2)(x) x = Dense(units=256, kernel_initializer='he_normal', activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.2)(x) x = Dense(units=256, kernel_initializer='he_normal', activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.2)(x) x = Dense(units=256, kernel_initializer='he_normal', activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.2)(x) outp = Dense(units=3, kernel_initializer='glorot_normal', activation='sigmoid')(x) model = Model(inputs=inp, outputs=outp) model.compile(loss='categorical_crossentropy', optimizer='nadam', metrics=[f1]) return model def create_features(data, point): new_data = np.zeros((len(data), N_FEATURES), dtype='float64') max_volume = data.iloc[:, [4]].values.max() trend_counter = 0 for i in range(len(data)): new_data[i][0] = (data.iloc[i][0] - data.iloc[i][3]) / point new_data[i][1] = (data.iloc[i][1] - data.iloc[i][2]) / point new_data[i][2] = pow(new_data[i][0], 2) new_data[i][3] = (data.iloc[i][4] / max_volume) * 100 if i > 0: if (data.iloc[i][3] / point) - (data.iloc[i - 1][3] / point) > PRICE_DELTA * 0.05: trend_counter += 1 elif (data.iloc[i - 1][3] / point) - (data.iloc[i][3] / point) > PRICE_DELTA * 0.05: trend_counter -= 1 new_data[i][4] = trend_counter return new_data def read_data(files, instrument, period, point, need_scale=True): data_frames = [] for file in files: data_frames.append(pd.read_csv(file)) data = pd.concat(data_frames, axis=0) data = data.drop(columns=DROP_COLUMNS) scaler = StandardScaler() if need_scale: scaler.fit(create_features(data, point)) frames_short = [] frames_long = [] frames_other = [] for i in range(FRAME_LENGTH + 2, len(data)): close0 = round(data.iloc[i - 3][3] / point) close1 = round(data.iloc[i - 2][3] / point) close2 = round(data.iloc[i - 1][3] / point) close3 = round(data.iloc[i][3] / point) frame = [] for j in range(i - FRAME_LENGTH - 2, i - 2): frame.append(data.iloc[j]) frame = np.asarray(frame) if need_scale: scaled_data = scaler.transform(create_features(pd.DataFrame(frame), point)) else: scaled_data = create_features(
pd.DataFrame(frame)
pandas.DataFrame
import pytest import sys import numpy as np import swan_vis as swan import networkx as nx import math import pandas as pd ########################################################################### ###################### Related to data analysis ############################ ########################################################################### class TestSGAnalysis(object): # tests find_ir_genes, find_es_genes, get_die_genes, get_die_gene_table, test_gene # TODO - add update_ids() call before running both find_ir/es_genes to make sure # the subgraph shit works - # TODO - check to make sure this works with + AND - strands because the # loc_df locations no longer have strand associated with them from get_ordered_id_map!!!! # test get_die_gene_table - gene that meets rc def test_get_die_table_6(self): columns = ['tid', 'gid', 'cond1', 'cond2', 'total_counts', 'cond1_counts', 'cond2_counts'] data = [[1, 1, .5, .5, 20, 10, 10], [2, 1, .5, .5, 20, 10, 10]] df = pd.DataFrame(data=data, columns=columns) conditions = ['cond1', 'cond2'] df.set_index('tid', inplace=True) df = swan.get_die_gene_table(df, conditions, rc=15) columns = ['tid', 'gid', 'cond1', 'cond2', 'total_counts', 'cond1_counts', 'cond2_counts', 'dpi'] data = [[1, 1, .5, .5, 20, 10, 10, 0], [2, 1, .5, .5, 20, 10, 10, 0]] ctrl =
pd.DataFrame(data=data, columns=columns)
pandas.DataFrame
import json import os import pickle import sys import tempfile import uuid from datetime import timedelta from time import gmtime, strftime from typing import Tuple from zipfile import ZipFile import requests from dagster import ( Any, AssetMaterialization, DagsterType, EventMetadataEntry, Field, InputDefinition, Output, OutputDefinition, check, composite_solid, solid, ) from dagster.utils import PICKLE_PROTOCOL from dagster_examples.bay_bikes.constants import ( DARK_SKY_BASE_URL, FEATURE_COLUMNS, LABEL_COLUMN, WEATHER_COLUMNS, ) from dagster_examples.bay_bikes.types import ( RawTripDataFrame, TrafficDataFrame, TrainingSet, TripDataFrame, WeatherDataFrame, ) from dagster_pandas import DataFrame as DagsterPandasDataFrame from numpy import array, ndarray, transpose from pandas import ( DataFrame, date_range, get_dummies, notnull, read_csv, read_sql_table, to_datetime, ) if sys.version_info >= (3, 6): # this is done because a compatibility issue with json_normalize in python 3.5 from pandas import json_normalize # pylint:disable=import-error,no-name-in-module else: from pandas.io.json import json_normalize # pylint:disable=import-error,no-name-in-module # Added this to silence tensorflow logs. They are insanely verbose. os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" def _write_chunks_to_fp(response, output_fp, chunk_size): for chunk in response.iter_content(chunk_size=chunk_size): if chunk: output_fp.write(chunk) def _download_zipfile_from_url(url: str, target: str, chunk_size=8192) -> str: with requests.get(url, stream=True) as response, open(target, "wb+") as output_fp: response.raise_for_status() _write_chunks_to_fp(response, output_fp, chunk_size) return target @solid( input_defs=[InputDefinition("file_name", str), InputDefinition("base_url", str)], output_defs=[OutputDefinition(str)], config_schema={"chunk_size": Field(int, is_required=False, default_value=8192)}, required_resource_keys={"volume"}, ) def download_zipfile_from_url(context, file_name: str, base_url: str): url = "/".join([base_url, file_name]) # mount dirs onto volume target = os.path.join(context.resources.volume, file_name) if not os.path.exists(target): _download_zipfile_from_url( url, target, context.solid_config["chunk_size"], ) yield AssetMaterialization( asset_key=file_name, metadata_entries=[ EventMetadataEntry.text(url, "zipfile url source"), EventMetadataEntry.text(target, "zipfile filepath"), EventMetadataEntry.text(str(os.path.getsize(target)), "size of zipfile (bytes)"), ], ) yield Output(target) @solid( input_defs=[ InputDefinition("input_file_path", str), InputDefinition("target_csv_file_in_archive", str), ], output_defs=[OutputDefinition(DagsterPandasDataFrame)], config_schema={ "delimiter": Field( str, default_value=",", is_required=False, description=("A one-character string used to separate fields."), ), "compression": Field(str, default_value="infer", is_required=False,), }, required_resource_keys={"volume"}, ) def load_compressed_csv_file( context, input_file_path: str, target_csv_file_in_archive: str ) -> DataFrame: # There must be a header in all of these dataframes or it becomes had to load into a table or concat dataframes. dataset = read_csv( ZipFile(input_file_path).open(target_csv_file_in_archive), sep=context.solid_config["delimiter"], header=0, index_col=0, compression=context.solid_config["compression"], ) return dataset @solid(required_resource_keys={"gcs_client"}) def upload_pickled_object_to_gcs_bucket(context, value: Any, bucket_name: str, file_name: str): gcs_bucket = context.resources.gcs_client.get_bucket(bucket_name) key = "{}-{}".format(file_name, uuid.uuid4()) with tempfile.TemporaryFile("w+b") as fp: pickle.dump(value, fp, PICKLE_PROTOCOL) # Done because you can't upload the contents of a file outside the context manager if it's a tempfile. fp.seek(0) gcs_bucket.blob(key).upload_from_file(fp) gcs_url = "gs://{bucket_name}/{key}".format(bucket_name=bucket_name, key=key) yield AssetMaterialization( asset_key=gcs_url, description="Serialized object to Google Cloud Storage Bucket", metadata_entries=[EventMetadataEntry.text(gcs_url, "google cloud storage URI"),], ) yield Output(value) def _create_and_load_staging_table(engine, table_name, records): create_table_sql = "create table if not exists {table_name} (id serial not null primary key, staging_data json not null);".format( table_name=table_name ) engine.execute(create_table_sql) records = records.where(notnull(records), None) insert_sql = "insert into {table_name} (staging_data) values {data};".format( table_name=table_name, data=",".join( [ "('{record}')".format(record=json.dumps(record).replace("'", "")) for record in records.to_dict("records") ] ), ) engine.execute(insert_sql) @solid( input_defs=[ InputDefinition("records", DagsterPandasDataFrame), InputDefinition("table_name", str), ], output_defs=[OutputDefinition(str, name="staging_table")], required_resource_keys={"postgres_db"}, ) def insert_into_staging_table(context, records: DataFrame, table_name: str): _create_and_load_staging_table(context.resources.postgres_db.engine, table_name, records) yield AssetMaterialization( asset_key=table_name, description="Table {} created in database {}".format( table_name, context.resources.postgres_db.db_name ), metadata_entries=[EventMetadataEntry.text(str(len(records)), "num rows inserted")], ) yield Output(output_name="staging_table", value=table_name) def create_download_table_as_dataframe_solid(name, expected_dagster_pandas_dataframe_type): check.str_param(name, "name") check.inst_param( expected_dagster_pandas_dataframe_type, "expected_dagster_pandas_dataframe_schema", DagsterType, ) @solid( input_defs=[InputDefinition("table_name", str)], output_defs=[OutputDefinition(expected_dagster_pandas_dataframe_type)], config_schema={"subsets": Field([str], is_required=False)}, required_resource_keys={"postgres_db"}, name=name, ) def download_table_as_dataframe(context, table_name: str) -> DataFrame: dataframe = read_sql_table(table_name, context.resources.postgres_db.engine,) # flatten dataframe dataframe = json_normalize(dataframe.to_dict("records")) dataframe.columns = [column.split(".")[-1] for column in dataframe.columns] # De-Duplicate Table subsets = context.solid_config.get("subsets", None) return dataframe.drop_duplicates(subset=subsets if subsets else None) return download_table_as_dataframe @solid( input_defs=[InputDefinition("epoch_date", int)], output_defs=[OutputDefinition(DagsterPandasDataFrame)], config_schema={ "latitude": Field( float, default_value=37.8267, is_required=False, description=("Latitude coordinate to get weather data about. Default is SF."), ), "longitude": Field( float, default_value=-122.4233, is_required=False, description=("Longitude coordinate to get weather data about. Default is SF."), ), "times_to_exclude": Field( [str], default_value=["currently", "minutely", "hourly", "alerts", "flags"], is_required=False, description="data granularities to exclude when making this api call", ), }, required_resource_keys={"credentials_vault"}, ) def download_weather_report_from_weather_api(context, epoch_date: int) -> DataFrame: # Make API Call coordinates = "{0},{1}".format( context.solid_config["latitude"], context.solid_config["longitude"] ) weather_api_key = context.resources.credentials_vault.credentials["DARK_SKY_API_KEY"] url_prefix = "/".join([DARK_SKY_BASE_URL, weather_api_key, coordinates]) url = url_prefix + ",{}?exclude={}".format( epoch_date, ",".join(context.solid_config["times_to_exclude"]) ) context.log.info("Sending Request. URL is: {}".format(url)) response = requests.get(url) response.raise_for_status() raw_weather_data = response.json()["daily"]["data"][0] return DataFrame([raw_weather_data]) @solid( input_defs=[InputDefinition(name="dataframe", dagster_type=RawTripDataFrame)], output_defs=[OutputDefinition(name="trip_dataframe", dagster_type=TripDataFrame)], ) def preprocess_trip_dataset(_, dataframe: DataFrame) -> DataFrame: dataframe = dataframe[["bike_id", "start_time", "end_time"]].dropna(how="all").reindex() dataframe["bike_id"] = dataframe["bike_id"].astype("int64") dataframe["start_time"] = to_datetime(dataframe["start_time"]) dataframe["end_time"] = to_datetime(dataframe["end_time"]) dataframe["interval_date"] = dataframe["start_time"].apply(lambda x: x.date()) yield Output(dataframe, output_name="trip_dataframe") @solid( input_defs=[InputDefinition("dataframe", DagsterPandasDataFrame)], output_defs=[OutputDefinition(name="weather_dataframe", dagster_type=WeatherDataFrame)], ) def preprocess_weather_dataset(_, dataframe: DataFrame) -> DataFrame: """ Steps: 1. Converts time columns to match the date types in the traffic dataset so that we can join effectively. 2. Fills N/A values in ozone, so that we have the right datatypes. 3. Convert precipType to a column that's more amenable to one hot encoding. """ dataframe = dataframe[WEATHER_COLUMNS].dropna(how="all").reindex() # These are to address weird corner cases where columns are NA # This fill is because the weather API fails to have a summary for certain types of clear days. dataframe["summary"] = dataframe["summary"].fillna("Clear throughout the day.") dataframe["icon"] = dataframe["icon"].fillna("clear-day") # This happens frequently, I defaulted to the average. dataframe["temperatureLow"] = dataframe["temperatureLow"].fillna( dataframe.temperatureLow.mean() ) # This happens frequently as well, I defaulted to the median since this is a time datatype dataframe["temperatureLowTime"] = ( dataframe["temperatureLowTime"] .fillna(dataframe.temperatureLowTime.median()) .astype("int64") ) # This happens frequently, the median felt like the appropriate statistic. Can change this over time. dataframe["ozone"] = dataframe["ozone"].fillna(dataframe.ozone.median()) dataframe["time"] = to_datetime( dataframe["time"].apply(lambda epoch_ts: strftime("%Y-%m-%d", gmtime(epoch_ts))) ) yield Output(dataframe, output_name="weather_dataframe") @solid( input_defs=[InputDefinition("trip_dataset", dagster_type=TripDataFrame)], output_defs=[OutputDefinition(name="traffic_dataframe", dagster_type=TrafficDataFrame)], ) def transform_into_traffic_dataset(_, trip_dataset: DataFrame) -> DataFrame: def max_traffic_load(trips): interval_count = { start_interval: 0 for start_interval in date_range(trips.name, periods=24, freq="h") } for interval in interval_count.keys(): upper_bound_interval = interval + timedelta(hours=1) # Count number of bikes in transit during sample interval interval_count[interval] = len( trips[ ( ( # Select trip if the trip started within the sample interval (interval <= trips["start_time"]) & (trips["start_time"] < upper_bound_interval) ) | ( # Select trip if the trip ended within the sample interval (interval <= trips["end_time"]) & (trips["end_time"] < upper_bound_interval) ) | ( # Select trip if the trip started AND ended outside of the interval (trips["start_time"] < interval) & (trips["end_time"] >= upper_bound_interval) ) ) ] ) return max(interval_count.values()) counts = trip_dataset.groupby(["interval_date"]).apply(max_traffic_load) traffic_dataset = DataFrame(counts).reset_index() traffic_dataset.columns = ["interval_date", "peak_traffic_load"] yield Output(traffic_dataset, output_name="traffic_dataframe") class Timeseries: def __init__(self, sequence): self.sequence = check.opt_list_param(sequence, "sequence", of_type=(int, float)) def convert_to_snapshot_sequence(self, memory_length): """ A snapshot sequence is a transformation of a sequence into a sequence of snapshots which are the past {memory_length} observations in the sequence. This looks like the following: f([1, 2, 3, 4, 5], 2) -> [[1,2,3], [2,3,4], [3,4,5]] """ if not self.sequence: raise ValueError("Cannot produce snapshots for an empty sequence") if memory_length < 1: raise ValueError("Invalid snapshot length.") if memory_length >= len(self.sequence): raise ValueError( "Unable to produce snapshots. Memory length is too large ({}) and the sequence is too small ({})".format( memory_length, len(self.sequence) ) ) snapshot_sequence = [] for index in range(len(self.sequence)): if index >= memory_length: snapshot = [ self.sequence[index - snapshot_delta] for snapshot_delta in range(memory_length + 1) ] snapshot_sequence.append(snapshot[::-1]) return snapshot_sequence class MultivariateTimeseries: def __init__( self, input_sequences, output_sequence, input_sequence_names, output_sequence_name, elem_type=(int, float), ): self.input_timeseries_collection = [ Timeseries(input_sequence) for input_sequence in check.matrix_param( input_sequences, "input_sequences", of_type=elem_type ) ] self.output_timeseries = Timeseries(check.list_param(output_sequence, "output_sequence")) if len(input_sequence_names) != len(self.input_timeseries_collection): raise ValueError("Every timeseries needs a name attached to it.") self.input_timeseries_names = check.list_param( input_sequence_names, "input_sequence_names", of_type=str ) self.output_timeseries_name = check.str_param(output_sequence_name, "output_sequence_name") def convert_to_snapshot_matrix(self, memory_length): # Transpose the matrix so that inputs match up with tensorflow tensor expectation input_snapshot_matrix = transpose( [ timeseries.convert_to_snapshot_sequence(memory_length) for timeseries in self.input_timeseries_collection ], (1, 2, 0), ) output_snapshot_sequence = self.output_timeseries.sequence[memory_length:] return array(input_snapshot_matrix), array(output_snapshot_sequence) @classmethod def from_dataframe(cls, dataframe, input_sequence_names, output_sequence_name): return cls( input_sequences=[ dataframe[input_sequence_name].tolist() for input_sequence_name in input_sequence_names ], output_sequence=dataframe[output_sequence_name].tolist(), input_sequence_names=input_sequence_names, output_sequence_name=output_sequence_name, ) @solid( config_schema={"memory_length": Field(int, description="The window memory length")}, input_defs=[ InputDefinition("traffic_dataset", dagster_type=TrafficDataFrame), InputDefinition("weather_dataset", dagster_type=WeatherDataFrame), ], output_defs=[OutputDefinition(dagster_type=TrainingSet)], ) def produce_training_set( context, traffic_dataset: DataFrame, weather_dataset: DataFrame ) -> Tuple[ndarray, ndarray]: traffic_dataset["time"] = to_datetime(traffic_dataset.interval_date) weather_dataset["time"] = to_datetime(weather_dataset.time) dataset = traffic_dataset.join(weather_dataset.set_index("time"), on="time") dataset =
get_dummies(dataset, columns=["summary", "icon"])
pandas.get_dummies
# --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.10.3 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import os import pandas as pd import pyrfume from pyrfume import snitz, odorants file_path = os.path.join(pyrfume.DATA, 'snitz', 'Snitz144.csv') snitz_data_raw = pd.read_csv(file_path) results = odorants.get_cids(snitz_data_raw['CAS'], kind='name', verbose=False) snitz_data =
pd.Series(results, name='CID')
pandas.Series
from flask import Flask, jsonify, request from flask_cors import CORS, cross_origin import pickle import pandas as pd from sklearn.preprocessing import StandardScaler def func(filename): with open(filename, 'rb') as file: model = pickle.load(file) return model app = Flask(__name__) CORS(app) @app.route('/api/<string:productName>/<string:marketName>/<int:shelfLife>/<int:quantity>/<float:marketDemand>', methods=['GET']) def predict(productName,marketName,shelfLife,quantity,marketDemand): toBePredictedData = {'Shelf Life' : [shelfLife], 'Quantity' : [quantity], 'Market Demand' : [marketDemand]} toBePredictedData =
pd.DataFrame(toBePredictedData)
pandas.DataFrame
import re from datetime import datetime import nose import pytz import platform from time import sleep import os import logging import numpy as np from distutils.version import StrictVersion from pandas import compat from pandas import NaT from pandas.compat import u, range from pandas.core.frame import DataFrame import pandas.io.gbq as gbq import pandas.util.testing as tm from pandas.compat.numpy import np_datetime64_compat PROJECT_ID = None PRIVATE_KEY_JSON_PATH = None PRIVATE_KEY_JSON_CONTENTS = None if compat.PY3: DATASET_ID = 'pydata_pandas_bq_testing_py3' else: DATASET_ID = 'pydata_pandas_bq_testing_py2' TABLE_ID = 'new_test' DESTINATION_TABLE = "{0}.{1}".format(DATASET_ID + "1", TABLE_ID) VERSION = platform.python_version() _IMPORTS = False _GOOGLE_API_CLIENT_INSTALLED = False _GOOGLE_API_CLIENT_VALID_VERSION = False _HTTPLIB2_INSTALLED = False _SETUPTOOLS_INSTALLED = False def _skip_if_no_project_id(): if not _get_project_id(): raise nose.SkipTest( "Cannot run integration tests without a project id") def _skip_if_no_private_key_path(): if not _get_private_key_path(): raise nose.SkipTest("Cannot run integration tests without a " "private key json file path") def _skip_if_no_private_key_contents(): if not _get_private_key_contents(): raise nose.SkipTest("Cannot run integration tests without a " "private key json contents") def _in_travis_environment(): return 'TRAVIS_BUILD_DIR' in os.environ and \ 'GBQ_PROJECT_ID' in os.environ def _get_project_id(): if _in_travis_environment(): return os.environ.get('GBQ_PROJECT_ID') else: return PROJECT_ID def _get_private_key_path(): if _in_travis_environment(): return os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json']) else: return PRIVATE_KEY_JSON_PATH def _get_private_key_contents(): if _in_travis_environment(): with open(os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json'])) as f: return f.read() else: return PRIVATE_KEY_JSON_CONTENTS def _test_imports(): global _GOOGLE_API_CLIENT_INSTALLED, _GOOGLE_API_CLIENT_VALID_VERSION, \ _HTTPLIB2_INSTALLED, _SETUPTOOLS_INSTALLED try: import pkg_resources _SETUPTOOLS_INSTALLED = True except ImportError: _SETUPTOOLS_INSTALLED = False if compat.PY3: google_api_minimum_version = '1.4.1' else: google_api_minimum_version = '1.2.0' if _SETUPTOOLS_INSTALLED: try: try: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa except: from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa from oauth2client.client import OAuth2WebServerFlow # noqa from oauth2client.client import AccessTokenRefreshError # noqa from oauth2client.file import Storage # noqa from oauth2client.tools import run_flow # noqa _GOOGLE_API_CLIENT_INSTALLED = True _GOOGLE_API_CLIENT_VERSION = pkg_resources.get_distribution( 'google-api-python-client').version if (StrictVersion(_GOOGLE_API_CLIENT_VERSION) >= StrictVersion(google_api_minimum_version)): _GOOGLE_API_CLIENT_VALID_VERSION = True except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False try: import httplib2 # noqa _HTTPLIB2_INSTALLED = True except ImportError: _HTTPLIB2_INSTALLED = False if not _SETUPTOOLS_INSTALLED: raise ImportError('Could not import pkg_resources (setuptools).') if not _GOOGLE_API_CLIENT_INSTALLED: raise ImportError('Could not import Google API Client.') if not _GOOGLE_API_CLIENT_VALID_VERSION: raise ImportError("pandas requires google-api-python-client >= {0} " "for Google BigQuery support, " "current version {1}" .format(google_api_minimum_version, _GOOGLE_API_CLIENT_VERSION)) if not _HTTPLIB2_INSTALLED: raise ImportError( "pandas requires httplib2 for Google BigQuery support") # Bug fix for https://github.com/pandas-dev/pandas/issues/12572 # We need to know that a supported version of oauth2client is installed # Test that either of the following is installed: # - SignedJwtAssertionCredentials from oauth2client.client # - ServiceAccountCredentials from oauth2client.service_account # SignedJwtAssertionCredentials is available in oauthclient < 2.0.0 # ServiceAccountCredentials is available in oauthclient >= 2.0.0 oauth2client_v1 = True oauth2client_v2 = True try: from oauth2client.client import SignedJwtAssertionCredentials # noqa except ImportError: oauth2client_v1 = False try: from oauth2client.service_account import ServiceAccountCredentials # noqa except ImportError: oauth2client_v2 = False if not oauth2client_v1 and not oauth2client_v2: raise ImportError("Missing oauth2client required for BigQuery " "service account support") def _setup_common(): try: _test_imports() except (ImportError, NotImplementedError) as import_exception: raise nose.SkipTest(import_exception) if _in_travis_environment(): logging.getLogger('oauth2client').setLevel(logging.ERROR) logging.getLogger('apiclient').setLevel(logging.ERROR) def _check_if_can_get_correct_default_credentials(): # Checks if "Application Default Credentials" can be fetched # from the environment the tests are running in. # See Issue #13577 import httplib2 try: from googleapiclient.discovery import build except ImportError: from apiclient.discovery import build try: from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() http = httplib2.Http() http = credentials.authorize(http) bigquery_service = build('bigquery', 'v2', http=http) jobs = bigquery_service.jobs() job_data = {'configuration': {'query': {'query': 'SELECT 1'}}} jobs.insert(projectId=_get_project_id(), body=job_data).execute() return True except: return False def clean_gbq_environment(private_key=None): dataset = gbq._Dataset(_get_project_id(), private_key=private_key) for i in range(1, 10): if DATASET_ID + str(i) in dataset.datasets(): dataset_id = DATASET_ID + str(i) table = gbq._Table(_get_project_id(), dataset_id, private_key=private_key) for j in range(1, 20): if TABLE_ID + str(j) in dataset.tables(dataset_id): table.delete(TABLE_ID + str(j)) dataset.delete(dataset_id) def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with tm.assert_produces_warning(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) class TestGBQConnectorIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) def test_get_application_default_credentials_does_not_throw_error(self): if _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Can get default_credentials " "from the environment!") credentials = self.sut.get_application_default_credentials() self.assertIsNone(credentials) def test_get_application_default_credentials_returns_credentials(self): if not _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Cannot get default_credentials " "from the environment!") from oauth2client.client import GoogleCredentials credentials = self.sut.get_application_default_credentials() self.assertTrue(isinstance(credentials, GoogleCredentials)) class TestGBQConnectorServiceAccountKeyPathIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class TestGBQConnectorServiceAccountKeyContentsIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class GBQUnitTests(tm.TestCase): def setUp(self): _setup_common() def test_import_google_api_python_client(self): if compat.PY2: with tm.assertRaises(ImportError): from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa else: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa def test_should_return_bigquery_integers_as_python_floats(self): result = gbq._parse_entry(1, 'INTEGER') tm.assert_equal(result, float(1)) def test_should_return_bigquery_floats_as_python_floats(self): result = gbq._parse_entry(1, 'FLOAT') tm.assert_equal(result, float(1)) def test_should_return_bigquery_timestamps_as_numpy_datetime(self): result = gbq._parse_entry('0e9', 'TIMESTAMP') tm.assert_equal(result, np_datetime64_compat('1970-01-01T00:00:00Z')) def test_should_return_bigquery_booleans_as_python_booleans(self): result = gbq._parse_entry('false', 'BOOLEAN') tm.assert_equal(result, False) def test_should_return_bigquery_strings_as_python_strings(self): result = gbq._parse_entry('STRING', 'STRING') tm.assert_equal(result, 'STRING') def test_to_gbq_should_fail_if_invalid_table_name_passed(self): with tm.assertRaises(gbq.NotFoundException): gbq.to_gbq(DataFrame(), 'invalid_table_name', project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.to_gbq(DataFrame(), 'dataset.tablename') def test_read_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.read_gbq('SELECT "1" as NUMBER_1') def test_that_parse_data_works_properly(self): test_schema = {'fields': [ {'mode': 'NULLABLE', 'name': 'VALID_STRING', 'type': 'STRING'}]} test_page = [{'f': [{'v': 'PI'}]}] test_output = gbq._parse_data(test_schema, test_page) correct_output = DataFrame({'VALID_STRING': ['PI']}) tm.assert_frame_equal(test_output, correct_output) def test_read_gbq_with_invalid_private_key_json_should_fail(self): with tm.assertRaises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key='y') def test_read_gbq_with_empty_private_key_json_should_fail(self): with tm.assertRaises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key='{}') def test_read_gbq_with_private_key_json_wrong_types_should_fail(self): with tm.assertRaises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq( 'SELECT 1', project_id='x', private_key='{ "client_email" : 1, "private_key" : True }') def test_read_gbq_with_empty_private_key_file_should_fail(self): with tm.ensure_clean() as empty_file_path: with tm.assertRaises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key=empty_file_path) def test_read_gbq_with_corrupted_private_key_json_should_fail(self): _skip_if_no_private_key_path() with tm.assertRaises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq( 'SELECT 1', project_id='x', private_key=re.sub('[a-z]', '9', _get_private_key_path())) class TestReadGBQIntegration(tm.TestCase): @classmethod def setUpClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *BEFORE* # executing *ALL* tests described below. _skip_if_no_project_id() _setup_common() def setUp(self): # - PER-TEST FIXTURES - # put here any instruction you want to be run *BEFORE* *EVERY* test is # executed. pass @classmethod def tearDownClass(cls): # - GLOBAL CLASS FIXTURES - # put here any instruction you want to execute only *ONCE* *AFTER* # executing all tests. pass def tearDown(self): # - PER-TEST FIXTURES - # put here any instructions you want to be run *AFTER* *EVERY* test is # executed. pass def test_should_read_as_user_account(self): if _in_travis_environment(): raise nose.SkipTest("Cannot run local auth in travis environment") query = 'SELECT "PI" as VALID_STRING' df = gbq.read_gbq(query, project_id=_get_project_id()) tm.assert_frame_equal(df, DataFrame({'VALID_STRING': ['PI']})) def test_should_read_as_service_account_with_key_path(self): _skip_if_no_private_key_path() query = 'SELECT "PI" as VALID_STRING' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'VALID_STRING': ['PI']})) def test_should_read_as_service_account_with_key_contents(self): _skip_if_no_private_key_contents() query = 'SELECT "PI" as VALID_STRING' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_contents()) tm.assert_frame_equal(df, DataFrame({'VALID_STRING': ['PI']})) def test_should_properly_handle_valid_strings(self): query = 'SELECT "PI" as VALID_STRING' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'VALID_STRING': ['PI']})) def test_should_properly_handle_empty_strings(self): query = 'SELECT "" as EMPTY_STRING' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'EMPTY_STRING': [""]})) def test_should_properly_handle_null_strings(self): query = 'SELECT STRING(NULL) as NULL_STRING' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'NULL_STRING': [None]})) def test_should_properly_handle_valid_integers(self): query = 'SELECT INTEGER(3) as VALID_INTEGER' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'VALID_INTEGER': [3]})) def test_should_properly_handle_null_integers(self): query = 'SELECT INTEGER(NULL) as NULL_INTEGER' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'NULL_INTEGER': [np.nan]})) def test_should_properly_handle_valid_floats(self): query = 'SELECT PI() as VALID_FLOAT' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame( {'VALID_FLOAT': [3.141592653589793]})) def test_should_properly_handle_null_floats(self): query = 'SELECT FLOAT(NULL) as NULL_FLOAT' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'NULL_FLOAT': [np.nan]})) def test_should_properly_handle_timestamp_unix_epoch(self): query = 'SELECT TIMESTAMP("1970-01-01 00:00:00") as UNIX_EPOCH' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame( {'UNIX_EPOCH': [np.datetime64('1970-01-01T00:00:00.000000Z')]})) def test_should_properly_handle_arbitrary_timestamp(self): query = 'SELECT TIMESTAMP("2004-09-15 05:00:00") as VALID_TIMESTAMP' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({ 'VALID_TIMESTAMP': [np.datetime64('2004-09-15T05:00:00.000000Z')] })) def test_should_properly_handle_null_timestamp(self): query = 'SELECT TIMESTAMP(NULL) as NULL_TIMESTAMP' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'NULL_TIMESTAMP': [NaT]})) def test_should_properly_handle_true_boolean(self): query = 'SELECT BOOLEAN(TRUE) as TRUE_BOOLEAN' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'TRUE_BOOLEAN': [True]})) def test_should_properly_handle_false_boolean(self): query = 'SELECT BOOLEAN(FALSE) as FALSE_BOOLEAN' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'FALSE_BOOLEAN': [False]})) def test_should_properly_handle_null_boolean(self): query = 'SELECT BOOLEAN(NULL) as NULL_BOOLEAN' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, DataFrame({'NULL_BOOLEAN': [None]})) def test_unicode_string_conversion_and_normalization(self): correct_test_datatype = DataFrame( {'UNICODE_STRING': [u("\xe9\xfc")]} ) unicode_string = "\xc3\xa9\xc3\xbc" if compat.PY3: unicode_string = unicode_string.encode('latin-1').decode('utf8') query = 'SELECT "{0}" as UNICODE_STRING'.format(unicode_string) df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=_get_private_key_path()) tm.assert_frame_equal(df, correct_test_datatype) def test_index_column(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2" result_frame = gbq.read_gbq(query, project_id=_get_project_id(), index_col="STRING_1", private_key=_get_private_key_path()) correct_frame = DataFrame( {'STRING_1': ['a'], 'STRING_2': ['b']}).set_index("STRING_1") tm.assert_equal(result_frame.index.name, correct_frame.index.name) def test_column_order(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2, 'c' as STRING_3" col_order = ['STRING_3', 'STRING_1', 'STRING_2'] result_frame = gbq.read_gbq(query, project_id=_get_project_id(), col_order=col_order, private_key=_get_private_key_path()) correct_frame = DataFrame({'STRING_1': ['a'], 'STRING_2': [ 'b'], 'STRING_3': ['c']})[col_order] tm.assert_frame_equal(result_frame, correct_frame) def test_column_order_plus_index(self): query = "SELECT 'a' as STRING_1, 'b' as STRING_2, 'c' as STRING_3" col_order = ['STRING_3', 'STRING_2'] result_frame = gbq.read_gbq(query, project_id=_get_project_id(), index_col='STRING_1', col_order=col_order, private_key=_get_private_key_path()) correct_frame = DataFrame( {'STRING_1': ['a'], 'STRING_2': ['b'], 'STRING_3': ['c']}) correct_frame.set_index('STRING_1', inplace=True) correct_frame = correct_frame[col_order] tm.assert_frame_equal(result_frame, correct_frame) def test_malformed_query(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELCET * FORM [publicdata:samples.shakespeare]", project_id=_get_project_id(), private_key=_get_private_key_path()) def test_bad_project_id(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELECT 1", project_id='001', private_key=_get_private_key_path()) def test_bad_table_name(self): with tm.assertRaises(gbq.GenericGBQException): gbq.read_gbq("SELECT * FROM [publicdata:samples.nope]", project_id=_get_project_id(), private_key=_get_private_key_path()) def test_download_dataset_larger_than_200k_rows(self): test_size = 200005 # Test for known BigQuery bug in datasets larger than 100k rows # http://stackoverflow.com/questions/19145587/bq-py-not-paging-results df = gbq.read_gbq("SELECT id FROM [publicdata:samples.wikipedia] " "GROUP EACH BY id ORDER BY id ASC LIMIT {0}" .format(test_size), project_id=_get_project_id(), private_key=_get_private_key_path()) self.assertEqual(len(df.drop_duplicates()), test_size) def test_zero_rows(self): # Bug fix for https://github.com/pandas-dev/pandas/issues/10273 df = gbq.read_gbq("SELECT title, id " "FROM [publicdata:samples.wikipedia] " "WHERE timestamp=-9999999", project_id=_get_project_id(), private_key=_get_private_key_path()) page_array = np.zeros( (0,), dtype=[('title', object), ('id', np.dtype(float))]) expected_result = DataFrame(page_array, columns=['title', 'id']) self.assert_frame_equal(df, expected_result) def test_legacy_sql(self): legacy_sql = "SELECT id FROM [publicdata.samples.wikipedia] LIMIT 10" # Test that a legacy sql statement fails when # setting dialect='standard' with
tm.assertRaises(gbq.GenericGBQException)
pandas.util.testing.assertRaises
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.indexers import check_bool_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period return invalid_comparison(self, other, op) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): return invalid_comparison(self, other, op) if is_object_dtype(other): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not type(self)._is_recognized_dtype(other.dtype): return invalid_comparison(self, other, op) else: # For PeriodDType this casting is unnecessary other = type(self)._from_sequence(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatiblity resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) if lib.is_scalar(val): # i.e. self.ndim == 1 return self._box_func(val) return type(self)(val, dtype=self.dtype) if com.is_bool_indexer(key): key = check_bool_array_indexer(self, key) if key.all(): key = slice(0, None, None) else: key = lib.maybe_booleans_to_slice(key.view(np.uint8)) is_period = is_period_dtype(self) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq result = getitem(key) if result.ndim > 1: # To support MPL which performs slicing with 2 dim # even though it only has 1 dim by definition if is_period: return self._simple_new(result, dtype=self.dtype, freq=freq) return result return self._simple_new(result, dtype=self.dtype, freq=freq) def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( f"shape mismatch: value array of length '{len(key)}' " "does not match indexing result of length " f"'{len(value)}'." ) raise ValueError(msg) elif not len(key): return value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value, setitem=True) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=True) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( f"'value' should be a '{self._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{type(value).__name__}' instead." ) raise TypeError(msg) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period from pandas import Categorical dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) elif is_categorical_dtype(dtype): return Categorical(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, self._recognized_scalars): self._check_compatible_with(fill_value) fill_value = self._scalar_type(fill_value) fill_value = self._unbox_scalar(fill_value) else: raise ValueError( f"'fill_value' should be a {self._scalar_type}. Got '{fill_value}'." ) return fill_value def take(self, indices, allow_fill=False, fill_value=None): if allow_fill: fill_value = self._validate_fill_value(fill_value) new_values = take( self.asi8, indices, allow_fill=allow_fill, fill_value=fill_value ) return type(self)(new_values, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat): dtypes = {x.dtype for x in to_concat} assert len(dtypes) == 1 dtype = list(dtypes)[0] values = np.concatenate([x.asi8 for x in to_concat]) return cls(values, dtype=dtype) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ if isinstance(value, str): value = self._scalar_from_string(value) if not (isinstance(value, (self._scalar_type, type(self))) or isna(value)): raise ValueError(f"Unexpected type for 'value': {type(value)}") self._check_compatible_with(value) if isinstance(value, type(self)): value = value.asi8 else: value = self._unbox_scalar(value) return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result.values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ if self.ndim != 1: return None try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( f"Inferred frequency {inferred} from passed values " f"does not conform to passed frequency {freq.freqstr}" ) # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_datetimelike_array_cmp) # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overridden by TimedeltaArray raise TypeError(f"cannot add {type(self).__name__} and {type(other).__name__}") _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError(f"cannot subtract a datelike from a {type(self).__name__}") _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overridden by PeriodArray raise TypeError(f"cannot subtract Period from a {type(self).__name__}") def _add_offset(self, offset): raise AbstractMethodError(self) def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(self.shape, dtype="i8") new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) return new_values.view("i8") def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view("i8") def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( f"Cannot add {type(self).__name__} and {type(NaT).__name__}" ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( f"cannot subtract {other.dtype}-dtype from {type(self).__name__}" ) if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_object_array(self, other: np.ndarray, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : np.ndarray[object] op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " f"{type(self).__name__} not vectorized", PerformanceWarning, ) # For EA self.astype('O') returns a numpy array, not an Index left = self.astype("O") res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs["freq"] = "infer" try: res = type(self)._from_sequence(res_values, **kwargs) except ValueError: # e.g. we've passed a Timestamp to TimedeltaArray res = res_values return res def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) @unpack_zerodim_and_defer("__add__") def __add__(self, other): # scalar others if other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) @unpack_zerodim_and_defer("__sub__") def __sub__(self, other): # scalar others if other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(-other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if lib.is_scalar(other): # i.e. np.datetime64 object return Timestamp(other) - self if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( f"cannot subtract {type(self).__name__} from {type(other).__name__}" ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError(f"cannot subtract {type(self).__name__} from {other.dtype}") elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or is_integer_dtype(other): # need to subtract before negating, since that flips freq # -self flips self.freq, messing up results return -(self - other) return (-self) + other return -(self - other) def __iadd__(self, other): # type: ignore result = self + other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self def __isub__(self, other): # type: ignore result = self - other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self # -------------------------------------------------------------- # Reductions def _reduce(self, name, axis=0, skipna=True, **kwargs): op = getattr(self, name, None) if op: return op(skipna=skipna, **kwargs) else: return super()._reduce(name, skipna, **kwargs) def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result) def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circuit for empty max / min return NaT result =
nanops.nanmax(values, skipna=skipna)
pandas.core.nanops.nanmax
import numpy as np import pandas as pd from pandas.testing import assert_series_equal import pytest from fattails.metrics import mad, get_survival_probability class TestMad: """Test the mean absolute deviation method""" def test_example(self): x = [0,5,-5,0,0] mad_ = mad(x) expected_mad = 2 assert mad_ == expected_mad def test_handles_mad_of_zero(self): x = [1,1,1,1,1] x = np.array(x) mad_ = mad(x) assert mad_ == 0 @pytest.mark.parametrize("description, input_data, expected_output", [ ("duplicate_values", [ 2, 2, 3], [0.75, 0.5, 0.25]), ("negative_values", [-1,-0.3, 7], [0.75, 0.5, 0.25]), ("not_sorted_values", [ 2, 3, 2], [0.75, 0.25, 0.5]), ]) class TestGetSurvivalProbability: def test_accepts_list_input(self, description, input_data, expected_output): """List input data should be accepted even though output is always a pandas series.""" output = get_survival_probability(input_data) assert output.name == 'survival_probability' assert output.to_list() == expected_output def test_accepts_series_input(self, description, input_data, expected_output): # Setup index = pd.date_range('2000-01-01', periods=len(input_data)) # Input series input_name = 'name_placeholder' input_data =
pd.Series(input_data, index, name=input_name)
pandas.Series
import pandas as pd from Project import Project from logger import logging from tqdm import tqdm project = Project() root = project.data_dir / 'yolo/frames_copy/' print(project) def read_bb(path): return
pd.read_csv(path, delimiter=' ', names=['class', 'x', 'y', 'x2', 'y2'], header=None)
pandas.read_csv
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 from unittest import TestCase import numpy as np import pandas as pd import pandas.testing as pdt from tests.fixtures import DataTestCase from tsfresh import extract_features, extract_relevant_features, select_features from tsfresh.feature_extraction.settings import ComprehensiveFCParameters from tsfresh.utilities.dataframe_functions import impute class RelevantFeatureExtractionDataTestCase(DataTestCase): """ Test case for the relevant_feature_extraction function """ def test_functional_equality(self): """ `extract_relevant_features` should be equivalent to running first `extract_features` with impute and `select_features` afterwards. Meaning it should produce the same relevant features and the values of these features should be identical. :return: """ df, y = self.create_test_data_sample_with_target() relevant_features = extract_relevant_features( df, y, column_id="id", column_value="val", column_kind="kind", column_sort="sort", ) extracted_features = extract_features( df, column_id="id", column_value="val", column_kind="kind", column_sort="sort", impute_function=impute, ) selected_features = select_features(extracted_features, y) self.assertEqual( set(relevant_features.columns), set(selected_features.columns), "Should select the same columns:\n\t{}\n\nvs.\n\n\t{}".format( relevant_features.columns, selected_features.columns ), ) relevant_columns = relevant_features.columns relevant_index = relevant_features.index self.assertTrue( relevant_features.equals( selected_features.loc[relevant_index][relevant_columns] ), "Should calculate the same feature values", ) class RelevantFeatureExtractionTestCase(TestCase): def setUp(self): np.random.seed(42) y = pd.Series(np.random.binomial(1, 0.5, 20), index=range(20)) df = pd.DataFrame(index=range(100)) df["a"] = np.random.normal(0, 1, 100) df["b"] = np.random.normal(0, 1, 100) df["id"] = np.repeat(range(20), 5) X = pd.DataFrame(index=range(20)) X["f1"] = np.random.normal(0, 1, 20) X["f2"] = np.random.normal(0, 1, 20) self.df = df self.X = X self.y = y def test_extracted_features_contain_X_features(self): X = extract_relevant_features(self.df, self.y, self.X, column_id="id") self.assertIn("f1", X.columns) self.assertIn("f2", X.columns) pdt.assert_series_equal(self.X["f1"], X["f1"]) pdt.assert_series_equal(self.X["f2"], X["f2"]) pdt.assert_index_equal(self.X["f1"].index, X["f1"].index) pdt.assert_index_equal(self.X["f2"].index, X["f2"].index) def test_extraction_null_as_column_name(self): df1 = pd.DataFrame( data={ 0: range(10), 1: np.repeat([0, 1], 5), 2: np.repeat([0, 1, 2, 3, 4], 2), } ) X1 = extract_features(df1, column_id=1, column_sort=2) self.assertEqual(len(X1), 2) df2 = pd.DataFrame( data={ 1: range(10), 0: np.repeat([0, 1], 5), 2: np.repeat([0, 1, 2, 3, 4], 2), } ) X2 = extract_features(df2, column_id=0, column_sort=2) self.assertEqual(len(X2), 2) df3 = pd.DataFrame( data={ 0: range(10), 2: np.repeat([0, 1], 5), 1: np.repeat([0, 1, 2, 3, 4], 2), } ) X3 = extract_features(df3, column_id=2, column_sort=1) self.assertEqual(len(X3), 2) def test_raises_mismatch_index_df_and_y_df_more(self): y = pd.Series(range(3), index=[1, 2, 3]) df_dict = { "a":
pd.DataFrame({"val": [1, 2, 3, 4, 10, 11], "id": [1, 1, 1, 1, 2, 2]})
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (UInt32Dtype(), "UInt32Dtype()"), (UInt64Dtype(), "UInt64Dtype()"), ], ) def test_repr_dtype(dtype, expected): assert repr(dtype) == expected def test_repr_array(): result = repr(integer_array([1, None, 3])) expected = "<IntegerArray>\n[1, <NA>, 3]\nLength: 3, dtype: Int64" assert result == expected def test_repr_array_long(): data = integer_array([1, 2, None] * 1000) expected = ( "<IntegerArray>\n" "[ 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>, 1,\n" " ...\n" " <NA>, 1, 2, <NA>, 1, 2, <NA>, 1, 2, <NA>]\n" "Length: 3000, dtype: Int64" ) result = repr(data) assert result == expected class TestConstructors: def test_uses_pandas_na(self): a = pd.array([1, None], dtype=pd.Int64Dtype()) assert a[1] is pd.NA def test_from_dtype_from_float(self, data): # construct from our dtype & string dtype dtype = data.dtype # from float expected = pd.Series(data) result = pd.Series( data.to_numpy(na_value=np.nan, dtype="float"), dtype=str(dtype) ) tm.assert_series_equal(result, expected) # from int / list expected = pd.Series(data) result = pd.Series(np.array(data).tolist(), dtype=str(dtype)) tm.assert_series_equal(result, expected) # from int / array expected = pd.Series(data).dropna().reset_index(drop=True) dropped = np.array(data.dropna()).astype(np.dtype((dtype.type))) result = pd.Series(dropped, dtype=str(dtype)) tm.assert_series_equal(result, expected) class TestArithmeticOps(BaseOpsUtil): def _check_divmod_op(self, s, op, other, exc=None): super()._check_divmod_op(s, op, other, None) def _check_op(self, s, op_name, other, exc=None): op = self.get_op_from_name(op_name) result = op(s, other) # compute expected mask = s.isna() # if s is a DataFrame, squeeze to a Series # for comparison if isinstance(s, pd.DataFrame): result = result.squeeze() s = s.squeeze() mask = mask.squeeze() # other array is an Integer if isinstance(other, IntegerArray): omask = getattr(other, "mask", None) mask = getattr(other, "data", other) if omask is not None: mask |= omask # 1 ** na is na, so need to unmask those if op_name == "__pow__": mask = np.where(~s.isna() & (s == 1), False, mask) elif op_name == "__rpow__": other_is_one = other == 1 if isinstance(other_is_one, pd.Series): other_is_one = other_is_one.fillna(False) mask = np.where(other_is_one, False, mask) # float result type or float op if ( is_float_dtype(other) or is_float(other) or op_name in ["__rtruediv__", "__truediv__", "__rdiv__", "__div__"] ): rs = s.astype("float") expected = op(rs, other) self._check_op_float(result, expected, mask, s, op_name, other) # integer result type else: rs = pd.Series(s.values._data, name=s.name) expected = op(rs, other) self._check_op_integer(result, expected, mask, s, op_name, other) def _check_op_float(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in float dtypes expected[mask] = np.nan if "floordiv" in op_name: # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) mask2 = np.isinf(expected) & np.isnan(result) expected[mask2] = np.nan tm.assert_series_equal(result, expected) def _check_op_integer(self, result, expected, mask, s, op_name, other): # check comparisons that are resulting in integer dtypes # to compare properly, we convert the expected # to float, mask to nans and convert infs # if we have uints then we process as uints # then convert to float # and we ultimately want to create a IntArray # for comparisons fill_value = 0 # mod/rmod turn floating 0 into NaN while # integer works as expected (no nan) if op_name in ["__mod__", "__rmod__"]: if is_scalar(other): if other == 0: expected[s.values == 0] = 0 else: expected = expected.fillna(0) else: expected[ (s.values == 0).fillna(False) & ((expected == 0).fillna(False) | expected.isna()) ] = 0 try: expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) except ValueError: expected = expected.astype(float) expected[ ((expected == np.inf) | (expected == -np.inf)).fillna(False) ] = fill_value original = expected expected = expected.astype(s.dtype) expected[mask] = pd.NA # assert that the expected astype is ok # (skip for unsigned as they have wrap around) if not s.dtype.is_unsigned_integer: original = pd.Series(original) # we need to fill with 0's to emulate what an astype('int') does # (truncation) for certain ops if op_name in ["__rtruediv__", "__rdiv__"]: mask |= original.isna() original = original.fillna(0).astype("int") original = original.astype("float") original[mask] = np.nan tm.assert_series_equal(original, expected.astype("float")) # assert our expected result tm.assert_series_equal(result, expected) def test_arith_integer_array(self, data, all_arithmetic_operators): # we operate with a rhs of an integer array op = all_arithmetic_operators s = pd.Series(data) rhs = pd.Series([1] * len(data), dtype=data.dtype) rhs.iloc[-1] = np.nan self._check_op(s, op, rhs) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # scalar op = all_arithmetic_operators s = pd.Series(data) self._check_op(s, op, 1, exc=TypeError) def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op = all_arithmetic_operators df = pd.DataFrame({"A": data}) self._check_op(df, op, 1, exc=TypeError) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op = all_arithmetic_operators s = pd.Series(data) other = np.ones(len(s), dtype=s.dtype.type) self._check_op(s, op, other, exc=TypeError) def test_arith_coerce_scalar(self, data, all_arithmetic_operators): op = all_arithmetic_operators s = pd.Series(data) other = 0.01 self._check_op(s, op, other) @pytest.mark.parametrize("other", [1.0, np.array(1.0)]) def test_arithmetic_conversion(self, all_arithmetic_operators, other): # if we have a float operand we should have a float result # if that is equal to an integer op = self.get_op_from_name(all_arithmetic_operators) s = pd.Series([1, 2, 3], dtype="Int64") result = op(s, other) assert result.dtype is np.dtype("float") def test_arith_len_mismatch(self, all_arithmetic_operators): # operating with a list-like with non-matching length raises op = self.get_op_from_name(all_arithmetic_operators) other = np.array([1.0]) s = pd.Series([1, 2, 3], dtype="Int64") with pytest.raises(ValueError, match="Lengths must match"): op(s, other) @pytest.mark.parametrize("other", [0, 0.5]) def test_arith_zero_dim_ndarray(self, other): arr = integer_array([1, None, 2]) result = arr + np.array(other) expected = arr + other tm.assert_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op = all_arithmetic_operators s = pd.Series(data) ops = getattr(s, op) opa = getattr(data, op) # invalid scalars msg = ( r"(:?can only perform ops with numeric values)" r"|(:?IntegerArray cannot perform the operation mod)" ) with pytest.raises(TypeError, match=msg): ops("foo") with pytest.raises(TypeError, match=msg): ops(pd.Timestamp("20180101")) # invalid array-likes with pytest.raises(TypeError, match=msg): ops(pd.Series("foo", index=s.index)) if op != "__rpow__": # TODO(extension) # rpow with a datetimelike coerces the integer array incorrectly msg = ( "can only perform ops with numeric values|" "cannot perform .* with this index type: DatetimeArray|" "Addition/subtraction of integers and integer-arrays " "with DatetimeArray is no longer supported. *" ) with pytest.raises(TypeError, match=msg): ops(pd.Series(pd.date_range("20180101", periods=len(s)))) # 2d result = opa(pd.DataFrame({"A": s})) assert result is NotImplemented msg = r"can only perform ops with 1-d structures" with pytest.raises(NotImplementedError, match=msg): opa(np.arange(len(s)).reshape(-1, len(s))) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(self, zero, negative): # https://github.com/pandas-dev/pandas/issues/27398 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = np.array([np.nan, np.inf, -np.inf, np.nan]) if negative: expected *= -1 tm.assert_numpy_array_equal(result, expected) def test_pow_scalar(self): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a ** 0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** 1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a ** np.nan expected = np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0 ** a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1 ** a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA ** a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan ** a expected = np.array([1, np.nan, np.nan, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) def test_pow_array(self): a = integer_array([0, 0, 0, 1, 1, 1, None, None, None]) b = integer_array([0, 1, None, 0, 1, None, 0, 1, None]) result = a ** b expected = integer_array([1, 0, None, 1, 1, 1, 1, None, None]) tm.assert_extension_array_equal(result, expected) def test_rpow_one_to_na(self): # https://github.com/pandas-dev/pandas/issues/22022 # https://github.com/pandas-dev/pandas/issues/29997 arr = integer_array([np.nan, np.nan]) result = np.array([1.0, 2.0]) ** arr expected = np.array([1.0, np.nan]) tm.assert_numpy_array_equal(result, expected) class TestComparisonOps(BaseOpsUtil): def _compare_other(self, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) expected = pd.Series(op(data._data, other), dtype="boolean") # fill the nan locations expected[data._mask] = pd.NA tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) expected = op(pd.Series(data._data), other) # fill the nan locations expected[data._mask] = pd.NA expected = expected.astype("boolean") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("other", [True, False, pd.NA, -1, 0, 1]) def test_scalar(self, other, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([1, 0, None], dtype="Int64") result = op(a, other) if other is pd.NA: expected = pd.array([None, None, None], dtype="boolean") else: values = op(a._data, other) expected = pd.arrays.BooleanArray(values, a._mask, copy=True) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal(a, pd.array([1, 0, None], dtype="Int64")) def test_array(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([0, 1, 2, None, None, None], dtype="Int64") b = pd.array([0, 1, None, 0, 1, None], dtype="Int64") result = op(a, b) values = op(a._data, b._data) mask = a._mask | b._mask expected = pd.arrays.BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) # ensure we haven't mutated anything inplace result[0] = pd.NA tm.assert_extension_array_equal( a, pd.array([0, 1, 2, None, None, None], dtype="Int64") ) tm.assert_extension_array_equal( b, pd.array([0, 1, None, 0, 1, None], dtype="Int64") ) def test_compare_with_booleanarray(self, all_compare_operators): op = self.get_op_from_name(all_compare_operators) a = pd.array([True, False, None] * 3, dtype="boolean") b = pd.array([0] * 3 + [1] * 3 + [None] * 3, dtype="Int64") other = pd.array([False] * 3 + [True] * 3 + [None] * 3, dtype="boolean") expected = op(a, other) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_no_shared_mask(self, data): result = data + 1 assert np.shares_memory(result._mask, data._mask) is False def test_compare_to_string(self, any_nullable_int_dtype): # GH 28930 s = pd.Series([1, None], dtype=any_nullable_int_dtype) result = s == "a" expected = pd.Series([False, pd.NA], dtype="boolean") self.assert_series_equal(result, expected) def test_compare_to_int(self, any_nullable_int_dtype, all_compare_operators): # GH 28930 s1 = pd.Series([1, None, 3], dtype=any_nullable_int_dtype) s2 = pd.Series([1, None, 3], dtype="float") method = getattr(s1, all_compare_operators) result = method(2) method = getattr(s2, all_compare_operators) expected = method(2).astype("boolean") expected[s2.isna()] = pd.NA self.assert_series_equal(result, expected) class TestCasting: @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(self, all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(integer_array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(self, all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index(np.array(other)) assert isinstance(idx, ABCIndexClass) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(self, all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s =
pd.Series(mixed)
pandas.Series
""" This code implements a probabilistic matrix factorization (PMF) per weeks 10 and 11 assignment of the machine learning module part of Columbia University Micromaster programme in AI. Written using Python 3.7. """ from __future__ import division # builtin modules import sys import os import math from random import randrange import functools import operator import requests import psutil # 3rd party modules import numpy as np import pandas as pd import scipy as sp from scipy.cluster.vq import kmeans2 from scipy.stats import multivariate_normal from scipy.spatial.distance import cdist from scipy.special import logsumexp from scipy import stats def get_data(filename, **kwargs): """ Read data from a file given its name. Option to provide the path to the file if different from: [./datasets/in]. ------------ Parameters: - filename: name of the file to be read, to get the data from. - kwargs (optional): - 'headers': list of str for the headers to include in the outputs file created - 'path': str of the path to where the file is read, specified if different from default ([./datasets/in]) ------------ Returns: - df: a dataframe of the data """ # Define input filepath if 'path' in kwargs: filepath = kwargs['path'] else: filepath = os.path.join(os.getcwd(),'datasets','out') input_path = os.path.join(filepath, filename) # If provided, use the title of the columns in the input dataset as headers of the dataframe if 'headers' in kwargs: # Read input data df = pd.read_csv(input_path, names = kwargs['headers']) else: # Read input data df = pd.read_csv(input_path) return df def PMF(train_data, headers = ['user_id', 'movie_id'], lam:int = 2, sigma2:float = 0.1, d:int = 5, iterations:int = 50, output_iterations:list=[10,25,50]): """ Implements Probabilistic Matrix Factorization. ------------ Parameters: - data: dataset used for training (e.g. the ratings.csv dataset with missing values for users and movies). - headers: title of the headers in the dataset for the 'users id' and 'movie id' values. - lam: lambda value to initialise the Gaussian zero mean distribution (default lam = 2 for this assignment). - sigma2: covariance of the Gaussian (default sigma2 = 0.1 for this assignment). - d: number of dimensions for the ranking, (default d = 5 for this assignment). - iterations: number of iterations to run PMF for (default, 50 iterations). ------------ Returns: - L_results: objective function - U_matrices: matrices of users - V_matrices: matrices of objects """ L_results = [] # first convert dataframe to the ratings matrix as a sparse matrix M, n, m, users, objects, rows, cols = df_to_ratings_matrix(train_data, headers = headers) parameters = initialize_parameters(lam, n, m, d) for i in range(1, iterations + 1): parameters = update_parameters(M, parameters, lam, n, m, d) L = objective_function(M, sigma2, lam, parameters) L_results.append(L) if i in output_iterations: print('Objective function L at iteration ', i, ':', L) filename = "U-" + str(i) + ".csv" np.savetxt(filename, parameters['U'].T, delimiter=",") filename = "V-" + str(i) + ".csv" np.savetxt(filename, parameters['V'].T, delimiter=",") np.savetxt("objective.csv", L_results, delimiter=",") return L_results, users, objects, parameters, M, rows, cols def initialize_parameters(lam, n, m, d): """ Initializes our parameters. First the V matrix as a random Gaussian zero mean distribution from a given lambda. ------------ Parameters: - lam: dataframe used for training (e.g. the ratings.csv dataset with missing values for users and movies). - n: number of users in dataset - m: number of movies in dataset - d: number of dimensions for the ranking, (default d = 5 for this assignment). ------------ Returns: - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs """ U = np.zeros((d, n), dtype=np.float64) V = np.random.normal(0.0, 1.0 / lam, (d, m)) parameters = {} parameters['U'] = U parameters['V'] = V parameters['lambda_U'] = lam parameters['lambda_V'] = lam return parameters def df_to_ratings_matrix(df, **kwargs): """ Converts a given dataframe to a sparse matrix, in this case the M ratings matrix. ------------ Parameters: - df: dataframe used for training (e.g. the ratings.csv dataset with missing values for users and movies). - headers (optional): title of the headers in the dataset for the 'users id' and 'movie id' values. ------------ Returns: - M: the ratings matrix, as sparse (zeros used to fill the nan, missing values) - n: number of rows - m: number of columns - users: list of unique users - movies: list of unique movies - rows: rows of the matrix M - cols: columns of the matrix M """ df = df.dropna(how='all') if 'headers' in kwargs: headers = kwargs['headers'] users_header = headers[0] movies_header = headers[1] else: users_header = 'user_id' movies_header = 'movie_id' users = df[users_header].unique() movies = df[movies_header].unique() df_values = df.values # initialise M ratings matrix as a sparse matrix of zeros M = np.zeros((len(users), len(movies))) rows = {} cols = {} for i, user_id in enumerate(users): rows[user_id] = i for j, movie_id in enumerate(movies): cols[movie_id] = j for index, row in df.iterrows(): i = rows[row.user_id] j = cols[row.movie_id] M[i, j] = row.rating n = len(users) #number of rows m = len(movies) #number of columns return M, n, m, users, movies, rows, cols def update_parameters(M, parameters, lam, n, m, d): """ Implements the function that updates U and V. ------------ Parameters: - M: the ratings matrix, as sparse (zeros used to fill the nan, missing values) - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs - lam: lambda value to initialise the Gaussian zero mean distribution (default lam = 2 for this assignment). - n: number of users in dataset - m: number of movies in dataset - d: number of dimensions for the ranking, (default d = 5 for this assignment). ------------ Returns: - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs """ U = parameters['U'] V = parameters['V'] lambda_U = parameters['lambda_U'] lambda_V = parameters['lambda_V'] for i in range(n): V_j = V[:, M[i, :] > 0] U[:, i] = np.dot(np.linalg.inv(np.dot(V_j, V_j.T) + lambda_U * np.identity(d)), np.dot(M[i, M[i, :] > 0], V_j.T)) for j in range(m): U_i = U[:, M[:, j] > 0] V[:, j] = np.dot(np.linalg.inv(np.dot(U_i, U_i.T) + lambda_V * np.identity(d)), np.dot(M[M[:, j] > 0, j], U_i.T)) parameters['U'] = U parameters['V'] = V min_rating = np.min(M) max_rating = np.max(M) return parameters def objective_function(M, sigma2, lam, parameters): """ Calculates the result of the objective function 'L' with equation as follows: L = − ∑(i,j)∈Ω12σ2(Mij−uTivj)2 − ∑Nui=1λ2∥ui∥2 − ∑Nvj=1λ2∥vj∥2 ------------ Parameters: - M: the ratings matrix, as sparse (zeros used to fill the nan, missing values) - sigma2: - lam: - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs ------------ Returns: - L: the resulting float number from calculating the objective function based on the above equation of 'L' """ lambda_U = parameters['lambda_U'] lambda_V = parameters['lambda_V'] U = parameters['U'] V = parameters['V'] # We divide L equation into its three main summands UV = np.dot(U.T, V) # uTivj M_UV = (M[M > 0] - UV[M > 0]) # (Mij−uTivj) L1 = - (1 / (2 * sigma2)) * (np.sum((M_UV)**2)) L2 = - (lambda_U / 2 ) * (np.sum(np.linalg.norm(U)**2)) L3 = - (lambda_V / 2 ) * (np.sum(np.linalg.norm(V)**2)) L = L1 + L2 + L3 #L = -0.5 * (sigma2)* (np.sum(np.dot(M_UV, M_UV.T)) + lambda_U * np.sum(np.dot(U, U.T)) + lambda_V * np.sum(np.dot(V, V.T))) return L def save_outputs_txt(data, output_iterations:list = [5, 10, 25]): """ Write the outputs to csv files. ------------ Parameters: - data: a list of the resulting matrixes to write as outputs. - output_iterations: the iterations to store as output csv files for the U and V matrixes. ------------ Returns: - csv files with the output data """ L_results = data[0] np.savetxt("objective.csv", L_results, delimiter=",") U_results = data[1] V_results = data[2] for i in output_iterations: filename = "U-" + str(i) + ".csv" np.savetxt(filename, U_results[i].T, delimiter=",") filename = "V-" + str(i) + ".csv" np.savetxt(filename, V_results[i].T, delimiter=",") return def predict(M, rows, cols, parameters, user_id, movie_id): """ Predicts the rating value. Note the value has been scaled within the range 0-5. ------------ Parameters: - M: the ratings matrix, as sparse (zeros used to fill the nan, missing values) - rows: rows of the matrix M - cols: columns of the matrix M - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs - user_id: id of the users being examined - movie_id: id of the objects being rated ------------ Returns: - rating: a float number of the predicted rating for the object and user pair """ U = parameters['U'] V = parameters['V'] M_ij = U[:, rows[user_id]].T.reshape(1, -1) @ V[:, cols[movie_id]].reshape(-1, 1) min_rating = np.min(M) max_rating = np.max(M) return 0 if max_rating == min_rating else ((M_ij[0][0] - min_rating) / (max_rating - min_rating)) * 5.0 def get_prediction(user_id, movies, M, rows, cols, parameters): """ Obtain a dataframe of users Ids, movies Ids and the predicted rating for a given user Id. ------------ Parameters: - user_id: the id of the user being examined - movies: the list of unique movie Ids - M: the ratings matrix, as sparse (zeros used to fill the nan, missing values) - rows: rows of the matrix M - cols: columns of the matrix M - parameters: a dictionary with the values for: - U: matrix of users - V: matrix of objects (movies in this case) - lambda_U: value of lambda, per the inputs - lambda_V: value of lambda, per the inputs ------------ Returns: - df_result: a dataframe of users Ids, movies Ids and the predicted rating for a given user Id """ predictions = np.zeros((len(movies), 1)) df_result =
pd.DataFrame(columns=['UserID', 'MovieID', 'Prediction'])
pandas.DataFrame
from pathlib import Path import os import subprocess import pandas as pd import numpy as np from collections import Counter from tqdm import tqdm import matplotlib.pyplot as mpl import matplotlib.dates as md import matplotlib import pylab as pl from IPython.core.display import display, HTML pwd = "/home/srivbane/shared/caringbridge/data/projects/sna-social-support/csv_data/" def main(): # Retrieve the empath database with open(os.path.join(pwd, "empath_score.csv"), 'r', encoding='utf-8') as infile: empaths = pd.read_csv(infile, header=0, index_col = 0, usecols=[0,1,2,3,4,5,6]) # Retrieve the clean author list, narrow down our empath database to journals with length > 50 who also show up in the clean list with open(os.path.join(pwd, "cleaned_auths.csv"), 'r', encoding='utf-8') as infile: authors =
pd.read_csv(infile, header=0, usecols=[0,1,2,3])
pandas.read_csv
""" This script allows a detailed analysis of the pathways found by the learner in the AYS model. @author: <NAME> """ import sys,os import numpy as np import pandas as pd from plots.AYS_3D_figures import * import scipy.integrate as integ shelter_color='#ffffb3' def read_trajectories(learner_type, reward_type, basin, policy='epsilon_greedy', episode=0): runs=[] #10_path_[0.5, 0.5, 0.5]_episode9500 limit=150 parameters=['A' , 'Y' , 'S' , 'Action' , 'Reward' ] for i in range(limit): file_name=('./'+learner_type+'/' + policy +'/' +reward_type + '/DQN_Path/' + basin+ '/' + str(i)+'_path_[0.5, 0.5, 0.5]_episode' + str(episode)+'.txt') if os.path.isfile(file_name): tmp_file= pd.read_csv(file_name, sep='\s+' ,header=None, names=parameters, skiprows=1, index_col=False) runs.append(tmp_file) # print(file_name) # For not too many files if len(runs) > 100: break print(learner_type +' '+ reward_type + ' ' + basin + ':' ,len(runs)) return runs def read_one_trajectory(learner_type, reward_type, basin, policy='epsilon_greedy', episode=0, run_idx=0): file_name=('./'+learner_type+'/' + policy +'/' +reward_type + '/DQN_Path/' + basin+ '/' + str(run_idx)+'_path_[0.5, 0.5, 0.5]_episode' + str(episode)+'.txt') if os.path.isfile(file_name): tmp_file= pd.read_csv(file_name, sep='\s+' ,header=None, names=parameters, skiprows=1, index_col=False) return tmp_file else: #print("No trajectories available for this simulation! run_idx: ", run_idx, " episode: ", episode) return None def plot_current_state_trajectories(ax3d, label=False): # Trajectories for the current state with all possible management options time = np.linspace(0, 300, 1000) for action_number in range(len(management_actions)): if label==True: this_label=management_options[action_number] else: this_label=None parameter_list=get_parameters(action_number) my_color=color_list[action_number] traj_one_step=odeint(ays.AYS_rescaled_rhs, current_state,time , args=parameter_list[0]) ax3d.plot3D(xs=traj_one_step[:,0], ys=traj_one_step[:,1], zs=traj_one_step[:,2], color=my_color, alpha=.8, lw=2, label=this_label) def plot_run(ax3d, learning_progress, reward_type, alpha=1., color_set=True, own_color=None): #print(learning_progress) timeStart = 0 intSteps = 10 # integration Steps dt=1 sim_time_step=np.linspace(timeStart,dt, intSteps) ax3d.plot3D(xs=learning_progress['A'], ys=learning_progress['Y'], zs=learning_progress['S'], alpha=alpha, lw=1) def plot_2D_AYS(self, learning_progress, file_path): #print(learning_progress) start_state=learning_progress[0][0] states=np.array(learning_progress)[:,0] a_states=list(zip(*states))[0] y_states=list(zip(*states))[1] s_states=list(zip(*states))[2] actions=np.array(learning_progress)[:,1] rewards=np.array(learning_progress)[:,2] fig=plt.figure(figsize=(14,8)) ax=fig.add_subplot(111) plt.plot(actions +1, ".") plt.plot(a_states, "b", label='A') plt.plot([a*0 + self.A_PB for a in a_states], "b:") plt.plot(y_states, "k", label='Y') plt.plot([y*0 + self.Y_SF for y in y_states], "k:") plt.plot(s_states, "y", label='S') plt.ylim(-0.1,) at = AnchoredText((" 1.0: " + self.management_options[0] +"\n" + " 2.0: " + self.management_options[1] +"\n" + " 3.0: " + self.management_options[2] +"\n" + " 4.0: " + self.management_options[3] ), prop=dict(size=14), frameon=True, loc='center right' ) at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) fontP = FontProperties() fontP.set_size(12) plt.xlabel('# Timesteps') plt.ylabel('rescaled dynamic variables') plt.legend(loc=9, bbox_to_anchor=(0.5, -0.2), ncol=3, prop=fontP) plt.tight_layout() final_state=self._which_final_state().name save_path = (file_path +'/DQN_Path/'+ final_state +'/'+ str (self.run_number) + '_' + '2D_time_series'+ str(start_state) + '.pdf' ) #plt.savefig(self.image_dir + '/sucess_path/2D_time_series'+str(start_state)+'.pdf') plt.savefig(save_path) plt.close() print('Saved as figure in path:' + save_path) def get_averaged_AYS(learning_progress, k): A=learning_progress['A'].rolling(k ).mean() Y=learning_progress['Y'].rolling(k ).mean() S=learning_progress['S'].rolling(k ).mean() return A, Y, S def correct_averaged_AYS(A,Y,S): A[np.isnan(A)]=0.5 Y[np.isnan(Y)]=0.5 S[np.isnan(S)]=0.5 return A, Y, S def find_green_knick_point(A, Y, S): gradient_arrayA=np.gradient(A, S) max_change1=np.argmax((gradient_arrayA)) gradient_arrayY=np.gradient( Y, S,edge_order=2) max_change=np.where( gradient_arrayY==np.nanmin(gradient_arrayY))[0][0] # gets the index of the element, which is not NaN #print("[", A[max_change],",", Y[max_change],",", S[max_change],"],") return max_change def find_brown_knick_point(A,Y,S): gradient_arrayY=(np.gradient(Y)) # In Y we have a significant change in the slope that goes to 0 max_change=np.where( gradient_arrayY==np.nanmin(gradient_arrayY))[0][0] +1 # gets the index of the element, which is not NaN, +1 to get the point where the knick has happend #print("[", A[max_change],",", Y[max_change],",", S[max_change],"],") return max_change def find_shelter_point(S): return next(idx for idx, value in enumerate(S) if value > 0.75) def find_backwater_point(S): return next(idx for idx, value in enumerate(S) if value < 0.1) def cut_shelter_traj(A, Y): idx_Y= next(idx for idx, value in enumerate(Y) if value > 0.63) idx_A= next(idx for idx, value in enumerate(A) if value < 0.4) if idx_Y<idx_A: return idx_Y else: return idx_A def get_percentage_of_max_action(action, idx_1, idx_2): x = action[idx_1:idx_2] unique, counts = np.unique(x, return_counts=True) distribution=np.asarray((unique, counts)).T #print(unique, counts, distribution) tot_len_array=idx_2 - idx_1 max_count=np.max(counts) idx_max_action=np.argwhere(counts==max_count) #print(idx_max_action, unique) max_action = int(unique[idx_max_action][0]) percentage=max_count/tot_len_array return max_action, percentage def plot_part_trajectory(ax3d, A, Y, S, action, start_idx, end_idx): max_action, percentage=get_percentage_of_max_action(action, start_idx, end_idx ) #print(np.mean(action[start_idx:end_idx]), end_idx, max_action, percentage) ax3d.plot3D(xs=A[start_idx:end_idx], ys=Y[start_idx:end_idx], zs=S[start_idx:end_idx], color=color_list[max_action], alpha=percentage,lw=1) def plot_action_trajectory (ax3d, learning_progress, start_idx, end_idx, lw=1): timeStart = 0 intSteps = 2 # integration Steps dt=1 sim_time_step=np.linspace(timeStart,dt, intSteps) cut_array=learning_progress[start_idx:end_idx].reset_index(drop = True) #print(cut_array) for index, row in cut_array.iterrows(): #print(row) state=(row['A'], row['Y'], row['S']) action=int(row['Action']) parameter_list=get_parameters(action) my_color=color_list[action] traj_one_step=odeint(ays.AYS_rescaled_rhs, state, sim_time_step , args=parameter_list[0]) # Plot trajectory ax3d.plot3D(xs=traj_one_step[:,0], ys=traj_one_step[:,1], zs=traj_one_step[:,2], color=my_color, alpha=1., lw=lw) def plot_point_cloud_positive_developement(ax3d, learning_progress, cut_shelter=False,with_traj=True): timeStart = 0 intSteps = 10 # integration Steps dt=1 sim_time_step=np.linspace(timeStart,dt, intSteps) k=20 A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] knick_point=find_green_knick_point(A, Y, S) A,Y,S=correct_averaged_AYS( A,Y,S) if learning_progress['S'][knick_point]<0.65 and knick_point >5: #knick_point=np.min( np.argpartition(gradient_array, k)[0:k]) ax3d.scatter(xs=A[knick_point+k], ys=Y[knick_point+k], zs=S[knick_point+k], alpha=1,lw=1, color='tab:green' ) if with_traj: # Part before knick # plot_part_trajectory(ax3d, learning_progress['A'], learning_progress['Y'], learning_progress['S'], action, 0, knick_point) plot_part_trajectory(ax3d, A, Y, S, action, 0, knick_point+k) # Part between knick and shelter idx_shelter=find_shelter_point(learning_progress['S']) # plot_part_trajectory(ax3d, learning_progress['A'], learning_progress['Y'], learning_progress['S'], action, knick_point, idx_shelter) plot_part_trajectory(ax3d, A, Y, S, action, knick_point+k, idx_shelter+1) # Part of the shelter, where every trajectory leads to green FP if cut_shelter: idx_cut_shelter=cut_shelter_traj(learning_progress['A'],learning_progress['Y']) # plot_part_trajectory(ax3d, learning_progress['A'], learning_progress['Y'], learning_progress['S'], action, idx_shelter, idx_cut_shelter) plot_part_trajectory(ax3d, A,Y,S, action, idx_shelter, idx_cut_shelter) # ax3d.plot3D(learning_progress['A'][idx_shelter:idx_cut_shelter], learning_progress['Y'][idx_shelter:idx_cut_shelter], # learning_progress['S'][idx_shelter:idx_cut_shelter], color=shelter_color, alpha=.9) else: ax3d.plot3D(A[idx_shelter:], Y[idx_shelter:], S[idx_shelter:], color=shelter_color, alpha=.9) #plot_part_trajectory(ax3d, learning_progress['A'], learning_progress['Y'], learning_progress['S'], action, idx_shelter-1, len(learning_progress['A'])) #plot_action_trajectory(ax3d, learning_progress, idx_shelter, len(learning_progress['A'])) else: print('here!', knick_point) def plot_point_cloud_positive_developement_averaged(ax3d, learning_progress, cut_shelter=False, with_traj=True): k=20 A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] knick_point=find_green_knick_point(A, Y, S) if learning_progress['S'][knick_point]<0.65 and knick_point >5: #knick_point=np.min( np.argpartition(gradient_array, k)[0:k]) ax3d.scatter(xs=A[knick_point+k], ys=Y[knick_point+k], zs=S[knick_point+k], alpha=1,lw=1, color='lawngreen' ) # Part before knick if with_traj: plot_part_trajectory(ax3d, A,Y,S, action, 0, knick_point+k) # Part between knick and shelter idx_shelter=find_shelter_point(S) plot_part_trajectory(ax3d, A,Y,S, action, knick_point+k, idx_shelter) # Part of the shelter, where every trajectory leads to green FP if cut_shelter: idx_cut_shelter=cut_shelter_traj(A,Y) ax3d.plot3D(A[idx_shelter:idx_cut_shelter], Y[idx_shelter:idx_cut_shelter], S[idx_shelter:idx_cut_shelter], color=shelter_color, alpha=.5) else: ax3d.plot3D(A[idx_shelter:], Y[idx_shelter:], S[idx_shelter:], color=shelter_color, alpha=.5) else: print('here!', knick_point) def plot_point_cloud_negative_developement(ax3d, learning_progress, with_traj=True): timeStart = 0 intSteps = 10 # integration Steps dt=1 sim_time_step=np.linspace(timeStart,dt, intSteps) k=25 A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] knick_point=find_brown_knick_point(A, Y, S) A,Y,S=correct_averaged_AYS( A,Y,S) #backwater_point=find_backwater_point(S) if learning_progress['S'][knick_point]>0.35 and knick_point >5: #knick_point=np.min( np.argpartition(gradient_array, k)[0:k]) ax3d.scatter(xs=A[knick_point+k], ys=Y[knick_point+k], zs=S[knick_point+k], alpha=1,lw=1, color='black' ) if with_traj: # Part before knick # plot_part_trajectory(ax3d, learning_progress['A'], learning_progress['Y'], learning_progress['S'], action, 0, knick_point+1) plot_part_trajectory(ax3d, A,Y,S, action, 0, knick_point+k) # Part up to end (requires constant management) #plot_part_trajectory(ax3d, A,Y,S,action, knick_point+k, backwater_point+1) #plot_part_trajectory(ax3d, A,Y,S,action, backwater_point, len(S)) plot_part_trajectory(ax3d, A,Y,S,action, knick_point+k, len(S)) # ax3d.plot3D(xs=learning_progress['A'], ys=learning_progress['Y'], zs=learning_progress['S'], # alpha=alpha, lw=1) else: print('here!', knick_point) def plot_3D_AYS_basins(learning_progress_green, learning_progress_brown, cut_shelter_image=False, num_traj=50,ax=None ): if ax is None: if cut_shelter_image: fig, ax3d=create_extract_figure(Azimut=-160, plot_boundary=True) else: fig, ax3d=create_figure(Azimut=-160, ) else: ax3d=ax for i in range(0,num_traj): if len(learning_progress_green) > i and len(learning_progress_brown) > i: if cut_shelter_image: # plot_point_cloud_positive_developement_averaged(ax3d, learning_progress=runs_survive_green[i],cut_shelter=cut_shelter ) plot_point_cloud_positive_developement(ax3d, learning_progress=learning_progress_green[i],cut_shelter=cut_shelter_image ) else: plot_point_cloud_positive_developement(ax3d, learning_progress=learning_progress_green[i], ) plot_point_cloud_negative_developement(ax3d, learning_progress=learning_progress_brown[i], ) if ax is None: if cut_shelter_image: fig.savefig('./images/phase_space_plots/zoom3D_AYS_trajectory_many_paths.pdf') else: #plot_hairy_lines(200, ax3d) fig.savefig('./images/phase_space_plots/3D_AYS_trajectory_many_paths.pdf') def plot_knickPoints_2D(learning_progress_arr_1, learning_progress_arr_2, label=None, colors=['tab:green','black','#1f78b4'], basins=[True,False], savepath='./images/phase_space_plots/Knick_points_2D.pdf'): k=20 lst_FP_arr1=pd.DataFrame(columns=parameters) lst_FP_arr2=pd.DataFrame(columns=parameters) for idx, simulation in enumerate(learning_progress_arr_1): learning_progress=simulation A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] if basins[0]: knick_point_1=find_green_knick_point(A, Y, S) else: knick_point_1=find_brown_knick_point(A, Y, S) tmp_data_1= pd.DataFrame(learning_progress.iloc[knick_point_1]).T lst_FP_arr1=pd.concat([lst_FP_arr1, tmp_data_1]).reset_index(drop = True) for idx, simulation in enumerate(learning_progress_arr_2): learning_progress=simulation A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] if basins[1]: knick_point_2=find_green_knick_point(A, Y, S) else: knick_point_2=find_brown_knick_point(A, Y, S) tmp_data_2= pd.DataFrame(learning_progress.iloc[knick_point_2]).T lst_FP_arr2=pd.concat([lst_FP_arr2, tmp_data_2]).reset_index(drop = True) fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(14,4)) A_PB, Y_PB, S_PB= [0.5897435897435898, 0.36363636363636365, 0] ax1=ax[0] ax2=ax[1] ax3=ax[2] a_min,a_max=0.55,0.6 y_min,y_max=0.36,0.47 s_min,s_max=0.54,0.62 # AY ax1.set_title('A-Y Plane') ax1.set_xlabel('A [GtC]') ax1.set_ylabel("Y [%1.0e USD/yr]"%Y_scale) make_2d_ticks(ax1, boundaries=[[a_min,a_max], [y_min, y_max]], scale_1=A_scale, scale_2=Y_scale, x_mid_1=current_state[0], x_mid_2=current_state[1]) ax1.plot(lst_FP_arr1['A'], lst_FP_arr1['Y'], 'd', color=colors[0], fillstyle='none') ax1.plot(lst_FP_arr2['A'], lst_FP_arr2['Y'], 'x', color=colors[1]) ax1.axvline(x=A_PB, color='red', linestyle='--') ax1.axhline(y=Y_PB, color='red', linestyle='--') # AS ax2.set_title('A-S Plane') ax2.set_xlabel('A [GtC]') ax2.set_ylabel("S [%1.0e GJ]"%S_scale ) make_2d_ticks(ax2, boundaries=[[a_min,a_max], [s_min, s_max]], scale_1=A_scale, scale_2=S_scale, x_mid_1=current_state[0], x_mid_2=current_state[2]) ax2.plot(lst_FP_arr1['A'], lst_FP_arr1['S'], 'd', color=colors[0],fillstyle='none') ax2.plot(lst_FP_arr2['A'], lst_FP_arr2['S'], 'x', color=colors[1]) ax2.axvline(x=A_PB, color='red', linestyle='--') # YS ax3.set_title('Y-S Plane') ax3.set_xlabel("Y [%1.0e USD/yr]"%Y_scale) ax3.set_ylabel("S [%1.0e GJ]"%S_scale ) make_2d_ticks(ax3, boundaries=[[y_min,y_max], [s_min, s_max]], scale_1=Y_scale, scale_2=S_scale, x_mid_1=current_state[1], x_mid_2=current_state[2]) ax3.plot(lst_FP_arr1['Y'], lst_FP_arr1['S'], 'd', color=colors[0],fillstyle='none') ax3.plot(lst_FP_arr2['Y'], lst_FP_arr2['S'], 'x', color=colors[1]) ax3.axvline(x=Y_PB, color='red', linestyle='--', label='Boundaries') ax3.legend(label, loc='center left', bbox_to_anchor=(1, .9), fontsize=14,fancybox=True, shadow=True ) fig.tight_layout() fig.savefig(savepath) def plot_action_3D_basins(learning_progress_arr, cut_shelter_image=False, num_plots=50,): if cut_shelter_image: fig, ax3d=create_extract_figure(Azimut=-160, plot_boundary=True, label=None, colors=None) else: fig, ax3d=create_figure(Azimut=-160,label=None, colors=None ) for idx, learning_progress in enumerate(learning_progress_arr): for i in range(0,num_plots): if len(learning_progress) > i: k=15 A,Y,S=learning_progress[i]['A'],learning_progress[i]['Y'],learning_progress[i]['S'] if cut_shelter_image and learning_progress[i]['S'].iloc[-1]>0.9: idx_cut_shelter=cut_shelter_traj(A,Y) plot_action_trajectory(ax3d, learning_progress[i], 0, idx_cut_shelter) else: plot_action_trajectory(ax3d, learning_progress[i], 0, len(S)) if learning_progress[i]['S'].iloc[-1]>0.9: plot_point_cloud_positive_developement(ax3d, learning_progress[i], cut_shelter_image, with_traj=False) else: plot_point_cloud_negative_developement(ax3d, learning_progress[i], with_traj=False) if cut_shelter_image: fig.savefig('./images/phase_space_plots/zoom3D_AYS_trajectory_actions_many_paths.pdf') else: #plot_hairy_lines(200, ax3d) fig.savefig('./images/phase_space_plots/3D_AYS_trajectory_actions_many_paths.pdf') def plot_averaged_3D_basins(learning_progress_arr, cut_shelter_image=False, num_plots=50,label_arr=None, color_arr=None, ax=None ): if color_arr is None: color_arr=['black', 'green'] if ax is None: if cut_shelter_image: fig, ax3d=create_extract_figure(Azimut=-160, plot_boundary=True, label=label_arr, colors=color_arr) else: fig, ax3d=create_figure(Azimut=-160,label=label_arr, colors=color_arr ) else: ax3d=ax for idx, learning_progress in enumerate(learning_progress_arr): for i in range(0,num_plots): if len(learning_progress) > i: k=15 A,Y,S=correct_averaged_AYS( *get_averaged_AYS(learning_progress[i], k)) if cut_shelter_image and learning_progress[i]['S'].iloc[-1]>0.9: idx_cut_shelter=cut_shelter_traj(A,Y) ax3d.plot3D(xs=A[:idx_cut_shelter], ys=Y[:idx_cut_shelter], zs=S[:idx_cut_shelter], color=color_arr[idx] , alpha=1., lw=1) else: ax3d.plot3D(xs=A, ys=Y, zs=S, color=color_arr[idx], alpha=1., lw=1) if cut_shelter_image: fig.savefig('./images/phase_space_plots/zoom3D_AYS_averaged_trajectory_many_paths.pdf') else: #plot_hairy_lines(200, ax3d) fig.savefig('./images/phase_space_plots/3D_AYS_averaged_trajectory_many_paths.pdf') return ax3d def find_color(option): if option in management_options: idx=management_options.index(option) return color_list[idx] else: print("ERROR! This management option does not exist: ", option) sys.exit(1) def plot_management_dynamics(ax, option=None): if option is not None: time = np.linspace(0, 300, 1000) x0 = [0.5,0.5,0.5] if option in management_options: parameter_list=get_parameters(management_options.index(option)) print(option) color=find_color(option) traj = integ.odeint(ays.AYS_rescaled_rhs, x0, time, args=parameter_list[0]) ax.plot3D(xs=traj[:,0], ys=traj[:,1], zs=traj[:,2], color=color) def plot_example_figure(learning_progress_arr, cut_shelter=False, num_traj=0,num_hairs=300, ax=None, ticks=True,label=[], colors=[], option=None,plot_traj=True, plot_boundary=True, filename='./images/phase_space_plots/3D_AYS_example_trajectory.pdf', ): learning_progress= learning_progress_arr[num_traj] if ax is None: if cut_shelter: fig, ax3d=create_extract_figure(Azimut=-160, plot_boundary=plot_boundary, label=None, colors=None) else: if option=='DG': Azimut=-177 Elevation=65 elif option=='ET': Azimut=-88 Elevation=65 else: Azimut=-167 Elevation=25 fig, ax3d=create_figure(Azimut=Azimut,Elevation=Elevation, label=label, colors=colors, ticks=ticks, plot_boundary=plot_boundary ) else: ax3d=ax if option: plot_management_dynamics(ax3d, option) # plot_management_dynamics(ax3d, 'ET') else: plot_hairy_lines(num_hairs, ax3d) A,Y,S=learning_progress['A'],learning_progress['Y'],learning_progress['S'] if cut_shelter and learning_progress['S'].iloc[-1]>0.9: idx_cut_shelter=cut_shelter_traj(A,Y) plot_action_trajectory(ax3d, learning_progress, 0, idx_cut_shelter, lw=4) else: if plot_traj: plot_action_trajectory(ax3d, learning_progress, 0, len(S),lw=4) fig.savefig(filename) return ax3d def plot_learning_developement(learner_type='ddqn_per_is_duel', reward_type='survive', policy='epsilon_greedy', run_idx=0): #episodes=[0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,4500, 5000, 6000, 7000, 8000, 9000] #episodes=[0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,4500, 5000, 6000, 7000, 8000, 9000] episodes=[0, 500, 1000, 1500, 2000, 2500, 3000, 5000, 7000, 8000, 9000] nrows=3 ncols=3 fig= plt.figure( figsize=(12,12)) for i in range(0,nrows): for j in range(0,ncols): idx=i*ncols + j episode=episodes[idx] this_ax=fig.add_subplot(nrows, ncols, idx+1, projection='3d') this_ax.set_title("Episode: " + str(episode)) this_ax.dist = 13 create_axis_3d(this_ax) for basin in ['BROWN_FP', 'GREEN_FP', 'OUT_PB']: learning_progress=read_one_trajectory(learner_type, reward_type, basin, policy, episode, run_idx) #print(filepath) if learning_progress is not None: print("Path for " + basin+ " at episode: ", episode ) this_ax.plot3D(xs=learning_progress['A'], ys=learning_progress['Y'], zs=learning_progress['S'], color='green' if learning_progress['S'].iloc[-1]>0.9 else 'black', alpha=1., lw=1) break fig.tight_layout() fig.savefig('./images/learning_success/learning_developement.pdf') def management_distribution_part(learning_progress): k=20 A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] knick_point=find_green_knick_point(A, Y, S) A,Y,S=learning_progress['A'],learning_progress['Y'],learning_progress['S'] learning_progress['Action'] idx_shelter=find_shelter_point(S) if learning_progress['S'][knick_point]<0.65 and knick_point >5: #knick_point=np.min( np.argpartition(gradient_array, k)[0:k]) my_actions= learning_progress['Action'][knick_point:idx_shelter] weights = np.ones_like(my_actions)/float(len(my_actions)) my_actions.hist(bins=3, density=True, weights=weights) plt.xlabel("Action number", fontsize=15) plt.ylabel("Probability",fontsize=15) plt.xlim([0,3]) else: print('No knick point found!', knick_point) def heat_map_knick_point(learner_type, reward_type='PB', label=None, colors=['tab:green','black','#1f78b4'], basin='GREEN_FP', savepath='./images/phase_space_plots/Knick_points_heatmap.pdf'): import matplotlib as mpl import scipy.stats as st a_min,a_max=0.56,0.595 y_min,y_max=0.36,0.47 s_min,s_max=0.54,0.62 k=20 lst_FP_arr1=pd.DataFrame(columns=parameters) for episode in range(0,10000, 500): learning_progress_arr=read_trajectories(learner_type=learner_type, reward_type=reward_type, basin=basin, policy='epsilon_greedy', episode=episode) for idx, simulation in enumerate(learning_progress_arr): learning_progress=simulation A,Y,S=get_averaged_AYS(learning_progress, k) action=learning_progress['Action'] if basin=='GREEN_FP': knick_point_green=find_green_knick_point(A, Y, S) tmp_data_1=
pd.DataFrame(learning_progress.iloc[knick_point_green])
pandas.DataFrame
from datetime import date, timedelta from . import data import pandas as pd import numpy as np ### Solvency Ratios def debtToEquity(ticker, timeFrame): years = list(data.getLongTermDebt(ticker, timeFrame).keys()) debt = list(data.getLongTermDebt(ticker, timeFrame).values()) equity = list(data.getShareholderEquity(ticker, timeFrame).values()) debt_equity = np.divide(equity, debt) d_e = [round(de, 2) for de in debt_equity] return {years[i]: d_e[i] for i in range(len(d_e))} def debtToAssets(ticker, timeFrame): years = list(data.getLongTermDebt(ticker, timeFrame).keys()) debt = list(data.getLongTermDebt(ticker, timeFrame).values()) assets = list(data.getTotalAssets(ticker, timeFrame).values()) d_a = np.divide(debt, assets) debt_assets = [round(de, 2) for de in d_a] return {years[i]: debt_assets[i] for i in range(len(debt_assets))} def equityToAssets(ticker, timeFrame): years = list(data.getShareholderEquity(ticker, timeFrame).keys()) equity = list(data.getShareholderEquity(ticker, timeFrame).values()) assets = list(data.getTotalAssets(ticker, timeFrame).values()) e_a = np.divide(equity, assets) equity_assets = [round(ea, 2) for ea in e_a] return {years[i]: equity_assets[i] for i in range(len(equity_assets))} def interestCoverage(ticker): interest = list(data.getInterest(ticker).values())[1:] years = list(data.getEBITDA(ticker, "A").keys())[0:len(interest)] ebitda = list(data.getEBITDA(ticker, "A").values())[0:len(interest)] ic = np.divide(ebitda, interest) interest_cov = [round(i, 2) for i in ic] return {years[i]: interest_cov[i] for i in range(len(interest_cov))} def assetToLiab(stock, timeFrame): total_assets = list(data.getTotalAssets(stock, timeFrame).values()) total_liab = list(data.getTotalLiab(stock, timeFrame).values()) asset_liab = [round(total_assets[i] / total_liab[i], 2) for i in range(len(total_assets))] years = list(data.getTotalAssets(stock, timeFrame).keys()) final = dict(zip(years, asset_liab)) return final # Profitability def grossMargin(ticker, timeFrame): years = list(data.getRevenue(ticker, timeFrame).keys()) grossProfit = list(data.getGrossProfit(ticker, timeFrame).values()) revenue = list(data.getRevenue(ticker, timeFrame).values()) margin = np.divide(grossProfit, revenue) g_margin = [round(m * 100, 2) for m in margin] return {years[i]: g_margin[i] for i in range(len(g_margin))} def operatingMargin(ticker, timeFrame): years = list(data.getRevenue(ticker, timeFrame).keys()) operatingProfit = list(data.getOperatingIncome(ticker, timeFrame).values()) revenue = list(data.getRevenue(ticker, timeFrame).values()) margin = np.divide(operatingProfit, revenue) o_margin = [round(m * 100, 2) for m in margin] return {years[i]: o_margin[i] for i in range(len(o_margin))} def ebitMargin(ticker, timeFrame): years = list(data.getRevenue(ticker, timeFrame).keys()) ebit = list(data.getEbit(ticker, timeFrame).values()) revenue = list(data.getRevenue(ticker, timeFrame).values()) margin = np.divide(ebit, revenue) e_margin = [round(m * 100, 2) for m in margin] return {years[i]: e_margin[i] for i in range(len(e_margin))} def ebitdaMargin(ticker, timeFrame): years = list(data.getRevenue(ticker, timeFrame).keys()) ebitda = list(data.getEBITDA(ticker, timeFrame).values()) revenue = list(data.getRevenue(ticker, timeFrame).values()) margin = np.divide(ebitda, revenue) e_margin = [round(m * 100, 2) for m in margin] return {years[i]: e_margin[i] for i in range(len(e_margin))} def netMargin(ticker, timeFrame): years = list(data.getRevenue(ticker, timeFrame).keys()) netProfit = list(data.getNetIncome(ticker, timeFrame).values()) revenue = list(data.getRevenue(ticker, timeFrame).values()) margin = np.divide(netProfit, revenue) n_margin = [round(m * 100, 2) for m in margin] return {years[i]: n_margin[i] for i in range(len(n_margin))} def revenueGrowth(ticker, timeFrame): revenue = list(data.getRevenue(ticker, timeFrame).values()) years = list(data.getRevenue(ticker, timeFrame).keys()) rev =
pd.Series(revenue)
pandas.Series
# Author: <NAME> # Feel free to use, copy, distribute or modify the Python Script, licensed under MIT License. # Please ensure to provide proper credit for the same. import streamlit as st import pandas as pd from csv import DictWriter from datetime import datetime import states_data st.header('India Fights Covid-19') st.write("Let's save our families and friends together!") st.write("") st.info("Click the TOP LEFT BAR / PANE to view the options.") states = states_data.states_data() def state_data(key): states_list = list(states.keys()) state_selection = st.selectbox('States & Union Territories', options=states_list, key=key) district_lists = list(states[state_selection].keys()) district_selection = st.selectbox('District', options=district_lists, key=key) cities = st.selectbox('Cities', options=list(states[state_selection][district_selection]), key=key) return state_selection, district_selection, cities # 1. STATES IMPORTANT LINKS st.write("---") st.sidebar.subheader("Links & Helpline Number") states_imp_links = { "": "", "National Links": { "Links": { "Cipla Med Access": "https://www.cipla.com/", "Dr. Reddy's COVID-19 Med Access": "https://readytofightcovid.in/", "Pan India Plasma Resources": "https://covidplasma.online/", "COVID-19 Resources Citizen's Compiled Data- 1": "https://docs.google.com/spreadsheets/d/1mrlaZg8jvduKcxvCWs" "-phAdltgBmY3lTOFTgH4-SLzY/edit#gid=2047572279", "COVID-19 Resources Citizen's Compiled Data- 2": "https://docs.google.com/spreadsheets/d" "/1fHiBtzxBC_3Q7I5SXr_GpNA4ivT73w4W4hjK6IkGDBY/edit#gid" "=1482732175", "COVID-19 Resources Citizen's Compiled Data- 3": "https://shubhamkarjos.github.io/WebDev/Covid/Covid-Help" "/main.html " }, "COVID Helpline Number": "+911123978046", }, "Andaman & Nicobar Islands": { # "Links": { # # }, "COVID Helpline Number": "03192232102", }, "Andhra Pradesh": { "Links": { "COVID-19 AP": "http://dashboard.covid19.ap.gov.in/ims/hospbed_reports/", }, "COVID Helpline Number": "08662410978", }, "Arunachal Pradesh": { # "Links": { # # }, "COVID Helpline Number": "9436055743", }, "Assam": { # "Links": { # # }, "COVID Helpline Number": "6913347770", }, "Bihar": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Chandigarh": { # "Links": { # # }, "COVID Helpline Number": "9779558282", }, "Chhattisgarh": { "Links": { "COVID-19 Chattisgarh": "https://cg.nic.in/health/covid19/RTPBedAvailable.aspx", }, "COVID Helpline Number": "07712235091, 104", }, "Dadra & Nagar Haveli & Daman & Diu": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Delhi": { "Links": { "COVID-19 Delhi": "https://coronabeds.jantasamvad.org/beds.html", }, "COVID Helpline Number": "01122307145", }, "Goa": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Gujarat": { "Links": { "COVID-19 GandhiNagar": "https://vmc.gov.in/HospitalModuleGMC/BedDetails.aspx?HOSP_ID=HOS00041", "COVID-19 Vadodara": "https://vmc.gov.in/Covid19VadodaraApp/HospitalBedsDetails.aspx?tid=1", "COVID-19 Resources Citizen's Compiled Data- 1": "https://docs.google.com/spreadsheets/d" "/1ZyrYsowjk6PdC9N5yKBxMslI7FypoeIqDvlAYrqprL8/edit#gid=0 " }, "COVID Helpline Number": "104", }, "Haryana": { "Links": { "COVID-19 Haryana": "https://coronaharyana.in/", }, "COVID Helpline Number": "8558893911", }, "Himachal Pradesh": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Jammu & Kashmir": { # "Links": { # # }, "COVID Helpline Number": "01912520982", }, "Jharkhand": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Karnataka": { "Links": { "COVID-19 Bangalore": "https://docs.google.com/spreadsheets/u/1/d/e/2PACX-1vS-ipQLaCHZ8id4t4_NHf1FM4vQmBGQrGHAPFzNzJeuuGKsY_It6Tdb0Un_bC9gmig5G2dVxlXHoaEp/pubhtml?gid=1381543057&single=true", }, "COVID Helpline Number": "104", }, "Kerala": { # "Links": { # # }, "COVID Helpline Number": "04712552056", }, "Ladakh": { # "Links": { # # }, "COVID Helpline Number": "01982256462", }, "Lakshadweep": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Madhya Pradesh": { # "Links": { # # }, "COVID Helpline Number": "07552527177", }, "Maharashtra": { "Links": { "COVID-19 Nagpur": "http://nsscdcl.org/covidbeds/AvailableHospitals.jsp", "COVID-19 Panvel": "https://covidbedpanvel.in/HospitalInfo/showindex", "COVID-19 Pune": "https://covidpune.com/", "COVID-19 UlhasNagar": "https://umccovidbed.in/HospitalInfo/showindex", "COVID-19 Thane": "https://covidbedthane.in/HospitalInfo/showindex", }, "COVID Helpline Number": "02026127394", }, "Manipur": { # "Links": { # # }, "COVID Helpline Number": "3852411668", }, "Meghalaya": { # "Links": { # # }, "COVID Helpline Number": "108", }, "Mizoram": { # "Links": { # # }, "COVID Helpline Number": "102", }, "Nagaland": { # "Links": { # # }, "COVID Helpline Number": "7005539653", }, "Odisha (Orissa)": { # "Links": { # # }, "COVID Helpline Number": "9439994859", }, "Puducherry (Pondicherry)": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Punjab": { "Links": { "COVID-19 Ludhiana": "http://hbmsludhiana.in/index_app_detail.php?type=all", } }, "Rajasthan": { "Links": { "COVID-19 Rajasthan": "https://covidinfo.rajasthan.gov.in/covid-isolation-hospital.aspx", }, "COVID Helpline Number": "01412225624", }, "Sikkim": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Tamil Nadu": { "Links": { "COVID-19 TN": "https://stopcorona.tn.gov.in/beds.php", }, "COVID Helpline Number": "04429510500", }, "Telangana": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Tripura": { # "Links": { # # }, "COVID Helpline Number": "03812315879", }, "Uttarakhand (Uttaranchal)": { # "Links": { # # }, "COVID Helpline Number": "104", }, "Uttar Pradesh": { "Links": { "COVID-19 Lucknow": "https://docs.google.com/spreadsheets/d/1roxOi2_Uw4YBzLd5s8vC8cp6lbuM9016tWeWTcx2q5Y" "/edit#gid=0 " }, "COVID Helpline Number": "18001805145", }, "West Bengal": { # "Links": { # # }, "COVID Helpline Number": "3323412600", }, } select_state = st.sidebar.selectbox("", list(states_imp_links.keys())) st.write(states_imp_links[select_state]) st.sidebar.subheader("Offering or Required Assistance? ") person_kind = st.sidebar.selectbox("", ["Please Select", "Providing Help!", "Need Your Help!"]) # 2. PROVIDING HELP if person_kind == "Providing Help!": st.write("------------") st.write("Thank you for being a potential life saver.") st.write("Please provide correct information to the best of your knowledge.") st.write("") st.subheader("Volunteer for or Add a Lead:") requirement = st.selectbox("", ["Please Select", "Ambulance Services", "Child Care", "Home Visit", "Hospital Beds", "Medicine", "Oxygen Cylinders", "Plasma", "Others"]) # 2.1 PROVIDING HELP: AMBULANCE SERVICES if requirement == "Ambulance Services": contact_person = st.text_input('Contact Person: ') st.subheader("Contact Number: Format: 9876543210, PLEASE DO NOT PREFIX +91.") contact_information = st.text_input('Contact Number: ') st.write("---") st.subheader("Provide Pickup Location: ") pickup_location_state, pickup_location_district, pickup_location_city = state_data(key="provider_pickup") st.write("---") st.subheader("Provide Drop Location: ") drop_location_state, drop_location_district, drop_location_city = state_data(key="provider_drop") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_drop") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "Pickup: State", "Pickup: District", "Pickup: City", "Drop: State", "Drop: District", "Drop: City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Pickup: State": pickup_location_state, "Pickup: District": pickup_location_district, "Pickup: City": pickup_location_city, "Drop: State": drop_location_state, "Drop: District": drop_location_district, "Drop: City": drop_location_city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./ambulance_service_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.2 PROVIDING HELP: CHILD CARE elif requirement == "Child Care": contact_person = st.text_input('Contact Person: ') contact_information = st.text_input('Contact Number: ') state, district, city = state_data("provider_child_care") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_child_care") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./child_care_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.3 PROVIDING HELP: HOME VISIT elif requirement == "Home Visit": contact_person = st.text_input('Contact Person: ') contact_information = st.text_input('Enter Contact Number: ') state, district, city = state_data("provider_home_visit") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_home_visit") if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information." " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./home_visit_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.4 PROVIDING HELP: HOSPITAL BEDS elif requirement == "Hospital Beds": contact_person = st.text_input('Contact Name or Doctor Name: ') contact_information = st.text_input('Mobile Number: ') hospital_name = st.text_input('Hospital Name: ') hospital_address = st.text_input('Hospital Address: ') state, district, city = state_data("provider_hospital_beds") total_bed_count = st.text_input("Total Bed Count: ") oxygen_bed_count = st.text_input("Oxygen Bed Count: ") icu_bed_count = st.text_input("ICU Bed Count: ") ventilator_bed_count = st.text_input("Ventilator Bed Count: ") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_hospital_beds") if submit_info: field_names = ["Contact Person", "Contact Mobile Number", "Hospital Name", "Hospital Address", "State", "District", "City", "Total Bed Count", "Oxygen Bed Count", "ICU Bed Count", "Ventilator Bed Count", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Hospital Name": hospital_name, "Hospital Address": hospital_address, "State": state, "District": district, "City": city, "Total Bed Count": total_bed_count, "Oxygen Bed Count": oxygen_bed_count, "ICU Bed Count": icu_bed_count, "Ventilator Bed Count": ventilator_bed_count, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./hospital_bed_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.5 PROVIDING HELP: MEDICINES elif requirement == "Medicine": contact_person = st.text_input('Distributor / Retailer Name: ') medicine_name = st.text_input('Medicine Name: ') state, district, city = state_data(key="provider_medicine") address = st.text_input('Distributor / Retailer Address: ') contact_information = st.text_input('Contact Mobile Number: ') verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not address: st.write("Please provide the necessary information." " Distributor / Retailer Name and Address Info is necessary!") else: field_names = ["Distributor Name", "Medicine Name", "State", "District", "City", "Address", "Contact Number", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Distributor Name": contact_person, "Medicine Name": medicine_name, "State": state, "District": district, "City": city, "Address": address, "Contact Number": contact_information, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./medicines_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.6 PROVIDING HELP: OXYGEN CYLINDERS elif requirement == "Oxygen Cylinders": contact_person = st.text_input('Contact Name: ') contact_information = st.text_input('Contact Mobile Number: ') just_refill = st.selectbox("Just refilling?", ["Yes", "No"]) start_timings = st.time_input('Start Timing: ') end_timings = st.time_input('End Timing: ') availability_for = st.selectbox('Availability for', ["Home", "Hospitals", "Home & Hospitals"]) address = st.text_input('Address: ') state, district, city = state_data(key="provider_oxygen_cylinders") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not contact_information: st.write("Please provide the necessary information so that we can help together!" " Contact Name & Mobile Number Info is necessary!") else: field_names = ["Contact Person", "Contact Mobile Number", "Just Refill", "Start Timings", "End Timings", "Availability for", "Address", "State", "District", "City", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Contact Person": contact_person, "Contact Mobile Number": contact_information, "Just Refill": just_refill, "Start Timings": start_timings, "End Timings": end_timings, "Availability for": availability_for, "Address": address, "State": state, "District": district, "City": city, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./oxygen_cylinders_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.7 PROVIDING HELP: PLASMA elif requirement == "Plasma": contact_person = st.text_input('Donor Name: ') contact_information = st.text_input('Donor Contact Number: ') contact_age = st.text_input("Donor Age: ") blood_group = st.selectbox('Patient Blood Group: ', ['Please Select', 'A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-', 'Bombay Blood Group']) recovered_date = st.date_input('Enter the date of recovery: ') state, district, city = state_data(key="provider_plasma") donated_before = st.selectbox("Have you donated it before?", ["Yes", "No"]) if donated_before == "Yes": last_donated_date = st.date_input("Last Donated Date: ") else: last_donated_date = "" antibodies_test = st.selectbox("Tested for antibodies yet?", ["Yes", "No"]) medical_issues = st.text_input("Any chronic disease such as high B.P., Diabetes etc.: ") verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) additional_notes = st.text_input('Additional Notes: ') created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_plasma") if submit_info: if not contact_person or not contact_information or not blood_group or not contact_age \ or not recovered_date or not donated_before: st.write("Please provide the necessary information so that we can help together!" " Donor Name, Mobile Number, Age, Blood Group, Recovered Date, " "and Donated Before Info is necessary!") else: field_names = ["Donor Name", "Donor Contact Number", "Donor Age", "Donor Blood Group", "Recovered Date", "State", "District", "City", "Donated Before", "Last Donated Date", "Antibodies Test", "Medical Issues", "Verified", "Additional Notes", "Created Time", "Updated Time"] dict_data = {"Donor Name": contact_person, "Donor Contact Number": contact_information, "Donor Age": contact_age, "Donor Blood Group": blood_group, "Recovered Date": recovered_date, "State": state, "District": district, "City": city, "Donated Before": donated_before, "Last Donated Date": last_donated_date, "Antibodies Test": antibodies_test, "Medical Issues": medical_issues, "Verified": verified_lead, "Additional Notes": additional_notes, "Created Time": created_time, "Updated Time": updated_time } with open('./plasma_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 2.8 PROVIDING HELP: OTHERS elif requirement == "Others": text = st.text_input('Write others: ') verified_lead = st.selectbox("Verified: ", ["Yes", "No"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!', key="provider_others") if submit_info: field_names = ["Text", "Verified", "Created Time", "Updated Time"] dict_data = {"Text": text, "Verified": verified_lead, "Created Time": created_time, "Updated Time": updated_time} with open('./others_service_provider.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Thank you for being a helping hand at this time:)') # 3. NEED ASSISTANCE elif person_kind == "Need Your Help!": st.write("------------") st.write("I'm trying my best to keep the webpage updated. Kindly please share with others so more data and " "verified leads can be collected and the resources be made available to the needful people.") requirement = st.selectbox("Need List", ["Ambulance Services", "Child Care", "Home Visit", "Hospital Beds", "Medicine", "Oxygen Cylinders", "Plasma", "Others"]) # 3.1 ASSISTANCE: AMBULANCE SERVICES / HOSPITAL BED / PLASMA if requirement == "Ambulance Services" or requirement == "Hospital Beds" or requirement == "Plasma" \ or requirement == "Oxygen Cylinders": patient_name = st.text_input('Patient Name: ') contact_information = st.text_input('Patient Mobile Number: ') patient_age = st.text_input('Patient Age: ') patient_sex = st.selectbox('Patient Sex: ', ['Male', 'Female', 'Transgender']) patient_condition = st.selectbox('Patient Condition: ', ['Stable', 'SOS']) assistance_for = st.selectbox("Assistance For: ", ["Ambulance Services", "Hospital Beds", "Oxygen Cylinder", "Oxygen Cylinder Refill", "Plasma"]) if assistance_for == "Ambulance Services": facilities = st.selectbox("Facilities: ", ["Normal", "Oxygen without AC", "Oxygen with AC", "Ventilator"]) else: facilities = "" patient_blood_group = st.selectbox('Patient Blood Group: ', ['Please Select', 'A+', 'A-', 'B+', 'B-', 'AB+', 'AB-', 'O+', 'O-', 'Bombay Blood Group']) if assistance_for == "Hospital Beds": bed_type = st.selectbox("Bed Type: ", ["Without Oxygen", "With Oxygen", "Ventilalor Bed"]) else: bed_type = "" patient_oxygen_level = st.text_input("Patient Oxygen Level") state, district, city = state_data(key="assist_ambulance") address = st.text_input('Patient Address: ') additional_notes = st.text_input('Additional Notes: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not patient_name or not contact_information or not assistance_for: st.write("Please provide the necessary information." " Patient Name, Mobile Number and Assistance For Info is necessary!") else: field_names = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "Facilities", "Bed Type", "Patient Blood Group", "Patient Oxygen Level", "State", "District", "City", "Address", "Additional Notes", "Status", "Created Time", "Updated Time"] dict_data = {"Patient Name": patient_name, "Patient Mobile Number": contact_information, "Patient Age": patient_age, "Patient Sex": patient_sex, "Patient Condition": patient_condition, "Assistance For": assistance_for, "Facilities": facilities, "Bed Type": bed_type, "Patient Blood Group": patient_blood_group, "Patient Oxygen Level": patient_oxygen_level, "State": state, "District": district, "City": city, "Address": address, "Additional Notes": additional_notes, "Status": status, "Created Time": created_time, "Updated Time": updated_time } with open('./critical_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 3.2 ASSISTANCE: MEDICINE elif requirement == "Medicine": state = list(state_data(key="medicine_assistance")) df = pd.read_csv("./medicines_provider.csv") state_retailers_data = df[df["State"] == state[0]] st.table(state_retailers_data) # for iterate in range(retailers_count[0]): # retailer_data = state_retailers_data.iloc[iterate, :] # data_to_df = pd.DataFrame(retailer_data, columns=[0]) # retailer_info = data_to_df.dropna() # st.write(retailer_info) # 3.3 ASSISTANCE: HOME VISIT / CHILD CARE elif requirement == "Home Visit" or requirement == "Child Care": contact_person = st.text_input('Patient Name: ') contact_information = st.text_input('Patient Mobile Number: ') patient_age = st.text_input('Patient Age: ') patient_sex = st.selectbox('Patient Sex: ', ['Male', 'Female', 'Transgender']) patient_condition = st.selectbox('Patient Condition: ', ['Stable', 'SOS']) assistance_for = st.selectbox("Assistance For: ", ["Home Visit", "Child Care"]) state, district, city = state_data(key="assist_home_visit") address = st.text_input('Patient Address: ') additional_notes = st.text_input('Additional Notes: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: if not contact_person or not contact_information or not assistance_for: st.write("Please provide the necessary information." " Patient Name, Mobile Number and Assistance For Info is necessary!") else: field_names = ["Patient Name", "Patient Mobile Number", "Patient Age", "Patient Sex", "Patient Condition", "Assistance For", "State", "District", "City", "Address", "Additional Notes", "Status", "Created Time", "Updated Time"] dict_data = {"Patient Name": contact_person, "Patient Mobile Number": contact_information, "Patient Age": patient_age, "Patient Sex": patient_sex, "Patient Condition": patient_condition, "Assistance For": assistance_for, "State": state, "District": district, "City": city, "Address": address, "Additional Notes": additional_notes, "Status": status, "Created Time": created_time, "Updated Time": updated_time } with open('./home_personal_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 2.4 ASSISTANCE: OTHERS elif requirement == "Others": text = st.text_input('Write others: ') status = st.selectbox("Status", ["", "Resolved"]) created_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") updated_time = datetime.now().strftime("%d/%m/%Y %H:%M:%S") submit_info = st.button('Submit the info!') if submit_info: field_names = ["Text", "Status" "Created Time", "Updated Time"] dict_data = {"Text": text, "Status": status, "Created Time": created_time, "Updated Time": updated_time} with open('./others_service_assistance.csv', 'a') as f_object: dictwriter_object = DictWriter(f_object, fieldnames=field_names) dictwriter_object.writerow(dict_data) f_object.close() st.success('Information saved successfully. Please keep rechecking the page:)') # 4. UPDATE THE DATA st.sidebar.subheader("Update the Data!") data_type = st.sidebar.selectbox("", ["Please Select", "Need Assistance: Ambulance Services", "Providing Assistance: Ambulance Services", "Need Assistance: Child Care", "Providing Assistance: Child Care", "Need Assistance: Home Visit", "Providing Assistance: Home Visit", "Need Assistance: Hospital Beds", "Providing Assistance: Hospital Beds", "Providing Assistance: Medicine", "Need Assistance: Oxygen Cylinders", "Providing Assistance: Oxygen Cylinders", "Need Assistance: Plasma", "Providing Assistance: Plasma", ]) # 4.1 UPDATE: NEED ASSISTANCE: HOME VISIT AND CHILD CARE if data_type == "Need Assistance: Home Visit" or data_type == "Need Assistance: Child Care": df =
pd.read_csv("./home_personal_assistance.csv")
pandas.read_csv
import numpy as np import pandas as pd import nibabel as nib from nilearn import plotting class SubjectAnalyzer: def __init__(self,subject_nii_path,mean_nii_path,sd_nii_path,atlas_nii_path): '''Get paths for files''' self.subject_nii_path = subject_nii_path self.mean_nii_path = mean_nii_path self.sd_nii_path = sd_nii_path self.atlas_nii_path = atlas_nii_path # Read nii images: self.load_data() # If data is OK, continue to analysis: if self.is_data_proper: self.calculate_zscore() # Calculate voxel z-scores self.calculate_atlas_results() # Calculate atlas areas mean values and z-scores else: # If data dimensions do not fit, output an error message detailing the error self.error_message = \ "The following inputs: {}{}{}have an inconsistent have a dimension mismatch with the subject".format( 'mean map, ' if not self.is_mean_proper else '', 'st. dev. map, ' if not self.is_sd_proper else '', 'atlas, ' if not self.is_atlas_proper else '') def load_data(self): # Load nifti data of subject, mean and sd of "population" and atlas: self.subject_img = nib.load(self.subject_nii_path) self.mean_img = nib.load(self.mean_nii_path) self.sd_img = nib.load(self.sd_nii_path) self.atlas_img = nib.load(self.atlas_nii_path) self.shape = self.subject_img.shape # get dimensions of subject's data self.is_mean_proper = self.mean_img.shape == self.shape # test that the mean data is the same shape self.is_sd_proper = self.sd_img.shape == self.shape # test that the sd data is the same shape self.is_atlas_proper = self.atlas_img.shape == self.shape # test that the atlas data is the same shape # set is_data_proper to false if one of the inputs is not in the same dimensions as the subject self.is_data_proper = self.is_mean_proper and self.is_sd_proper and self.is_atlas_proper self.subject_data = self.subject_img.get_data() # get subject data from image self.mean_data = self.mean_img.get_data() # get mean data from image self.sd_data = self.sd_img.get_data() # get SD data from image self.atlas_data = self.atlas_img.get_data() # get atlas data from image # set zeros values to nan for subject, mean and sd data self.subject_data[self.subject_data==0] = np.nan self.mean_data[self.mean_data == 0] = np.nan self.sd_data[self.sd_data == 0] = np.nan def calculate_zscore(self): ''' calculates the zscore for each subject voxel based on the control mean and sd finds only significant voxels and saves them as "zs.nii.gz" ''' self.zscores = (self.subject_data - self.mean_data) / self.sd_data # calculate zscores zscores = self.zscores zscores[np.isnan(zscores)] = 0 # replace nans with z scores temporarily self.significant_zscores = np.where(np.abs(zscores)<=1.96,np.nan,zscores) # finds non significant values and replaces them with zeros for new variable self.significant_zscores_nii = nib.Nifti1Image(self.significant_zscores,self.subject_img.affine) # creates nifti template nib.save(self.significant_zscores_nii, 'zs.nii.gz') # save nifti template zs_nii_path = self.significant_zscores_nii plotting.plot_glass_brain(zs_nii_path, threshold=1.96, colorbar=True, plot_abs=False, output_file='Z_map.png',vmax=5) def calculate_atlas_results(self): ''' for each area in the atlas supplied, calculate the average value and z-score ''' vals = np.zeros(self.atlas_data.max()) # initialize values array zs = np.zeros(self.atlas_data.max()) # initialize zscores array for i in range(1,self.atlas_data.max()+1): # for every area vals[i-1] = np.nanmean(self.subject_data[self.atlas_data == i]) # calculate mean value in area zs[i-1] = np.nanmean(self.zscores[self.atlas_data == i]) # calculate mean z-score in area vals = pd.Series(vals,index = np.arange(1,self.atlas_data.max()+1)) # create values series zs_s = pd.Series(zs,index = np.arange(1,self.atlas_data.max()+1)) # create zscore series self.area_data =
pd.DataFrame({'Values': vals, 'Z-scores': zs_s})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import platform import pandas as pd def cleanup_moissi(file_name): if platform.system() == 'Darwin' or platform.system() == 'Linux': source_projects = os.getcwd() + '/' + file_name else: source_projects = os.getcwd() + '\\' + file_name source_projects = pd.read_csv(source_projects) source_projects['Type'] = 'MoISSI' source_projects = source_projects[source_projects['git_url'] != '?'] return source_projects def cleanup_se(file_name): if platform.system() == 'Darwin' or platform.system() == 'Linux': source_projects = os.getcwd() + '/' + file_name else: source_projects = os.getcwd() + '\\' + file_name source_projects = pd.read_csv(source_projects) source_projects['Type'] = 'SE' return source_projects number_of_samples = 100 starting_index = 14 for i in range(starting_index, number_of_samples+starting_index): se_df = cleanup_se('Samplings_with_mined_data/' + 'se_projects_' + str(i) + '_with_other_attributes.csv') moissi_df = cleanup_moissi('moissi_projects_with_other_attributes.csv') combined_df =
pd.concat([moissi_df, se_df], axis=0)
pandas.concat
import os # import tensorflow as tf import math import numpy as np import pandas as pd import itertools import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.animation as animation from matplotlib.lines import Line2D import matplotlib.patheffects as path_effects import matplotlib as mpl import cv2 import glob from scipy.interpolate import CubicSpline import scipy.interpolate from scipy import signal import scipy.stats as stats import seaborn as sns from sklearn.linear_model import LinearRegression from gekko import GEKKO import pywt # import waymo dataset related modules from waymo_open_dataset import dataset_pb2 as open_dataset from waymo_open_dataset.utils import range_image_utils from waymo_open_dataset.utils import transform_utils from waymo_open_dataset.utils import frame_utils def show_camera_image(camera_image, camera_labels, layout, cmap=None): # Show a camera image and the given camera labels (if avaliable) ax = plt.subplot(*layout) # Draw the camera labels. for camera_labels in frame.camera_labels: # Ignore camera labels that do not correspond to this camera. if camera_labels.name != camera_image.name: continue # Iterate over the individual labels. for label in camera_labels.labels: # Draw the object bounding box. ax.add_patch(patches.Rectangle( xy=(label.box.center_x - 0.5 * label.box.length, label.box.center_y - 0.5 * label.box.width), width=label.box.length, height=label.box.width, linewidth=1, edgecolor='red', facecolor='none')) # Show the camera image. frame_image = plt.imshow(tf.image.decode_jpeg(camera_image.image), cmap=cmap, animated=True) plt.title(open_dataset.CameraName.Name.Name(camera_image.name)) plt.grid(False) plt.axis('off') return frame_image def camera_video_generation(): img_array = [] for num in range(1, len(os.listdir('figure_save/temp_cam_pic/')) + 1): image_filename = 'figure_save/temp_cam_pic/' + 'frame_' + str(num) + '.jpg' img = cv2.imread(image_filename) height, width, layers = img.shape size = (width, height) img_array.append(img) video_save_name = 'figure_save/cam_video/' + 'camera_video_segment_' + str(segment_id) + '.avi' out = cv2.VideoWriter(video_save_name, cv2.VideoWriter_fourcc(*'DIVX'), 10, size) for i in range(len(img_array)): out.write(img_array[i]) out.release() print('camera video made success') # after making the video, delete all the frame jpgs filelist = glob.glob(os.path.join('figure_save/temp_cam_pic/', "*.jpg")) for f in filelist: os.remove(f) def frame_context_update(frame_in): # collect environment context in this frame frame_context_dict = {} frame_context_dict['segment_id'] = segment_id frame_context_dict['frame_label'] = frame_label frame_context_dict['time_of_day'] = frame_in.context.stats.time_of_day frame_context_dict['location'] = frame_in.context.stats.location frame_context_dict['weather'] = frame_in.context.stats.weather for count in frame_in.context.stats.laser_object_counts: if count.type != 1: # note that 1 means vehicle object continue frame_context_dict['laser_veh_count'] = count.count return frame_context_dict def collect_lidar_veh_label(single_lidar_label, row_dict, ego_dict, ego_pose): # this function extract the information of a single object (Lidar label) # note that the original position and heading in label is in local coordinate # single_lidar_label is from lidar label from original data # row_dict is an initialized dictionary that will be filled # global unique object_id row_dict['obj_id'] = single_lidar_label.id row_dict['local_center_x'] = single_lidar_label.box.center_x row_dict['local_center_y'] = single_lidar_label.box.center_y row_dict['local_center_z'] = single_lidar_label.box.center_z # we need to use ego_dict and ego_pose to transform local label position to global position # (in vehicle frame), it needs to be transformed to global frame # make ego_pose in the form of transformation matrix trans_matrix = np.reshape(np.array(ego_pose), (4, 4)) # print(trans_matrix) local_pos_matrix = np.reshape( np.array([row_dict['local_center_x'], row_dict['local_center_y'], row_dict['local_center_z'], 1]), (4, 1)) # print(local_pos_matrix) label_global_pos = np.matmul(trans_matrix, local_pos_matrix) # print(label_global_pos) row_dict['global_center_x'] = label_global_pos[0][0] row_dict['global_center_y'] = label_global_pos[1][0] row_dict['global_center_z'] = label_global_pos[2][0] row_dict['length'] = single_lidar_label.box.length row_dict['width'] = single_lidar_label.box.width row_dict['height'] = single_lidar_label.box.height frame_ego_heading = ego_dict['heading'] row_dict['heading'] = single_lidar_label.box.heading + frame_ego_heading row_dict['speed_x'] = single_lidar_label.metadata.speed_x row_dict['speed_y'] = single_lidar_label.metadata.speed_y row_dict['accel_x'] = single_lidar_label.metadata.accel_x row_dict['accel_y'] = single_lidar_label.metadata.accel_y # angular speed remains to be calculated row_dict['angular_speed'] = 0 return row_dict def veh_trj_collect(frame_in): # this funtion collects all Lidar object information in current frame # collect environment context in this frame frame_context_dict = frame_context_update(frame) # print(frame_context_dict) ego_row_dict = frame_context_dict.copy() # add context info to every row # collect ego (AV) vehicle's timestamp, position and speed ego_row_dict['obj_type'] = 'vehicle' ego_row_dict['obj_id'] = 'ego' ego_row_dict['global_time_stamp'] = frame_in.timestamp_micros # unix time (in micro seconds) # time referenced to segment start time ego_row_dict['local_time_stamp'] = (frame_in.timestamp_micros - segment_start_time) / float(1000000) # in seconds # self driving car's (sdc) global position and heading (yaw, pitch, roll) sdc_pose = frame_in.pose.transform # the transformation matrix # print(sdc_pose) frame_images = frame_in.images for image in frame_images: # print(image.velocity) ego_speed_x = image.velocity.v_x ego_speed_y = image.velocity.v_y ego_angular_speed = image.velocity.w_z # only get speed from the front camera break # print(image.pose) # ego_velocity = frame_in.images # ego vehicle's local position will be 0, because itself is the origin ego_row_dict['local_center_x'] = 0 ego_row_dict['local_center_y'] = 0 ego_row_dict['local_center_z'] = 0 # ego vehicle's global position is extracted from the transformation matrix ego_row_dict['global_center_x'] = sdc_pose[3] ego_row_dict['global_center_y'] = sdc_pose[7] ego_row_dict['global_center_z'] = sdc_pose[11] # note that the actual model of AV is 2019 Chrysler Pacifica Hybrid # the dimensions for AV is length 5.18m, width 2.03m, height 1.78m ego_row_dict['length'] = 5.18 ego_row_dict['width'] = 2.03 ego_row_dict['height'] = 1.78 ego_row_dict['heading'] = math.atan2(sdc_pose[4], sdc_pose[0]) ego_row_dict['speed_x'] = ego_speed_x ego_row_dict['speed_y'] = ego_speed_y # accleration remains to be calculated ego_row_dict['accel_x'] = 0 ego_row_dict['accel_y'] = 0 ego_row_dict['angular_speed'] = ego_angular_speed # print(ego_row_dict) # add to final file all_segment_all_frame_all_object_info.append(ego_row_dict) # collect vehicle's info in the lidar label for lidar_label in frame_in.laser_labels: # labe object type and its correspoding # TYPE_UNKNOWN = 0; # TYPE_VEHICLE = 1; # TYPE_PEDESTRIAN = 2; # TYPE_SIGN = 3; # TYPE_CYCLIST = 4; if lidar_label.type in [1, 2, 4]: temp_row_dict = ego_row_dict.copy() if lidar_label.type == 1: temp_row_dict['obj_type'] = 'vehicle' elif lidar_label.type == 4: temp_row_dict['obj_type'] = 'bicycle' else: temp_row_dict['obj_type'] = 'pedestrian' temp_row_dict = collect_lidar_veh_label(lidar_label, temp_row_dict, ego_row_dict, sdc_pose) # add to final file all_segment_all_frame_all_object_info.append(temp_row_dict) def final_trj_result_format(): # format the final output global all_segment_all_frame_all_object_info_pd all_segment_all_frame_all_object_info_pd['local_time_stamp'] = all_segment_all_frame_all_object_info_pd[ 'local_time_stamp'].map('{:.2f}'.format) all_segment_all_frame_all_object_info_pd['local_center_x'] = all_segment_all_frame_all_object_info_pd[ 'local_center_x'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['local_center_y'] = all_segment_all_frame_all_object_info_pd[ 'local_center_y'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['local_center_z'] = all_segment_all_frame_all_object_info_pd[ 'local_center_z'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['global_center_x'] = all_segment_all_frame_all_object_info_pd[ 'global_center_x'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['global_center_y'] = all_segment_all_frame_all_object_info_pd[ 'global_center_y'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['global_center_z'] = all_segment_all_frame_all_object_info_pd[ 'global_center_z'].map('{:.4f}'.format) all_segment_all_frame_all_object_info_pd['length'] = all_segment_all_frame_all_object_info_pd['length'].map( '{:.2f}'.format) all_segment_all_frame_all_object_info_pd['width'] = all_segment_all_frame_all_object_info_pd['width'].map( '{:.2f}'.format) all_segment_all_frame_all_object_info_pd['height'] = all_segment_all_frame_all_object_info_pd['height'].map( '{:.2f}'.format) all_segment_all_frame_all_object_info_pd['heading'] = all_segment_all_frame_all_object_info_pd['heading'].map( '{:.4f}'.format) all_segment_all_frame_all_object_info_pd['speed_x'] = all_segment_all_frame_all_object_info_pd['speed_x'].map( '{:.4f}'.format) all_segment_all_frame_all_object_info_pd['speed_y'] = all_segment_all_frame_all_object_info_pd['speed_y'].map( '{:.4f}'.format) all_segment_all_frame_all_object_info_pd['accel_x'] = all_segment_all_frame_all_object_info_pd['accel_x'].map( '{:.4f}'.format) all_segment_all_frame_all_object_info_pd['accel_y'] = all_segment_all_frame_all_object_info_pd['accel_y'].map( '{:.4f}'.format) all_segment_all_frame_all_object_info_pd['angular_speed'] = all_segment_all_frame_all_object_info_pd[ 'angular_speed'].map('{:.4f}'.format) def plot_top_view_ani_with_lidar_label(trj_in, seg_id_in, frame_id_in): # this function plots one single frame of the top view video # trj_in is a pandas with three columns(obj_id, frame_label, local_time_stamp, global_center_x, global_center_y, length, width, heading) # trj_in is all the trajectories within one segment # seg_id_in is the current segment id trj_in['global_center_x'] = trj_in['global_center_x'] - trj_in['global_center_x'].min() #进行坐标原点的一个平移 trj_in['global_center_y'] = trj_in['global_center_y'] - trj_in['global_center_y'].min() unique_veh_id = pd.unique(trj_in['obj_id']) plt.figure(figsize=(18, 13.5)) plt.figure() plt.xlabel('global center x (m)', fontsize=10) plt.ylabel('global center y (m)', fontsize=10) plt.axis('square') plt.xlim([trj_in['global_center_x'].min() - 1, trj_in['global_center_x'].max() + 1]) plt.ylim([trj_in['global_center_y'].min() - 1, trj_in['global_center_y'].max() + 1]) # max_range = max(trj_in['global_center_x'].max(), ) title_name = 'Segment ' + str(seg_id_in) plt.title(title_name, loc='left') plt.xticks( np.arange(round(float(trj_in['global_center_x'].min())), round(float(trj_in['global_center_x'].max())), 10), fontsize=5) plt.yticks( np.arange(round(float(trj_in['global_center_y'].min())), round(float(trj_in['global_center_y'].max())), 10), fontsize=5) ax = plt.gca() # find out the global heading of ego vehicle first, use it to transform other vehicles' local heading to global heading ego_veh_trj = trj_in.loc[trj_in['obj_id'] == 'ego', :] ego_current_heading = ego_veh_trj.loc[ego_veh_trj['frame_label'] == frame_id, 'heading'].values[0] # get all the trajectories until current frame for signle_veh_id in unique_veh_id: single_veh_trj = trj_in[trj_in['obj_id'] == signle_veh_id] # print(single_veh_trj) single_veh_trj = single_veh_trj[single_veh_trj['frame_label'] == frame_id_in] # print(single_veh_trj) if len(single_veh_trj) > 0: ts = ax.transData coords = [single_veh_trj['global_center_x'].iloc[0], single_veh_trj['global_center_y'].iloc[0]] if single_veh_trj.iloc[0, 0] == 'ego': veh_local_id = 0 temp_facecolor = 'red' temp_alpha = 0.99 heading_angle = single_veh_trj['heading'].iloc[0] * 180 / np.pi tr = mpl.transforms.Affine2D().rotate_deg_around(coords[0], coords[1], heading_angle) #对车辆按照航向角进行旋转 else: # calculate vehicle's local id veh_id_match_temp = veh_name_id_match[veh_name_id_match['obj_id'] == signle_veh_id] if single_veh_trj['obj_type'].iloc[0] == 'vehicle': # only vehicle has a local id veh_local_id = veh_id_match_temp['local_id'].iloc[0] if single_veh_trj['obj_type'].iloc[0] == 'vehicle': temp_facecolor = 'blue' elif single_veh_trj['obj_type'].iloc[0] == 'bicycle': temp_facecolor = 'green' else: temp_facecolor = 'magenta' temp_alpha = 0.5 heading_angle = single_veh_trj['heading'].iloc[0] * 180 / np.pi # transform for other vehicles, note that the ego global heading should be added to current local heading tr = mpl.transforms.Affine2D().rotate_deg_around(coords[0], coords[1], heading_angle) t = tr + ts # note that exact xy needs to to calculated veh_length = single_veh_trj['length'].iloc[0] veh_width = single_veh_trj['width'].iloc[0] ax.add_patch(patches.Rectangle( xy=(single_veh_trj['global_center_x'].iloc[0] - 0.5 * veh_length, single_veh_trj['global_center_y'].iloc[0] - 0.5 * veh_width), width=veh_length, height=veh_width, linewidth=0.1, facecolor=temp_facecolor, edgecolor='black', alpha=temp_alpha, transform=t)) # add vehicle local id for only vehicle object if single_veh_trj['obj_type'].iloc[0] == 'vehicle': temp_text = plt.text(single_veh_trj['global_center_x'].iloc[0], single_veh_trj['global_center_y'].iloc[0], str(veh_local_id), style='italic', weight='heavy', ha='center', va='center', color='white', rotation=heading_angle, size=3) temp_text.set_path_effects( [path_effects.Stroke(linewidth=1, foreground='black'), path_effects.Normal()]) trj_save_name = 'figure_save/temp_top_view_figure/top_view_segment_' + str(seg_id_in) + '_frame_' + str( frame_id_in) + '_trajectory.jpg' plt.savefig(trj_save_name, dpi=600) plt.close('all') def top_view_video_generation(): # this function generates one top view video based on top view figures from one segment img_array = [] for num in range(1, len(os.listdir('figure_save/temp_top_view_figure/')) + 1): image_filename = 'figure_save/temp_top_view_figure/' + 'top_view_segment_' + str( single_seg_id) + '_frame_' + str(num) + '_trajectory.jpg' img = cv2.imread(image_filename) height, width, layers = img.shape size = (width, height) img_array.append(img) video_save_name = 'figure_save/top_view_video/' + 'animation_top_view_segment_' + str(single_seg_id) + '.avi' out = cv2.VideoWriter(video_save_name, cv2.VideoWriter_fourcc(*'DIVX'), 10, size) for i in range(len(img_array)): out.write(img_array[i]) out.release() print('top view video made success') # after making the video, delete all the frame jpgs filelist = glob.glob(os.path.join('figure_save/temp_top_view_figure/', "*.jpg")) for f in filelist: os.remove(f) def cumulated_dis_cal(coord_series_in, segment_id_in, veh_id_in, start_time_in): # this function calculate the cumulated distance based on the given global coordinates, # input coord_series_in: ['global_center_x', 'global_center_y', 'speed_x', 'speed_y'] # output coord_series_in: ['global_center_x', 'global_center_y', 'speed_x', 'speed_y', 'cumu_dis', 'speed', 'accer', 'filter_cumu_dis', # 'filter_speed', 'filter_accer', 'speed_based_cumu_dis', 'speed_based_speed', 'speed_based_accer', 'speed_based_filter_cumu_dis', # 'speed_based_filter_speed', 'speed_based_accer'] coord_series_in.reset_index(drop=True, inplace=True) coord_series_in.loc[:, 'cumu_dis'] = float(0) coord_series_in.loc[:, 'speed'] = float(0) coord_series_in.loc[:, 'accer'] = float(0) coord_series_in.loc[:, 'speed_based_cumu_dis'] = float(0) coord_series_in.loc[:, 'speed_based_speed'] = float(0) coord_series_in.loc[:, 'speed_based_accer'] = float(0) coord_series_in.loc[:, 'speed_based_jerk'] = float(0) # calculate distance for position based method, and speed for speed based method for i in range(1, len(coord_series_in['global_center_x'])): pre_x = coord_series_in['global_center_x'].iloc[i - 1] pre_y = coord_series_in['global_center_y'].iloc[i - 1] post_x = coord_series_in['global_center_x'].iloc[i] post_y = coord_series_in['global_center_y'].iloc[i] single_dis = math.sqrt((post_x - pre_x) ** 2 + (post_y - pre_y) ** 2) coord_series_in.loc[i, 'cumu_dis'] = coord_series_in.loc[i - 1, 'cumu_dis'] + single_dis for i in range(len(coord_series_in['global_center_x'])): speed_based_speed = math.sqrt((coord_series_in.at[i, 'speed_x']) ** 2 + (coord_series_in.at[i, 'speed_y']) ** 2) coord_series_in.loc[i, 'speed_based_speed'] = speed_based_speed # calculate speed and acceleration position based method, distance and aceleration for speed based method coord_series_in = update_speed_and_accer(coord_series_in, 0) coord_series_in = speed_based_update_distance_and_accer(coord_series_in) # trajectory correctness # initialize filter_value coord_series_in.loc[:, 'filter_cumu_dis'] = coord_series_in.loc[:, 'cumu_dis'].to_numpy() coord_series_in.loc[:, 'filter_speed'] = coord_series_in.loc[:, 'speed'].to_numpy() coord_series_in.loc[:, 'filter_accer'] = coord_series_in.loc[:, 'accer'].to_numpy() coord_series_in.loc[:, 'filter_jerk'] = 0 coord_series_in = trajectory_correctness(coord_series_in, segment_id_in, veh_id_in, start_time_in) return coord_series_in def speed_based_update_distance_and_accer(series_in): # this function calculate the distance, acceleration and jerk based on speed (for speed-based data) # series_in is the same format as coord_series_in # output is series_in with updated speed and accer current_cumu_dis = 'speed_based_cumu_dis' current_speed = 'speed_based_speed' current_accer = 'speed_based_accer' for i in range(1, len(series_in['global_center_x'])): if i == 1: series_in.loc[0, current_cumu_dis] = 0 series_in.loc[i, current_cumu_dis] = series_in.loc[i - 1, current_cumu_dis] + ( series_in.loc[i, current_speed] + series_in.loc[i - 1, current_speed]) * 0.5 * 0.1 else: series_in.loc[i, current_cumu_dis] = series_in.loc[i - 1, current_cumu_dis] + ( series_in.loc[i, current_speed] + series_in.loc[i - 1, current_speed]) * 0.5 * 0.1 for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_accer] = float( series_in.at[i + 2, current_speed] - series_in.at[i, current_speed]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_accer] = float( series_in.at[i, current_speed] - series_in.at[i - 2, current_speed]) / (float(0.2)) else: series_in.at[i, current_accer] = float( series_in.at[i + 1, current_speed] - series_in.at[i - 1, current_speed]) / (float(0.2)) current_jerk = 'speed_based_jerk' for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_jerk] = float( series_in.at[i + 2, current_accer] - series_in.at[i, current_accer]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_jerk] = float( series_in.at[i, current_accer] - series_in.at[i - 2, current_accer]) / (float(0.2)) else: series_in.at[i, current_jerk] = float( series_in.at[i + 1, current_accer] - series_in.at[i - 1, current_accer]) / (float(0.2)) return series_in def update_speed_and_accer(series_in, filter_label): # this function calculate the speed, accelearation, jerk based on position # series_in is the same format as coord_series_in # output is series_in with updated speed and accer if filter_label == 1: current_cumu_dis = 'filter_cumu_dis' current_speed = 'filter_speed' current_accer = 'filter_accer' elif filter_label == 0: current_cumu_dis = 'cumu_dis' current_speed = 'speed' current_accer = 'accer' current_jerk = 'jerk' else: # label should be 2 current_cumu_dis = 'remove_outlier_cumu_dis' current_speed = 'remove_outlier_speed' current_accer = 'remove_outlier_accer' current_jerk = 'remove_outlier_jerk' # calculate speed for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_speed] = float( series_in.at[i + 2, current_cumu_dis] - series_in.at[i, current_cumu_dis]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_speed] = float( series_in.at[i, current_cumu_dis] - series_in.at[i - 2, current_cumu_dis]) / (float(0.2)) else: series_in.at[i, current_speed] = float( series_in.at[i + 1, current_cumu_dis] - series_in.at[i - 1, current_cumu_dis]) / (float(0.2)) # calculate accerleration for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_accer] = float( series_in.at[i + 2, current_speed] - series_in.at[i, current_speed]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_accer] = float( series_in.at[i, current_speed] - series_in.at[i - 2, current_speed]) / (float(0.2)) else: series_in.at[i, current_accer] = float( series_in.at[i + 1, current_speed] - series_in.at[i - 1, current_speed]) / (float(0.2)) for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_jerk] = float( series_in.at[i + 2, current_accer] - series_in.at[i, current_accer]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_jerk] = float( series_in.at[i, current_accer] - series_in.at[i - 2, current_accer]) / (float(0.2)) else: series_in.at[i, current_jerk] = float( series_in.at[i + 1, current_accer] - series_in.at[i - 1, current_accer]) / (float(0.2)) return series_in def plot_outlier_adjacent_trj(series_in, outlier_pos_in, first_pos_in, last_pos_in, segment_id_in, veh_id_in, start_time_in, comparison_label): # plot the adjacent trajectory of the outlier (20 points) outlier_time = round(start_time_in + outlier_pos_in * 0.1, 1) included_index = np.arange(first_pos_in, last_pos_in + 1, dtype=int) outlier_trj = series_in.loc[included_index, :] outlier_trj.loc[:, 'local_time'] = np.array(included_index) * 0.1 + start_time_in plt.subplot(3, 1, 1) plt.plot(outlier_trj['local_time'], outlier_trj['cumu_dis'], '-*k', linewidth=0.25, label='Original', markersize=1.5) if comparison_label == 1: plt.plot(outlier_trj['local_time'], outlier_trj['remove_outlier_cumu_dis'], '-m', linewidth=0.25, label='Outliers Removed') plt.legend(prop={'size': 6}) trj_title = 'Segment ' + str(int(segment_id_in)) + ' Vehicle' + str( int(veh_id_in)) + ' Outlier at Time ' + str(outlier_time) + ' Removing' else: trj_title = 'Segment ' + str(int(segment_id_in)) + ' Vehicle' + str( int(veh_id_in)) + ' Outlier at Time ' + str(outlier_time) + ' Pattern' plt.ylabel('Position (m)') plt.title(trj_title) plt.subplot(3, 1, 2) plt.plot(outlier_trj['local_time'], outlier_trj['speed'], '-*k', linewidth=0.5, label='Original', markersize=1.5) if comparison_label == 1: plt.plot(outlier_trj['local_time'], outlier_trj['remove_outlier_speed'], '-m', linewidth=0.5, label='Outliers Removed') plt.legend(prop={'size': 6}) plt.ylabel('Speed (m/s)') plt.ylim([0, 35]) plt.subplot(3, 1, 3) plt.plot(outlier_trj['local_time'], outlier_trj['accer'], '-*k', linewidth=0.5, label='Original', markersize=1.5) if comparison_label == 1: plt.plot(outlier_trj['local_time'], outlier_trj['remove_outlier_accer'], '-m', linewidth=0.5, label='Outliers Removed') plt.legend(prop={'size': 6}) plt.xlabel('Time (s)') plt.ylabel('Acceleration (m/s2)') plt.ylim([-15, 15]) trj_save_title = 'figure_save/trajectory_process/outlier_pattern_and_removing/' + trj_title + '.png' plt.savefig(trj_save_title, dpi=600) plt.close('all') def outlier_removing_optimization_model(initial_state_in, last_state_in, num_points_in): # note that the num_points_in includes the first and last points # if the total number of interpolated points is n, then num_points_in = n + 2 # time interval is 0.1 second # total number of time steps max_acc = 5 min_acc = -8 total_steps = num_points_in first_pos_in = initial_state_in[0] first_speed_in = initial_state_in[1] first_acc_in = initial_state_in[2] last_pos_in = last_state_in[0] last_speed_in = last_state_in[1] last_acc_in = last_state_in[2] # time interval in each step time_interval = 0.1 # model = GEKKO() # Initialize gekko model = GEKKO(remote=False) # Initialize gekko # Use IPOPT solver (default) model.options.SOLVER = 3 model.options.SCALING = 2 # Initialize variables acc = [None] * total_steps # simulated acceleration velocity = [None] * total_steps # simulated velocity pos = [None] * total_steps # simulated position for i in range(total_steps): pos[i] = model.Var() velocity[i] = model.Var() velocity[i].lower = 0 acc[i] = model.Var(lb=min_acc, ub=max_acc) min_sim_acc = model.Var() max_sim_acc = model.Var() model.Equation(pos[0] == first_pos_in) model.Equation(velocity[0] == first_speed_in) model.Equation(acc[0] == first_acc_in) model.Equation(pos[total_steps - 1] == last_pos_in) model.Equation(velocity[total_steps - 1] == last_speed_in) model.Equation(acc[total_steps - 1] == last_acc_in) for i in range(total_steps): if 1 <= i <= total_steps - 1: model.Equation(velocity[i] == velocity[i - 1] + acc[i - 1] * time_interval) model.Equation(pos[i] == pos[i - 1] + 0.5 * (velocity[i] + velocity[i - 1]) * time_interval) for i in range(total_steps): model.Equation(min_sim_acc <= acc[i]) model.Equation(max_sim_acc >= acc[i]) # objective function: minimize the difference between max_sim_acc and min_sim_acc model.Obj(max_sim_acc - min_sim_acc) # model.options.IMODE = 2 # Steady state optimization model.options.MAX_MEMORY = 5 model.solve(disp=False) # solve_time = model.options.SOLVETIME # extract values from Gekko type variables acc_value = np.zeros(total_steps) velocity_value = np.zeros(total_steps) pos_value = np.zeros(total_steps) for i in range(total_steps): acc_value[i] = acc[i].value[0] velocity_value[i] = velocity[i].value[0] pos_value[i] = pos[i].value[0] return pos_value, velocity_value, acc_value def optimization_based_outlier_removing(series_in, first_pos_in, last_pos_in, min_acc_in, max_acc_in): # given the position of the outlier, optimize its vicinity's trajectory first_point_pos = first_pos_in last_point_pos = last_pos_in first_point_cumu_dis = series_in.at[first_point_pos, 'remove_outlier_cumu_dis'] first_point_speed = series_in.at[first_point_pos, 'remove_outlier_speed'] if series_in.at[first_point_pos, 'remove_outlier_accer'] <= min_acc_in: first_point_acc = min_acc_in elif series_in.at[first_point_pos, 'remove_outlier_accer'] >= max_acc_in: first_point_acc = max_acc_in else: first_point_acc = series_in.at[first_point_pos, 'remove_outlier_accer'] first_point_state = [first_point_cumu_dis, first_point_speed, first_point_acc] last_point_cumu_dis = series_in.at[last_point_pos, 'remove_outlier_cumu_dis'] last_point_speed = series_in.at[last_point_pos, 'remove_outlier_speed'] if series_in.at[last_point_pos, 'remove_outlier_accer'] <= min_acc_in: last_point_acc = min_acc_in elif series_in.at[last_point_pos, 'remove_outlier_accer'] >= max_acc_in: last_point_acc = max_acc_in else: last_point_acc = series_in.at[last_point_pos, 'remove_outlier_accer'] last_point_state = [last_point_cumu_dis, last_point_speed, last_point_acc] actual_total_related_points = last_point_pos - first_point_pos + 1 pos_result, speed_result, acc_result = outlier_removing_optimization_model(first_point_state, last_point_state, actual_total_related_points) series_in.loc[first_point_pos:last_point_pos, 'remove_outlier_cumu_dis'] = pos_result series_in = update_speed_and_accer(series_in, 2) return series_in def wavefilter(data): # We will use the Daubechies(6) wavelet daubechies_num = 6 wname = "db" + str(daubechies_num) datalength = data.shape[0] max_level = pywt.dwt_max_level(datalength, wname) print('maximun level is: %s' % max_level) # Initialize the container for the filtered data # Decompose the signal # coeff[0] is approximation coeffs, coeffs[1] is nth level detail coeff, coeff[-1] is first level detail coeffs coeffs = pywt.wavedec(data, wname, mode='smooth', level=max_level) # thresholding for j in range(max_level): coeffs[-j - 1] = np.zeros_like(coeffs[-j - 1]) # Reconstruct the signal and save it filter_data = pywt.waverec(coeffs, wname, mode='smooth') fdata = filter_data[0:datalength] return fdata def wavelet_filter(series_in): remove_outlier_speed_signal = series_in.loc[:, 'remove_outlier_speed'].to_numpy() wavelet_filter_speed = wavefilter(remove_outlier_speed_signal) series_in.loc[:, 'wavelet_filter_speed'] = wavelet_filter_speed series_in.loc[:, 'wavelet_filter_cumu_dis'] = None series_in.loc[:, 'wavelet_filter_accer'] = None series_in.loc[:, 'wavelet_filter_jerk'] = None # update cumulative distance for i in range(len(series_in['global_center_x'])): if i == 0: # start from the filtered value series_in.loc[i, 'wavelet_filter_cumu_dis'] = 0 # initial pos should be 0 else: series_in.loc[i, 'wavelet_filter_cumu_dis'] = series_in.loc[i - 1, 'wavelet_filter_cumu_dis'] + ( series_in.loc[i - 1, 'wavelet_filter_speed'] + series_in.loc[i, 'wavelet_filter_speed']) * 0.5 * 0.1 # update acceleration current_speed = 'wavelet_filter_speed' current_accer = 'wavelet_filter_accer' for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_accer] = float( series_in.at[i + 2, current_speed] - series_in.at[i, current_speed]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_accer] = float( series_in.at[i, current_speed] - series_in.at[i - 2, current_speed]) / (float(0.2)) else: series_in.at[i, current_accer] = float( series_in.at[i + 1, current_speed] - series_in.at[i - 1, current_speed]) / (float(0.2)) current_jerk = 'wavelet_filter_jerk' for i in range(0, len(series_in['global_center_x'])): if i == 0: series_in.at[i, current_jerk] = float( series_in.at[i + 2, current_accer] - series_in.at[i, current_accer]) / (float(0.2)) elif i == len(series_in['global_center_x']) - 1: series_in.at[i, current_jerk] = float( series_in.at[i, current_accer] - series_in.at[i - 2, current_accer]) / (float(0.2)) else: series_in.at[i, current_jerk] = float( series_in.at[i + 1, current_accer] - series_in.at[i - 1, current_accer]) / (float(0.2)) return series_in def trajectory_correctness(coord_series_in, segment_id_in, veh_id_in, start_time_in): # this function remove outliers and filter the trajectory # input coord_series_in: ['global_center_x', 'global_center_y', 'cumu_dis', 'speed', 'accer'] # output coord_series_in: ['global_center_x', 'global_center_y', 'cumu_dis', 'speed', 'accer', 'filter_cumu_dis', 'filter_speed', 'filter_accer'] minimum_accer = -8 maximum_accer = 5 reference_points_num = 20 coord_series_in.reset_index(inplace=True, drop=True) global all_outlier_record # remove outliers in acceleration, note that cubic spline interpolation is implemented on distance # initialize remove outlier results coord_series_in.loc[:, 'remove_outlier_cumu_dis'] = coord_series_in.loc[:, 'cumu_dis'] coord_series_in.loc[:, 'remove_outlier_speed'] = coord_series_in.loc[:, 'speed'] coord_series_in.loc[:, 'remove_outlier_accer'] = coord_series_in.loc[:, 'accer'] # removing outliers should be conducted multiple times until there is no outlier outlier_label = 1 while outlier_label: outlier_label = 0 for m in range(len(coord_series_in['global_center_x'])): if coord_series_in.at[m, 'remove_outlier_accer'] >= maximum_accer or coord_series_in.at[m, 'remove_outlier_accer'] <= minimum_accer: print('Outlier info: Current segment: %s, vehicle id: %s, time: %s, position: %s' % ( segment_id_in, veh_id_in, round(m * 0.1 + start_time_in, 1), m)) single_outlier_record = pd.DataFrame(np.zeros((1, 3)), columns=['segment_id', 'local_veh_id', 'outlier_time']) single_outlier_record.loc[0, 'segment_id'] = segment_id_in single_outlier_record.loc[0, 'local_veh_id'] = veh_id_in single_outlier_record.loc[0, 'outlier_time'] = start_time_in + 0.1 * m all_outlier_record = all_outlier_record.append(single_outlier_record) total_related_points = 20 first_point_pos = int(max(0, m - total_related_points / 2)) last_point_pos = int(min(len(coord_series_in.loc[:, 'remove_outlier_accer']) - 1, m + total_related_points / 2)) if first_point_pos == 0: last_point_pos = first_point_pos + total_related_points if last_point_pos == len(coord_series_in.loc[:, 'remove_outlier_accer']) - 1: first_point_pos = last_point_pos - total_related_points plot_outlier_adjacent_trj(coord_series_in, m, first_point_pos, last_point_pos, segment_id_in, veh_id_in, start_time_in, 0) # the following pairs may not have feasible solutions during outlier removal if segment_id_in == 191 and veh_id_in == 6: pass elif segment_id_in == 270 and veh_id_in == 4: pass elif segment_id_in == 276 and veh_id_in == 2: pass elif segment_id_in == 320 and veh_id_in == 1: pass elif segment_id_in == 406 and veh_id_in == 25: pass elif segment_id_in == 449 and veh_id_in == 41: pass elif segment_id_in == 450 and veh_id_in == 15: pass elif segment_id_in == 676 and veh_id_in == 15: pass elif segment_id_in == 769 and veh_id_in == 50: pass elif segment_id_in == 916 and veh_id_in == 4: pass elif segment_id_in == 968 and veh_id_in == 18: pass else: coord_series_in = optimization_based_outlier_removing(coord_series_in, first_point_pos, last_point_pos, minimum_accer, maximum_accer) plot_outlier_adjacent_trj(coord_series_in, m, first_point_pos, last_point_pos, segment_id_in, veh_id_in, start_time_in, 1) outlier_label = 0 # outlier still exsit in this loop # implement wavelet filter after removing outliers coord_series_in = wavelet_filter(coord_series_in) # set the final filter results to the wavelet filte results coord_series_in.loc[:, 'filter_cumu_dis'] = coord_series_in.loc[:, 'wavelet_filter_cumu_dis'].to_numpy() coord_series_in.loc[:, 'filter_speed'] = coord_series_in.loc[:, 'wavelet_filter_speed'].to_numpy() coord_series_in.loc[:, 'filter_accer'] = coord_series_in.loc[:, 'wavelet_filter_accer'].to_numpy() coord_series_in.loc[:, 'filter_jerk'] = coord_series_in.loc[:, 'wavelet_filter_jerk'].to_numpy() return coord_series_in def before_and_after_remove_outlier_plot(trj_in): current_seg_id = trj_in['segment_id'].iloc[0] follower_id_in = trj_in['local_veh_id'].iloc[0] if len(all_outlier_record) > 0: current_seg_outlier_record = all_outlier_record.loc[ all_outlier_record['segment_id'] == current_seg_id, :] current_seg_outlier_record_local_veh_id = current_seg_outlier_record.loc[:, 'local_veh_id'].to_numpy().astype(np.int32) else: current_seg_outlier_record_local_veh_id = [] if int(follower_id_in) in current_seg_outlier_record_local_veh_id: plt.subplot(3, 1, 1) plt.plot(trj_in['local_time'], trj_in['position'], '--k', linewidth=0.25, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_pos'], '-m', linewidth=0.25, label='Outliers Removed') plt.ylabel('Position (m)') plt.legend(prop={'size': 6}) trj_title = 'Segment ' + str(int(current_seg_id)) + ' Vehicle' + str( int(follower_id_in)) + ' Before and After Removing Outliers' plt.title(trj_title) plt.subplot(3, 1, 2) plt.plot(trj_in['local_time'], trj_in['speed'], '--k', linewidth=0.5, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_speed'], '-m', linewidth=0.5, label='Outliers Removed') plt.ylabel('Speed (m/s)') plt.legend(prop={'size': 6}) plt.ylim([0, 35]) plt.subplot(3, 1, 3) plt.plot(trj_in['local_time'], trj_in['accer'], '--k', linewidth=0.5, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_accer'], '-m', linewidth=0.5, label='Outliers Removed') plt.legend(prop={'size': 6}) plt.xlabel('Time (s)') plt.ylabel('Acceleration (m/s2)') plt.ylim([-15, 15]) trj_save_title = 'figure_save/trajectory_process/before_and_after_remove_outlier_plot/' + trj_title + '.png' plt.savefig(trj_save_title, dpi=600) plt.close('all') def before_and_after_filtering_plot(trj_in): current_seg_id = trj_in['segment_id'].iloc[0] follower_id_in = trj_in['local_veh_id'].iloc[0] if len(all_outlier_record) > 0: current_seg_outlier_record = all_outlier_record.loc[ all_outlier_record['segment_id'] == current_seg_id, :] current_seg_outlier_record_local_veh_id = current_seg_outlier_record.loc[:, 'local_veh_id'].to_numpy().astype(np.int32) else: current_seg_outlier_record_local_veh_id = [] if int(follower_id_in) in current_seg_outlier_record_local_veh_id: plt.subplot(3, 1, 1) plt.plot(trj_in['local_time'], trj_in['position'], '--k', linewidth=0.25, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_pos'], '-m', linewidth=0.25, label='Outliers Removed') plt.plot(trj_in['local_time'], trj_in['wavelet_filter_pos'], '-*g', linewidth=0.25, label='Outliers Removed + Filtering', markersize=0.5) plt.ylabel('Position (m)') plt.legend(prop={'size': 6}) trj_title = 'Segment ' + str(int(current_seg_id)) + ' Vehicle' + str( int(follower_id_in)) + ' Before and After Filtering' plt.title(trj_title) plt.subplot(3, 1, 2) plt.plot(trj_in['local_time'], trj_in['speed'], '--k', linewidth=0.25, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_speed'], '-m', linewidth=0.25, label='Outliers Removed') plt.plot(trj_in['local_time'], trj_in['wavelet_filter_speed'], '-*g', linewidth=0.25, label='Outliers Removed + Filtering', markersize=0.5) plt.ylabel('Speed (m/s)') plt.legend(prop={'size': 6}) plt.ylim([0, 35]) plt.subplot(3, 1, 3) plt.plot(trj_in['local_time'], trj_in['accer'], '--k', linewidth=0.25, label='Original') plt.plot(trj_in['local_time'], trj_in['remove_outlier_accer'], '-m', linewidth=0.25, label='Outliers Removed') plt.plot(trj_in['local_time'], trj_in['wavelet_filter_accer'], '-*g', linewidth=0.25, label='Outliers Removed + Filtering', markersize=0.5) plt.legend(prop={'size': 6}) plt.xlabel('Time (s)') plt.ylabel('Acceleration (m/s2)') plt.ylim([-15, 15]) trj_save_title = 'figure_save/trajectory_process/before_and_after_filtering_plot/' + trj_title + '.png' plt.savefig(trj_save_title, dpi=600) plt.close('all') def pair_cf_coord_cal(leader_id, leader_trj_in, follower_id, follower_trj_in, av_label): # convert 2-d coordinates to 1-d longitudinal coordinates # note that the leader and follower interacts with each other # av_label is to determine whether av is leader or follower (0 for follower, 1 for leader, 2 for non-av pair) global all_seg_paired_cf_trj_final global all_seg_paired_cf_trj_with_comparison # extract mutual cf trajectory min_local_time = max(leader_trj_in['local_time_stamp'].min(), follower_trj_in['local_time_stamp'].min()) max_local_time = min(leader_trj_in['local_time_stamp'].max(), follower_trj_in['local_time_stamp'].max()) leader_trj_in = leader_trj_in.loc[leader_trj_in['local_time_stamp'] >= min_local_time, :] leader_trj_in = leader_trj_in.loc[leader_trj_in['local_time_stamp'] <= max_local_time, :] follower_trj_in = follower_trj_in.loc[follower_trj_in['local_time_stamp'] >= min_local_time, :] follower_trj_in = follower_trj_in.loc[follower_trj_in['local_time_stamp'] <= max_local_time, :] # sort the trj leader_trj_in = leader_trj_in.sort_values(['local_time_stamp']) follower_trj_in = follower_trj_in.sort_values(['local_time_stamp']) # initialize output format out_leader_trj = pd.DataFrame(leader_trj_in[['segment_id', 'veh_id', 'length', 'local_time_stamp']].to_numpy(), columns=['segment_id', 'local_veh_id', 'length', 'local_time']) out_leader_trj.loc[:, 'follower_id'] = follower_id out_leader_trj.loc[:, 'leader_id'] = leader_id out_follower_trj = pd.DataFrame(follower_trj_in[['segment_id', 'veh_id', 'length', 'local_time_stamp']].to_numpy(), columns=['segment_id', 'local_veh_id', 'length', 'local_time']) out_follower_trj.loc[:, 'follower_id'] = follower_id out_follower_trj.loc[:, 'leader_id'] = leader_id # calculate coordinates of leader and follower temp_current_segment_id = out_follower_trj['segment_id'].iloc[0] temp_start_time = out_follower_trj['local_time'].iloc[0] leader_cumu_dis = cumulated_dis_cal( leader_trj_in.loc[:, ['global_center_x', 'global_center_y', 'speed_x', 'speed_y']], temp_current_segment_id, leader_id, temp_start_time) follower_cumu_dis = cumulated_dis_cal( follower_trj_in.loc[:, ['global_center_x', 'global_center_y', 'speed_x', 'speed_y']], temp_current_segment_id, follower_id, temp_start_time) # calculate initial distance pre_x_1 = leader_trj_in['global_center_x'].iloc[0] pre_y_1 = leader_trj_in['global_center_y'].iloc[0] post_x_1 = follower_trj_in['global_center_x'].iloc[0] post_y_1 = follower_trj_in['global_center_y'].iloc[0] initial_dis = math.sqrt((post_x_1 - pre_x_1) ** 2 + (post_y_1 - pre_y_1) ** 2) # create position, speed, and acceleration data # follower's position always start from 0 # position based out_follower_trj.loc[:, 'position'] = follower_cumu_dis['cumu_dis'].to_numpy() out_follower_trj.loc[:, 'remove_outlier_pos'] = follower_cumu_dis['remove_outlier_cumu_dis'].to_numpy() out_follower_trj.loc[:, 'filter_pos'] = follower_cumu_dis['filter_cumu_dis'].to_numpy() out_follower_trj.loc[:, 'wavelet_filter_pos'] = follower_cumu_dis['wavelet_filter_cumu_dis'].to_numpy() out_follower_trj.loc[:, 'speed'] = follower_cumu_dis['speed'].to_numpy() out_follower_trj.loc[:, 'remove_outlier_speed'] = follower_cumu_dis['remove_outlier_speed'].to_numpy() out_follower_trj.loc[:, 'filter_speed'] = follower_cumu_dis['filter_speed'].to_numpy() out_follower_trj.loc[:, 'wavelet_filter_speed'] = follower_cumu_dis['wavelet_filter_speed'].to_numpy() out_follower_trj.loc[:, 'accer'] = follower_cumu_dis['accer'].to_numpy() out_follower_trj.loc[:, 'remove_outlier_accer'] = follower_cumu_dis['remove_outlier_accer'].to_numpy() out_follower_trj.loc[:, 'filter_accer'] = follower_cumu_dis['filter_accer'].to_numpy() out_follower_trj.loc[:, 'wavelet_filter_accer'] = follower_cumu_dis['wavelet_filter_accer'].to_numpy() out_follower_trj.loc[:, 'jerk'] = follower_cumu_dis['jerk'].to_numpy() out_follower_trj.loc[:, 'filter_jerk'] = follower_cumu_dis['filter_jerk'].to_numpy() out_follower_trj.loc[:, 'wavelet_filter_jerk'] = follower_cumu_dis['wavelet_filter_jerk'].to_numpy() out_leader_trj.loc[:, 'position'] = leader_cumu_dis['cumu_dis'].to_numpy() + initial_dis out_leader_trj.loc[:, 'remove_outlier_pos'] = leader_cumu_dis['remove_outlier_cumu_dis'].to_numpy() + initial_dis out_leader_trj.loc[:, 'filter_pos'] = leader_cumu_dis['filter_cumu_dis'].to_numpy() + initial_dis out_leader_trj.loc[:, 'wavelet_filter_pos'] = leader_cumu_dis['wavelet_filter_cumu_dis'].to_numpy() + initial_dis out_leader_trj.loc[:, 'speed'] = leader_cumu_dis['speed'].to_numpy() out_leader_trj.loc[:, 'remove_outlier_speed'] = leader_cumu_dis['remove_outlier_speed'].to_numpy() out_leader_trj.loc[:, 'filter_speed'] = leader_cumu_dis['filter_speed'].to_numpy() out_leader_trj.loc[:, 'wavelet_filter_speed'] = leader_cumu_dis['wavelet_filter_speed'].to_numpy() out_leader_trj.loc[:, 'accer'] = leader_cumu_dis['accer'].to_numpy() out_leader_trj.loc[:, 'remove_outlier_accer'] = leader_cumu_dis['remove_outlier_accer'].to_numpy() out_leader_trj.loc[:, 'filter_accer'] = leader_cumu_dis['filter_accer'].to_numpy() out_leader_trj.loc[:, 'wavelet_filter_accer'] = leader_cumu_dis['wavelet_filter_accer'].to_numpy() out_leader_trj.loc[:, 'jerk'] = leader_cumu_dis['jerk'].to_numpy() out_leader_trj.loc[:, 'filter_jerk'] = leader_cumu_dis['filter_jerk'].to_numpy() out_leader_trj.loc[:, 'wavelet_filter_jerk'] = leader_cumu_dis['wavelet_filter_jerk'].to_numpy() # speed based out_follower_trj.loc[:, 'speed_based_position'] = follower_cumu_dis['speed_based_cumu_dis'].to_numpy() out_follower_trj.loc[:, 'speed_based_speed'] = follower_cumu_dis['speed_based_speed'].to_numpy() out_follower_trj.loc[:, 'speed_based_accer'] = follower_cumu_dis['speed_based_accer'].to_numpy() out_follower_trj.loc[:, 'speed_based_jerk'] = follower_cumu_dis['speed_based_jerk'].to_numpy() out_leader_trj.loc[:, 'speed_based_position'] = leader_cumu_dis['speed_based_cumu_dis'].to_numpy() + initial_dis out_leader_trj.loc[:, 'speed_based_speed'] = leader_cumu_dis['speed_based_speed'].to_numpy() out_leader_trj.loc[:, 'speed_based_accer'] = leader_cumu_dis['speed_based_accer'].to_numpy() out_leader_trj.loc[:, 'speed_based_jerk'] = leader_cumu_dis['speed_based_jerk'].to_numpy() # plot speed and acc figure before_and_after_remove_outlier_plot(out_follower_trj) before_and_after_remove_outlier_plot(out_leader_trj) before_and_after_filtering_plot(out_follower_trj) before_and_after_filtering_plot(out_leader_trj) # save cf paired trj # all_seg_paired_cf_trj = pd.concat([all_seg_paired_cf_trj, pd.concat([out_leader_trj, out_follower_trj])]) all_seg_paired_cf_trj_with_comparison = all_seg_paired_cf_trj_with_comparison.append( pd.concat([out_leader_trj, out_follower_trj])) out_follower_trj_final = out_follower_trj.loc[:, ['segment_id', 'local_veh_id', 'length', 'local_time', 'follower_id', 'leader_id', 'filter_pos', 'filter_speed', 'filter_accer']] out_follower_trj_final.columns = ['segment_id', 'local_veh_id', 'length', 'local_time', 'follower_id', 'leader_id', 'filter_pos', 'filter_speed', 'filter_accer'] out_leader_trj_final = out_leader_trj.loc[:, ['segment_id', 'local_veh_id', 'length', 'local_time', 'follower_id', 'leader_id', 'filter_pos', 'filter_speed', 'filter_accer']] out_leader_trj_final.columns = ['segment_id', 'local_veh_id', 'length', 'local_time', 'follower_id', 'leader_id', 'filter_pos', 'filter_speed', 'filter_accer'] all_seg_paired_cf_trj_final = all_seg_paired_cf_trj_final.append( pd.concat([out_leader_trj_final, out_follower_trj_final])) # plot the car following trj of both follower and leader cf_paired_trj_plot(out_leader_trj_final, out_follower_trj_final, av_label) def cf_pair_coord_trans(seg_trj_in, follower_id_in, leader_id_in, av_related_label): # extract all cf pairs in one segment # the input seg_trj_in is already with local id # av_related_label determines if there is av involed # return the paired trj with transformed coordination with format of ['segment_id', 'local_veh_id', 'length','local_time','follower_id', 'leader_id', 'position', 'speed', 'accer'] follower_trj = seg_trj_in[seg_trj_in['veh_id'] == follower_id_in] leader_trj = seg_trj_in[seg_trj_in['veh_id'] == leader_id_in] ego_trj = seg_trj_in[seg_trj_in['veh_id'] == 0] if av_related_label: # process av related pair if follower_id_in == 0 and leader_id_in == 0: # this segment is not suitable for cf (av related) pass elif follower_id_in == 0 and leader_id_in != 0: # AV-HV pair pair_cf_coord_cal(leader_id_in, leader_trj, 0, ego_trj, 0) elif follower_id_in != 0 and leader_id_in == 0: # HV-AV pair pair_cf_coord_cal(0, ego_trj, follower_id_in, follower_trj, 1) else: # both AV-HV pair and HV-AV pair pair_cf_coord_cal(leader_id_in, leader_trj, 0, ego_trj, 0) pair_cf_coord_cal(0, ego_trj, follower_id_in, follower_trj, 1) else: # process HV-HV pair pair_cf_coord_cal(leader_id_in, leader_trj, follower_id_in, follower_trj, 2) def cf_paired_trj_plot(leader_trj_in, follower_trj_in, av_label): # av_label is to determine whether av is leader or follower (0 for follower, 1 for leader, 2 for non-av) # the format of the trajectory is pandas dataframe # for av_label: 0 means AV-HV, 1 means HV-AV, 2 means HV-HV current_segment_id = int(leader_trj_in['segment_id'].iloc[0]) current_leader_id = int(leader_trj_in['local_veh_id'].iloc[0]) current_follower_id = int(follower_trj_in['local_veh_id'].iloc[0]) if av_label == 0: follower_line = '-r' leader_line = '--b' follower_label = 'AV Follower' leader_label = 'HV Leader' trj_title = 'AV' + '-HV' + str(current_leader_id) trj_save_title = 'figure_save/trajectory_process/position_time_plot/av_hv/' + 'Segment_' + str( current_segment_id) + '_' + trj_title + '_position_time_plot.png' elif av_label == 1: follower_line = '-b' leader_line = '--r' follower_label = 'HV Follower' leader_label = 'AV Leader' trj_title = 'HV' + str(current_follower_id) + '-AV' trj_save_title = 'figure_save/trajectory_process/position_time_plot/hv_av/' + 'Segment_' + str( current_segment_id) + '_' + trj_title + '_position_time_plot.png' else: follower_line = '-b' leader_line = '--b' follower_label = 'HV Follower' leader_label = 'HV Leader' trj_title = 'HV' + str(current_follower_id) + '-HV' + str(current_leader_id) trj_save_title = 'figure_save/trajectory_process/position_time_plot/hv_hv/' + 'Segment_' + str( current_segment_id) + '_' + trj_title + '_position_time_plot.png' plt.subplot(3, 1, 1) plt.plot(follower_trj_in['local_time'], follower_trj_in['filter_pos'], follower_line, linewidth=0.5, label=follower_label) plt.plot(leader_trj_in['local_time'], leader_trj_in['filter_pos'], leader_line, linewidth=0.5, label=leader_label) plt.ylabel('Position (m)') plt.legend(prop={'size': 6}) trj_title = 'Segment ' + str(current_segment_id) + ' ' + trj_title + ' Trajectory' plt.title(trj_title) plt.subplot(3, 1, 2) plt.plot(follower_trj_in['local_time'], follower_trj_in['filter_speed'], follower_line, linewidth=0.5, label=follower_label) plt.plot(leader_trj_in['local_time'], leader_trj_in['filter_speed'], leader_line, linewidth=0.5, label=leader_label) plt.ylabel('Speed (m/s)') plt.legend(prop={'size': 6}) plt.ylim([0, 35]) plt.subplot(3, 1, 3) plt.plot(follower_trj_in['local_time'], follower_trj_in['filter_accer'], follower_line, linewidth=0.5, label=follower_label) plt.plot(leader_trj_in['local_time'], leader_trj_in['filter_accer'], leader_line, linewidth=0.5, label=leader_label) plt.legend(prop={'size': 6}) plt.xlabel('Time (s)') plt.ylabel('Acceleration (m/s2)') plt.ylim([-5, 5]) plt.savefig(trj_save_title, dpi=600) plt.close('all') def cf_trj_info_cal(all_seg_paired_cf_trj_in): # calculate car following measurements # output format # ['segment_id', 'local_veh_id', 'length','local_time','follower_id', 'leader_id', 'position', 'speed', 'accer', # 'cf_label', 'space_hwy', 'net_distance', 'time_hwy', 'speed_diff', 'TTC', 'DRAC'] # cf_label: 0 for AV-HV, 1 for HV-AV # net_distance = space_hwy - 0.5*follower_length - 0.5*leader_length # time_hwy = space_hwy/follower_speed # speed_diff = follower_speed - leader_speed # Time To Collision: TTC = speed_diff/net_distance # Deceleration Required to Avoid Crash: DRAC = (speed_diff ** 2) / net_distance def single_cf_pair_info_cal(follower_trj_in, leader_trj_in, cf_label_in): global all_seg_cf_info # input format ['segment_id', 'local_veh_id', 'length','local_time','follower_id', 'leader_id', 'position', 'speed', 'accer'] out_cf_info = follower_trj_in.copy(deep=True) out_cf_info['cf_label'] = cf_label_in out_cf_info['space_hwy'] = 0 out_cf_info['net_distance'] = 0 out_cf_info['time_hwy'] = 0 out_cf_info['speed_diff'] = 0 out_cf_info['TTC'] = 0 out_cf_info['DRAC'] = 0 for i in range(len(out_cf_info['segment_id'])): current_time = out_cf_info['local_time'].iloc[i] l_time_match = abs(leader_trj_in['local_time'] - current_time) <= 0.001 matched_leader_trj = leader_trj_in.loc[l_time_match, :] if len(matched_leader_trj) > 0: space_hwy = matched_leader_trj['filter_pos'].iloc[0] - out_cf_info['filter_pos'].iloc[i] out_cf_info['space_hwy'].iloc[i] = space_hwy net_distance = space_hwy - 0.5 * matched_leader_trj['length'].iloc[0] - 0.5 * \ out_cf_info['length'].iloc[i] out_cf_info['net_distance'].iloc[i] = net_distance if out_cf_info['filter_speed'].iloc[i] <= 0.1: out_cf_info['time_hwy'].iloc[i] = 1000000 else: out_cf_info['time_hwy'].iloc[i] = space_hwy / out_cf_info['filter_speed'].iloc[i] speed_diff = out_cf_info['filter_speed'].iloc[i] - matched_leader_trj['filter_speed'].iloc[0] out_cf_info['speed_diff'].iloc[i] = speed_diff if speed_diff < 0: out_cf_info['TTC'].iloc[i] = 0 out_cf_info['DRAC'].iloc[i] = 0 else: out_cf_info['TTC'].iloc[i] = net_distance / speed_diff out_cf_info['DRAC'].iloc[i] = (speed_diff ** 2) / net_distance all_seg_cf_info = all_seg_cf_info.append(out_cf_info) # ----- av-related cf info ----- all_seg_av_hv_trj = all_seg_paired_cf_trj_in.loc[all_seg_paired_cf_trj_in['follower_id'] == 0, :] all_seg_hv_av_trj = all_seg_paired_cf_trj_in.loc[all_seg_paired_cf_trj_in['leader_id'] == 0, :] av_hv_seg_id = pd.unique(all_seg_av_hv_trj['segment_id']) for id1 in av_hv_seg_id: segment_print = 'Now in AV-HV segment: ' + str(id1) print(segment_print) current_seg_trj = all_seg_av_hv_trj.loc[all_seg_av_hv_trj['segment_id'] == id1, :] follower_id = current_seg_trj['follower_id'].iloc[0] leader_id = current_seg_trj['leader_id'].iloc[0] flollower_trj = current_seg_trj.loc[current_seg_trj['local_veh_id'] == follower_id, :] leader_trj = current_seg_trj.loc[current_seg_trj['local_veh_id'] == leader_id, :] single_cf_pair_info_cal(flollower_trj, leader_trj, 0) follower_av_seg_id = pd.unique(all_seg_hv_av_trj['segment_id']) for id1 in follower_av_seg_id: segment_print = 'Now in HV-AV segment: ' + str(id1) print(segment_print) current_seg_trj = all_seg_hv_av_trj.loc[all_seg_hv_av_trj['segment_id'] == id1, :] follower_id = current_seg_trj['follower_id'].iloc[0] leader_id = current_seg_trj['leader_id'].iloc[0] flollower_trj = current_seg_trj.loc[current_seg_trj['local_veh_id'] == follower_id, :] leader_trj = current_seg_trj.loc[current_seg_trj['local_veh_id'] == leader_id, :] single_cf_pair_info_cal(flollower_trj, leader_trj, 1) # ----- hv-hv cf info ----- l1 = all_seg_paired_cf_trj_in['follower_id'] != 0 l2 = all_seg_paired_cf_trj_in['leader_id'] != 0 all_seg_hv_hv_leader_trj = all_seg_paired_cf_trj_in.loc[l1 & l2, :] hv_hv_seg_id = pd.unique(all_seg_hv_hv_leader_trj['segment_id']) for id1 in hv_hv_seg_id: segment_print = 'Now in HV-HV segment: ' + str(id1) print(segment_print) current_seg_trj = all_seg_hv_hv_leader_trj.loc[all_seg_hv_hv_leader_trj['segment_id'] == id1, :] all_follower_id = pd.unique(current_seg_trj['follower_id']) for id2 in all_follower_id: # note that one segment may have multiple hv-hv pairs current_pair_trj = current_seg_trj.loc[current_seg_trj['follower_id'] == id2, :] follower_id = current_pair_trj['follower_id'].iloc[0] leader_id = current_pair_trj['leader_id'].iloc[0] flollower_trj = current_pair_trj.loc[current_pair_trj['local_veh_id'] == follower_id, :] leader_trj = current_pair_trj.loc[current_pair_trj['local_veh_id'] == leader_id, :] single_cf_pair_info_cal(flollower_trj, leader_trj, 2) def cf_pair_exclude_rules_implementation(all_seg_paired_cf_trj_in, all_seg_cf_info_in): # this function verify if a selected CF pair is suitable for car following research # this verification is necessary because currently the CF pairs are extracted manually by watching the top view videos and might be error-prone # 6 rules are defined in the paper: # rule 1: Exclude if there is no leader or follower # rule 2: Exclude if the follower or leader is off the Lidar detection range (disappear from the video) for some time # rule 3: Exclude if the leader or follower is a bus or heavy truck # rule 4: Exclude if the follower changes its leader (either the follower or the leader changes its lane) # rule 5: Exclude if follower remains standstill during the entire segment # rule 6: Exclude if the car following state is interrupted by turning, parking, stop signs, traffic signals, pedestrians, or other obstacles # note that: for rule 1 there is no need to verify because all selected pairs have a follower and a leader # note that: for rule 4, since there is no lane mark in the provided dataset, so we are not able to analysis lane changing pairs # therefore, only rules 2, 3, 5, 6 are implemented here all_seg_paired_cf_trj_verified = all_seg_paired_cf_trj_in.copy(deep=True) def single_cf_pair_verification(flollower_trj_in, leader_trj_in, follower_cf_info_in): # this function implement rules 2, 3, 5, 6 # output is 0 or 1: 0 denotes this pair is valid, 1 denotes this pair will be removed output_label = 0 # default value is 0 flollower_trj_in.reset_index(inplace=True) leader_trj_in.reset_index(inplace=True) follower_cf_info_in.reset_index(inplace=True) # rule 2 for i in range(1, len(flollower_trj_in.loc[:, 'segment_id'])): # if the time difference between two consecutive points is larger than 0.2s, then this pair is excluded if flollower_trj_in.loc[i, 'local_time'] - flollower_trj_in.loc[i - 1, 'local_time'] >= 0.2: output_label = 1 print('Rule 2 excluded') return output_label for j in range(1, len(leader_trj_in.loc[:, 'segment_id'])): # if the time difference between two consecutive points is larger than 0.2s, then this pair is excluded if leader_trj_in.loc[j, 'local_time'] - leader_trj_in.loc[j - 1, 'local_time'] >= 0.2: output_label = 1 print('Rule 2 excluded') return output_label # rule 3 large_vehicle_length_threshold = 8 if flollower_trj_in.loc[0, 'length'] >= large_vehicle_length_threshold: output_label = 1 print('Rule 3 excluded') return output_label if leader_trj_in.loc[0, 'length'] >= large_vehicle_length_threshold: output_label = 1 print('Rule 3 excluded') return output_label # rule 5 if flollower_trj_in.loc[:, 'filter_speed'].max() <= 0.1: # the case where the follower is always standstill output_label = 1 print('Rule 5 excluded') return output_label # rule 6 # based on the slope of v-s curve, if the slope is obviously negative, then this pair is excluded detection_length = 50 # calculate the slope every 50 points slope_threhold = -0.5 # if the slope of v-s curve is smaller than this threshold, then this pair is excluded for i in range(len(follower_cf_info_in.loc[:, 'segment_id']) - detection_length): # monotonic test, only in the case of monotonic v-s curve will be slope be calculated l_speed = follower_cf_info_in.loc[i:i+detection_length - 1, 'filter_speed'].is_monotonic_increasing or \ follower_cf_info_in.loc[i:i+detection_length - 1, 'filter_speed'].is_monotonic_decreasing l_spacing = follower_cf_info_in.loc[i:i+detection_length - 1, 'space_hwy'].is_monotonic_increasing or \ follower_cf_info_in.loc[i:i+detection_length - 1, 'space_hwy'].is_monotonic_decreasing if l_speed and l_spacing: v_data = follower_cf_info_in.loc[i:i+detection_length - 1, 'filter_speed'].values.reshape(-1, 1) s_data = follower_cf_info_in.loc[i:i+detection_length - 1, 'space_hwy'].values.reshape(-1, 1) current_regression = LinearRegression() current_regression.fit(s_data, v_data) current_slope = current_regression.coef_[0] if current_slope <= slope_threhold: output_label = 1 print('Rule 6 excluded') return output_label return output_label all_seg_id =
pd.unique(all_seg_paired_cf_trj_in['segment_id'])
pandas.unique
"""" FOR RESEARCH USE ONLY Drafted Jan 6, 2021 Updated July 20, 2021 Seattle, WA Copyright (c) 2021 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import re import pandas as pd import numpy as np # ██╗ ██╗ ██████╗ ███████╗ ███████╗██╗ ██╗██╗██████╗ ███████╗███╗ ██╗ ██████╗███████╗ # ██║ ██║ ██╔═══██╗██╔════╝ ██╔════╝██║ ██║██║██╔══██╗██╔════╝████╗ ██║██╔════╝██╔════╝ # ██║ █╗ ██║ ██║ ██║█████╗ █████╗ ██║ ██║██║██║ ██║█████╗ ██╔██╗ ██║██║ █████╗ # ██║███╗██║ ██║ ██║██╔══╝ ██╔══╝ ╚██╗ ██╔╝██║██║ ██║██╔══╝ ██║╚██╗██║██║ ██╔══╝ # ╚███╔███╔╝██╗ ╚██████╔╝██║ ███████╗ ╚████╔╝ ██║██████╔╝███████╗██║ ╚████║╚██████╗███████╗ # ╚══╝╚══╝ ╚═╝ ╚═════╝ ╚═╝ ╚══════╝ ╚═══╝ ╚═╝╚═════╝ ╚══════╝╚═╝ ╚═══╝ ╚═════╝╚══════╝ def weight_of_evidence( hla_hits_df, locus = "HLA-A", threshold = 0.1, use_detects = True, use_counts = False, remove_columns = ['association_pvalue']): """ Parameters ---------- hla_hits_df : pd.DataFrame input DataFrame (columns are samples, rows are TCR features, values are counts per sample) locus : str "HLA-A", threshold : float 0.2 use_detects : bool if True, use detections use_counts : bool if True, use counts versus detections remove_columns : list ['association_pvalue'] Result ------ pd.DataFrame columns: """ # Remove columns that aren't feature, hla_allele, or sample> col_ind = [x for x in hla_hits_df.columns if x not in remove_columns] hla_hits_df = hla_hits_df[col_ind] # Subset columns to only alleles that start with <loci> string ind = hla_hits_df['hla_allele'].apply(lambda x : x.startswith(locus)) hla_hits_df = hla_hits_df[ind].reset_index(drop = True) # Gather wide DataFrame to a Long Data Frame if 'tcr' in hla_hits_df.columns: hla_hits_df = pd.melt(hla_hits_df, id_vars =['tcr','hla_allele']) if 'match' in hla_hits_df.columns: hla_hits_df =
pd.melt(hla_hits_df, id_vars =['match','hla_allele'])
pandas.melt
######################################################################################################## # data_sql.py - Data pull from json, clean it up and upload to SQL # by <NAME> # # This is Python script Pulls the metadata (link) from following three json data:- # 1. https://api.weather.gov/points/31.7276,-110.8754 # 2. https://api.weather.gov/points/32.395,-110.6911 # 3. https://api.weather.gov/points/32.4186,-110.7383 # # The Link pulled (json data) from the above three json data are # the grid data links that are use to pull all the weather related data for the three capmgrounds:- # 1. https://api.weather.gov/gridpoints/TWC/91,26 # 2. https://api.weather.gov/gridpoints/TWC/101,54 # 3. https://api.weather.gov/gridpoints/TWC/100,56 # # From the above grid data 4 dataframes are created. The challenge was pulling the data from the # above json links and then converting the date-time columns to the format (date-time) that can be used # to upload to SQL and creating the graphs. Also Temperatures need to be converted to degreeF and wind # speeds to Miles per hour:- # 1. Campgroud information dF with information like lat, lon, elevation, # meta url, grid url, forest url, campsite url fire danger and map code. # 2. One for each campground (bs_grid_df, rc_grid_df, sc_grid_df). These df # have columns (temp in degreeF, temp time, wind speed, wind speed time, wind gust, # wind gust time, prob precipitation, Prob precp time, qty precip, qty precip time). # # SQLalchemy was used to create 4 tables in postgres SQL and then the above 4 DataFrames were uploaded # Postgres SQL. The table names in SQL are: # 1. camp_wx # 2. cg_bog_spring # 3. cg_rose_canyon # 4. cg_spencer_canyon # # This script was converted from data_sql.ipynb ########################################################################################################## # %% # ------------------------ # Dependencies and Setup # ------------------------ import pandas as pd import json import requests import numpy as np import datetime from datetime import timedelta from splinter import Browser from bs4 import BeautifulSoup # %% # -------------------------------------------------------------------- # Bog Spring CAMPGROUND # -------------------------------------------------------------------- # --------------------------------------------- # Pull Grid Data URL From Metadata url for # --------------------------------------------- bs_url = "https://api.weather.gov/points/31.7276,-110.8754" response_bs = requests.get(bs_url) data_bs = response_bs.json() data_bs grid_data_bs = data_bs["properties"]["forecastGridData"] grid_data_bs # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for BogSprings Campground # ------------------------------------------------------------------------ bs_forcast_url = grid_data_bs response_bs_forecast = requests.get(bs_forcast_url) data_bs_forecast = response_bs_forecast.json() data_bs_forecast lat_bs = data_bs_forecast["geometry"]["coordinates"][0][0][1] lat_bs lng_bs = data_bs_forecast["geometry"]["coordinates"][0][0][0] lng_bs elevation_bs = data_bs_forecast["properties"]["elevation"]["value"] elevation_bs # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- bs_df = pd.DataFrame({"id": 1, "campground": "Bog Springs", "lat": [lat_bs], "lon": [lng_bs], "elevation": [elevation_bs], "nws_meta_url": [bs_url], "nws_grid_url": [grid_data_bs], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25732&actid=29", "campsite_url": "https://www.fs.usda.gov/Internet/FSE_MEDIA/fseprd746637.jpg", "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3393.5714340164473!2d-110.87758868361043!3d31.72759998130141!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6970db0a5e44d%3A0x1b48084e4d6db970!2sBog%20Springs%20Campground!5e0!3m2!1sen!2sus!4v1626560932236!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) bs_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp = [] for i in data_bs_forecast["properties"]["temperature"]["values"]: temp.append(i) temp_df = pd.DataFrame(temp) temp_df # Temperature conversion to Degree Fahrenheit temp_df['degF'] = (temp_df['value'] * 9 / 5) + 32 temp_df # validTime Column split to date and time for Temperature date_temp = temp_df['validTime'].str.split('T', n=1, expand=True) time_temp = date_temp[1].str.split('+', n=1, expand=True) time_temp temp_df['date_temp'] = date_temp[0] temp_df['time_temp'] = time_temp[0] # Combine date and time with a space in between the two temp_df['date_time_temp'] = temp_df['date_temp'] + ' ' + temp_df['time_temp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js temp_df['date_time_temp'] = pd.to_datetime(temp_df['date_time_temp']) # Pull all the data for today + 3 days time_delta_temp = datetime.datetime.strptime(temp_df['date_temp'][0],"%Y-%m-%d") + timedelta(days = 4) temp_df['times_temp'] = time_delta_temp.strftime("%Y-%m-%d") temp_df = temp_df.loc[temp_df['date_temp'] < temp_df['times_temp']] temp_df # temp_df.dtypes # =================== Wind Speed Data ====================== wind_speed = [] for i in data_bs_forecast["properties"]["windSpeed"]["values"]: wind_speed.append(i) windSpeed_df = pd.DataFrame(wind_speed) windSpeed_df # Converting KM/hour to Miles/hour windSpeed_df['miles/hour'] = windSpeed_df['value'] * 0.621371 windSpeed_df # validTime Column split to date and time for Wind Speed date_ws = windSpeed_df['validTime'].str.split('T', n=1, expand=True) time_ws = date_ws[1].str.split('+', n=1, expand=True) time_ws windSpeed_df['date_ws'] = date_ws[0] windSpeed_df['time_ws'] = time_ws[0] # Combine date and time with a space in between the two windSpeed_df['date_time_ws'] = windSpeed_df['date_ws'] + ' ' + windSpeed_df['time_ws'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js windSpeed_df['date_time_ws'] = pd.to_datetime(windSpeed_df['date_time_ws']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_df['date_ws'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_df['times_ws'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_df = windSpeed_df.loc[windSpeed_df['date_ws'] < windSpeed_df['times_ws']] windSpeed_df # windSpeed_df.dtypes # =================== Wind Gust Data ====================== wind_gust = [] for i in data_bs_forecast["properties"]["windGust"]["values"]: wind_gust.append(i) wind_gust_df = pd.DataFrame(wind_gust) wind_gust_df # Converting KM/hour to Miles/hour wind_gust_df['m/h'] = wind_gust_df['value'] * 0.621371 wind_gust_df # # validTime Column split to date and time for Wind Gusts date_wg = wind_gust_df['validTime'].str.split('T', n=1, expand=True) time_wg = date_wg[1].str.split('+', n=1, expand=True) time_wg wind_gust_df['date_wg'] = date_wg[0] wind_gust_df['time_wg'] = time_wg[0] # Combine date and time with a space in between the two wind_gust_df['date_time_wg'] = wind_gust_df['date_wg'] + ' ' + wind_gust_df['time_wg'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js wind_gust_df['date_time_wg'] = pd.to_datetime(wind_gust_df['date_time_wg']) wind_gust_df # Pull all the data for today + 3 days time_delta_wg = datetime.datetime.strptime(wind_gust_df['date_wg'][0],"%Y-%m-%d") + timedelta(days = 4) wind_gust_df['times_wg'] = time_delta_wg.strftime("%Y-%m-%d") wind_gust_df = wind_gust_df.loc[wind_gust_df['date_wg'] < wind_gust_df['times_wg']] wind_gust_df # wind_gust_df.dtypes # =================== Probability of Precipitation Data ====================== prob_precip = [] for i in data_bs_forecast["properties"]["probabilityOfPrecipitation"]["values"]: prob_precip.append(i) prob_precip_df = pd.DataFrame(prob_precip) prob_precip_df # # validTime Column split to date and time for Probability Precipitation date_pp = prob_precip_df['validTime'].str.split('T', n=1, expand=True) time_pp = date_pp[1].str.split('+', n=1, expand=True) time_pp prob_precip_df['date_pp'] = date_pp[0] prob_precip_df['time_pp'] = time_pp[0] # Combine date and time with a space in between the two prob_precip_df['date_time_pp'] = prob_precip_df['date_pp'] + ' ' + prob_precip_df['time_pp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js prob_precip_df['date_time_pp'] = pd.to_datetime(prob_precip_df['date_time_pp']) prob_precip_df # Pull all the data for today + 3 days time_delta_pp = datetime.datetime.strptime(prob_precip_df['date_pp'][0],"%Y-%m-%d") + timedelta(days = 4) prob_precip_df['times_pp'] = time_delta_pp.strftime("%Y-%m-%d") prob_precip_df = prob_precip_df.loc[prob_precip_df['date_pp'] < prob_precip_df['times_pp']] prob_precip_df # prob_precip_df.dtypes # =================== Quantity of Precipitation Data ====================== qty_precip = [] for i in data_bs_forecast["properties"]["quantitativePrecipitation"]["values"]: qty_precip.append(i) qty_precip_df = pd.DataFrame(qty_precip) qty_precip_df # # validTime Column split to date and time for quantity Precipitation date_qp = qty_precip_df['validTime'].str.split('T', n=1, expand=True) time_qp = date_qp[1].str.split('+', n=1, expand=True) time_qp qty_precip_df['date_qp'] = date_qp[0] qty_precip_df['time_qp'] = time_qp[0] # Combine date and time with a space in between the two qty_precip_df['date_time_qp'] = qty_precip_df['date_qp'] + ' ' + qty_precip_df['time_qp'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js qty_precip_df['date_time_qp'] = pd.to_datetime(qty_precip_df['date_time_qp']) qty_precip_df # Pull all the data for today + 3 days time_delta_qp = datetime.datetime.strptime(qty_precip_df['date_qp'][0],"%Y-%m-%d") + timedelta(days = 4) qty_precip_df['times_qp'] = time_delta_qp.strftime("%Y-%m-%d") qty_precip_df = qty_precip_df.loc[qty_precip_df['date_qp'] < qty_precip_df['times_qp']] qty_precip_df # qty_precip_df.dtypes # =================== Create DataFrame with all the above data for Bog Spring Campground ====================== bs_grid_df = pd.DataFrame({"id":1, "campground": "Bog Springs", "forecasted_temperature_degF": temp_df['degF'], "forecastTime_temperature": temp_df['date_time_temp'], "forecasted_windSpeed_miles_per_h": windSpeed_df['miles/hour'], "forecastTime_windSpeed": windSpeed_df['date_time_ws'], "forecasted_windGust_miles_per_h": wind_gust_df['m/h'], "forecastTime_windGust": wind_gust_df['date_time_wg'], "forecasted_probabilityOfPrecipitation": prob_precip_df['value'], "forecastTime_probabilityOfPrecipitation": prob_precip_df['date_time_pp'], "forecasted_quantityOfPrecipitation_mm": qty_precip_df['value'], "forecastTime_quantityOfPrecipitation": qty_precip_df['date_time_qp'], }) bs_grid_df # bs_grid_df.dtypes # %% # -------------------------------------------------------------------- # ROSE CANYON CAMPGROUND # -------------------------------------------------------------------- # ------------------------------------------- # Pull Grid Data URL From Metadata url # ------------------------------------------- rc_url = "https://api.weather.gov/points/32.395,-110.6911" response_rc = requests.get(rc_url) data_rc = response_rc.json() data_rc grid_data_rc = data_rc["properties"]["forecastGridData"] grid_data_rc # %% # ------------------------------------------------------------------------ # Pull latitude, Longitude and Elevation data for Rose Canyon Campground # ------------------------------------------------------------------------ rc_forcast_url = grid_data_rc response_rc_forecast = requests.get(rc_forcast_url) data_rc_forecast = response_rc_forecast.json() data_rc_forecast lat_rc = data_rc_forecast["geometry"]["coordinates"][0][0][1] lat_rc lng_rc = data_rc_forecast["geometry"]["coordinates"][0][0][0] lng_rc elevation_rc = data_rc_forecast["properties"]["elevation"]["value"] elevation_rc # --------------------------------------------------------------------------------- # Create a Dataframe with Latitude, Longitude Elevation and all other related URL # --------------------------------------------------------------------------------- rc_df = pd.DataFrame({"id": 2, "campground": "Rose Canyon", "lat": [lat_rc], "lon": [lng_rc], "elevation": [elevation_rc], "nws_meta_url": [rc_url], "nws_grid_url": [grid_data_rc], "forest_url":"https://www.fs.usda.gov/recarea/coronado/recreation/camping-cabins/recarea/?recid=25698&actid=29", "campsite_url": "https://cdn.recreation.gov/public/2019/06/20/00/19/232284_beeddff5-c966-49e2-93a8-c63c1cf21294_700.jpg", # "nws_meta_json":[data_rc], # "nws_grid_json": [data_rc_forecast], "fire_danger": "Very High", "map_code": '<iframe src="https://www.google.com/maps/embed?pb=!1m18!1m12!1m3!1d3368.97130566869!2d-110.70672358360277!3d32.39313088108983!2m3!1f0!2f0!3f0!3m2!1i1024!2i768!4f13.1!3m3!1m2!1s0x86d6400421614087%3A0xb6cfb84a4b05c95b!2sRose%20Canyon%20Campground!5e0!3m2!1sen!2sus!4v1626560965073!5m2!1sen!2sus" width="600" height="450" style="border:0;" allowfullscreen="" loading="lazy"></iframe>' }) rc_df # %% # ------------------------------------------------------------------------------------------------- # Pull temperate, Wind Speed, Wind Gust, Probability of Precipitation, Quantity or Precipitation # data along with the date and time for each. # ------------------------------------------------------------------------------------------------- # =================== Temperature Data ====================== temp_rc = [] for i in data_rc_forecast["properties"]["temperature"]["values"]: temp_rc.append(i) temp_rc_df = pd.DataFrame(temp_rc) temp_rc_df # Temperature conversion to Degree Fahrenheit temp_rc_df['degF_rc'] = (temp_rc_df['value'] * 9 / 5) + 32 temp_rc_df # validTime Column split to date and time for Temperature date_temp_rc = temp_rc_df['validTime'].str.split('T', n=1, expand=True) time_temp_rc = date_temp_rc[1].str.split('+', n=1, expand=True) time_temp_rc temp_rc_df['date_temp_rc'] = date_temp_rc[0] temp_rc_df['time_temp_rc'] = time_temp_rc[0] # Combine date and time with a space in between the two temp_rc_df['date_time_temp_rc'] = temp_rc_df['date_temp_rc'] + ' ' + temp_rc_df['time_temp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js temp_rc_df['date_time_temp_rc'] = pd.to_datetime(temp_rc_df['date_time_temp_rc']) # Pull all the data for today + 3 days time_delta_temp_rc = datetime.datetime.strptime(temp_rc_df['date_temp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) temp_rc_df['times_temp_rc'] = time_delta_temp_rc.strftime("%Y-%m-%d") temp_rc_df = temp_rc_df.loc[temp_rc_df['date_temp_rc'] < temp_rc_df['times_temp_rc']] temp_rc_df temp_rc_df.dtypes # =================== Wind Speed Data ====================== wind_speed_rc = [] for i in data_rc_forecast["properties"]["windSpeed"]["values"]: wind_speed_rc.append(i) windSpeed_rc_df = pd.DataFrame(wind_speed_rc) windSpeed_rc_df # Converting KM/hour to Miles/hour windSpeed_rc_df['miles/hour_rc'] = windSpeed_rc_df['value'] * 0.621371 windSpeed_rc_df # validTime Column split to date and time for wind Speed date_ws_rc = windSpeed_rc_df['validTime'].str.split('T', n=1, expand=True) time_ws_rc = date_ws_rc[1].str.split('+', n=1, expand=True) time_ws_rc windSpeed_rc_df['date_ws_rc'] = date_ws_rc[0] windSpeed_rc_df['time_ws_rc'] = time_ws_rc[0] # Combine date and time with a space in between the two windSpeed_rc_df['date_time_ws_rc'] = windSpeed_rc_df['date_ws_rc'] + ' ' + windSpeed_rc_df['time_ws_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js windSpeed_rc_df['date_time_ws_rc'] = pd.to_datetime(windSpeed_rc_df['date_time_ws_rc']) # Pull all the data for today + 3 days time_delta_ws = datetime.datetime.strptime(windSpeed_rc_df['date_ws_rc'][0],"%Y-%m-%d") + timedelta(days = 4) windSpeed_rc_df['times_ws_rc'] = time_delta_ws.strftime("%Y-%m-%d") windSpeed_rc_df = windSpeed_rc_df.loc[windSpeed_rc_df['date_ws_rc'] < windSpeed_rc_df['times_ws_rc']] windSpeed_rc_df # windSpeed_rc_df.dtypes # =================== Wind Gust Data ====================== wind_gust_rc = [] for i in data_rc_forecast["properties"]["windGust"]["values"]: wind_gust_rc.append(i) wind_gust_rc_df = pd.DataFrame(wind_gust_rc) wind_gust_rc_df # Converting KM/hour to Miles/hour wind_gust_rc_df['m/h_rc'] = wind_gust_rc_df['value'] * 0.621371 wind_gust_rc_df # # validTime Column split to date and time for wind Gusts date_wg_rc = wind_gust_rc_df['validTime'].str.split('T', n=1, expand=True) time_wg_rc = date_wg_rc[1].str.split('+', n=1, expand=True) time_wg_rc wind_gust_rc_df['date_wg_rc'] = date_wg_rc[0] wind_gust_rc_df['time_wg_rc'] = time_wg_rc[0] # Combine date and time with a space in between the two wind_gust_rc_df['date_time_wg_rc'] = wind_gust_rc_df['date_wg_rc'] + ' ' + wind_gust_rc_df['time_wg_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js wind_gust_rc_df['date_time_wg_rc'] = pd.to_datetime(wind_gust_rc_df['date_time_wg_rc']) wind_gust_rc_df # Pull all the data for today + 3 days time_delta_wg = datetime.datetime.strptime(wind_gust_rc_df['date_wg_rc'][0],"%Y-%m-%d") + timedelta(days = 4) wind_gust_rc_df['times_wg_rc'] = time_delta_wg.strftime("%Y-%m-%d") wind_gust_rc_df = wind_gust_rc_df.loc[wind_gust_rc_df['date_wg_rc'] < wind_gust_rc_df['times_wg_rc']] wind_gust_rc_df # wind_gust_rc_df.dtypes # =================== Probability of Precipitataion ====================== prob_precip_rc = [] for i in data_rc_forecast["properties"]["probabilityOfPrecipitation"]["values"]: prob_precip_rc.append(i) prob_precip_rc_df = pd.DataFrame(prob_precip_rc) prob_precip_rc_df # # validTime Column split to date and time for Probability Precipitation date_pp_rc = prob_precip_rc_df['validTime'].str.split('T', n=1, expand=True) time_pp_rc = date_pp_rc[1].str.split('+', n=1, expand=True) time_pp_rc prob_precip_rc_df['date_pp_rc'] = date_pp_rc[0] prob_precip_rc_df['time_pp_rc'] = time_pp_rc[0] # Combine date and time with a space in between the two prob_precip_rc_df['date_time_pp_rc'] = prob_precip_rc_df['date_pp_rc'] + ' ' + prob_precip_rc_df['time_pp_rc'] # Convert the above to date time format so it can be recognized by the PostgresSQL and js prob_precip_rc_df['date_time_pp_rc'] = pd.to_datetime(prob_precip_rc_df['date_time_pp_rc']) prob_precip_rc_df # Pull all the data for today + 3 days time_delta_pp = datetime.datetime.strptime(prob_precip_rc_df['date_pp_rc'][0],"%Y-%m-%d") + timedelta(days = 4) prob_precip_rc_df['times_pp_rc'] = time_delta_pp.strftime("%Y-%m-%d") prob_precip_rc_df = prob_precip_rc_df.loc[prob_precip_rc_df['date_pp_rc'] < prob_precip_rc_df['times_pp_rc']] prob_precip_rc_df # prob_precip_rc_df.dtypes # =================== Quantity of Precipitataion ====================== qty_precip_rc = [] for i in data_rc_forecast["properties"]["quantitativePrecipitation"]["values"]: qty_precip_rc.append(i) qty_precip_rc_df =
pd.DataFrame(qty_precip_rc)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Mar 5 16:37:53 2019 @author: sdenaro """ import pandas as pd import numpy as np def setup(year,operating_horizon,perfect_foresight): #read generator parameters into DataFrame df_gen = pd.read_csv('PNW_data_file/generators.csv',header=0) zone = ['PNW'] ##time series of load for each zone df_load = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Sim_hourly_load.csv',header=0) df_load = df_load[zone] df_load = df_load.loc[year*8760:year*8760+8759,:] df_load = df_load.reset_index(drop=True) ##time series of operational reserves for each zone rv= df_load.values reserves = np.zeros((len(rv),1)) for i in range(0,len(rv)): reserves[i] = np.sum(rv[i,:])*.04 df_reserves = pd.DataFrame(reserves) df_reserves.columns = ['reserves'] ##daily hydropower availability df_hydro = pd.read_csv('Hydro_setup/PNW_dispatchable_hydro.csv',header=0) ##time series of wind generation for each zone df_wind = pd.read_csv('../Stochastic_engine/Synthetic_wind_power/wind_power_sim.csv',header=0) df_wind = df_wind.loc[:,'PNW'] df_wind = df_wind.loc[year*8760:year*8760+8759] df_wind = df_wind.reset_index() ##time series solar for each TAC df_solar = pd.read_csv('PNW_data_file/solar.csv',header=0) ##daily time series of dispatchable imports by path df_imports = pd.read_csv('Path_setup/PNW_dispatchable_imports.csv',header=0) ##daily time series of dispatchable imports by path forecast_days = ['fd1','fd2','fd3','fd4','fd5','fd6','fd7'] df_imports3 = pd.read_csv('Path_setup/PNW_dispatchable_3.csv',header=0) df_imports8 =
pd.read_csv('Path_setup/PNW_dispatchable_8.csv',header=0)
pandas.read_csv
import os, sys sys.path.append(os.path.dirname(__file__)) import numpy as np import pandas as pd import cv2 # torch libs import torch from torch.autograd import Variable from torch.nn.parallel.data_parallel import data_parallel from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset from torch.utils.data.sampler import SequentialSampler import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms from common import RESULTS_DIR, IDENTIFIER, SEED, PROJECT_PATH import matplotlib.pyplot as plt from utility.file import Logger from net.resnet50_mask_rcnn.configuration import Configuration from net.resnet50_mask_rcnn.draw import draw_multi_proposal_metric, draw_mask_metric, image_show from net.resnet50_mask_rcnn.model import MaskRcnnNet from net.metric import compute_average_precision_for_mask, compute_precision_for_box, HIT from dataset.reader import ScienceDataset, multi_mask_to_annotation, instance_to_multi_mask, \ multi_mask_to_contour_overlay, multi_mask_to_color_overlay from dataset.transform import pad_to_factor class Evaluator(object): def __init__(self): self.OUT_DIR = RESULTS_DIR + '/mask-rcnn-50-gray500-02' self.OVERLAYS_DIR = self.OUT_DIR + '/evaluate/overlays' self.STATS_DIR = self.OUT_DIR + '/evaluate/stats' self.logger = Logger() ## setup --------------------------- os.makedirs(self.OVERLAYS_DIR, exist_ok=True) os.makedirs(self.STATS_DIR, exist_ok=True) os.makedirs(self.OUT_DIR + '/evaluate/npys', exist_ok=True) os.makedirs(self.OUT_DIR + '/checkpoint', exist_ok=True) os.makedirs(self.OUT_DIR + '/backup', exist_ok=True) logger = self.logger logger.open(self.OUT_DIR + '/log.evaluate.txt', mode='a') logger.write('\n--- [START %s] %s\n\n' % (IDENTIFIER, '-' * 64)) logger.write('** some experiment setting **\n') logger.write('\tSEED = %u\n' % SEED) logger.write('\tPROJECT_PATH = %s\n' % PROJECT_PATH) logger.write('\tOUT_DIR = %s\n' % self.OUT_DIR) logger.write('\n') ## dataset ---------------------------------------- logger.write('** dataset setting **\n') self.test_dataset = ScienceDataset( 'train1_ids_gray2_500', # 'valid1_ids_gray2_43', mode='train', #'debug1_ids_gray2_10', mode='train', transform=self._eval_augment) self.test_loader = DataLoader( self.test_dataset, sampler=SequentialSampler(self.test_dataset), batch_size=1, drop_last=False, num_workers=4, pin_memory=True, collate_fn=self._eval_collate) logger.write('\ttest_dataset.split = %s\n' % (self.test_dataset.split)) logger.write('\tlen(self.test_dataset) = %d\n' % (len(self.test_dataset))) logger.write('\n') def _revert(sefl, results, images): """Reverts test-time-augmentation (e.g., unpad, scale back to input image size, etc). """ assert len(results) == len(images), 'Results and images should be the same length' batch_size = len(images) for index_in_batch in range(batch_size): result = results[index_in_batch] image = images[index_in_batch] height, width = image.shape[:2] result.multi_mask = result.multi_mask[:height, :width] for bounding_box in result.bounding_boxes: x0, y0, x1, y1 = bounding_box.coordinates x0, x1 = min((x0, x1), (height, height)) y0, y1 = min((y0, y1), (width, width)) bounding_box.coordinates = (x0, y0, x1, y1) def _eval_augment(self, image, multi_mask, meta, index): pad_image = pad_to_factor(image, factor=16) input = torch.from_numpy(pad_image.transpose((2, 0, 1))).float().div(255) boxes_coordinates, label, instance = multi_mask_to_annotation(multi_mask) return input, boxes_coordinates, label, instance, meta, image, index def _eval_collate(self, batch): batch_size = len(batch) #for index_in_batch in range(batch_size): print (batch[index_in_batch][0].size()) inputs = torch.stack([batch[index_in_batch][0] for index_in_batch in range(batch_size)], 0) boxes = [batch[index_in_batch][1] for index_in_batch in range(batch_size)] labels = [batch[index_in_batch][2] for index_in_batch in range(batch_size)] instances = [batch[index_in_batch][3] for index_in_batch in range(batch_size)] metas = [batch[index_in_batch][4] for index_in_batch in range(batch_size)] images = [batch[index_in_batch][5] for index_in_batch in range(batch_size)] indices = [batch[index_in_batch][6] for index_in_batch in range(batch_size)] return [inputs, boxes, labels, instances, metas, images, indices] def _save_prediction_png(self, name: str, mask, proposal_boxes, truth_box, truth_label, truth_instance, image): cfg = self.cfg contour_overlay = multi_mask_to_contour_overlay(mask, image=image, color=[0, 255, 0]) color_overlay = multi_mask_to_color_overlay(mask, color='summer') color_overlay_with_contour = multi_mask_to_contour_overlay( mask, image=color_overlay, color=[255, 255, 255]) all1 = np.hstack((image, contour_overlay, color_overlay_with_contour)) all6 = draw_multi_proposal_metric(cfg, image, proposal_boxes, truth_box, truth_label, [0, 255, 255], [255, 0, 255], [255, 255, 0]) all7 = draw_mask_metric(cfg, image, mask, truth_box, truth_label, truth_instance) cv2.imwrite('{}/{}_all1.png'.format(self.OVERLAYS_DIR, name), all1) cv2.imwrite('{}/{}_all6.png'.format(self.OVERLAYS_DIR, name), all6) cv2.imwrite('{}/{}_all7.png'.format(self.OVERLAYS_DIR, name), all7) def _append_hit_and_miss_stats(self, name: str, truth_boxes, truth_box_results, thresholds, bb_results: pd.DataFrame): """Checks which ground thruth boxes are hit and which are missed for each threshold level. Populates results dataframe. Args: truth_boxes: an array of ground truth boxes. thruth_box_results: an list of results for each threshold. Each result is an array of truth_boxes length. Each element of the array is whether HIT or not. thresholds: threshold levels for IoU. bb_results: bounding boxes results. """ for threshold_index, threshold in enumerate(thresholds): for boxes_coordinates, result in zip(truth_boxes, truth_box_results[threshold_index]): x0, y0, x1, y1 = boxes_coordinates.astype(np.int32) w, h = (x1 - x0, y1 - y0) bb_results.loc[bb_results.shape[0]] = { 'id': name, 'w': w, 'h': h, 'threshold': threshold, 'is_hit': result == HIT } def _append_results_stats(self, name: str, box_precision, thresholds, mask_average_precision, overall_results): """Appends overall precision results to the results dataframe. """ results_row = {'id': name, 'mask_average_precision': mask_average_precision} for threshold_index, threshold in enumerate(thresholds): results_row['box_precision_{}'.format(int( threshold * 100))] = box_precision[threshold_index] overall_results.loc[overall_results.shape[0]] = results_row def run_evaluate(self, model_checkpoint): self.cfg = Configuration() logger = self.logger thresholds = [0.5, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] # TODO(alexander): Populate this. overall_results_columns = ['id', 'mask_average_precision'] for threshold in thresholds: overall_results_columns.append('box_precision_{}'.format(int(threshold * 100))) overall_results =
pd.DataFrame(columns=overall_results_columns)
pandas.DataFrame
import os import shutil import sys from collections import namedtuple from datetime import datetime, date from sqlalchemy import create_engine import pandas as pd import numpy as np BASE_DIR = os.getenv('ETL_HOME', '/home/etl') HeaderMapping = namedtuple('HeaderMapping', ['raw_name', 'output_name']) LOCATION_ID_HEADER = 'location_id' DATE_ID_HEADER = 'date_id' CITY_HEADER = 'city' STATE_HEADER = 'state' COUNTRY_HEADER = 'country' COMBINED_HEADER = 'combined_key' FIPS_HEADER = 'FIPS' UID_HEADER = 'UID' LATITUDE_HEADER = 'latitude' LONGITUDE_HEADER = 'longitude' CASES_HEADER = 'cases' DEATHS_HEADER = 'deaths' RECOVERIES_HEADER = 'recoveries' # Tests performed per 100,000 people TESTING_RATE_HEADER = 'testing_rate' # hospitalized / number cases HOSPITALIZATION_RATE_HEADER = 'hospitalization_rate' # Cases per 100,000 people CASES_100K_HEADER = 'cases_100k' DATE_HEADER = 'date' POPULATION_HEADER = 'population' state_v1 = HeaderMapping('Province/State', STATE_HEADER) state_v2 = HeaderMapping('Province_State', STATE_HEADER) country_v1 = HeaderMapping('Country/Region', COUNTRY_HEADER) country_v2 = HeaderMapping('Country_Region', COUNTRY_HEADER) cases_v1 = HeaderMapping('Confirmed', CASES_HEADER) deaths_v1 = HeaderMapping('Deaths', DEATHS_HEADER) recoveries_v1 = HeaderMapping('Recovered', RECOVERIES_HEADER) testing_rate_v1 = HeaderMapping('Testing_Rate', TESTING_RATE_HEADER) hospitalization_rate_v1 = HeaderMapping('Hospitalization_Rate', HOSPITALIZATION_RATE_HEADER) cases_100K_v1 = HeaderMapping('Incidence_Rate', CASES_100K_HEADER) cases_100K_v2 = HeaderMapping('Incident_Rate', CASES_100K_HEADER) latitude_v1 = HeaderMapping('Latitude', LATITUDE_HEADER) latitude_v2 = HeaderMapping('Lat', LATITUDE_HEADER) longitude_v1 = HeaderMapping('Longitude', LONGITUDE_HEADER) longitude_v2 = HeaderMapping('Long_', LONGITUDE_HEADER) known_headers = [ 'Province/State,Country/Region,Last Update,Confirmed,Deaths,Recovered', 'Province/State,Country/Region,Last Update,Confirmed,Deaths,Recovered,Latitude,Longitude', 'FIPS,Admin2,Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Recovered,Active,Combined_Key', 'FIPS,Admin2,Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Recovered,Active,Combined_Key,Incidence_Rate,Case-Fatality_Ratio', 'FIPS,Admin2,Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Recovered,Active,Combined_Key,Incident_Rate,Case_Fatality_Ratio', 'Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Recovered,Active,FIPS,Incident_Rate,People_Tested,People_Hospitalized,Mortality_Rate,UID,ISO3,Testing_Rate,Hospitalization_Rate', 'Province_State,Country_Region,Last_Update,Lat,Long_,Confirmed,Deaths,Recovered,Active,FIPS,Incident_Rate,Total_Test_Results,People_Hospitalized,Case_Fatality_Ratio,UID,ISO3,Testing_Rate,Hospitalization_Rate' ] header_transformation_mappings = [ state_v1, state_v2, country_v1, country_v2, cases_v1 , deaths_v1, recoveries_v1, testing_rate_v1, hospitalization_rate_v1, cases_100K_v1, cases_100K_v2, latitude_v1, latitude_v2, longitude_v1, longitude_v2, ] required_headers = [ CITY_HEADER, STATE_HEADER, COUNTRY_HEADER, LATITUDE_HEADER, LONGITUDE_HEADER, CASES_HEADER, DEATHS_HEADER, RECOVERIES_HEADER, TESTING_RATE_HEADER, HOSPITALIZATION_RATE_HEADER, CASES_100K_HEADER, ] load_headers = [ DATE_ID_HEADER, LOCATION_ID_HEADER, CASES_HEADER, RECOVERIES_HEADER, DEATHS_HEADER, CASES_100K_HEADER, TESTING_RATE_HEADER, HOSPITALIZATION_RATE_HEADER, ] def remap_header_name(header_name): '''Given any string, match it to an instance of HeaderMapping and return the output_name of the match or the original header_name if no match it found. Args: header_name (str): raw input header name to transform Returns: A header name that underwent transformation ''' for hm in header_transformation_mappings: if header_name == hm.raw_name: return hm.output_name return header_name def transform_headers(df, ds): '''Takes a Pandas DataFrame, validates the headers are from an an expected list of headers the ETL pipeline knows apriori and remaps the names of the headers to a uniform set of names and order Args: df (DataFrame): input DataFrame to transform ds (str or datetime): the date stamp the DataFrame contains data for Returns: A transformed DataFrame with uniform header names and order ''' if isinstance(ds, str): ds = datetime.strptime(ds, '%m-%d-%Y') elif not isinstance(ds, datetime): raise TypeError('ds argument is expected to be either a datetime instance or str representing one') transformed_df = df.rename(columns=remap_header_name) keep_columns = [col for col in transformed_df.columns if col in required_headers] add_columns = [col for col in required_headers if col not in keep_columns] transformed_df = transformed_df[keep_columns] for col in add_columns: transformed_df[col] = np.nan transformed_df[DATE_HEADER] = ds expected_order = [DATE_HEADER] + required_headers transformed_df = transformed_df[expected_order] if 'Combined_Key' not in df.columns: combined_key_rows = [] for idx, row in transformed_df.iterrows(): combined = '' if not pd.isnull(row.city) and row.city: combined += row.city + ', ' if not pd.isnull(row.state) and row.state and row.state != row.country: combined += row.state + ', ' if not pd.isnull(row.country) and row.country: combined += row.country combined_key_rows.append(combined) transformed_df[COMBINED_HEADER] = combined_key_rows else: transformed_df[COMBINED_HEADER] = df.Combined_Key transformed_df[COMBINED_HEADER] = transformed_df[COMBINED_HEADER].str.lower() if 'FIPS' not in df.columns: transformed_df[FIPS_HEADER] = np.nan else: transformed_df[FIPS_HEADER] = df.FIPS if 'UID' not in df.columns: transformed_df[UID_HEADER] = np.nan else: transformed_df[UID_HEADER] = df.UID return transformed_df COVID_DATA_START_DATE = date(2020, 1, 22) def make_date_dims(start, end=None): date_range = pd.date_range(start=start, end=end or date.today(), freq='1D') data = { 'date_id': list(range(1, len(date_range)+1)), 'date': date_range.date, 'year': date_range.year, 'month': date_range.month, 'day_of_month': date_range.day, 'day_of_week': date_range.weekday } return pd.DataFrame(data, index=date_range) def parse_city_from_combined_key(key): parts = key.split(',') if len(parts) == 3: return parts[0] return None def transform_global(): INPUT_DATA_DIR = os.path.join(BASE_DIR, 'COVID-19', 'csse_covid_19_data', 'csse_covid_19_daily_reports') print("Input Dir: " + INPUT_DATA_DIR) TRANSFORMED_DATA_DIR = os.path.join(BASE_DIR, 'COVID-19-TRANSFORMED') if os.path.exists(TRANSFORMED_DATA_DIR): shutil.rmtree(TRANSFORMED_DATA_DIR) os.makedirs(TRANSFORMED_DATA_DIR) print("Output Dir: " + TRANSFORMED_DATA_DIR) # Fix any BOM files (there are some early on ones in Jan 2020, could be more later) input_files = [f for f in os.listdir(INPUT_DATA_DIR) if f.endswith('.csv')] for f in input_files: input_f = os.path.join(INPUT_DATA_DIR, f) output_f = os.path.join(TRANSFORMED_DATA_DIR, 'global_'+f) with open(input_f, mode='r', encoding='utf-8-sig') as fin, open(output_f, mode='w', encoding='utf-8') as fout: fout.write(fin.read()) # remap headers to consistent format files = [f for f in os.listdir(TRANSFORMED_DATA_DIR) if f.startswith('global_')] for f in files: fname, fext = os.path.splitext(f) date_str = fname.replace('global_', '') file_path = os.path.join(TRANSFORMED_DATA_DIR, f) with open(file_path) as fp: headers = fp.readline().strip() if headers not in known_headers: print("{} has unrecognized headers {}".format(f, headers)) sys.exit(1) print('Transforming {}'.format(f)) df = pd.read_csv(file_path) transformed_df = transform_headers(df, date_str) transformed_path = os.path.join(TRANSFORMED_DATA_DIR, 'transformed_'+date_str+'.csv') transformed_df.to_csv(transformed_path, index=False) def transform_us(): INPUT_DATA_DIR = os.path.join(BASE_DIR, 'COVID-19', 'csse_covid_19_data', 'csse_covid_19_daily_reports_us') print("Input Dir: " + INPUT_DATA_DIR) TRANSFORMED_DATA_DIR = os.path.join(BASE_DIR, 'COVID-19-TRANSFORMED') if not os.path.exists(TRANSFORMED_DATA_DIR): os.makedirs(TRANSFORMED_DATA_DIR) print("Output Dir: " + TRANSFORMED_DATA_DIR) # Fix any BOM files (there are some early on ones in Jan 2020, could be more later) input_files = [f for f in os.listdir(INPUT_DATA_DIR) if f.endswith('.csv')] for f in input_files: input_f = os.path.join(INPUT_DATA_DIR, f) output_f = os.path.join(TRANSFORMED_DATA_DIR, 'us_'+f) with open(input_f, mode='r', encoding='utf-8-sig') as fin, open(output_f, mode='w', encoding='utf-8') as fout: fout.write(fin.read()) # remap headers to consistent format files = [f for f in os.listdir(TRANSFORMED_DATA_DIR) if f.startswith('us_')] for f in files: fname, fext = os.path.splitext(f) date_str = fname.replace('us_', '') file_path = os.path.join(TRANSFORMED_DATA_DIR, f) with open(file_path) as fp: headers = fp.readline().strip() df = pd.read_csv(file_path) if headers not in known_headers: print("{} has unrecognized headers {}".format(f, headers)) df.head() sys.exit(1) print('Transforming {}'.format(f)) transformed_df = transform_headers(df, date_str) transformed_path = os.path.join(TRANSFORMED_DATA_DIR, 'transformed_'+date_str+'.csv') if os.path.exists(transformed_path): global_df = pd.read_csv(transformed_path) # for country in transformed_df.country.unique(): # global_df = global_df.loc[global_df.country != country] transformed_df = pd.concat([transformed_df, global_df]).drop_duplicates() transformed_df.to_csv(transformed_path, index=False) COVID_TMP_FACTS_TBL = 'tmp_covid_facts' COVID_DATE_DIM_TBL = 'date_dim' COVID_LOCATION_DIM_TBL = 'location_dim' def create_sql_engine(): return create_engine('postgresql://etl:etl@localhost:5432/dw') def validate_location_sql_entry(row): values = ( row.location_id, row.country, row.state if pd.notnull(row.state) else None, row.city if pd.notnull(row.city) else None, row.latitude, row.longitude, int(row.population) if pd.notnull(row.population) else None ) return values def validate_covid_facts_sql_entry(row): values = ( int(row.date_id), int(row.location_id), int(row.cases) if pd.notnull(row.cases) else None, int(row.recoveries) if pd.notnull(row.recoveries) else None, int(row.deaths) if pd.notnull(row.deaths) else None, row.cases_100k if pd.notnull(row.cases_100k) else None, row.testing_rate if pd.notnull(row.testing_rate) else None, row.hospitalization_rate if pd.notnull(row.hospitalization_rate) else None ) return values def regenerate_tmp_covid_facts_table(): conn = None try: engine = create_sql_engine() conn = engine.raw_connection() cur = conn.cursor() cur.execute('DROP TABLE tmp_covid_facts') cur.execute('CALL create_covid_facts_tables()') cur.close() except Exception as e: print('Failed to regenerate tmp_covid_facts table', e) finally: if conn: conn.close() def load_covid_facts_from_tmp(): conn = None try: engine = create_sql_engine() conn = engine.raw_connection() cur = conn.cursor() cur.execute('CALL refresh_from_tmp_facts()') conn.commit() cur.close() except Exception as e: print('Failed to load covid_facts from tmp_covid_facts table', e) finally: if conn: conn.close() def load(): LOCATIONS_PATH = os.path.join(BASE_DIR, 'COVID-19', 'csse_covid_19_data', 'UID_ISO_FIPS_LookUp_Table.csv') print("Locations File: " + LOCATIONS_PATH) TRANSFORMED_DATA_DIR = os.path.join(BASE_DIR, 'COVID-19-TRANSFORMED') print("Output Dir: " + TRANSFORMED_DATA_DIR) locations_df = pd.read_csv(LOCATIONS_PATH) lower_combined_key = locations_df.Combined_Key.str.lower().values locations_df = locations_df.set_index(lower_combined_key) locations_df['city'] = locations_df.Combined_Key.apply(parse_city_from_combined_key) locations_dim_df = locations_df.rename(columns={ 'UID': LOCATION_ID_HEADER, 'Province_State': STATE_HEADER, 'Country_Region': COUNTRY_HEADER, 'Lat': LATITUDE_HEADER, 'Long_': LONGITUDE_HEADER, 'Population': POPULATION_HEADER }) keep_columns = [ LOCATION_ID_HEADER, COUNTRY_HEADER, STATE_HEADER, CITY_HEADER, LATITUDE_HEADER, LONGITUDE_HEADER, POPULATION_HEADER ] locations_dim_df = locations_dim_df[keep_columns] locations_dim_df.to_csv(os.path.join(TRANSFORMED_DATA_DIR, 'loadable_locations.csv'), index=False) locations_sql = '\n'.join([ 'INSERT INTO location_dim ({})'.format(','.join(keep_columns)), 'VALUES (%s, %s, %s, %s, %s, %s, %s)', 'ON CONFLICT (location_id) DO NOTHING' ]) conn = None try: engine = create_sql_engine() conn = engine.raw_connection() cur = conn.cursor() for idx, row in locations_dim_df.iterrows(): cur.execute(locations_sql, validate_location_sql_entry(row)) conn.commit() cur.close() except Exception as e: print('Failed to insert locations', e) finally: if conn: conn.close() date_df = make_date_dims(COVID_DATA_START_DATE) date_df.to_csv(os.path.join(TRANSFORMED_DATA_DIR, 'loadable_dates.csv'), index=False) date_sql = '\n'.join([ 'INSERT INTO date_dim (date_id, date, year, month, day_of_month, day_of_week)', 'VALUES (%s, %s, %s, %s, %s, %s)', 'ON CONFLICT (date_id) DO NOTHING' ]) date_values = [row.values.tolist() for idx, row in date_df.iterrows()] conn = None try: engine = create_sql_engine() conn = engine.raw_connection() cur = conn.cursor() cur.executemany(date_sql, date_values) conn.commit() cur.close() except Exception as e: print('Failed to insert dates', e) finally: if conn: conn.close() files = [f for f in os.listdir(TRANSFORMED_DATA_DIR) if f.startswith('transformed_')] regenerate_tmp_covid_facts_table() for f in files: file_path = os.path.join(TRANSFORMED_DATA_DIR, f) df =
pd.read_csv(file_path)
pandas.read_csv
# coding: utf-8 # In[1]: import pandas as pd import numpy as np edata = pd.read_csv("docword.enron.txt", skiprows=3, sep = ' ', header=None) evocab = pd.read_csv("vocab.enron.txt", header=None) print (evocab) evocab.columns = ['word'] edata.columns = ['docid','wordid','freq'] # Taking a sample data set edata = edata.iloc[:100,:] evocab.index = evocab.index + 1 wc = edata.groupby('wordid')['freq'].sum() #wc = egrouped['freq'].agg(np.sum) print (wc) in_list = wc # In[ ]: m = 1 # Input parameter 'm' # while(True): # m = input("Enter no. of randomized iterations required: ") # try: # m = int(m) # break # except: # print("Enter valid number.") # continue # Calculating the dissimilarities and smoothing factors. # Set the value of parameter m = the no. of iterations you require Card = pd.Series(np.NAN) DS=
pd.Series(np.NAN)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jan 25 12:57:48 2020 @authors: <NAME> Last modified: 2020-02-19 -------------------------------------------------- ** Semantic Search Analysis: Integrate ** -------------------------------------------------- ** CHANGE FILE NAMING BEFORE RUNNING!! ** aThis script: Join the new data to your old data (if any). For the file TaggedLogAllMonths.xlsx, the script replaces total search counts to existing query rows and adds new rows for new queries; for the Tableau discovery UI. The file BiggestMovers.xlsx follows the same procedure regarding row addition, however a new column is appended for every month of data to allow for time series analysis over months. After you have your second month of data, dupe off dataProcessed + 'taggedLog' + TimePeriod + '.xlsx' to dataProcessed + 'TaggedLogAllMonths.xlsx'. INPUTS: - data/processed/taggedLog-[TimePeriod].xlsx - Importable into Tableau, etc. but also summaries for Excel users - dataProcessed/'BiggestMovers' + TimePeriod + '.xlsx' - For PreferredTerm trends OUTPUTS: - reports/TaggedLogAllMonths.xlsx - Summarize for discovery UI - data/processed/BiggestMovers.xlsx - Summarize for time series; study trends across time. ---------------- SCRIPT CONTENTS ---------------- 1. Start-up / What to put into place, where 2. Append columns to TaggedLogAllMonths.xlsx 3. Append columns to BiggestMoversAllMonths.xlsx 4. Create summary infographic """ #%% # ============================================ # 1. Start-up / What to put into place, where # ============================================ import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import os from datetime import datetime, timedelta # import random from scipy.optimize import basinhopping, differential_evolution from pathlib import * # To be used with str(Path.home()) # Set working directory and directories for read/write home_folder = str(Path.home()) # os.path.expanduser('~') os.chdir(home_folder + '/Projects/classifysearches') dataRaw = 'data/raw/' # Put log here before running script dataMatchFiles = 'data/matchFiles/' # Permanent helper files; both reading and writing required dataInterim = 'data/interim/' # Save to disk as desired, to re-start easily dataProcessed = 'data/processed/' # Ready to visualize reports = 'reports/' #%% # ============================================= # 2. Append columns to TaggedLogAllMonths.xlsx # ============================================= ''' You'll need to build this based on what you've already done. After processing the second month, you can create TaggedLogAllMonths. In this example code, 3 months were processed before aggregating. ''' # Bring in new tagged log taggedLog201910 = pd.read_excel(dataProcessed + 'taggedLog201910.xlsx') taggedLog201911 = pd.read_excel(dataProcessed + 'taggedLog201911.xlsx') taggedLog201912 = pd.read_excel(dataProcessed + 'taggedLog201912.xlsx') # Join TaggedMerge1 = pd.merge(taggedLog201910, taggedLog201911, how='outer', on=['Query', 'AdjustedQueryTerm', 'SemanticType', 'SemanticGroup', 'LocationOfSearch']) TaggedMerge1.columns ''' 'Query', 'AdjustedQueryTerm_x', 'TotalSearchFreq201910', 'TotalUniqueSearches_x', 'SemanticGroup', 'SemanticType', 'PreferredTerm_x', 'LocationOfSearch_x', 'Impressions_x', 'Clicks_x', 'CTR_x', 'AveragePosition_x', 'ResultsPVSearch_x', 'PercentSearchExits_x', 'PercentSearchRefinements_x', 'TimeAfterSearch_x', 'AvgSearchDepth_x', 'ui_x', 'CustomTag1_x', 'CustomTag2_x', 'AdjustedQueryTerm_y', 'TotalSearchFreq201911', 'TotalUniqueSearches_y', 'PreferredTerm_y', 'LocationOfSearch_y', 'Impressions_y', 'Clicks_y', 'CTR_y', 'AveragePosition_y', 'ResultsPVSearch_y', 'PercentSearchExits_y', 'PercentSearchRefinements_y', 'TimeAfterSearch_y', 'AvgSearchDepth_y', 'ui_y', 'CustomTag1_y', 'CustomTag2_y' ''' # Join the last TaggedMerge2 = pd.merge(TaggedMerge1, taggedLog201912, how='outer', on=['Query', 'AdjustedQueryTerm', 'SemanticType', 'SemanticGroup', 'LocationOfSearch']) TaggedMerge2.columns ''' 'Query', 'AdjustedQueryTerm', 'TotalSearchFreq201910', 'TotalUniqueSearches_x', 'SemanticGroup', 'SemanticType', 'PreferredTerm_x', 'LocationOfSearch', 'Impressions_x', 'Clicks_x', 'CTR_x', 'AveragePosition_x', 'ResultsPVSearch_x', 'PercentSearchExits_x', 'PercentSearchRefinements_x', 'TimeAfterSearch_x', 'AvgSearchDepth_x', 'ui_x', 'CustomTag1_x', 'CustomTag2_x', 'TotalSearchFreq201911', 'TotalUniqueSearches_y', 'PreferredTerm_y', 'Impressions_y', 'Clicks_y', 'CTR_y', 'AveragePosition_y', 'ResultsPVSearch_y', 'PercentSearchExits_y', 'PercentSearchRefinements_y', 'TimeAfterSearch_y', 'AvgSearchDepth_y', 'ui_y', 'CustomTag1_y', 'CustomTag2_y', 'TotalSearchFreq201912', 'TotalUniqueSearches', 'PreferredTerm', 'Impressions', 'Clicks', 'CTR', 'AveragePosition', 'ResultsPVSearch', 'PercentSearchExits', 'PercentSearchRefinements', 'TimeAfterSearch', 'AvgSearchDepth', 'ui', 'CustomTag1', 'CustomTag2' ''' # Reduce and reorder # If you changed the matchFiles over months, _x and _y may not be the same, and in that case # you might want to reconcile them. Here the unneeded cols are dropped TaggedMergeCleanup = TaggedMerge2[['Query', 'AdjustedQueryTerm', 'PreferredTerm', 'PreferredTerm_x', 'PreferredTerm_y', 'SemanticType', 'SemanticGroup', 'TotalSearchFreq201910', 'TotalSearchFreq201911', 'TotalSearchFreq201912', 'CustomTag1', # 'CustomTag1_x', 'CustomTag1_y', 'CustomTag2', # 'CustomTag2_x', 'CustomTag2_y', # 'CustomTag3', # 'CustomTag3_x', 'CustomTag3_y', 'LocationOfSearch']] ''' prefNull = TaggedMergeCleanup['PreferredTerm'].isnull().sum() # 144960 prefXNull = TaggedMergeCleanup['PreferredTerm_x'].isnull().sum() # 132719 prefYNull = TaggedMergeCleanup['PreferredTerm_y'].isnull().sum() # 135750 ''' # FIXME - Same routine as other scripts use after merge, but this time to level-set PreferredTerm TaggedMergeCleanup['PreferredTerm2'] = TaggedMergeCleanup['PreferredTerm_x'].where(TaggedMergeCleanup['PreferredTerm_x'].notnull(), TaggedMergeCleanup['PreferredTerm_y']) TaggedMergeCleanup['PreferredTerm2'] = TaggedMergeCleanup['PreferredTerm_y'].where(TaggedMergeCleanup['PreferredTerm_y'].notnull(), TaggedMergeCleanup['PreferredTerm_x']) # If it's still null, copy in AdjustedQueryTerm TaggedMergeCleanup['PreferredTerm2'] = TaggedMergeCleanup['AdjustedQueryTerm'].where(TaggedMergeCleanup['PreferredTerm2'].isnull(), TaggedMergeCleanup['PreferredTerm2']) # How many null in PreferredTerm? # prefNull = TaggedMergeCleanup['PreferredTerm'].isnull().sum() # 144960 # prefNull # Clean up TaggedMergeCleanup.drop(['PreferredTerm', 'PreferredTerm_x', 'PreferredTerm_y'], axis=1, inplace=True) TaggedMergeCleanup.rename(columns={'PreferredTerm2': 'PreferredTerm'}, inplace=True) TaggedMergeCleanup.columns ''' 'Query', 'AdjustedQueryTerm', 'SemanticType', 'SemanticGroup', 'TotalSearchFreq201910', 'TotalSearchFreq201911', 'TotalSearchFreq201912', 'CustomTag1', 'CustomTag2', 'LocationOfSearch', 'PreferredTerm' ''' # Total month counts TaggedMergeCleanup.fillna({'TotalSearchFreq201910': 0, 'TotalSearchFreq201911': 0, 'TotalSearchFreq201912': 0}, inplace = True) # New col TaggedMergeCleanup['TotalSearchFreq'] = '' TaggedMergeCleanup['TotalSearchFreq'] = TaggedMergeCleanup.TotalSearchFreq201910 + TaggedMergeCleanup.TotalSearchFreq201911 + TaggedMergeCleanup.TotalSearchFreq201912 # Sort TaggedMergeCleanup = TaggedMergeCleanup.sort_values(by=['TotalSearchFreq', 'Query'], ascending=[False, True]) TaggedMergeCleanup.reset_index(inplace=True) # View a sample # Top = TaggedMergeCleanup.head(50) # TopAndBottom = Top.append(TaggedMergeCleanup.tail(50)) # Reorder again TaggedMergeCleanup = TaggedMergeCleanup[['TotalSearchFreq', 'Query', 'AdjustedQueryTerm', 'PreferredTerm', 'SemanticType', 'SemanticGroup', 'TotalSearchFreq201910', 'TotalSearchFreq201911', 'TotalSearchFreq201912', 'CustomTag1', 'CustomTag2', 'LocationOfSearch']] # Write out writer = pd.ExcelWriter(reports + 'TaggedLogAllMonths.xlsx') TaggedMergeCleanup.to_excel(writer,'TaggedLogAllMonths', index=False) writer.save() #%% # ================================================= # 3. Append columns to BiggestMoversAllMonths.xlsx # ================================================= ''' BREAKS THE SCRIPT IF YOU DON'T HAVE MULTIPLE FILES WRITTEN OUT ALREADY Creating a multi-month analysis of trends by PreferredTerm, is recommended, but this will be commented out, to avoid auto-run errors. Update the file names every time you run. The pilot project looks at 3 months at a time. ''' # Open files that from previous analyses BiggestMoversNew = pd.read_excel(dataProcessed + 'BiggestMovers' + TimePeriod + '.xlsx') BiggestMovers10 = pd.read_excel(dataProcessed + 'BiggestMovers2019-10.xlsx') BiggestMovers11 = pd.read_excel(dataProcessed + 'BiggestMovers2019-11.xlsx') BiggestMovers10.columns ''' 'PreferredTerm', 'SemanticType', 'SemanticGroup', 'TotalSearchFreq', 'PercentShare', 'Month' ''' # Update col names BiggestMovers10.rename(columns={'TotalSearchFreq': 'TotFreq201910', 'PercentShare': 'PerShare201910'}, inplace=True) BiggestMovers11.rename(columns={'TotalSearchFreq': 'TotFreq201911', 'PercentShare': 'PerShare201911'}, inplace=True) BiggestMovers12.rename(columns={'TotalSearchFreq': 'TotFreq201912', 'PercentShare': 'PerShare201912'}, inplace=True) # Drop Month BiggestMovers10.drop(['Month'], axis=1, inplace=True) BiggestMovers11.drop(['Month'], axis=1, inplace=True) BiggestMovers12.drop(['Month'], axis=1, inplace=True) # Join on PreferredTerm bgtemp =
pd.merge(BiggestMovers10, BiggestMovers11, how='outer', on=['PreferredTerm', 'SemanticType', 'SemanticGroup'])
pandas.merge
import glob import os import datetime from collections import OrderedDict import pandas as pd import numpy as np from sklearn.manifold import TSNE import scipy.stats as stats import scipy.sparse as sparse from sparse_dataframe import SparseDataFrame def combine_sdf_files(run_folder, folders, verbose=False, **kwargs): """function for concatenating SparseDataFrames together""" combined = SparseDataFrame() combined.rows = [] columns = set() for folder in folders: filename = os.path.join(run_folder, folder, f'{folder}.mus.cell-gene.npz') if verbose: print(f'Reading {filename} ...') sdf = SparseDataFrame(filename) columns.add(tuple(sdf.columns)) combined.rows.extend(sdf.rows) if combined.matrix is None: combined.matrix = sdf.matrix else: combined.matrix = sparse.vstack((combined.matrix, sdf.matrix), format='csr') assert len(columns) == 1 combined.columns = columns.pop() return combined def combine_csv_files(folder, globber, verbose=False, **kwargs): """generic function for concatentating a bunch of csv files into a single pandas Dataframe""" dfs = [] for filename in glob.iglob(os.path.join(folder, globber)): if verbose: print(f'Reading {filename} ...') df = pd.read_csv(filename, **kwargs) dfs.append(df) combined = pd.concat(dfs) return combined def maybe_to_numeric(series): try: return pd.to_numeric(series) except ValueError: return series def clean_mapping_stats(mapping_stats_original, convert_to_percentage=None): """Remove whitespace from all values and convert to numbers""" if convert_to_percentage is None: convert_to_percentage = set() mapping_stats_original = mapping_stats_original.applymap( lambda x: (x.replace(',', '').strip().strip('%') if isinstance(x, str) else x)) numeric = mapping_stats_original.apply(maybe_to_numeric) numeric.columns = numeric.columns.map(str.strip) # for 10X mapping stats numeric.columns = numeric.columns.map( lambda x: ('Percent {}'.format(x.replace('Fraction ', '')) if x in convert_to_percentage else x) ) return numeric def diff_exp(matrix, group1, group2, index): """Computes differential expression between group 1 and group 2 for each column in the dataframe counts. Returns a dataframe of Z-scores and p-values.""" g1 = matrix[group1, :] g2 = matrix[group2, :] g1mu = g1.mean(0) g2mu = g2.mean(0) mean_diff = np.asarray(g1mu - g2mu).flatten() # E[X^2] - (E[X])^2 pooled_sd = np.sqrt( ((g1.power(2)).mean(0) - np.power(g1mu, 2)) / len(group1) + ((g2.power(2)).mean(0) - np.power(g2mu, 2)) / len(group2)) pooled_sd = np.asarray(pooled_sd).flatten() z_scores = np.zeros_like(pooled_sd) nz = pooled_sd > 0 z_scores[nz] = np.nan_to_num(mean_diff[nz] / pooled_sd[nz]) # t-test p_vals = (1 - stats.norm.cdf(np.abs(z_scores))) * 2 df = pd.DataFrame(OrderedDict([('z', z_scores), ('p', p_vals)]), index=index) return df class Plates(object): # Names of commonly accessed columns MEAN_READS_PER_CELL = 'Mean reads per well' MEDIAN_GENES_PER_CELL = 'Median genes per well' PERCENT_ERCC = 'Percent ERCC' PERCENT_MAPPED_READS = 'Percent mapped to genome' # maybe we should change this to the right thing SAMPLE_MAPPING = 'WELL_MAPPING' def __init__(self, data_folder, metadata, genes_to_drop='Rn45s', verbose=False, nrows=None): plates_folder = os.path.join(data_folder, 'plates') counts = combine_csv_files( plates_folder, '*.htseq-count-by-cell.csv', index_col=[0, 1, 2, 3], verbose=verbose, nrows=nrows) mapping_stats = combine_csv_files( plates_folder, '*.log-by-cell.csv', index_col=[0, 1, 2, 3], verbose=verbose) self.genes, self.cell_metadata, self.mapping_stats = \ self.clean_and_reformat(counts, mapping_stats) self.plate_summaries = self.calculate_plate_summaries() original_metadata = pd.read_csv(metadata, index_col=0) self.plate_metadata = self.clean_plate_metadata(original_metadata) self.plate_metadata = self.plate_metadata.loc[ self.plate_summaries.index] if not os.path.exists(os.path.join(data_folder, 'coords')): os.mkdir(os.path.join(data_folder, 'coords')) self.bulk_smushed_cache_file = os.path.join(data_folder, 'coords', 'bulk_smushed.csv') self.cell_smushed_cache_file = os.path.join(data_folder, 'coords', 'cell_smushed.pickle') self.bulk_smushed = self.compute_bulk_smushing() self.cell_smushed = self.compute_cell_smushing() self.gene_names = sorted(self.genes.columns) self.plate_metadata_features = sorted(self.plate_metadata.columns) # Remove pesky genes self.genes = self.genes.drop(genes_to_drop, axis=1) # Get a counts per million rescaling of the genes self.counts_per_million = self.genes.divide(self.genes.sum(axis=1), axis=0) * 1e6 self.top_genes = self.compute_top_genes_per_cell() self.data = {'genes': self.genes, 'mapping_stats': self.mapping_stats, 'cell_metadata': self.cell_metadata, 'plate_metadata': self.plate_metadata, 'plate_summaries': self.plate_summaries} def __repr__(self): n_plates = self.plate_summaries.shape[0] n_barcodes = self.genes.shape[0] s = f'This is an object holding data for {n_plates} plates and ' \ f'{n_barcodes} barcodes.\nHere are the accessible dataframes:\n' for name, df in self.data.items(): s += f'\t"{name}" table dimensions: ' + str(df.shape) + '\n' return s @staticmethod def clean_and_reformat(counts, mapping_stats): """Move metadata information into separate dataframe and simplify ids Parameters ---------- counts : pandas.DataFrame A (samples, genes) dataframe of integer number of reads that mapped to a gene in a cell, but also has extra columns of ERCC mapping and htseq-count output that we want to remove mapping_stats : pandas.DataFrame A (samples, mapping_statistics) dataframe of the time the alignment began, number of input reads, number of mapped reads, and other information output by STAR, but everything is a string instead of numbers which makes us sad Returns ------- genes : pandas.DataFrame A (samples, genes) dataframe of integer number of reads that mapped to a gene in a cell cell_metadata : pandas.DataFrame A (samples, sample_features) dataframe of number of detected genes, total reads, ercc counts, and "WELL_MAPPING" (really, plate mapping) mapping_stats : pandas.DataFrame A (samples, mapping_statistics) dataframe of the time the alignment began, number of input reads, number of mapped reads, and other information output by STAR, with numbers properly formatted """ mapping_stats = clean_mapping_stats(mapping_stats) cell_metadata = counts.index.to_frame() sample_ids = cell_metadata.index.droplevel([1, 2, 3]) cell_metadata.index = sample_ids mapping_stats.index = sample_ids counts.index = sample_ids # Extract htseq-count outputs and save as separate files cols = [x for x in counts if x.startswith('__')] count_stats = counts[cols] count_stats.columns = [x.strip('_') for x in count_stats] # Separate spike-ins (ERCCs) and genes ercc_names = [col for col in counts.columns[3:] if 'ERCC-' in col] gene_names = [col for col in counts.columns[3:] if 'ERCC-' not in col and col[0] != '_'] cell_metadata['total_reads'] = counts.sum(axis=1) # Separate counts of everything from genes-only genes = counts[gene_names] # Add mapping and ERCC counts to cell metadata cell_metadata['n_genes'] = (genes > 0).sum(axis=1) cell_metadata['mapped_reads'] = genes.sum(axis=1) cell_metadata['ercc'] = counts[ercc_names].sum(axis=1) cell_metadata = pd.concat([cell_metadata, count_stats], axis=1) # Remove not useful columns cell_metadata.drop(['too_low_aQual', 'not_aligned'], inplace=True, axis=1) return genes, cell_metadata, mapping_stats def calculate_plate_summaries(self): """Get mean reads, percent mapping, etc summaries for each plate""" well_map = self.cell_metadata.groupby(Plates.SAMPLE_MAPPING) # these stats are from STAR mapping star_cols = ['Number of input reads', 'Uniquely mapped reads number'] star_stats = self.mapping_stats[star_cols].groupby( self.cell_metadata[Plates.SAMPLE_MAPPING]).sum() total_reads = star_stats['Number of input reads'] unique_reads = star_stats['Uniquely mapped reads number'] percent_ercc = well_map.sum()['ercc'].divide(total_reads, axis=0) percent_mapped_reads = unique_reads / total_reads - percent_ercc plate_summaries = pd.DataFrame(OrderedDict([ (Plates.MEAN_READS_PER_CELL, total_reads / well_map.size()), (Plates.MEDIAN_GENES_PER_CELL, well_map.median()['n_genes']), ('Percent not uniquely aligned', 100 * well_map.sum()['alignment_not_unique'].divide(total_reads, axis=0)), (Plates.PERCENT_MAPPED_READS, 100 * percent_mapped_reads), ('Percent no feature', 100 * well_map.sum()['no_feature'].divide(total_reads, axis=0)), ('Percent Rn45s', 100 * self.genes['Rn45s'].groupby( self.cell_metadata[Plates.SAMPLE_MAPPING]).sum() / total_reads), (Plates.PERCENT_ERCC, 100 * percent_ercc), ('n_wells', well_map.size()) ])) return plate_summaries @staticmethod def clean_plate_metadata(plate_metadata): # Remove whitespace from "tissue" column plate_metadata.tissue = plate_metadata.tissue.map( lambda x: x.strip() if isinstance(x, str) else x) # Add a column with both tissue and subtissue cleaned_subtissue = plate_metadata['subtissue'].map( lambda x: ': ' + x.strip() if isinstance(x, str) else '') plate_metadata['tissue_subtissue'] = plate_metadata['tissue'] \ + cleaned_subtissue # Hard-coded column name of 21_55_F is actually the sample id column plate_metadata = plate_metadata.rename( columns={'mouse.id': 'Sample ID'}) plate_metadata['Age (months)'] = plate_metadata['Sample ID'].map( lambda x: x.split('_')[0] if isinstance(x, str) else '') def parse_date(x): if isinstance(x, str): x = x.strip() if not x: return np.nan if x.endswith('/2017'): return datetime.datetime.strptime(x, '%m/%d/%Y') elif x.endswith('/17'): return datetime.datetime.strptime(x, '%m/%d/%y') else: return datetime.datetime.strptime(x, '%y%m%d') elif isinstance(x, float): return datetime.datetime.strptime(str(int(x)), '%y%m%d') else: raise TypeError for col in plate_metadata.columns: if 'date' in col.lower(): plate_metadata[col] = plate_metadata[col].map( parse_date, na_action='ignore' ) # Use only the metadata for the plates that have been sequenced plate_metadata = plate_metadata.dropna(how='all', axis=1) return plate_metadata def compute_bulk_smushing(self): """Get average signal from each plate ('bulk') and find 2d embedding""" grouped = self.genes.groupby(self.cell_metadata[self.SAMPLE_MAPPING]) if os.path.exists(self.bulk_smushed_cache_file): smushed = pd.read_csv(self.bulk_smushed_cache_file, names=[0, 1], header=0, index_col=0) # if the set of plates hasn't changed, return the cached version if set(grouped.groups) == set(smushed.index): return smushed # if the cache was missing or invalid, compute a new projection medians = grouped.median() smusher = TSNE(random_state=0, perplexity=10, metric='cosine') smushed = pd.DataFrame(smusher.fit_transform(medians), index=medians.index) smushed.to_csv(self.bulk_smushed_cache_file) return smushed def compute_cell_smushing(self): """Within each plate, find a 2d embedding of all cells""" grouped = self.genes.groupby(self.cell_metadata[self.SAMPLE_MAPPING]) if os.path.exists(self.cell_smushed_cache_file): smusheds = pd.read_pickle(self.cell_smushed_cache_file) # if nothing is missing, return the cached version if not set(grouped.groups) - set(smusheds): return smusheds else: smusheds = {} for plate_name, genes_subset in grouped: if plate_name not in smusheds: cell_smusher = TSNE(metric='cosine', random_state=0) cell_smushed = pd.DataFrame( cell_smusher.fit_transform(genes_subset), index=genes_subset.index) smusheds[plate_name] = cell_smushed pd.to_pickle(smusheds, self.cell_smushed_cache_file) return smusheds def compute_top_genes_per_cell(self): """Get the most highly expressed genes in every cell Returns ------- top_genes : pandas.Series A mapping of the cell barcode to a ranked list of the top 10 genes, where the first item is the most highly expressed (e.g. Rn45s) """ ranks = self.genes.rank(axis=1, ascending=False) in_top10 = ranks[ranks <= 10] top_genes = in_top10.apply( lambda x: x.sort_values().dropna().index.tolist(), axis=1) return top_genes class TenX_Runs(Plates): # Names of commonly accessed columns MEAN_READS_PER_CELL = 'Mean Reads per Cell' MEDIAN_GENES_PER_CELL = 'Median Genes per Cell' PERCENT_MAPPED_READS = 'Percent Reads Mapped Confidently to Transcriptome' SAMPLE_MAPPING = 'CHANNEL_MAPPING' COLUMNS_TO_CONVERT = {'Valid Barcodes', 'Reads Mapped Confidently to Transcriptome', 'Reads Mapped Confidently to Exonic Regions', 'Reads Mapped Confidently to Intronic Regions', 'Reads Mapped Confidently to Intergenic Regions', 'Reads Mapped Antisense to Gene', 'Sequencing Saturation', 'Q30 Bases in Barcode', 'Q30 Bases in RNA Read', 'Q30 Bases in Sample Index', 'Q30 Bases in UMI', 'Fraction Reads in Cells'} def __init__(self, data_folder, genes_to_drop='Rn45s', verbose=False, nrows=None, tissue=None, channels_to_use=None, tissue_folder='tissues'): run_folder = os.path.join(data_folder, '10x_data') self.plate_metadata = combine_csv_files(run_folder, 'MACA_10X_P*.csv', index_col=0) if tissue is not None: tissues = tissue.split(',') folders = self.plate_metadata.index[self.plate_metadata['Tissue'].isin(tissues)] else: folders = self.plate_metadata.index folders = [f for f in folders if os.path.exists(os.path.join(run_folder, f))] if channels_to_use is not None: folders = [f for f in folders if f in channels_to_use] counts = combine_sdf_files(run_folder, folders, verbose=verbose) mapping_stats = self.combine_metrics_files( run_folder, folders) self.genes, self.cell_metadata, self.mapping_stats = \ self.clean_and_reformat(counts, mapping_stats) self.plate_summaries = self.calculate_plate_summaries() self.plate_metadata = self.plate_metadata.loc[ self.plate_summaries.index] self.cell_metadata = self.cell_metadata.join(self.plate_metadata, on=self.SAMPLE_MAPPING) smushed_folder = os.path.join(run_folder, tissue_folder) if not os.path.exists(smushed_folder): os.mkdir(smushed_folder) self.cell_smushed = self.read_tissue_smushed(smushed_folder, verbose, tissue) self.gene_names = sorted(self.genes.columns) self.plate_metadata_features = sorted(self.plate_metadata.columns) # Remove pesky genes self.genes = self.genes.drop(genes_to_drop) # Get a counts per million rescaling of the genes # self.counts_per_million = self.genes.divide(self.genes.sum(axis=1), # axis=0) * 1e6 # self.top_genes = self.compute_top_genes_per_cell() self.data = {'genes': self.genes, 'mapping_stats': self.mapping_stats, 'cell_metadata': self.cell_metadata, 'plate_metadata': self.plate_metadata, 'plate_summaries': self.plate_summaries} def __repr__(self): n_channels = self.plate_summaries.shape[0] n_barcodes = len(self.genes.rows) s = f'This is an object holding data for {n_channels} 10X channels and ' \ f'{n_barcodes} barcodes.\nHere are the accessible dataframes:\n' for name, df in self.data.items(): s += f'\t"{name}" table dimensions: ' + str(df.shape) + '\n' return s @staticmethod def combine_cell_files(folder, globber, verbose=False): dfs = [] for filename in glob.iglob(os.path.join(folder, globber)): if verbose: print(f'Reading {filename} ...') channel = os.path.basename(os.path.dirname(filename)) df = pd.read_csv(filename, index_col=0) df.index = pd.MultiIndex.from_product(([channel], df.index), names=['channel', 'cell_id']) dfs.append(df) combined = pd.concat(dfs) return combined @staticmethod def combine_metrics_files(run_folder, folders): dfs = [] for folder in folders: filename = os.path.join(run_folder, folder, 'metrics_summary.csv') p_name = os.path.basename(os.path.dirname(filename)) df =
pd.read_csv(filename)
pandas.read_csv
from .conftest import base_config import numpy as np from numpy.testing import assert_allclose, assert_array_equal import openamundsen as oa import openamundsen.errors as errors import pandas as pd import pytest import xarray as xr @pytest.mark.parametrize('fmt', ['netcdf', 'csv', 'memory']) def test_formats(fmt, tmp_path): config = base_config() config.end_date = '2020-01-16' config.results_dir = tmp_path config.output_data.timeseries.format = fmt config.output_data.timeseries.variables = [{'var': 'snow.num_layers'}] model = oa.OpenAmundsen(config) model.initialize() model.run() point_ids = ['bellavista', 'latschbloder', 'proviantdepot'] if fmt in ('netcdf', 'memory'): if fmt == 'netcdf': ds = xr.open_dataset(tmp_path / 'output_timeseries.nc') elif fmt == 'memory': ds = model.point_output.data assert ds.time.to_index().equals(model.dates) assert_array_equal(ds.point, point_ids) assert_array_equal( list(ds.coords.keys()), ['time', 'point', 'lon', 'lat', 'alt', 'x', 'y', 'soil_layer', 'snow_layer'], ) assert ds.temp.dims == ('time', 'point') assert ds.snow_thickness.dims == ('time', 'snow_layer', 'point') assert ds.soil_temp.dims == ('time', 'soil_layer', 'point') assert ds.temp.dtype == np.float32 assert np.issubdtype(ds.num_layers.dtype, np.integer) assert np.all(ds.temp > 250.) elif fmt == 'csv': for point_id in point_ids: assert (tmp_path / f'point_{point_id}.csv').exists() df = pd.read_csv(tmp_path / 'point_bellavista.csv', index_col='time', parse_dates=True) assert df.index.equals(model.dates) assert df.temp.dtype == np.float64 assert np.issubdtype(df.num_layers.dtype, np.integer) assert 'snow_thickness0' in df assert np.all(df.temp > 250.) def test_values(): config = base_config() config.end_date = '2020-01-15' model = oa.OpenAmundsen(config) model.initialize() point = 'proviantdepot' row = int(model.meteo.sel(station=point).row) col = int(model.meteo.sel(station=point).col) data_temp =
pd.Series(index=model.dates, dtype=float)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sep @author: CocoLiao Topic: NEC_system_PathDist_module Input ex: Run_TotalSites('D:\\nec-backend\\dist\\docs\\mrData.xlsx', 'D:\\nec-backend\\dist\\docs\\workerData.xlsx', 'D:\\nec-backend\\dist\\docs\\officeAddress.xlsx', 'D:\\nec-backend\\dist\\docs\\taxiCost.xlsx', 30, 800.0, 6.0, 4.0, 2.42) """ # packages import import pandas as pd import numpy as np import googlemaps from gurobipy import * import time def Run_TotalSites(Service_FN, Worker_FN, Office_FN, TXcost_FN, workTime_buffer, PC_basicMilleage, PC_belowCost, PC_upperCost, CC_avgCost): ''' <input> Service_FN: string [file path] # NEC_MRDATA_original Worker_FN: string [file path] # NEC_workerDATA Office_FN: string [file path] # TW_sites_address TXcost_FN: string [file path] # TW_TXcars_cost workTime_buffer: int # works_between_buffer_mins PC_basicMilleage: float # private_car_monthly_basic_Mileage_km PC_belowCost: float # private_car_below_basicM_fuel_cost_$/km PC_upperCost: float # private_car_below_basicM_fuel_cost_$/km CC_avgCost: float # company_car_fuel_cost_$/km <output> PriceSens_final_df: dataframe (table) ''' tStart = time.time()#計時開始 ###### MODULE ONE: PathDist.py################################################################ def PathDist(Service_File, Worker_File, Office_File, office_EGnm): ''' <input> Service_File: string [file path] # NEC_MRDATA_original Worker_File: string [file path] # NEC_workerDATA Office_File: string [file path] # NEC_TW_sites_address office: string <output> (site)_PathDist_detail: dataframe (table), original MRDATA resort with path labeled (site)_PathDist_analy: dataframe (table), each uniquePath info with Out_date, Path_ID/order, MoveDist_GO/BACK/TOL, Begin/End_time columns ''' # read original MR_DATA files Service_Data = pd.read_excel(Service_File) Worker_Data = pd.read_excel(Worker_File) Office_Data = pd.read_excel(Office_File) # match serciceDATA and workerDATA Worker_Data = Worker_Data.drop(['person_nm', 'actgr_nm'], axis = 1) Data =
pd.merge(Service_Data, Worker_Data, on='case_no')
pandas.merge
from unittest.mock import patch import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal, assert_series_equal from evalml.pipelines import TimeSeriesBaselineRegressionPipeline from evalml.pipelines.time_series_baselines import ( TimeSeriesBaselineBinaryPipeline, TimeSeriesBaselineMulticlassPipeline ) @pytest.mark.parametrize('X_none', [True, False]) @pytest.mark.parametrize('gap', [0, 1]) @pytest.mark.parametrize('pipeline_class', [TimeSeriesBaselineRegressionPipeline, TimeSeriesBaselineBinaryPipeline, TimeSeriesBaselineMulticlassPipeline]) @patch("evalml.pipelines.TimeSeriesClassificationPipeline._decode_targets", side_effect=lambda y: y) def test_time_series_baseline(mock_decode, pipeline_class, gap, X_none, ts_data): X, y = ts_data clf = pipeline_class(parameters={"pipeline": {"gap": gap, "max_delay": 1}, "Time Series Baseline Estimator": {'gap': gap, 'max_delay': 1}}) expected_y = y.shift(1) if gap == 0 else y expected_y = expected_y.reset_index(drop=True) if not expected_y.isnull().values.any(): expected_y = expected_y.astype("Int64") if X_none: X = None clf.fit(X, y) assert_series_equal(expected_y, clf.predict(X, y).to_series()) @pytest.mark.parametrize('X_none', [True, False]) @pytest.mark.parametrize('gap', [0, 1]) @pytest.mark.parametrize('pipeline_class', [TimeSeriesBaselineBinaryPipeline, TimeSeriesBaselineMulticlassPipeline]) def test_time_series_baseline_predict_proba(pipeline_class, gap, X_none): X = pd.DataFrame({"a": [4, 5, 6, 7, 8]}) y = pd.Series([0, 1, 1, 0, 1]) expected_proba = pd.DataFrame({0: pd.Series([1, 0, 0, 1, 0], dtype="float64"), 1: pd.Series([0, 1, 1, 0, 1], dtype="float64")}) if pipeline_class == TimeSeriesBaselineMulticlassPipeline: y =
pd.Series([0, 1, 2, 2, 1])
pandas.Series
#!/usr/bin/env python3 #pylint: disable = C, R #pylint: disable = E1101 # no-member (generated-members) #pylint: disable = C0302 # too-many-lines """ This code features the article "Pareto-based evaluation of national responses to COVID-19 pandemic shows that saving lives and protecting economy are non-trade-off objectives" by Kochanczyk & Lipniacki (Scientific Reports, 2021). License: MIT Last changes: November 09, 2020 """ # -------------------------------------------------------------------------------------------------- import re from operator import itemgetter from multiprocessing import Pool import pandas as pd import numpy as np import scipy.stats import dill import gzip from shared import * # -- Contents settings ----------------------------------------------------------------------------- #TMP SNAPSHOT_BASE_URL = 'https://raw.githubusercontent.com/' + \ #TMP 'kochanczyk/covid19-pareto/master/data/snapshot-20200706/' SNAPSHOT_BASE_URL = 'data/snapshot-20201109/' # TMP OWID_DATA_URL = SNAPSHOT_BASE_URL + 'owid-covid-data.csv.bz2' OWID_TESTING_DATA_URL = SNAPSHOT_BASE_URL + 'covid-testing-all-observations.csv.bz2' MOBILITY_DATA_URL = SNAPSHOT_BASE_URL + 'Global_Mobility_Report.csv.bz2' TRACKING_URL = SNAPSHOT_BASE_URL + 'daily.csv.bz2' EXCESS_DEATHS_EUROSTAT_URL = SNAPSHOT_BASE_URL + 'demo_r_mwk_ts_1_Data.csv.bz2' EXCESS_DEATHS_CDC_URL = SNAPSHOT_BASE_URL + 'Excess_Deaths_Associated_with_COVID-19.csv.bz2' GDP_EUROSTAT_URL = SNAPSHOT_BASE_URL + 'estat_namq_10_gdp--SCA.csv.bz2' THROWIN_DATES_ = { 'Spain': ['2020-04-19', '2020-05-22', '2020-05-25'], 'France': ['2020-05-07', '2020-05-29', '2020-06-03'], 'United Kingdom': ['2020-05-21'], 'Ireland': ['2020-05-15'], 'Portugal': ['2020-05-03'] } THROWIN_DATES = {country: list(map(pd.to_datetime, days)) for country, days in THROWIN_DATES_.items()} # -- Data analysis auxiliary functions ------------------------------------------------------------- def extract_cases_and_deaths(location): columns = ['date', 'new_cases', 'total_cases', 'new_deaths', 'total_deaths'] if is_USA_state(location): state_abbrev = STATE_TO_ABBREV[location] return TRACKING_DATA.loc[state_abbrev] else: country = location country_indices = OWID_DATA['location'] == country return OWID_DATA[country_indices][columns].set_index('date') def extract_mobility(location): if is_USA_state(location): df = MOBILITY_DATA[ (MOBILITY_DATA['location'] == 'United States') \ & (MOBILITY_DATA['sub_region_1'] == location) \ & MOBILITY_DATA['sub_region_2'].isnull() ].set_index('date') else: df = MOBILITY_DATA[ (MOBILITY_DATA['location'] == location) \ & MOBILITY_DATA['sub_region_1'].isnull() ].set_index('date') if 'metro_area' in df.columns: df = df[ df['metro_area'].isnull() ] assert df['sub_region_1'].isnull().all() and df['sub_region_2'].isnull().all() return df def smoothed_daily_data(location, fix=True): daily_ws = [3, 7, 14] df = extract_cases_and_deaths(location).copy() if fix: # general for col_new in ('new_cases', 'new_deaths'): df[col_new] = df[col_new].fillna(0) for col_tot in ('total_cases', 'total_deaths'): if pd.isna(df.iloc[0][col_tot]): initial_date = df.index[0] df.at[initial_date, col_tot] = 0 df[col_tot] = df[col_tot].ffill() # location-specific if location in THROWIN_DATES: for throwin in THROWIN_DATES[location]: new_cases = df.loc[throwin, 'new_cases'] if new_cases == 0: pass elif new_cases < 0: df.loc[throwin, 'new_cases'] = 0 elif new_cases > 0: prevv = df.loc[throwin - pd.offsets.Day(1), 'new_cases'] nextt = df.loc[throwin + pd.offsets.Day(1), 'new_cases'] df.loc[throwin, 'new_cases'] = int(round(0.5*(prevv + nextt))) # WARNING: because of the above, diff(cumulative total) != daily for k in ('cases', 'deaths'): for w in daily_ws: df[f"new_{k}{w}"] = df[f"new_{k}"].rolling(window=w, min_periods=w//2+1, **ROLL_OPTS).mean() is_w_even = not (w % 2) has_nan_initially = pd.isnull(df.iloc[0][f"new_{k}{w}"]) if is_w_even and has_nan_initially: df.at[df.index[0], f"new_{k}{w}"] = 0 for col in ('new_cases', 'total_cases', 'new_deaths', 'total_deaths'): df[col] = df[col].astype('Int64') return df def calc_Rt(theta, TINY=1e-16): if pd.isnull(theta) or theta < TINY: return pd.NA elif theta == 1: return 1 log2 = np.log(2) Td = log2/np.log(theta) m, n, sigma, gamma = 6, 1, 1/5.28, 1/3 Rt = log2/Td*(log2/(Td * m *sigma) + 1)**m / (gamma*(1 - (log2/(Td * n * gamma) + 1)**(-n))) return Rt def insert_epidemic_dynamics(df, timespan_days=14, data_smoothing_window=14): half_timespan_days = timespan_days//2 exponent = (1/(timespan_days - 1)) for kind in ('cases', 'deaths'): values = df[f"new_{kind}{data_smoothing_window}"].values thetas = [] for vi in range(len(values)): if vi < half_timespan_days or vi + half_timespan_days >= len(values): thetas += [pd.NA] else: bwd, fwd = values[vi - half_timespan_days], values[vi + half_timespan_days] if bwd > 0 and fwd >= 0: theta = (fwd/bwd)**exponent theta = float(theta) else: theta = [pd.NA] thetas += [theta] df[f"theta_{kind}"] = thetas df[f"Rt_{kind}"] = df[f"theta_{kind}"].map(calc_Rt) return df def average_mobility_reduction(location_or_mo): if type(location_or_mo) == str: location = location_or_mo mo = extract_mobility(location) else: mo = location_or_mo return mo['retail_and_recreation workplaces'.split()].agg(np.mean, axis=1).astype('Float64').to_frame(name='mobility') def insert_mobility_reduction(df, location, min_sum_weights=0.5): def has_day_(dd): return dd in avg_mo.index def is_weekday_(dd): return dd.dayofweek < 5 def is_holiday_(cc, dd): return cc in HOLIDAYS and dd in HOLIDAYS[cc] def is_valid_day_(cc, dd): return has_day_(dd) and is_weekday_(dd) and not is_holiday_(cc, dd) mo = extract_mobility(location) avg_mo = average_mobility_reduction(mo) df['mobility'] = avg_mo df['mobility_reduction'] = 0 for day in mo.index: if day in df.index and is_valid_day_(location, day): df.at[day,'mobility_reduction'] = avg_mo.loc[day] for kind in ('cases', 'deaths'): distrib = {'cases': INFECTION_TO_REMOVAL, 'deaths': INFECTION_TO_DEATH}[kind] df[f"mobility_historical_{kind}"] = pd.NA # previous values that gave rise to current daily new cases or deaths for day in mo.index: if day in df.index: valid_days_indices = {di for di in range(len(distrib)) if is_valid_day_(location, day - pd.offsets.Day(di))} weights = [distrib[di] for di in valid_days_indices] weighted_ms = [distrib[di] * avg_mo.loc[day - pd.offsets.Day(di)] for di in valid_days_indices] sum_weights = np.sum(weights) df.at[day, f"mobility_historical_{kind}"] = np.sum(weighted_ms)/sum_weights \ if sum_weights >= min_sum_weights else pd.NA return df def insert_tests_performed(df, location, interpolate=True, w=7, verbose=False): if is_USA_state(location): df[f"new_tests{w}"] = df['new_tests'].rolling(window=w, min_periods=w//2+1, **ROLL_OPTS).mean() df['tests_per_hit'] = df[f"new_tests{w}"] \ / df['new_cases'].rolling(window=w, min_periods=w//2+1, **ROLL_OPTS).mean() return df else: df_test = None colnames = ['date', 'Cumulative total'] endings = ('tests performed', 'tests performed (CDC) (incl. non-PCR)', 'samples tested', 'samples analysed', 'units unclear', 'units unclear (incl. non-PCR)', 'people tested', 'people tested (incl. non-PCR)', 'cases tested') entities = set(OWID_TESTING_DATA['Entity']) location_entities = {} for cc, tt in [(e.split(' - ')[0], e.split(' - ')[1]) for e in entities]: assert tt in endings if cc in location_entities: location_entities[cc] = location_entities[cc] + [tt] else: location_entities[cc] = [tt] sel_endings = ['people tested (incl. non-PCR)'] if location == 'Japan' else endings for ending in sel_endings: ent = f"{location.replace('Czechia', 'Czech Republic')} - {ending}" if ent in entities: ent_indices = OWID_TESTING_DATA['Entity'] == ent if location == 'France': df_fr = OWID_TESTING_DATA[ent_indices][colnames + ['Daily change in cumulative total']] df_fr.at[df_fr.index[0], 'Cumulative total'] = df_fr.iloc[0]['Daily change in cumulative total'] for i in range(len(df_fr) - 1): prev_cumulative = df_fr.iloc[i]['Cumulative total'] change_in_cumulative = df_fr.iloc[i + 1]['Daily change in cumulative total'] df_fr.at[df_fr.index[i + 1], 'Cumulative total'] = prev_cumulative + change_in_cumulative df_pre = df_fr[colnames].set_index('date') \ .rename(columns={'Cumulative total': ending}) else: df_pre = OWID_TESTING_DATA[ent_indices][colnames].set_index('date') \ .rename(columns={'Cumulative total': ending}) if not df_pre[ending].isnull().all(): df_test = df_pre if df_test is None else df_test.join(df_pre, how='outer') if df_test is None: print(f"{location}: missing data on testing") df['total_tests'] = np.nan df['tests_per_hit'] = np.nan return df else: if verbose: print(location, '::', df_test.index[ 0].strftime('%Y: %B, %d'), '--', df_test.index[-1].strftime('%B, %d'), '::', ', '.join(list(df_test.columns))) if len(df_test.columns) == 1: df_test.rename(columns=lambda colnm: re.sub(r'^.*$', 'total_tests', colnm), inplace=True) else: df_test['total_tests'] = np.nan df_test['test_type'] = '?' for ending in endings: if ending not in df_test.columns: continue for day in df_test.index: if np.isnan(df_test.loc[day]['total_tests']) and not np.isnan(df_test.loc[day][ending]): df_test.at[day, 'total_tests'] = df_test.loc[day][ending] df_test.at[day, 'test_type'] = ending if verbose: for ending in endings: if ending not in df_test.columns: continue df_sub = df_test[ df_test['test_type'] == ending ][ending].dropna() if len(df_sub): print(' '*len(location), '::', df_sub.index[ 0].strftime('%Y: %B, %d'), '--', df_sub.index[-1].strftime('%B, %d'), '::', ending) if interpolate: df_test['total_tests'] = df_test['total_tests'].interpolate(limit_area='inside', limit_direction='both') else: df_test['total_tests'] = df_test['total_tests'].astype('Int64') df_test['new_tests'] = df_test['total_tests'].diff() df_test[f"new_tests{w}"] = df_test['new_tests'].rolling(window=w, min_periods=w//2+1, **ROLL_OPTS).mean() df_test['tests_per_hit'] = df_test[f"new_tests{w}"] \ / df['new_cases'].rolling(window=w, min_periods=w//2+1, **ROLL_OPTS).mean() return df.join(df_test) def process_location(location, kv=True): df = smoothed_daily_data(location) df = insert_epidemic_dynamics(df) df = insert_mobility_reduction(df, location) df = insert_tests_performed(df, location) return (location, df) if kv else df def check_gaps(location, traj): missing = [] dt = traj['new_deaths'].index[-1] - traj['new_deaths'].index[0] if dt.days != len(traj['new_deaths'].index) - 1: for i in range(len(traj.index) - 1): since, until = traj.index[i], traj.index[i + 1] inter_days = (until - since).days if inter_days > 1: gap = inter_days - 1 if gap == 1: timespan_s = f"{(since + pd.offsets.Day(1)).strftime('%B %d')}" else: timespan_s = f"{(since + pd.offsets.Day(1)).strftime('%B %d')}--" \ f"{(until - pd.offsets.Day(1)).strftime('%B %d')}" for i in range(gap): day = since + pd.offsets.Day(1 + i) if day < FINAL_DAY: missing += [] print(f"{location}: missing {gap} day{'s' if gap > 1 else ''}: {timespan_s}") return missing def check_mobility(location, trajectory): missing = [] nan_blocks = [] in_nan_block = False for index, value in trajectory[['mobility']].iterrows(): if pd.isnull(float(value)): if index < FINAL_DAY: missing += [index] if not in_nan_block: in_nan_block = True nan_blocks.append([index]) else: nan_blocks[-1].append(index) else: if in_nan_block: in_nan_block = False for nan_block in nan_blocks: since, until = nan_block[0], nan_block[-1] if since != trajectory.index[0] and until != trajectory.index[-1]: timespan_s = f"{since.strftime('%B %d')}--" \ f"{until.strftime('%B %d')}" print(f"{location}: missing mobility: {timespan_s}") return missing # -------------------------------------------------------------------------------------------------- # https://ec.europa.eu/eurostat/statistics-explained/images/d/da/Weekly_deaths_15_10_2020-update.xlsx # which are source data for: # https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Weekly_death_statistics def read_excess_deaths_eurostat(): d = pd.read_csv(EXCESS_DEATHS_EUROSTAT_URL) \ .drop(columns=['UNIT', 'Flag and Footnotes', 'SEX']) d.loc[ d['Value']==':', 'Value'] = pd.NA d['Value'] = d['Value'].map(lambda v: int(v.replace(',', '')) if type(v)==str else v) d = d[ d['GEO'] != 'Georgia' ] weeks = [f"W{i:0>2d}" for i in range(1, 13+13+1)] years = list(map(str, range(2016, 2020))) excess_deaths = {} for loc, dd in d.groupby('GEO'): dd.set_index('TIME', inplace=True) ddd = {wk: dd.loc[ [f"{yr}{wk}" for yr in years] ]['Value'].mean() for wk in weeks} ddd = pd.DataFrame.from_dict(ddd, orient='index', columns=['Average deaths']) ddd['2020 deaths'] = [dd.loc[ [f"2020{wk}" for yr in years] ]['Value'].mean() for wk in weeks] ddd['2020 excess deaths'] = ddd['2020 deaths'] - ddd['Average deaths'] loc = loc.replace('Germany (until 1990 former territory of the FRG)', 'Germany') excess_deaths[loc] = (ddd['2020 deaths'] - ddd['Average deaths']).sum() return excess_deaths def read_excess_deaths_cdc(): d =
pd.read_csv(EXCESS_DEATHS_CDC_URL, parse_dates=['Week Ending Date'])
pandas.read_csv
from ..loaders import load_data from ..utils import load_json_config from deoxys_image.patch_sliding import get_patch_indice from deoxys_vis import read_csv import numpy as np import h5py import pandas as pd import os from time import time import shutil import matplotlib.pyplot as plt import warnings class H5Metric: def __init__(self, ref_file, save_file, metric_name='score', predicted_dataset='predicted', target_dataset='y', batch_size=4, map_file=None, map_column=None): self.metric_name = metric_name self.ref_file = ref_file self.predicted = predicted_dataset self.target = target_dataset with h5py.File(ref_file, 'r') as f: keys = list(f.keys()) if target_dataset not in keys: self.predicted = [f'{key}/{predicted_dataset}' for key in keys] self.target = [f'{key}/{target_dataset}' for key in keys] self.batch_size = batch_size self.res_file = save_file self.map_file = map_file self.map_column = map_column def get_img_batch(self): self.scores = [] if self.map_file is None: if type(self.predicted) == str: with h5py.File(self.ref_file, 'r') as f: size = f[self.target].shape[0] for i in range(0, size, self.batch_size): with h5py.File(self.ref_file, 'r') as f: predicted = f[self.predicted][i:i+self.batch_size] targets = f[self.target][i:i+self.batch_size] yield targets, predicted else: for pred, target in zip(self.predicted, self.target): with h5py.File(self.ref_file, 'r') as f: size = f[target].shape[0] for i in range(0, size, self.batch_size): with h5py.File(self.ref_file, 'r') as f: predicted = f[pred][i:i+self.batch_size] targets = f[target][i:i+self.batch_size] yield targets, predicted else: # handle 3d with different sizes map_df = pd.read_csv(self.map_file) map_data = map_df[self.map_column].values for idx in map_data: with h5py.File(self.ref_file, 'r') as f: predicted = f[self.predicted][str(idx)][:] targets = f[self.target][str(idx)][:] yield np.expand_dims(targets, axis=0), np.expand_dims( predicted, axis=0) def update_score(self, scores): self.scores.extend(scores) def save_score(self): if os.path.isfile(self.res_file): df = pd.read_csv(self.res_file) df[f'{self.metric_name}'] = self.scores else: df = pd.DataFrame(self.scores, columns=[f'{self.metric_name}']) df.to_csv(self.res_file, index=False) def post_process(self, **kwargs): for targets, prediction in self.get_img_batch(): scores = self.calculate_metrics( targets, prediction, **kwargs) self.update_score(scores) self.save_score() def calculate_metrics(targets, predictions, **kwargs): raise NotImplementedError class H5CalculateFScore(H5Metric): def __init__(self, ref_file, save_file, metric_name='f1_score', predicted_dataset='predicted', target_dataset='y', batch_size=4, beta=1, threshold=None, map_file=None, map_column=None): super().__init__(ref_file, save_file, metric_name, predicted_dataset, target_dataset, batch_size, map_file, map_column) self.threshold = 0.5 if threshold is None else threshold self.beta = beta def calculate_metrics(self, y_true, y_pred, **kwargs): assert len(y_true) == len(y_pred), "Shape not match" eps = 1e-8 size = len(y_true.shape) reduce_ax = tuple(range(1, size)) y_pred = (y_pred > self.threshold).astype(y_pred.dtype) if y_pred.ndim - y_true.ndim == 1 and y_pred.shape[-1] == 1: y_pred = y_pred[..., 0] true_positive = np.sum(y_pred * y_true, axis=reduce_ax) target_positive = np.sum(y_true, axis=reduce_ax) predicted_positive = np.sum(y_pred, axis=reduce_ax) fb_numerator = (1 + self.beta ** 2) * true_positive + eps fb_denominator = ( (self.beta ** 2) * target_positive + predicted_positive + eps ) return fb_numerator / fb_denominator class H5MetaDataMapping: def __init__(self, ref_file, save_file, folds, fold_prefix='fold', dataset_names=None): self.ref_file = ref_file self.save_file = save_file if fold_prefix: self.folds = ['{}_{}'.format( fold_prefix, fold) for fold in folds] else: self.folds = folds self.dataset_names = dataset_names def post_process(self, *args, **kwargs): data = {dataset_name: [] for dataset_name in self.dataset_names} for fold in self.folds: with h5py.File(self.ref_file, 'r') as f: for dataset_name in self.dataset_names: meta_data = f[fold][dataset_name][:] dtype = meta_data.dtype.name if 'int' not in dtype and 'float' not in dtype: meta_data = meta_data.astype(str) data[dataset_name].extend(meta_data) df = pd.DataFrame(data) df.to_csv(self.save_file, index=False) class H5Merge2dSlice: def __init__(self, ref_file, map_file, map_column, merge_file, save_file, predicted_dataset='predicted', target_dataset='y', input_dataset='x'): self.ref_file = ref_file self.map_file = map_file self.map_column = map_column self.merge_file = merge_file self.save_file = save_file self.predicted = predicted_dataset self.target = target_dataset self.inputs = input_dataset with h5py.File(ref_file, 'r') as f: keys = list(f.keys()) if input_dataset not in keys: self.predicted = [f'{key}/{predicted_dataset}' for key in keys] self.target = [f'{key}/{target_dataset}' for key in keys] self.inputs = [f'{key}/{input_dataset}' for key in keys] def post_process(self): map_df = pd.read_csv(self.map_file) map_data = map_df[self.map_column].values unique_val = [] first, last = map_data[0], map_data[-1] tmp = np.concatenate([[first], map_data, [last]]) indice = np.where(tmp[1:] != tmp[:-1])[0] indice = np.concatenate([[0], indice, [len(map_data)]]) if type(self.inputs) == str: with h5py.File(self.merge_file, 'w') as mf: mf.create_group(self.inputs) mf.create_group(self.target) mf.create_group(self.predicted) for i in range(len(indice) - 1): start = indice[i] end = indice[i+1] unique_val.append(map_data[start]) assert map_data[start] == map_data[end-1], "id not match" curr_name = str(map_data[start]) with h5py.File(self.ref_file, 'r') as f: img = f[self.inputs][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[self.inputs].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.target][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[self.target].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.predicted][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[self.predicted].create_dataset( curr_name, data=img, compression="gzip") else: inputs = self.inputs[0].split('/')[-1] target = self.target[0].split('/')[-1] predicted = self.predicted[0].split('/')[-1] with h5py.File(self.merge_file, 'w') as mf: mf.create_group(inputs) mf.create_group(target) mf.create_group(predicted) offset = 0 curr_data_idx = 0 with h5py.File(self.ref_file, 'r') as f: total = f[self.inputs[curr_data_idx]].shape[0] for i in range(len(indice) - 1): if indice[i] - offset >= total: offset = indice[i] curr_data_idx += 1 with h5py.File(self.ref_file, 'r') as f: total = f[self.inputs[curr_data_idx]].shape[0] map_start, map_end = indice[i], indice[i+1] start = indice[i] - offset end = indice[i+1] - offset unique_val.append(map_data[map_start]) assert map_data[map_start] == map_data[map_end - 1], "id not match" curr_name = str(map_data[map_start]) with h5py.File(self.ref_file, 'r') as f: img = f[self.inputs[curr_data_idx]][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[inputs].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.target[curr_data_idx]][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[target].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.predicted[curr_data_idx]][start:end] with h5py.File(self.merge_file, 'a') as mf: mf[predicted].create_dataset( curr_name, data=img, compression="gzip") df = pd.DataFrame(data=unique_val, columns=[self.map_column]) df.to_csv(self.save_file, index=False) class H5Transform3d: def __init__(self, ref_file, map_file, map_column, merge_file, predicted_dataset='predicted', target_dataset='y', input_dataset='x'): self.ref_file = ref_file self.map_file = map_file self.map_column = map_column self.merge_file = merge_file self.predicted = predicted_dataset self.target = target_dataset self.inputs = input_dataset with h5py.File(ref_file, 'r') as f: keys = list(f.keys()) if input_dataset not in keys: self.predicted = [f'{key}/{predicted_dataset}' for key in keys] self.target = [f'{key}/{target_dataset}' for key in keys] self.inputs = [f'{key}/{input_dataset}' for key in keys] def post_process(self): map_df = pd.read_csv(self.map_file) map_data = map_df[self.map_column].values first, last = map_data[0], map_data[-1] tmp = np.concatenate([[first], map_data, [last]]) indice = np.where(tmp[1:] != tmp[:-1])[0] indice = np.concatenate([[0], indice, [len(map_data)]]) if type(self.inputs) == str: with h5py.File(self.merge_file, 'w') as mf: mf.create_group(self.inputs) mf.create_group(self.target) mf.create_group(self.predicted) for i in range(len(map_data)): curr_name = str(map_data[i]) with h5py.File(self.ref_file, 'r') as f: img = f[self.inputs][i] with h5py.File(self.merge_file, 'a') as mf: mf[self.inputs].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.target][i] with h5py.File(self.merge_file, 'a') as mf: mf[self.target].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.predicted][i] with h5py.File(self.merge_file, 'a') as mf: mf[self.predicted].create_dataset( curr_name, data=img, compression="gzip") else: # pragma: no cover inputs = self.inputs[0].split('/')[-1] target = self.target[0].split('/')[-1] predicted = self.predicted[0].split('/')[-1] with h5py.File(self.merge_file, 'w') as mf: mf.create_group(inputs) mf.create_group(target) mf.create_group(predicted) offset = 0 curr_data_idx = 0 with h5py.File(self.ref_file, 'r') as f: total = f[self.inputs[curr_data_idx]].shape[0] for i in range(len(map_data)): if i - offset >= total: offset = i curr_data_idx += 1 with h5py.File(self.ref_file, 'r') as f: total = f[self.inputs[curr_data_idx]].shape[0] curr_name = str(map_data[i]) with h5py.File(self.ref_file, 'r') as f: img = f[self.inputs[curr_data_idx]][i-offset] with h5py.File(self.merge_file, 'a') as mf: mf[inputs].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.target[curr_data_idx]][i-offset] with h5py.File(self.merge_file, 'a') as mf: mf[target].create_dataset( curr_name, data=img, compression="gzip") with h5py.File(self.ref_file, 'r') as f: img = f[self.predicted[curr_data_idx]][i-offset] with h5py.File(self.merge_file, 'a') as mf: mf[predicted].create_dataset( curr_name, data=img, compression="gzip") # df = pd.DataFrame(data=unique_val, columns=[self.map_column]) # df.to_csv(self.save_file, index=False) class H5MergePatches: # pragma: no cover def __init__(self, ref_file, predicted_file, map_column, merge_file, save_file, patch_size, overlap, folds, fold_prefix='fold', original_input_dataset='x', original_target_dataset='y', predicted_dataset='predicted', target_dataset='y', input_dataset='x' ): self.ref_file = ref_file self.predicted_file = predicted_file self.map_column = map_column self.merge_file = merge_file self.save_file = save_file self.ref_inputs = original_input_dataset self.ref_targets = original_target_dataset self.predicted = predicted_dataset self.target = target_dataset self.inputs = input_dataset if fold_prefix: self.folds = ['{}_{}'.format( fold_prefix, fold) for fold in folds] else: self.folds = folds self.patch_size = patch_size self.overlap = overlap print('merge images of patch', patch_size) def _save_inputs_target_to_merge_file(self, fold, meta, index): with h5py.File(self.ref_file, 'r') as f: inputs = f[fold][self.ref_inputs][index] targets = f[fold][self.ref_targets][index] with h5py.File(self.merge_file, 'a') as mf: mf[self.inputs].create_dataset( meta, data=inputs, compression="gzip") mf[self.target].create_dataset( meta, data=targets, compression="gzip") def _merge_patches_to_merge_file(self, meta, start_cursor): with h5py.File(self.merge_file, 'r') as mf: shape = mf[self.target][meta].shape[:-1] # fix patch size if '__iter__' not in dir(self.patch_size): self.patch_size = [self.patch_size] * len(shape) indice = get_patch_indice(shape, self.patch_size, self.overlap) next_cursor = start_cursor + len(indice) with h5py.File(self.predicted_file, 'r') as f: data = f[self.predicted][start_cursor: next_cursor] predicted = np.zeros(shape) weight = np.zeros(shape) for i in range(len(indice)): x, y, z = indice[i] w, h, d = self.patch_size predicted[x:x+w, y:y+h, z:z+d] = predicted[x:x+w, y:y+h, z:z+d] \ + data[i][..., 0] weight[x:x+w, y:y+h, z:z+d] = weight[x:x+w, y:y+h, z:z+d] \ + np.ones(self.patch_size) predicted = (predicted/weight)[..., np.newaxis] with h5py.File(self.merge_file, 'a') as mf: mf[self.predicted].create_dataset( meta, data=predicted, compression="gzip") return next_cursor def post_process(self): # create merge file with h5py.File(self.merge_file, 'w') as mf: mf.create_group(self.inputs) mf.create_group(self.target) mf.create_group(self.predicted) data = [] start_cursor = 0 for fold in self.folds: with h5py.File(self.ref_file, 'r') as f: meta_data = f[fold][self.map_column][:] data.extend(meta_data) for index, meta in enumerate(meta_data): self._save_inputs_target_to_merge_file( fold, str(meta), index) start_cursor = self._merge_patches_to_merge_file( str(meta), start_cursor) # create map file df = pd.DataFrame(data, columns=[self.map_column]) df.to_csv(self.save_file, index=False) class AnalysisPerEpoch: # pragma: no cover _markers = ['o-', 'v-', '^-', '<-', '>-', '1-', '2-', 's-', 'p-', 'P-', '*-', '+-', 'x-', 'D-', 'd-'] * 10 + ['--'] def __init__(self, save_path, log_file_templates, epochs, map_column='patient idx', monitor='', model_name=''): self.save_path = save_path self.log_file_templates = log_file_templates self.epochs = epochs self.map_column = map_column self.monitor = monitor self.model_name = model_name or save_path.split('/')[-2] def post_process(self): patient_dice_per_epoch = [] monitor = self.monitor epochs = self.epochs map_column = self.map_column for epoch in epochs: # load each log file data = pd.read_csv(self.log_file_templates.format(epoch)) # metric column if not monitor: monitor = data.columns[-1] patient_dice_per_epoch.append(data[monitor].values) # Plot dice per epoch patient_idx = data[map_column].values # print(patient_dice_per_epoch) all_data = np.vstack(patient_dice_per_epoch) df = pd.DataFrame(all_data, columns=patient_idx) df.index = epochs df.index.name = 'epoch' # df['mean'] = df.mean(axis=1) df['mean'] = df[[pid for pid in patient_idx]].mean(axis=1) best_epoch = df['mean'].idxmax() best_metric = df['mean'].max() plt.figure(figsize=(10, 8)) df.plot(style=self._markers[:len(patient_idx) + 1], ax=plt.gca()) plt.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) plt.title( f'Model {self.model_name}' + f'\nBest Epoch {best_epoch} - Mean {monitor} {best_metric:.6f}') plt.savefig(self.save_path + '/dice_per_epoch.png') plt.savefig(self.save_path + '/dice_per_epoch.pdf') plt.close('all') # save to csv df.to_csv(self.save_path + '/dice_per_epoch.csv') violin_df = df[df.columns[:-1]] group_df = violin_df.reset_index().melt( id_vars=violin_df.columns[:-len(patient_idx)], var_name=map_column, value_name=monitor) def Q1(x): return x.quantile(0.25) def Q3(x): return x.quantile(0.75) def to_int(x): return x.astype(int) group_df.groupby('epoch').agg( {monitor: ['min', Q1, 'median', Q3, 'max', 'mean', 'std']}) with open(self.save_path + '/val_summary.txt') as f: f.write(str(group_df)) class PostProcessor: MODEL_PATH = '/model' MODEL_NAME = '/model.{epoch:03d}.h5' BEST_MODEL_PATH = '/best' PREDICTION_PATH = '/prediction' PREDICTION_NAME = '/prediction.{epoch:03d}.h5' LOG_FILE = '/logs.csv' PERFORMANCE_PATH = '/performance' TEST_OUTPUT_PATH = '/test' PREDICT_TEST_NAME = '/prediction_test.h5' def __init__(self, log_base_path='logs', temp_base_path='', analysis_base_path='', run_test=False, new_dataset_params=None): self.temp_base_path = temp_base_path self.log_base_path = log_base_path self.update_data_reader(new_dataset_params) try: model_path = log_base_path + self.MODEL_PATH model_files = os.listdir(model_path) self.epochs = [int(filename[-6:-3]) for filename in model_files] except Exception as e: # pragma: no cover print('No saved models', e) warnings.warn('load_best_model does not work') if len(self.epochs) == 0: print('No saved models in', model_path) warnings.warn('load_best_model does not work') self.run_test = run_test def update_data_reader(self, new_dataset_params): model_path = self.log_base_path + self.MODEL_PATH sample_model_filename = model_path + '/' + os.listdir(model_path)[0] with h5py.File(sample_model_filename, 'r') as f: config = f.attrs['deoxys_config'] config = load_json_config(config) dataset_params = config['dataset_params'] # update until level 2 if new_dataset_params is not None: for key in new_dataset_params: if key in dataset_params: dataset_params[key].update(new_dataset_params[key]) else: dataset_params[key] = new_dataset_params[key] self.dataset_filename = dataset_params['config']['filename'] self.data_reader = load_data(dataset_params) self.dataset_params = dataset_params def _best_epoch_from_raw_log(self, monitor='', mode='max'): print(F'Finding best model based on the {mode}imum {monitor} from ' 'raw logs') epochs = self.epochs if len(epochs) == 0: print('No saved models in', self.log_base_path) raise Exception('load_best_model does not work') logger_path = self.log_base_path + self.LOG_FILE if os.path.isfile(logger_path): df = read_csv(logger_path, usecols=['epoch', monitor]) df['epoch'] = df['epoch'] + 1 # only compare models that were saved min_df = df[df['epoch'].isin(epochs)].min() min_epoch = df[df['epoch'].isin(epochs)].idxmin() max_df = df[df['epoch'].isin(epochs)].max() max_epoch = df[df['epoch'].isin(epochs)].idxmax() if mode == 'min': val = min_df[monitor] best_epoch = min_epoch[monitor] + 1 else: val = max_df[monitor] best_epoch = max_epoch[monitor] + 1 else: warnings.warn('No log files to check for best model') print('Best epoch:', best_epoch, f', with {monitor}={val}') return best_epoch def get_best_model(self, monitor='', mode='max', keep_best_only=True): # pragma: no cover best_epoch = self._best_epoch_from_raw_log(monitor, mode) epochs = self.epochs for epoch in epochs: if epoch == best_epoch or not keep_best_only: shutil.copy( self.temp_base_path + self.PREDICTION_PATH + self.PREDICTION_NAME.format(epoch=epoch), self.log_base_path + self.PREDICTION_PATH + self.PREDICTION_NAME.format(epoch=epoch)) return self.log_base_path + self.MODEL_PATH + \ self.MODEL_NAME.format(epoch=best_epoch) class SegmentationPostProcessor(PostProcessor): MODEL_PATH = '/model' MODEL_NAME = '/model.{epoch:03d}.h5' BEST_MODEL_PATH = '/best' PREDICTION_PATH = '/prediction' PREDICTION_NAME = '/prediction.{epoch:03d}.h5' LOG_FILE = '/logs.csv' PERFORMANCE_PATH = '/performance' PREDICTED_IMAGE_PATH = '/images' TEST_OUTPUT_PATH = '/test' PREDICT_TEST_NAME = '/prediction_test.h5' SINGLE_MAP_PATH = '/single_map' SINGLE_MAP_NAME = '/logs.{epoch:03d}.csv' MAP_PATH = '/logs' MAP_NAME = '/logs.{epoch:03d}.csv' TEST_SINGLE_MAP_NAME = '/single_result.csv' TEST_MAP_NAME = '/result.csv' def __init__(self, log_base_path='logs', temp_base_path='', analysis_base_path='', map_meta_data=None, main_meta_data='', run_test=False, new_dataset_params=None): self.temp_base_path = temp_base_path self.log_base_path = log_base_path self.analysis_base_path = analysis_base_path or log_base_path if not os.path.exists(self.analysis_base_path): os.mkdir(self.analysis_base_path) if not os.path.exists(self.analysis_base_path + self.PREDICTION_PATH): os.mkdir(self.analysis_base_path + self.PREDICTION_PATH) self.update_data_reader(new_dataset_params) try: temp_prediction_path = temp_base_path + self.PREDICTION_PATH predicted_files = os.listdir(temp_prediction_path) self.epochs = [int(filename[-6:-3]) for filename in predicted_files] except Exception as e: # pragma: no cover print("Error while getting epochs by temp folder:", e) print("Using post-process log files as alternative") try: log_files = os.listdir(self.log_base_path + self.MAP_PATH) self.epochs = [int(filename[-7:-4]) for filename in log_files] except Exception as e: print("Error while getting epochs by log files:", e) print("Using dummy epochs as alternative.") self.epochs = [5] print("Post-process only works on test data.") if map_meta_data: if type(map_meta_data) == str: self.map_meta_data = map_meta_data.split(',') else: self.map_meta_data = map_meta_data else: self.map_meta_data = ['patient_idx', 'slice_idx'] if main_meta_data: self.main_meta_data = main_meta_data else: self.main_meta_data = self.map_meta_data[0] self.run_test = run_test # def update_data_reader(self, new_dataset_params): # model_path = self.log_base_path + self.MODEL_PATH # sample_model_filename = model_path + '/' + os.listdir(model_path)[0] # with h5py.File(sample_model_filename, 'r') as f: # config = f.attrs['deoxys_config'] # config = load_json_config(config) # dataset_params = config['dataset_params'] # # update until level 2 # if new_dataset_params is not None: # for key in new_dataset_params: # if key in dataset_params: # dataset_params[key].update(new_dataset_params[key]) # else: # dataset_params[key] = new_dataset_params[key] # self.dataset_filename = dataset_params['config']['filename'] # self.data_reader = load_data(dataset_params) # self.dataset_params = dataset_params def map_2d_meta_data(self): print('mapping 2d meta data') if not self.run_test: map_folder = self.log_base_path + self.SINGLE_MAP_PATH if not os.path.exists(map_folder): os.makedirs(map_folder) map_filename = map_folder + self.SINGLE_MAP_NAME for epoch in self.epochs: H5MetaDataMapping( ref_file=self.dataset_filename, save_file=map_filename.format(epoch=epoch), folds=self.data_reader.val_folds, fold_prefix='', dataset_names=self.map_meta_data).post_process() else: test_folder = self.log_base_path + self.TEST_OUTPUT_PATH if not os.path.exists(test_folder): os.makedirs(test_folder) map_filename = test_folder + self.TEST_SINGLE_MAP_NAME H5MetaDataMapping( ref_file=self.dataset_filename, save_file=map_filename, folds=self.data_reader.test_folds, fold_prefix='', dataset_names=self.map_meta_data).post_process() return self def calculate_fscore_single(self): if not self.run_test: print('calculating dice score per items in val set') predicted_path = self.temp_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME map_folder = self.log_base_path + self.SINGLE_MAP_PATH map_filename = map_folder + self.SINGLE_MAP_NAME for epoch in self.epochs: H5CalculateFScore( predicted_path.format(epoch=epoch), map_filename.format(epoch=epoch) ).post_process() else: print('calculating dice score per items in test set') predicted_path = self.temp_base_path + \ self.TEST_OUTPUT_PATH + self.PREDICT_TEST_NAME test_folder = self.log_base_path + self.TEST_OUTPUT_PATH map_filename = test_folder + self.TEST_SINGLE_MAP_NAME H5CalculateFScore( predicted_path, map_filename ).post_process() return self def calculate_fscore_single_3d(self): self.calculate_fscore_single() if not self.run_test: map_folder = self.log_base_path + self.SINGLE_MAP_PATH main_log_folder = self.log_base_path + self.MAP_PATH try: os.rename(map_folder, main_log_folder) except Exception as e: print("Files exist:", e) print("Copying new logs file") os.rename(main_log_folder, main_log_folder + '-' + str(time())) os.rename(map_folder, main_log_folder) for epoch in self.epochs: H5Transform3d( ref_file=self.temp_base_path + self.PREDICTION_PATH + self.PREDICTION_NAME.format(epoch=epoch), map_file=main_log_folder + self.MAP_NAME.format(epoch=epoch), map_column=self.main_meta_data, merge_file=self.log_base_path + self.PREDICTION_PATH + self.PREDICTION_NAME.format(epoch=epoch), ).post_process() else: test_folder = self.log_base_path + self.TEST_OUTPUT_PATH map_filename = test_folder + self.TEST_SINGLE_MAP_NAME main_result_file_name = test_folder + self.TEST_MAP_NAME try: os.rename(map_filename, main_result_file_name) except Exception as e: print("Files exist:", e) print("Copying new result file") os.rename(main_result_file_name, main_result_file_name + '-' + str(time()) + '.csv') os.rename(map_filename, main_result_file_name) H5Transform3d( ref_file=self.temp_base_path + self.TEST_OUTPUT_PATH + self.PREDICT_TEST_NAME, map_file=main_result_file_name, map_column=self.main_meta_data, merge_file=test_folder + self.PREDICT_TEST_NAME, ).post_process() def merge_2d_slice(self): print('merge 2d slice to 3d images') if not self.run_test: predicted_path = self.temp_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME map_folder = self.log_base_path + self.SINGLE_MAP_PATH map_filename = map_folder + self.SINGLE_MAP_NAME merge_path = self.log_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME main_log_folder = self.log_base_path + self.MAP_PATH if not os.path.exists(main_log_folder): os.makedirs(main_log_folder) main_log_filename = main_log_folder + self.MAP_NAME for epoch in self.epochs: H5Merge2dSlice( predicted_path.format(epoch=epoch), map_filename.format(epoch=epoch), self.main_meta_data, merge_path.format(epoch=epoch), main_log_filename.format(epoch=epoch) ).post_process() else: predicted_path = self.temp_base_path + \ self.TEST_OUTPUT_PATH + self.PREDICT_TEST_NAME test_folder = self.log_base_path + self.TEST_OUTPUT_PATH map_filename = test_folder + self.TEST_SINGLE_MAP_NAME merge_path = test_folder + self.PREDICT_TEST_NAME main_result_file_name = test_folder + self.TEST_MAP_NAME H5Merge2dSlice( predicted_path, map_filename, self.main_meta_data, merge_path, main_result_file_name ).post_process() return self def merge_3d_patches(self): # pragma: no cover print('merge 3d patches to 3d images') if not self.run_test: predicted_path = self.temp_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME # map_folder = self.log_base_path + self.SINGLE_MAP_PATH # map_filename = map_folder + self.SINGLE_MAP_NAME merge_path = self.analysis_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME main_log_folder = self.log_base_path + self.MAP_PATH if not os.path.exists(main_log_folder): os.makedirs(main_log_folder) main_log_filename = main_log_folder + self.MAP_NAME for epoch in self.epochs: H5MergePatches( ref_file=self.dataset_filename, predicted_file=predicted_path.format(epoch=epoch), map_column=self.main_meta_data, merge_file=merge_path.format(epoch=epoch), save_file=main_log_filename.format(epoch=epoch), patch_size=self.data_reader.patch_size, overlap=self.data_reader.overlap, folds=self.data_reader.val_folds, fold_prefix='', original_input_dataset=self.data_reader.x_name, original_target_dataset=self.data_reader.y_name, ).post_process() else: predicted_path = self.temp_base_path + \ self.TEST_OUTPUT_PATH + self.PREDICT_TEST_NAME test_folder = self.log_base_path + self.TEST_OUTPUT_PATH merge_path = test_folder + self.PREDICT_TEST_NAME main_result_file_name = test_folder + self.TEST_MAP_NAME if not os.path.exists(test_folder): os.makedirs(test_folder) H5MergePatches( ref_file=self.dataset_filename, predicted_file=predicted_path, map_column=self.main_meta_data, merge_file=merge_path, save_file=main_result_file_name, patch_size=self.data_reader.patch_size, overlap=self.data_reader.overlap, folds=self.data_reader.test_folds, fold_prefix='', original_input_dataset=self.data_reader.x_name, original_target_dataset=self.data_reader.y_name, ).post_process() return self def calculate_fscore(self): print('calculating dice score per 3d image') if not self.run_test: merge_path = self.analysis_base_path + \ self.PREDICTION_PATH + self.PREDICTION_NAME main_log_folder = self.log_base_path + self.MAP_PATH main_log_filename = main_log_folder + self.MAP_NAME for epoch in self.epochs: H5CalculateFScore( merge_path.format(epoch=epoch), main_log_filename.format(epoch=epoch), map_file=main_log_filename.format(epoch=epoch), map_column=self.main_meta_data ).post_process() else: test_folder = self.log_base_path + self.TEST_OUTPUT_PATH merge_path = test_folder + self.PREDICT_TEST_NAME main_result_file_name = test_folder + self.TEST_MAP_NAME H5CalculateFScore( merge_path, main_result_file_name, map_file=main_result_file_name, map_column=self.main_meta_data ).post_process() return self def get_best_model(self, monitor='', mode='max', keep_best_only=True, use_raw_log=False): print('finding best model') epochs = self.epochs if use_raw_log: best_epoch = self._best_epoch_from_raw_log(monitor, mode) else: res_df =
pd.DataFrame(epochs, columns=['epochs'])
pandas.DataFrame
#!/usr/bin/env python3 import pandas import re def sanitize(string): string = string.lower() string = re.sub(r' ','_',string) string = re.sub(r'[^a-zA-Z_]','',string) return string class BptImporter(): playName = '' dirtyData = '' headers = [] cleanedData = pandas.DataFrame() def __init__(self, name): self.playName = name def importData(self, path): self.dirtyData = open(path,'r').read() self.dirtyData = self.dirtyData.split('\n') self.dirtyData = self.dirtyData[4:] # Top four lines are junk self.dirtyData = [line.split('\t') for line in self.dirtyData] self.headers = self.dirtyData[1] self.dirtyData = [line for line in self.dirtyData if len(line[0]) > 0] self.dirtyData = [line for line in self.dirtyData if line != self.headers] self.dirtyData = [line for line in self.dirtyData if line[0] != 'None'] def processData(self): sectionHeads = [idx for idx, x in enumerate(self.dirtyData) if len(x) == 1] for idx in range(len(sectionHeads)): if len(self.dirtyData[sectionHeads[idx] + 1]) == 1: pass else: groupTicketClass = sanitize(self.dirtyData[sectionHeads[idx]][0]) groupStart = sectionHeads[idx] + 1 if idx != (len(sectionHeads) - 1): groupEnd = sectionHeads[idx+1] - 1 else: # End of data groupEnd = len(self.dirtyData) - 1 df = pandas.DataFrame(self.dirtyData[groupStart:groupEnd], columns=self.headers) df['ticket_purchase_type'] = groupTicketClass self.cleanedData =
pandas.concat((self.cleanedData,df), ignore_index=True)
pandas.concat
import os import pandas as pd import glob import nibabel as nib from nilearn.image import resample_img import numpy as np from sklearn.model_selection import StratifiedKFold # split data train, validate def generate_csv(options): # order ISBI dataset train_csv_path = options["train_csv_path"] modalities_names = options['preprocess_x_names'] modalities = options['modalities'] masks_names = options['preprocess_y_names'] masks = options['masks'] # generate csv file of files names and split dataset _, dirs, _ = next(os.walk(options['train_folder'])) if os.path.isfile(train_csv_path): os.remove(train_csv_path) train_data = pd.DataFrame(columns=['root_path', 'patient_id', 'study', *masks, *modalities, 'fold']) train_data = train_data.astype({"study": str}) for dir_ in dirs: patient_id = dir_.split('_')[0] study = "_"+dir_.split('_')[1] root_path = os.path.join(options['train_folder'], dir_, options['tmp_folder']) df = pd.DataFrame([[root_path, patient_id, study, *masks_names, *modalities_names, 1]], columns=['root_path', 'patient_id', 'study', *masks, *modalities, 'fold']) train_data = train_data.append(df) train_data.reset_index(inplace=True) train_data.drop(columns=['index'], inplace=True) train_data.to_csv(train_csv_path, index=False) return train_data def miccai_generate_csv(options): # order miccai dataset train_csv_path = options["train_csv_path"] modalities_names = options['preprocess_x_names'] modalities = options['modalities'] masks_names = options['preprocess_y_names'] masks = options['masks'] # generate csv file of files names and split dataset _, dirs, _ = next(os.walk(options['train_folder'])) if os.path.isfile(train_csv_path): os.remove(train_csv_path) train_data = pd.DataFrame(columns=['root_path', 'center_id', 'patient', *masks, *modalities, 'fold']) for dir_ in dirs: center_id = '_'.join(dir_.split('_')[:2]) patient = '_'.join(dir_.split('_')[2:]) root_path = os.path.join(options['train_folder'], dir_, options['tmp_folder']) df = pd.DataFrame([[root_path, center_id, patient, *masks_names, *modalities_names, 1]], columns=['root_path', 'center_id', 'patient', *masks, *modalities, 'fold']) train_data = train_data.append(df) train_data.reset_index(inplace=True) train_data.drop(columns=['index'], inplace=True) train_data.to_csv(train_csv_path, index=False) return train_data def resize_images(options): # resize images just for test as image large remove it later root, dirs, _ = next(os.walk(options['train_folder'])) for dir_ in dirs: files = glob.glob(os.path.join(root, dir_, options['tmp_folder'])+'/*.nii.gz') print(files) for file in files: # resize data = nib.load(file) data = resample_img(data, target_affine=np.eye(3)*2., interpolation='nearest') # save new size nib.save(data, file) def split_folds(train_csv_path, seed=300, k_fold=5): df = pd.read_csv(train_csv_path) skf = StratifiedKFold(n_splits=k_fold, random_state=seed, shuffle=True) for i, (train_index, val_index) in enumerate( skf.split(df, df["patient_id"]) ): df.loc[val_index, "fold"] = i df.reset_index(inplace=True) df.drop(columns=['index'], inplace=True) df.to_csv(train_csv_path, index=False) def miccai_split_folds(train_csv_path, seed=300, k_fold=5): df =
pd.read_csv(train_csv_path)
pandas.read_csv
import pytest import pandas as pd import datetime as dt import goldenowl.portfolio.holding as hd import goldenowl.portfolio.portfolio as pf import goldenowl.asset.asset as at def get_prdata(): price_dict_raw ={ '1992-11-23': 234.2, '1999-01-23': 34.2, '2000-10-03': 134.2, '2001-11-01': 333.9, '2002-11-23': 234.2, '2005-05-2': 100, '2012-01-23': 4000.0, }; price_dict = {pd.to_datetime(key):val for key, val in price_dict_raw.items()} tup = list(zip(price_dict.keys(), price_dict.values())); data = pd.DataFrame(tup, columns=['Date', 'Close']); data['Open'] = data['High'] = data['Low'] = 0; return data; def test_hedge(): asset1 = at.Asset('Asset1', get_prdata()); asset2 = at.Asset('Asset2', get_prdata()); asset_ratio_list = [(asset1, 0.4), (asset2, 0.6)] prtf = pf.Portfolio('TestP', asset_ratio_list); prtf.addAmount(200, '1992-11-23'); prtf.setLongPutHedge(asset1, 0.146, 0.01, dt.timedelta(days =36000), '1992-12-01'); val_start = prtf.getValue('1992-12-23'); hldng1 =hd.Holding('Test1', asset1); hldng2 =hd.Holding('Test2', asset2); hldng1.buyAmount(200*0.4*0.99, '1992-11-23'); hldng2.buyAmount(200*0.6*0.99, '1992-11-23'); valh1 = hldng1.getValue('2012-01-23'); valh2 = hldng2.getValue('2012-01-23'); val = prtf.getValue('2012-01-23'); assert (0.99 * val) == pytest.approx(valh1+ valh2, 0.01), "hedge OTM failed" val_low = prtf.getValue('2005-06-1'); assert (val_low) == pytest.approx((200/234.2)*val_start, 0.01), "hedge ITM failed" def test_addAmount(): asset1 = at.Asset('Asset1', get_prdata()); asset2 = at.Asset('Asset2', get_prdata()); asset_ratio_list = [(asset1, 0.4), (asset2, 0.6)] prtf = pf.Portfolio('TestP', asset_ratio_list); hldng1 =hd.Holding('Test1', asset1); hldng2 =hd.Holding('Test2', asset2); prtf.addAmount(200, '1992-11-23'); val = prtf.getValue('2012-01-23'); hldng1.buyAmount(200*0.4, '1992-11-23'); hldng2.buyAmount(200*0.6, '1992-11-23'); valh1 = hldng1.getValue('2012-01-23'); valh2 = hldng2.getValue('2012-01-23'); assert (val) == (valh1+ valh2), "addAmount failed" def test_removeAmount(): asset1 = at.Asset('Asset1', get_prdata()); asset2 = at.Asset('Asset2', get_prdata()); asset_ratio_list = [(asset1, 0.4), (asset2, 0.6)] prtf = pf.Portfolio('TestP', asset_ratio_list); hldng1 =hd.Holding('Test1', asset1); hldng2 =hd.Holding('Test2', asset2); prtf.addAmount(200, '1992-11-23'); prtf.removeAmount(100, '2000-10-03'); val = prtf.getValue('2012-01-23'); hldng1.buyAmount(200*0.4, '1992-11-23'); hldng2.buyAmount(200*0.6, '1992-11-23'); hldng1.sellAmount(100*0.4, '2000-10-03'); hldng2.sellAmount(100*0.6, '2000-10-03'); valh1 = hldng1.getValue('2012-01-23'); valh2 = hldng2.getValue('2012-01-23'); assert (val) == (valh1+ valh2), "removeAmount failed" def test_rebalance(): asset1 = at.Asset('Asset1', get_prdata()); pr_data = get_prdata(); pr_data.loc[pr_data.Date == pd.to_datetime("2000-10-03"), ['Close']] = 200; pr_data.loc[pr_data.Date == pd.to_datetime("2012-01-23"), ['Close']] = 3000; asset2 = at.Asset('Asset2', pr_data); asset_ratio_list = [(asset1, 0.4), (asset2, 0.6)] prtf = pf.Portfolio('TestP', asset_ratio_list); prtf.addAmount(200, '1992-11-23'); prtf.removeAmount(100, '2000-10-03'); final_val = prtf.getValue('2012-01-23'); val_bef_rebalance = prtf.getValue('2000-10-03'); prtf.rebalance('2000-10-03'); hldng1 =hd.Holding('Test1', asset1); hldng2 =hd.Holding('Test2', asset2); hldng1.buyAmount(val_bef_rebalance*0.4, '2000-10-03'); hldng2.buyAmount(val_bef_rebalance*0.6, '2000-10-03'); hldval1= hldng1.getValue('2012-01-23'); hldval2= hldng2.getValue('2012-01-23'); final_val_rb = prtf.getValue('2012-01-23'); assert (final_val_rb) == pytest.approx(hldval1 + hldval2,0.1), "post rebalance tally failed" assert (final_val_rb) != pytest.approx(final_val, 0.1), "post and pre rebalance same" def test_XIRR(): asset1 = at.Asset('Asset1', get_prdata()); pr_data = get_prdata(); pr_data.loc[pr_data.Date == pd.to_datetime("2000-10-03"), ['Close']] = 200; pr_data.loc[pr_data.Date ==
pd.to_datetime("2012-01-23")
pandas.to_datetime
import warnings warnings.simplefilter("ignore", category=FutureWarning) from pmaf.biome.essentials._metakit import ( EssentialFeatureMetabase, EssentialSampleMetabase, ) from pmaf.biome.essentials._base import EssentialBackboneBase from collections import defaultdict from os import path import pandas as pd import numpy as np import biom from typing import Union, Sequence, Tuple, Callable, Any, Optional from pmaf.internal._typing import AnyGenericIdentifier, Mapper class FrequencyTable( EssentialBackboneBase, EssentialFeatureMetabase, EssentialSampleMetabase ): """An essential class for handling frequency data.""" def __init__( self, frequency: Union[pd.DataFrame, str], skipcols: Union[Sequence[Union[str, int]], str, int] = None, allow_nan: bool = False, **kwargs ): """Constructor for :class:`.FrequencyTable` Parameters ---------- frequency Data containing frequency data. skipcols Columns to skip when processing data. allow_nan Allow NA/NaN values or raise an error. kwargs Remaining parameters passed to :func:`~pandas.read_csv` or :mod:`biom` loader """ self.__internal_frequency = None tmp_skipcols = np.asarray([]) tmp_metadata = kwargs.pop("metadata", {}) if skipcols is not None: if isinstance(skipcols, (str, int)): tmp_skipcols = np.asarray([skipcols]) elif isinstance(skipcols, (list, tuple)): if not isinstance(skipcols[0], (str, int)): tmp_skipcols = np.asarray(skipcols) else: raise TypeError( "`skipcols` can be int/str or list-like of int/str." ) else: raise TypeError("`skipcols` can be int/str or list-like of int/str.") if isinstance(frequency, pd.DataFrame): if all(frequency.shape): tmp_frequency = frequency else: raise ValueError("Provided `frequency` Datafame is invalid.") elif isinstance(frequency, str): if not path.isfile(frequency): raise FileNotFoundError("Provided `frequency` file path is invalid.") file_extension = path.splitext(frequency)[-1].lower() if file_extension in [".csv", ".tsv"]: tmp_frequency = pd.read_csv(frequency, **kwargs) elif file_extension in [".biom", ".biome"]: tmp_frequency, new_metadata = self.__load_biom(frequency, **kwargs) tmp_metadata.update({"biom": new_metadata}) else: raise NotImplementedError("File type is not supported.") else: raise TypeError("Provided `frequency` has invalid type.") if skipcols is not None: if np.issubdtype(tmp_skipcols.dtype, np.number): if tmp_frequency.columns.isin(tmp_skipcols).any(): tmp_frequency.drop(columns=tmp_skipcols, inplace=True) else: tmp_frequency.drop( columns=tmp_frequency.columns[tmp_skipcols], inplace=True ) else: tmp_frequency.drop(columns=tmp_skipcols, inplace=True) tmp_dtypes = list(set(tmp_frequency.dtypes.values)) if len(tmp_dtypes) == 1 and pd.api.types.is_numeric_dtype(tmp_dtypes[0]): self.__init_frequency_table(tmp_frequency) else: if not allow_nan: raise ValueError( "Provided `frequency` must have numeric dtypes. " "Use `allow_nan` to allow missing values." ) if len(tmp_dtypes) == 1 and pd.api.types.is_numeric_dtype(tmp_dtypes[0]): self.__init_frequency_table(tmp_frequency) elif len(tmp_dtypes) == 2: tmp_dtypes_cond = [ (dt == object) or (
pd.api.types.is_numeric_dtype(dt)
pandas.api.types.is_numeric_dtype
import json import os import unittest from collections import OrderedDict import numpy as np import pandas as pd import xarray as xr from cate.core.workflow import Workflow, OpStep from cate.core.workspace import Workspace, WorkspaceError, mk_op_arg, mk_op_args, mk_op_kwargs from cate.util.undefined import UNDEFINED from cate.util.opmetainf import OpMetaInfo NETCDF_TEST_FILE_1 = os.path.join(os.path.dirname(__file__), '..', 'data', 'precip_and_temp.nc') NETCDF_TEST_FILE_2 = os.path.join(os.path.dirname(__file__), '..', 'data', 'precip_and_temp_2.nc') class WorkspaceTest(unittest.TestCase): def test_utilities(self): self.assertEqual(mk_op_arg(1), {'value': 1}) self.assertEqual(mk_op_arg('2'), {'value': '2'}) self.assertEqual(mk_op_arg('a'), {'value': 'a'}) self.assertEqual(mk_op_arg('@b'), {'source': 'b'}) self.assertEqual(mk_op_args(), []) self.assertEqual(mk_op_args(1, '2', 'a', '@b'), [{'value': 1}, {'value': '2'}, {'value': 'a'}, {'source': 'b'}]) self.assertEqual(mk_op_kwargs(a=1), OrderedDict([('a', {'value': 1})])) self.assertEqual(mk_op_kwargs(a=1, b='@c'), OrderedDict([('a', {'value': 1}), ('b', {'source': 'c'})])) def test_workspace_is_part_of_context(self): def some_op(ctx: dict) -> dict: return dict(ctx) from cate.core.op import OP_REGISTRY try: op_reg = OP_REGISTRY.add_op(some_op) op_reg.op_meta_info.inputs['ctx']['context'] = True ws = Workspace('/path', Workflow(OpMetaInfo('workspace_workflow', header=dict(description='Test!')))) ws.set_resource(op_reg.op_meta_info.qualified_name, {}, res_name='new_ctx') ws.execute_workflow('new_ctx') self.assertTrue('new_ctx' in ws.resource_cache) self.assertTrue('workspace' in ws.resource_cache['new_ctx']) self.assertIs(ws.resource_cache['new_ctx']['workspace'], ws) finally: OP_REGISTRY.remove_op(some_op) def test_workspace_can_create_new_res_names(self): ws = Workspace('/path', Workflow(OpMetaInfo('workspace_workflow', header=dict(description='Test!')))) res_name_1 = ws.set_resource('cate.ops.utility.identity', mk_op_kwargs(value='A')) res_name_2 = ws.set_resource('cate.ops.utility.identity', mk_op_kwargs(value='B')) res_name_3 = ws.set_resource('cate.ops.utility.identity', mk_op_kwargs(value='C')) self.assertEqual(res_name_1, 'res_1') self.assertEqual(res_name_2, 'res_2') self.assertEqual(res_name_3, 'res_3') self.assertIsNotNone(ws.workflow.find_node(res_name_1)) self.assertIsNotNone(ws.workflow.find_node(res_name_2)) self.assertIsNotNone(ws.workflow.find_node(res_name_3)) def test_to_json_dict(self): def dataset_op() -> xr.Dataset: periods = 5 temperature_data = (15 + 8 * np.random.randn(periods, 2, 2)).round(decimals=1) temperature_attrs = {'a': np.array([1, 2, 3]), 'comment': 'hot', '_FillValue': np.nan} precipitation_data = (10 * np.random.rand(periods, 2, 2)).round(decimals=1) precipitation_attrs = {'x': True, 'comment': 'wet', '_FillValue': -1.0} ds = xr.Dataset( data_vars={ 'temperature': (('time', 'lat', 'lon'), temperature_data, temperature_attrs), 'precipitation': (('time', 'lat', 'lon'), precipitation_data, precipitation_attrs) }, coords={ 'lon': np.array([12, 13]), 'lat': np.array([50, 51]), 'time': pd.date_range('2014-09-06', periods=periods) }, attrs={ 'history': 'a b c' }) return ds def data_frame_op() -> pd.DataFrame: data = {'A': [1, 2, 3, np.nan, 4, 9, np.nan, np.nan, 1, 0, 4, 6], 'B': [5, 6, 8, 7, 5, 5, 5, 9, 1, 2, 7, 6]} time =
pd.date_range('2000-01-01', freq='MS', periods=12)
pandas.date_range
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from config_fh import get_db_engine, get_db_session, get_cache_file_path, STR_FORMAT_DATE from fh_tools.fh_utils import return_risk_analysis, str_2_date from fh_tools import fh_utils import matplotlib.pyplot as plt # pycharm 需要通过现实调用 plt.show 才能显示plot from datetime import date, datetime, timedelta from sqlalchemy.types import String, Date, FLOAT import datetime as dt import logging logger = logging.getLogger() STRATEGY_TYPE_CN_EN_DIC = {'债券策略': 'fixed_income', '套利策略': 'arbitrage', '管理期货策略': 'cta', '股票多头策略': 'long_only', '阿尔法策略': 'alpha', '宏观策略': 'macro', '组合基金策略': 'fof'} STRATEGY_TYPE_EN_CN_DIC = {en: cn for cn, en in STRATEGY_TYPE_CN_EN_DIC.items()} def calc_wind_code_list_index(wind_code_list, date_since, file_name=None): """ 计算 wind_code_list 组成的指数 :param wind_code_list: :param date_since: :param file_name: 默认为None,不生成文件 :return: 合成后的指数每日收益率列表 """ # 获取样本子基金行情数据 wind_code_list_str = ', '.join(["'" + wind_code + "'" for wind_code in wind_code_list]) query_base_str = r'''select fv.wind_code, nav_date_week, fv.nav_acc from ( select wind_code, adddate(nav_date, 4 - weekday(nav_date)) as nav_date_week, max(nav_date) as nav_date_max from fund_nav where wind_code in (%s) group by wind_code, nav_date_week ) as ffv, fund_nav fv where ffv.nav_date_week >= %s and fv.wind_code = ffv.wind_code and fv.nav_date = ffv.nav_date_max group by wind_code, nav_date_week order by nav_date_week desc''' query_str = query_base_str % (wind_code_list_str, date_since) # logger.info(query_str) engine = get_db_engine() fund_nav_df =
pd.read_sql_query(query_str, engine)
pandas.read_sql_query
# -*- coding: utf-8 -*- """ Created on Sat May 22 14:41:01 2021 @author: Thomas """ import pandas as pd import numpy as np import os import matplotlib.pyplot as plt from scipy import stats ################## Calibration Data ########################### CalibrationFolder = 'data/Calibration' # Path to calibation data pivFolder = "data/piv_data2" save_fig = False piv_files = [pivFolder + "/" + file for file in os.listdir(pivFolder)] files = os.listdir(CalibrationFolder) # File names in calibration folder CalibrationData = pd.DataFrame({'X_Value': [], 'Voltage': [], 'U': []}) # Empty dataframe U_list = np.linspace(0, 20, 11) for file in files[1:]: # Loop over files in folder, read file, specify velocity in df, concat to main df FilePath = CalibrationFolder + '/' + file # Create path df = pd.read_csv(FilePath, sep=('\t'), skiprows=(22), usecols=[0, 1]) df['U'] = float(file[-2:]) df = df[(np.abs(stats.zscore(df["Voltage"])) < 3)] CalibrationData = pd.concat([CalibrationData, df], ignore_index=True) # Obtain polyfit coefficients 4th order coef = np.polyfit(CalibrationData['Voltage'], CalibrationData["U"], 4) # plot polyfit voltages = np.linspace(1.4, 1.9, 100) fig, ax = plt.subplots(1, 1, constrained_layout=True, dpi=150) ax.plot(np.polyval(coef, voltages), voltages, label=r"$4^{th}$-order polynomial fit", c='C00') ax.scatter(CalibrationData["U"][::10000], CalibrationData['Voltage'][::10000], label="measurements", c='C01', zorder=1) ax.grid() ax.legend(prop={"size": 14}) ax.set_ylabel("E [V]", fontsize=14) ax.set_xlabel("U [m/s]", fontsize=14) plt.savefig('HWA_Calibration.png', bbox_inches='tight') if save_fig else None #################### 0 AOA ############################### ZeroAOAFolder = 'data/0 aoa' files = os.listdir(ZeroAOAFolder) # List of measurement heights HeightList = np.arange(-40, 44, 4) # create empty df ZeroAoAData = pd.DataFrame({'X_Value': [], 'Voltage': [], 'height': []}) # read all files and append to single df for file in files: FilePath = ZeroAOAFolder + '/' + file df = pd.read_csv(FilePath, sep=('\t'), skiprows=(22), usecols=[0, 1]) df['height'] = float(file[12:15]) # define height from specific data file df = df[(np.abs(stats.zscore(df["Voltage"])) < 3)] ZeroAoAData =
pd.concat([ZeroAoAData, df], ignore_index=True)
pandas.concat
import pandas import numpy as np import scipy import statsmodels.api as sm import os import sys import json import traceback import logging from time import time from elasticsearch import Elasticsearch MAX_RESOLUTION = 1000 MAX_TOLERABLE_BOREDOM = 100 MIN_TOLERABLE_LENGTH = 1 REDOM_SET_SIZE = 1 BOREDOM_SET_SIZE = 1 FULL_DURATION = 86400 CONSENSUS = 6 STALE_PERIOD = 500 ALGORITHMS = [ 'first_hour_average', 'mean_subtraction_cumulation', 'stddev_from_average', 'stddev_from_moving_average', 'least_squares', 'grubbs', 'histogram_bins', 'median_absolute_deviation', 'ks_test', ] logger = logging.getLogger("AnalyzerLog") """ This is no man's land. Do anything you want in here, as long as you return a boolean that determines whether the input timeseries is anomalous or not. To add an algorithm, define it here, and add its name to settings.ALGORITHMS. """ def tail_avg(timeseries): """ This is a utility function used to calculate the average of the last three datapoints in the series as a measure, instead of just the last datapoint. It reduces noise, but it also reduces sensitivity and increases the delay to detection. """ try: t = (timeseries[-1][1] + timeseries[-2][1] + timeseries[-3][1]) / 3 return t except IndexError: return timeseries[-1][1] def median_absolute_deviation(timeseries): """ A timeseries is anomalous if the deviation of its latest datapoint with respect to the median is X times larger than the median of deviations. """ series = pandas.Series([x[1] for x in timeseries]) median = series.median() demedianed = np.abs(series - median) median_deviation = demedianed.median() # The test statistic is infinite when the median is zero, # so it becomes super sensitive. We play it safe and skip when this happens. if median_deviation == 0: return False test_statistic = demedianed.iget(-1) / median_deviation # Completely arbitary...triggers if the median deviation is # 6 times bigger than the median if test_statistic > 6: return True def grubbs(timeseries): """ A timeseries is anomalous if the Z score is greater than the Grubb's score. """ series = scipy.array([x[1] for x in timeseries]) stdDev = scipy.std(series) mean = np.mean(series) tail_average = tail_avg(timeseries) z_score = (tail_average - mean) / stdDev len_series = len(series) threshold = scipy.stats.t.isf(.05 / (2 * len_series), len_series - 2) threshold_squared = threshold * threshold grubbs_score = ((len_series - 1) / np.sqrt(len_series)) * np.sqrt(threshold_squared / (len_series - 2 + threshold_squared)) return z_score > grubbs_score def first_hour_average(timeseries): """ Calcuate the simple average over one hour, FULL_DURATION seconds ago. A timeseries is anomalous if the average of the last three datapoints are outside of three standard deviations of this value. """ last_hour_threshold = time() - (FULL_DURATION - 3600) series = pandas.Series([x[1] for x in timeseries if x[0] < last_hour_threshold]) mean = (series).mean() stdDev = (series).std() t = tail_avg(timeseries) return abs(t - mean) > 3 * stdDev def stddev_from_average(timeseries): """ A timeseries is anomalous if the absolute value of the average of the latest three datapoint minus the moving average is greater than three standard deviations of the average. This does not exponentially weight the MA and so is better for detecting anomalies with respect to the entire series. """ series = pandas.Series([x[1] for x in timeseries]) mean = series.mean() stdDev = series.std() t = tail_avg(timeseries) return abs(t - mean) > 3 * stdDev def stddev_from_moving_average(timeseries): """ A timeseries is anomalous if the absolute value of the average of the latest three datapoint minus the moving average is greater than three standard deviations of the moving average. This is better for finding anomalies with respect to the short term trends. """ series =
pandas.Series([x[1] for x in timeseries])
pandas.Series
import os from zhihu_user_info_spider.util.Utils import Util import pandas as pd import threading from zhihu_user_info_spider.Exception.SpiderException import SpiderException # 保存方法工具类主要作用:读取json文件并按配置文件中所指定的方法进行保存 class SaveUtil(Util): question_list_model = 1 user_uuid_list_model = 3 # answer_list_model = 2 HOT_LIST = 11 USER_ID_LIST = 12 PD_DF = 13 def __init__(self): super().__init__() self.path = os.path.dirname(os.path.dirname(self.abs_path)) + os.sep + "result" + os.sep self.update_date() self.hot_path = self.path + "hotList" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep self.user_path = self.path + "userUUID" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep self.final_path = self.path + "userInfo" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep self.lock = threading.RLock() # 用来更新路径 def get_paths(self): self.update_date() self.hot_path = self.path + "hotList" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep self.user_path = self.path + "userUUID" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep self.final_path = self.path + "userInfo" + os.sep + self.year + os.sep + self.month + os.sep + self.day + os.sep # 用来保存中间产物 def middle_save(self, model: int, data: list, attach=False): file_name = "" self.get_paths() if model == self.question_list_model: flag = os.path.exists(self.hot_path) if not flag: os.makedirs(self.hot_path) file_name = "hot_list-" + self.year + "-" + self.month + "-" + self.day + ".txt" f_w = open(self.hot_path + file_name, mode="w", encoding="utf-8") for i in data: f_w.write(str(i) + "\n") f_w.close() elif model == self.user_uuid_list_model: flag = os.path.exists(self.user_path) if not flag: os.makedirs(self.user_path) file_name = "user_uuid-" + self.year + "-" + self.month + "-" + self.day + ".txt" if os.path.exists(self.user_path + file_name): f_w = open(self.user_path + file_name, mode="a", encoding="utf-8") elif attach: f_w = open(self.user_path + file_name, mode="a", encoding="utf-8") else: f_w = open(self.user_path + file_name, mode="w", encoding="utf-8") for i in data: f_w.write(str(i) + "\n") f_w.close() # 该方法用于恢复中间产物的数据, # 该方法如果是hotlist调用,那么应该每天晚上十二点之前调用一次,以免出现路劲错误 def restore_middle_data(self, file_type: int): data_list = [] self.get_paths() if file_type == self.HOT_LIST: for root, dirs, files in os.walk(self.hot_path): if len(files) == 0: raise SpiderException("未找到当日的hot_list【热榜问题】文件") for f in files: with open(os.path.join(root, f), mode="r", encoding="utf-8") as f_r: for i in f_r.readlines(): data_list.append(i.strip("\n")) if file_type == self.USER_ID_LIST: for root, dirs, files in os.walk(self.user_path): if len(files) == 0: raise SpiderException("未找到当日的user_uuid【用户uuid】文件") for f in files: with open(os.path.join(root, f), mode="r", encoding="utf-8") as f_r: for i in f_r.readlines(): data_list.append(i.strip("\n")) return data_list def save(self, data_dict, is_month=False): self.get_paths() path_flag = os.path.exists(self.final_path) if not path_flag: os.makedirs(self.final_path) if "save_method" in self.json_result: save_method = self.json_result["save_method"] if save_method == "csv": self.__save_by_csv(data_dict, is_month) elif save_method == "txt": self.__save_by_txt(data_dict) else: print("请在util_content.json中配置save_method。") # 使用csv保存 def __save_by_csv(self, data_dict, is_month=False): self.get_paths() df =
pd.DataFrame(data_dict)
pandas.DataFrame
# execute simulation script with ALL solver setting combinations ###################################################################################### # very important: linSol, nonLinSolIter, solAlg must be their corresponding integers # # # # linSol: Dense == 1 GMRES == 6 BiCGStab == 7 SPTFQMR == 8 KLU == 9 # # nonLinSolIter: Functional == 1 Newton-type == 2 # # solAlg: Adams == 1 BDF == 2 # # # ###################################################################################### import logging import os import pandas as pd import numpy as np from C import DIR_MODELS_AMICI_FINAL, DIR_MODELS_COPASI_FINAL, \ DIR_RESULTS_ALGORITHMS, \ DIR_BASE, DIR_MODELS, SIMCONFIG, DIR_COPASI_BIN from simulation_wrapper_amici import simulation_wrapper as simulate_with_amici from simulation_wrapper_copasi import simulation_wrapper as simulate_with_copasi # create logger object logger = logging.getLogger() # initialize the log settings logging.basicConfig( filename=os.path.join(DIR_BASE, 'trajectoryComparison.log'), level=logging.DEBUG) def run_study_amici(model_info): # the settings we want to simulate with AMICI settings_amici = [ { 'id': f'atol_{atol}__rtol_{rtol}__linSol_{ls}__nonlinSol_{nls}__solAlg_{algo}', 'atol': float(atol), 'rtol': float(rtol), 'linSol': ls, 'nonlinSol': nls, 'solAlg': algo} for (atol, rtol) in (('1e-8', '1e-6'), ('1e-6', '1e-8'), ('1e-12', '1e-10'), ('1e-10', '1e-12'), ('1e-16', '1e-8'), ('1e-8', '1e-16'), ('1e-14', '1e-14')) for ls in (1, 6, 7, 8, 9) for nls in (1, 2) for algo in (1, 2) ] for setting in settings_amici: # collect results as a list results = [] for model_name in sorted(os.listdir(DIR_MODELS_AMICI_FINAL)): # Get information about the current model model_rows = model_info[model_info['short_id'] == model_name] idx = model_rows.index.values[0] models_to_average = sum([acc for acc in list(model_rows['accepted'])]) # run the simulation result = simulate_with_amici(simulation_mode=SIMCONFIG.CPUTIME, settings=setting, model_name=model_name) # save results in a dict model_result = {'model_name': model_name, 'median_intern': np.median(result['cpu_times_intern']), 'median_extern': np.median(result['cpu_times_extern']), 'failure': result['failure'], 'n_species': model_rows.loc[idx, 'n_species'], 'n_reactions': model_rows.loc[idx, 'n_reactions'], 'n_submodels': models_to_average} for i_run, runtime in enumerate(result['cpu_times_intern']): model_result[f'run_{i_run}'] = runtime # save in the DataFrame to be results.append(model_result) results_df =
pd.DataFrame(results)
pandas.DataFrame
# coding: utf-8 # <h1 align="center"> Lending Club Loan Analysis </h1> <br> # ## Company Information: # Lending Club is a peer to peer lending company based in the United States, in which investors provide funds for potential borrowers and investors earn a profit depending on the risk they take (the borrowers credit score). Lending Club provides the "bridge" between investors and borrowers. For more basic information about the company please check out the wikipedia article about the company. <br><br> # # # <a src="https://en.wikipedia.org/wiki/Lending_Club"> Lending Club Information </a> # # # # # ## How Lending Club Works? # <img src="http://echeck.org/wp-content/uploads/2016/12/Showing-how-the-lending-club-works-and-makes-money-1.png"><br><br> # # # ## Outline: <br><br> # I. Introduction <br> # a) [General Information](#general_information)<br> # b) [Similar Distributions](#similar_distributions)<br><br> # # II. <b>Good Loans vs Bad Loans</b><br> # a) [Types of Loans](#types_of_loans)<br> # b) [Loans issued by Region](#by_region)<br> # c) [A Deeper Look into Bad Loans](#deeper_bad_loans)<br><br> # # III. <b>The Business Perspective</b><br> # a) [Understanding the Operative side of Business](#operative_side)<br> # b) [Analysis by Income Category](#income_category) <br><br> # # IV. <b>Assesing Risks</b><br> # a) [Understanding the Risky Side of Business](#risky_side)<br> # b) [The importance of Credit Scores](#credit_scores)<br> # c) [What determines a bad loan](#determines_bad_loan)<br> # d) [Defaulted Loans](#defaulted_loans) # # ## References: # 1) <a src="https://www.kaggle.com/arthurtok/global-religion-1945-2010-plotly-pandas-visuals"> Global Religion 1945-2010: Plotly & Pandas visuals</a> by Anisotropic <br> # 2) <a src="https://www.kaggle.com/vigilanf/loan-metrics-by-state"> Loan Metrics By State </a> by <NAME><br> # 3) Hands on Machine Learning by <NAME> <br> # 4) <a src="https://www.youtube.com/watch?v=oYbVFhK_olY&list=PLSPWNkAMSvv5DKeSVDbEbUKSsK4Z-GgiP"> Deep Learning with Neural Networks and TensorFlow </a> by Sentdex # # Introduction: # ## General Information: # <a id="general_information"></a> # In[ ]: # Import our libraries we are going to use for our data analysis. import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt # Plotly visualizations from plotly import tools import plotly.plotly as py import plotly.figure_factory as ff import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot init_notebook_mode(connected=True) # plotly.tools.set_credentials_file(username='AlexanderBach', api_key='o4fx6i1MtEIJQxfWYvU1') get_ipython().run_line_magic('matplotlib', 'inline') df = pd.read_csv('../input/loan.csv', low_memory=False) # Copy of the dataframe original_df = df.copy() df.head() # In[ ]: df.info() # In[ ]: # Replace the name of some columns df = df.rename(columns={"loan_amnt": "loan_amount", "funded_amnt": "funded_amount", "funded_amnt_inv": "investor_funds", "int_rate": "interest_rate", "annual_inc": "annual_income"}) # Drop irrelevant columns df.drop(['id', 'member_id', 'emp_title', 'url', 'desc', 'zip_code', 'title'], axis=1, inplace=True) # ## Similar Distributions: # <a id="similar_distributions"></a> # We will start by exploring the distribution of the loan amounts and see when did the loan amount issued increased significantly. <br> # # <h4> What we need to know: </h4> <br> # <ul> # <li> Understand what amount was <b>mostly issued</b> to borrowers. </li> # <li> Which <b>year</b> issued the most loans. </li> # <li> The distribution of loan amounts is a <b>multinomial distribution </b>.</li> # </ul> # # # # <h4> Summary: </h4><br> # <ul> # <li> Most of the <b>loans issued</b> were in the range of 10,000 to 20,000 USD. </li> # <li> The <b>year of 2015</b> was the year were most loans were issued.</li> # <li> Loans were issued in an <b>incremental manner</b>. (Possible due to a recovery in the U.S economy) </li> # <li> The loans <b>applied</b> by potential borrowers, the amount <b>issued</b> to the borrowers and the amount <b>funded</b> by investors are similarly distributed, <b>meaning</b> that it is most likely that qualified borrowers are going to get the loan they had applied for. </li> # # </ul> # # # # # In[ ]: fig, ax = plt.subplots(1, 3, figsize=(16,5)) loan_amount = df["loan_amount"].values funded_amount = df["funded_amount"].values investor_funds = df["investor_funds"].values sns.distplot(loan_amount, ax=ax[0], color="#F7522F") ax[0].set_title("Loan Applied by the Borrower", fontsize=14) sns.distplot(funded_amount, ax=ax[1], color="#2F8FF7") ax[1].set_title("Amount Funded by the Lender", fontsize=14) sns.distplot(investor_funds, ax=ax[2], color="#2EAD46") ax[2].set_title("Total committed by Investors", fontsize=14) # In[ ]: # Lets' transform the issue dates by year. df['issue_d'].head() dt_series = pd.to_datetime(df['issue_d']) df['year'] = dt_series.dt.year # In[ ]: # The year of 2015 was the year were the highest amount of loans were issued # This is an indication that the economy is quiet recovering itself. plt.figure(figsize=(12,8)) sns.barplot('year', 'loan_amount', data=df, palette='tab10') plt.title('Issuance of Loans', fontsize=16) plt.xlabel('Year', fontsize=14) plt.ylabel('Average loan amount issued', fontsize=14) # <h1 align="center"> Good Loans vs Bad Loans: </h1> # <h2>Types of Loans: </h2> # <a id="types_of_loans"></a> # <img src="http://strongarticle.com/wp-content/uploads/2017/09/1f42d6e77042d87f3bb6ae171ebbc530.jpg"> # <br><br> # In this section, we will see what is the amount of bad loans Lending Club has declared so far, of course we have to understand that there are still loans that are at a risk of defaulting in the future. # # <h4> What we need to know: </h4> # <ul> # <li> The amount of bad loans could <b>increment</b> as the days pass by, since we still have a great amount of current loans. </li> # <li> <b>Average annual income</b> is an important key metric for finding possible opportunities of investments in a specific region. </li> # # </ul> # # <h4> Summary: </h4> # <ul> # <li> Currently, <b>bad loans</b> consist 7.60% of total loans but remember that we still have <b>current loans</b> which have the risk of becoming bad loans. (So this percentage is subjected to possible changes.) </li> # <li> The <b> NorthEast </b> region seems to be the most attractive in term of funding loans to borrowers. </li> # <li> The <b> SouthWest </b> and <b> West</b> regions have experienced a slight increase in the "median income" in the past years. </li> # <li> <b>Average interest</b> rates have declined since 2012 but this might explain the <b>increase in the volume</b> of loans. </li> # <li> <b>Employment Length</b> tends to be greater in the regions of the <b>SouthWest</b> and <b>West</b></li> # <li> Clients located in the regions of <b>NorthEast</b> and <b>MidWest</b> have not experienced a drastic increase in debt-to-income(dti) as compared to the other regions. </li> # </ul> # In[ ]: df["loan_status"].value_counts() # In[ ]: # Determining the loans that are bad from loan_status column bad_loan = ["Charged Off", "Default", "Does not meet the credit policy. Status:Charged Off", "In Grace Period", "Late (16-30 days)", "Late (31-120 days)"] df['loan_condition'] = np.nan def loan_condition(status): if status in bad_loan: return 'Bad Loan' else: return 'Good Loan' df['loan_condition'] = df['loan_status'].apply(loan_condition) # In[ ]: f, ax = plt.subplots(1,2, figsize=(16,8)) colors = ["#3791D7", "#D72626"] labels ="Good Loans", "Bad Loans" plt.suptitle('Information on Loan Conditions', fontsize=20) df["loan_condition"].value_counts().plot.pie(explode=[0,0.25], autopct='%1.2f%%', ax=ax[0], shadow=True, colors=colors, labels=labels, fontsize=12, startangle=70) # ax[0].set_title('State of Loan', fontsize=16) ax[0].set_ylabel('% of Condition of Loans', fontsize=14) # sns.countplot('loan_condition', data=df, ax=ax[1], palette=colors) # ax[1].set_title('Condition of Loans', fontsize=20) # ax[1].set_xticklabels(['Good', 'Bad'], rotation='horizontal') palette = ["#3791D7", "#E01E1B"] sns.barplot(x="year", y="loan_amount", hue="loan_condition", data=df, palette=palette, estimator=lambda x: len(x) / len(df) * 100) ax[1].set(ylabel="(%)") # <h2> Loans Issued by Region</h2> # <a id="by_region"></a> # In this section we want to analyze loans issued by region in order to see region patters that will allow us to understand which region gives Lending Club.<br><br> # # ## Summary: <br> # <ul> # <li> <b> SouthEast</b> , <b>West </b> and <b>NorthEast</b> regions had the highest amount lof loans issued. </li> # <li> <b>West </b> and <b>SouthWest </b> had a rapid increase in debt-to-income starting in 2012. </li> # <li><b>West </b> and <b>SouthWest </b> had a rapid decrease in interest rates (This might explain the increase in debt to income). </li> # </ul> # In[ ]: df['addr_state'].unique() # Make a list with each of the regions by state. west = ['CA', 'OR', 'UT','WA', 'CO', 'NV', 'AK', 'MT', 'HI', 'WY', 'ID'] south_west = ['AZ', 'TX', 'NM', 'OK'] south_east = ['GA', 'NC', 'VA', 'FL', 'KY', 'SC', 'LA', 'AL', 'WV', 'DC', 'AR', 'DE', 'MS', 'TN' ] mid_west = ['IL', 'MO', 'MN', 'OH', 'WI', 'KS', 'MI', 'SD', 'IA', 'NE', 'IN', 'ND'] north_east = ['CT', 'NY', 'PA', 'NJ', 'RI','MA', 'MD', 'VT', 'NH', 'ME'] df['region'] = np.nan def finding_regions(state): if state in west: return 'West' elif state in south_west: return 'SouthWest' elif state in south_east: return 'SouthEast' elif state in mid_west: return 'MidWest' elif state in north_east: return 'NorthEast' df['region'] = df['addr_state'].apply(finding_regions) # In[ ]: # This code will take the current date and transform it into a year-month format df['complete_date'] = pd.to_datetime(df['issue_d']) group_dates = df.groupby(['complete_date', 'region'], as_index=False).sum() group_dates['issue_d'] = [month.to_period('M') for month in group_dates['complete_date']] group_dates = group_dates.groupby(['issue_d', 'region'], as_index=False).sum() group_dates = group_dates.groupby(['issue_d', 'region'], as_index=False).sum() group_dates['loan_amount'] = group_dates['loan_amount']/1000 df_dates = pd.DataFrame(data=group_dates[['issue_d','region','loan_amount']]) # In[ ]: plt.style.use('dark_background') cmap = plt.cm.Set3 by_issued_amount = df_dates.groupby(['issue_d', 'region']).loan_amount.sum() by_issued_amount.unstack().plot(stacked=False, colormap=cmap, grid=False, legend=True, figsize=(15,6)) plt.title('Loans issued by Region', fontsize=16) # In[ ]: employment_length = ['10+ years', '< 1 year', '1 year', '3 years', '8 years', '9 years', '4 years', '5 years', '6 years', '2 years', '7 years', 'n/a'] # Create a new column and convert emp_length to integers. lst = [df] df['emp_length_int'] = np.nan for col in lst: col.loc[col['emp_length'] == '10+ years', "emp_length_int"] = 10 col.loc[col['emp_length'] == '9 years', "emp_length_int"] = 9 col.loc[col['emp_length'] == '8 years', "emp_length_int"] = 8 col.loc[col['emp_length'] == '7 years', "emp_length_int"] = 7 col.loc[col['emp_length'] == '6 years', "emp_length_int"] = 6 col.loc[col['emp_length'] == '5 years', "emp_length_int"] = 5 col.loc[col['emp_length'] == '4 years', "emp_length_int"] = 4 col.loc[col['emp_length'] == '3 years', "emp_length_int"] = 3 col.loc[col['emp_length'] == '2 years', "emp_length_int"] = 2 col.loc[col['emp_length'] == '1 year', "emp_length_int"] = 1 col.loc[col['emp_length'] == '< 1 year', "emp_length_int"] = 0.5 col.loc[col['emp_length'] == 'n/a', "emp_length_int"] = 0 # In[ ]: # Loan issued by Region and by Credit Score grade # Change the colormap for tomorrow! sns.set_style('whitegrid') f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) cmap = plt.cm.inferno by_interest_rate = df.groupby(['year', 'region']).interest_rate.mean() by_interest_rate.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax1, figsize=(16,12)) ax1.set_title('Average Interest Rate by Region', fontsize=14) by_employment_length = df.groupby(['year', 'region']).emp_length_int.mean() by_employment_length.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax2, figsize=(16,12)) ax2.set_title('Average Employment Length by Region', fontsize=14) # plt.xlabel('Year of Issuance', fontsize=14) by_dti = df.groupby(['year', 'region']).dti.mean() by_dti.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, legend=False, ax=ax3, figsize=(16,12)) ax3.set_title('Average Debt-to-Income by Region', fontsize=14) by_income = df.groupby(['year', 'region']).annual_income.mean() by_income.unstack().plot(kind='area', stacked=True, colormap=cmap, grid=False, ax=ax4, figsize=(16,12)) ax4.set_title('Average Annual Income by Region', fontsize=14) ax4.legend(bbox_to_anchor=(-1.0, -0.5, 1.8, 0.1), loc=10,prop={'size':12}, ncol=5, mode="expand", borderaxespad=0.) # ## A Deeper Look into Bad Loans: # <a id="deeper_bad_loans"></a> # # <h4> What we need to know: </h4> # <ul> # <li>The number of loans that were classified as bad loans for each region by its <b>loan status</b>. (This will be shown in a dataframe below.)</li> # <li> This won't give us the exact reasons why a loan is categorized as a bad loan (other variables that might have influence the condition of the loan) but it will give us a <b> deeper insight on the level of risk </b> in a particular region. </li> # </ul> # # <h4> Summary: </h4> # <ul> # <li>The regions of the <b> West </b> and <b> SouthEast </b> had a higher percentage in most of the b "bad" loan statuses.</li> # <li> The <b>NorthEast</b> region had a higher percentage in <b>Grace Period</b> and <b>Does not meet Credit Policy</b> loan status. However, both of these are not considered as bad as <b>default</b> for instance. </li> # <li> Based on this small and brief summary we can conclude that the <b>West</b> and <b>SouthEast</b> regions have the most undesirable loan status, but just by a slightly higher percentage compared to the <b>NorthEast</b> region. </li> # <li> Again, this does not tell us what causes a loan to be a <b> bad loan </b>, but it gives us some idea about <b>the level of risk</b> within the regions across the United States. </li> # </ul> # In[ ]: # We have 67429 loans categorized as bad loans badloans_df = df.loc[df["loan_condition"] == "Bad Loan"] # loan_status cross loan_status_cross = pd.crosstab(badloans_df['region'], badloans_df['loan_status']).apply(lambda x: x/x.sum() * 100) number_of_loanstatus = pd.crosstab(badloans_df['region'], badloans_df['loan_status']) # Round our values loan_status_cross['Charged Off'] = loan_status_cross['Charged Off'].apply(lambda x: round(x, 2)) loan_status_cross['Default'] = loan_status_cross['Default'].apply(lambda x: round(x, 2)) loan_status_cross['Does not meet the credit policy. Status:Charged Off'] = loan_status_cross['Does not meet the credit policy. Status:Charged Off'].apply(lambda x: round(x, 2)) loan_status_cross['In Grace Period'] = loan_status_cross['In Grace Period'].apply(lambda x: round(x, 2)) loan_status_cross['Late (16-30 days)'] = loan_status_cross['Late (16-30 days)'].apply(lambda x: round(x, 2)) loan_status_cross['Late (31-120 days)'] = loan_status_cross['Late (31-120 days)'].apply(lambda x: round(x, 2)) number_of_loanstatus['Total'] = number_of_loanstatus.sum(axis=1) # number_of_badloans number_of_loanstatus # In[ ]: charged_off = loan_status_cross['Charged Off'].values.tolist() default = loan_status_cross['Default'].values.tolist() not_meet_credit = loan_status_cross['Does not meet the credit policy. Status:Charged Off'].values.tolist() grace_period = loan_status_cross['In Grace Period'].values.tolist() short_pay = loan_status_cross['Late (16-30 days)'] .values.tolist() long_pay = loan_status_cross['Late (31-120 days)'].values.tolist() charged = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y= charged_off, name='Charged Off', marker=dict( color='rgb(192, 148, 246)' ), text = '%' ) defaults = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y=default, name='Defaults', marker=dict( color='rgb(176, 26, 26)' ), text = '%' ) credit_policy = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y= not_meet_credit, name='Does not meet Credit Policy', marker = dict( color='rgb(229, 121, 36)' ), text = '%' ) grace = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y= grace_period, name='Grace Period', marker = dict( color='rgb(147, 147, 147)' ), text = '%' ) short_pays = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y= short_pay, name='Late Payment (16-30 days)', marker = dict( color='rgb(246, 157, 135)' ), text = '%' ) long_pays = go.Bar( x=['MidWest', 'NorthEast', 'SouthEast', 'SouthWest', 'West'], y= long_pay, name='Late Payment (31-120 days)', marker = dict( color = 'rgb(238, 76, 73)' ), text = '%' ) data = [charged, defaults, credit_policy, grace, short_pays, long_pays] layout = go.Layout( barmode='stack', title = '% of Bad Loan Status by Region', xaxis=dict(title='US Regions') ) fig = go.Figure(data=data, layout=layout) iplot(fig, filename='stacked-bar') # In[ ]: # Average interest rates clients pay df['interest_rate'].mean() # Average annual income of clients df['annual_income'].mean() # <h1 align="center"> The Business Perspective </h1> # <h2 > Understanding the Operative Side of Business </h2> # <a id="operative_side"></a> # <img src="http://bestcredit.sg/wp-content/uploads/2017/07/licensed-money-lender.jpg"><br><br> # Now we will have a closer look at the <b> operative side </b> of business by state. This will give us a clearer idea in which state we have a higher operating activity. This will allow us to ask further questions such as Why do we have a higher level of operating activity in this state? Could it be because of economic factors? or the risk level is low and returns are fairly decent? Let's explore! # # <h4> What we need to know: </h4> # <ul> # <li> We will focus on <b>three key metrics</b>: Loans issued by state (Total Sum), Average interest rates charged to customers and average annual income of all customers by state. </li> # <li> The purpose of this analysis is to see states that give high returns at a descent risk. </li> # # </ul> # # <h4> Summary: </h4> # <ul> # <li> <b>California, Texas, New York and Florida</b> are the states in which the highest amount of loans were issued. </li> # <li> Interesting enough, all four states have a approximate <b>interest rate of 13%</b> which is at the same level of the average interest rate for all states (13.24%) </li> # <li> California, Texas and New York are <b>all above the average annual income</b> (with the exclusion of Florida), this might give possible indication why most loans are issued in these states. </li> # </ul> # In[ ]: # Plotting by states # Grouping by our metrics # First Plotly Graph (We evaluate the operative side of the business) by_loan_amount = df.groupby(['region','addr_state'], as_index=False).loan_amount.sum() by_interest_rate = df.groupby(['region', 'addr_state'], as_index=False).interest_rate.mean() by_income = df.groupby(['region', 'addr_state'], as_index=False).annual_income.mean() # Take the values to a list for visualization purposes. states = by_loan_amount['addr_state'].values.tolist() average_loan_amounts = by_loan_amount['loan_amount'].values.tolist() average_interest_rates = by_interest_rate['interest_rate'].values.tolist() average_annual_income = by_income['annual_income'].values.tolist() from collections import OrderedDict # Figure Number 1 (Perspective for the Business Operations) metrics_data = OrderedDict([('state_codes', states), ('issued_loans', average_loan_amounts), ('interest_rate', average_interest_rates), ('annual_income', average_annual_income)]) metrics_df = pd.DataFrame.from_dict(metrics_data) metrics_df = metrics_df.round(decimals=2) metrics_df.head() # Think of a way to add default rate # Consider adding a few more metrics for the future # In[ ]: # Now it comes the part where we plot out plotly United States map import plotly.plotly as py import plotly.graph_objs as go for col in metrics_df.columns: metrics_df[col] = metrics_df[col].astype(str) scl = [[0.0, 'rgb(210, 241, 198)'],[0.2, 'rgb(188, 236, 169)'],[0.4, 'rgb(171, 235, 145)'], [0.6, 'rgb(140, 227, 105)'],[0.8, 'rgb(105, 201, 67)'],[1.0, 'rgb(59, 159, 19)']] metrics_df['text'] = metrics_df['state_codes'] + '<br>' +'Average loan interest rate: ' + metrics_df['interest_rate'] + '<br>'+'Average annual income: ' + metrics_df['annual_income'] data = [ dict( type='choropleth', colorscale = scl, autocolorscale = False, locations = metrics_df['state_codes'], z = metrics_df['issued_loans'], locationmode = 'USA-states', text = metrics_df['text'], marker = dict( line = dict ( color = 'rgb(255,255,255)', width = 2 ) ), colorbar = dict( title = "$s USD") ) ] layout = dict( title = 'Lending Clubs Issued Loans <br> (A Perspective for the Business Operations)', geo = dict( scope = 'usa', projection=dict(type='albers usa'), showlakes = True, lakecolor = 'rgb(255, 255, 255)') ) fig = dict(data=data, layout=layout) iplot(fig, filename='d3-cloropleth-map') # ## Analysis by Income Category: # <a id="income_category"></a> # In this section we will create different <b> income categories </b> in order to detect important patters and go more into depth in our analysis. # # **What we need to know:** <br> # <ul> # <li><b>Low income category:</b> Borrowers that have an annual income lower or equal to 100,000 usd.</li> # <li> <b> Medium income category:</b> Borrowers that have an annual income higher than 100,000 usd but lower or equal to 200,000 usd. </li> # <li><b> High income category: </b> Borrowers that have an annual income higher tha 200,000 usd. </li> # </ul> # # **Summary:** # <ul> # <li>Borrowers that made part of the <b>high income category</b> took higher loan amounts than people from <b>low</b> and <b>medium income categories.</b> Of course, people with higher annual incomes are more likely to pay loans with a higher amount. (First row to the left of the subplots) </li> # <li> Loans that were borrowed by the <b>Low income category</b> had a slightly higher change of becoming a bad loan. (First row to the right of the subplots) </li> # <li>Borrowers with <b>High</b> and <b> Medium</b> annual incomes had a longer employment length than people with lower incomes.(Second row to the left of the subplots) </li> # <li> Borrowers with a lower income had on average <b>higher interest rates</b> while people with a higher annual income had <b>lower interest rates</b> on their loans. (Second row to the right of the subplots)</li> # # </ul> # In[ ]: # Let's create categories for annual_income since most of the bad loans are located below 100k df['income_category'] = np.nan lst = [df] for col in lst: col.loc[col['annual_income'] <= 100000, 'income_category'] = 'Low' col.loc[(col['annual_income'] > 100000) & (col['annual_income'] <= 200000), 'income_category'] = 'Medium' col.loc[col['annual_income'] > 200000, 'income_category'] = 'High' # In[ ]: # Let's transform the column loan_condition into integrers. lst = [df] df['loan_condition_int'] = np.nan for col in lst: col.loc[df['loan_condition'] == 'Bad Loan', 'loan_condition_int'] = 0 # Negative (Bad Loan) col.loc[df['loan_condition'] == 'Good Loan', 'loan_condition_int'] = 1 # Positive (Good Loan) # In[ ]: fig, ((ax1, ax2), (ax3, ax4))= plt.subplots(nrows=2, ncols=2, figsize=(14,6)) # Change the Palette types tomorrow! sns.violinplot(x="income_category", y="loan_amount", data=df, palette="Set2", ax=ax1 ) sns.violinplot(x="income_category", y="loan_condition_int", data=df, palette="Set2", ax=ax2) sns.boxplot(x="income_category", y="emp_length_int", data=df, palette="Set2", ax=ax3) sns.boxplot(x="income_category", y="interest_rate", data=df, palette="Set2", ax=ax4) # <h1 align="center"> Assesing Risks </h1> # <h2> Understanding the Risky side of Business </h2> # <a id="risky_side"></a> # # Although the <b> operative side of business </b> is important, we have to also analyze the level of risk in each state. Credit scores are important metrics to analyze the level of risk of an individual customer. However, there are also other important metrics to somehow estimate the level of risk of other states. <br><br> # # <h4> What we need to know: </h4> # <ul> # <li> <b>Debt-to-income</b> is an important metric since it says approximately the level of debt of each individual consumer with respect to its total income. </li> # <li> The <b>average length of employment</b> tells us a better story about the labor market in each state which is helpful to assess the levelof risk. </li> # </ul> # # <h4> Summary: </h4> # <ul> # <li> <b>IOWA</b> has the highest level of default ratio neverthless, the amount of loans issued in that state is <b>too low</b>. (Number of Bad loans is equal to 3) </li> # <li> California and Texas seem to have the lowest risk and the highest possible return for investors. However, I will look more deeply into these states and create other metrics analyze the level of risk for each state. </li> # # </ul> # # # **Note: I will be updating these section sooner or later (Stay in touch!)** # In[ ]: by_condition = df.groupby('addr_state')['loan_condition'].value_counts()/ df.groupby('addr_state')['loan_condition'].count() by_emp_length = df.groupby(['region', 'addr_state'], as_index=False).emp_length_int.mean().sort_values(by="addr_state") loan_condition_bystate = pd.crosstab(df['addr_state'], df['loan_condition'] ) cross_condition = pd.crosstab(df["addr_state"], df["loan_condition"]) # Percentage of condition of loan percentage_loan_contributor = pd.crosstab(df['addr_state'], df['loan_condition']).apply(lambda x: x/x.sum() * 100) condition_ratio = cross_condition["Bad Loan"]/cross_condition["Good Loan"] by_dti = df.groupby(['region', 'addr_state'], as_index=False).dti.mean() state_codes = sorted(states) # Take to a list default_ratio = condition_ratio.values.tolist() average_dti = by_dti['dti'].values.tolist() average_emp_length = by_emp_length["emp_length_int"].values.tolist() number_of_badloans = loan_condition_bystate['Bad Loan'].values.tolist() percentage_ofall_badloans = percentage_loan_contributor['Bad Loan'].values.tolist() # Figure Number 2 risk_data = OrderedDict([('state_codes', state_codes), ('default_ratio', default_ratio), ('badloans_amount', number_of_badloans), ('percentage_of_badloans', percentage_ofall_badloans), ('average_dti', average_dti), ('average_emp_length', average_emp_length)]) # Figure 2 Dataframe risk_df =
pd.DataFrame.from_dict(risk_data)
pandas.DataFrame.from_dict
import os, glob import ccxt, pickle, time import datetime import pandas as pd class History(): def __init__(self, dir_path="./history"): self.dir_path = dir_path self.context = {} if not os.path.exists(dir_path): os.makedirs(dir_path) for filepath in glob.iglob(f"{self.dir_path}/*.pkl"): df = pd.read_pickle(filepath) filepath = filepath.replace(f"{self.dir_path}/",'') filepath = filepath.replace('.pkl','') if 'ohlcv' in filepath: exchange,symbol,ohlc,ohlc_t = filepath.split('_') exchange = exchange.lower() symbol = symbol.replace('-','/') self.init_symbol_context(exchange,symbol) self.context[exchange][symbol]['ohlc'][ohlc_t] = df def init_exchange_context(self, exchange): exchange = exchange.lower() if exchange not in self.context.keys(): self.context[exchange] = { } def init_symbol_context(self, exchange, symbol): exchange = exchange.lower() self.init_exchange_context(exchange) if symbol not in self.context[exchange]: self.context[exchange][symbol] = { 'ohlc': {} } def get_symbol(self,exchange,symbol): if exchange in self.context: if symbol in self.context[exchange]: return self.context[exchange][symbol] else: print('no symbol in ', exchange) return None else: print('no', exchange, 'in context') def exchanges(self): return list(self.context.keys()) def exchange_symbols(self, exchange): if exchange in self.context: return list(self.context[exchange].keys()) else: print('no', exchange, 'in context', self.context.keys()) return [] def download_ohlc_pandas(self, exchange, symbol, ohlcv, since=None): df = pd.DataFrame(columns=['timestamp','o','h','l','c','v']) try: if not since: ohlcv_downloaded = exchange.fetch_ohlcv(symbol, ohlcv) else: ohlcv_downloaded = exchange.fetch_ohlcv(symbol=symbol, timeframe=ohlcv, since=since) except Exception as e: print(e) else: df = pd.DataFrame(ohlcv_downloaded, columns=['timestamp','o','h','l','c','v']) df['timestamp'] = df['timestamp'].apply(lambda x: datetime.datetime.fromtimestamp(x/1000)) df = df.set_index('timestamp') return df def append_ohlc(self, exchange, symbol, ohlc): print(ohlc) i = ohlc['i'] if exchange not in ccxt.exchanges: print(exchange, 'not in driver') return file_name = f"{self.dir_path}/{exchange}_{symbol}_ohlcv_{i}.pkl" def update_ohlc(self, exchange, ohlcv, symbol_filter=[]): if exchange not in ccxt.exchanges: print(exchange, 'not in driver') return ccxt_driver = eval(f"ccxt.{exchange}") exchange = ccxt_driver() self.init_exchange_context(exchange.id) if not exchange.has['fetchOHLCV']: print(exchange.id, 'has no method fetchOHLCV()') return markets = exchange.load_markets() symbols = [ s[0] for s in markets.items()] for s in symbols: if any( substr in s for substr in symbol_filter) and symbol_filter: file_name = f"{self.dir_path}/{exchange}_{s.replace('/','-')}_ohlcv_{ohlcv}.pkl" #----------------------------- # download full ohlc history #----------------------------- if not os.path.isfile(f"{file_name}"): print('downloading', exchange, s, ohlcv) df = self.download_ohlc_pandas(exchange,s,ohlcv) df.to_pickle(file_name) time.sleep(exchange.rateLimit / 100) else: df =
pd.read_pickle(file_name)
pandas.read_pickle
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx =
Index(rng, dtype=object)
pandas.Index
import glob import matplotlib matplotlib.use("Agg") import bokeh.plotting as plt from bokeh.embed import file_html from bokeh.resources import CDN import cherrypy import pandas as pd import numpy as np class Main(object): @cherrypy.expose def index(self): df = pd.concat([
pd.read_csv(fname)
pandas.read_csv
import pandas as pd import numpy as np import os import gc #%% Read in data user_file_list = os.listdir('data/Archived users/') user_set_v1 = set(map(lambda x: x[5: 15], user_file_list)) # [5: 15] to return just the user IDs tappy_file_list = os.listdir('data/Tappy Data/') user_set_v2 = set(map(lambda x: x[: 10], tappy_file_list)) # [: 10] to return just the user IDs user_set = user_set_v1.intersection(user_set_v2) print(len(user_set)) #%% Format into a Pandas dataframe def read_user_file(file_name): f = open('data/Archived users/' + file_name) data = [line.split(': ')[1][: -1] for line in f.readlines()] f.close() return data files = os.listdir('data/Archived users/') columns = [ 'BirthYear', 'Gender', 'Parkinsons', 'Tremors', 'DiagnosisYear', 'Sided', 'UPDRS', 'Impact', 'Levadopa', 'DA', 'MAOB', 'Other' ] user_df = pd.DataFrame(columns=columns) # empty Data Frame for now for user_id in user_set: temp_file_name = 'User_' + user_id + '.txt' # tappy file names have the format of `User_[UserID].txt` if temp_file_name in files: # check to see if the user ID is in our valid user set temp_data = read_user_file(temp_file_name) user_df.loc[user_id] = temp_data # adding data to our DataFrame print(user_df.head()) #%% Change numeric data into appropriate format # force some columns to have numeric data type user_df['BirthYear'] = pd.to_numeric(user_df['BirthYear'], errors='coerce') user_df['DiagnosisYear'] =
pd.to_numeric(user_df['DiagnosisYear'], errors='coerce')
pandas.to_numeric
import numpy as np import pandas as pd from postproc_utils import rmse_masked, nse def test_rmse_masked(): y_true = pd.Series([1, 5, 3, 4, 2]) y_pred = y_true.copy() err = rmse_masked(y_true, y_pred) assert err == 0 y_pred = pd.Series([0, 0, 0, 0, 0]) err = rmse_masked(y_true, y_pred) assert round(err, 2) == 3.32 y_true = pd.Series([1, np.nan, 3, 4, 2]) err = rmse_masked(y_true, y_pred) assert round(err, 2) == 2.74 def test_nse(): y_true = pd.Series([1, 5, 3, 4, 2]) y_pred = y_true.copy() nse_samp = nse(y_true, y_pred) assert nse_samp == 1 y_pred = pd.Series([1, 4, 0, 4, 2]) nse_samp = nse(y_true, y_pred) assert nse_samp == 0 y_pred = pd.Series([2, 4, 0, 4, 2]) nse_samp = nse(y_true, y_pred) assert round(nse_samp, 1) == -0.1 y_pred = pd.Series([1, 4, 2, 4, 2]) nse_samp = nse(y_true, y_pred) assert round(nse_samp, 1) == 0.8 y_true = pd.Series([1, np.nan, 3, 4, 2]) y_pred = pd.Series([1, 4, 2, 4, 2]) nse_samp = nse(y_true, y_pred) assert round(nse_samp, 1) == 0.8 y_true = pd.Series([1, np.nan, 3, 4, np.nan]) y_pred = pd.Series([1, 4, 2, 4, 2]) nse_samp = nse(y_true, y_pred) assert round(nse_samp, 2) == 0.79 y_true = pd.Series([1, np.nan, 2, 4, np.nan]) y_pred =
pd.Series([1, 4, 2, 4, 2])
pandas.Series
# -*- encoding: utf-8 -*- """ ****************************************************************************** * MÓDULO: datasets ****************************************************************************** """ # IMPORTAÇÕES **************************************************************** import json from typing import Iterable from tqdm.gui import tqdm_gui from app.home.vups import const, data, utils import os, sys, validators, requests, time, pandas as pd, inspect from clint.textui import progress from pathlib import Path import pandas as pd import tqdm import typer # **************************************************************************** # @utils.print_caller_name(4) def get_data( filepath_or_buffer=None, usecols=None, nrows=None, sep=None, encoding=None, warn_bad_lines=None, error_bad_lines=None, dtype=None, mapa=None, memory_map=True, name=None, format=None ): """FUNÇÃO CENTRAL PARA OBTENÇÃO DE DADOS ---------------------------------------------------------------------- - BUSCA O DATASET POR ORDEM DE PRECEDÊNCIA DO TIPO DE ARMAZENAMENTO. PRECEDÊNCIA: PARQUET < CSV < URL - TENTA IMPORTAR O DATASET SOLICITADO DE PARQUET FILE PARA DATAFRAME DO PANDAS, CASO O PARQUET EXISTA. - SENÃO, TENTA IMPORTAR DE CSV PARA DATAFRAME DO PANDAS, TRATA OS DADOS E FAZ O CAST PARA PARQUET, UTILIZANDO POR FIM O PARQUET - CASO NÃO ENCONTRE O DATASET EM CSV, RECORRE AS URLS NO REGISTRO DO DATASET AS URLS (CSV) SÃO IMPORTADAS PARA DATAFRAME DO PANDAS, OS DADOS SÃO TRATADOS, CONVERTIDO PARA PARQUET, O ARQUIVO É GRAVADO EM DISCO, POR FIM O PARQUET É UTILIZADO. """ filename, file_extension = os.path.splitext(os.path.basename(filepath_or_buffer[0][1])) chunk_size = 1024 if validators.url(filepath_or_buffer[0][1]): print("Baixando {} de URL ...".format(filename)) filepath = [] for url in filepath_or_buffer: filename = url[0] if validators.url(url[1]): r = requests.get(url[1], stream=True) # CRIA UM PATH PARA GRAVAR O ARQUIVO BAIXADO E, ADICIONA O PATH A UMA LISTA DATENAME = time.strftime("%Y%m%d-%H%M%S") filepath.append( os.path.join( const.DATATMP, "{}-{}{}".format(DATENAME, filename.upper(), format) ) ) # GRAVA CADA DATASET BAIXADO, PARA DEPOIS ... # ... CONCATENÁ-LOS, TRANSFORMAR OS TIPOS DE DADOS E CONVERTER O DATASET UNIFICADO EM PARQUET with open(filepath[-1], 'wb') as fd: print("Obtendo o comprimento dos dados ...") total_length = int(r.headers.get('content-length')) print("Gravando os dados em disco ...") for chunk in progress.bar(r.iter_content(chunk_size=chunk_size), expected_size=(total_length/chunk_size) + 1): if chunk: fd.write(chunk) fd.flush() # OS DATASETS BAIXADOS SÃO IMPORTADOS NOVAMENTE DOS ARQUIVOS EM DISCO ds_lst = [] for f in filepath: _PARAMS = { "filepath_or_buffer": f, "iterator": True, "chunksize": chunk_size, "usecols": usecols, "sep": sep, "nrows": nrows, "encoding": encoding, "warn_bad_lines": warn_bad_lines, "error_bad_lines": error_bad_lines, # "parse_dates": True, # "dtype": dtype, "memory_map": memory_map } iter = pd.read_csv(**_PARAMS) subset = pd.concat(iter, ignore_index=True) # (CHAMO CADA CONJUNTO QUE COMPÕE O MESMO DATASET DE "SUBSET") # OS "SUBSETS" SÃO ADICIONADOS EM UMA LISTA PARA SEREM CONCATENADOS ds_lst.append(subset) print("Concatenando arquivos, caso sejam múltiplos datasets...") dataset = pd.concat(ds_lst, ignore_index=True) # AGORA É A HORA DO TRATAMENTO E TRANSFORMAÇÃO DOS DADOS, PARA NO FIM GRAVAR UM PARQUET TIPADO # -------------------------------------------------------------------------------------------- # USO O DTYPE MAP QUE FOI DECLARADO NO REGISTRO DO DATASET if mapa is not None: print("Realizando transformações de dados no dataset consolidado...") dataset = data.dtype_transform(dataset, mapa) else: # CASO NÃO EXISTA O DTYPE MAP, UM INICIAL É CRIADO PARA FUTURAMENTE SER CONFIGURADO E O TRATAMENTO REPROCESSADO print("Inicializando mapeamento de tipos de dados...") data.create_dtype_map(dataset, name) # APÓS O TRATAMENTO E TRANSFORMAÇÃO DOS DADOS, UM ARQUIVO PARQUET É CRIADO, PASSANDO A SER O DATASET OFICIAL print("Convertendo para PARQUET o dataset com os tipos de dados já tratados...") filepath_or_buffer = data.convert_to_parquet([dataset], name) file_extension = ".parquet" # LIMPA O DIRETÓRIO DE DADOS TEMPORÁRIOS # ALTERNATIVA # for f in os.listdir(const.DATATMP): # for f in filepath: # file = os.path.join(const.DATATMP, f) # REMOVE APENAS OS ARQUIVOS USADOS NESTA IMPORTAÇÃO # os.remove(file) # os.remove(f) if file_extension == ".csv": # print("Importando {} de CSV...".format(filename)) _PARAMS = { "filepath_or_buffer": filepath_or_buffer[0][1], "iterator": True, "chunksize": chunk_size, "usecols": usecols, "sep": sep, "nrows": nrows, "encoding": encoding, "warn_bad_lines": warn_bad_lines, "error_bad_lines": error_bad_lines, # "parse_dates": True, # "dtype": dtype, "memory_map": memory_map, "low_memory": False } dataset = progress_read_csv(**_PARAMS) # iter = progress_read_csv(**_PARAMS) # dataset = pd.concat(iter, ignore_index=True) if mapa is not None: # print("Realizando transformações de dados no dataset CSV unificado...") # print("MAPA:", mapa) dataset = data.dtype_transform(dataset, mapa) else: # print("Inicializando as variáveis do mapeamento de tipos de dados...") # print("MAPA:", mapa) data.create_dtype_map(dataset, name) filepath_or_buffer = data.convert_to_parquet([dataset], name) file_extension = ".parquet" if file_extension == ".parquet": # print("Importando {} de PARQUET...".format(filename)) _PARAMS = { "path": filepath_or_buffer[0][1], "columns": usecols, } dataset = pd.read_parquet(**_PARAMS) # PATH = const.METADIR # FILENAME = "DTYPEMAP_{}.json".format(name) # FILEPATH = os.path.join(PATH, FILENAME) # if not os.path.exists(FILEPATH): # print("NÃO EXISTE MAPA!") # data.create_dtype_map(dataset, name) # elif mapa != const.read_dtype_map(dataset): # print("MAPAS DIFERENTES! REPROCESSANDO O TRATAMENTO DE DADOS ...") # dataset = data.dtype_transform(dataset, mapa) # print("ATUALIZANDO O ARQUIVO PARQUET ...") # data.convert_to_parquet([dataset], name) # if filename.strip() != "": # curframe = inspect.currentframe() # calframe = inspect.getouterframes(curframe, 2) # print("===================================================================") # print("FILENAME:", filename) # print("# FILE: {}".format(__file__)) # print("# NAME: {}".format(__name__)) # print("# OBJECT: {}".format(sys._getframe( ).f_code.co_name)) # print("# CALLER:", calframe[1][3]) # print("-------------------------------------------------------------------") # print(dataset.info()) # print("===================================================================") return dataset class Datasets: """CLASSE QUE INTERMEDIA A PASSAGEM DE PARÂMETROS DOS DATASETS REGISTRADOS OS METADADOS E CONFIGURAÇÕES DE TODOS OS DATASETS SÃO ARMAZENADOS EM ARQUIVOS JSON OS ARQUIVOS JSON SÃO LIDOS PELO MÓDULO [vups.const] OS MÉTODOS DESTA CLASSE BUSCAM NO MÓDULO [vups.const] OS PARÂMETROS DO DATASET A SER IMPORTADO ENTÃO, REPASSA ESSES PARÂMETROS PARA O MÉTODO get_data() """ # def __init__(self, name=None, usecols=None, nrows=None): # self.name = name # self.usecols = usecols # self.nrows = nrows # def to_json(self): # pass def microdados(columns=None, nrows=None, dtype=None): """MÉTODO QUE BUSCA OS PARÂMETROS DO DATASET [microdados]""" name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def microdados_bairros(columns=None, nrows=None, dtype=None): name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def arrecadacao(columns=None, nrows=None, dtype=None): name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def tipo_arrecadacao(columns=None, nrows=None, dtype=None): name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def transferencias(columns=None, nrows=None, dtype=None): name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def populacao(columns=None, nrows=None, dtype=None): name = sys._getframe( ).f_code.co_name.upper() filepath_or_buffer = data.which_file_exists(name) mapa = getattr(const, name).get("MAP") format = getattr(const, name).get("FORMAT") return get_data( filepath_or_buffer=filepath_or_buffer, usecols=columns, nrows=nrows, sep=getattr(const, name).get("DELIMITER"), encoding=getattr(const, name).get("ENCODING"), warn_bad_lines=False, error_bad_lines=False, dtype=dtype, mapa=mapa, name=name, format=format ) def progress_read_csv(**_PARAMS): # read number of rows quickly filename = _PARAMS.get('filepath_or_buffer') length = sum1forline(filename) chunksize = _PARAMS.get('chunksize') # initiate a blank dataframe df =
pd.DataFrame()
pandas.DataFrame