prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import anchors from poola import core as pool from sklearn.metrics import auc ## Reformatting functions ## def clean_Sanjana_data(df, guide_col='Guide', library = False): ''' Input: 1. df: Reads dataframe with guide_col and data columns 2. guide_col: Formatted as 'library_guide_gene' (e.g. 'HGLibA_00001_A1BG') Output: df_clean: Dataframe with columns 'Guide', 'Gene Symbol', 'Reads' ''' df_clean = df.rename(columns={guide_col:'old_Guide'}) library_list = [] guide_list = [] gene_list = [] for i, row in enumerate(df_clean.loc[:,'old_Guide']): split_row = row.split('_') library = split_row[0] library_list.append(library) guide = split_row[1] guide_list.append(guide) gene = split_row[2] gene_list.append(gene) df_clean['Library'] = pd.Series(library_list) df_clean['Guide#'] = pd.Series(guide_list) df_clean['Guide'] = df_clean[['Library','Guide#']].apply(lambda x: '_'.join(x.dropna().values), axis=1) df_clean['Gene Symbol'] = pd.Series(gene_list) df_clean = df_clean.drop(['Library', 'Guide#','old_Guide'], axis = 1) # Reorder columns so Guide, Gene Symbol then data columns data_cols = [col for col in df.columns if col != guide_col] col_order = ['Guide','Gene Symbol'] + data_cols df_clean = df_clean[col_order] return df_clean def merge_dict_dfs(dictionary, merge_col = 'Gene Symbol', merge_how = 'outer', suffixes = ['_x', '_y']): ''' Input: 1. dictionary: dictionary containing dataframes 2. merge_col: name of column on which dataframes will be merged (default = 'Gene Symbol') 3. merge_how: type of merge (default = 'outer') 4. suffixes: suffixes if two columns have the same name in dataframes being merged (default = ['_x','_y']) Output: merge1: merged dataframe ''' merge1 = pd.DataFrame() keys = [] for df_name in dictionary.keys(): keys.append(df_name) for i, df_name in enumerate(keys): current_df = dictionary[df_name] if (i+1 < (len(keys))): #stop before last df next_df_key = keys[i+1] next_df = dictionary[next_df_key] # merge dfs if merge1.empty: # if merged df does not already exist merge1 = pd.merge(current_df, next_df, on = merge_col, how = merge_how, suffixes = suffixes) #print(merge1.columns) else: #otherwise merge next_df with previous merged df new_merge = pd.merge(merge1, next_df, on = merge_col, how = merge_how) merge1 = new_merge return merge1 def convertdftofloat(df): ''' Converts df data column type into float Input: 1. df: data frame ''' for col in df.columns[1:]: df[col] = df[col].astype(float) #convert dtype to float return df ## QC functions ## def get_lognorm(df, cols = ['Reads'], new_col = ''): ''' Inputs: 1. df: clean reads dataframe 2. cols: list of names of column containing data used to calculate lognorm (default = ['Reads']) 3. new_col: lognorm column name (optional) Output: New dataframe with columns 'Gene Symbol', '[col]_Lognorm' (default = 'Reads_lognorm') ''' df_lognorm = df.copy().drop(cols, axis = 1) for c in cols: df_lognorm[c+'_lognorm'] = pool.lognorm(df[c]) return df_lognorm def calculate_lfc(lognorm_df, target_cols, ref_col = 'pDNA_lognorm'): ''' Inputs: 1. lognorm_df: Dataframe containing reference and target lognorm columns 2. target_cols: List containing target column name(s) (lognorm column(s) for which log-fold change should be calculated) 3. ref_col: Reference column name (lognorm column relative to which log-fold change should be calculated)(default ref_col = 'pDNA_lognorm') Outputs: 1. lfc_df: Dataframe containing log-fold changes of target columns ''' #input df with lognorms + pDNA_lognorm lfc_df = pool.calculate_lfcs(lognorm_df=lognorm_df,ref_col=ref_col, target_cols=target_cols) for col in target_cols: #rename log-fold change column so doesn't say "lognorm" lfc_col_name = col.replace('lognorm', 'lfc') lfc_df = lfc_df.rename(columns = {col:lfc_col_name}) return lfc_df def get_controls(df, control_name = ['NonTargeting'], separate = True): ''' Inputs: 1. df: Dataframe with columns "Gene Symbol" and data 2. control_name: list containing substrings that identify controls 3. separate: determines whether to return non-targeting and intergenic controls separately (default = True) Outputs: 1. control: Dataframe containing rows with Gene Symbols including control string specified in control_name OR 2. control_dict: If separate and multiple control names, dictionary containing dataframes OR 3. all_controls: If separate = False and multiple control names, concatenated dataframes in control_dict ''' if len(control_name) == 1: control = df[df['Gene Symbol'].str.contains(control_name[0], na=False)] return control else: control_dict = {} for i, ctrl in enumerate(control_name): control_dict[ctrl] = df[df['Gene Symbol'].str.contains(ctrl, na=False)] if separate: return control_dict else: all_controls = pd.concat(list(control_dict.values())) return all_controls def get_gene_sets(): ''' Outputs: essential and non-essential genes as defined by Hart et al. ''' ess_genes = pd.read_csv('../../../Data/External/Gene_sets_Hart/essential-genes.txt', sep='\t', header=None) ess_genes.columns = ['Gene Symbol'] ess_genes['ess-val'] = [1]*len(ess_genes) non_ess = pd.read_csv('../../../Data/External/Gene_sets_Hart/non-essential-genes.txt', sep='\t', header=None) non_ess.columns = ['Gene Symbol'] non_ess['non-ess-val'] = [1]*len(non_ess) return ess_genes, non_ess def merge_gene_sets(df): ''' Input: 1. df: data frame from which ROC-AUC is being calculated Output: 1. df: data frame with binary indicators for essential and non-essential genes ''' ess_genes, non_ess = get_gene_sets() df = pd.merge(df, ess_genes, on='Gene Symbol', how='left') df['ess-val'] = df['ess-val'].fillna(0) df = pd.merge(df, non_ess, on='Gene Symbol', how='left') df['non-ess-val'] = df['non-ess-val'].fillna(0) return df def get_roc_auc(df, col): ''' Inputs: 1. df: data frame from which ROC-AUC is being calculated 2. col: column with data for which ROC-AUC is being calculated Outputs: 1. roc_auc: AUC value where true positives are essential genes and false positives are non-essential 2. roc_df: dataframe used to plot ROC-AUC curve ''' df = df.sort_values(by=col) df['ess_cumsum'] = np.cumsum(df['ess-val']) df['non_ess_cumsum'] = np.cumsum(df['non-ess-val']) df['fpr'] = df['non_ess_cumsum']/(df['non_ess_cumsum'].iloc[-1]) df['tpr'] = df['ess_cumsum']/(df['ess_cumsum'].iloc[-1]) df.head() roc_auc = auc(df['fpr'],df['tpr']) roc_df = pd.DataFrame({'False_Positive_Rate':list(df.fpr), 'True_Positive_Rate':list(df.tpr)}) return roc_auc, roc_df ## Plotting functions ## def pair_cols(df, initial_id, res_id, sep = '_', col_type = 'lfc'): #if more than one set of initial/resistant pop pairs, sharex = True, store pairs in list ''' Inputs: 1. df: Dataframe containing log-fold change values and gene symbols 2. initial_id: string identifying initial column names (default: 'control'), only used if multiple subplots 3. res_id: string identifying resistant column names (default: 'MOI'), only used if multiple subplots 4. sep: character separator in column name 3. col_type: string in names of columns containing data to be plotted (default: 'lfc') Outputs: 1. sharex: if number of pairs greater than 1 indicating multiple subplots 2. pairs: pairs of initial and resistant populations as list of lists ''' cols = [col for col in df.columns if col_type in col] pairs = [] #list of lists: ini/res pop pairs sharex = False if len(cols) > 2: #if more than one set of initial/resistant pop pairs for index, col in enumerate(cols): pair = [] if initial_id in col: #find corresponding resistant pop pair.append(col) res_pop = [col for col in cols if res_id in col] for col in res_pop: pair.append(col) pairs.append(pair) #add to list of pairs (list of lists) if len(pairs) > 1: sharex = True # set sharex parameter for subplot return sharex, pairs else: #if only one pair of initial/resistant pops sharex = False pairs.append(cols) return sharex, pairs def lfc_dist_plot(chip_lfc, initial_id=None, res_id=None, paired_cols=None, col_sep = '_', filename = '', figsize = (6,4)): #kde plots of population distribution (initial, resistant) ''' Inputs: 1. chip_lfc: Dataframe containing log-fold change values and gene symbols Option 1: 2. initial_id: substring in names of column containing log-fold changes of uninfected population 3. res_id: substring in names of column containing log-fold changes of infected population Option 2: 4. paired_cols: if using modified pair_cols function but same two outputs of sharex, lfc_pairs 5. filename: string for file name when saving figure 6. figsize: default (6,4) Outputs: kde plots of population distribution (initial, resistant) ''' if not paired_cols: sharex, lfc_pairs = pair_cols(chip_lfc, initial_id = initial_id, res_id = res_id, sep = col_sep) else: sharex, lfc_pairs = paired_cols fig, ax = plt.subplots(nrows = len(lfc_pairs), ncols = 1, sharex = sharex, figsize = figsize) i = 0 # ax index if have to plot multiple axes for k,c in enumerate(lfc_pairs): for l, c1 in enumerate(c): #title ex. Calu-3 Calabrese A screen 1, (k+1 = screen #) if not filename: title = ' '.join(c1.split(' ')[:3]) + ' (populations)' else: title = filename if l==0: label1 = c1 else: label1 = c1 if sharex: #if multiple axes, ax = ax[i] chip_lfc[c1].plot(kind='kde',c=sns.color_palette('Set2')[l],label=label1, ax=ax[i], legend=True) t = ax[i].set_xlabel('Log-fold changes') t = ax[i].set_title(title) ax[i].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) else: chip_lfc[c1].plot(kind='kde',c=sns.color_palette('Set2')[l],label=label1, ax=ax, legend=True) t = ax.set_xlabel('Log-fold changes') t = ax.set_title(title) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) i+=1 sns.despine() #Control distributions def control_dist_plot(chip_lfc, control_name, filename, gene_col = 'Gene Symbol', initial_id=None, res_id=None, paired_cols=None, col_sep = '_', figsize = (6,4)): ''' Inputs: 1. chip_lfc: annotated lfc data frame 2. control_name: list containing strings identifying controls 3. initial_id: string identifying initial column names 4. res_id: string identifying resistant column names 5. filename: filename for saving figure 6. figsize: default (6, 4) Outputs: kde plots of control distributions (initial, resistant) ''' if not paired_cols: sharex, lfc_pairs = pair_cols(chip_lfc, initial_id = initial_id, res_id = res_id, sep = col_sep) else: sharex, lfc_pairs = paired_cols controls = get_controls(chip_lfc, control_name) nrows = len(lfc_pairs) fig, ax = plt.subplots(nrows = nrows, ncols = 1, sharex = sharex, figsize = figsize) i = 0 # ax index if have to plot multiple axes for k,c in enumerate(lfc_pairs): # k=screen, c=ini, res pair for l, c1 in enumerate(c): # l = ini or res, c1 = pop label title = c1 + ' (controls)' pop_label = c1.split(' ')[0] #labels 'initial' or 'resistant' #Plot same screen on same subplot if sharex: #if multiple axes, ax = ax[i] controls[c1].plot(kind='kde',c=sns.color_palette('Set2')[l],label=control_name[0] +' ('+pop_label+')', ax=ax[i], legend=True) ax[i].legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) sns.despine() t = ax[i].set_xlabel('Log-fold changes') t = ax[i].set_title(title) else: controls[c1].plot(kind='kde',c=sns.color_palette('Set2')[l],label=control_name[0]+ ' ('+pop_label+')', ax=ax, legend=True) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) sns.despine() t = ax.set_xlabel('Log-fold changes') t = ax.set_title(title) i+=1 #switch to next subplot for next screen sns.despine() ## Residual functions def run_guide_residuals(lfc_df, initial_id=None, res_id=None, paired_cols = None): ''' Calls get_guide_residuals function from anchors package to calculate guide-level residual z-scores Input: 1. lfc_df: data frame with log-fold changes (relative to pDNA) ''' lfc_df = lfc_df.drop_duplicates() if not paired_cols: paired_lfc_cols = pair_cols(lfc_df, initial_id, res_id)[1] #get lfc pairs else: paired_lfc_cols = paired_cols #reference_df: column1 = modifier condition, column2 = unperturbed column ref_df =
pd.DataFrame(columns=['modified', 'unperturbed'])
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), (
pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]})
pandas.DataFrame
from typing import List, Optional, Union import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin, clone from feature_engine.dataframe_checks import ( _check_input_matches_training_df, _is_dataframe, ) from feature_engine.validation import _return_tags from feature_engine.variable_manipulation import ( _check_input_parameter_variables, _find_all_variables, _find_or_check_numerical_variables, ) class SklearnTransformerWrapper(BaseEstimator, TransformerMixin): """ Wrapper to apply Scikit-learn transformers to a selected group of variables. It works with transformers like the SimpleImputer, OrdinalEncoder, OneHotEncoder, all the scalers and also the transformers for feature selection. Parameters ---------- transformer: sklearn transformer The desired Scikit-learn transformer. variables: list, default=None The list of variables to be transformed. If None, the wrapper will select all variables of type numeric for all transformers, except the SimpleImputer, OrdinalEncoder and OneHotEncoder, in which case, it will select all variables in the dataset. Attributes ---------- transformer_: The fitted Scikit-learn transformer. variables_: The group of variables that will be transformed. n_features_in_: The number of features in the train set used in fit. Methods ------- fit: Fit Scikit-learn transformer transform: Transform data with Scikit-learn transformer fit_transform: Fit to data, then transform it. """ def __init__( self, transformer, variables: Union[None, int, str, List[Union[str, int]]] = None, ) -> None: if not issubclass(transformer.__class__, BaseEstimator): raise TypeError( "transformer expected a Scikit-learn transformer, " f"got {transformer} instead." ) self.transformer = transformer self.variables = _check_input_parameter_variables(variables) def fit(self, X: pd.DataFrame, y: Optional[str] = None): """ Fits the Scikit-learn transformer to the selected variables. If you enter None in the variables parameter, all variables will be automatically transformed by the OneHotEncoder, OrdinalEncoder or SimpleImputer. For the rest of the transformers, only the numerical variables will be selected and transformed. If you enter a list in the variables attribute, the SklearnTransformerWrapper will check that those variables exist in the dataframe and are of type numeric for all transformers except the OneHotEncoder, OrdinalEncoder or SimpleImputer, which also accept categorical variables. Parameters ---------- X: Pandas DataFrame The dataset to fit the transformer y: pandas Series, default=None The target variable. Raises ------ TypeError If the input is not a Pandas DataFrame Returns ------- self """ # check input dataframe X = _is_dataframe(X) self.transformer_ = clone(self.transformer) if ( self.transformer_.__class__.__name__ == "OneHotEncoder" and self.transformer_.sparse ): raise AttributeError( "The SklearnTransformerWrapper can only wrap the OneHotEncoder if you " "set its sparse attribute to False" ) if self.transformer_.__class__.__name__ in [ "OneHotEncoder", "OrdinalEncoder", "SimpleImputer", ]: self.variables_ = _find_all_variables(X, self.variables) else: self.variables_ = _find_or_check_numerical_variables(X, self.variables) self.transformer_.fit(X[self.variables_], y) self.n_features_in_ = X.shape[1] return self def transform(self, X: pd.DataFrame) -> pd.DataFrame: """ Apply the transformation to the dataframe. Only the selected variables will be modified. If transformer is the OneHotEncoder, the dummy features will be concatenated to the input dataset. Note that the original categorical variables will not be removed from the dataset after encoding. If this is the desired effect, please use Feature-engine's OneHotEncoder instead. Parameters ---------- X: Pandas DataFrame The data to transform Raises ------ TypeError If the input is not a Pandas DataFrame Returns ------- X: Pandas DataFrame The transformed dataset. """ # check that input is a dataframe X = _is_dataframe(X) # Check that input data contains same number of columns than # the dataframe used to fit the imputer. _check_input_matches_training_df(X, self.n_features_in_) if self.transformer_.__class__.__name__ == "OneHotEncoder": ohe_results_as_df = pd.DataFrame( data=self.transformer_.transform(X[self.variables_]), columns=self.transformer_.get_feature_names(self.variables_), ) X =
pd.concat([X, ohe_results_as_df], axis=1)
pandas.concat
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = cudf.DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = cudf.DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = cudf.DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = cudf.DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = cudf.DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = cudf.DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) cudf.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = cudf.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = cudf.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = cudf.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( np.array(data1), np.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = cudf.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = cudf.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = cudf.isclose( cudf.Series(data1), cudf.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = cudf.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = cudf.Series([True] * 6, index=s1.index) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = cudf.Series( [True, True, True, False, True, True], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) s1 = cudf.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = cudf.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = cudf.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, cudf.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = cudf.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"], dtype="float64"), pd.Series(index=[10, 11, 12], dtype="float64"), pd.Series(dtype="float64"), pd.Series([], dtype="float64"), ], ) def test_series_keys(ps): gds = cudf.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([], index=[100]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = cudf.from_pandas(other) expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({12: [], 22: []}), pd.DataFrame([[1, 2], [3, 4]], columns=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[0, 1], index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[1, 0], index=[7, 8]), pd.DataFrame( { 23: [315.3324, 3243.32432, 3232.332, -100.32], 33: [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { 0: [315.3324, 3243.32432, 3232.332, -100.32], 1: [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), ], ) @pytest.mark.parametrize( "other", [ pd.Series([10, 11, 23, 234, 13]), pytest.param( pd.Series([10, 11, 23, 234, 13], index=[11, 12, 13, 44, 33]), marks=pytest.mark.xfail( reason="pandas bug: " "https://github.com/pandas-dev/pandas/issues/35092" ), ), {1: 1}, {0: 10, 1: 100, 2: 102}, ], ) @pytest.mark.parametrize("sort", [False, True]) def test_dataframe_append_series_dict(df, other, sort): pdf = df other_pd = other gdf = cudf.from_pandas(df) if isinstance(other, pd.Series): other_gd = cudf.from_pandas(other) else: other_gd = other expected = pdf.append(other_pd, ignore_index=True, sort=sort) actual = gdf.append(other_gd, ignore_index=True, sort=sort) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_series_mixed_index(): df = cudf.DataFrame({"first": [], "d": []}) sr = cudf.Series([1, 2, 3, 4]) with pytest.raises( TypeError, match=re.escape( "cudf does not support mixed types, please type-cast " "the column index of dataframe and index of series " "to same dtypes." ), ): df.append(sr, ignore_index=True) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [pd.DataFrame([[5, 6], [7, 8]], columns=list("AB"))], [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), ], [pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()], [ pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame(), pd.DataFrame(), pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), ], [ pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), ], [pd.DataFrame([]), pd.DataFrame([], index=[100])], [ pd.DataFrame([]), pd.DataFrame([], index=[100]), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = [ cudf.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), pd.DataFrame({"first_col": [], "second_col": [], "third_col": []}), ], ) @pytest.mark.parametrize( "other", [ [[1, 2], [10, 100]], [[1, 2, 10, 100, 0.1, 0.2, 0.0021]], [[]], [[], [], [], []], [[0.23, 0.00023, -10.00, 100, 200, 1000232, 1232.32323]], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = cudf.from_pandas(df) other_gd = [ cudf.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_error(): df = cudf.DataFrame({"a": [1, 2, 3]}) ps = cudf.Series([1, 2, 3]) with pytest.raises( TypeError, match="Can only append a Series if ignore_index=True " "or if the Series has a name", ): df.append(ps) def test_cudf_arrow_array_error(): df = cudf.DataFrame({"a": [1, 2, 3]}) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Table via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Table, consider " "using .to_arrow()", ): df.__arrow_array__() sr = cudf.Series([1, 2, 3]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() sr = cudf.Series(["a", "b", "c"]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) @pytest.mark.parametrize("axis", [0, 1]) def test_dataframe_sample_basic(n, frac, replace, axis): # as we currently don't support column with same name if axis == 1 and replace: return pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5], "float": [0.05, 0.2, 0.3, 0.2, 0.25], "int": [1, 3, 5, 4, 2], }, index=[1, 2, 3, 4, 5], ) df = cudf.DataFrame.from_pandas(pdf) random_state = 0 try: pout = pdf.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) except BaseException: assert_exceptions_equal( lfunc=pdf.sample, rfunc=df.sample, lfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, "axis": axis, }, ), rfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, "axis": axis, }, ), ) else: gout = df.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) assert pout.shape == gout.shape @pytest.mark.parametrize("replace", [True, False]) @pytest.mark.parametrize("random_state", [1, np.random.mtrand.RandomState(10)]) def test_dataframe_reproducibility(replace, random_state): df = cudf.DataFrame({"a": cupy.arange(0, 1024)}) expected = df.sample(1024, replace=replace, random_state=random_state) out = df.sample(1024, replace=replace, random_state=random_state) assert_eq(expected, out) @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) def test_series_sample_basic(n, frac, replace): psr = pd.Series([1, 2, 3, 4, 5]) sr = cudf.Series.from_pandas(psr) random_state = 0 try: pout = psr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) except BaseException: assert_exceptions_equal( lfunc=psr.sample, rfunc=sr.sample, lfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, }, ), rfunc_args_and_kwargs=( [], { "n": n, "frac": frac, "replace": replace, "random_state": random_state, }, ), ) else: gout = sr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) assert pout.shape == gout.shape @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_empty(df): pdf = df gdf = cudf.from_pandas(pdf) assert_eq(pdf.empty, gdf.empty) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_size(df): pdf = df gdf = cudf.from_pandas(pdf) assert_eq(pdf.size, gdf.size) @pytest.mark.parametrize( "ps", [ pd.Series(dtype="float64"), pd.Series(index=[100, 10, 1, 0], dtype="float64"), pd.Series([], dtype="float64"), pd.Series(["a", "b", "c", "d"]), pd.Series(["a", "b", "c", "d"], index=[0, 1, 10, 11]), ], ) def test_series_empty(ps): ps = ps gs = cudf.from_pandas(ps) assert_eq(ps.empty, gs.empty) @pytest.mark.parametrize( "data", [ [], [1], {"a": [10, 11, 12]}, { "a": [10, 11, 12], "another column name": [12, 22, 34], "xyz": [0, 10, 11], }, ], ) @pytest.mark.parametrize("columns", [["a"], ["another column name"], None]) def test_dataframe_init_with_columns(data, columns): pdf = pd.DataFrame(data, columns=columns) gdf = cudf.DataFrame(data, columns=columns) assert_eq( pdf, gdf, check_index_type=False if len(pdf.index) == 0 else True, check_dtype=False if pdf.empty and len(pdf.columns) else True, ) @pytest.mark.parametrize( "data, ignore_dtype", [ ([pd.Series([1, 2, 3])], False), ([pd.Series(index=[1, 2, 3], dtype="float64")], False), ([pd.Series(name="empty series name", dtype="float64")], False), ( [pd.Series([1]), pd.Series([], dtype="float64"), pd.Series([3])], False, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([], dtype="float64"), pd.Series([3], name="series that is named"), ], False, ), ([
pd.Series([1, 2, 3], name="hi")
pandas.Series
from datetime import datetime import warnings import logging import os import shutil import zipfile import typing from pathlib import Path import geopandas as gpd import pandas as pd import requests from bs4 import BeautifulSoup from utilities.helper_functions import FileFailedException, Failed_Files, check_dir, CHUNK_SIZE pd.options.mode.chained_assignment = None logger = logging.getLogger(__name__) warnings.simplefilter(action='ignore', category=FutureWarning) def get_files_list(year: int, exclude_to_resume: typing.List[str]) -> typing.List[str]: # url link to data url = "https://coast.noaa.gov/htdata/CMSP/AISDataHandler/{0}/".format(year) # request the html file html_text = requests.get(url).text # parse the html soup = BeautifulSoup(html_text, 'html.parser') # iterate over the <a> tags and save each in a list files = [] for a in soup.find_all('a', href=True): if a.text and a.text.endswith('zip'): name = a['href'].split('.')[0] name = name.split('/')[-1] if len(name.split('/')) > 1 else name if name + '.csv' in exclude_to_resume + Failed_Files or name + '.gdb' in exclude_to_resume + Failed_Files or name + '.zip' in Failed_Files: continue files.append(a['href']) return files def chunkify_gdb(gdb_file: Path, file_path: Path) -> None: end = CHUNK_SIZE start = 0 header = True while True: gdf_chunk = gpd.read_file(gdb_file, rows=slice(start, end)) if len(gdf_chunk) == 0: break gdf_chunk['LON'] = gdf_chunk.geometry.apply(lambda point: point.x) gdf_chunk['LAT'] = gdf_chunk.geometry.apply(lambda point: point.y) gdf_chunk.drop(columns=['geometry'], inplace=True) gdf_chunk.to_csv(file_path, mode='a', header=header, index=False) start = end end += CHUNK_SIZE header = False def download_file(zipped_file_name: str, download_dir: Path, year: int) -> str: try: # url link to data url = "https://coast.noaa.gov/htdata/CMSP/AISDataHandler/{0}/".format(year) logger.info('downloading AIS file: %s' % zipped_file_name) # download zip file using wget with url and file name with requests.get(os.path.join(url, zipped_file_name), stream=True) as req: req.raise_for_status() zipped_file_name = zipped_file_name.split('/')[-1] if len( zipped_file_name.split('/')) > 1 else zipped_file_name with open(zipped_file_name, "wb") as handle: for chunk in req.iter_content(chunk_size=8192): handle.write(chunk) handle.close() # extract each zip file into output directory then delete it with zipfile.ZipFile(zipped_file_name, 'r') as zip_ref: for f in zip_ref.infolist(): if f.filename.endswith('.csv'): f.filename = os.path.basename(f.filename) file_name = f.filename zip_ref.extract(f, download_dir) if str(Path(f.filename).parent).endswith('.gdb'): zip_ref.extractall(download_dir) name = str(Path(f.filename).parent) gdb_file = Path(download_dir, name) file_name = name.split('.')[0] + '.csv' file_path = Path(download_dir, file_name) try: chunkify_gdb(gdb_file, file_path) except Exception as e: # discard the file in case of an error to resume later properly if file_path: file_path.unlink(missing_ok=True) raise e shutil.rmtree(gdb_file) break os.remove(zipped_file_name) return file_name except Exception as e: raise FileFailedException(zipped_file_name, e) def download_year_AIS(year: int, download_dir: Path) -> None: # create a directory named after the given year if not exist resume_download = [] if download_dir.exists(): resume_download = check_dir(download_dir) files = get_files_list(year, exclude_to_resume=resume_download) # download for zip_file_name in files: download_file(zip_file_name, download_dir, year) def rm_sec(date: datetime) -> datetime: return date.replace(second=0, tzinfo=None) def subsample_file(file_name, download_dir, filtered_dir, min_time_interval) -> str: logging.info("Subsampling %s " % str(file_name)) header = True try: for df_chunk in pd.read_csv(Path(download_dir, file_name), chunksize=CHUNK_SIZE): df_chunk = df_chunk.drop(['Unnamed: 0', 'MMSI', 'VesselName', 'CallSign', 'Cargo', 'TranscieverClass', 'ReceiverType', 'ReceiverID'], axis=1, errors='ignore') df_chunk = df_chunk.dropna() df_chunk['SOG'] =
pd.to_numeric(df_chunk['SOG'])
pandas.to_numeric
#IMPORTS import csv import pandas as pd import re import nltk import os #LOADING FILES INTO ONE DF PBP_data = "../nflscrapR-data/play_by_play_data/regular_season" dfs = [] for season_file in os.listdir(PBP_data): year = re.search("[0-9]{4}", season_file) df =
pd.read_csv(PBP_data + "/" + season_file, usecols=['desc', 'play_type', 'defteam', 'posteam'])
pandas.read_csv
import shlex import os import sys import subprocess import json import pprint import numpy as np import pandas as pd APPEND = '0ms' if len(sys.argv) == 3: APPEND = sys.argv[2] LOG_BASE_DIR = '../logs/' LOG_DIR = f'{LOG_BASE_DIR}/kem_{APPEND}' PKL_DIR = './pkl/kem' def parse_algo(l): split = l.split('_') ts = split[1] run = split[-2] algo = '_'.join(split[4:-2]).split('.')[0] return (algo, ts, run) def parse_bench(line, algo, ts, run): line = line.rstrip()[7:] d = dict(token.split('=') for token in shlex.split(line)) d['algo'] = algo d['ts'] = ts d['run'] = run return d def parse_time(line, algo, ts, run): s = line.rstrip().split(' ') return {'run': run, 'ts': ts, 'type': s[0], 'algo': algo, 'clock': s[1]} def __get_frame_info(frame, d): d['time'] = frame['frame.time'] d['time_delta'] = frame['frame.time_delta'] d['frame_nr'] = frame['frame.number'] d['frame_len'] = frame['frame.len'] return d def __get_udp_info(udp, d): d['src'] = udp['udp.srcport'] d['dst'] = udp['udp.dstport'] return d def __get_rad_info(radius, d): d['rad_len'] = radius['radius.length'] d['rad_code'] = radius['radius.code'] d['rad_id'] = radius['radius.id'] return d def __parse_tls_real_type(__d): if 'tls.handshake.type' in __d: __d['tls_real_type'] = __d['tls.handshake.type'] elif 'tls.record.opaque_type' in __d: __d['tls_real_type'] = __d['tls.record.opaque_type'] else: __d['tls_real_type'] = __d['tls.record.content_type'] return __d def __parse_tls_record_fields(record, __d): for field in record: if field == 'tls.record.version': __d['tls.record.version'] = record['tls.record.version'] elif field == 'tls.record.opaque_type': __d['tls.record.content_type'] = record['tls.record.opaque_type'] elif field == 'tls.record.content_type': __d['tls.record.content_type'] = record['tls.record.content_type'] elif field == 'tls.record.length': __d['tls.record.length'] = record['tls.record.length'] elif field == 'tls.handshake': if 'tls.handshake.type' in record[field]: __d['tls.handshake.type'] = record[field]['tls.handshake.type'] if 'tls.handshake.length' in record[field]: __d['tls.handshake.length'] = record[field]['tls.handshake.length'] else: pass return __parse_tls_real_type(__d) def __parse_eap(eap, _d): _d['eap.id'] = eap['eap.id'] _d['eap.code'] = eap['eap.code'] _d['eap.len'] = eap['eap.len'] if 'eap.type' in eap: _d['eap.type'] = eap['eap.type'] return _d def parse_cap(capfile, algo, ts, run): cap = [] tshark = ('tshark', '-n', '-2', '-r', capfile, '-T', 'json', '--no-duplicate-keys') o = subprocess.Popen(tshark, stdout=subprocess.PIPE) packets = json.loads(o.communicate()[0]) pkt_count = 0 for _x, packet in enumerate(packets): d = {'algo': algo, 'ts': ts, 'run': run} packet = packet['_source'] d = __get_frame_info(packet['layers']['frame'], d) if 'radius' not in packet['layers']: continue d['frame_count'] = pkt_count pkt_count += 1 d = __get_udp_info(packet['layers']['udp'], d) d = __get_rad_info(packet['layers']['radius'], d) radius = packet['layers']['radius'] for avp_count, x in enumerate(radius['Attribute Value Pairs']['radius.avp_tree']): has_tls_layer = False _d = d.copy() _d['avp_count'] = avp_count for k in x: if k == 'radius.avp.type': _d['rad_avp_t'] = x['radius.avp.type'] elif k == 'radius.avp.length': _d['rad_avp_len'] = x['radius.avp.length'] elif k == 'eap': if _x == 0: assert(x[k]['eap.code'] == '2' and x[k]['eap.type'] == '1') if _x == len(packets)-1: assert(x[k]['eap.code'] == '3') _d = __parse_eap(x[k], _d) if 'tls' in x[k]: if not isinstance(x[k]['tls'],str): for _k in x[k]['tls']: if _k == 'tls.record': records = x[k]['tls'][_k] if isinstance(records, dict): records = [records] if len(records) > 0: has_tls_layer = True for i, record in enumerate(records): __d = __parse_tls_record_fields(record, _d.copy()) __d['record_count'] = i cap.append(__d) elif _k == 'Ignored Unknown Record': pass else: print(d['frame_nr']) pprint.pprint(x[k]) if not has_tls_layer: cap.append(_d) return cap def parse_inst(instfile, algo, ts, run): log = open(instfile,'r') bench = [] time = [] for line in log.readlines(): if line.startswith('Bench: '): bench.append(parse_bench(line, algo, ts, run)) elif line.startswith('time_'): time.append(parse_time(line, algo, ts, run)) else: continue log.close() return bench, time def beautify_msg(_msg_cb): _msg_cb['len'] = _msg_cb['len'].astype('int64') _msg_cb['clock'] = _msg_cb['clock'].astype(float) _msg_cb['clock_delta'] = _msg_cb['clock_delta'].astype(float) _msg_cb['clock_abs'] = _msg_cb['clock_abs'].astype(float) _msg_cb['time'] = _msg_cb['time'].astype(float) _msg_cb['time_delta'] = _msg_cb['time_delta'].astype(float) _msg_cb['time_abs'] = _msg_cb['time_abs'].astype(float) _msg_cb['sum_len'] = _msg_cb['sum_len'].astype(float) _msg_cb['n'] = _msg_cb['n'].astype(int) _msg_cb = _msg_cb.reset_index().drop(['index', 'type'], axis = 1) return _msg_cb def beautify_info(_info_cb): _info_cb['clock'] = _info_cb['clock'].astype(float) _info_cb['clock_delta'] = _info_cb['clock_delta'].astype(float) _info_cb['clock_abs'] = _info_cb['clock_abs'].astype(float) _info_cb['time'] = _info_cb['clock_delta'].astype(float) _info_cb['time_delta'] = _info_cb['time_delta'].astype(float) _info_cb['time_abs'] = _info_cb['time_abs'].astype(float) _info_cb['n'] = _info_cb['n'].astype(float) _info_cb = _info_cb.reset_index().drop(['index', 'type'], axis = 1) return _info_cb def beautify_time(_time_df): _time_df['clock'] = _time_df['clock'].astype('float') #_time_df['cpu_time'] = _time_df['cpu_time'].astype('float') #_time_df['wct'] = _time_df['wct'].astype('float') _df_total = _time_df[_time_df['type'] == 'time_total'] _df_eap = _time_df[_time_df['type'] == 'time_eap'] return _df_total, _df_eap def beautify_cap(_cap_df): _cap_df['frame_nr'] = _cap_df['frame_nr'].astype(int) _cap_df['ts'] = _cap_df['ts'].astype(int) _cap_df['run'] = _cap_df['run'].astype(int) _cap_df['time'] = pd.to_datetime(_cap_df['time']) _cap_df['time_delta'] = _cap_df['time_delta'].astype(float) _cap_df['frame_len'] = _cap_df['frame_len'].astype(int) _cap_df['rad_len'] = _cap_df['rad_len'].astype(int) _cap_df['rad_avp_len'] = _cap_df['rad_avp_len'].astype(int) _cap_df['eap.len'] = _cap_df['eap.len'].astype(float) _cap_df['tls.record.length'] = _cap_df['tls.record.length'].astype(float) _cap_df['tls.handshake.length'] = _cap_df['tls.handshake.length'].astype(float) return _cap_df def beautify(bench, time, cap): _msg_cb = None _info_cb = None _df_total = None _df_eap = None _cap_df = None bench_df = pd.DataFrame(bench) if len(bench_df) > 0: _msg_cb = bench_df[bench_df['type'] == 'tls_msg_cb_bench'].copy().dropna(axis='columns') _msg_cb = beautify_msg(_msg_cb) if len(bench_df) > 0: _info_cb = bench_df[bench_df['type'] == 'tls_info_cb_bench'].copy().dropna(axis='columns') _info_cb = beautify_info(_info_cb) time_df = pd.DataFrame(time) if len(time_df) > 0: _df_total, _df_eap = beautify_time(time_df) _cap_df = pd.DataFrame(cap) if len(_cap_df) > 0: _cap_df = beautify_cap(_cap_df) return _msg_cb, _info_cb, _df_total, _df_eap, _cap_df def _parse(_min=0, _max=None): bench = [] time = [] cap = [] dirlist = os.listdir(LOG_DIR) if _max is None: _max=len(dirlist) for i, l in enumerate(dirlist): if i < _min or i > _max: continue print(f'Parsing log {i}/{len(dirlist)}: {l}') algo, ts, run = parse_algo(l) if l.endswith('_inst.log'): instfile = f'{LOG_DIR}/{l}' a = [] b = [] a, b = parse_inst(instfile, algo, ts, run) bench += a time += b elif l.endswith('.cap'): capfile = f'{LOG_DIR}/{l}' cap += parse_cap(capfile, algo, ts, run) else: print(f"Error unknown log {l}") sys.exit(1) return beautify(bench, time, cap) def main(load=None, store=None): if load is not None: _msg_cb = pd.read_pickle(f"{PKL_DIR}/msg_cb_{APPEND}.pkl") _info_cb = pd.read_pickle(f"{PKL_DIR}/info_cb_{APPEND}.pkl") _df_total = pd.read_pickle(f"{PKL_DIR}/df_total_{APPEND}.pkl") _df_eap = pd.read_pickle(f"{PKL_DIR}/df_eap_{APPEND}.pkl") _cap_df =
pd.read_pickle(f"{PKL_DIR}/cap_df_{APPEND}.pkl")
pandas.read_pickle
""" __author__ = <NAME> Many analysis functions for dF/F. Main class is CalciumReview. """ import pathlib import re import itertools import warnings from typing import Optional, Dict import attr from attr.validators import instance_of import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from typing import List, Tuple, Dict from enum import Enum from scipy import stats from calcium_bflow_analysis.dff_analysis_and_plotting import dff_analysis from calcium_bflow_analysis.single_fov_analysis import filter_da class Condition(Enum): HYPER = "HYPER" HYPO = "HYPO" class AvailableFuncs(Enum): """ Allowed analysis functions that can be used with CalciumReview. The values of the enum variants are names of functions in dff_analysis.py """ AUC = "calc_total_auc_around_spikes" MEAN = "calc_mean_auc_around_spikes" MEDIAN = "calc_median_auc_around_spikes" SPIKERATE = "calc_mean_spike_num" @attr.s class CalciumReview: """ Evaluate and analyze calcium data from TAC-like experiments. The attributes ending with `_data` are pd.DataFrames that contain the result of different function from dff_analysis.py. If you wish to add a new function, first make sure that its output is compatible with that of existing functions, then add a new attribute to the class and a new variant to the enum, and finally patch the __attrs_post_init__ method to include this new attribute. Make sure to not change the order of the enum - add the function at the bottom of that list. """ folder = attr.ib(validator=instance_of(pathlib.Path)) glob = attr.ib(default=r"*data_of_day_*.nc") files = attr.ib(init=False) days = attr.ib(init=False) conditions = attr.ib(init=False) df_columns = attr.ib(init=False) funcs_dict = attr.ib(init=False) raw_data = attr.ib(init=False) auc_data = attr.ib(init=False) mean_data = attr.ib(init=False) spike_data = attr.ib(init=False) def __attrs_post_init__(self): """ Find all files and parsed days for the experiment, and (partially) load them into memory. """ self.files = [] self.raw_data = {} all_files = self.folder.rglob(self.glob) day_reg = re.compile(r".+?of_day_(\d+).nc") parsed_days = [] print("Found the following files:") day = 0 for file in all_files: print(file) self.files.append(file) try: day = int(day_reg.findall(file.name)[0]) except IndexError: continue parsed_days.append(day) self.raw_data[day] = xr.open_dataset(file) self.days = np.unique(np.array(parsed_days)) stats = ["_mean", "_std"] self.conditions = list(set(self.raw_data[day].condition.values.tolist())) self.df_columns = [ "".join(x) for x in itertools.product(self.conditions, stats) ] + ["t", "p"] self.auc_data = pd.DataFrame(columns=self.df_columns) self.mean_data = pd.DataFrame(columns=self.df_columns) self.spike_data = pd.DataFrame(columns=self.df_columns) # Map the function name to its corresponding DataFrame self.funcs_dict = { key: val for key, val in zip( AvailableFuncs.__members__.values(), [self.auc_data, self.mean_data, self.spike_data], ) } def data_of_day(self, day: int, condition: Condition, epoch="spont"): """ A function used to retrieve the "raw" data of dF/F, in the form of cells x time, to the user. Supply a proper day, condition and epoch and receive a numpy array. """ try: unselected_data = self.raw_data[day] except KeyError: print(f"The day {day} is invalid. Valid days are {self.days}.") else: return filter_da(unselected_data, condition=condition.value, epoch=epoch) def apply_analysis_funcs_two_conditions( self, funcs: list, epoch: str, mouse_id: Optional[str] = None ) -> pd.DataFrame: """ Call the list of methods given to save time and memory. Applicable if the dataset has two conditions, like left and right. Returns a DF that can be used for later viz using seaborn.""" summary_df = pd.DataFrame() for day, raw_datum in dict(sorted(self.raw_data.items())).items(): print(f"Analyzing day {day}...") selected_first = filter_da( raw_datum, condition=self.conditions[0], epoch=epoch, mouse_id=mouse_id, ) selected_second = filter_da( raw_datum, condition=self.conditions[1], epoch=epoch, mouse_id=mouse_id, ) if selected_first.shape[0] == 0 or selected_second.shape[0] == 0: continue spikes_first = dff_analysis.locate_spikes_scipy(selected_first, self.raw_data[day].fps) spikes_second = dff_analysis.locate_spikes_scipy(selected_second, self.raw_data[day].fps) for func in funcs: cond1 = getattr(dff_analysis, func.value)(spikes_first, selected_first, self.raw_data[day].fps) cond1_label = np.full(cond1.shape, ca.conditions[0]) cond1_mean, cond1_sem = ( cond1.mean(), cond1.std(ddof=1) / np.sqrt(cond1.shape[0]), ) cond2 = getattr(dff_analysis, func.value)(spikes_second, selected_second, self.raw_data[day].fps) cond2_label = np.full(cond2.shape, ca.conditions[1]) data = np.concatenate([cond1, cond2]) labels = np.concatenate([cond1_label, cond2_label]) df = pd.DataFrame({'data': np.nan_to_num(data), 'condition': labels, 'day': day, 'measure': func.value}) summary_df = summary_df.append(df) cond2_mean, cond2_sem = ( cond2.mean(), cond2.std(ddof=1) / np.sqrt(cond2.shape[0]), ) t, p = stats.ttest_ind(cond1, cond2, equal_var=False) df_dict = { col: data for col, data in zip( self.df_columns, [ cond1_mean, cond1_sem, cond2_mean, cond2_sem, t, p, ], ) } self.funcs_dict[func] = self.funcs_dict[func].append(
pd.DataFrame(df_dict, index=[day])
pandas.DataFrame
""" author: muzexlxl email: <EMAIL> time series factors bias: -1 0 1 neut: 1, 0 """ import pandas as pd import numpy as np from datetime import datetime import collections import math # import src.data.clickhouse_control as cc class FactorX: def __init__(self, id: list, timeframe: str, data_source: str, start: str, end: str): # self.db_conn = cc.ClickHouse(data_source) # self.db_conn = 0 # self.id = id # if self.id[0] == 'symbol': # self.database = self.db_conn.db_conf.db_processed # self.data_table = self.db_conn.db_conf.processed_trade_data_main # elif self.id[0] == 'code': # self.database = self.db_conn.db_conf.db_raw # self.data_table = self.db_conn.db_conf.raw_trade_data # else: # raise AttributeError(f'Wrong id type: {self.id[0]}') # self.timeframe = timeframe # self.data_source = data_source # self.main_df = self.data_reader(start, end) self.main_df = pd.DataFrame() # def data_reader(self, start_date, end_date): # sql_ = f"select `code`, `symbol`, `datetime`, `open`, `close`, " \ # f"`high`, `low`, `turnover`, `volume`, `open_interest` from " \ # f"{self.database}.{self.data_table} where `{self.id[0]}` = '{self.id[1]}' and " \ # f"`timeframe` = '{self.timeframe}' and `data_source` = '{self.data_source}' and " \ # f"`datetime` >= '{start_date}' and `datetime` <= '{end_date}'" # df = self.db_conn.reader_to_dataframe(sql_) # df['datetime'] = pd.to_datetime(df['datetime']) # df['date'] = df['datetime'].dt.strftime("%Y-%m-%d") # return df.set_index('datetime') def reset_df(self, df: pd.DataFrame): self.main_df = df def factor_tmom_neut_01(self, w): """adx indicator""" source_df = self.main_df.copy() source_df['up'] = source_df['high'] - source_df['high'].shift() source_df['down'] = source_df['low'].shift() - source_df['low'] source_df['dm+'] = np.where( (source_df['up'] > source_df['down']) & (source_df['down'] > 0), source_df['up'], 0 ) source_df['dm-'] = np.where( (source_df['down'] > source_df['up']) & (source_df['up'] > 0), source_df['down'], 0 ) source_df['hl'] = source_df['high'] - source_df['low'] source_df['hc'] = abs(source_df['high'] - source_df['close']) source_df['lc'] = abs(source_df['low'] - source_df['close']) source_df['atr'] = source_df[['hl', 'hc', 'lc']].max(axis=1).rolling(w).mean() source_df['di+'] = (source_df['dm+'].rolling(w).mean() / source_df['atr']) * 100 source_df['di-'] = (source_df['dm-'].rolling(w).mean() / source_df['atr']) * 100 source_df['dx'] = ((source_df['di+'] - source_df['di-']) / (source_df['di+'] + source_df['di-'])) * 100 source_df['adx'] = source_df['dx'].rolling(w).mean() source_df['factor'] = np.where(source_df['adx'] > 25, source_df['adx'], 0) source_df['signal'] = np.where( (source_df['factor'] / source_df['factor'].shift()).fillna(0) > 1, 1, 0 ) return source_df[['factor', 'signal']] def factor_tmom_bias_01(self, w): source_df = self.main_df.copy() source_df['return_close'] = source_df['close'].diff() / source_df['close'].shift() ls = source_df['return_close'].rolling(w).apply( lambda x: pd.Series([(i/abs(i)) if abs(i) > 0 else 0 for i in x.cumsum()[::-5]]).mean() ) source_df['factor'] = [i if abs(i) > 0.5 else 0 for i in ls] source_df['signal'] = np.sign(source_df['factor']) return source_df[['factor', 'signal']] @staticmethod def factor_compound(factors, w: [int, None], valve: int): compounded_factor =
pd.DataFrame(factors)
pandas.DataFrame
import pandas as pd import numpy as np import pickle import pyranges as pr import pathlib path = pathlib.Path.cwd() if path.stem == 'ATGC': cwd = path else: cwd = list(path.parents)[::-1][path.parts.index('ATGC')] ##your path to the files directory file_path = cwd / 'files/' usecols = ['Hugo_Symbol', 'Chromosome', 'Start_position', 'End_position', 'Variant_Classification', 'Variant_Type', 'Reference_Allele', 'Tumor_Seq_Allele2', 'i_VAF', 'Tumor_Sample_Barcode', 'Donor_ID'] ##from: https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel pcawg_maf = pd.read_csv(file_path / 'final_consensus_passonly.snv_mnv_indel.icgc.public.maf', sep='\t', usecols=usecols, low_memory=False) ##from: https://dcc.icgc.org/releases/PCAWG/donors_and_biospecimens pcawg_sample_table = pd.read_csv(file_path / 'pcawg_sample_sheet.tsv', sep='\t', low_memory=False) ##limit samples to what's in the maf pcawg_sample_table = pcawg_sample_table.loc[pcawg_sample_table['aliquot_id'].isin(pcawg_maf['Tumor_Sample_Barcode'].unique())] pcawg_sample_table.drop_duplicates(['icgc_donor_id'], inplace=True) pcawg_sample_table = pcawg_sample_table.loc[pcawg_sample_table['dcc_specimen_type'] != 'Cell line - derived from tumour'] ##from: https://dcc.icgc.org/releases/current/Summary pcawg_donor_table =
pd.read_csv(file_path / 'donor.all_projects.tsv', sep='\t', low_memory=False)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # ReEDS Scenarios on PV ICE Tool # To explore different scenarios for furture installation projections of PV (or any technology), ReEDS output data can be useful in providing standard scenarios. ReEDS installation projections are used in this journal as input data to the PV ICE tool. # # Current sections include: # # <ol> # <li> ### Reading a standard ReEDS output file and saving it in a PV ICE input format </li> # <li>### Reading scenarios of interest and running PV ICE tool </li> # <li>###Plotting </li> # <li>### GeoPlotting.</li> # </ol> # Notes: # # Scenarios of Interest: # the Ref.Mod, # o 95-by-35.Adv, and # o 95-by-35+Elec.Adv+DR ones # # In[1]: import PV_ICE import numpy as np import pandas as pd import os,sys import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 22}) plt.rcParams['figure.figsize'] = (12, 8) # In[2]: import os from pathlib import Path testfolder = str(Path().resolve().parent.parent.parent / 'PV_ICE' / 'TEMP') print ("Your simulation will be stored in %s" % testfolder) # In[3]: PV_ICE.__version__ # ### Reading REEDS original file to get list of SCENARIOs, PCAs, and STATEs # In[3]: reedsFile = str(Path().resolve().parent.parent.parent.parent / 'December Core Scenarios ReEDS Outputs Solar Futures v3a.xlsx') print ("Input file is stored in %s" % reedsFile) rawdf = pd.read_excel(reedsFile, sheet_name="new installs PV") #index_col=[0,2,3]) #this casts scenario, PCA and State as levels #now set year as an index in place #rawdf.drop(columns=['State'], inplace=True) rawdf.drop(columns=['Tech'], inplace=True) rawdf.set_index(['Scenario','Year','PCA', 'State'], inplace=True) # In[4]: scenarios = list(rawdf.index.get_level_values('Scenario').unique()) PCAs = list(rawdf.index.get_level_values('PCA').unique()) STATEs = list(rawdf.index.get_level_values('State').unique()) # ### Reading GIS inputs # In[5]: GISfile = str(Path().resolve().parent.parent.parent.parent / 'gis_centroid_n.xlsx') GIS = pd.read_excel(GISfile) GIS = GIS.set_index('id') # In[6]: GIS.head() # In[7]: GIS.loc['p1'].long # ### Create Scenarios in PV_ICE # #### Rename difficult characters from Scenarios Names # In[8]: simulationname = scenarios simulationname = [w.replace('+', '_') for w in simulationname] simulationname # #### Downselect to Solar Future scenarios of interest # # Scenarios of Interest: # <li> Ref.Mod # <li> 95-by-35.Adv # <li> 95-by-35+Elec.Adv+DR # In[9]: SFscenarios = [simulationname[0], simulationname[4], simulationname[8]] SFscenarios # #### Create the 3 Scenarios and assign Baselines # # Keeping track of each scenario as its own PV ICE Object. # In[10]: #for ii in range (0, 1): #len(scenarios): i = 0 r1 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(PCAs)): filetitle = SFscenarios[i]+'_'+PCAs[jj]+'.csv' filetitle = os.path.join(testfolder, 'PCAs', filetitle) r1.createScenario(name=PCAs[jj], file=filetitle) r1.scenario[PCAs[jj]].addMaterial('glass', file=r'..\baselines\SolarFutures_2021\baseline_material_glass_Reeds.csv') r1.scenario[PCAs[jj]].addMaterial('silicon', file=r'..\baselines\SolarFutures_2021\baseline_material_silicon_Reeds.csv') r1.scenario[PCAs[jj]].addMaterial('silver', file=r'..\baselines\SolarFutures_2021\baseline_material_silver_Reeds.csv') r1.scenario[PCAs[jj]].addMaterial('copper', file=r'..\baselines\SolarFutures_2021\baseline_material_copper_Reeds.csv') r1.scenario[PCAs[jj]].addMaterial('aluminum', file=r'..\baselines\SolarFutures_2021\baseline_material_aluminium_Reeds.csv') r1.scenario[PCAs[jj]].latitude = GIS.loc[PCAs[jj]].lat r1.scenario[PCAs[jj]].longitude = GIS.loc[PCAs[jj]].long i = 1 r2 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(PCAs)): filetitle = SFscenarios[i]+'_'+PCAs[jj]+'.csv' filetitle = os.path.join(testfolder, 'PCAs', filetitle) r2.createScenario(name=PCAs[jj], file=filetitle) r2.scenario[PCAs[jj]].addMaterial('glass', file=r'..\baselines\SolarFutures_2021\baseline_material_glass_Reeds.csv') r2.scenario[PCAs[jj]].addMaterial('silicon', file=r'..\baselines\SolarFutures_2021\baseline_material_silicon_Reeds.csv') r2.scenario[PCAs[jj]].addMaterial('silver', file=r'..\baselines\SolarFutures_2021\baseline_material_silver_Reeds.csv') r2.scenario[PCAs[jj]].addMaterial('copper', file=r'..\baselines\SolarFutures_2021\baseline_material_copper_Reeds.csv') r2.scenario[PCAs[jj]].addMaterial('aluminum', file=r'..\baselines\SolarFutures_2021\baseline_material_aluminium_Reeds.csv') r2.scenario[PCAs[jj]].latitude = GIS.loc[PCAs[jj]].lat r2.scenario[PCAs[jj]].longitude = GIS.loc[PCAs[jj]].long i = 2 r3 = PV_ICE.Simulation(name=SFscenarios[i], path=testfolder) for jj in range (0, len(PCAs)): filetitle = SFscenarios[i]+'_'+PCAs[jj]+'.csv' filetitle = os.path.join(testfolder, 'PCAs', filetitle) r3.createScenario(name=PCAs[jj], file=filetitle) r3.scenario[PCAs[jj]].addMaterial('glass', file=r'..\baselines\SolarFutures_2021\baseline_material_glass_Reeds.csv') r3.scenario[PCAs[jj]].addMaterial('silicon', file=r'..\baselines\SolarFutures_2021\baseline_material_silicon_Reeds.csv') r3.scenario[PCAs[jj]].addMaterial('silver', file=r'..\baselines\SolarFutures_2021\baseline_material_silver_Reeds.csv') r3.scenario[PCAs[jj]].addMaterial('copper', file=r'..\baselines\SolarFutures_2021\baseline_material_copper_Reeds.csv') r3.scenario[PCAs[jj]].addMaterial('aluminum', file=r'..\baselines\SolarFutures_2021\baseline_material_aluminium_Reeds.csv') r3.scenario[PCAs[jj]].latitude = GIS.loc[PCAs[jj]].lat r3.scenario[PCAs[jj]].longitude = GIS.loc[PCAs[jj]].long # In[11]: list(r1.scenario[PCAs[0]].data.year) # In[12]: r1.scenario[PCAs[0]].data # # 2 FINISH: Set characteristics of Recycling to SF values. # In[13]: #r1.scenario[] # #### Calculate Mass Flow # In[14]: IRENA= False PERFECTMFG = True mats = ['glass', 'silicon','silver','copper','aluminum'] ELorRL = 'EL' if IRENA: if ELorRL == 'RL': weibullInputParams = {'alpha': 5.3759, 'beta':30} # Regular-loss scenario IRENA if ELorRL == 'EL': weibullInputParams = {'alpha': 2.49, 'beta':30} # Regular-loss scenario IRENA if PERFECTMFG: for jj in range (0, len(r1.scenario.keys())): r1.scenario[STATEs[jj]].data['mod_lifetime'] = 40 r1.scenario[STATEs[jj]].data['mod_MFG_eff'] = 100.0 r2.scenario[STATEs[jj]].data['mod_lifetime'] = 40 r2.scenario[STATEs[jj]].data['mod_MFG_eff'] = 100.0 r3.scenario[STATEs[jj]].data['mod_lifetime'] = 40 r3.scenario[STATEs[jj]].data['mod_MFG_eff'] = 100.0 for kk in range(0, len(mats)): mat = mats[kk] r1.scenario[STATEs[jj]].material[mat].materialdata['mat_MFG_eff'] = 100.0 r2.scenario[STATEs[jj]].material[mat].materialdata['mat_MFG_eff'] = 100.0 r3.scenario[STATEs[jj]].material[mat].materialdata['mat_MFG_eff'] = 100.0 r1.calculateMassFlow(weibullInputParams=weibullInputParams) r2.calculateMassFlow(weibullInputParams=weibullInputParams) r3.calculateMassFlow(weibullInputParams=weibullInputParams) title_Method = 'Irena_'+ELorRL else: r1.calculateMassFlow() r2.calculateMassFlow() r3.calculateMassFlow() title_Method = 'PVICE' # In[15]: print("PCAs:", r1.scenario.keys()) print("Module Keys:", r1.scenario[PCAs[jj]].data.keys()) print("Material Keys: ", r1.scenario[PCAs[jj]].material['glass'].materialdata.keys()) # In[16]: """ r1.plotScenariosComparison(keyword='Cumulative_Area_disposedby_Failure') r1.plotMaterialComparisonAcrossScenarios(material='silicon', keyword='mat_Total_Landfilled') r1.scenario['p1'].data.head(21) r2.scenario['p1'].data.head(21) r3.scenario['p1'].data.head(21) """ pass # # SAVE DATA FOR BILLY: PCAs # ### PCA vs. Cumulative Waste by 2050 # # In[17]: #for 3 significant numbers rounding N = 2 # SFScenarios[kk].scenario[PCAs[zz]].data.year # # Index 20 --> 2030 # # Index 30 --> 2040 # # Index 40 --> 2050 # In[18]: idx2030 = 20 idx2040 = 30 idx2050 = 40 print("index ", idx2030, " is year ", r1.scenario[PCAs[0]].data['year'].iloc[idx2030]) print("index ", idx2040, " is year ", r1.scenario[PCAs[0]].data['year'].iloc[idx2040]) print("index ", idx2050, " is year ", r1.scenario[PCAs[0]].data['year'].iloc[idx2050]) # #### 1 - PCA Cumulative Virgin Needs by 2050 # In[19]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminum'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(PCAs)): keywordsum.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=PCAs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' 1 - PCA Cumulative2050 VirginMaterialNeeds_tons.csv') # #### 2 - PCA Cumulative EoL Only Waste by 2050 # In[20]: keyword='mat_Total_EOL_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminum'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = [] for ii in range (0, len(materials)): keywordsum = [] for zz in range (0, len(PCAs)): keywordsum.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword].sum()) materiallist.append(keywordsum) df = pd.DataFrame (materiallist,columns=PCAs, index = materials) df = df.T df = df.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , df], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' 2 - PCA Cumulative2050 Waste EOL_tons.csv') # #### 3 - PCA Yearly Virgin Needs 2030 2040 2050 # In[21]: keyword='mat_Virgin_Stock' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminum'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(PCAs)): keywordsum2030.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=PCAs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tons #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' 3 - PCA Yearly 2030 2040 2050 VirginMaterialNeeds_tons.csv') # #### 4 - PCA Yearly EoL Waste 2030 2040 2050 # In[22]: keyword='mat_Total_Landfilled' materials = ['glass', 'silicon', 'silver', 'copper', 'aluminum'] SFScenarios = [r1, r2, r3] # Loop over SF Scenarios scenariolist = pd.DataFrame() for kk in range(0, 3): # Loop over Materials materiallist = pd.DataFrame() for ii in range (0, len(materials)): keywordsum2030 = [] keywordsum2040 = [] keywordsum2050 = [] for zz in range (0, len(PCAs)): keywordsum2030.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2030]) keywordsum2040.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2040]) keywordsum2050.append(SFScenarios[kk].scenario[PCAs[zz]].material[materials[ii]].materialdata[keyword][idx2050]) yearlylist = pd.DataFrame([keywordsum2030, keywordsum2040, keywordsum2050], columns=PCAs, index = [2030, 2040, 2050]) yearlylist = yearlylist.T yearlylist = yearlylist.add_prefix(materials[ii]+'_') materiallist = pd.concat([materiallist, yearlylist], axis=1) materiallist = materiallist.add_prefix(SFScenarios[kk].name+'_') scenariolist = pd.concat([scenariolist , materiallist], axis=1) scenariolist = scenariolist/1000000 # Converting to Metric Tonnes #scenariolist = scenariolist.applymap(lambda x: round(x, N - int(np.floor(np.log10(abs(x)))))) #scenariolist = scenariolist.applymap(lambda x: int(x)) scenariolist.to_csv(title_Method+' 4 - PCA Yearly 2030 2040 2050 Waste_EOL_tons.csv') # # GEOPANDAS # In[23]: latitude_all =[] longitude_all = [] cumulativewaste2050 = [] for scen in r1.scenario.keys(): latitude_all.append(r1.scenario[scen].latitude) longitude_all.append(r1.scenario[scen].longitude) cumulativewaste2050.append(r1.scenario[scen].material['glass'].materialdata['mat_Total_Landfilled'].sum()) # In[24]: import pandas as pd import matplotlib.pyplot as plt import descartes import geopandas as gpd from shapely.geometry import Point, Polygon #street_map = gpd.read_file(r'C:\Users\sayala\Desktop\geopandas\cb_2018_us_nation_20m\cb_2018_us_nation_20m.shp') # Show the map only #fig, ax = plt.subplots(figsize=(10,15)) #street_map.plot(ax=ax) # In[25]: frame = { 'Latitude': latitude_all, 'Longitude': longitude_all, 'CumulativeWaste2050': cumulativewaste2050} df = pd.DataFrame(frame) # In[26]: df.head() # In[27]: geometry = [Point(xy) for xy in zip(df['Longitude'], df['Latitude'])] geometry[:3] # In[28]: crs = {'init':'epsg:4326'} # In[29]: geo_df = gpd.GeoDataFrame(df, # specify our data crs = crs, # specify our coordinate reference system geometry = geometry) # specify the geometry list we created geo_df.head() # In[30]: fig, ax = plt.subplots(figsize = (15,15)) street_map.plot(ax = ax, alpha = 0.4, color = "grey") geo_df[geo_df['CumulativeWaste2050'] >= 1.918125e+09].plot(ax=ax, markersize = 20, color= "blue", marker = "o", label = "Bigger Than") geo_df[geo_df['CumulativeWaste2050'] < 1.918125e+09].plot(ax=ax, markersize = 20, color= "red", marker = "o", label = "Less Than") plt.xlim([-130, -60]) plt.ylim([20, 50]) plt.legend(prop={'size':15}) # In[ ]: import random import pandas as pd import matplotlib.pyplot as plt import descartes import geopandas as gpd from shapely.geometry import Point, Polygon latitude = random.sample(range(25, 45), 10) longitude = random.sample(range(-125, -65), 10) weight = random.sample(range(0, 500), 10) frame = { 'Latitude': latitude, 'Longitude': longitude, 'Weight': weight} df =
pd.DataFrame(frame)
pandas.DataFrame
# EcoFOCI """Contains a collection of ADCP equipment parsing. These include: * LR-ADCP * Teledyne ADCP * RCM ADCP """ import numpy as np import pandas as pd class adcp(object): """ """ def __init__(self,serialno=None,depdir=None): if depdir: self.depdir = depdir + serialno else: self.depdir = None def load_pg_file(self, pgfile_path=None, datetime_index=True): """load Pecent Good (PG) file The four Percent Good values represent (in order): 1) The percentage of good three beam solutions (one beam rejected); 2) The percentage of good transformations (error velocity threshold not exceeded); 3) The percentage of measurements where more than one beam was bad; 4) The percentage of measurements with four beam solutions. <--- use this to qc data stream Args: pgfile_path (str, optional): full path to pg file. Defaults to ''. """ if self.depdir: pgfile_path = self.depdir + '.PG' self.pg_df = pd.read_csv(pgfile_path,delimiter='\s+',header=None,names=['date','time','bin','pg3beam-good','pgtransf-good','pg1beam-bad','pg4beam-good']) self.pg_df["date_time"] = pd.to_datetime(self.pg_df.date+' '+self.pg_df.time,format="%y/%m/%d %H:%M:%S") if datetime_index: self.pg_df = self.pg_df.set_index(pd.DatetimeIndex(self.pg_df['date_time'])).drop(['date_time','date','time'],axis=1) return self.pg_df def load_ein_file(self, einfile_path=None, datetime_index=True): if self.depdir: einfile_path = self.depdir + '.EIN' self.ein_df =
pd.read_csv(einfile_path,delimiter='\s+',header=None,names=['date','time','bin','agc1','agc2','agc3','agc4'])
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 18 13:15:21 2020 @author: jm """ #%% required libraries import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates #%% read data #df_original = pd.read_csv('https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv?cachebust=5805f0ab2859cf87', encoding = 'utf-8') df_original = pd.read_csv('data/google_mobility_report_2020-07-25.csv', encoding = 'utf-8') df = df_original.copy() # check columns df.columns # see head of data frame df.head() #%% filter data for Argentina only df = df[df['country_region'] == 'Argentina'] # check resulting data df.info() # check NA df.isna().any() df.isna().sum().plot(kind = 'bar') # drop columns with many NA df = df.drop(columns = ['country_region_code', 'sub_region_2', 'iso_3166_2_code', 'census_fips_code']) # rename columns df.rename(columns = {'country_region': 'pais', 'sub_region_1': 'provincia', 'date': 'fecha', 'retail_and_recreation_percent_change_from_baseline': 'retail_and_recreation', 'grocery_and_pharmacy_percent_change_from_baseline': 'grocery_and_pharmacy', 'parks_percent_change_from_baseline': 'parks', 'transit_stations_percent_change_from_baseline': 'transit_stations', 'workplaces_percent_change_from_baseline': 'workplaces', 'residential_percent_change_from_baseline': 'residential'}, inplace = True) # drop row where 'provincia' is NA df = df.dropna(subset = ['provincia']) # check NA df.isna().sum().plot(kind = 'bar') #%% set index to plot the data df['fecha'] = pd.to_datetime(df['fecha']) df.set_index('fecha', inplace = True) # check index print(df.index) #%% subsets bsas = df[df['provincia'] == 'Buenos Aires Province'] caba = df[df['provincia'] == 'Buenos Aires'] #%% plot for CABA plt.rcParams["figure.dpi"] = 1200 plt.figure(figsize = (10, 10)) fig, ax = plt.subplots() # plot data ax.plot(caba.index, caba['workplaces'], color = 'darkred', label = 'Workplaces') ax.plot(caba.index, caba['retail_and_recreation'], color = 'darkblue', label = 'Retail and recreation') # color the area of lockdown phase 1 p1 = caba['2020-07-01':'2020-07-17'].index ax.fill_between(p1, -90, -30, facecolor = 'lightsteelblue', alpha = 0.3, label = 'Fase 1') # annotate carnaval ax.annotate('Carnaval', xy = [pd.Timestamp('2020-02-24'), -71], xytext = [pd.Timestamp('2020-03-25'), 10], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate dia del trabajador ax.annotate('Día del \ntrabajador', xy = [pd.Timestamp('2020-05-01'), -87], xytext = [pd.Timestamp('2020-03-28'), -50], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate dia de la Revolucion de Mayo ax.annotate('Día de la \nRevolución de Mayo', xy = [pd.Timestamp('2020-05-25'), -84], xytext = [pd.Timestamp('2020-04-01'), -30], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate paso a la inmortalidad <NAME> ax.annotate('Paso a la inmortalidad \nGral. Güemes', xy = [p
d.Timestamp('2020-06-15')
pandas.Timestamp
""" Broadly applicable NGS processing/analysis functionality """ import os import re import subprocess import errno from attmap import AttMapEcho from yacman import load_yaml from .exceptions import UnsupportedFiletypeException from .utils import is_fastq, is_gzipped_fastq, is_sam_or_bam class NGSTk(AttMapEcho): """ Class to hold functions to build command strings used during pipeline runs. Object can be instantiated with a string of a path to a yaml `pipeline config file`. Since NGSTk inherits from `AttMapEcho`, the passed config file and its elements will be accessible through the NGSTk object as attributes under `config` (e.g. `NGSTk.tools.java`). In case no `config_file` argument is passed, all commands will be returned assuming the tool is in the user's $PATH. :param str config_file: Path to pipeline yaml config file (optional). :param pypiper.PipelineManager pm: A PipelineManager with which to associate this toolkit instance; that is, essentially a source from which to grab paths to tools, resources, etc. :Example: from pypiper.ngstk import NGSTk as tk tk = NGSTk() tk.samtools_index("sample.bam") # returns: samtools index sample.bam # Using a configuration file (custom executable location): from pypiper.ngstk import NGSTk tk = NGSTk("pipeline_config_file.yaml") tk.samtools_index("sample.bam") # returns: /home/.local/samtools/bin/samtools index sample.bam """ def __init__(self, config_file=None, pm=None): # parse yaml into the project's attributes # self.add_entries(**config) super(NGSTk, self).__init__( None if config_file is None else load_yaml(config_file)) # Keep a link to the pipeline manager, if one is provided. # if None is provided, instantiate "tools" and "parameters" with empty AttMaps # this allows the usage of the same code for a command with and without using a pipeline manager if pm is not None: self.pm = pm if hasattr(pm.config, "tools"): self.tools = self.pm.config.tools else: self.tools = AttMapEcho() if hasattr(pm.config, "parameters"): self.parameters = self.pm.config.parameters else: self.parameters = AttMapEcho() else: self.tools = AttMapEcho() self.parameters = AttMapEcho() # If pigz is available, use that. Otherwise, default to gzip. if hasattr(self.pm, "cores") and self.pm.cores > 1 and self.check_command("pigz"): self.ziptool_cmd = "pigz -f -p {}".format(self.pm.cores) else: self.ziptool_cmd = "gzip -f" def _ensure_folders(self, *paths): """ Ensure that paths to folder(s) exist. Some command-line tools will not attempt to create folder(s) needed for output path to exist. They instead assume that they already are present and will fail if that assumption does not hold. :param Iterable[str] paths: Collection of path for which """ for p in paths: # Only provide assurance for absolute paths. if not p or not os.path.isabs(p): continue # See if what we're assuring is file- or folder-like. fpath, fname = os.path.split(p) base, ext = os.path.splitext(fname) # If there's no extension, ensure that we have the whole path. # Otherwise, just ensure that we have path to file's folder. self.make_dir(fpath if ext else p) @property def ziptool(self): """ Returns the command to use for compressing/decompressing. :return str: Either 'gzip' or 'pigz' if installed and multiple cores """ return self.ziptool_cmd def make_dir(self, path): """ Forge path to directory, creating intermediates as needed. :param str path: Path to create. """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def make_sure_path_exists(self, path): """ Alias for make_dir """ self.make_dir(path) # Borrowed from looper def check_command(self, command): """ Check if command can be called. """ # Use `command` to see if command is callable, store exit code code = os.system("command -v {0} >/dev/null 2>&1 || {{ exit 1; }}".format(command)) # If exit code is not 0, report which command failed and return False, else return True if code != 0: print("Command is not callable: {0}".format(command)) return False else: return True def get_file_size(self, filenames): """ Get size of all files in string (space-separated) in megabytes (Mb). :param str filenames: a space-separated string of filenames """ # use (1024 ** 3) for gigabytes # equivalent to: stat -Lc '%s' filename # If given a list, recurse through it. if type(filenames) is list: return sum([self.get_file_size(filename) for filename in filenames]) return round(sum([float(os.stat(f).st_size) for f in filenames.split(" ")]) / (1024 ** 2), 4) def mark_duplicates(self, aligned_file, out_file, metrics_file, remove_duplicates="True"): cmd = self.tools.java if self.pm.javamem: # If a memory restriction exists. cmd += " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " MarkDuplicates" cmd += " INPUT=" + aligned_file cmd += " OUTPUT=" + out_file cmd += " METRICS_FILE=" + metrics_file cmd += " REMOVE_DUPLICATES=" + remove_duplicates return cmd def bam2fastq(self, input_bam, output_fastq, output_fastq2=None, unpaired_fastq=None): """ Create command to convert BAM(s) to FASTQ(s). :param str input_bam: Path to sequencing reads file to convert :param output_fastq: Path to FASTQ to write :param output_fastq2: Path to (R2) FASTQ to write :param unpaired_fastq: Path to unpaired FASTQ to write :return str: Command to convert BAM(s) to FASTQ(s) """ self._ensure_folders(output_fastq, output_fastq2, unpaired_fastq) cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " SamToFastq" cmd += " INPUT={0}".format(input_bam) cmd += " FASTQ={0}".format(output_fastq) if output_fastq2 is not None and unpaired_fastq is not None: cmd += " SECOND_END_FASTQ={0}".format(output_fastq2) cmd += " UNPAIRED_FASTQ={0}".format(unpaired_fastq) return cmd def bam_to_fastq(self, bam_file, out_fastq_pre, paired_end): """ Build command to convert BAM file to FASTQ file(s) (R1/R2). :param str bam_file: path to BAM file with sequencing reads :param str out_fastq_pre: path prefix for output FASTQ file(s) :param bool paired_end: whether the given file contains paired-end or single-end sequencing reads :return str: file conversion command, ready to run """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " SamToFastq" cmd += " I=" + bam_file cmd += " F=" + out_fastq_pre + "_R1.fastq" if paired_end: cmd += " F2=" + out_fastq_pre + "_R2.fastq" cmd += " INCLUDE_NON_PF_READS=true" cmd += " QUIET=true" cmd += " VERBOSITY=ERROR" cmd += " VALIDATION_STRINGENCY=SILENT" return cmd def bam_to_fastq_awk(self, bam_file, out_fastq_pre, paired_end, zipmode=False): """ This converts bam file to fastq files, but using awk. As of 2016, this is much faster than the standard way of doing this using Picard, and also much faster than the bedtools implementation as well; however, it does no sanity checks and assumes the reads (for paired data) are all paired (no singletons), in the correct order. :param bool zipmode: Should the output be zipped? """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) fq1 = out_fastq_pre + "_R1.fastq" fq2 = out_fastq_pre + "_R2.fastq" if zipmode: fq1 = fq1 + ".gz" fq2 = fq2 + ".gz" fq1_target = " | \"" + self.ziptool + " -c > " + fq1 + '"' fq2_target = " | \"" + self.ziptool + " -c > " + fq2 + '"' else: fq1_target = ' > "' + fq1 + '"' fq2_target = ' > "' + fq2 + '"' if paired_end: cmd = self.tools.samtools + " view " + bam_file + " | awk '" cmd += r'{ if (NR%2==1) print "@"$1"/1\n"$10"\n+\n"$11' + fq1_target + ';' cmd += r' else print "@"$1"/2\n"$10"\n+\n"$11' + fq2_target + '; }' cmd += "'" # end the awk command else: fq2 = None cmd = self.tools.samtools + " view " + bam_file + " | awk '" cmd += r'{ print "@"$1"\n"$10"\n+\n"$11' + fq1_target + '; }' cmd += "'" return cmd, fq1, fq2 def bam_to_fastq_bedtools(self, bam_file, out_fastq_pre, paired_end): """ Converts bam to fastq; A version using bedtools """ self.make_sure_path_exists(os.path.dirname(out_fastq_pre)) fq1 = out_fastq_pre + "_R1.fastq" fq2 = None cmd = self.tools.bedtools + " bamtofastq -i " + bam_file + " -fq " + fq1 + ".fastq" if paired_end: fq2 = out_fastq_pre + "_R2.fastq" cmd += " -fq2 " + fq2 return cmd, fq1, fq2 def get_input_ext(self, input_file): """ Get the extension of the input_file. Assumes you're using either .bam or .fastq/.fq or .fastq.gz/.fq.gz. """ if input_file.endswith(".bam"): input_ext = ".bam" elif input_file.endswith(".fastq.gz") or input_file.endswith(".fq.gz"): input_ext = ".fastq.gz" elif input_file.endswith(".fastq") or input_file.endswith(".fq"): input_ext = ".fastq" else: errmsg = "'{}'; this pipeline can only deal with .bam, .fastq, " \ "or .fastq.gz files".format(input_file) raise UnsupportedFiletypeException(errmsg) return input_ext def merge_or_link(self, input_args, raw_folder, local_base="sample"): """ Standardizes various input possibilities by converting either .bam, .fastq, or .fastq.gz files into a local file; merging those if multiple files given. :param list input_args: This is a list of arguments, each one is a class of inputs (which can in turn be a string or a list). Typically, input_args is a list with 2 elements: first a list of read1 files; second an (optional!) list of read2 files. :param str raw_folder: Name/path of folder for the merge/link. :param str local_base: Usually the sample name. This (plus file extension) will be the name of the local file linked (or merged) by this function. """ self.make_sure_path_exists(raw_folder) if not isinstance(input_args, list): raise Exception("Input must be a list") if any(isinstance(i, list) for i in input_args): # We have a list of lists. Process each individually. local_input_files = list() n_input_files = len(filter(bool, input_args)) print("Number of input file sets: " + str(n_input_files)) for input_i, input_arg in enumerate(input_args): # Count how many non-null items there are in the list; # we only append _R1 (etc.) if there are multiple input files. if n_input_files > 1: local_base_extended = local_base + "_R" + str(input_i + 1) else: local_base_extended = local_base if input_arg: out = self.merge_or_link( input_arg, raw_folder, local_base_extended) print("Local input file: '{}'".format(out)) # Make sure file exists: if not os.path.isfile(out): print("Not a file: '{}'".format(out)) local_input_files.append(out) return local_input_files else: # We have a list of individual arguments. Merge them. if len(input_args) == 1: # Only one argument in this list. A single input file; we just link # it, regardless of file type: # Pull the value out of the list input_arg = input_args[0] input_ext = self.get_input_ext(input_arg) # Convert to absolute path if not os.path.isabs(input_arg): input_arg = os.path.abspath(input_arg) # Link it to into the raw folder local_input_abs = os.path.join(raw_folder, local_base + input_ext) self.pm.run( "ln -sf " + input_arg + " " + local_input_abs, target=local_input_abs, shell=True) # return the local (linked) filename absolute path return local_input_abs else: # Otherwise, there are multiple inputs. # If more than 1 input file is given, then these are to be merged # if they are in bam format. if all([self.get_input_ext(x) == ".bam" for x in input_args]): sample_merged = local_base + ".merged.bam" output_merge = os.path.join(raw_folder, sample_merged) cmd = self.merge_bams_samtools(input_args, output_merge) self.pm.debug("cmd: {}".format(cmd)) self.pm.run(cmd, output_merge) cmd2 = self.validate_bam(output_merge) self.pm.run(cmd, output_merge, nofail=True) return output_merge # if multiple fastq if all([self.get_input_ext(x) == ".fastq.gz" for x in input_args]): sample_merged_gz = local_base + ".merged.fastq.gz" output_merge_gz = os.path.join(raw_folder, sample_merged_gz) #cmd1 = self.ziptool + "-d -c " + " ".join(input_args) + " > " + output_merge #cmd2 = self.ziptool + " " + output_merge #self.pm.run([cmd1, cmd2], output_merge_gz) # you can save yourself the decompression/recompression: cmd = "cat " + " ".join(input_args) + " > " + output_merge_gz self.pm.run(cmd, output_merge_gz) return output_merge_gz if all([self.get_input_ext(x) == ".fastq" for x in input_args]): sample_merged = local_base + ".merged.fastq" output_merge = os.path.join(raw_folder, sample_merged) cmd = "cat " + " ".join(input_args) + " > " + output_merge self.pm.run(cmd, output_merge) return output_merge # At this point, we don't recognize the input file types or they # do not match. raise NotImplementedError( "Input files must be of the same type, and can only " "merge bam or fastq.") def input_to_fastq( self, input_file, sample_name, paired_end, fastq_folder, output_file=None, multiclass=False, zipmode=False): """ Builds a command to convert input file to fastq, for various inputs. Takes either .bam, .fastq.gz, or .fastq input and returns commands that will create the .fastq file, regardless of input type. This is useful to made your pipeline easily accept any of these input types seamlessly, standardizing you to fastq which is still the most common format for adapter trimmers, etc. You can specify you want output either zipped or not. Commands will place the output fastq file in given `fastq_folder`. :param str input_file: filename of input you want to convert to fastq :param bool multiclass: Are both read1 and read2 included in a single file? User should not need to set this; it will be inferred and used in recursive calls, based on number files, and the paired_end arg. :param bool zipmode: Should the output be .fastq.gz? Otherwise, just fastq :return str: A command (to be run with PipelineManager) that will ensure your fastq file exists. """ fastq_prefix = os.path.join(fastq_folder, sample_name) self.make_sure_path_exists(fastq_folder) # this expects a list; if it gets a string, wrap it in a list. if type(input_file) != list: input_file = [input_file] # If multiple files were provided, recurse on each file individually if len(input_file) > 1: cmd = [] output_file = [] for in_i, in_arg in enumerate(input_file): output = fastq_prefix + "_R" + str(in_i + 1) + ".fastq" result_cmd, uf, result_file = \ self.input_to_fastq(in_arg, sample_name, paired_end, fastq_folder, output, multiclass=True, zipmode=zipmode) cmd.append(result_cmd) output_file.append(result_file) else: # There was only 1 input class. # Convert back into a string input_file = input_file[0] if not output_file: output_file = fastq_prefix + "_R1.fastq" if zipmode: output_file = output_file + ".gz" input_ext = self.get_input_ext(input_file) # handles .fq or .fastq if input_ext == ".bam": print("Found .bam file") #cmd = self.bam_to_fastq(input_file, fastq_prefix, paired_end) cmd, fq1, fq2 = self.bam_to_fastq_awk(input_file, fastq_prefix, paired_end, zipmode) # pm.run(cmd, output_file, follow=check_fastq) if fq2: output_file = [fq1, fq2] else: output_file = fq1 elif input_ext == ".fastq.gz": print("Found .fastq.gz file") if paired_end and not multiclass: if zipmode: raise NotImplementedError("Can't use zipmode on interleaved fastq data.") # For paired-end reads in one fastq file, we must split the # file into 2. The pipeline author will need to include this # python script in the scripts directory. # TODO: make this self-contained in pypiper. This is a rare # use case these days, as fastq files are almost never # interleaved anymore. script_path = os.path.join( self.tools.scripts_dir, "fastq_split.py") cmd = self.tools.python + " -u " + script_path cmd += " -i " + input_file cmd += " -o " + fastq_prefix # Must also return the set of output files output_file = [fastq_prefix + "_R1.fastq", fastq_prefix + "_R2.fastq"] else: if zipmode: # we do nothing! cmd = "ln -sf " + input_file + " " + output_file print("Found .fq.gz file; no conversion necessary") else: # For single-end reads, we just unzip the fastq.gz file. # or, paired-end reads that were already split. cmd = self.ziptool + " -d -c " + input_file + " > " + output_file # a non-shell version # cmd1 = "gunzip --force " + input_file # cmd2 = "mv " + os.path.splitext(input_file)[0] + " " + output_file # cmd = [cmd1, cmd2] elif input_ext == ".fastq": if zipmode: cmd = self.ziptool + " -c " + input_file + " > " + output_file else: cmd = "ln -sf " + input_file + " " + output_file print("Found .fastq file; no conversion necessary") return [cmd, fastq_prefix, output_file] def check_fastq(self, input_files, output_files, paired_end): """ Returns a follow sanity-check function to be run after a fastq conversion. Run following a command that will produce the fastq files. This function will make sure any input files have the same number of reads as the output files. """ # Define a temporary function which we will return, to be called by the # pipeline. # Must define default parameters here based on the parameters passed in. This locks # these values in place, so that the variables will be defined when this function # is called without parameters as a follow function by pm.run. # This is AFTER merge, so if there are multiple files it means the # files were split into read1/read2; therefore I must divide by number # of files for final reads. def temp_func(input_files=input_files, output_files=output_files, paired_end=paired_end): if type(input_files) != list: input_files = [input_files] if type(output_files) != list: output_files = [output_files] n_input_files = len(filter(bool, input_files)) n_output_files = len(filter(bool, output_files)) total_reads = sum([int(self.count_reads(input_file, paired_end)) for input_file in input_files]) raw_reads = int(total_reads / n_input_files) self.pm.report_result("Raw_reads", str(raw_reads)) total_fastq_reads = sum( [int(self.count_reads(output_file, paired_end)) for output_file in output_files]) fastq_reads = int(total_fastq_reads / n_output_files) self.pm.report_result("Fastq_reads", fastq_reads) input_ext = self.get_input_ext(input_files[0]) # We can only assess pass filter reads in bam files with flags. if input_ext == ".bam": num_failed_filter = sum( [int(self.count_fail_reads(f, paired_end)) for f in input_files]) pf_reads = int(raw_reads) - num_failed_filter self.pm.report_result("PF_reads", str(pf_reads)) if fastq_reads != int(raw_reads): raise Exception("Fastq conversion error? Number of input reads " "doesn't number of output reads.") return fastq_reads return temp_func def check_trim(self, trimmed_fastq, paired_end, trimmed_fastq_R2=None, fastqc_folder=None): """ Build function to evaluate read trimming, and optionally run fastqc. This is useful to construct an argument for the 'follow' parameter of a PipelineManager's 'run' method. :param str trimmed_fastq: Path to trimmed reads file. :param bool paired_end: Whether the processing is being done with paired-end sequencing data. :param str trimmed_fastq_R2: Path to read 2 file for the paired-end case. :param str fastqc_folder: Path to folder within which to place fastqc output files; if unspecified, fastqc will not be run. :return callable: Function to evaluate read trimming and possibly run fastqc. """ def temp_func(): print("Evaluating read trimming") if paired_end and not trimmed_fastq_R2: print("WARNING: specified paired-end but no R2 file") n_trim = float(self.count_reads(trimmed_fastq, paired_end)) self.pm.report_result("Trimmed_reads", int(n_trim)) try: rr = float(self.pm.get_stat("Raw_reads")) except: print("Can't calculate trim loss rate without raw read result.") else: self.pm.report_result( "Trim_loss_rate", round((rr - n_trim) * 100 / rr, 2)) # Also run a fastqc (if installed/requested) if fastqc_folder: if fastqc_folder and os.path.isabs(fastqc_folder): self.make_sure_path_exists(fastqc_folder) cmd = self.fastqc(trimmed_fastq, fastqc_folder) self.pm.run(cmd, lock_name="trimmed_fastqc", nofail=True) fname, ext = os.path.splitext(os.path.basename(trimmed_fastq)) fastqc_html = os.path.join(fastqc_folder, fname + "_fastqc.html") self.pm.report_object("FastQC report r1", fastqc_html) if paired_end and trimmed_fastq_R2: cmd = self.fastqc(trimmed_fastq_R2, fastqc_folder) self.pm.run(cmd, lock_name="trimmed_fastqc_R2", nofail=True) fname, ext = os.path.splitext(os.path.basename(trimmed_fastq_R2)) fastqc_html = os.path.join(fastqc_folder, fname + "_fastqc.html") self.pm.report_object("FastQC report r2", fastqc_html) return temp_func def validate_bam(self, input_bam): """ Wrapper for Picard's ValidateSamFile. :param str input_bam: Path to file to validate. :return str: Command to run for the validation. """ cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " ValidateSamFile" cmd += " INPUT=" + input_bam return cmd def merge_bams(self, input_bams, merged_bam, in_sorted="TRUE", tmp_dir=None): """ Combine multiple files into one. The tmp_dir parameter is important because on poorly configured systems, the default can sometimes fill up. :param Iterable[str] input_bams: Paths to files to combine :param str merged_bam: Path to which to write combined result. :param bool | str in_sorted: Whether the inputs are sorted :param str tmp_dir: Path to temporary directory. """ if not len(input_bams) > 1: print("No merge required") return 0 outdir, _ = os.path.split(merged_bam) if outdir and not os.path.exists(outdir): print("Creating path to merge file's folder: '{}'".format(outdir)) os.makedirs(outdir) # Handle more intuitive boolean argument. if in_sorted in [False, True]: in_sorted = "TRUE" if in_sorted else "FALSE" input_string = " INPUT=" + " INPUT=".join(input_bams) cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.picard + " MergeSamFiles" cmd += input_string cmd += " OUTPUT=" + merged_bam cmd += " ASSUME_SORTED=" + str(in_sorted) cmd += " CREATE_INDEX=TRUE" cmd += " VALIDATION_STRINGENCY=SILENT" if tmp_dir: cmd += " TMP_DIR=" + tmp_dir return cmd def merge_bams_samtools(self, input_bams, merged_bam): cmd = self.tools.samtools + " merge -f " cmd += " -@ " + str(self.pm.cores) cmd += " " + merged_bam + " " cmd += " ".join(input_bams) return cmd def merge_fastq(self, inputs, output, run=False, remove_inputs=False): """ Merge FASTQ files (zipped or not) into one. :param Iterable[str] inputs: Collection of paths to files to merge. :param str output: Path to single output file. :param bool run: Whether to run the command. :param bool remove_inputs: Whether to keep the original files. :return NoneType | str: Null if running the command, otherwise the command itself :raise ValueError: Raise ValueError if the call is such that inputs are to be deleted but command is not run. """ if remove_inputs and not run: raise ValueError("Can't delete files if command isn't run") cmd = "cat {} > {}".format(" ".join(inputs), output) if run: subprocess.check_call(cmd.split(), shell=True) if remove_inputs: cmd = "rm {}".format(" ".join(inputs)) subprocess.check_call(cmd.split(), shell=True) else: return cmd def count_lines(self, file_name): """ Uses the command-line utility wc to count the number of lines in a file. For MacOS, must strip leading whitespace from wc. :param str file_name: name of file whose lines are to be counted """ x = subprocess.check_output("wc -l " + file_name + " | sed -E 's/^[[:space:]]+//' | cut -f1 -d' '", shell=True) return x.decode().strip() def count_lines_zip(self, file_name): """ Uses the command-line utility wc to count the number of lines in a file. For MacOS, must strip leading whitespace from wc. For compressed files. :param file: file_name """ x = subprocess.check_output(self.ziptool + " -d -c " + file_name + " | wc -l | sed -E 's/^[[:space:]]+//' | cut -f1 -d' '", shell=True) return x.decode().strip() def get_chrs_from_bam(self, file_name): """ Uses samtools to grab the chromosomes from the header that are contained in this bam file. """ x = subprocess.check_output(self.tools.samtools + " view -H " + file_name + " | grep '^@SQ' | cut -f2| sed s'/SN://'", shell=True) # Chromosomes will be separated by newlines; split into list to return return x.decode().split() ################################### # Read counting functions ################################### # In these functions, A paired-end read, with 2 sequences, counts as a two reads def count_unique_reads(self, file_name, paired_end): """ Sometimes alignment software puts multiple locations for a single read; if you just count those reads, you will get an inaccurate count. This is _not_ the same as multimapping reads, which may or may not be actually duplicated in the bam file (depending on the alignment software). This function counts each read only once. This accounts for paired end or not for free because pairs have the same read name. In this function, a paired-end read would count as 2 reads. """ if file_name.endswith("sam"): param = "-S" if file_name.endswith("bam"): param = "" if paired_end: r1 = self.samtools_view(file_name, param=param + " -f64", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") r2 = self.samtools_view(file_name, param=param + " -f128", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") else: r1 = self.samtools_view(file_name, param=param + "", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") r2 = 0 return int(r1) + int(r2) def count_unique_mapped_reads(self, file_name, paired_end): """ For a bam or sam file with paired or or single-end reads, returns the number of mapped reads, counting each read only once, even if it appears mapped at multiple locations. :param str file_name: name of reads file :param bool paired_end: True/False paired end data :return int: Number of uniquely mapped reads. """ _, ext = os.path.splitext(file_name) ext = ext.lower() if ext == ".sam": param = "-S -F4" elif ext == "bam": param = "-F4" else: raise ValueError("Not a SAM or BAM: '{}'".format(file_name)) if paired_end: r1 = self.samtools_view(file_name, param=param + " -f64", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") r2 = self.samtools_view(file_name, param=param + " -f128", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") else: r1 = self.samtools_view(file_name, param=param + "", postpend=" | cut -f1 | sort -k1,1 -u | wc -l | sed -E 's/^[[:space:]]+//'") r2 = 0 return int(r1) + int(r2) def count_flag_reads(self, file_name, flag, paired_end): """ Counts the number of reads with the specified flag. :param str file_name: name of reads file :param str flag: sam flag value to be read :param bool paired_end: This parameter is ignored; samtools automatically correctly responds depending on the data in the bamfile. We leave the option here just for consistency, since all the other counting functions require the parameter. This makes it easier to swap counting functions during pipeline development. """ param = " -c -f" + str(flag) if file_name.endswith("sam"): param += " -S" return self.samtools_view(file_name, param=param) def count_multimapping_reads(self, file_name, paired_end): """ Counts the number of reads that mapped to multiple locations. Warning: currently, if the alignment software includes the reads at multiple locations, this function will count those more than once. This function is for software that randomly assigns, but flags reads as multimappers. :param str file_name: name of reads file :param paired_end: This parameter is ignored; samtools automatically correctly responds depending on the data in the bamfile. We leave the option here just for consistency, since all the other counting functions require the parameter. This makes it easier to swap counting functions during pipeline development. """ return int(self.count_flag_reads(file_name, 256, paired_end)) def count_uniquelymapping_reads(self, file_name, paired_end): """ Counts the number of reads that mapped to a unique position. :param str file_name: name of reads file :param bool paired_end: This parameter is ignored. """ param = " -c -F256" if file_name.endswith("sam"): param += " -S" return self.samtools_view(file_name, param=param) def count_fail_reads(self, file_name, paired_end): """ Counts the number of reads that failed platform/vendor quality checks. :param paired_end: This parameter is ignored; samtools automatically correctly responds depending on the data in the bamfile. We leave the option here just for consistency, since all the other counting functions require the parameter. This makes it easier to swap counting functions during pipeline development. """ return int(self.count_flag_reads(file_name, 512, paired_end)) def samtools_view(self, file_name, param, postpend=""): """ Run samtools view, with flexible parameters and post-processing. This is used internally to implement the various count_reads functions. :param str file_name: file_name :param str param: String of parameters to pass to samtools view :param str postpend: String to append to the samtools command; useful to add cut, sort, wc operations to the samtools view output. """ cmd = "{} view {} {} {}".format( self.tools.samtools, param, file_name, postpend) # in python 3, check_output returns a byte string which causes issues. # with python 3.6 we could use argument: "encoding='UTF-8'"" return subprocess.check_output(cmd, shell=True).decode().strip() def count_reads(self, file_name, paired_end): """ Count reads in a file. Paired-end reads count as 2 in this function. For paired-end reads, this function assumes that the reads are split into 2 files, so it divides line count by 2 instead of 4. This will thus give an incorrect result if your paired-end fastq files are in only a single file (you must divide by 2 again). :param str file_name: Name/path of file whose reads are to be counted. :param bool paired_end: Whether the file contains paired-end reads. """ _, ext = os.path.splitext(file_name) if not (is_sam_or_bam(file_name) or is_fastq(file_name)): # TODO: make this an exception and force caller to handle that # rather than relying on knowledge of possibility of negative value. return -1 if is_sam_or_bam(file_name): param_text = "-c" if ext == ".bam" else "-c -S" return self.samtools_view(file_name, param=param_text) else: num_lines = self.count_lines_zip(file_name) \ if is_gzipped_fastq(file_name) \ else self.count_lines(file_name) divisor = 2 if paired_end else 4 return int(num_lines) / divisor def count_concordant(self, aligned_bam): """ Count only reads that "aligned concordantly exactly 1 time." :param str aligned_bam: File for which to count mapped reads. """ cmd = self.tools.samtools + " view " + aligned_bam + " | " cmd += "grep 'YT:Z:CP'" + " | uniq -u | wc -l | sed -E 's/^[[:space:]]+//'" return subprocess.check_output(cmd, shell=True).decode().strip() def count_mapped_reads(self, file_name, paired_end): """ Mapped_reads are not in fastq format, so this one doesn't need to accommodate fastq, and therefore, doesn't require a paired-end parameter because it only uses samtools view. Therefore, it's ok that it has a default parameter, since this is discarded. :param str file_name: File for which to count mapped reads. :param bool paired_end: This parameter is ignored; samtools automatically correctly responds depending on the data in the bamfile. We leave the option here just for consistency, since all the other counting functions require the parameter. This makes it easier to swap counting functions during pipeline development. :return int: Either return code from samtools view command, or -1 to indicate an error state. """ if file_name.endswith("bam"): return self.samtools_view(file_name, param="-c -F4") if file_name.endswith("sam"): return self.samtools_view(file_name, param="-c -F4 -S") return -1 def sam_conversions(self, sam_file, depth=True): """ Convert sam files to bam files, then sort and index them for later use. :param bool depth: also calculate coverage over each position """ cmd = self.tools.samtools + " view -bS " + sam_file + " > " + sam_file.replace(".sam", ".bam") + "\n" cmd += self.tools.samtools + " sort " + sam_file.replace(".sam", ".bam") + " -o " + sam_file.replace(".sam", "_sorted.bam") + "\n" cmd += self.tools.samtools + " index " + sam_file.replace(".sam", "_sorted.bam") + "\n" if depth: cmd += self.tools.samtools + " depth " + sam_file.replace(".sam", "_sorted.bam") + " > " + sam_file.replace(".sam", "_sorted.depth") + "\n" return cmd def bam_conversions(self, bam_file, depth=True): """ Sort and index bam files for later use. :param bool depth: also calculate coverage over each position """ cmd = self.tools.samtools + " view -h " + bam_file + " > " + bam_file.replace(".bam", ".sam") + "\n" cmd += self.tools.samtools + " sort " + bam_file + " -o " + bam_file.replace(".bam", "_sorted.bam") + "\n" cmd += self.tools.samtools + " index " + bam_file.replace(".bam", "_sorted.bam") + "\n" if depth: cmd += self.tools.samtools + " depth " + bam_file.replace(".bam", "_sorted.bam") + " > " + bam_file.replace(".bam", "_sorted.depth") + "\n" return cmd def fastqc(self, file, output_dir): """ Create command to run fastqc on a FASTQ file :param str file: Path to file with sequencing reads :param str output_dir: Path to folder in which to place output :return str: Command with which to run fastqc """ # You can find the fastqc help with fastqc --help try: pm = self.pm except AttributeError: # Do nothing, this is just for path construction. pass else: if not os.path.isabs(output_dir) and pm is not None: output_dir = os.path.join(pm.outfolder, output_dir) self.make_sure_path_exists(output_dir) return "{} --noextract --outdir {} {}".\ format(self.tools.fastqc, output_dir, file) def fastqc_rename(self, input_bam, output_dir, sample_name): """ Create pair of commands to run fastqc and organize files. The first command returned is the one that actually runs fastqc when it's executed; the second moves the output files to the output folder for the sample indicated. :param str input_bam: Path to file for which to run fastqc. :param str output_dir: Path to folder in which fastqc output will be written, and within which the sample's output folder lives. :param str sample_name: Sample name, which determines subfolder within output_dir for the fastqc files. :return list[str]: Pair of commands, to run fastqc and then move the files to their intended destination based on sample name. """ cmds = list() initial = os.path.splitext(os.path.basename(input_bam))[0] cmd1 = self.fastqc(input_bam, output_dir) cmds.append(cmd1) cmd2 = "if [[ ! -s {1}_fastqc.html ]]; then mv {0}_fastqc.html {1}_fastqc.html; mv {0}_fastqc.zip {1}_fastqc.zip; fi".format( os.path.join(output_dir, initial), os.path.join(output_dir, sample_name)) cmds.append(cmd2) return cmds def samtools_index(self, bam_file): """Index a bam file.""" cmd = self.tools.samtools + " index {0}".format(bam_file) return cmd def slurm_header( self, job_name, output, queue="shortq", n_tasks=1, time="10:00:00", cpus_per_task=8, mem_per_cpu=2000, nodes=1, user_mail="", mail_type="end"): cmd = """ #!/bin/bash #SBATCH --partition={0} #SBATCH --ntasks={1} #SBATCH --time={2} #SBATCH --cpus-per-task={3} #SBATCH --mem-per-cpu={4} #SBATCH --nodes={5} #SBATCH --job-name={6} #SBATCH --output={7} #SBATCH --mail-type={8} #SBATCH --mail-user={9} # Start running the job hostname date """.format( queue, n_tasks, time, cpus_per_task, mem_per_cpu, nodes, job_name, output, mail_type, user_mail) return cmd def slurm_footer(self): return " date" def slurm_submit_job(self, job_file): return os.system("sbatch %s" % job_file) def remove_file(self, file_name): return "rm {0}".format(file_name) def move_file(self, old, new): return "mv {0} {1}".format(old, new) def preseq_curve(self, bam_file, output_prefix): return """ preseq c_curve -B -P -o {0}.yield.txt {1} """.format(output_prefix, bam_file) def preseq_extrapolate(self, bam_file, output_prefix): return """ preseq lc_extrap -v -B -P -e 1e+9 -o {0}.future_yield.txt {1} """.format(output_prefix, bam_file) def preseq_coverage(self, bam_file, output_prefix): return """ preseq gc_extrap -o {0}.future_coverage.txt {1} """.format(output_prefix, bam_file) def trimmomatic( self, input_fastq1, output_fastq1, cpus, adapters, log, input_fastq2=None, output_fastq1_unpaired=None, output_fastq2=None, output_fastq2_unpaired=None): PE = False if input_fastq2 is None else True pe = "PE" if PE else "SE" cmd = self.tools.java + " -Xmx" + self.pm.javamem cmd += " -jar " + self.tools.trimmomatic cmd += " {0} -threads {1} -trimlog {2} {3}".format(pe, cpus, log, input_fastq1) if PE: cmd += " {0}".format(input_fastq2) cmd += " {0}".format(output_fastq1) if PE: cmd += " {0} {1} {2}".format(output_fastq1_unpaired, output_fastq2, output_fastq2_unpaired) cmd += " ILLUMINACLIP:{0}:1:40:15:8:true".format(adapters) cmd += " LEADING:3 TRAILING:3" cmd += " SLIDINGWINDOW:4:10" cmd += " MINLEN:36" return cmd def skewer( self, input_fastq1, output_prefix, output_fastq1, log, cpus, adapters, input_fastq2=None, output_fastq2=None): """ Create commands with which to run skewer. :param str input_fastq1: Path to input (read 1) FASTQ file :param str output_prefix: Prefix for output FASTQ file names :param str output_fastq1: Path to (read 1) output FASTQ file :param str log: Path to file to which to write logging information :param int | str cpus: Number of processing cores to allow :param str adapters: Path to file with sequencing adapters :param str input_fastq2: Path to read 2 input FASTQ file :param str output_fastq2: Path to read 2 output FASTQ file :return list[str]: Sequence of commands to run to trim reads with skewer and rename files as desired. """ pe = input_fastq2 is not None mode = "pe" if pe else "any" cmds = list() cmd1 = self.tools.skewer + " --quiet" cmd1 += " -f sanger" cmd1 += " -t {0}".format(cpus) cmd1 += " -m {0}".format(mode) cmd1 += " -x {0}".format(adapters) cmd1 += " -o {0}".format(output_prefix) cmd1 += " {0}".format(input_fastq1) if input_fastq2 is None: cmds.append(cmd1) else: cmd1 += " {0}".format(input_fastq2) cmds.append(cmd1) if input_fastq2 is None: cmd2 = "mv {0} {1}".format(output_prefix + "-trimmed.fastq", output_fastq1) cmds.append(cmd2) else: cmd2 = "mv {0} {1}".format(output_prefix + "-trimmed-pair1.fastq", output_fastq1) cmds.append(cmd2) cmd3 = "mv {0} {1}".format(output_prefix + "-trimmed-pair2.fastq", output_fastq2) cmds.append(cmd3) cmd4 = "mv {0} {1}".format(output_prefix + "-trimmed.log", log) cmds.append(cmd4) return cmds def bowtie2_map(self, input_fastq1, output_bam, log, metrics, genome_index, max_insert, cpus, input_fastq2=None): # Admits 2000bp-long fragments (--maxins option) cmd = self.tools.bowtie2 + " --very-sensitive --no-discordant -p {0}".format(cpus) cmd += " -x {0}".format(genome_index) cmd += " --met-file {0}".format(metrics) if input_fastq2 is None: cmd += " {0} ".format(input_fastq1) else: cmd += " --maxins {0}".format(max_insert) cmd += " -1 {0}".format(input_fastq1) cmd += " -2 {0}".format(input_fastq2) cmd += " 2> {0} | samtools view -S -b - | samtools sort -o {1} -".format(log, output_bam) return cmd def topHat_map(self, input_fastq, output_dir, genome, transcriptome, cpus): # TODO: # Allow paired input cmd = self.tools.tophat + " --GTF {0} --b2-L 15 --library-type fr-unstranded --mate-inner-dist 120".format(transcriptome) cmd += " --max-multihits 100 --no-coverage-search" cmd += " --num-threads {0} --output-dir {1} {2} {3}".format(cpus, output_dir, genome, input_fastq) return cmd def picard_mark_duplicates(self, input_bam, output_bam, metrics_file, temp_dir="."): transient_file = re.sub("\.bam$", "", output_bam) + ".dups.nosort.bam" output_bam = re.sub("\.bam$", "", output_bam) cmd1 = self.tools.java + " -Xmx" + self.pm.javamem cmd1 += " -jar `which MarkDuplicates.jar`" cmd1 += " INPUT={0}".format(input_bam) cmd1 += " OUTPUT={0}".format(transient_file) cmd1 += " METRICS_FILE={0}".format(metrics_file) cmd1 += " VALIDATION_STRINGENCY=LENIENT" cmd1 += " TMP_DIR={0}".format(temp_dir) # Sort bam file with marked duplicates cmd2 = self.tools.samtools + " sort {0} {1}".format(transient_file, output_bam) # Remove transient file cmd3 = "if [[ -s {0} ]]; then rm {0}; fi".format(transient_file) return [cmd1, cmd2, cmd3] def sambamba_remove_duplicates(self, input_bam, output_bam, cpus=16): cmd = self.tools.sambamba + " markdup -t {0} -r {1} {2}".format(cpus, input_bam, output_bam) return cmd def get_mitochondrial_reads(self, bam_file, output, cpus=4): """ """ tmp_bam = bam_file + "tmp_rmMe" cmd1 = self.tools.sambamba + " index -t {0} {1}".format(cpus, bam_file) cmd2 = self.tools.sambamba + " slice {0} chrM | {1} markdup -t 4 /dev/stdin {2} 2> {3}".format(bam_file, self.tools.sambamba, tmp_bam, output) cmd3 = "rm {}".format(tmp_bam) return [cmd1, cmd2, cmd3] def filter_reads(self, input_bam, output_bam, metrics_file, paired=False, cpus=16, Q=30): """ Remove duplicates, filter for >Q, remove multiple mapping reads. For paired-end reads, keep only proper pairs. """ nodups = re.sub("\.bam$", "", output_bam) + ".nodups.nofilter.bam" cmd1 = self.tools.sambamba + " markdup -t {0} -r --compression-level=0 {1} {2} 2> {3}".format(cpus, input_bam, nodups, metrics_file) cmd2 = self.tools.sambamba + ' view -t {0} -f bam --valid'.format(cpus) if paired: cmd2 += ' -F "not (unmapped or mate_is_unmapped) and proper_pair' else: cmd2 += ' -F "not unmapped' cmd2 += ' and not (secondary_alignment or supplementary) and mapping_quality >= {0}"'.format(Q) cmd2 += ' {0} |'.format(nodups) cmd2 += self.tools.sambamba + " sort -t {0} /dev/stdin -o {1}".format(cpus, output_bam) cmd3 = "if [[ -s {0} ]]; then rm {0}; fi".format(nodups) cmd4 = "if [[ -s {0} ]]; then rm {0}; fi".format(nodups + ".bai") return [cmd1, cmd2, cmd3, cmd4] def shift_reads(self, input_bam, genome, output_bam): # output_bam = re.sub("\.bam$", "", output_bam) cmd = self.tools.samtools + " view -h {0} |".format(input_bam) cmd += " shift_reads.py {0} |".format(genome) cmd += " " + self.tools.samtools + " view -S -b - |" cmd += " " + self.tools.samtools + " sort -o {0} -".format(output_bam) return cmd def sort_index_bam(self, input_bam, output_bam): tmp_bam = re.sub("\.bam", ".sorted", input_bam) cmd1 = self.tools.samtools + " sort {0} {1}".format(input_bam, tmp_bam) cmd2 = "mv {0}.bam {1}".format(tmp_bam, output_bam) cmd3 = self.tools.samtools + " index {0}".format(output_bam) return [cmd1, cmd2, cmd3] def index_bam(self, input_bam): cmd = self.tools.samtools + " index {0}".format(input_bam) return cmd def run_spp(self, input_bam, output, plot, cpus): """ Run the SPP read peak analysis tool. :param str input_bam: Path to reads file :param str output: Path to output file :param str plot: Path to plot file :param int cpus: Number of processors to use :return str: Command with which to run SPP """ base = "{} {} -rf -savp".format(self.tools.Rscript, self.tools.spp) cmd = base + " -savp={} -s=0:5:500 -c={} -out={} -p={}".format( plot, input_bam, output, cpus) return cmd def get_fragment_sizes(self, bam_file): try: import pysam import numpy as np except: return frag_sizes = list() bam = pysam.Samfile(bam_file, 'rb') for read in bam: if bam.getrname(read.tid) != "chrM" and read.tlen < 1500: frag_sizes.append(read.tlen) bam.close() return np.array(frag_sizes) def plot_atacseq_insert_sizes(self, bam, plot, output_csv, max_insert=1500, smallest_insert=30): """ Heavy inspiration from here: https://github.com/dbrg77/ATAC/blob/master/ATAC_seq_read_length_curve_fitting.ipynb """ try: import pysam import numpy as np import matplotlib.mlab as mlab from scipy.optimize import curve_fit from scipy.integrate import simps import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt except: print("Necessary Python modules couldn't be loaded.") return try: import seaborn as sns sns.set_style("whitegrid") except: pass def get_fragment_sizes(bam, max_insert=1500): frag_sizes = list() bam = pysam.Samfile(bam, 'rb') for i, read in enumerate(bam): if read.tlen < max_insert: frag_sizes.append(read.tlen) bam.close() return np.array(frag_sizes) def mixture_function(x, *p): """ Mixture function to model four gaussian (nucleosomal) and one exponential (nucleosome-free) distributions. """ m1, s1, w1, m2, s2, w2, m3, s3, w3, m4, s4, w4, q, r = p nfr = expo(x, 2.9e-02, 2.8e-02) nfr[:smallest_insert] = 0 return (mlab.normpdf(x, m1, s1) * w1 + mlab.normpdf(x, m2, s2) * w2 + mlab.normpdf(x, m3, s3) * w3 + mlab.normpdf(x, m4, s4) * w4 + nfr) def expo(x, q, r): """ Exponential function. """ return q * np.exp(-r * x) # get fragment sizes frag_sizes = get_fragment_sizes(bam) # bin numBins = np.linspace(0, max_insert, max_insert + 1) y, scatter_x = np.histogram(frag_sizes, numBins, density=1) # get the mid-point of each bin x = (scatter_x[:-1] + scatter_x[1:]) / 2 # Parameters are empirical, need to check paramGuess = [ 200, 50, 0.7, # gaussians 400, 50, 0.15, 600, 50, 0.1, 800, 55, 0.045, 2.9e-02, 2.8e-02 # exponential ] try: popt3, pcov3 = curve_fit( mixture_function, x[smallest_insert:], y[smallest_insert:], p0=paramGuess, maxfev=100000) except: print("Nucleosomal fit could not be found.") return m1, s1, w1, m2, s2, w2, m3, s3, w3, m4, s4, w4, q, r = popt3 # Plot plt.figure(figsize=(12, 12)) # Plot distribution plt.hist(frag_sizes, numBins, histtype="step", ec="k", normed=1, alpha=0.5) # Plot nucleosomal fits plt.plot(x, mlab.normpdf(x, m1, s1) * w1, 'r-', lw=1.5, label="1st nucleosome") plt.plot(x, mlab.normpdf(x, m2, s2) * w2, 'g-', lw=1.5, label="2nd nucleosome") plt.plot(x, mlab.normpdf(x, m3, s3) * w3, 'b-', lw=1.5, label="3rd nucleosome") plt.plot(x, mlab.normpdf(x, m4, s4) * w4, 'c-', lw=1.5, label="4th nucleosome") # Plot nucleosome-free fit nfr = expo(x, 2.9e-02, 2.8e-02) nfr[:smallest_insert] = 0 plt.plot(x, nfr, 'k-', lw=1.5, label="nucleosome-free") # Plot sum of fits ys = mixture_function(x, *popt3) plt.plot(x, ys, 'k--', lw=3.5, label="fit sum") plt.legend() plt.xlabel("Fragment size (bp)") plt.ylabel("Density") plt.savefig(plot, bbox_inches="tight") # Integrate curves and get areas under curve areas = [ ["fraction", "area under curve", "max density"], ["Nucleosome-free fragments", simps(nfr), max(nfr)], ["1st nucleosome", simps(mlab.normpdf(x, m1, s1) * w1), max(mlab.normpdf(x, m1, s1) * w1)], ["2nd nucleosome", simps(mlab.normpdf(x, m2, s2) * w1), max(mlab.normpdf(x, m2, s2) * w2)], ["3rd nucleosome", simps(mlab.normpdf(x, m3, s3) * w1), max(mlab.normpdf(x, m3, s3) * w3)], ["4th nucleosome", simps(mlab.normpdf(x, m4, s4) * w1), max(mlab.normpdf(x, m4, s4) * w4)] ] try: import csv with open(output_csv, "w") as f: writer = csv.writer(f) writer.writerows(areas) except: pass # TODO: parameterize in terms of normalization factor. def bam_to_bigwig( self, input_bam, output_bigwig, genome_sizes, genome, tagmented=False, normalize=False, norm_factor=1000): """ Convert a BAM file to a bigWig file. :param str input_bam: path to BAM file to convert :param str output_bigwig: path to which to write file in bigwig format :param str genome_sizes: path to file with chromosome size information :param str genome: name of genomic assembly :param bool tagmented: flag related to read-generating protocol :param bool normalize: whether to normalize coverage :param int norm_factor: number of bases to use for normalization :return list[str]: sequence of commands to execute """ # TODO: # addjust fragment length dependent on read size and real fragment size # (right now it asssumes 50bp reads with 180bp fragments) cmds = list() transient_file = os.path.abspath(re.sub("\.bigWig", "", output_bigwig)) cmd1 = self.tools.bedtools + " bamtobed -i {0} |".format(input_bam) if not tagmented: cmd1 += " " + self.tools.bedtools + " slop -i stdin -g {0} -s -l 0 -r 130 |".format(genome_sizes) cmd1 += " fix_bedfile_genome_boundaries.py {0} |".format(genome) cmd1 += " " + self.tools.genomeCoverageBed + " {0}-bg -g {1} -i stdin > {2}.cov".format( "-5 " if tagmented else "", genome_sizes, transient_file ) cmds.append(cmd1) if normalize: cmds.append("""awk 'NR==FNR{{sum+= $4; next}}{{ $4 = ($4 / sum) * {1}; print}}' {0}.cov {0}.cov | sort -k1,1 -k2,2n > {0}.normalized.cov""".format(transient_file, norm_factor)) cmds.append(self.tools.bedGraphToBigWig + " {0}{1}.cov {2} {3}".format(transient_file, ".normalized" if normalize else "", genome_sizes, output_bigwig)) # remove tmp files cmds.append("if [[ -s {0}.cov ]]; then rm {0}.cov; fi".format(transient_file)) if normalize: cmds.append("if [[ -s {0}.normalized.cov ]]; then rm {0}.normalized.cov; fi".format(transient_file)) cmds.append("chmod 755 {0}".format(output_bigwig)) return cmds def add_track_to_hub(self, sample_name, track_url, track_hub, colour, five_prime=""): cmd1 = """echo "track type=bigWig name='{0} {1}' description='{0} {1}'""".format(sample_name, five_prime) cmd1 += """ height=32 visibility=full maxHeightPixels=32:32:25 bigDataUrl={0} color={1}" >> {2}""".format(track_url, colour, track_hub) cmd2 = "chmod 755 {0}".format(track_hub) return [cmd1, cmd2] def link_to_track_hub(self, track_hub_url, file_name, genome): import textwrap db = "org" if genome == "hg19" else "db" # different database call for human genome = "human" if genome == "hg19" else genome # change hg19 to human html = """ <html> <head> <meta http-equiv="refresh" content="0; url=http://genome.ucsc.edu/cgi-bin/hgTracks?""" html += """{db}={genome}&hgt.customText={track_hub_url}" /> </head> </html> """.format(track_hub_url=track_hub_url, genome=genome, db=db) with open(file_name, 'w') as handle: handle.write(textwrap.dedent(html)) def htseq_count(self, input_bam, gtf, output): sam = input_bam.replace("bam", "sam") cmd1 = "samtools view {0} > {1}".format(input_bam, sam) cmd2 = "htseq-count -f sam -t exon -i transcript_id -m union {0} {1} > {2}".format(sam, gtf, output) cmd3 = "rm {0}".format(sam) return [cmd1, cmd2, cmd3] def kallisto(self, input_fastq, output_dir, output_bam, transcriptome_index, cpus, input_fastq2=None, size=180, b=200): cmd1 = self.tools.kallisto + " quant --bias --pseudobam -b {0} -l {1} -i {2} -o {3} -t {4}".format(b, size, transcriptome_index, output_dir, cpus) if input_fastq2 is None: cmd1 += " --single {0}".format(input_fastq) else: cmd1 += " {0} {1}".format(input_fastq, input_fastq2) cmd1 += " | " + self.tools.samtools + " view -Sb - > {0}".format(output_bam) cmd2 = self.tools.kallisto + " h5dump -o {0} {0}/abundance.h5".format(output_dir) return [cmd1, cmd2] def genome_wide_coverage(self, input_bam, genome_windows, output): cmd = self.tools.bedtools + " coverage -counts -abam {0} -b {1} > {2}".format(input_bam, genome_windows, output) return cmd def calc_frip(self, input_bam, input_bed, threads=4): """ Calculate fraction of reads in peaks. A file of with a pool of sequencing reads and a file with peak call regions define the operation that will be performed. Thread count for samtools can be specified as well. :param str input_bam: sequencing reads file :param str input_bed: file with called peak regions :param int threads: number of threads samtools may use :return float: fraction of reads in peaks defined in given peaks file """ cmd = self.simple_frip(input_bam, input_bed, threads) return subprocess.check_output(cmd.split(" "), shell=True).decode().strip() def simple_frip(self, input_bam, input_bed, threads=4): cmd = "{} view".format(self.tools.samtools) cmd += " -@ {} -c -L {}".format(threads, input_bed) cmd += " " + input_bam return cmd def calculate_frip(self, input_bam, input_bed, output, cpus=4): cmd = self.tools.sambamba + " depth region -t {0}".format(cpus) cmd += " -L {0}".format(input_bed) cmd += " {0}".format(input_bam) cmd += " | awk '{{sum+=$5}} END {{print sum}}' > {0}".format(output) return cmd def macs2_call_peaks( self, treatment_bams, output_dir, sample_name, genome, control_bams=None, broad=False, paired=False, pvalue=None, qvalue=None, include_significance=None): """ Use MACS2 to call peaks. :param str | Iterable[str] treatment_bams: Paths to files with data to regard as treatment. :param str output_dir: Path to output folder. :param str sample_name: Name for the sample involved. :param str genome: Name of the genome assembly to use. :param str | Iterable[str] control_bams: Paths to files with data to regard as control :param bool broad: Whether to do broad peak calling. :param bool paired: Whether reads are paired-end :param float | NoneType pvalue: Statistical significance measure to pass as --pvalue to peak calling with MACS :param float | NoneType qvalue: Statistical significance measure to pass as --qvalue to peak calling with MACS :param bool | NoneType include_significance: Whether to pass a statistical significance argument to peak calling with MACS; if omitted, this will be True if the peak calling is broad or if either p-value or q-value is specified; default significance specification is a p-value of 0.001 if a significance is to be specified but no value is provided for p-value or q-value. :return str: Command to run. """ sizes = {"hg38": 2.7e9, "hg19": 2.7e9, "mm10": 1.87e9, "dr7": 1.412e9, "mm9": 1.87e9} # Whether to specify to MACS2 a value for statistical significance # can be either directly indicated, but if not, it's determined by # whether the mark is associated with broad peaks. By default, we # specify a significance value to MACS2 for a mark associated with a # broad peak. if include_significance is None: include_significance = broad cmd = self.tools.macs2 + " callpeak -t {0}".format(treatment_bams if type(treatment_bams) is str else " ".join(treatment_bams)) if control_bams is not None: cmd += " -c {0}".format(control_bams if type(control_bams) is str else " ".join(control_bams)) if paired: cmd += " -f BAMPE " # Additional settings based on whether the marks is associated with # broad peaks if broad: cmd += " --broad --nomodel --extsize 73" else: cmd += " --fix-bimodal --extsize 180 --bw 200" if include_significance: # Allow significance specification via either p- or q-value, # giving preference to q-value if both are provided but falling # back on a default p-value if neither is provided but inclusion # of statistical significance measure is desired. if qvalue is not None: cmd += " --qvalue {}".format(qvalue) else: cmd += " --pvalue {}".format(pvalue or 0.00001) cmd += " -g {0} -n {1} --outdir {2}".format(sizes[genome], sample_name, output_dir) return cmd def macs2_call_peaks_atacseq(self, treatment_bam, output_dir, sample_name, genome): genome_sizes = {"hg38": 2.7e9, "hg19": 2.7e9, "mm10": 1.87e9, "dr7": 1.412e9, "mm9": 1.87e9} cmd = self.tools.macs2 + " callpeak -t {0}".format(treatment_bam) cmd += " --nomodel --extsize 147 -g {0} -n {1} --outdir {2}".format(genome_sizes[genome], sample_name, output_dir) return cmd def macs2_plot_model(self, r_peak_model_file, sample_name, output_dir): # run macs r script cmd1 = "{} {}".format(self.tools.Rscript, r_peak_model_file) # move output plot to sample dir cmd2 = "mv {0}/{1}_model.pdf {2}/{1}_model.pdf".format(os.getcwd(), sample_name, output_dir) return [cmd1, cmd2] def spp_call_peaks( self, treatment_bam, control_bam, treatment_name, control_name, output_dir, broad, cpus, qvalue=None): """ Build command for R script to call peaks with SPP. :param str treatment_bam: Path to file with data for treatment sample. :param str control_bam: Path to file with data for control sample. :param str treatment_name: Name for the treatment sample. :param str control_name: Name for the control sample. :param str output_dir: Path to folder for output. :param str | bool broad: Whether to specify broad peak calling mode. :param int cpus: Number of cores the script may use. :param float qvalue: FDR, as decimal value :return str: Command to run. """ broad = "TRUE" if broad else "FALSE" cmd = self.tools.Rscript + " `which spp_peak_calling.R` {0} {1} {2} {3} {4} {5} {6}".format( treatment_bam, control_bam, treatment_name, control_name, broad, cpus, output_dir ) if qvalue is not None: cmd += " {}".format(qvalue) return cmd def bam_to_bed(self, input_bam, output_bed): cmd = self.tools.bedtools + " bamtobed -i {0} > {1}".format(input_bam, output_bed) return cmd def zinba_call_peaks(self, treatment_bed, control_bed, cpus, tagmented=False): fragmentLength = 80 if tagmented else 180 cmd = self.tools.Rscript + " `which zinba.R` -l {0} -t {1} -c {2}".format(fragmentLength, treatment_bed, control_bed) return cmd def filter_peaks_mappability(self, peaks, alignability, filtered_peaks): cmd = self.tools.bedtools + " intersect -wa -u -f 1" cmd += " -a {0} -b {1} > {2} ".format(peaks, alignability, filtered_peaks) return cmd def homer_find_motifs(self, peak_file, genome, output_dir, size=150, length="8,10,12,14,16", n_motifs=12): cmd = "findMotifsGenome.pl {0} {1} {2}".format(peak_file, genome, output_dir) cmd += " -mask -size {0} -len {1} -S {2}".format(size, length, n_motifs) return cmd def homer_annotate_pPeaks(self, peak_file, genome, motif_file, output_bed): cmd = "annotatePeaks.pl {0} {1} -mask -mscore -m {2} |".format(peak_file, genome, motif_file) cmd += "tail -n +2 | cut -f 1,5,22 > {3}".format(output_bed) return cmd def center_peaks_on_motifs(self, peak_file, genome, window_width, motif_file, output_bed): cmd = "annotatePeaks.pl {0} {1} -size {2} -center {3} |".format(peak_file, genome, window_width, motif_file) cmd += " awk -v OFS='\t' '{print $2, $3, $4, $1, $6, $5}' |" cmd += """ awk -v OFS='\t' -F '\t' '{ gsub("0", "+", $6) ; gsub("1", "-", $6) ; print }' |""" cmd += " fix_bedfile_genome_boundaries.py {0} | sortBed > {1}".format(genome, output_bed) return cmd def get_read_type(self, bam_file, n=10): """ Gets the read type (single, paired) and length of bam file. :param str bam_file: Bam file to determine read attributes. :param int n: Number of lines to read from bam file. :return str, int: tuple of read type and read length """ from collections import Counter try: p = subprocess.Popen([self.tools.samtools, 'view', bam_file], stdout=subprocess.PIPE) # Count paired alignments paired = 0 read_length = Counter() while n > 0: line = p.stdout.next().split("\t") flag = int(line[1]) read_length[len(line[9])] += 1 if 1 & flag: # check decimal flag contains 1 (paired) paired += 1 n -= 1 p.kill() except IOError("Cannot read provided bam file.") as e: raise e # Get most abundant read read_length read_length = sorted(read_length)[-1] # If at least half is paired, return True if paired > (n / 2.): return "PE", read_length else: return "SE", read_length def parse_bowtie_stats(self, stats_file): """ Parses Bowtie2 stats file, returns series with values. :param str stats_file: Bowtie2 output file with alignment statistics. """ import pandas as pd stats = pd.Series(index=["readCount", "unpaired", "unaligned", "unique", "multiple", "alignmentRate"]) try: with open(stats_file) as handle: content = handle.readlines() # list of strings per line except: return stats # total reads try: line = [i for i in range(len(content)) if " reads; of these:" in content[i]][0] stats["readCount"] = re.sub("\D.*", "", content[line]) if 7 > len(content) > 2: line = [i for i in range(len(content)) if "were unpaired; of these:" in content[i]][0] stats["unpaired"] = re.sub("\D", "", re.sub("\(.*", "", content[line])) else: line = [i for i in range(len(content)) if "were paired; of these:" in content[i]][0] stats["unpaired"] = stats["readCount"] - int(re.sub("\D", "", re.sub("\(.*", "", content[line]))) line = [i for i in range(len(content)) if "aligned 0 times" in content[i]][0] stats["unaligned"] = re.sub("\D", "", re.sub("\(.*", "", content[line])) line = [i for i in range(len(content)) if "aligned exactly 1 time" in content[i]][0] stats["unique"] = re.sub("\D", "", re.sub("\(.*", "", content[line])) line = [i for i in range(len(content)) if "aligned >1 times" in content[i]][0] stats["multiple"] = re.sub("\D", "", re.sub("\(.*", "", content[line])) line = [i for i in range(len(content)) if "overall alignment rate" in content[i]][0] stats["alignmentRate"] = re.sub("\%.*", "", content[line]).strip() except IndexError: pass return stats def parse_duplicate_stats(self, stats_file): """ Parses sambamba markdup output, returns series with values. :param str stats_file: sambamba output file with duplicate statistics. """ import pandas as pd series =
pd.Series()
pandas.Series
# Trains a basic random forest on both the fnc and the loadings import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split import pickle from utils import numpy_metric root_path = '/home/nvme/Kaggle/trends-assessment-prediction' loadings = pd.read_csv(f'{root_path}/loading.csv', index_col='Id') fnc = pd.read_csv(f'{root_path}/fnc.csv', index_col='Id') train_scores =
pd.read_csv(f'{root_path}/train_scores.csv', index_col='Id')
pandas.read_csv
import unittest import numpy as np import pandas as pd import chariot.transformer as ct from chariot.language_model_preprocessor import LanguageModelPreprocessor TEXT = """ A chariot is a type of carriage driven by a charioteer, usually using horses[a] to provide rapid motive power. Chariots were used by armies as transport or mobile archery platforms, for hunting or for racing, and as a conveniently fast way to travel for many ancient people. The word "chariot" comes from the Latin term carrus, a loanword from Gaulish. A chariot of war or one used in military parades was called a car. In ancient Rome and some other ancient Mediterranean civilizations, a biga required two horses, a triga three, and a quadriga four. """ class TestLanguageModelPreprocessor(unittest.TestCase): def _make_corpus(self): return
pd.DataFrame.from_dict({"sentence": [TEXT]})
pandas.DataFrame.from_dict
try: from isomut2py import ploidyestimation import pandas as __pd import sqlite3 as __sqlite3 import os as __os import subprocess as __subprocess from scipy import stats as __stats import numpy as __np import time as __time import sys as __sys except ImportError: print('ImportError in isomut2py.compare, comparison of sample ploidies will not work.') def compare_with_bed(bed_dataframe, other_file, minLen): """ Compares the results of ploidy estimation with a bed file defined in other_file. :param bed_dataframe: a pandas.DataFrame of the bedfile of the sample (pandas.DataFrame) :param other_file: The path to the bedfile of the other sample. (str) :param minLen: The minimum length of a region to be considered different from the other_file. (int) :returns: df_joined: A pandas.DataFrame containing region information from both the PloidyEstimation object and the other_file. """ cols = ['chrom', 'chromStart', 'chromEnd', 'ploidy', 'LOH'] df1 = bed_dataframe if other_file.__class__ == str: if not __os.path.isfile(other_file): raise ValueError('Error: file ' + other_file + ' does not exist, bedfile comparison failed.') df2 =
__pd.read_csv(other_file, header=0, names=cols)
pandas.read_csv
from selenium import webdriver from selenium.common.exceptions import NoSuchElementException, WebDriverException from bs4 import BeautifulSoup from sheet import export_to_sheets import pandas as pd import sys import time url = 'https://doph.maps.arcgis.com/apps/opsdashboard/index.html#/f8fb4ccc3d2d42c7ab0590dbb3fc26b8' #url = 'https://covid19.moh.gov.sa/' driver = webdriver.Chrome() driver.get(url) for i in range(0, 20): time.sleep(1) # Waiting for the page to fully load sys.stdout.write('\r{}%'.format(i*10 + 10)) sys.stdout.flush() sys.stdout.write("\n") with open("A.html", "w", encoding='utf-8') as f: f.write(driver.page_source) #soup = BeautifulSoup(driver.page_source, 'html.parser') driver.quit() # Opening saved MOHS dashboard page all_stat = [] with open("A.html", encoding='utf-8') as f: soup = BeautifulSoup(f, "html.parser") feature_list = soup.find_all('nav', class_='feature-list') for feature in feature_list: stat = {} for p in feature.find_all('p'): strong = p.find_all('strong') #print(strong) for strong_tag in strong: all_stat.append(strong_tag.text.strip()) #print(strong_tag.text) ''' s = strong[0].text.split(' ') s[0] = s[0].strip().replace(',', '') stat[s[1].strip('\u200e')] = int(s[0]) ''' #print(all_stat) df =
pd.DataFrame.from_dict(all_stat)
pandas.DataFrame.from_dict
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Reconstruct SKOS Script which analyses and reconstructs a SKOS hierarchy. """ __author__ = "<NAME>" __version__ = "1.0.0" __license__ = "cc0-1.0" import os import csv import pandas as pd import pickle from xml.dom.minidom import parse from datetime import datetime from analyse import * import os.path def main(): start = datetime.now() """ print("Please provide the name of the input file located in the 'data' folder (e.g. example.rdf):") source_file = os.path.abspath('..\data\\') + input() print("Please provide a name for the output files (e.g. example_transformed.rdf) (only 'example' is replaced by the input and placed in the 'out folder')") output_name = input() """ targeted_input_files = ["rma-skos-lib"] input_file = targeted_input_files[0] source_file = os.path.join(os.path.abspath('..\\xslt_mapping\\output'), input_file) + '.rdf' output_name = input_file transformed_file = 'output/{}_transformed.rdf'.format(output_name) issue_file = 'output/{}_differences.csv'.format(output_name) typeless_file = 'output/{}_typeless.csv'.format(output_name) analyse_file = 'output/{}_analyse.xlsx'.format(output_name) dict_file = 'output/{}_dictionary.pkl'.format(output_name) print('{} started analysis'.format(time(start))) dom = parse(source_file) print('{} parsed {}'.format(time(start), source_file)) concepts = list_concepts(dom) print('{} analyzing {} concepts' .format(time(start), len(concepts))) concept_schemes = referenced_concept_schemes(dom) print('{} identified {} concept schemes' .format(time(start), len(concept_schemes))) # Add unknown scheme, for concepts without a type concept_schemes.append('http://hdl.handle.net/10934/RM0001.SCHEME.UNKOWN') schemeless_concepts = list_schemeless_concepts(dom) print('{} {} concepts without a concept scheme' .format(time(start), len(schemeless_concepts))) missing_references = missing_outward_references(dom) missing_references = restructure_missing_references(missing_references) print('{} found {} hierarchical inconsistencies' .format(time(start), len(missing_references))) undefined_concepts = undefined_concept_references(dom) print('{} found {} references to undefined concepts' .format(time(start), len(undefined_concepts))) new_dom = dom.cloneNode(dom) new_dom = add_concept_schemes(new_dom, concept_schemes) print('{} added {} concept schemes to dom' .format(time(start), len(concept_schemes))) new_dom = fix_loose_references(new_dom, missing_references) print('{} added the {} missing references to file{}' .format(time(start), len(missing_references), transformed_file)) new_dom = remove_undefined_references(new_dom, undefined_concepts) print('{} removed the {} undefined references from file {}' .format(time(start), len(undefined_concepts), transformed_file)) topconcepts = find_top_concepts(new_dom) print('{} found {} concepts without broader concepts' .format(time(start), len(topconcepts))) schemes_dict = find_all_schemes(new_dom, 'no') print('{} created a dictionary of schemes' .format(time(start))) new_dom = add_top_concepts(new_dom, topconcepts, schemes_dict) print('{} added topconcept nodes to file {}' .format(time(start), transformed_file)) the_properties = all_properties(new_dom, 'yes') print('{} created property dictionary for each concept' .format(time(start))) write_dom_to_file(new_dom, transformed_file) print('{} wrote new dom to file {}' .format(time(start), transformed_file)) save_schemeless(schemeless_concepts, typeless_file) print('{} wrote concepts without scheme to file {}' .format(time(start), typeless_file)) save_differences(missing_references, undefined_concepts, issue_file) print('{} wrote hierarchical differences to file {}' .format(time(start), issue_file)) write_analyse_file(the_properties, analyse_file) print('{} write analyse results to the file {}' .format(time(start), analyse_file)) output = open(dict_file, 'wb') properties_dict = {} for concept in the_properties: the_id = concept['id'] properties_dict[the_id] = concept pickle.dump(properties_dict, output) output.close() print('{} Saved the properties of each concept to file {}' .format(time(start), dict_file)) def create_output_dir(): if not os.path.exists('output'): os.mkdir('output') def add_concept_schemes(dom, concept_schemes): # Add missing skos:ConceptScheme nodes to the root root = dom.childNodes.item(0) for scheme in concept_schemes: scheme_node = dom.createElement('skos:ConceptScheme') root.appendChild(scheme_node) scheme_node.setAttribute('rdf:about', scheme) concept_node = dom.createElement('dct:title') scheme_node.appendChild(concept_node) concept_node.setAttribute('xml:lang', 'nl') if scheme == 'http://hdl.handle.net/10934/RM0001.SCHEME.UNKOWN': text_node = dom.createTextNode('Scheme Unknown') else: text_node = dom.createTextNode(scheme[42:]) concept_node.appendChild(text_node) return dom def remove_reference(dom, reference): # Remove a reference from a concept c1 = reference[2] c2 = reference[0] if c1 == c2: relation = inverse_property(reference[1]) else: c1 = reference[0] c2 = reference[2] relation = reference[1] c1 = get_concept(dom, c1) if c1 is not None: property_node = get_relation_property(c1, relation, c2) c1.removeChild(property_node) return dom def remove_undefined_references(dom, references): # remove all undefined references for reference in references: dom = remove_reference(dom, reference) return dom def fix_loose_references(dom, references): # A fix of the loose references for reference in references: c1 = reference[0] relation = reference[1] c2 = reference[2] if c1 == c2: dom = remove_reference(dom, reference) else: c1 = get_concept(dom, c1) if c1 is not None: new_node = dom.createElement(relation) c1.appendChild(new_node) new_node.setAttribute('rdf:resource', c2) return dom def add_top_concepts(dom, concepts, schemes): # Add the topconcept nodes to the concepts without broader concepts and to the conceptscheme nodes for concept in concepts: concept_id = concept the_schemes = schemes[concept_id] concept = get_concept(dom, concept) if the_schemes == []: the_schemes.append('http://hdl.handle.net/10934/RM0001.SCHEME.UNKOWN') for scheme in the_schemes: new_node = dom.createElement('skos:topConceptOf') concept.appendChild(new_node) new_node.setAttribute('rdf:resource', scheme) scheme = get_concept_scheme(dom, scheme) extra_node = dom.createElement('skos:hasTopConcept') scheme.appendChild(extra_node) extra_node.setAttribute('rdf:resource', concept_id) return dom def save_schemeless(schemeless_concepts, typeless_file): # Each typeless concept is written to a csv file a_file = open(typeless_file, "w", encoding='utf-8') the_writer = csv.writer(a_file) for schemeless in schemeless_concepts: the_writer.writerow([schemeless]) a_file.close() def save_differences(list1, list2, issue_file): # Each difference is written to a csv file header_list = ['concept 1', 'type of relation', 'concept 2'] a_file = open(issue_file, "w", newline='') writer = csv.writer(a_file) writer.writerow(header_list) for difference in list1: writer.writerow(difference) writer.writerow(['-','-','-']) for difference in list2: writer.writerow(difference) a_file.close() def write_dom_to_file(dom, file): # Write a dom to a XML file xml_file = open(file, "w", encoding='utf-8') xml_file.write(dom.toprettyxml()) xml_file.close() def write_analyse_file(list, file): # Write all analyses to a file #writer = pd.ExcelWriter(file, engine='xlsxwriter') with pd.ExcelWriter(file) as writer: reference_dict, reference_list = reference_analyse(list) df_full = pd.DataFrame.from_dict(list) df_full.to_excel(writer, sheet_name='Full') reference_df = pd.DataFrame(reference_list, index=['Broader', 'Narrower', 'Related']) reference_df.to_excel(writer, sheet_name='Reference1') reference_df2 =
pd.DataFrame(reference_dict, columns=['B-N-R', '#'])
pandas.DataFrame
import os import pickle import uuid import pandas as pd from schools3.ml.base.experiment import Experiment from schools3.data.features.processors.composite_feature_processor import CompositeFeatureProcessor from schools3.data.datasets.dataset import Dataset from schools3.config import main_config from schools3.config import global_config from schools3.config.ml.experiments import models_experiment_config from schools3.ml.metrics.fairness_metrics import FairnessMetrics from schools3.config.data.features.processors import categorical_feature_processor_config as cat_config from schools3.data.features.processors.categorical_feature_processor import CategoricalFeatureProcessor # base abstract class for experiments that train models and report metrics on their predictions class ModelsExperiment(Experiment): def __init__( self, name='ignore', features_list=main_config.features, labels=main_config.labels, models=main_config.models, metrics=main_config.metrics, categorical_fairness_attributes=main_config.fairness_attributes, use_cache=main_config.use_cache ): super(ModelsExperiment, self).__init__(name, features_list, labels) self.models = models self.metrics = metrics self.categorical_fairness_attributes = categorical_fairness_attributes self.get_model_csv_cache = models_experiment_config.get_model_csv_cache self.use_cache = use_cache # evaluates each model and returns all metrics in a Dataframe def get_train_test_metrics(self, train_cohort, test_cohort, compute_train_metrics=True, use_test_for_val=True): df = pd.DataFrame() for model in self.models: feature_proc = model.get_feature_processor train_data, test_data = \ self.get_train_test_data(train_cohort, feature_proc, test_cohort) if test_data.get_dataset().shape[0] < models_experiment_config.min_test_rows: continue cached_model = self.maybe_get_cached_model(model, train_data, test_data) if cached_model is None: model.train(train_data, test_data if use_test_for_val else None) self.maybe_cache_model(model, train_data, test_data) else: model = cached_model train_metrics = pd.DataFrame() if compute_train_metrics: train_scores = model.test(train_data) train_metrics = self.metrics.compute(train_scores) test_scores = model.test(test_data) test_metrics = self.metrics.compute(test_scores) test_metrics = pd.concat([ test_metrics, self.get_fairness_metrics(model, test_data) ], axis=1) cur_df = self.construct_metrics_row(model, train_data, test_data, train_metrics, test_metrics) df = pd.concat([df, cur_df], ignore_index=True) return df # save a given model and update index of cached models def maybe_cache_model(self, model, train_data, test_data): if not (model.cacheable and self.use_cache): return key_cols = list(self.get_id_cols()) cache_df = self.get_cache_df(model) id_row = self.construct_id_row(model, train_data, test_data) key = tuple(id_row.iloc[0]) h = str(uuid.uuid4()) model_file = models_experiment_config.get_hash_pkl_file(model.get_model_name(), h) h_fname = global_config.get_save_path(model_file) with open(h_fname, 'wb') as f: pickle.dump(model, f) id_row['hash'] = h id_row = id_row.set_index(key_cols) if key in cache_df.index: cache_df.loc[key] = id_row.iloc[0] else: cache_df = cache_df.append(id_row) cache_csv_path = global_config.get_save_path(self.get_model_csv_cache(model.get_model_name())) cache_df.to_csv(cache_csv_path) # load a given model if it has been cached def maybe_get_cached_model(self, model, train_data, test_data): if main_config.overwrite_cache or (not self.use_cache): return None id_row = self.construct_id_row(model, train_data, test_data) key = tuple(id_row.iloc[0]) cache_df = self.get_cache_df(model) if key not in cache_df.index: return None h = cache_df.loc[key].hash model_file = models_experiment_config.get_hash_pkl_file(model.get_model_name(), h) h_fname = global_config.get_save_path(model_file) with open(h_fname, 'rb') as f: model = pickle.load(f) return model # read the CSV file that lists all cached models, and return this list as a Dataframe def get_cache_df(self, model): cache_csv_path = global_config.get_save_path(self.get_model_csv_cache(model.get_model_name())) key_cols = list(self.get_id_cols()) return pd.read_csv(cache_csv_path).set_index(key_cols) if os.path.exists(cache_csv_path) else pd.DataFrame() # creates Dataset objects for the given cohorts def get_train_test_data(self, train_cohort, get_processors, test_cohort): train_proc = get_processors() train_data = Dataset(train_cohort, self.features_list, train_proc, self.labels) train_stats = train_data.get_feature_proc_stats() test_proc = get_processors(train_stats) test_data = Dataset(test_cohort, self.features_list, test_proc, self.labels) return train_data, test_data # helper method to construct one row of metrics in the form of a Dataframe def construct_metrics_row( self, model, train_data, test_data, train_metrics, test_metrics ): train_metrics = train_metrics.rename(columns={c: f'train {c}' for c in train_metrics.columns}) test_metrics = test_metrics.rename(columns={c: f'test {c}' for c in test_metrics.columns}) id_row = self.construct_id_row(model, train_data, test_data) df = pd.concat([id_row, train_metrics, test_metrics], axis=1) return df # helper method to get each row's identifier values in a Dataframe def construct_id_row(self, model, train_data, test_data): df = pd.DataFrame() model_col, hps_col, train_cohort_col, test_cohort_col, train_rows, test_rows, num_features = self.get_id_cols() df[model_col] = [model.get_model_name()] df[hps_col] = [model.jsonify_hps()] df[train_cohort_col] = [train_data.cohort.get_identifier()] df[test_cohort_col] = [test_data.cohort.get_identifier()] df[train_rows] = [train_data.get_dataset().shape[0]] df[test_rows] = [test_data.get_dataset().shape[0]] df[num_features] = [len(train_data.get_dataset().columns)] return df # helper method that specifies column names for each row's identifiers def get_id_cols(self): model_col = 'model' hps_col = 'hps' train_cohort_col = 'train_cohort' test_cohort_col = 'test_cohort' train_rows = 'train_rows' test_rows = 'test_rows' num_features = 'num_features' return model_col, hps_col, train_cohort_col, test_cohort_col, train_rows, test_rows, num_features def get_all_fairness_cols(self, dataset): cs = dataset.get_dataset().features.columns ret_cols = {} cat_proc = CategoricalFeatureProcessor() for f in self.categorical_fairness_attributes: ret_cols[f] = list(cat_proc.get_categorical_feature_names(f, cs)) return ret_cols def get_raw_fairness_metrics(self, model, dataset): preds = model.predict_labels(dataset, return_full_df=True) metrics = FairnessMetrics() fairness_dict = {} cols = self.get_all_fairness_cols(dataset) for orig_c in cols: for c in cols[orig_c]: assert c in preds.features.columns, f'fairness attribute {c} is not an input feature' grouped_labels = preds[preds.features[c] == 1].groupby(('features', c))\ [('pred_labels', 'pred_label'), ('labels', 'label')].agg(list) if orig_c not in fairness_dict: fairness_dict[orig_c] = {} fairness_dict[orig_c][c] = metrics.compute( metrics.get_score_df( grouped_labels.loc[1][0], grouped_labels.loc[1][1] ) ).to_dict('list') fairness_dict = \ { (cat, v): fairness_dict[cat][v] for cat in fairness_dict for v in fairness_dict[cat] } for k1 in fairness_dict: for k2 in fairness_dict[k1]: assert len(fairness_dict[k1][k2]) == 1 fairness_dict[k1][k2] = fairness_dict[k1][k2][0] return pd.DataFrame.from_dict(fairness_dict, orient='index') def get_fairness_metrics(self, model, dataset, ref_cols=models_experiment_config.ref_cols): raw_metrics = self.get_raw_fairness_metrics(model, dataset) df = pd.DataFrame() for cat in raw_metrics.index.get_level_values(0).unique(): if cat in ref_cols: if isinstance(ref_cols[cat], tuple): numer = raw_metrics.loc[cat].loc[ref_cols[cat][0]].median() denom = raw_metrics.loc[cat].loc[ref_cols[cat][1]].median() bias = numer / denom cat_metrics = pd.DataFrame.from_dict({cat + ' median ratio': [bias[0]]}) else: rel_metrics = raw_metrics.loc[cat] / raw_metrics.loc[(cat, ref_cols[cat])] d = rel_metrics.to_dict() d = { (k1 + ': ' + f'{k2} / {ref_cols[cat]}'):[d[k1][k2]] for k1 in d for k2 in d[k1] } cat_metrics = pd.DataFrame.from_dict(d) else: std = raw_metrics.loc[cat].std().to_dict() cat_metrics =
pd.DataFrame.from_dict({(f'std {cat} ' + k):[std[k]] for k in std})
pandas.DataFrame.from_dict
# # _umibato.py # # Copyright (c) 2020 <NAME> # # This software is released under the MIT License. # http://opensource.org/licenses/mit-license.php # import os import sys import math import shutil import logging logging.getLogger().setLevel(logging.WARNING) import warnings warnings.filterwarnings('ignore') import subprocess from multiprocessing import Pool from tqdm.autonotebook import tqdm import numpy as np import pandas as pd import seaborn as sns sns.set() import matplotlib.pyplot as plt from ._gpmodule import fit_gp_model, estimate_grad_variance from ._plotmodule import plot_state, plot_directed_network class Umibato(object): def __init__(self, k_min=1, k_max=10, k_step=1, augmentation_size=0, gp_correction=False, x_standardization=True, y_var_lower_bound=1e-4, est_y_var=True, max_iter=100, tol=1e-4, n_init=100, n_jobs=5, output_path='.'): self.K_list = list(range(k_min, k_max+1, k_step)) self.augmentation_size = augmentation_size self.gp_correction = gp_correction self.x_standardization = x_standardization self.y_var_lower_bound = y_var_lower_bound self.est_y_var = est_y_var self.max_iter = max_iter self.tol = tol self.n_init = n_init self.n_jobs = n_jobs if output_path[-1] == '/': self.output_path = output_path[:-1] else: self.output_path = output_path os.makedirs(self.output_path, exist_ok=True) def fit(self, qmps, metadata): self._estimate_growthrates(qmps, metadata) self._estimate_interactions() self._copy_best_results() if self.x_standardization: self._modify_interaction_param() def _estimate_growthrates(self, qmps, metadata): x_list = [] y_list = [] y_var_list = [] timepoint_list = [] metadata_list = [] self.model_srs_list = [] if set(qmps.columns) != set(metadata.index): print('The QMPs column name and the metadata index name must match.') sys.exit(1) self.metadata = metadata pseudo_abundance = 10**(math.floor(np.log10(qmps[qmps!=0].min().min()))) ln_qmps = np.log(qmps.replace(0, pseudo_abundance)) bacteria_list = ln_qmps.index.tolist() # ln_quantitative_abundance_table_with_metadata ln_meta = ln_qmps.T.join(metadata) ln_meta = ln_meta.sort_values(by=['subjectID', 'timepoint']) self.subject_list = metadata['subjectID'].value_counts().index.tolist() print('Fitting Gaussian process regression...') for subject in tqdm(self.subject_list): model_srs, x_s, y_s, y_s_var, this_metadata = \ self._estimate_growthrates_for_each_subject(ln_meta, subject, bacteria_list) self.model_srs_list.append(model_srs) x_list.append(x_s) y_list.append(y_s) y_var_list.append(y_s_var) metadata_list.append(this_metadata) self._output_xy(x_list, y_list, y_var_list, metadata_list, self.y_var_lower_bound) def _estimate_growthrates_for_each_subject(self, ln_meta, subject, bacteria_list): this_ln_meta = ln_meta[ln_meta['subjectID']==subject] this_ln = this_ln_meta[bacteria_list] timepoint = this_ln_meta['timepoint'].astype(float) timepoint.index = timepoint.index.astype(str) if self.augmentation_size > 0: augmented_timepoints = \ np.random.uniform(timepoint.min(), timepoint.max(), size=self.augmentation_size) timepoint = timepoint.append(
pd.Series(augmented_timepoints)
pandas.Series
import os, datetime, pymongo, configparser import pandas as pd from bson import json_util global_config = None global_client = None global_stocklist = None def getConfig(root_path): global global_config if global_config is None: #print("initial Config...") global_config = configparser.ConfigParser() global_config.read(root_path + "/" + "config.ini") return global_config def getClient(): global global_client from pymongo import MongoClient if global_client is None: #print("initial DB Client...") global_client = MongoClient('localhost', 27017) return global_client def getCollection(database, collection): client = getClient() db = client[database] return db[collection] def getStockList(root_path, database, sheet): global global_stocklist if global_stocklist is None: #print("initial Stock List...") global_stocklist = queryStockList(root_path, database, sheet) return global_stocklist def setStockList(df): global global_stocklist df.set_index('symbol', inplace=True) global_stocklist = df return global_stocklist def readFromCollection(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find(queryString) df = pd.DataFrame(list(result)) if df.empty == False: del df['_id'] return df def writeToCollection(collection, df, id = None): jsonStrings = df.to_json(orient='records') bsonStrings = json_util.loads(jsonStrings) for string in bsonStrings: if id is not None: id_string = ''.join([string[item] for item in id]) string['_id'] = id_string collection.save(string) def readFromCollectionExtend(collection, queryString=None): if queryString is None: result = collection.find() else: result = collection.find_one(queryString) if result is None: return pd.DataFrame(), {} return pd.read_json(result['data'], orient='records'), result['metadata'] def writeToCollectionExtend(collection, symbol, df, metadata=None): jsonStrings = {"_id":symbol, "symbol":symbol, "data":df.to_json(orient='records'), "metadata":metadata} #bsonStrings = json_util.loads(jsonStrings) collection.save(jsonStrings) def writeToCSV(csv_dir, CollectionKey, df): if os.path.exists(csv_dir) == False: os.makedirs(csv_dir) filename = csv_dir + CollectionKey + '.csv' df.to_csv(filename) def queryStockList(root_path, database, sheet): CollectionKey = sheet + "_LIST" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = readFromCollection(collection) if df.empty == False: df = setStockList(df) return df if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename): df = pd.read_csv(filename, index_col=0) if df.empty == False: df = setStockList(df) return df return pd.DataFrame() except Exception as e: print("queryStockList Exception", e) return pd.DataFrame() return pd.DataFrame() def storeStockList(root_path, database, sheet, df, symbol = None): CollectionKey = sheet + "_LIST" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) if symbol is not None: df = df[df.index == symbol].reset_index() writeToCollection(collection, df, ['symbol']) # try: # index_info = collection.index_information() # print("index info", index_info) # except Exception as e: # print(e) # writeToCollection(collection, df) # #collection.create_index('symbol', unique=True, drop_dups=True) # else: # writeToCollection(collection, df) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') writeToCSV(csv_dir, CollectionKey, df) except Exception as e: print("storeStockList Exception", e) def queryStockPublishDay(root_path, database, sheet, symbol): CollectionKey = sheet + "_IPO" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = readFromCollection(collection) if df.empty == False: publishDay = df[df['symbol'] == symbol] if len(publishDay) == 1: return publishDay['date'].values[0] return '' if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename) == False: return '' df = pd.read_csv(filename, index_col=["index"]) if df.empty == False: publishDay = df[df['symbol'] == symbol] if len(publishDay) == 1: return publishDay['date'].values[0] return '' except Exception as e: print("queryStockPublishDay Exception", e) return '' return '' def storePublishDay(root_path, database, sheet, symbol, date): CollectionKey = sheet + "_IPO" config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = pd.DataFrame(columns = ['symbol', 'date']) df.index.name = 'index' df.loc[len(df)] = [symbol, date] writeToCollection(collection, df) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) + config.get('Paths', 'CSV_SHARE') filename = csv_dir + CollectionKey + '.csv' if os.path.exists(filename): df = pd.read_csv(filename, index_col=["index"]) publishDate = df[df['symbol'] == symbol] if publishDate.empty: df.loc[len(df)] = [symbol, date] else: df = pd.DataFrame(columns = ['symbol', 'date']) df.index.name = 'index' df.loc[len(df)] = [symbol, date] writeToCSV(csv_dir, CollectionKey, df) except Exception as e: print("storePublishDay Exception", e) def queryStock(root_path, database, sheet_1, sheet_2, symbol, update_key): CollectionKey = sheet_1 + sheet_2 + '_DATA' config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) stockList = getStockList(root_path, database, sheet_1) lastUpdateTime = pd.Timestamp(stockList.loc[symbol][update_key]) try: if storeType == 1: collection = getCollection(database, CollectionKey) queryString = { "symbol" : symbol } df, metadata = readFromCollectionExtend(collection, queryString) if df.empty: return pd.DataFrame(), lastUpdateTime df.set_index('date', inplace=True) if 'index' in df: del df['index'] return df, lastUpdateTime if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) filename = csv_dir + symbol + '.csv' if os.path.exists(filename) == False: return pd.DataFrame(), lastUpdateTime df = pd.read_csv(filename, index_col=["date"]) return df, lastUpdateTime except Exception as e: print("queryStock Exception", e) return pd.DataFrame(), lastUpdateTime return pd.DataFrame(), lastUpdateTime def storeStock(root_path, database, sheet_1, sheet_2, symbol, df, update_key): CollectionKey = sheet_1 + sheet_2 + '_DATA' config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) now_date = datetime.datetime.now().strftime("%Y-%m-%d") stockList = getStockList(root_path, database, sheet_1) if (stockList[stockList.index == symbol][update_key][0] != now_date): stockList.set_value(symbol, update_key, now_date) storeStockList(root_path, database, sheet_1, stockList, symbol) # df.set_index('date') # df.index = df.index.astype(str) # df.sort_index(ascending=True, inplace=True) try: if storeType == 1: collection = getCollection(database, CollectionKey) df = df.reset_index() if 'date' in df: df.date = df.date.astype(str) writeToCollectionExtend(collection, symbol, df, {}) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database)+ config.get('Paths', sheet) writeToCSV(csv_dir, symbol, df) except Exception as e: print("storeStock Exception", e) def queryNews(root_path, database, sheet, symbol): config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) lastUpdateTime = pd.Timestamp(getStockList(root_path, database, 'SHEET_US_DAILY').loc[symbol]['news_update']) try: if storeType == 1: collection = getCollection(database, sheet) queryString = { "symbol" : symbol } df = readFromCollection(collection, queryString) if df.empty: return pd.DataFrame(), lastUpdateTime #df.set_index('date', inplace=True) return df, lastUpdateTime if storeType == 2: dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) filename = dir + symbol + '.csv' if os.path.exists(filename) == False: return pd.DataFrame(), lastUpdateTime df = pd.read_csv(filename) return df, lastUpdateTime except Exception as e: print("queryNews Exception", e) return pd.DataFrame(), lastUpdateTime return pd.DataFrame(), lastUpdateTime def storeNews(root_path, database, sheet, symbol, df): config = getConfig(root_path) storeType = int(global_config.get('Setting', 'StoreType')) now_date = datetime.datetime.now().strftime("%Y-%m-%d") now_date = datetime.datetime.now().strftime("%Y-%m-%d") stockList = getStockList(root_path, database, 'SHEET_US_DAILY') stockList.set_value(symbol, 'news_update', now_date) storeStockList(root_path, database, "SHEET_US_DAILY", stockList.reset_index()) df = df.drop_duplicates(subset=['uri'], keep='first') #df.set_index(['date'], inplace=True) #df.sort_index(ascending=True, inplace=True) try: if storeType == 1: collection = getCollection(database, sheet) #df = df.reset_index() df['symbol'] = symbol writeToCollection(collection, df, ['symbol', 'uri']) if storeType == 2: csv_dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) writeToCSV(csv_dir, symbol, df) except Exception as e: print("storeNews Exception", e) def queryEarnings(root_path, database, sheet, date): config = getConfig(root_path) storeType = int(config.get('Setting', 'StoreType')) try: if storeType == 1: collection = getCollection(database, sheet) queryString = { "symbol" : date } df, metadata = readFromCollectionExtend(collection, queryString) return df if storeType == 2: dir = root_path + "/" + config.get('Paths', database) + config.get('Paths', sheet) filename = dir + date + ".csv" if os.path.exists(filename): return pd.read_csv(filename) return pd.DataFrame() except Exception as e: print("queryEarnings Exception", e) return pd.DataFrame() return
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python import os import csv import sys import time import glob import logging import warnings import argparse import traceback import multiprocessing import Bio import numpy as np import pandas as pd from tqdm import tqdm from Bio import SeqIO import concurrent.futures from concurrent import futures from inStrain import SNVprofile from collections import defaultdict with warnings.catch_warnings(): warnings.simplefilter("ignore") from Bio.codonalign.codonalphabet import default_codon_table import inStrain.SNVprofile import inStrain.controller #import inStrain.profileUtilities import inStrain.logUtils class Controller(): ''' The command line access point to the program ''' def main(self, args): ''' The main method when run on the command line ''' # Parse arguments args = self.validate_input(args) vargs = vars(args) IS = vargs.pop('IS') GF = vargs.pop('gene_file') # Read the genes file logging.debug('Loading genes') scaff_2_gene_database, scaff2gene2sequence = parse_genes(GF, **vargs) GdbP = pd.concat([x for x in scaff_2_gene_database.values()]) # Calculate all your parallelized gene-level stuff name2result = calculate_gene_metrics(IS, GdbP, scaff2gene2sequence, **vargs) # Store information IS.store('genes_fileloc', GF, 'value', 'Location of genes file that was used to call genes') IS.store('genes_table', GdbP, 'pandas', 'Location of genes in the associated genes_file') IS.store('genes_coverage', name2result['coverage'], 'pandas', 'Coverage of individual genes') IS.store('genes_clonality', name2result['clonality'], 'pandas', 'Clonality of individual genes') IS.store('genes_SNP_count', name2result['SNP_density'], 'pandas', 'SNP density and counts of individual genes') IS.store('SNP_mutation_types', name2result['SNP_mutation_types'], 'pandas', 'The mutation types of SNPs') if vargs.get('store_everything', False): IS.store('scaff2gene2sequence', scaff2gene2sequence, 'pickle', 'Dicitonary of scaff -> gene -> nucleotide sequence') # Store the output IS.generate('gene_info', **vargs) IS.generate("SNVs", **vargs) def validate_input(self, args): ''' Validate and mess with the arguments a bit ''' # Make sure the IS object is OK and load it assert os.path.exists(args.IS) args.IS = inStrain.SNVprofile.SNVprofile(args.IS) # Set up the logger log_loc = args.IS.get_location('log') + 'log.log' inStrain.controller.setup_logger(log_loc) return args def gene_profile_worker(gene_cmd_queue, gene_result_queue, single_thread=False): ''' Worker to profile splits ''' while True: # Get command if not single_thread: cmds = gene_cmd_queue.get(True) else: try: cmds = gene_cmd_queue.get(timeout=5) except: return # Process cmd GPs = profile_genes_wrapper(cmds) gene_result_queue.put(GPs) def profile_genes_wrapper(cmds): ''' Take a group of commands and run geneprofile ''' results = [] for cmd in cmds: try: results.append(profile_genes(cmd.scaffold, **cmd.arguments)) except Exception as e: print(e) traceback.print_exc() logging.error("FAILURE GeneException {0}".format(str(cmd.scaffold))) results.append(None) return results def calculate_gene_metrics(IS, GdbP, scaff2gene2sequenceP, **kwargs): ''' Calculate the metrics of all genes on a parallelized scaffold-level basis IS = Initialized inStrain.SNVprofile GdbP = List of gene locations gene2sequenceP = Dicitonary of gene -> nucleotide sequence ''' inStrain.logUtils.log_checkpoint("GeneProfile", "calculate_gene_metrics", "start") # Get key word arguments for the wrapper p = int(kwargs.get('processes', 6)) # Make a list of scaffolds to profile the genes of scaffolds_with_genes = set(GdbP['scaffold'].unique()) scaffolds_in_IS = set(IS._get_covt_keys()) scaffolds_to_profile = scaffolds_with_genes.intersection(scaffolds_in_IS) logging.info("{0} scaffolds with genes in the input; {1} scaffolds in the IS, {2} to compare".format( len(scaffolds_with_genes), len(scaffolds_in_IS), len(scaffolds_to_profile))) # Calculate scaffold -> number of genes to profile s2g = GdbP['scaffold'].value_counts().to_dict() kwargs['s2g'] = s2g # Make global objects for the profiling inStrain.logUtils.log_checkpoint("GeneProfile", "make_globals", "start") global CumulativeSNVtable CumulativeSNVtable = IS.get('cumulative_snv_table') if len(CumulativeSNVtable) > 0: CumulativeSNVtable = CumulativeSNVtable.sort_values('mm') else: CumulativeSNVtable = pd.DataFrame(columns=['scaffold']) global covTs covTs = IS.get('covT', scaffolds=scaffolds_to_profile) global clonTs clonTs = IS.get('clonT', scaffolds=scaffolds_to_profile) global scaff2gene2sequence scaff2gene2sequence = scaff2gene2sequenceP global Gdb Gdb = GdbP inStrain.logUtils.log_checkpoint("GeneProfile", "make_globals", "end") # Generate commands and queue them logging.debug('Creating commands') cmd_groups = [x for x in iterate_commands(scaffolds_to_profile, Gdb, kwargs)] logging.debug('There are {0} cmd groups'.format(len(cmd_groups))) inStrain.logUtils.log_checkpoint("GeneProfile", "create_queue", "start") gene_cmd_queue = multiprocessing.Queue() gene_result_queue = multiprocessing.Queue() GeneProfiles = [] for cmd_group in cmd_groups: gene_cmd_queue.put(cmd_group) inStrain.logUtils.log_checkpoint("GeneProfile", "create_queue", "end") if p > 1: logging.debug('Establishing processes') processes = [] for i in range(0, p): processes.append(multiprocessing.Process(target=gene_profile_worker, args=(gene_cmd_queue, gene_result_queue))) for proc in processes: proc.start() # Set up progress bar pbar = tqdm(desc='Profiling genes: ', total=len(cmd_groups)) # Get the results recieved_profiles = 0 while recieved_profiles < len(cmd_groups): GPs = gene_result_queue.get() recieved_profiles += 1 pbar.update(1) for GP in GPs: if GP is not None: logging.debug(GP[4]) GeneProfiles.append(GP) # Close multi-processing for proc in processes: proc.terminate() # Close progress bar pbar.close() else: gene_profile_worker(gene_cmd_queue, gene_result_queue, single_thread=True) logging.info("Done profiling genes") # Get the genes recieved_profiles = 0 while recieved_profiles < len(cmd_groups): logging.debug('going to grab at {0}'.format(recieved_profiles)) GPs = gene_result_queue.get(timeout=5) logging.debug('did a grab at {0}'.format(recieved_profiles)) recieved_profiles += 1 for GP in GPs: if GP is not None: logging.debug(GP[4]) GeneProfiles.append(GP) inStrain.logUtils.log_checkpoint("GeneProfile", "return_results", "start") name2result = {} for i, name in enumerate(['coverage', 'clonality', 'SNP_density', 'SNP_mutation_types']): name2result[name] = pd.concat([G[i] for G in GeneProfiles]) inStrain.logUtils.log_checkpoint("GeneProfile", "return_results", "end") inStrain.logUtils.log_checkpoint("GeneProfile", "calculate_gene_metrics", "end") return name2result def profile_genes(scaffold, **kwargs): ''' This is the money that gets multiprocessed Relies on having a global "Gdb", "gene2sequence", "CumulativeSNVtable", "covTs", and "clonTs" * Calculate the clonality, coverage, linkage, and SNV_density for each gene * Determine whether each SNP is synynomous or nonsynonymous ''' # Log pid = os.getpid() log_message = "\nSpecialPoint_genes {0} PID {1} whole start {2}".format(scaffold, pid, time.time()) # For testing purposes if ((scaffold == 'FailureScaffoldHeaderTesting')): assert False # Get the list of genes for this scaffold gdb = Gdb[Gdb['scaffold'] == scaffold] # Calculate gene-level coverage log_message += "\nSpecialPoint_genes {0} PID {1} coverage start {2}".format(scaffold, pid, time.time()) if scaffold not in covTs: logging.info("{0} isnt in covT!".format(scaffold)) cdb = pd.DataFrame() else: covT = covTs[scaffold] cdb = calc_gene_coverage(gdb, covT) del covT log_message += "\nSpecialPoint_genes {0} PID {1} coverage end {2}".format(scaffold, pid, time.time()) # Calculate gene-level clonality log_message += "\nSpecialPoint_genes {0} PID {1} clonality start {2}".format(scaffold, pid, time.time()) if scaffold not in clonTs: logging.info("{0} isnt in clovT!".format(scaffold)) cldb = pd.DataFrame() else: clonT = clonTs[scaffold] cldb = calc_gene_clonality(gdb, clonT) del clonT log_message += "\nSpecialPoint_genes {0} PID {1} clonality end {2}".format(scaffold, pid, time.time()) # Determine whether SNPs are synonmous or non-synonmous log_message += "\nSpecialPoint_genes {0} PID {1} SNP_character start {2}".format(scaffold, pid, time.time()) Ldb = CumulativeSNVtable[CumulativeSNVtable['scaffold'] == scaffold] if len(Ldb) == 0: sdb = pd.DataFrame() else: sdb = Characterize_SNPs_wrapper(Ldb, gdb, scaff2gene2sequence[scaffold]) log_message += "\nSpecialPoint_genes {0} PID {1} SNP_character end {2}".format(scaffold, pid, time.time()) # Calculate gene-level SNP counts log_message += "\nSpecialPoint_genes {0} PID {1} SNP_counts start {2}".format(scaffold, pid, time.time()) if len(Ldb) == 0: ldb =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # encoding: utf-8 # # Copyright SAS Institute # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This test requires a running CAS server. You must use an ~/.authinfo # file to specify your username and password. The CAS host and port must # be specified using the CASHOST and CASPORT environment variables. # A specific protocol ('cas', 'http', 'https', or 'auto') can be set using # the CASPROTOCOL environment variable. import copy import datetime import numpy as np import pandas as pd import os import six import swat import swat.utils.testing as tm import sys import time import unittest from swat.cas.datamsghandlers import * # Pick sort keys that will match across SAS and Pandas sorting orders SORT_KEYS = ['Origin', 'MSRP', 'Horsepower', 'Model'] USER, PASSWD = tm.get_user_pass() HOST, PORT, PROTOCOL = tm.get_host_port_proto() class TestDataMsgHandlers(tm.TestCase): # Create a class attribute to hold the cas host type server_type = None def setUp(self): swat.reset_option() swat.options.cas.print_messages = False swat.options.interactive_mode = False swat.options.cas.missing.int64 = -999999 self.s = swat.CAS(HOST, PORT, USER, PASSWD, protocol=PROTOCOL) if self.s._protocol in ['http', 'https']: tm.TestCase.skipTest(self, 'REST does not support data messages') if type(self).server_type is None: # Set once per class and have every test use it. No need to change between tests. type(self).server_type = tm.get_cas_host_type(self.s) self.srcLib = tm.get_casout_lib(self.server_type) r = tm.load_data(self.s, 'datasources/cars_single.sashdat', self.server_type) self.tablename = r['tableName'] self.assertNotEqual(self.tablename, None) self.table = r['casTable'] def tearDown(self): # tear down tests try: self.s.endsession() except swat.SWATError: pass del self.s swat.reset_option() def test_csv(self): import swat.tests as st myFile = os.path.join(os.path.dirname(st.__file__), 'datasources', 'cars.csv') cars = pd.io.parsers.read_csv(myFile) dmh = swat.datamsghandlers.CSV(myFile, nrecs=20) # Use the default caslib. Get it from the results, and use it in later actions. out = self.s.addtable(table='cars', **dmh.args.addtable) srcLib = out['caslib'] out = self.s.tableinfo(caslib=srcLib, table='cars') data = out['TableInfo'] self.assertEqual(data.ix[:,'Name'][0], 'CARS') self.assertEqual(data.ix[:,'Rows'][0], 428) self.assertEqual(data.ix[:,'Columns'][0], 15) out = self.s.columninfo(table=self.s.CASTable('cars', caslib=srcLib)) data = out['ColumnInfo'] self.assertEqual(len(data), 15) self.assertEqual(data.ix[:,'Column'].tolist(), 'Make,Model,Type,Origin,DriveTrain,MSRP,Invoice,EngineSize,Cylinders,Horsepower,MPG_City,MPG_Highway,Weight,Wheelbase,Length'.split(',')) self.assertEqual(data.ix[:,'Type'].tolist(), ['varchar', 'varchar', 'varchar', 'varchar', 'varchar', 'int64', 'int64', 'double', 'int64', 'int64', 'int64', 'int64', 'int64', 'int64', 'int64']) self.assertTablesEqual(cars, self.s.CASTable('cars', caslib=srcLib), sortby=SORT_KEYS) self.s.droptable(caslib=srcLib, table='cars') def test_dataframe(self): # Boolean s_bool_ = pd.Series([True, False], dtype=np.bool_) s_bool8 = pd.Series([True, False], dtype=np.bool8) # Integers s_byte = pd.Series([100, 999], dtype=np.byte) s_short = pd.Series([100, 999], dtype=np.short) s_intc = pd.Series([100, 999], dtype=np.intc) s_int_ =
pd.Series([100, 999], dtype=np.int_)
pandas.Series
"""optimize over a network structure.""" import argparse import logging import os import copy import matplotlib.pyplot as plt import numpy as np import open3d as o3d import pandas as pd import torch from torch.utils.data import DataLoader from tqdm import tqdm from model import Neural_Prior import config from data import (ArgoverseSceneFlowDataset, KITTISceneFlowDataset, NuScenesSceneFlowDataset, FlyingThings3D) from utils import scene_flow_metrics, Timers, GeneratorWrap, EarlyStopping from loss import my_chamfer_fn from visualize import show_flows, flow_to_rgb, custom_draw_geometry_with_key_callback device = torch.device("cuda:0") def solver( pc1: torch.Tensor, pc2: torch.Tensor, flow: torch.Tensor, options: argparse.Namespace, net: torch.nn.Module, i: int, ): for param in net.parameters(): param.requires_grad = True if options.backward_flow: net_inv = copy.deepcopy(net) params = [{'params': net.parameters(), 'lr': options.lr, 'weight_decay': options.weight_decay}, {'params': net_inv.parameters(), 'lr': options.lr, 'weight_decay': options.weight_decay}] else: params = net.parameters() if options.optimizer == "sgd": print('using SGD.') optimizer = torch.optim.SGD(params, lr=options.lr, momentum=options.momentum, weight_decay=options.weight_decay) elif options.optimizer == "adam": print("Using Adam optimizer.") optimizer = torch.optim.Adam(params, lr=options.lr, weight_decay=0) total_losses = [] chamfer_losses = [] early_stopping = EarlyStopping(patience=options.early_patience, min_delta=0.0001) if options.time: timers = Timers() timers.tic("solver_timer") pc1 = pc1.cuda().contiguous() pc2 = pc2.cuda().contiguous() flow = flow.cuda().contiguous() normal1 = None normal2 = None # ANCHOR: initialize best metrics best_loss_1 = 10. best_flow_1 = None best_epe3d_1 = 1. best_acc3d_strict_1 = 0. best_acc3d_relax_1 = 0. best_angle_error_1 = 1. best_outliers_1 = 1. best_epoch = 0 for epoch in range(options.iters): optimizer.zero_grad() flow_pred_1 = net(pc1) pc1_deformed = pc1 + flow_pred_1 loss_chamfer_1, _ = my_chamfer_fn(pc2, pc1_deformed, normal2, normal1) if options.backward_flow: flow_pred_1_prime = net_inv(pc1_deformed) pc1_prime_deformed = pc1_deformed - flow_pred_1_prime loss_chamfer_1_prime, _ = my_chamfer_fn(pc1_prime_deformed, pc1, normal2, normal1) if options.backward_flow: loss_chamfer = loss_chamfer_1 + loss_chamfer_1_prime else: loss_chamfer = loss_chamfer_1 loss = loss_chamfer flow_pred_1_final = pc1_deformed - pc1 if options.compute_metrics: EPE3D_1, acc3d_strict_1, acc3d_relax_1, outlier_1, angle_error_1 = scene_flow_metrics(flow_pred_1_final, flow) else: EPE3D_1, acc3d_strict_1, acc3d_relax_1, outlier_1, angle_error_1 = 0, 0, 0, 0, 0 # ANCHOR: get best metrics if loss <= best_loss_1: best_loss_1 = loss.item() best_epe3d_1 = EPE3D_1 best_flow_1 = flow_pred_1_final best_epe3d_1 = EPE3D_1 best_acc3d_strict_1 = acc3d_strict_1 best_acc3d_relax_1 = acc3d_relax_1 best_angle_error_1 = angle_error_1 best_outliers_1 = outlier_1 best_epoch = epoch if epoch % 50 == 0: logging.info(f"[Sample: {i}]" f"[Ep: {epoch}] [Loss: {loss:.5f}] " f" Metrics: flow 1 --> flow 2" f" [EPE: {EPE3D_1:.3f}] [Acc strict: {acc3d_strict_1 * 100:.3f}%]" f" [Acc relax: {acc3d_relax_1 * 100:.3f}%] [Angle error (rad): {angle_error_1:.3f}]" f" [Outl.: {outlier_1 * 100:.3f}%]") total_losses.append(loss.item()) chamfer_losses.append(loss_chamfer) if options.animation: yield flow_pred_1_final.detach().cpu().numpy() if early_stopping.step(loss): break loss.backward() optimizer.step() if options.time: timers.toc("solver_timer") time_avg = timers.get_avg("solver_timer") logging.info(timers.print()) # ANCHOR: get the best metrics info_dict = { 'loss': best_loss_1, 'EPE3D_1': best_epe3d_1, 'acc3d_strict_1': best_acc3d_strict_1, 'acc3d_relax_1': best_acc3d_relax_1, 'angle_error_1': best_angle_error_1, 'outlier_1': best_outliers_1, 'time': time_avg, 'epoch': best_epoch } # NOTE: visualization if options.visualize: fig = plt.figure(figsize=(13, 5)) ax = fig.gca() ax.plot(total_losses, label="loss") ax.legend(fontsize="14") ax.set_xlabel("Iteration", fontsize="14") ax.set_ylabel("Loss", fontsize="14") ax.set_title("Loss vs iterations", fontsize="14") plt.show() idx = 0 show_flows(pc1[idx], pc2[idx], best_flow_1[idx]) # ANCHOR: new plot style pc1_o3d = o3d.geometry.PointCloud() colors_flow = flow_to_rgb(flow[0].cpu().numpy().copy()) pc1_o3d.points = o3d.utility.Vector3dVector(pc1[0].cpu().numpy().copy()) pc1_o3d.colors = o3d.utility.Vector3dVector(colors_flow / 255.0) custom_draw_geometry_with_key_callback([pc1_o3d]) # Press 'k' to see with dark background. return info_dict def optimize_neural_prior(options, data_loader): if options.time: timers = Timers() timers.tic("total_time") save_dir_path = f"checkpoints/{options.exp_name}" outputs = [] if options.model == 'neural_prior': net = Neural_Prior(filter_size=options.hidden_units, act_fn=options.act_fn).cuda() else: raise Exception("Model not available.") for i, data in tqdm(enumerate(data_loader), total=len(data_loader), smoothing=0.9): logging.info(f"# Working on sample: {data_loader.dataset.datapath[i]}...") pc1, pc2, flow = data if options.visualize: idx = 0 # NOTE: ground truth flow show_flows(pc1[idx], pc2[idx], flow[idx]) solver_generator = GeneratorWrap(solver(pc1, pc2, flow, options, net, i)) if options.animation: #TODO: save frames to make video. info_dict = solver_generator.value else: for _ in solver_generator: pass info_dict = solver_generator.value # Collect results. info_dict['filepath'] = data_loader.dataset.datapath[i] outputs.append(info_dict) print(info_dict) if options.time: timers.toc("total_time") time_avg = timers.get_avg("total_time") logging.info(timers.print()) df =
pd.DataFrame(outputs)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e s2 = raw2.iloc[:, 0] # test freq not None series2 = from_pandas_series(s2, chunk_size=5) for periods in (2, -2): for fill_value in (None, 0, 1.): r = series2.shift(periods=periods, freq='D', fill_value=fill_value) try: result = r.execute().fetch() expected = s2.shift(periods=periods, freq='D', fill_value=fill_value) pd.testing.assert_series_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, fill_value: {fill_value}') from e def test_diff_execution(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) raw1 = raw.copy() raw1['col4'] = raw1['col4'] < 400 r = from_pandas_df(raw1, chunk_size=(10, 5)).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw1, chunk_size=5).diff(-1) pd.testing.assert_frame_equal(r.execute().fetch(), raw1.diff(-1)) r = from_pandas_df(raw, chunk_size=(5, 8)).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1)) r = from_pandas_df(raw, chunk_size=5).diff(1, axis=1) pd.testing.assert_frame_equal(r.execute().fetch(), raw.diff(1, axis=1), check_dtype=False) # test series s = raw.iloc[:, 0] s1 = s.copy() < 400 r = from_pandas_series(s, chunk_size=10).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s, chunk_size=5).diff(-1) pd.testing.assert_series_equal(r.execute().fetch(), s.diff(-1)) r = from_pandas_series(s1, chunk_size=5).diff(1) pd.testing.assert_series_equal(r.execute().fetch(), s1.diff(1)) def test_value_counts_execution(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100), name='s') s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s, chunk_size=100) r = series.value_counts() pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) # test multi chunks series = from_pandas_series(s, chunk_size=30) r = series.value_counts(method='tree') pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts()) r = series.value_counts(method='tree', normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(normalize=True)) # test bins and normalize r = series.value_counts(method='tree', bins=5, normalize=True) pd.testing.assert_series_equal(r.execute().fetch(), s.value_counts(bins=5, normalize=True)) def test_astype(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) # single chunk df = from_pandas_df(raw) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # multiply chunks df = from_pandas_df(raw, chunk_size=6) r = df.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_frame_equal(expected, result) # dict type df = from_pandas_df(raw, chunk_size=5) r = df.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'int32', 'c2': 'float', 'c8': 'str'}) pd.testing.assert_frame_equal(expected, result) # test arrow_string dtype df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c1': 'arrow_string'}) result = r.execute().fetch() expected = raw.astype({'c1': 'arrow_string'}) pd.testing.assert_frame_equal(expected, result) # test series s = pd.Series(rs.randint(5, size=20)) series = from_pandas_series(s) r = series.astype('int32') result = r.execute().fetch() expected = s.astype('int32') pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s, chunk_size=6) r = series.astype('arrow_string') result = r.execute().fetch() expected = s.astype('arrow_string') pd.testing.assert_series_equal(result, expected) # test index raw = pd.Index(rs.randint(5, size=20)) mix = from_pandas_index(raw) r = mix.astype('int32') result = r.execute().fetch() expected = raw.astype('int32') pd.testing.assert_index_equal(result, expected) # multiply chunks series = from_pandas_series(s, chunk_size=6) r = series.astype('str') result = r.execute().fetch() expected = s.astype('str') pd.testing.assert_series_equal(result, expected) # test category raw = pd.DataFrame(rs.randint(3, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=5) r = df.astype('category') result = r.execute().fetch() expected = raw.astype('category') pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=3) r = df.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c8': 'int32', 'c4': 'str'}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=6) r = df.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) result = r.execute().fetch() expected = raw.astype({'c1': 'category', 'c5': 'float', 'c2': 'int32', 'c7': pd.CategoricalDtype([1, 3, 4, 2]), 'c4': pd.CategoricalDtype([1, 3, 2])}) pd.testing.assert_frame_equal(expected, result) df = from_pandas_df(raw, chunk_size=8) r = df.astype({'c2': 'category'}) result = r.execute().fetch() expected = raw.astype({'c2': 'category'}) pd.testing.assert_frame_equal(expected, result) # test series category raw = pd.Series(np.random.choice(['a', 'b', 'c'], size=(10,))) series = from_pandas_series(raw, chunk_size=4) result = series.astype('category').execute().fetch() expected = raw.astype('category') pd.testing.assert_series_equal(expected, result) series = from_pandas_series(raw, chunk_size=3) result = series.astype( pd.CategoricalDtype(['a', 'c', 'b']), copy=False).execute().fetch() expected = raw.astype(pd.CategoricalDtype(['a', 'c', 'b']), copy=False) pd.testing.assert_series_equal(expected, result) series = from_pandas_series(raw, chunk_size=6) result = series.astype( pd.CategoricalDtype(['a', 'c', 'b', 'd'])).execute().fetch() expected = raw.astype(pd.CategoricalDtype(['a', 'c', 'b', 'd'])) pd.testing.assert_series_equal(expected, result) def test_drop(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=3) columns = ['c2', 'c4', 'c5', 'c6'] index = [3, 6, 7] r = df.drop(columns=columns, index=index) pd.testing.assert_frame_equal(r.execute().fetch(), raw.drop(columns=columns, index=index)) idx_series = from_pandas_series(pd.Series(index)) r = df.drop(idx_series) pd.testing.assert_frame_equal(r.execute().fetch(), raw.drop(pd.Series(index))) df.drop(columns, axis=1, inplace=True) pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns, axis=1)) del df['c3'] pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns + ['c3'], axis=1)) ps = df.pop('c8') pd.testing.assert_frame_equal(df.execute().fetch(), raw.drop(columns + ['c3', 'c8'], axis=1)) pd.testing.assert_series_equal(ps.execute().fetch(), raw['c8']) # test series drop raw = pd.Series(rs.randint(1000, size=(20,))) series = from_pandas_series(raw, chunk_size=3) r = series.drop(index=index) pd.testing.assert_series_equal(r.execute().fetch(), raw.drop(index=index)) # test index drop ser = pd.Series(range(20)) rs.shuffle(ser) raw = pd.Index(ser) idx = from_pandas_index(raw) r = idx.drop(index) pd.testing.assert_index_equal(r.execute().fetch(), raw.drop(index)) def test_melt(setup): rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 8)), columns=['c' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=3) r = df.melt(id_vars=['c1'], value_vars=['c2', 'c4']) pd.testing.assert_frame_equal( r.execute().fetch().sort_values(['c1', 'variable']).reset_index(drop=True), raw.melt(id_vars=['c1'], value_vars=['c2', 'c4']).sort_values(['c1', 'variable']).reset_index(drop=True) ) def test_drop_duplicates(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 5)), columns=['c' + str(i + 1) for i in range(5)], index=['i' + str(j) for j in range(20)]) duplicate_lines = rs.randint(1000, size=5) for i in [1, 3, 10, 11, 15]: raw.iloc[i] = duplicate_lines with option_context({'combine_size': 2}): # test dataframe for chunk_size in [(8, 3), (20, 5)]: df = from_pandas_df(raw, chunk_size=chunk_size) if chunk_size[0] < len(raw): methods = ['tree', 'subset_tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for subset in [None, 'c1', ['c1', 'c2']]: for keep in ['first', 'last', False]: for ignore_index in [True, False]: try: r = df.drop_duplicates(method=method, subset=subset, keep=keep, ignore_index=ignore_index) result = r.execute().fetch() try: expected = raw.drop_duplicates(subset=subset, keep=keep, ignore_index=ignore_index) except TypeError: # ignore_index is supported in pandas 1.0 expected = raw.drop_duplicates(subset=subset, keep=keep) if ignore_index: expected.reset_index(drop=True, inplace=True) pd.testing.assert_frame_equal(result, expected) except Exception as e: # pragma: no cover raise AssertionError( f'failed when method={method}, subset={subset}, ' f'keep={keep}, ignore_index={ignore_index}') from e # test series and index s = raw['c3'] ind = pd.Index(s) for tp, obj in [('series', s), ('index', ind)]: for chunk_size in [8, 20]: to_m = from_pandas_series if tp == 'series' else from_pandas_index mobj = to_m(obj, chunk_size=chunk_size) if chunk_size < len(obj): methods = ['tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for keep in ['first', 'last', False]: try: r = mobj.drop_duplicates(method=method, keep=keep) result = r.execute().fetch() expected = obj.drop_duplicates(keep=keep) cmp = pd.testing.assert_series_equal \ if tp == 'series' else pd.testing.assert_index_equal cmp(result, expected) except Exception as e: # pragma: no cover raise AssertionError(f'failed when method={method}, keep={keep}') from e # test inplace series = from_pandas_series(s, chunk_size=11) series.drop_duplicates(inplace=True) result = series.execute().fetch() expected = s.drop_duplicates() pd.testing.assert_series_equal(result, expected) def test_duplicated(setup): # test dataframe drop rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(20, 5)), columns=['c' + str(i + 1) for i in range(5)], index=['i' + str(j) for j in range(20)]) duplicate_lines = rs.randint(1000, size=5) for i in [1, 3, 10, 11, 15]: raw.iloc[i] = duplicate_lines with option_context({'combine_size': 2}): # test dataframe for chunk_size in [(8, 3), (20, 5)]: df = from_pandas_df(raw, chunk_size=chunk_size) if chunk_size[0] < len(raw): methods = ['tree', 'subset_tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for subset in [None, 'c1', ['c1', 'c2']]: for keep in ['first', 'last', False]: try: r = df.duplicated(method=method, subset=subset, keep=keep) result = r.execute().fetch() expected = raw.duplicated(subset=subset, keep=keep) pd.testing.assert_series_equal(result, expected) except Exception as e: # pragma: no cover raise AssertionError( f'failed when method={method}, subset={subset}, ' f'keep={keep}') from e # test series s = raw['c3'] for tp, obj in [('series', s)]: for chunk_size in [8, 20]: to_m = from_pandas_series if tp == 'series' else from_pandas_index mobj = to_m(obj, chunk_size=chunk_size) if chunk_size < len(obj): methods = ['tree', 'shuffle'] else: # 1 chunk methods = [None] for method in methods: for keep in ['first', 'last', False]: try: r = mobj.duplicated(method=method, keep=keep) result = r.execute().fetch() expected = obj.duplicated(keep=keep) cmp = pd.testing.assert_series_equal \ if tp == 'series' else pd.testing.assert_index_equal cmp(result, expected) except Exception as e: # pragma: no cover raise AssertionError(f'failed when method={method}, keep={keep}') from e def test_memory_usage_execution(setup): dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] data = dict([(t, np.ones(shape=500).astype(t)) for t in dtypes]) raw = pd.DataFrame(data) df = from_pandas_df(raw, chunk_size=(500, 2)) r = df.memory_usage(index=False) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=False)) df = from_pandas_df(raw, chunk_size=(500, 2)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) df = from_pandas_df(raw, chunk_size=(100, 3)) r = df.memory_usage(index=False) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=False)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) raw = pd.DataFrame(data, index=np.arange(500).astype('object')) df = from_pandas_df(raw, chunk_size=(100, 3)) r = df.memory_usage(index=True) pd.testing.assert_series_equal(r.execute().fetch(), raw.memory_usage(index=True)) raw = pd.Series(np.ones(shape=500).astype('object'), name='s') series = from_pandas_series(raw) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=False) assert r.execute().fetch() == raw.memory_usage(index=False) series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) raw = pd.Series(np.ones(shape=500).astype('object'), index=np.arange(500).astype('object'), name='s') series = from_pandas_series(raw, chunk_size=100) r = series.memory_usage(index=True) assert r.execute().fetch() == raw.memory_usage(index=True) raw = pd.Index(np.arange(500), name='s') index = from_pandas_index(raw) r = index.memory_usage() assert r.execute().fetch() == raw.memory_usage() index = from_pandas_index(raw, chunk_size=100) r = index.memory_usage() assert r.execute().fetch() == raw.memory_usage() def test_select_dtypes_execution(setup): raw = pd.DataFrame({'a': np.random.rand(10), 'b': np.random.randint(10, size=10)}) df = from_pandas_df(raw, chunk_size=5) r = df.select_dtypes(include=['float64']) result = r.execute().fetch() expected = raw.select_dtypes(include=['float64']) pd.testing.assert_frame_equal(result, expected) def test_map_chunk_execution(setup): raw = pd.DataFrame(np.random.rand(10, 5), columns=[f'col{i}' for i in range(5)]) df = from_pandas_df(raw, chunk_size=(5, 3)) def f1(pdf): return pdf + 1 r = df.map_chunk(f1) result = r.execute().fetch() expected = raw + 1 pd.testing.assert_frame_equal(result, expected) raw_s = raw['col1'] series = from_pandas_series(raw_s, chunk_size=5) r = series.map_chunk(f1) result = r.execute().fetch() expected = raw_s + 1 pd.testing.assert_series_equal(result, expected) def f2(pdf): return pdf.sum(axis=1) df = from_pandas_df(raw, chunk_size=5) r = df.map_chunk(f2, output_type='series') result = r.execute().fetch() expected = raw.sum(axis=1) pd.testing.assert_series_equal(result, expected) raw = pd.DataFrame({'a': [f's{i}'for i in range(10)], 'b': np.arange(10)}) df = from_pandas_df(raw, chunk_size=5) def f3(pdf): return pdf['a'].str.slice(1).astype(int) + pdf['b'] with pytest.raises(TypeError): r = df.map_chunk(f3) _ = r.execute().fetch() r = df.map_chunk(f3, output_type='series') result = r.execute(extra_config={'check_dtypes': False}).fetch() expected = f3(raw) pd.testing.assert_series_equal(result, expected) def f4(pdf): ret = pd.DataFrame(columns=['a', 'b']) ret['a'] = pdf['a'].str.slice(1).astype(int) ret['b'] = pdf['b'] return ret with pytest.raises(TypeError): r = df.map_chunk(f4, output_type='dataframe') _ = r.execute().fetch() r = df.map_chunk(f4, output_type='dataframe', dtypes=pd.Series([np.dtype(int), raw['b'].dtype], index=['a', 'b'])) result = r.execute().fetch() expected = f4(raw) pd.testing.assert_frame_equal(result, expected) raw2 = pd.DataFrame({'a': [np.array([1, 2, 3]), np.array([4, 5, 6])]}) df2 = from_pandas_df(raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = df2.map_chunk(lambda x: x['a'].apply(pd.Series), output_type='dataframe', dtypes=dtypes) assert r.shape == (2, 3) pd.testing.assert_series_equal(r.dtypes, dtypes) result = r.execute().fetch() expected = raw2.apply(lambda x: x['a'], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) raw = pd.DataFrame(np.random.rand(10, 5), columns=[f'col{i}' for i in range(5)]) df = from_pandas_df(raw, chunk_size=(5, 3)) def f5(pdf, chunk_index): return pdf + 1 + chunk_index[0] r = df.map_chunk(f5, with_chunk_index=True) result = r.execute().fetch() expected = (raw + 1).add(np.arange(10) // 5, axis=0) pd.testing.assert_frame_equal(result, expected) raw_s = raw['col1'] series = from_pandas_series(raw_s, chunk_size=5) r = series.map_chunk(f5, with_chunk_index=True) result = r.execute().fetch() expected = raw_s + 1 + np.arange(10) // 5
pd.testing.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
from .models import Applicant, Position, FormQuestion, Education, Stream, Classification, FormAnswer from .NLP.helpers.format_text import reprocess_line_breaks, strip_bullet_points from .NLP.run_NLP_scripts import generate_nlp_extracts from .models import Applicant, Position, FormQuestion, Education, Stream, Classification, FormAnswer, NlpExtract import random import re import string import pandas as pd import tabula from celery import current_task from fuzzywuzzy import fuzz from pandas import options ################### # Functions to determine what type of information is contained in an item ################### def is_question(item): first_column = item[item.columns[0]] return first_column.str.startswith("Question - Français").any() def is_qualification(item): first_column = item[item.columns[0]] return first_column.str.contains("Question - Français / French:").any() def is_stream(item): if not str(item.shape) == "(1, 1)": for index, row in item.iterrows(): found_string = item.iloc[index, 1] if re.search(r"^Are you applying", found_string, re.IGNORECASE): return True return False def is_education(item): first_column = item[item.columns[0]] return first_column.str.contains("Niveau d'études / Academic Level:").any() def is_classification(item): for index, row in item.iterrows(): found_string = item.iloc[index, 0] ratio = fuzz.partial_ratio("Situation professionnelle", found_string) if ratio > 90: return True return False ################### # Helper functions that perform minor tasks (formatting/checks) ################### def is_final_answer(item): applicant_answer = get_column_value( "Réponse du postulant / Applicant Answer:", item) return applicant_answer.lower == "nan" def check_if_table_valid(table): # Checks if the table is a dataframe, not empty, and isn't None. return (isinstance(table, pd.DataFrame)) and (not table.empty) and (table is not None) def clean_data(x): x = re.sub(r'\r', '\n', x) x = re.sub(r'\n', ' ', x) x = re.sub(r'jJio', '\n', x) return x.strip() def text_between(start_string, end_string, text): # Effectively returns the string between the first occurrence of start_string and end_string in text extracted_text = text.split(start_string, 1)[1].split(end_string, 1)[0] return extracted_text def get_column_value(search_string, item): pairings = dict(zip(item[0], item[1])) for key in pairings.keys(): if fuzz.partial_ratio(search_string, key) >= 90: return pairings[key] return "N/A" def retrieve_question(table, all_questions): question_text = parse_question_text( table).replace('\n', " ").replace(" ", "") for other_question in all_questions: other_question_text = other_question.question_text.replace( '\n', " ").replace(" ", "") if fuzz.ratio(question_text, other_question_text) > 95: return other_question return None def create_short_question_text(long_text): if "*Recent" in long_text: return long_text.split("*Recent", 1)[0] elif "**Significant" in long_text: return long_text.split("*Significant", 1)[0] elif "*Significant" in long_text: return long_text.split("*Significant", 1)[0] else: return long_text def find_and_get_req(position, question_text): best_req = 0 best_matched_requirement = None for requirement in position.requirement_set.all(): comparison = fuzz.partial_ratio(requirement.description, question_text) if comparison > best_req: best_req = comparison best_matched_requirement = requirement if best_matched_requirement: if fuzz.partial_ratio(best_matched_requirement.description, question_text) > 85: return best_matched_requirement return None def does_exist(question, all_questions): question_text = question.question_text.replace('\n', " ").replace(" ", "") for other_question in all_questions: other_question_text = other_question.question_text.replace( '\n', " ").replace(" ", "") if fuzz.ratio(question_text, other_question_text) > 95: return True return False def split_on_slash_take_second(str): return str.replace('\n', ' ').split(" / ")[1] ################### # Functions that deal with one-line values for applicants ################### def parse_citizenship(item): applicant_citizenship = get_column_value( "Citoyenneté / Citizenship:", item) if "Canadian Citizen" in applicant_citizenship: applicant_citizenship = "Canadian Citizen" return applicant_citizenship def parse_working_ability(item): working_ability = get_column_value( "Connaissance pratique / Working ability:", item) return working_ability def parse_english_ability(working_ability): english_working_ability = working_ability.replace('\n', ' ').split( "Anglais / English:", 1)[1].split(" / ")[1] return english_working_ability def parse_french_ability(working_ability): french_working_ability = split_on_slash_take_second( text_between("Français / French :", "Anglais / English:", working_ability)) return french_working_ability # Generic function def parse_single_line_boolean(defining_string, item): value = get_column_value(defining_string, item) if "No" in value: return "False" else: return "True" # Generic function def parse_single_line_value(defining_string, item): value = get_column_value(defining_string, item) return split_on_slash_take_second(value) def fill_in_single_line_arguments(item, applicant): # Fill in single line entries that require very little processing. first_column = item[item.columns[0]].astype(str) if first_column.str.startswith("Citoyenneté").any(): applicant.citizenship = parse_citizenship(item) if first_column.str.startswith("Droit de priorité").any(): applicant.priority = parse_single_line_boolean("Droit de priorité / Priority entitlement:", item) if first_column.str.contains("combattants").any(): applicant.veteran_preference = parse_single_line_boolean("anciens combattants", item) if first_column.str.startswith("Première langue officielle").any(): applicant.first_official_language = parse_single_line_value( "Première langue officielle / First official language:", item) if first_column.str.startswith("Connaissance pratique").any(): working_ability = parse_working_ability(item) applicant.french_working_ability = parse_french_ability(working_ability) applicant.english_working_ability = parse_english_ability(working_ability) if first_column.str.contains("Examen écrit / Written exam:").any(): applicant.written_exam = parse_single_line_value("Examen écrit / Written exam:", item) if first_column.str.contains("Correspondance: / Correspondence:").any(): applicant.correspondence = parse_single_line_value("Correspondance: / Correspondence:", item) if first_column.str.contains("Entrevue / Interview:").any(): applicant.interview = parse_single_line_value("Entrevue / Interview:", item) return applicant ################### # Corrective functions to mend the nuances caused by the limitations of pdf ################### def correct_split_item(tables): # Corrects splits between tables. (Not including splits between questions or educations) for index, item in enumerate(tables): if check_if_table_valid(item): if ((index + 1) != len(tables)) and not str(item.shape) == "(1, 1)": item2 = tables[index + 1] if item2.empty: if (index + 2) != len(tables): item2 = tables[index + 2] if check_if_table_valid(item2): if "nan" == item2.iloc[0, 0].lower(): item.iloc[-1, -1] = item.iloc[-1, -1] + \ item2.iloc[0, 1] item2 = item2.iloc[1:, ] item =
pd.concat([item, item2], ignore_index=True)
pandas.concat
import datetime import json from pathlib import Path import boto3 import pandas as pd import requests def get_utc_days(format='%Y-%m-%d'): utc = datetime.datetime.utcnow() yesterday = utc.date() - datetime.timedelta(1) return utc.strftime(format), yesterday.strftime(format) def getOrders(to_csv=True): liveBoardLink = 'https://www.whiskyinvestdirect.com/view_market_json.do' res = requests.get(liveBoardLink) if res.status_code != requests.codes.ok: res.raise_for_status() return res = res.json() pitches = res["market"]["pitches"] pitches = pd.DataFrame(pitches) pitches.set_index(['pitchId'], inplace=True) # Generate and update pitches table pitch_table_cols = ['barrelTypeCode', 'bondQuarter', 'bondYear', 'categoryName', 'considerationCurrency', 'distillery', 'securityId', 'size', 'soldOut'] pitch_table = pitches[pitch_table_cols] if to_csv: PITCHFILE = Path('/tmp/pitches.csv') pitch_table.to_csv(PITCHFILE, mode='w') # Generate and append pricing table pricing = pitches['prices'].apply(pd.Series) pricing.reset_index(inplace=True) pricing =
pd.melt(pricing, id_vars='pitchId')
pandas.melt
import numpy as np import pandas as pd import os.path from sklearn.model_selection import train_test_split # Create GROUND TRUTH dataset def ground_truth(): dir = os.getcwd() # Gets the current working directory df = pd.read_csv(dir + '\\dataset\\train\\imbalanced_tweets.csv') X_train, X_test, y_train, y_test = train_test_split(df['tweet'], df['label'], test_size=0.10, random_state = 42) # Clear and combine datasets train = pd.DataFrame(list(zip(y_train, X_train)), columns=['label', 'tweet']) test = pd.DataFrame(list(zip(y_test, X_test)), columns=['label', 'tweet']) train = train.sample(frac=1).reset_index(drop=True) test = test.sample(frac=1).reset_index(drop=True) count_0, count_1 = train['label'].value_counts() print(count_1, count_0) count_0, count_1 = test['label'].value_counts() print(count_1, count_0) train.head(20) test.head(20) train.to_csv(dir + '\\dataset\\train\\training_imbalanced_temp.csv') test.to_csv(dir + '\\dataset\\train\\ground_truth.csv') print("END SCRIPT") # CREATE BALANCED DATASET def balance_dataset(): dir = os.getcwd() # Gets the current working directory train_file_A = dir + '\\dataset\\train\\training_imbalanced_temp.csv' train_A =
pd.read_csv(train_file_A)
pandas.read_csv
# Project: GBS Tool # Author: Dr. <NAME>, <EMAIL>, denamics GmbH # Date: March 29, 2018 # License: MIT License (see LICENSE file of this package for more information) # Helper to get information about the base case (from input data). import os from distutils.util import strtobool import pandas as pd from bs4 import BeautifulSoup as soup from Analyzer.DataRetrievers.getDataChannels import getDataChannels from Analyzer.DataRetrievers.readNCFile import readNCFile def getBasecase(projectName, rootProjectPath): ''' Retrieve base case data and meta data required for initial estimate of search space boundaries and data sparsing. FUTUREFEATURE: Note that this does its own load calculation, which may be redundant or differ from load calculations done in the InputHandler. This should be revisited in the future. :return time: [Series] time vector :return firmLoadP: [Series] firm load vector :return varLoadP: [Series] variable (switchable, manageable, dispatchable) load vector :return firmGenP: [Series] firm generation vector :return varGenP: [Series] variable generation vector :return allGenP: [DataFrame] contains time channel and all generator channels. ''' # Read project meta data to get (a) all loads, (b) all generation, and their firm and variable subsets. setupMetaHandle = open(os.path.join(rootProjectPath, 'InputData/Setup/' + projectName + 'Setup.xml'), 'r') setupMetaData = setupMetaHandle.read() setupMetaHandle.close() setupMetaSoup = soup(setupMetaData, 'xml') # Retrieve the time and firm load vectors firmLoadPFileName = setupMetaSoup.loadProfileFile.get('value') firmLoadPFile = readNCFile \ (os.path.join(rootProjectPath, 'InputData/TimeSeriesData/ProcessedData/' + firmLoadPFileName)) time = pd.Series(firmLoadPFile.time[:]) firmLoadP = pd.Series((firmLoadPFile.value[:] + firmLoadPFile.offset ) * firmLoadPFile.scale) # Setup other data channels firmGenP = pd.Series(firmLoadP.copy() * 0) varGenP = pd.Series(firmLoadP.copy() * 0) varLoadP = pd.Series(firmLoadP.copy() * 0) allGenP = pd.DataFrame(time, columns=['time']) # Get list if all components components = setupMetaSoup.componentNames.get('value').split() # Step through the given list of components and assign them to the correct data channel if appropriate for cpt in components: # load meta data for the component cptMetaHandle = open(os.path.join(rootProjectPath, 'InputData/Components/' + cpt +'Descriptor.xml'), 'r') cptMetaData = cptMetaHandle.read() cptMetaHandle.close() cptMetaSoup = soup(cptMetaData, 'xml') # Read the type, if it is a source it is going into one of the generation channels if cptMetaSoup.type.get('value') == 'source': # Check if it can load follow, if true add it to the firmGenP channel if strtobool(cptMetaSoup.isLoadFollowing.get('value')): # Load associated time series - actual power for firmGenP chName = cptMetaSoup.component.get('name') + 'P' tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) val = pd.Series(tempDf[chName]) firmGenP = firmGenP + val # Also add it to the allGenP dataframe dfVal = pd.DataFrame(val, columns=[chName]) allGenP = pd.concat([allGenP, dfVal], axis=1) # If it cannot load follow, it is a variable generator else: # not strtobool(cptMetaSoup.isLoadFollowing.get('value')) # Load associated time series - PAvail for varGenP if it exists chName = cptMetaSoup.component.get('name') + 'PAvail' if os.path.isfile( os.path.join(rootProjectPath, 'InputData/TimeSeriesData/ProcessedData/', chName + '.nc')): tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) else: chName = cptMetaSoup.component.get('name') + 'P' tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) val = pd.Series(tempDf[chName]) varGenP = varGenP + val # if the type is source, and the name is not the same as the one in firmLoadPFileName, add to varLoadP elif cptMetaSoup.type.get('value') == 'sink' and cptMetaSoup.component.get('name') != firmLoadPFileName[:-3]: # Load associated time series - PAvail for varLoadP if it exists chName = cptMetaSoup.component.get('name') + 'PAvail' if os.path.isfile(os.path.join(rootProjectPath, 'InputData/TimeSeriesData/ProcessedData/', chName + '.nc')): tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) else: chName = cptMetaSoup.component.get('name') + 'P' tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) val = pd.Series(tempDf[chName]) # add to the varLoadP variable varLoadP = varLoadP + val # if the type is sink-source (or source-sink, to plan for silly users...) add to varLoadP if negative and # firmGenP is positive. This follows the sign convention discussed for energy storage (positive TOWARDS the # grid; negative FROM the grid), see issue #87. And it posits that energy storage is either a variable load # or firm generation (with variable PAvail). elif cptMetaSoup.type.get('value') == 'sink-source' or cptMetaSoup.type.get('value') == 'source-sink': # Load associated time series - actual power for firmGenP chName = cptMetaSoup.component.get('name') + 'P' tempDf = getDataChannels(rootProjectPath, '/InputData/TimeSeriesData/ProcessedData/', chName) val =
pd.Series(tempDf[chName])
pandas.Series
import pandas as pd import numpy as np from tqdm import tqdm from Bio.PDB import Selection, PDBParser """ This script is to extract beads from the predicted structures in CASP13 and CASP14 after the competitions. """ def extract_beads(pdb_path): amino_acids = pd.read_csv('/home/hyang/bio/erf/data/amino_acids.csv') vocab_aa = [x.upper() for x in amino_acids.AA3C] vocab_dict = {x.upper(): y for x, y in zip(amino_acids.AA3C, amino_acids.AA)} p = PDBParser() structure = p.get_structure('X', pdb_path) residue_list = Selection.unfold_entities(structure, 'R') ca_center_list = [] cb_center_list = [] res_name_list = [] res_num_list = [] chain_list = [] for res in residue_list: if res.get_resname() not in vocab_aa: # raise ValueError('protein has non natural amino acids') continue chain_list.append(res.parent.id) res_name_list.append(vocab_dict[res.get_resname()]) res_num_list.append(res.id[1]) try: ca_center_list.append(res['CA'].get_coord()) except KeyError: return 0 if res.get_resname() != 'GLY': try: cb_center_list.append(res['CB'].get_coord()) except KeyError: return 0 else: cb_center_list.append(res['CA'].get_coord()) ca_center = np.vstack(ca_center_list) cb_center = np.vstack(cb_center_list) df = pd.DataFrame({'chain_id': chain_list, 'group_num': res_num_list, 'group_name': res_name_list, 'x': ca_center[:, 0], 'y': ca_center[:, 1], 'z': ca_center[:, 2], 'xcb': cb_center[:, 0], 'ycb': cb_center[:, 1], 'zcb': cb_center[:, 2]}) df.to_csv(f'{pdb_path}_bead.csv', index=False) return 1 def extract_casp13_14(): # casp_id = 'casp13' casp_id = 'casp14' root_dir = f'/home/hyang/bio/erf/data/decoys/{casp_id}/' casp = pd.read_csv(f'{root_dir}/pdb_list.txt')['pdb'].values modified_casp_id = [] for casp_id in tqdm(casp): pdb_list = pd.read_csv(f'{root_dir}/{casp_id}/flist.txt')['pdb'].values ca_only_list = [] for i, pdb_id in enumerate(pdb_list): pdb_path = f'{root_dir}/{casp_id}/{pdb_id}' result = extract_beads(pdb_path) if result == 0: # some structure prediction only has CA. ca_only_list.append(pdb_id) pdb_list[i] = '0' if len(ca_only_list) > 0: pdb_list = pdb_list[pdb_list != '0'] df = pd.DataFrame({'pdb': pdb_list}) df.to_csv(f'{root_dir}/{casp_id}/flist.txt', index=False) modified_casp_id.append(casp_id) def check_residue_num(): # some groups submit models for only parts of the domains, exclude those models. casp_id = 'casp14' root_dir = f'/home/hyang/bio/erf/data/decoys/{casp_id}/' casp = pd.read_csv(f'{root_dir}/pdb_list.txt')['pdb'].values for casp_id in tqdm(casp): pdb_list = pd.read_csv(f'{root_dir}/{casp_id}/flist.txt')['pdb'].values num = np.zeros(len(pdb_list)) for i, pdb_id in enumerate(pdb_list): df = pd.read_csv(f'{root_dir}/{casp_id}/{pdb_id}_bead.csv') num[i] = df.shape[0] if len(np.unique(num)) > 1: seq_len = np.median(num) pdb_list = pdb_list[(num == seq_len)] df = pd.DataFrame({'pdb': pdb_list}) df.to_csv(f'{root_dir}/{casp_id}/flist.txt', index=False) print(casp_id, seq_len, num) def check_missing_residues(): # chech which casp14 evaluation units have gaps casp_id = 'casp14' root_dir = f'/home/hyang/bio/erf/data/decoys/{casp_id}/' casp = pd.read_csv(f'{root_dir}/pdb_list.txt')['pdb'].values no_missing_res_list = [] seq_len_list = [] idx = np.zeros(casp.shape[0]) for i, pdb in tqdm(enumerate(casp)): pdb_list =
pd.read_csv(f'{root_dir}/{pdb}/flist.txt')
pandas.read_csv
import pandas as pd import pytest # paso imports from paso.base import Paso, PasoError from paso.pre.encoders import Encoders from loguru import logger session = Paso(parameters_filepath="../../parameters/lesson.1.yaml").startup() # 0 def test_Class_init_NoArg(): with pytest.raises(PasoError): g = Encoders() # 1 def test_Class_init_WrongScaler(): with pytest.raises(PasoError): g = Encoders("GORG") # BoxCoxScaler unit tests # 2 def test_EncoderList(X): assert Encoders("BaseNEncoder").encoders() == [ "BackwardDifferenceEncoder", "BinaryEncoder", "HashingEncoder", "HelmertEncoder", "OneHotEncoder", "OrdinalEncoder", "SumEncoder", "PolynomialEncoder", "BaseNEncoder", "LeaveOneOutEncoder", "TargetEncoder", "WOEEncoder", "MEstimateEncoder", "JamesSteinEncoder", "CatBoostEncoder", "EmbeddingVectorEncoder", ] # 3 def test_bad_encoder_name(): with pytest.raises(PasoError): g = Encoders("fred") # 4 def test_BaseNEncoder_no_df(X): with pytest.raises(PasoError): Encoders(description_filepath="../../descriptions/pre/encoders/OHE.yaml").train( [["Male", 1], ["Female", 3], ["Female", 2]] ) # 5 def test_OrdinaEncoders(X): h = [["Male", 1], ["Female", 3], ["Female", 2]] hdf =
pd.DataFrame(h)
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1
tm.assert_index_equal(rng, expected)
pandas.util.testing.assert_index_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Analyze SON scan csv file. You can run this as a script. Optional argument of script is a slice (notation 0:) or list of indices (comma-soparated, e.g. 0,1,-2,-1). Copyright <NAME> (2022) - Twitter: @hk_nien License: MIT. Created on Sat Feb 5 23:28:03 2022 """ import sys import os from pathlib import Path import re import datetime import pandas as pd import numpy as np def _get_1csv_df(csv_fname): """Load csv, return df; handle data without api_version, all_slots column""" df = pd.read_csv(csv_fname, comment='#') if 'api_version' not in df.columns: df['api_version'] = 1 if 'xfields' not in df.columns: df['xfields'] = '' else: df.loc[df['xfields'].isna(), 'xfields'] = '' if 'all_slots' not in df.columns: df['all_slots'] = '' else: df.loc[df['all_slots'].isna(), 'all_slots'] = '' return df def get_csv_as_dataframe(csv_fname='data-son/son_scan-latest.csv'): """Load CSV file(s) and do minor preprocessing. Parameters: - csv_fname: CSV filename (str) or list of str. Return: - df: DataFrame with CSV contents; timestamps converted to pandas Timestamp. - scan_times: list of scan start times (Timestamps). Use this for slicing the DataFrame into separate scans. Note: csv files will be put into chronological order, but it won't handle overlapping ranges for 'scan_time'. """ if isinstance(csv_fname, (str, Path)): csv_fnames = [csv_fname] else: csv_fnames = list(csv_fname) df_list = [_get_1csv_df(fn) for fn in csv_fnames] df_list = sorted(df_list, key=lambda df: df.iloc[0]['scan_time']) df = pd.concat(df_list).reset_index().drop(columns='index') df['scan_time'] = pd.to_datetime(df['scan_time']) df['apt_date'] = pd.to_datetime(df['apt_date']) # Because of dummy rows, int columns become float. for c in df.columns: if c.startswith('num') and df[c].dtype != np.int64: df.loc[df[c].isna(), c] = 0 df[c] = df[c].astype(int) # figure out scan periods dts = df['scan_time'].diff() dts.iloc[0] = pd.Timedelta('1d') scan_start_tms = df.loc[dts > pd.Timedelta('15min'), 'scan_time'].to_list() return df, scan_start_tms def _analyze_1scan_loc_mutations(df1, prev_addresses, silent=False): """Analyze DataFrame for one scan for location mutations. Params: - df1: 1-scan dataframe slice - prev_addresses: set of previous-scan addresess; will be updated. - silent: True to suppress output. """ tm0 = df1.iloc[0]['scan_time'] if np.all(
pd.isna(df1['apt_date'])
pandas.isna
''' Preprocessing Tranformers Based on sci-kit's API By <NAME> Created on June 12, 2017 ''' import copy import pandas as pd import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from pymo.rotation_tools import Rotation class MocapParameterizer(BaseEstimator, TransformerMixin): def __init__(self, param_type = 'euler'): ''' param_type = {'euler', 'quat', 'expmap', 'position'} ''' self.param_type = param_type def fit(self, X, y=None): return self def transform(self, X, y=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._to_expmap(X) elif self.param_type == 'quat': return X elif self.param_type == 'position': return self._to_pos(X) elif self.param_type == 'axis_angle': return self._to_axis_angle(X) else: raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type) # return X def inverse_transform(self, X, copy=None): if self.param_type == 'euler': return X elif self.param_type == 'expmap': return self._expmap_to_euler(X) elif self.param_type == 'quat': raise UnsupportedParamError('quat2euler is not supported') elif self.param_type == 'position': print('positions 2 eulers is not supported') return X else: raise UnsupportedParamError('Unsupported param: %s. Valid param types are: euler, quat, expmap, position' % self.param_type) def _to_pos(self, X): '''Converts joints rotations in Euler angles to joint positions''' Q = [] for track in X: channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the exponential map rep pos_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = [[0,0,0] for f in rc.iterrows()] else: euler_values = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in rc.iterrows()] ################# in euler angle, the order of rotation axis is very important ##################### rotation_order = rc.columns[0][rc.columns[0].find('rotation') - 1] + rc.columns[1][rc.columns[1].find('rotation') - 1] + rc.columns[2][rc.columns[2].find('rotation') - 1] #rotation_order is string : 'XYZ' or'ZYX' or ... #################################################################################################### if pc.shape[1] < 3: pos_values = [[0,0,0] for f in pc.iterrows()] else: pos_values =[[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()] #euler_values = [[0,0,0] for f in rc.iterrows()] #for deugging #pos_values = [[0,0,0] for f in pc.iterrows()] #for deugging # Convert the eulers to rotation matrices ############################ input rotation order as Rotation class's argument ######################### rotmats = np.asarray([Rotation([f[0], f[1], f[2]], 'euler', rotation_order, from_deg=True).rotmat for f in euler_values]) ######################################################################################################## tree_data[joint]=[ [], # to store the rotation matrix [] # to store the calculated position ] if track.root_name == joint: tree_data[joint][0] = rotmats # tree_data[joint][1] = np.add(pos_values, track.skeleton[joint]['offsets']) tree_data[joint][1] = pos_values else: # for every frame i, multiply this joint's rotmat to the rotmat of its parent tree_data[joint][0] = np.asarray([np.matmul(rotmats[i], tree_data[parent][0][i]) for i in range(len(tree_data[parent][0]))]) # add the position channel to the offset and store it in k, for every frame i k = np.asarray([np.add(pos_values[i], track.skeleton[joint]['offsets']) for i in range(len(tree_data[parent][0]))]) # multiply k to the rotmat of the parent for every frame i q = np.asarray([np.matmul(k[i], tree_data[parent][0][i]) for i in range(len(tree_data[parent][0]))]) # add q to the position of the parent, for every frame i tree_data[joint][1] = np.asarray([np.add(q[i], tree_data[parent][1][i]) for i in range(len(tree_data[parent][1]))]) # Create the corresponding columns in the new DataFrame pos_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in tree_data[joint][1]], index=pos_df.index) pos_df['%s_Zposition'%joint] = pd.Series(data=[e[2] for e in tree_data[joint][1]], index=pos_df.index) new_track = track.clone() new_track.values = pos_df Q.append(new_track) return Q def _to_axis_angle(self, X): '''Converts joints rotations in Euler angles to axis angle rotations''' Q = [] for track in X: # fix track names # adapt joint name so that it's equal for either male or female channels = [] titles = [] euler_df = track.values # Create a new DataFrame to store the axis angle values axis_anlge_df = pd.DataFrame(index=euler_df.index) # Copy the root rotations into the new DataFrame # rxp = '%s_Xrotation'%track.root_name # ryp = '%s_Yrotation'%track.root_name # rzp = '%s_Zrotation'%track.root_name # pos_df[rxp] = pd.Series(data=euler_df[rxp], index=pos_df.index) # pos_df[ryp] = pd.Series(data=euler_df[ryp], index=pos_df.index) # pos_df[rzp] = pd.Series(data=euler_df[rzp], index=pos_df.index) # List the columns that contain rotation channels rot_cols = [c for c in euler_df.columns if ('rotation' in c)] # List the columns that contain position channels pos_cols = [c for c in euler_df.columns if ('position' in c)] # List the joints that are not end sites, i.e., have channels joints = (joint for joint in track.skeleton) tree_data = {} for joint in track.traverse(): parent = track.skeleton[joint]['parent'] # Get the rotation columns that belong to this joint rc = euler_df[[c for c in rot_cols if joint in c]] # Get the position columns that belong to this joint pc = euler_df[[c for c in pos_cols if joint in c]] # Make sure the columns are organized in xyz order if rc.shape[1] < 3: euler_values = [[0,0,0] for f in rc.iterrows()] else: euler_values = [[f[1]['%s_Xrotation'%joint], f[1]['%s_Yrotation'%joint], f[1]['%s_Zrotation'%joint]] for f in rc.iterrows()] ################# in euler angle, the order of rotation axis is very important ##################### rotation_order = rc.columns[0][rc.columns[0].find('rotation') - 1] + rc.columns[1][rc.columns[1].find('rotation') - 1] + rc.columns[2][rc.columns[2].find('rotation') - 1] #rotation_order is string : 'XYZ' or'ZYX' or ... #################################################################################################### if pc.shape[1] < 3: pos_values = [[0,0,0] for f in pc.iterrows()] else: pos_values =[[f[1]['%s_Xposition'%joint], f[1]['%s_Yposition'%joint], f[1]['%s_Zposition'%joint]] for f in pc.iterrows()] #euler_values = [[0,0,0] for f in rc.iterrows()] #for deugging #pos_values = [[0,0,0] for f in pc.iterrows()] #for deugging # Convert the eulers to axis angles ############################ input rotation order as Rotation class's argument ######################### axis_angles = np.asarray([Rotation([f[0], f[1], f[2]], 'euler', rotation_order, from_deg=True).get_euler_axis() for f in euler_values]) ######################################################################################################## # Create the corresponding columns in the new DataFrame axis_anlge_df['%s_Xposition'%joint] = pd.Series(data=[e[0] for e in pos_values], index=axis_anlge_df.index) axis_anlge_df['%s_Yposition'%joint] = pd.Series(data=[e[1] for e in pos_values], index=axis_anlge_df.index) axis_anlge_df['%s_Zposition'%joint] =
pd.Series(data=[e[2] for e in pos_values], index=axis_anlge_df.index)
pandas.Series
import tarfile import os import shutil import pydicom import pandas as pd from pydicom.filebase import DicomBytesIO import pathlib import re def GetTailFolder(parent, path): path = os.path.join( parent, os.path.basename(os.path.normpath(path))) return path class Tarloader(): def __init__(self, opt): self.opt = opt self.MakeTarDestFolder() self.MakeOutDestFolder() self.files = self.GetFiles() self.tarfiles = self.GetTarFiles() self.meta_cols = meta_cols = ['DirName','BodyPartExamined', 'Modality','PatientID', 'SOPInstanceUID'] self.col_dict = {col: [] for col in meta_cols} def extractDcmList(self, tar, tarFold): tarfolders = self.extractTarFolders(tar) idx = [i for i, s in enumerate(tarfolders) if self.patientID in s] dicomFiles = [] for i in range(0, len(tarfolders[idx[0]])): f = tar.extractfile(tar.getmember(tarfolders[idx[0]][i])) if os.path.splitext(tar.getmember(tarfolders[idx[0]][i]).name)[1] =='.dcm': content = f.read() raw = DicomBytesIO(content) ds = pydicom.dcmread(raw) dicomFiles.append(ds) return dicomFiles def getUniqueSubFolds(self, tar): return list(set([pathlib.Path(i).parts[0] for i in tar.getnames()])) def extractTarFolders(self, tar): archives = [] liste = self.getUniqueSubFolds(tar) for i in liste: archives.append([x for x in tar.getnames() if re.match(i,x)]) return archives def extractMeta(self, tarFold, tar): for i in range(0, len(tarFold)): f = tar.extractfile(tar.getmember(tarFold[i])) if os.path.splitext(tar.getmember(tarFold[i]).name)[1] =='.dcm': content = f.read() raw = DicomBytesIO(content) ds = pydicom.dcmread(raw) break return ds def ReadTarFile(self, tarpath): tar = tarfile.open(tarpath) return tar def ReadTar(self): for tarpath in self.tarfiles: tar = self.ReadTarFile(tarpath) tarFolders = self.extractTarFolders(tar) for tarFold in tarFolders: ds = self.extractMeta(tarFold, tar) setattr(ds,'DirName', os.path.basename(tarpath)) for col in self.meta_cols: self.col_dict[col].append(str(getattr(ds, col))) df =
pd.DataFrame.from_dict(self.col_dict)
pandas.DataFrame.from_dict
"""Tests for running combo cases and deaths indicator.""" import logging from datetime import date from itertools import product import os import unittest from unittest.mock import patch, call import pandas as pd import numpy as np from delphi_combo_cases_and_deaths.run import ( run_module, extend_raw_date_range, get_updated_dates, sensor_signal, combine_usafacts_and_jhu, compute_special_geo_dfs, COLUMN_MAPPING) from delphi_combo_cases_and_deaths.constants import METRICS, SMOOTH_TYPES, SENSORS from delphi_utils.geomap import GeoMapper TEST_LOGGER = logging.getLogger() def test_issue_dates(): """The smoothed value for a particular date is computed from the raw values for a span of dates. We want users to be able to see in the API all the raw values that went into the smoothed computation, for transparency and peer review. This means that each issue should contain more days of raw data than smoothed data. """ reference_dr = [date.today(), date.today()] params = {'indicator': {'date_range': reference_dr}} n_changed = 0 variants = [sensor_signal(metric, sensor, smoother) for metric, sensor, smoother in product(METRICS, SENSORS, SMOOTH_TYPES)] variants_changed = [] for sensor_name, _ in variants: dr = extend_raw_date_range(params, sensor_name) if dr[0] != reference_dr[0]: n_changed += 1 variants_changed.append(sensor_name) assert n_changed == len(variants) / 2, f""" Raw variants should post more days than smoothed. All variants: {variants} Date-extended variants: {variants_changed} """ @patch("covidcast.covidcast.signal") def test_unstable_sources(mock_covidcast_signal): """Verify that combine_usafacts_and_jhu assembles the combined data frame correctly for all cases where 0, 1, or both signals are available. """ date_count = [1] def jhu(geo, c=date_count): if geo == "state": geo_val = "pr" elif geo == "msa": geo_val = "38660" else: geo_val = "72001" return pd.DataFrame( [(date.fromordinal(c[0]),geo_val,1,1,1)], columns="timestamp geo_value value stderr sample_size".split()) def uf(geo, c=date_count): if geo == "state": geo_val = "ny" elif geo == "msa": geo_val = "10580" else: geo_val = "36001" return pd.DataFrame( [(date.fromordinal(c[0]),geo_val,1,1,1)], columns="timestamp geo_value value stderr sample_size".split()) def make_mock(geo): # The first two in each row provide a unique_date array of the appropriate length for # query of the latter two (in combine_usafacts_and_jhu) return [ # 1 0 uf(geo), None, uf(geo), None, # 0 1 None, jhu(geo), # 1 1 uf(geo), jhu(geo), uf(geo), jhu(geo), # 0 0 None, None ] geos = ["state", "county", "msa", "nation", "hhs"] outputs = [df for g in geos for df in make_mock(g)] mock_covidcast_signal.side_effect = outputs[:] date_range = [date.today(), date.today()] calls = 0 for geo in geos: for config, call_size, expected_size in [ ("1 0", 4, 1), ("0 1", 2, 0), ("1 1", 4, 1 if geo in ["nation", "hhs"] else 2), ("0 0", 2, 0) ]: df = combine_usafacts_and_jhu("", geo, date_range, TEST_LOGGER, fetcher=mock_covidcast_signal) assert df.size == expected_size * len(COLUMN_MAPPING), f""" Wrong number of rows in combined data frame for the number of available signals. input for {geo} {config}: {outputs[calls]} {outputs[calls + 1]} output: {df} expected rows: {expected_size} """ calls += call_size date_count[0] += 1 @patch("covidcast.covidcast.signal") def test_multiple_issues(mock_covidcast_signal): """Verify that only the most recent issue is retained.""" mock_covidcast_signal.side_effect = [ pd.DataFrame({ "geo_value": ["01000", "01000"], "value": [1, 10], "timestamp": [20200101, 20200101], "issue": [20200102, 20200104] }), None ] * 2 result = combine_usafacts_and_jhu("confirmed_incidence_num", "county", date_range=(0, 1), logger=TEST_LOGGER, fetcher=mock_covidcast_signal) pd.testing.assert_frame_equal( result, pd.DataFrame( { "geo_id": ["01000"], "val": [10], "timestamp": [20200101], "issue": [20200104] }, index=[1] ) ) def test_compute_special_geo_dfs(): test_df = pd.DataFrame({"geo_id": ["01000", "01001"], "val": [50, 100], "timestamp": [20200101, 20200101]},) df = compute_special_geo_dfs(test_df, "_prop", "nation") state_pop = GeoMapper().get_crosswalk("state_code", "pop") state_pop = int(state_pop.loc[state_pop.state_code == "01", "pop"]) expected_df = pd.DataFrame({ "timestamp": [20200101], "geo_id": ["us"], "val": [150/state_pop*100000] })
pd.testing.assert_frame_equal(df, expected_df)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- """Generator reserve plots. This module creates plots of reserve provision and shortage at the generation and region level. @author: <NAME> """ import logging import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.patches import Patch from matplotlib.lines import Line2D import marmot.config.mconfig as mconfig import marmot.plottingmodules.plotutils.plot_library as plotlib from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, MissingZoneData) class MPlot(PlotDataHelper): """reserves MPlot class. All the plotting modules use this same class name. This class contains plotting methods that are grouped based on the current module name. The reserves.py module contains methods that are related to reserve provision and shortage. MPlot inherits from the PlotDataHelper class to assist in creating figures. """ def __init__(self, argument_dict: dict): """ Args: argument_dict (dict): Dictionary containing all arguments passed from MarmotPlot. """ # iterate over items in argument_dict and set as properties of class # see key_list in Marmot_plot_main for list of properties for prop in argument_dict: self.__setattr__(prop, argument_dict[prop]) # Instantiation of MPlotHelperFunctions super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen, self.PLEXOS_color_dict, self.Scenarios, self.ylabels, self.xlabels, self.gen_names_dict, Region_Mapping=self.Region_Mapping) self.logger = logging.getLogger('marmot_plot.'+__name__) self.y_axes_decimalpt = mconfig.parser("axes_options","y_axes_decimalpt") def reserve_gen_timeseries(self, figure_name: str = None, prop: str = None, start: float = None, end: float= None, timezone: str = "", start_date_range: str = None, end_date_range: str = None, **_): """Creates a generation timeseries stackplot of total cumulative reserve provision by tech type. The code will create either a facet plot or a single plot depending on if the Facet argument is active. If a facet plot is created, each scenario is plotted on a separate facet, otherwise all scenarios are plotted on a single plot. To make a facet plot, ensure the work 'Facet' is found in the figure_name. Generation order is determined by the ordered_gen_categories.csv. Args: figure_name (str, optional): User defined figure output name. Used here to determine if a Facet plot should be created. Defaults to None. prop (str, optional): Special argument used to adjust specific plot settings. Controlled through the plot_select.csv. Opinions available are: - Peak Demand - Date Range Defaults to None. start (float, optional): Used in conjunction with the prop argument. Will define the number of days to plot before a certain event in a timeseries plot, e.g Peak Demand. Defaults to None. end (float, optional): Used in conjunction with the prop argument. Will define the number of days to plot after a certain event in a timeseries plot, e.g Peak Demand. Defaults to None. timezone (str, optional): The timezone to display on the x-axes. Defaults to "". start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: Dictionary containing the created plot and its data table. """ # If not facet plot, only plot first scenario facet=False if 'Facet' in figure_name: facet = True if not facet: Scenarios = [self.Scenarios[0]] else: Scenarios = self.Scenarios outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"reserves_generators_Provision",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) # Checks if all data required by plot is available, if 1 in list required data is missing if 1 in check_input_data: return MissingInputData() for region in self.Zones: self.logger.info(f"Zone = {region}") xdimension, ydimension = self.setup_facet_xy_dimensions(facet,multi_scenario=Scenarios) grid_size = xdimension*ydimension excess_axs = grid_size - len(Scenarios) fig1, axs = plotlib.setup_plot(xdimension,ydimension) plt.subplots_adjust(wspace=0.05, hspace=0.2) data_tables = [] unique_tech_names = [] for n, scenario in enumerate(Scenarios): self.logger.info(f"Scenario = {scenario}") reserve_provision_timeseries = self["reserves_generators_Provision"].get(scenario) #Check if zone has reserves, if not skips try: reserve_provision_timeseries = reserve_provision_timeseries.xs(region,level=self.AGG_BY) except KeyError: self.logger.info(f"No reserves deployed in: {scenario}") continue reserve_provision_timeseries = self.df_process_gen_inputs(reserve_provision_timeseries) if reserve_provision_timeseries.empty is True: self.logger.info(f"No reserves deployed in: {scenario}") continue # unitconversion based off peak generation hour, only checked once if n == 0: unitconversion = PlotDataHelper.capacity_energy_unitconversion(max(reserve_provision_timeseries.sum(axis=1))) if prop == "Peak Demand": self.logger.info("Plotting Peak Demand period") total_reserve = reserve_provision_timeseries.sum(axis=1)/unitconversion['divisor'] peak_reserve_t = total_reserve.idxmax() start_date = peak_reserve_t - dt.timedelta(days=start) end_date = peak_reserve_t + dt.timedelta(days=end) reserve_provision_timeseries = reserve_provision_timeseries[start_date : end_date] Peak_Reserve = total_reserve[peak_reserve_t] elif prop == 'Date Range': self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") reserve_provision_timeseries = reserve_provision_timeseries[start_date_range : end_date_range] else: self.logger.info("Plotting graph for entire timeperiod") reserve_provision_timeseries = reserve_provision_timeseries/unitconversion['divisor'] scenario_names = pd.Series([scenario] * len(reserve_provision_timeseries),name = 'Scenario') data_table = reserve_provision_timeseries.add_suffix(f" ({unitconversion['units']})") data_table = data_table.set_index([scenario_names],append = True) data_tables.append(data_table) plotlib.create_stackplot(axs, reserve_provision_timeseries, self.PLEXOS_color_dict, labels=reserve_provision_timeseries.columns,n=n) PlotDataHelper.set_plot_timeseries_format(axs,n=n,minticks=4, maxticks=8) if prop == "Peak Demand": axs[n].annotate('Peak Reserve: \n' + str(format(int(Peak_Reserve), '.2f')) + ' {}'.format(unitconversion['units']), xy=(peak_reserve_t, Peak_Reserve), xytext=((peak_reserve_t + dt.timedelta(days=0.25)), (Peak_Reserve + Peak_Reserve*0.05)), fontsize=13, arrowprops=dict(facecolor='black', width=3, shrink=0.1)) # create list of gen technologies l1 = reserve_provision_timeseries.columns.tolist() unique_tech_names.extend(l1) if not data_tables: self.logger.warning(f'No reserves in {region}') out = MissingZoneData() outputs[region] = out continue # create handles list of unique tech names then order handles = np.unique(np.array(unique_tech_names)).tolist() handles.sort(key = lambda i:self.ordered_gen.index(i)) handles = reversed(handles) # create custom gen_tech legend gen_tech_legend = [] for tech in handles: legend_handles = [Patch(facecolor=self.PLEXOS_color_dict[tech], alpha=1.0, label=tech)] gen_tech_legend.extend(legend_handles) # Add legend axs[grid_size-1].legend(handles=gen_tech_legend, loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) #Remove extra axes if excess_axs != 0: PlotDataHelper.remove_excess_axs(axs,excess_axs,grid_size) # add facet labels self.add_facet_labels(fig1) fig1.add_subplot(111, frameon=False) plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) if mconfig.parser("plot_title_as_region"): plt.title(region) plt.ylabel(f"Reserve Provision ({unitconversion['units']})", color='black', rotation='vertical', labelpad=40) data_table_out = pd.concat(data_tables) outputs[region] = {'fig': fig1, 'data_table': data_table_out} return outputs def total_reserves_by_gen(self, start_date_range: str = None, end_date_range: str = None, **_): """Creates a generation stacked barplot of total reserve provision by generator tech type. A separate bar is created for each scenario. Args: start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: Dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,"reserves_generators_Provision",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) # Checks if all data required by plot is available, if 1 in list required data is missing if 1 in check_input_data: return MissingInputData() for region in self.Zones: self.logger.info(f"Zone = {region}") Total_Reserves_Out =
pd.DataFrame()
pandas.DataFrame
""" Created on Wed Apr 10 10:04:29 2019 @author: <NAME> (<EMAIL>) """ import numpy as np from pylab import * import matplotlib.pyplot as plt from copy import copy import pandas as pd from matplotlib import colors from mpl_toolkits.axes_grid1.inset_locator import inset_axes from numpy.matlib import repmat from scipy.spatial import distance_matrix from scipy.spatial.distance import cdist, pdist import seaborn as sns from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import shutil import random import os def get_random_color(): """ Original @author: <NAME> url: https://www.kaggle.com/vitorgamalemos/house-prices-data-exploration ref: Taken from Kaggle Advanced House Price """ r1 = lambda: random.randint(0,255) return '#%02X%02X%02X' % (r1(),r1(),r1()) def get_histplot(df: dict, fields: list): """ Original @author: <NAME> url: https://www.kaggle.com/vitorgamalemos/house-prices-data-exploration ref: Taken from Kaggle Advanced House Price """ for field in fields: f, (ax1) = plt.subplots(1, 1, figsize=(15, 5)) v_dist_1 = df[field].values sns.histplot(v_dist_1, ax=ax1, color=get_random_color(), kde=True) mean=df[field].mean() median=df[field].median() mode=df[field].mode().values[0] ax1.axvline(mean, color='r', linestyle='--', label="Mean") ax1.axvline(median, color='g', linestyle='-', label="Median") ax1.axvline(mode, color='b', linestyle='-', label="Mode") ax1.legend() plt.title(f"{field} - Histogram analysis") def get_scatter(df: dict, fields: list, label: str): ylim = (0, df[label].max() * 1.1) for field in fields: df_copy =
pd.concat([df[label], df[field]], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sun Dec 5 13:08:01 2021 @author: <NAME> """ import scipy import numpy as np import pandas as pd import statsmodels.api as sm import scipy.stats as stats #print stats.stats.spearmanr(x,y) def factor_IC_test(factor_data, market_cap_data, stock_return): """ :param factor_data: the residual of the regression(factor exposure(t) with respect to market-cap(t) and industries factor(t)(dummy) :param stock_return: monthly stock return (t+1) :return: correlations between factor exposure(t) and stock return(t+1) (a dataframe) tips: We use this residual as a proxy of factor exposure, which is both industries-adjusted and market-cap-adjusted; Examine the mean (significance), std(stability), IR ratio(mean/std), the propotion that correlation>0 (direction) """ Ic=pd.DataFrame() beta0=pd.DataFrame() length=min(factor_data.shape[1],market_cap_data.shape[1])#74 for i in range(7,length):#2015-06 y = np.array(factor_data.iloc[:,i]) # 因变量为factor第i数据 x = np.array(market_cap_data.iloc[:,i]) # 自变量为第 i列数据 x = sm.add_constant(x) # 若模型中有截距,必须有这一步 model = sm.OLS(y, x).fit() # 构建最小二乘模型并拟合 a=model.resid beta0[i-7]=a # beta0=factor_data length=min(beta0.shape[1],stock_return.shape[1]) for i in range(length): #Ic.append(scipy.stats.pearsonr(beta0.iloc[:,i], stock_return.iloc[:,i])) #Ic.append(stats.stats.spearmanr(beta0.iloc[:,i], stock_return.iloc[:,i])) Ic[i]=stats.stats.spearmanr(beta0.iloc[:,i], stock_return.iloc[:,i]) residuals=Ic.iloc[0,:] p_value=Ic.iloc[1,:] print("%d residuals are:" % len(residuals)) #print(Ic.iloc[0,:]) print("the %d p_value of the residuals are:" % len(residuals)) # print(Ic.iloc[1,:]) print("the Percentage of positive residuals is:") print(residuals[residuals>0].count()/len(residuals)) print("the stand devition of the residual are: ") print(residuals.std()) print("the absulute mean of the residuals are: ") residuals=residuals.abs() print(residuals.mean()) print("the stand devition of the p_value are: ") print(p_value.std()) print("the absulute mean of the p_value are: ") p_value=p_value.abs() print(p_value.mean()) return 0 if __name__ == '__main__': path0="C:/Users/zhang dejian/Downloads/resource/703/project/CI/Stock_return2.csv" path1="C:/Users/zhang dejian/Downloads/resource/703/project/CI/Market_Value.csv" path2="C:/Users/zhang dejian/Downloads/resource/703/project/CI/EP.csv" path3="C:/Users/zhang dejian/Downloads/resource/703/project/CI/BP.csv" path4="C:/Users/zhang dejian/Downloads/resource/703/project/CI/ROA.csv" path5="C:/Users/zhang dejian/Downloads/resource/703/project/CI/ROE.csv" path6="C:/Users/zhang dejian/Downloads/resource/703/project/CI/CFP.csv" path7="C:/Users/zhang dejian/Downloads/resource/703/project/CI/asset_to_liability.csv" path8="C:/Users/zhang dejian/Downloads/resource/703/project/CI/CF_to_Liability.csv" path9="C:/Users/zhang dejian/Downloads/resource/703/project/CI/debt_to_asset.csv" path10="C:/Users/zhang dejian/Downloads/resource/703/project/CI/RSI-30.csv" path11="C:/Users/zhang dejian/Downloads/resource/703/project/CI/Turnover.csv" path12="C:/Users/zhang dejian/Downloads/resource/703/project/CI/cash_ratio.csv" path13="C:/Users/zhang dejian/Downloads/resource/703/project/CI/Div_yeild.csv" path14="C:/Users/zhang dejian/Downloads/resource/703/project/CI/EBITDA_EV.csv" path15="C:/Users/zhang dejian/Downloads/resource/703/project/CI/volatility.csv" stock_return=pd.read_csv(path0) market_cap_data=pd.read_csv(path1) EP=pd.read_csv(path2) BP=pd.read_csv(path3) ROA=pd.read_csv(path4) ROE=pd.read_csv(path5) CFP=pd.read_csv(path6) asset_to_liability=pd.read_csv(path7) CF_to_Liability=pd.read_csv(path8) debt_to_asset=pd.read_csv(path9) RSI_30=pd.read_csv(path10) Turnover=pd.read_csv(path11) cash_ratio=pd.read_csv(path12) Div_yeild=pd.read_csv(path13) EBITDA_EV=
pd.read_csv(path14)
pandas.read_csv
from bs4 import BeautifulSoup import urllib.request import pandas as pd def dateToURL(month, day, year): month=str(month) day=str(day) year=str(year) if len(month)==1: month="0"+month if len(day)==1: day="0"+day return 'https://biz.yahoo.com/research/earncal/{}{}{}.html'.format(year, month, day) def pullEarnings(month, day, year): try: with urllib.request.urlopen(dateToURL(month, day, year)) as page: soup=BeautifulSoup(page, 'lxml') # print(soup.prettify()) table=soup.find_all('table')[5] company=[] symbol=[] EPS_estimate=[] time=[] for row in table.findAll('tr'): cells = row.findAll('td') if len(cells) >=5: # Only extract table body not heading company.append(cells[0].find(text=True)) symbol.append(cells[1].find(text=True)) EPS_estimate.append(cells[2].find(text=True)) time.append(cells[3].find(text=True)) if company[0]=='\n' or symbol[0]=='\n'or EPS_estimate[0]=='\n'or time[0]=='\n': company=company[1:] symbol=symbol[1:] EPS_estimate=EPS_estimate[1:] time=time[1:] earnings=
pd.DataFrame({company[0]:company[1:],symbol[0]:symbol[1:],EPS_estimate[0]:EPS_estimate[1:],time[0]:time[1:] })
pandas.DataFrame
# -*- coding: utf-8 -*- """Extract a COCO captions dataframe from the annotation files.""" from __future__ import print_function import os import sys import argparse import pandas as pd def main(args): """Extract a COCO captions dataframe from the annotation files.""" # Load coco library sys.path.append(args.coco_path + '/PythonAPI') from pycocotools.coco import COCO set_2014 = ['val2014', 'train2014'] set_2017 = ['val2017', 'train2017'] # Make dataframe to store captions in cocoDF = pd.DataFrame(columns=['id', 'set', 'filename', 'caption']) for st in set_2014 + set_2017: print('\nProcessing {}'.format(st)) # Instantiate coco classes coco = COCO(args.coco_path + 'annotations/instances_{}.json'.format(st)) coco_anns = COCO(args.coco_path + 'annotations/captions_{}.json'.format(st)) # Get Categories cats = coco.loadCats(coco.getCatIds()) # Get unique image ids imgIds = [] for cat in cats: imgId = coco.getImgIds(catIds=cat['id']) imgIds += imgId imgIds = list(set(imgIds)) # Get annotations annIds = coco_anns.getAnnIds(imgIds=imgIds) anns = coco_anns.loadAnns(annIds) # Extract ids and captions as tuples captions = [(int(ann['image_id']), ann['caption']) for ann in anns] print(len(captions)) # Extract filenames as tuples img_ids = list(set([ann['image_id'] for ann in anns])) imgs = coco.loadImgs(img_ids) filenames = [(int(img['id']), st + '/' + img['file_name']) for img in imgs] # Make dataframe of captions and filenames captionDF = pd.DataFrame(captions, columns=['id', 'caption']) filesDF = pd.DataFrame(filenames, columns=['id', 'filename']) # Merge dataframes on image id df = captionDF.merge(filesDF, how='outer', on='id') # Assign to set df['set'] = st # Concatenate to resultsDF cocoDF = pd.concat([cocoDF, df], axis=0) # Temporarily store intermediate data df.to_csv(args.interim_result_path + 'coco_' + st + '_captions.csv', index=False) print('\nDone Converting') print('Number of images: {}'.format(cocoDF['id'].nunique())) cocoDF.to_csv(args.coco_path + 'annotations/coco_captions.csv', index=False) print('Saved merged set to ' + args.coco_path + 'annotations/coco_captions.csv') # Make 2014 and 2017 dataframes val2014DF = pd.read_csv(args.interim_result_path + 'coco_val2014_captions.csv') val2017DF = pd.read_csv(args.interim_result_path + 'coco_val2017_captions.csv') train2014DF = pd.read_csv( args.interim_result_path + 'coco_train2014_captions.csv') train2017DF = pd.read_csv( args.interim_result_path + 'coco_train2017_captions.csv') # Concate by year df2014 =
pd.concat([val2014DF, train2014DF], axis=0)
pandas.concat
import re import requests from bs4 import BeautifulSoup from mnemon import mnc import pandas as pd from .utils import SearchableDataFrame, get_re, EXPIRE BASE_URL = "http://stats.oecd.org/sdmx-json" def get_index(ds): """Converts the index to a DatetimeIndex""" v = [
pd.Period(k["id"])
pandas.Period
import datetime as dt import json import os import time import pandas as pd from sklearn import metrics from sklearn.ensemble import RandomForestClassifier import datetime # Statements with "." allows for relative path importing for WebApp and WebAPI # from .ImportSecurities import * # from .utils.aws_util import * # from .utils.data_util import * # from .utils.indicators import * # Statements without "." should be used when running the app/main function independent of WebApp and WebAPI from ImportSecurities import * from utils.aws_util import * from utils.data_util import * from utils.indicators import * import data_util_test def gather_download_data(sd, ed, download_new_data=False): symbols_config_fp = os.path.join(os.getcwd(), 'config', 'symbols_config.json') with open(symbols_config_fp) as fp: symbols_config = json.load(fp) symbols_array = [] for category, array in symbols_config.items(): symbols_array.append(array) flat_symbols = [item for sublist in symbols_array for item in sublist] if download_new_data: spaces_array = [] for array in symbols_array: spaces = " ".join(array) spaces_array.append(spaces) gather_data(symbols_array, spaces_array, sd=sd, ed=ed) def s3_upload_and_list(): # Set up variables cwd = os.getcwd() data_directory = os.path.join(cwd, 'data') # Read Config aws_config_fp = os.path.join(os.getcwd(), 'config', 'aws_config.json') with open(aws_config_fp) as fp: aws_config = json.load(fp) # Set up Session & Resource session = start_session(aws_config['access_key'], aws_config['secret_access_key']) s3 = get_s3_resource(session) bucket = aws_config['bucket_name'] # List current Buckets & Objects per Bucket print_bucket_objects(s3, bucket) # Upload files to Bucket files = [f for f in os.listdir(data_directory) if f.endswith('.csv')] for file in files: upload_file_to_bucket(s3, bucket, os.path.join(data_directory, file), file) # (Optional) Delete files from Bucket # for file in files: # delete_object(s3, bucket, file) # List Buckets & Objects after Upload print_bucket_objects(s3, bucket) def get_technical_indicators_for_date(symbol, given_date, start_date=dt.datetime(2012, 1, 31), end_date=dt.datetime.today()): stock_data = get_ohlcv(symbol, start_date, end_date, base_dir='trading_assistant_app/data') technical_indicators = get_technical_indicators_for_symbol(stock_data) try: return_dict = { 'Price/SMA5': technical_indicators['Price/SMA5'][given_date], 'Price/SMA10': technical_indicators['Price/SMA10'][given_date], 'Price/SMA20': technical_indicators['Price/SMA20'][given_date], 'Price/SMA50': technical_indicators['Price/SMA50'][given_date], 'Price/SMA200': technical_indicators['Price/SMA200'][given_date], 'BB%10': technical_indicators['BB%10'][given_date], 'BB%20': technical_indicators['BB%20'][given_date], 'BB%50': technical_indicators['BB%50'][given_date], 'RSI5': technical_indicators['RSI5'][given_date], 'RSI10': technical_indicators['RSI10'][given_date], 'MACD9': technical_indicators['MACD9'][given_date], 'MOM5': technical_indicators['MOM5'][given_date], 'VAMA10': technical_indicators['VAMA10'][given_date] } except KeyError as e: print(f'Invalid given_date index/key for {e}') return_dict = { 'Price/SMA5': 0, 'Price/SMA10': 0, 'Price/SMA20': 0, 'Price/SMA50': 0, 'Price/SMA200': 0, 'BB%10': 0, 'BB%20': 0, 'BB%50': 0, 'RSI5': 0, 'RSI10': 0, 'MACD9': 0, 'MOM5': 0, 'VAMA10': 0 } return return_dict def get_wsb_volume_for_date(symbol, given_date): # gather reddit mention counts # This allows for relative path retrieval for WebApp and WebAPI reddit_fp = os.path.join('trading_assistant_app', 'reddit_refined', f'{symbol}_rss_wc.csv') # This should be used when running the app/main function independent of WebApp and WebAPI # reddit_fp = os.path.join(os.getcwd(), 'reddit_data', f'{symbol}_rss_wc.csv') try: df_reddit = pd.read_csv(reddit_fp) except FileNotFoundError as e: return { 'wsb_volume': 0 } df_reddit = df_reddit.set_index('Date') df_reddit.index = pd.to_datetime(df_reddit.index) df_reddit = df_reddit.drop('Ticker', axis=1) try: value = df_reddit['wsb_volume'][given_date].item() return_dict = { 'wsb_volume': value } except KeyError as e: # print(f'Invalid given_date index/key for {e}') return_dict = { 'wsb_volume': 0 } return return_dict def get_technical_indicators_for_symbol(stock_data): price_sma_5_symbol = get_price_sma(stock_data, window=5) price_sma_10_symbol = get_price_sma(stock_data, window=10) price_sma_20_symbol = get_price_sma(stock_data, window=20) price_sma_50_symbol = get_price_sma(stock_data, window=50) price_sma_200_symbol = get_price_sma(stock_data, window=200) bb10_pct_symbol = get_bb_pct(stock_data, window=10) bb20_pct_symbol = get_bb_pct(stock_data, window=20) bb50_pct_symbol = get_bb_pct(stock_data, window=50) rsi5_symbol = get_rsi(stock_data, window=5) rsi10_symbol = get_rsi(stock_data, window=10) macd_symbol = get_macd_signal(stock_data, signal_days=9) mom_symbol = get_momentum(stock_data, window=5) vama_symbol = get_vama(stock_data, window=10) # Compile TA into joined DF & FFILL / BFILL df_indicators = pd.concat([price_sma_5_symbol, price_sma_10_symbol, price_sma_20_symbol, price_sma_50_symbol, price_sma_200_symbol, bb10_pct_symbol, bb20_pct_symbol, bb50_pct_symbol, rsi5_symbol, rsi10_symbol, macd_symbol, mom_symbol, vama_symbol], axis=1) df_indicators.fillna(0, inplace=True) return df_indicators def write_predictions_to_csv(start_date, end_date, percent_gain, path, debug=False): date_range = pd.date_range(start_date, end_date) buy_data = dict() sell_data = dict() for date in date_range: predictions_dictionary = get_list_of_predicted_stocks(percent_gain, date) buy_signal_recognized_list = predictions_dictionary['buy_signal_recognized_list'] buy_signal_recognized_str = '_'.join(buy_signal_recognized_list) sell_signal_recognized_list = predictions_dictionary['sell_signal_recognized_list'] sell_signal_recognized_str = '_'.join(sell_signal_recognized_list) buy_data[date] = buy_signal_recognized_str sell_data[date] = sell_signal_recognized_str df_buy = pd.DataFrame(buy_data.items(), columns=['Date', 'Symbols']) df_buy = df_buy.set_index('Date') df_buy.to_csv(os.path.join(path, f'buy_predictions.csv')) df_sell = pd.DataFrame(sell_data.items(), columns=['Date', 'Symbols']) df_sell = df_sell.set_index('Date') df_sell.to_csv(os.path.join(path, f'sell_predictions.csv')) def read_predictions(given_date, minimum_count=0, buy=True, debug=False): df = pd.read_csv(f'trading_assistant_app/predictions/{"buy_predictions" if buy else "sell_predictions"}.csv') df = df.set_index('Date') try: symbols = df['Symbols'][given_date] except KeyError as e: print(f'Invalid given_date index/key for {e}') symbols = '' if isinstance(symbols, float): if np.isnan(symbols): return [] elif isinstance(symbols, str): predictions_list = symbols.split('_') if buy: filtered = filter(lambda symbol: get_wsb_volume_for_date(symbol, given_date)['wsb_volume'] > minimum_count, predictions_list) filtered_list = list(filtered) else: filtered_list = predictions_list return filtered_list def prepare_data(symbols, start_date, end_date, percent_gain, debug=False): # df_array = list() # initialize dictionary to hold dataframe per symbol df_dict = {} # remove the index from the list of symbols if "SPY" in symbols: symbols.remove("SPY") for symbol in symbols: # get stock data for a given time # This allows for relative path retrieval for WebApp and WebAPI # *** # stock_data = get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('trading_assistant_app', 'data')) # This should be used when running the app/main function independent of WebApp and WebAPI stock_data = data_util_test.get_ohlcv(symbol, start_date, end_date, base_dir=os.path.join('data')) # Filter out empty OHLCV DF if len(stock_data) == 0: continue # calculate technical indicators df_indicators = get_technical_indicators_for_symbol(stock_data) # gather reddit mention counts # This allows for relative path retrieval for WebApp and WebAPI # *** #reddit_fp = os.path.join('trading_assistant_app', 'reddit_refined', f'{symbol}_rss_wc.csv') reddit_fp = os.path.join('reddit_refined', f'{symbol}_rss_wc.csv') # This should be used when running the app/main function independent of WebApp and WebAPI # reddit_fp = os.path.join(os.getcwd(), 'reddit_data', f'{symbol}_rss.csv') if os.path.isfile('reddit_refined/' + symbol + '_rss_wc.csv'): df_reddit = pd.read_csv(reddit_fp) df_reddit = df_reddit.set_index('Date') df_reddit.index = pd.to_datetime(df_reddit.index) df_reddit = df_reddit.drop('Ticker', axis=1) else: df_reddit =
pd.DataFrame(columns=["Date","Ticker","wsb_volume"])
pandas.DataFrame
# Functions for performing analysis in the article # "Material Culture Studies in the Age of Big Data: # Digital Excavation of Homemade Facemask Production # during the COVID-19 Pandemic" # # Code Written By: <NAME> # # For import/use instructions, see README.md import pandas as pd import geopandas as gpd import nltk import itertools import collections import seaborn as sns import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes # download necessary NLTK Data if don't already have it nltk.download('stopwords', quiet=True) nltk.download('punkt', quiet=True) nltk.download('averaged_perceptron_tagger', quiet=True) nltk.download('wordnet', quiet=True) # Define general stop words + study-specific stop-words stop = nltk.corpus.stopwords.words('english') \ + ["face", "mask", "masks", "facemask", "facemasks"] # Term lists intentionality_eff = \ [("two", "layer"), ("double", "layer"), ("2", "layer"), ("three", "layer"), ("triple", "layer"), ("3", "layer"), ("multi", "layer"), ("multiple", "layer"), "multilayer", "multilayered", "upf", "uv", "thick", "cotton", ("adjustable", "fit"), ("form", "fit"), ("snug", "fit"), ("tight", "fit"), ("nose", "wire"), ("cover", "chin"), ("cover", "nose"), ("cover", "mouth"), ("filter", "pocket"), "cotton", "kn95", "n95"] intentionality_ineff = \ ["mesh", "crochet", "yarn", "lace", "hole", ("one", "layer"), ("single", "layer"), ("1", "layer"), "compliance", "antimask", ("anti", "mask"), "protest"] unintentionality_ineff = ["valve", "thin", "loose"] mesh = ["mesh"] antimask = ["antimask", ("anti", "mask")] # List of states won by Biden and Trump, respectively biden = ["Washington", "Oregon", "California", "Nevada", "Arizona", "New Mexico", "Colorado", "Hawaii", "Minnesota", "Wisconsin", "Illinois", "Michigan", "Georgia", "Pennsylvania", "Virginia", "Maryland", "New Jersey", "New York", "Massachusetts", "Connecticut", "Rhode Island", "Delaware", "Vermont", "New Hampshire", "Maine"] trump = ["Alaska", "Idaho", "Utah", "Montana", "Wyoming", "North Dakota", "South Dakota", "Nebraska", "Kansas", "Oklahoma", "Texas", "Iowa", "Missouri", "Arkansas", "Louisiana", "Indiana", "Kentucky", "Tennessee", "Mississippi", "Alabama", "West Virginia", "Ohio", "North Carolina", "South Carolina", "Florida"] def process_data(data_path='data/'): ''' Takes clean Etsy data (in subdirectory provided as input) and processes it for user. All of the necessary files (SHP file containing polygon boundaries of U.S. states from the U.S. Census Bureau as of 2020, along with a CSV of collected Etsy facemask data that has had its text columns pre-cleaned of extraneous characters) are in the data/ subdirectory of this repository, so `data/` is the default path. Returns Pandas DataFrame (with lemmatized and tokenized listing titles), along with a GeoPandas DataFrame, containing U.S. state polygons from the 2020 census (shp) ''' df = pd.read_csv(data_path + 'clean_etsy_data.csv') df['date_collected'] =
pd.to_datetime(df['date_collected'])
pandas.to_datetime
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from pandas.tslib import iNaT from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp from pandas import compat from pandas.compat import range, long, lrange, lmap, u from pandas.core.common import notnull, isnull import pandas.core.common as com import pandas.util.testing as tm import pandas.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mutually exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(notnull(float_series), Series)) assert(isinstance(notnull(obj_series), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(isnull(float_series), Series)) assert(isinstance(isnull(obj_series), Series)) # call on DataFrame df = DataFrame(np.random.randn(10, 5)) df['foo'] = 'bar' result = isnull(df) expected = result.apply(isnull) tm.assert_frame_equal(result, expected) def test_isnull_tuples(): result = isnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = isnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result =
isnull([(1,), (2,)])
pandas.core.common.isnull
import networkx as nx from sklearn import preprocessing import glob import warnings import pandas as pd from IPython.display import display import matplotlib.pyplot as plt pd.options.display.max_columns = 20 warnings.filterwarnings("ignore") import numpy as np def read_label(): label = {} for i in range(3, 5, 2): hi = 'low_freq/house_{}/labels.dat'.format(i) label[i] = {} with open(hi) as f: for line in f: splitted_line = line.split(' ') label[i][int(splitted_line[0])] = splitted_line[1].strip( ) + '_' + splitted_line[0] return label def read_merge_data(house, labels): path = 'low_freq/house_{}/'.format(house) file = path + 'channel_1.dat' df = pd.read_table(file, sep=' ', names=['unix_time', labels[house][1]], dtype={'unix_time': 'int64', labels[house][1]: 'float64'}) num_apps = len(glob.glob(path + 'channel*')) for i in range(2, num_apps + 1): file = path + 'channel_{}.dat'.format(i) data = pd.read_table(file, sep=' ', names=['unix_time', labels[house][i]], dtype={'unix_time': 'int64', labels[house][i]: 'float64'}) df =
pd.merge(df, data, how='inner', on='unix_time')
pandas.merge
#!/usr/bin/python # -*- coding: utf-8 -*- import requests import urllib.request import os import sys from bs4 import BeautifulSoup import pandas as pd pd.set_option('display.max_columns', None) import statistics as st from datetime import datetime import numpy import matplotlib.pyplot as plotVersus # from matplotlib.pyplot import figure # figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') # This method gives the data of latest condition which is currently available on the Hobolink cloud" def getLatestConditionFromHobolink(): page = urllib.request.urlopen('https://hobolink.com/p/b0a1dc20e6e7b315b81297194bbb9864') soup = BeautifulSoup(page, 'html.parser').find("div", {"id": "hobolink-latest-conditions-form:datatable-panel"}) divs = [] i = 0 for link in soup.find_all("div"): i += 1 if (i >= 6): divs.append(link) ans = [] for div in divs: var = [] for values in div.find_all("span"): var.append(values.text.encode('ascii','ignore')) ans.append(var) final_ans = [] for i in range(len(ans)): var = [] var.append(ans[i][0][:-1]) var.append(ans[i][1] + b" " + ans[i][2]) final_ans.append(var) return final_ans def download_file(url, local_filename): with requests.get(url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): if chunk: f.write(chunk) def pre_process_data(lines): lines.pop(0) lines = list(reversed(lines)) data = [] for line in lines: var = line.encode('ascii','ignore') x = var.split(b',') x.pop(0) for i in range(len(x)): x[i] = x[i].rstrip() data.append(x) df =
pd.DataFrame.from_records(data)
pandas.DataFrame.from_records
import logging import click import random import pandas as pd from pytorch_lightning.loggers import TensorBoardLogger from definitions import REPO_ROOT, RAW_DATA_DIR, PROCESSED_DATA_DIR import src.data.preprocess_data as prep from src.data.data_loader import RepeatedStratifiedKFoldDataloader from src.models.classifier_chain import ClassifierChainEnsemble from src.models.logistic_regression import ( LogisticRegressionOVRPredictor, LogisticRegressionModel ) from src.models.xgboost_pipeline import DepthwiseXGBPipeline import src.data.var_names as abcd_vars from src.models.evaluation import ResultManager DATA_DIR = PROCESSED_DATA_DIR / 'abcd_data.csv' @click.command() @click.option('--seed', default=0, help='Random number seed.', type=int) @click.option('--k', default=5, help='Number of CV folds.', type=int) @click.option('--n', help='Number of successive k-fold CV runs.', type=int) def main(seed, k, n): logger = logging.getLogger(__name__) logger.info(f'Running training and prediction on unpermuted dataset with ' f'seed={seed}, k={k}, n={n}.') logger.info('Load data') abcd_data =
pd.read_csv(DATA_DIR, index_col='src_subject_id')
pandas.read_csv
from unittest import TestCase from sklearn.model_selection import train_test_split import pandas as pd import scipy.io from pyande.models.statistics.mvg import MultivariateGaussian from pyande.data.calculations import select_threshold class TestMVG(TestCase): def test_mvg(self): mat = scipy.io.loadmat('./data/cardio.mat') x_data = mat['X'] y_data = mat['y'] header_list = ["LB-FHR", "AC", "FM", "UC", "DL", "DS", "ASTV", "MSTV", "ALTV", "MLTV", "width", "min", "max", "nmax", "nzeros", "mode", "mean", "median", "variance", "tendency", "class-fhr"] data =
pd.DataFrame(x_data, columns=header_list)
pandas.DataFrame
import pandas as pd DELIMITER = '|' cols = ['Base', 'E_nX', 'E_X', 'C_nX', 'C_X'] connectives = ['I repeat', 'again', 'in short', 'therefore', 'that is', 'thus'] expanders = { '{Prep}': ['Near', 'By', 'Nearby'], # ['near', 'nearby', 'by'] '{E/D}': ['Here is', 'This is'], # ['Here is', 'There is', 'That is', 'This is', 'It is'] '{Comp}': ['that'], # ['that', 'which'] '{Conn}': ['; ' + c + ', ' for c in connectives] + ['. ' + c[0].upper() + c[1:] + ', ' for c in connectives] } # Returns a list of dicts; each tuple becomes a dict def read_items(filename): df = pd.read_csv(filename, sep='\t') assert ~df.isna().values.any(), 'Input CSV has NA' return df.to_dict('records') # Each dict has keys A, B, Vtr, Vin1, Vin2 # Returns a list of dataframes def read_templates(*filenames): templates = [] for f in filenames: # Read into pandas df df =
pd.read_csv(f, sep='\t', na_filter=False)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed May 13 13:59:31 2020 @author: <NAME> """ import sys, os sys.path.append('H:/cloud/cloud_data/Projects/DL/Code/src') sys.path.append('H:/cloud/cloud_data/Projects/DL/Code/src/ct') import pandas as pd import ntpath import datetime from openpyxl.worksheet.datavalidation import DataValidation from openpyxl.formatting.formatting import ConditionalFormattingList from openpyxl.styles import Font, Color, Border, Side from openpyxl.styles import Protection from openpyxl.styles import PatternFill from glob import glob from shutil import copyfile import numpy as np from collections import defaultdict from openpyxl.utils import get_column_letter from CTDataStruct import CTPatient import keyboard from openpyxl.styles.differential import DifferentialStyle from openpyxl.formatting import Rule from settings import initSettings, saveSettings, loadSettings, fillSettingsTags from classification import createRFClassification, initRFClassification, classifieRFClassification from filterTenStepsGuide import filter_CACS_10StepsGuide, filter_CACS, filter_NCS, filterReconstruction, filter_CTA, filer10StepsGuide, filterReconstructionRF from discharge_extract import extractDICOMTags from tqdm import tqdm #from reco.reco_filter import RecoFilter patient_status = ['OK', 'EXCLUDED', 'MISSING_CACS', 'MISSING_CTA', 'MISSING_NC_CACS', 'MISSING_NC_CTA'] patient_status_manual = ['OK', 'EXCLUDED', 'UNDEFINED', 'INPROGRESS'] patient_status_manualStr = '"' + 'OK,' + 'EXCLUDED,' + 'UNDEFINED,' + 'INPROGRESS,' + '"' scanClasses = defaultdict(lambda:None,{'UNDEFINED': 0, 'CACS': 1, 'CTA': 2, 'NCS_CACS': 3, 'NCS_CTA': 4, 'ICA': 5, 'OTHER': 6}) scanClassesInv = defaultdict(lambda:None,{0: 'UNDEFINED', 1: 'CACS', 2: 'CTA', 3: 'NCS_CACS', 4: 'NCS_CTA', 5: 'ICA', 6: 'OTHER'}) scanClassesStr = '"' + 'UNDEFINED,' + 'CACS,' + 'CTA,' + 'NCS_CACS,' + 'NCS_CTA,' + 'ICA,' + 'OTHER' +'"' scanClassesManualStr = '"' + 'UNDEFINED,' + 'CACS,' + 'CTA,' + 'NCS_CACS,' + 'NCS_CTA,' + 'ICA,' + 'OTHER,' + 'PROBLEM,' + 'QUESTION,' +'"' imageQualityStr = '"' + 'UNDEFINED,' + 'GOOD,' + 'BAD' +'"' recoClasses = ['FBP', 'IR', 'UNDEFINED'] changeClasses = ['NO_CHANGE', 'SOURCE_CHANGE', 'MASTER_CHANGE', 'MASTER_SOURCE_CHANGE'] def setColor(workbook, sheet, rows, NumColumns, color): for r in rows: if r % 100 == 0: print('index:', r, '/', max(rows)) for c in range(1,NumColumns): cell = sheet.cell(r, c) cell.fill = PatternFill(start_color=color, end_color=color, fill_type = 'solid') def setColorFormula(sheet, formula, color, NumRows, NumColumns): column_letter = get_column_letter(NumColumns+1) colorrange="B2:" + str(column_letter) + str(NumRows) dxf = DifferentialStyle(font=Font(color=color)) r = Rule(type="expression", dxf=dxf, stopIfTrue=True) r.formula = [formula] sheet.conditional_formatting.add(colorrange, r) def setBorderFormula(sheet, formula, NumRows, NumColumns): column_letter = get_column_letter(NumColumns+1) colorrange="B1:" + str(column_letter) + str(NumRows) thin = Side(border_style="thin", color="000000") border = Border(bottom=thin) dxf = DifferentialStyle(border=border) r = Rule(type="expression", dxf=dxf, stopIfTrue=True) r.formula = [formula] sheet.conditional_formatting.add(colorrange, r) # Set border for index for i in range(1, NumRows + 1): cell = sheet.cell(i, 1) cell.border = Border() return sheet def sortFilepath(filepathList): filenameList=[] folderpathList=[] for filepath in filepathList: folderpath, filename, _ = splitFilePath(filepath) filenameList.append(filename) folderpathList.append(folderpath) dates_str = [x.split('_')[-1] for x in filenameList] dates = [datetime.datetime(int(x[4:8]), int(x[2:4]), int(x[0:2])) for x in dates_str] idx = list(np.argsort(dates)) filepathlistsort=[] for i in idx: filepathlistsort.append(folderpathList[i] + '/' + '_'.join(filenameList[i].split('_')[0:-1]) + '_' + dates[i].strftime("%d%m%Y") + '.xlsx') return filepathlistsort def sortFolderpath(folderpath, folderpathList): dates_str = [x.split('_')[-1] for x in folderpathList] dates = [datetime(int(x[4:8]), int(x[2:4]), int(x[0:2])) for x in dates_str] date_str = folderpath.split('_')[-1] date = datetime(int(date_str[4:8]), int(date_str[2:4]), int(date_str[0:2])) idx = list(np.argsort(dates)) folderpathSort=[] for i in idx: folderpathSort.append(folderpathList[i]) if dates[i] == date: break return folderpathSort def isNaN(num): return num != num def splitFilePath(filepath): """ Split filepath into folderpath, filename and file extension :param filepath: Filepath :type filepath: str """ folderpath, _ = ntpath.split(filepath) head, file_extension = os.path.splitext(filepath) folderpath, filename = ntpath.split(head) return folderpath, filename, file_extension def update_CACS_10StepsGuide(df_CACS, sheet): for index, row in df_CACS.iterrows(): cell_str = 'AB' + str(index+2) cell = sheet[cell_str] cell.value = row['CACS10StepsGuide'] #cell.protection = Protection(locked=False) return sheet def mergeITT(df_ITT, df_data): # Merge ITT table print('Merge ITT table') for i in range(len(df_data)): patient = df_ITT[df_ITT['ID']==df_data.loc[i, 'PatientID']] if len(patient)==1: df_data.loc[i, 'ITT'] = patient.iloc[0]['ITT'] df_data.loc[i, 'Date CT'] = patient.iloc[0]['Date CT'] df_data.loc[i, 'Date ICA'] = patient.iloc[0]['Date ICA'] return df_data def mergeDicom(df_dicom, df_data_old=None): print('Merge dicom table') if df_data_old is None: df_data = df_dicom.copy() else: idx = df_dicom['SeriesInstanceUID'].isin(df_data_old['SeriesInstanceUID']) df_data = pd.concat([df_data_old, df_dicom[idx==False]], axis=0) return df_data def mergeTracking(df_tracking, df_data, df_data_old=None): if df_data_old is None: df_data = df_data.copy() df_tracking = df_tracking.copy() df_data.replace(to_replace=[np.nan], value='', inplace=True) df_tracking.replace(to_replace=[np.nan], value='', inplace=True) # Merge tracking table print('Merge tracking table') df_data['Responsible Person Problem'] = '' df_data['Date Query'] = '' df_data['Date Answer'] = '' df_data['Problem Summary'] = '' df_data['Results'] = '' for index, row in df_tracking.iterrows(): patient = row['PatientID'] df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): # Update 'Problem Summary' if df_data.loc[indexP, 'Problem Summary']=='': df_data.loc[indexP, 'Problem Summary'] = row['Problem Summary'] else: df_data.loc[indexP, 'Problem Summary'] = df_data.loc[indexP, 'Problem Summary'] + ' | ' + row['Problem Summary'] # Update 'results' if df_data.loc[indexP, 'Results']=='': df_data.loc[indexP, 'Results'] = row['results'] else: df_data.loc[indexP, 'Results'] = df_data.loc[indexP, 'Results'] + ' | ' + row['results'] else: df_data = df_data.copy() df_data_old = df_data_old.copy() df_tracking = df_tracking.copy() df_data.replace(to_replace=[np.nan], value='', inplace=True) df_data_old.replace(to_replace=[np.nan], value='', inplace=True) df_tracking.replace(to_replace=[np.nan], value='', inplace=True) l = len(df_data_old) df_data['Responsible Person Problem'] = '' df_data['Date Query'] = '' df_data['Date Answer'] = '' df_data['Problem Summary'] = '' df_data['Results'] = '' df_data['Responsible Person Problem'][0:l] = df_data_old['Responsible Person Problem'] df_data['Date Query'][0:l] = df_data_old['Date Query'] df_data['Date Answer'][0:l] = df_data_old['Date Answer'] df_data['Problem Summary'][0:l] = df_data_old['Problem Summary'] df_data['Results'][0:l] = df_data_old['Results'] for index, row in df_tracking.iterrows(): patient = row['PatientID'] df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): # Update 'Problem Summary' if df_data.loc[indexP, 'Problem Summary']=='': df_data.loc[indexP, 'Problem Summary'] = row['Problem Summary'] else: if not row['Problem Summary'] in df_data.loc[indexP, 'Problem Summary']: df_data.loc[indexP, 'Problem Summary'] = df_data.loc[indexP, 'Problem Summary'] + ' | ' + row['Problem Summary'] # Update 'results' if df_data.loc[indexP, 'Results']=='': df_data.loc[indexP, 'Results'] = row['results'] else: if not row['results'] in df_data.loc[indexP, 'Results']: df_data.loc[indexP, 'Results'] = df_data.loc[indexP, 'Results'] + ' | ' + row['results'] return df_data def mergeEcrf(df_ecrf, df_data): # Merge ecrf table print('Merge ecrf table') df_data['1. Date of CT scan'] = '' for index, row in df_ecrf.iterrows(): patient = row['Patient identifier'] df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): # Update '1. Date of CT scan' df_data.loc[indexP, '1. Date of CT scan'] = row['1. Date of CT scan'] return df_data def mergePhase_exclude_stenosis(df_phase_exclude_stenosis, df_data): # Merge phase_exclude_stenosis print('Merge phase_exclude_stenosis table') df_data['phase_i0011'] = '' df_data['phase_i0012'] = '' for index, row in df_phase_exclude_stenosis.iterrows(): patient = row['mnpaid'] df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): # Update tags if df_data.loc[indexP, 'phase_i0011']=='': df_data.loc[indexP, 'phase_i0011'] = str(row['phase_i0011']) else: df_data.loc[indexP, 'phase_i0011'] = str(df_data.loc[indexP, 'phase_i0011']) + ', ' + str(row['phase_i0011']) if df_data.loc[indexP, 'phase_i0012']=='': df_data.loc[indexP, 'phase_i0012'] = str(row['phase_i0012']) else: df_data.loc[indexP, 'phase_i0012'] = str(df_data.loc[indexP, 'phase_i0011']) + ', ' + str(row['phase_i0011']) return df_data def mergePrct(df_prct, df_data): # Merge phase_exclude_stenosis print('Merge prct table') df_data['other_best_phase'] = '' df_data['rca_best_phase'] = '' df_data['lad_best_phase'] = '' df_data['lcx_best_phase'] = '' for index, row in df_prct.iterrows(): patient = row['PatientId'] df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): # Update tags df_data.loc[indexP, 'other_best_phase'] = row['other_best_phase'] df_data.loc[indexP, 'rca_best_phase'] = row['rca_best_phase'] df_data.loc[indexP, 'lad_best_phase'] = row['lad_best_phase'] df_data.loc[indexP, 'lcx_best_phase'] = row['lcx_best_phase'] return df_data def mergeStenosis_bigger_20_phase(df_stenosis_bigger_20_phases, df_data): # Merge phase_exclude_stenosis print('Merge Stenosis_bigger_20_phase table') df_data['STENOSIS'] = '' patientnames = df_stenosis_bigger_20_phases['mnpaid'].unique() df_stenosis_bigger_20_phases.replace(to_replace=[np.nan], value='', inplace=True) for patient in patientnames: patientStenose = df_stenosis_bigger_20_phases[df_stenosis_bigger_20_phases['mnpaid']==patient] sten = '' for index, row in patientStenose.iterrows(): art='' if row['LAD']==1: art = 'LAD' if row['RCA']==1: art = 'RCA' if row['LMA']==1: art = 'LMA' if row['LCX']==1: art = 'LCX' if sten =='': if not art=='': sten = art + ':' + str(row['sten_i0231 (Phase #1)']) + ':' + str(row['sten_i0241']) + ':' + str(row['sten_i0251']) else: if not art=='': sten = sten + ', ' + art + ':' + str(row['sten_i0231 (Phase #1)']) + ':' + str(row['sten_i0241']) + ':' + str(row['sten_i0251']) df_patient = df_data[df_data['PatientID']==patient] for indexP, rowP in df_patient.iterrows(): df_data.loc[indexP, 'STENOSIS'] = sten return df_data def freeze(writer, sheetname, df): NumRows=1 NumCols=1 df.to_excel(writer, sheet_name = sheetname, freeze_panes = (NumCols, NumRows)) def highlight_columns(sheet, columns=[], color='A5A5A5', offset=2): for col in columns: cell = sheet.cell(1, col+offset) cell.fill = PatternFill(start_color=color, end_color=color, fill_type = 'solid') return sheet def setAccessRights(sheet, columns=[], promt='', promptTitle='', formula1='"Dog,Cat,Bat"'): for column in columns: column_letter = get_column_letter(column+2) dv = DataValidation(type="list", formula1=formula1, allow_blank=True) dv.prompt = promt dv.promptTitle = promptTitle column_str = column_letter + str(1) + ':' + column_letter + str(1048576) dv.add(column_str) sheet.add_data_validation(dv) return sheet def setComment(sheet, columns=[], comment=''): for column in columns: column_letter = get_column_letter(column+2) dv = DataValidation() dv.prompt = comment column_str = column_letter + str(1) + ':' + column_letter + str(1048576) dv.add(column_str) sheet.add_data_validation(dv) return sheet def checkTables(settings): print('Checking existance of required tables.') # Check if requird tables exist tables=['filepath_dicom', 'filepath_ITT', 'filepath_ecrf', 'filepath_prct', 'filepath_phase_exclude_stenosis', 'filepath_stenosis_bigger_20_phases', 'filepath_tracking'] for table in tables: if not os.path.isfile(settings[table]): raise ValueError("Source file " + settings[table] + ' does not exist. Please copy file in the correct directory!') return True def createData(settings, NumSamples=None): """ Create data columns from dicom metadata :param settings: Dictionary of settings :type settings: dict """ XA=False # Extract dicom data df_dicom = pd.read_excel(settings['filepath_dicom'], index_col=0) # Reorder datafame df_dicom = df_dicom[settings['dicom_tags_order']] if XA: df_dicom = df_dicom[(df_dicom['Modality']=='CT') | (df_dicom['Modality']=='OT') | (df_dicom['Modality']=='XA')] else: df_dicom = df_dicom[(df_dicom['Modality']=='CT') | (df_dicom['Modality']=='OT')] df_dicom = df_dicom.reset_index(drop=True) cols = df_dicom.columns.tolist() cols_new = settings['dicom_tags_first'] + [x for x in cols if x not in settings['dicom_tags_first']] df_dicom = df_dicom[cols_new] df_data = df_dicom.copy() df_data = df_data.reset_index(drop=True) if NumSamples is not None: df_data = df_data[0:NumSamples] # Extract ecrf data df_ecrf = pd.read_excel(settings['filepath_ecrf']) df_data = mergeEcrf(df_ecrf, df_data) # Extract ITT df_ITT = pd.read_excel(settings['filepath_ITT'], 'Tabelle1') df_data = mergeITT(df_ITT, df_data) # Extract phase_exclude_stenosis df_phase_exclude_stenosis = pd.read_excel(settings['filepath_phase_exclude_stenosis']) df_data = mergePhase_exclude_stenosis(df_phase_exclude_stenosis, df_data) # Extract prct df_prct = pd.read_excel(settings['filepath_prct']) df_data = mergePrct(df_prct, df_data) # Extract stenosis_bigger_20_phases df_stenosis_bigger_20_phases = pd.read_excel(settings['filepath_stenosis_bigger_20_phases']) df_data = mergeStenosis_bigger_20_phase(df_stenosis_bigger_20_phases, df_data) # Reoder columns cols = df_data.columns.tolist() cols_new = settings['dicom_tags_first'] + [x for x in cols if x not in settings['dicom_tags_first']] #filepath_master_data = os.path.join(settings['folderpath_components'], 'discharge_master_data_' + settings['date'] + '.xlsx') #df_data.to_excel(settings['filepath_data']) df_data.to_pickle(settings['filepath_data']) def createPredictions(settings): """ Create prediction columns :param settings: Dictionary of settings :type settings: dict """ df_data = pd.read_pickle(settings['filepath_data']) df_pred = pd.DataFrame() # Filter by CACS based on 10-Steps-Guide df = filter_CACS_10StepsGuide(df_data) df_pred['CACS10StepsGuide'] = df['CACS10StepsGuide'] # Filter by CACS based selection df = filter_CACS(df_data) df_pred['CACS'] = df['CACS'] # Filter by NCS_CACS and NCS_CTA based on criteria df = filter_NCS(df_data) df_pred['NCS_CTA'] = df['NCS_CTA'] df_pred['NCS_CACS'] = df['NCS_CACS'] # Filter by CTA df = filter_CTA(settings) df_pred['CTA'] = df['CTA'].astype('bool') df_pred['CTA_phase'] = df['phase'] df_pred['CTA_arteries'] = df['arteries'] df_pred['CTA_source'] = df['source'] # Filter by ICA df = pd.DataFrame('', index=np.arange(len(df_pred)), columns=['ICA']) df_pred['ICA'] = df['ICA'] # Filter by reconstruction df = filterReconstruction(df_data, settings) df_pred['RECO'] = df['RECO'] # Predict CLASS classes = ['CACS', 'CTA', 'NCS_CTA', 'NCS_CACS'] for i in range(len(df_pred)): if i % 1000 == 0: print('index:', i, '/', len(df_pred)) value='' for c in classes: if df_pred.loc[i, c]: if value=='': value = value + c else: value = value + '+' + c if value == '': value = 'UNDEFINED' df_pred.loc[i, 'CLASS'] = value # Save predictions df_pred.to_pickle(settings['filepath_prediction']) def updateRFClassification(folderpath_master, folderpath_master_before): """ Update random forest classification :param settings: Dictionary of settings :type settings: dict """ date = folderpath_master.split('_')[-1] folderpath_components = os.path.join(folderpath_master, 'discharge_components_' + date) filepath_rfc = os.path.join(folderpath_components, 'discharge_rfc_' + date + '.xlsx') folderpath_master_before_list = glob(folderpath_master_before + '/*master*') folderpath_master_before_list = sortFolderpath(folderpath_master, folderpath_master_before_list) filepathMasters = glob(folderpath_master_before_list[-2] + '/*process*.xlsx') date_before = folderpath_master_before_list[-2].split('_')[-1] df_master = pd.read_excel(filepathMasters[0], sheet_name='MASTER_' + date_before) columns = ['RFCLabel', 'RFCClass', 'RFCConfidence'] df_rfc = pd.DataFrame('UNDEFINED', index=np.arange(len(df_master)), columns=columns) df_rfc[columns] = df_master[columns] df_rfc.to_excel(filepath_rfc) def createManualSelection(settings): """ Create manual selection columns :param settings: Dictionary of settings :type settings: dict """ print('Create manual selection') #df_data = pd.read_excel(settings['filepath_data'], index_col=0) df_data = pd.read_pickle(settings['filepath_data']) df_manual0 = pd.DataFrame('UNDEFINED', index=np.arange(len(df_data)), columns=['ClassManualCorrection']) df_manual1 = pd.DataFrame('', index=np.arange(len(df_data)), columns=['Comment']) df_manual2 = pd.DataFrame('', index=np.arange(len(df_data)), columns=['Responsible Person']) df_manual3 = pd.DataFrame('UNDEFINED', index=np.arange(len(df_data)), columns=['Image Quality']) df_manual = pd.concat([df_manual0, df_manual1, df_manual2, df_manual3], axis=1) #df_manual.to_excel(settings['filepath_manual']) df_manual.to_pickle(settings['filepath_manual']) def createTrackingTable(settings): """ Create tracking table :param settings: Dictionary of settings :type settings: dict """ print('Create tracking table') df_track = pd.DataFrame(columns=settings['columns_tracking']) df_track.to_pickle(settings['filepath_master_track']) # Update master writer = pd.ExcelWriter(settings['filepath_master'], engine="openpyxl", mode="a") # Remove sheet if already exist sheet_name = 'TRACKING' + '_' + settings['date'] workbook = writer.book sheetnames = workbook.sheetnames if sheet_name in sheetnames: sheet = workbook[sheet_name] workbook.remove(sheet) # Add patient ro master df_track.to_excel(writer, sheet_name=sheet_name) writer.save() print('Update tracking table') # Read tracking table df_tracking = pd.read_excel(settings['filepath_tracking'], 'tracking table') df_tracking.replace(to_replace=[np.nan], value='', inplace=True) df_track = pd.read_excel(settings['filepath_master'], 'TRACKING_' + settings['date'], index_col=0) columns_track = df_track.columns columns_tracking = df_tracking.columns #columns_union = ['ProblemID', 'PatientID', 'Problem Summary', 'Problem'] columns_union = columns_track if len(df_track)==0: ProblemIDMax=-1 df_track = df_tracking[columns_union] else: ProblemIDMax = max([int(x) for x in list(df_track['ProblemID'])]) ProblemIDInt = 0 for index, row in df_tracking.iterrows(): ProblemID = row['ProblemID'] if not ProblemID == '': index = df_track['ProblemID'][df_track['ProblemID'] == ProblemID].index[0] for col in columns_union: df_track.loc[index,col] = row[col] else: ProblemIDInt = ProblemIDMax + 1 ProblemIDMax = ProblemIDInt row['ProblemID'] = str(ProblemIDInt).zfill(6) row_new = pd.DataFrame('', index=[0], columns=columns_union) for col in columns_union: row_new.loc[0,col] = row[col] df_track = df_track.append(row_new, ignore_index=True) df_tracking.loc[index,'ProblemID'] = str(ProblemIDInt).zfill(6) # Update master writer = pd.ExcelWriter(settings['filepath_master'], engine="openpyxl", mode="a") # Remove sheet if already exist sheet_name = 'TRACKING' + '_' + settings['date'] workbook = writer.book sheetnames = workbook.sheetnames if sheet_name in sheetnames: sheet = workbook[sheet_name] workbook.remove(sheet) # Add patient ro master df_track.to_excel(writer, sheet_name=sheet_name) writer.save() # Update tracking writer = pd.ExcelWriter(settings['filepath_tracking'], engine="openpyxl", mode="a") # Remove sheet if already exist sheet_name = 'tracking table' workbook = writer.book sheetnames = workbook.sheetnames if sheet_name in sheetnames: sheet = workbook[sheet_name] workbook.remove(sheet) # Add patient to master df_tracking.to_excel(writer, sheet_name=sheet_name, index=False) writer.save() def orderMasterData(df_master, settings): """ Order columns of the master :param settings: Dictionary of settings :type settings: dict """ # Reoder columns cols = df_master.columns.tolist() cols_new = settings['columns_first'] + [x for x in cols if x not in settings['columns_first']] df_master = df_master[cols_new] df_master = df_master.sort_values(['PatientID', 'StudyInstanceUID', 'SeriesInstanceUID'], ascending = (True, True, True)) df_master.reset_index(inplace=True, drop=True) return df_master def mergeMaster(settings): """ Merge master file :param settings: Dictionary of settings :type settings: dict """ print('Create master') # Read tables print('Read discharge_data') df_data = pd.read_pickle(settings['filepath_data']) print('Read discharge_pred') df_pred = pd.read_pickle(settings['filepath_prediction']) df_pred['CTA'] = df_pred['CTA'].astype('bool') print('Read discharge_reco') df_reco_load = pd.read_excel(settings['filepath_reco'], index_col=0) df_reco = pd.DataFrame() df_reco['RECO'] = df_reco_load['PredClass'] df_reco['RECO_PROP'] = df_reco_load['Prop'] print('Read discharge_rfc') df_rfc = pd.read_pickle(settings['filepath_rfc']) print('Read discharge_manual') df_manual = pd.read_pickle(settings['filepath_manual']) print('Read discharge_track') print('Create discharge_master') df_master = pd.concat([df_data, df_pred, df_rfc, df_manual, df_reco], axis=1) #df_master = pd.concat([df_data, df_pred, df_rfc, df_manual], axis=1) writer =
pd.ExcelWriter(settings['filepath_master'], engine="openpyxl", mode="w")
pandas.ExcelWriter
#!/home/sunnymarkliu/softwares/anaconda3/bin/python # _*_ coding: utf-8 _*_ """ @author: SunnyMarkLiu @time : 17-12-22 下午7:23 """ from __future__ import absolute_import, division, print_function import os import sys module_path = os.path.abspath(os.path.join('..')) sys.path.append(module_path) # remove warnings import warnings warnings.filterwarnings('ignore') import datetime import numpy as np import pandas as pd from pypinyin import lazy_pinyin from sklearn.preprocessing import LabelEncoder from conf.configure import Configure from utils import data_utils from tqdm import tqdm def check_last_time_order_info(uid, userid_grouped, flag, check_name, last_time=1): """ 最近的一次交易的具体信息 check_name """ if flag == 0: return -1 df = userid_grouped[uid] if df.shape[0] < last_time: return -1 else: return df.iloc[-last_time][check_name] def pre_days_order_count(uid, userid_grouped, flag, days): """ 往前 days 的 order 数量 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['days_from_now'] < days] return df.shape[0] def pre_days_checkname_diff_count(uid, userid_grouped, flag, days, check_name): """ 往前 days 的 order 的不同 check_name 数量 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['days_from_now'] < days] if df.shape[0] == 0: return 0 else: return len(df[check_name].unique()) def year_order_count(uid, userid_grouped, flag, year): """ 2016年的 order 的不同 check_name 数量 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] return df.shape[0] def year_checkname_diff_count(uid, userid_grouped, flag, year, check_name): """ year 的 order 的不同 check_name 数量 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] if df.shape[0] == 0: return 0 else: return len(df[check_name].unique()) def year_order_month_count(uid, userid_grouped, flag, year): """ 每年去了几个月份 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] if df.shape[0] == 0: return 0 else: return len(df['order_month'].unique()) def year_order_month_most(uid, userid_grouped, flag, year): """ 每年一个月去的最多的次数 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] df = df.groupby(['order_month']).count()['orderTime'].reset_index() if df.shape[0] == 0: return 0 else: return df['orderTime'].max() def year_most_order_month(uid, userid_grouped, flag, year): """ 每年去的最多次数的月份 """ if flag == 0: return -1 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] df = df.groupby(['order_month']).count()['orderTime'].reset_index() if df.shape[0] == 0: return -1 else: return df.sort_values(by='orderTime', ascending=False)['order_month'].values[0] def year_good_order_count(uid, userid_grouped, flag, year): """ 每年精品订单数量 """ if flag == 0: return 0 df = userid_grouped[uid] df = df.loc[df['order_year'] == year] return sum(df['orderType']) def last_time_checkname_ratio(uid, userid_grouped, flag, check_name): """ 最后一次 checkname 的占比 """ if flag == 0: return 0 df = userid_grouped[uid] last_check_name = df.iloc[-1][check_name] last_count = df[check_name].tolist().count(last_check_name) return 1.0 * last_count / df.shape[0] def build_order_history_features(df, history): features = pd.DataFrame({'userid': df['userid']}) df_ids = history['userid'].unique() userid_grouped = dict(list(history.groupby('userid'))) #给trade表打标签,若id在login表中,则打标签为1,否则为0 features['has_history_flag'] = features['userid'].map(lambda uid: uid in df_ids).astype(int) print("基本特征") # build_order_history_features2 函数中提交提取,冗余 # 最近的一次交易的 orderType # features['last_time_orderType'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'orderType', 1), axis=1) # 倒数第二个 orderType # features['last_2_time_orderType'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'orderType', 2), axis=1) # features['last_3_time_orderType'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'orderType',3), axis=1) # 倒数第二次距离现在的时间 # features['last_2_time_days_from_now'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'days_from_now', 2), axis=1) # features['last_3_time_days_from_now'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'days_from_now', 3), axis=1) # 最近的一次交易的 days_from_now, order_year, order_month, order_day, order_weekofyear, order_weekday features['last_time_days_from_now'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'days_from_now'), axis=1) features['last_time_order_year'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'order_year'), axis=1) features['last_time_order_month'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'order_month'), axis=1) features['last_time_order_day'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'order_day'), axis=1) features['last_time_order_weekofyear'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'order_weekofyear'), axis=1) features['last_time_order_weekday'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'order_weekday'), axis=1) features['last_time_continent'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'continent'), axis=1) features['last_time_country'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'country'), axis=1) features['last_time_city'] = features.apply(lambda row: check_last_time_order_info(row['userid'], userid_grouped, row['has_history_flag'], 'city'), axis=1) print("计数特征") # 往前 90days 的计数特征 features['pre_90days_order_count'] = features.apply(lambda row: pre_days_order_count(row['userid'], userid_grouped, row['has_history_flag'], 90), axis=1) features['pre_90days_order_continent_count'] = features.apply(lambda row: pre_days_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 90, 'continent'), axis=1) features['pre_90days_order_country_count'] = features.apply(lambda row: pre_days_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 90, 'country'), axis=1) features['pre_90days_order_city_count'] = features.apply(lambda row: pre_days_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 90, 'city'), axis=1) features['2016_order_count'] = features.apply(lambda row: year_order_count(row['userid'], userid_grouped, row['has_history_flag'], 2016), axis=1) features['2017_order_count'] = features.apply(lambda row: year_order_count(row['userid'], userid_grouped, row['has_history_flag'], 2017), axis=1) # features['order_count_diff'] = features['2016_order_count'] - features['2017_order_count'] # features['2016_order_continent_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2016, 'continent'), axis=1) # features['2016_order_country_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2016, 'country'), axis=1) # features['2016_order_city_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2016, 'city'), axis=1) features['2017_order_continent_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2017, 'continent'), axis=1) features['2017_order_country_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2017, 'country'), axis=1) features['2017_order_city_count'] = features.apply(lambda row: year_checkname_diff_count(row['userid'], userid_grouped, row['has_history_flag'], 2017, 'city'), axis=1) # 是否 2016 年和 2017 年都有 order features['both_year_has_order'] = features.apply(lambda row: (row['2016_order_count'] > 0) & (row['2017_order_count'] > 0), axis=1).astype(int) # 每年去了几个月份 features['2016_order_month_count'] = features.apply(lambda row: year_order_month_count(row['userid'], userid_grouped, row['has_history_flag'], 2016), axis=1) features['2017_order_month_count'] = features.apply(lambda row: year_order_month_count(row['userid'], userid_grouped, row['has_history_flag'], 2017), axis=1) # 每年一个月去的最多的次数 # features['2016_order_month_most'] = features.apply(lambda row: year_order_month_most(row['userid'], userid_grouped, row['has_history_flag'], 2016), axis=1) # features['2017_most_order_month'] = features.apply(lambda row: year_order_month_most(row['userid'], userid_grouped, row['has_history_flag'], 2017), axis=1) # 每年去的最多的月份 # features['2016_most_order_month'] = features.apply(lambda row: year_most_order_month(row['userid'], userid_grouped, row['has_history_flag'], 2016), axis=1) # features['2017_most_order_month'] = features.apply(lambda row: year_most_order_month(row['userid'], userid_grouped, row['has_history_flag'], 2017), axis=1) print('比率特征') # 用户总订单数、精品订单数、精品订单比例 features['2016_good_order_count'] = features.apply(lambda row: year_good_order_count(row['userid'], userid_grouped, row['has_history_flag'], 2016), axis=1) features['2016_good_order_ratio'] = features.apply(lambda row: row['2016_good_order_count'] / row['2016_order_count'] if row['2016_order_count'] != 0 else 0, axis=1) features['2017_good_order_count'] = features.apply(lambda row: year_good_order_count(row['userid'], userid_grouped, row['has_history_flag'], 2017), axis=1) features['2017_good_order_ratio'] = features.apply(lambda row: row['2017_good_order_count'] / row['2017_order_count'] if row['2017_order_count'] != 0 else 0, axis=1) features['total_order_count'] = features['2016_order_count'] + features['2017_order_count'] features['total_good_order_count'] = features['2016_good_order_count'] + features['2017_good_order_count'] features['total_good_order_ratio'] = features.apply(lambda row: row['total_good_order_count'] / row['total_order_count'] if row['total_order_count'] != 0 else 0, axis=1) # has_good_order 强特!! features['has_good_order'] = (features['total_good_order_ratio'] > 0).astype(int) features.drop(['2016_good_order_count', '2017_good_order_count', 'total_order_count', 'total_good_order_count'], axis=1, inplace=True) # cv 变差一点点,不到1个万分点 # print('最后一次 order 的 check_name 的占比') #(未测试) # features['last_time_order_year_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'order_year'), axis=1) # features['last_time_order_month_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'order_month'), axis=1) # features['last_time_order_day_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'order_day'), axis=1) # features['last_time_order_weekofyear_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'order_weekofyear'), axis=1) # features['last_time_order_weekday_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'order_weekday'), axis=1) # features['last_time_continent_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'continent'), axis=1) # features['last_time_country_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'country'), axis=1) # features['last_time_city_ratio'] = features.apply(lambda row: last_time_checkname_ratio(row['userid'], userid_grouped, row['has_history_flag'], 'city'), axis=1) return features def order_last_num(order): """ 按时间倒序对订单排序 """ users = list(set(order['userid'])) order_c = order.copy() order_c['order_number'] = 1 for i in tqdm(range(len(users))): slit_df = order_c[order_c['userid'] == users[i]] order_c.loc[slit_df.index, 'order_number'] = range(slit_df.shape[0],0,-1) return order_c def days_since_prior_order(order): """ 用户两次订单之间的时间间隔 """ users = list(set(order['userid'])) order_c = order.copy() order_c['days_since_prior_order'] = np.nan for i in tqdm(range(len(users))): slit_df = order_c[order_c['userid'] == users[i]] time_shift = slit_df['orderTime'].shift(1) time_series = pd.Series(slit_df['orderTime'].values - time_shift.values).map(lambda x: x/np.timedelta64(1, 's'))/(24*3600.0) order_c.loc[slit_df.index, 'days_since_prior_order'] = time_series.values return order_c def build_time_category_encode(history): history['orderTime'] = pd.to_datetime(history['orderTime'], unit='s') # 训练集和测试集最后一天是 2017-09-11 now = datetime.datetime(2017, 9, 12) history['days_from_now'] = history['orderTime'].map(lambda order: (now - order).days) history['order_year'] = history['orderTime'].dt.year history['order_month'] = history['orderTime'].dt.month history['order_year_month'] = history['order_year'] * 100 + history['order_month'] history['order_day'] = history['orderTime'].dt.day history['order_weekofyear'] = history['orderTime'].dt.weekofyear history['order_weekday'] = history['orderTime'].dt.weekday history['order_hour'] = history['orderTime'].dt.hour history['order_minute'] = history['orderTime'].dt.minute history['order_is_weekend'] = history['orderTime'].map(lambda d: 1 if (d == 0) | (d == 6) else 0) history['order_week_hour'] = history['order_weekday'] * 24 + history['order_hour'] # 按照时间排序 history = history.sort_values(by='orderTime') history.reset_index(drop=True, inplace=True) history = order_last_num(history) history = days_since_prior_order(history) history['continent'] = history['continent'].map(lambda c: '_'.join(lazy_pinyin(c)) if c == c else 'None') history['country'] = history['country'].map(lambda c: '_'.join(lazy_pinyin(c)) if c == c else 'None') history['city'] = history['city'].map(lambda c: '_'.join(lazy_pinyin(c)) if c == c else 'None') le = LabelEncoder() le.fit(history['continent'].values) history['continent'] = le.transform(history['continent']) le = LabelEncoder() le.fit(history['country'].values) history['country'] = le.transform(history['country']) le = LabelEncoder() le.fit(history['city'].values) history['city'] = le.transform(history['city']) return history def father_son_order_statistic(uid, userid_grouped, flag): if flag == 0: return -1, -1 df = userid_grouped[uid] if len(set(df['orderTime'])) < df.shape[0]: # 存在子父订单 start = -1 count = 0 for i in range(df.shape[0] - 2): if df['orderTime'].iat[i] == df['orderTime'].iat[i+1]: if count == 0: start = i count += 1 df = df.iloc[start: start+count] if df.shape[0] == 0: return -1, -1 else: order_type0_count = df[df['orderType'] == 0].shape[0] order_type1_count = df[df['orderType'] == 0].shape[0] order_type0_ratio = 1.0* order_type0_count / df.shape[0] order_type1_ratio = 1.0* order_type1_count / df.shape[0] return order_type0_ratio, order_type1_ratio else: return -1, -1 def year_first_last_order_history_type(uid, history_grouped, flag, year=2017): """ 每年第一次和最后一次订单的 ordertype """ if flag == 0: return -1, -1 df = history_grouped[uid] df = df[df['order_year'] == year] if df.shape[0] < 1: return -1, -1 first1_ordertype = df['orderType'].iat[0] last1_ordertype = df['orderType'].iat[-1] return first1_ordertype, last1_ordertype def build_order_history_features2(df, history): features = pd.DataFrame({'userid': df['userid']}) history_uids = history['userid'].unique() history_grouped = dict(list(history.groupby('userid'))) #给trade表打标签,若id在login表中,则打标签为1,否则为0 features['has_history_flag'] = features['userid'].map(lambda uid: uid in history_uids).astype(int) # # 子父订单统计特征 # features['father_son_order_statistic'] = features.apply(lambda row: father_son_order_statistic(row['userid'], history_grouped, row['has_history_flag']), axis=1) # # features['has_father_son_order'] = features['father_son_order_statistic'].map(lambda x: x[0]) # # features['father_son_order_order_type0_count'] = features['father_son_order_statistic'].map(lambda x: x[1]) # # features['father_son_order_order_type1_count'] = features['father_son_order_statistic'].map(lambda x: x[2]) # features['father_son_order_order_type0_ratio'] = features['father_son_order_statistic'].map(lambda x: x[0]) # features['father_son_order_order_type1_ratio'] = features['father_son_order_statistic'].map(lambda x: x[1]) # del features['father_son_order_statistic'] print('强特:2016_2017_first_last_ordertype') features['2017_first_last_order_history_type'] = features.apply(lambda row: year_first_last_order_history_type(row['userid'], history_grouped, row['has_history_flag'], year=2017), axis=1) features['2017_first_order_history_type'] = features['2017_first_last_order_history_type'].map(lambda x: x[0]) features['2017_last_order_history_type'] = features['2017_first_last_order_history_type'].map(lambda x: x[1]) features['2016_first_last_order_history_type'] = features.apply(lambda row: year_first_last_order_history_type(row['userid'], history_grouped, row['has_history_flag'], year=2016), axis=1) features['2016_first_order_history_type'] = features['2016_first_last_order_history_type'].map(lambda x: x[0]) features['2016_last_order_history_type'] = features['2016_first_last_order_history_type'].map(lambda x: x[1]) features['2016_2017_first_last_ordertype'] = ((features['2016_first_order_history_type'] == 1) | (features['2017_first_order_history_type'] == 1) | (features['2016_last_order_history_type'] == 1) | (features['2017_last_order_history_type'] == 1)).astype(int) features.drop(['2017_first_last_order_history_type', '2017_first_order_history_type', '2017_last_order_history_type', '2016_first_last_order_history_type', '2016_first_order_history_type', '2016_last_order_history_type'], axis=1, inplace=True) print('每年每个月份订单的统计') df = history.groupby(by=['userid', 'order_year_month']).count().reset_index()[['userid', 'order_year_month', 'orderid']].rename(columns={'orderid': 'year_month_order_count'}) df = df.pivot('userid', 'order_year_month', 'year_month_order_count').reset_index().fillna(0) df.columns = df.columns.astype(str) df.drop(['201709', '201708', '201707', '201701', '201705'], axis=1, inplace=True) features = features.merge(df, on='userid', how='left') del features['has_history_flag'] return features def history_city_hot_statistic(uid, history_grouped, flag, hot_df, column): if flag == 0: return -1, -1, -1, -1 df = history_grouped[uid] citys = df[column].values hots = [] for c in citys: hots.append(hot_df[hot_df[column] == c]['hot'].values[0]) hots = np.array(hots) return np.mean(hots), np.max(hots), np.min(hots), np.std(hots) def last_order_location_hot(uid, history_grouped, flag, hot_df, column): if flag == 0: return -1 df = history_grouped[uid] last_hot = hot_df[hot_df[column] == df[column].iat[-1]]['hot'].values[0] return last_hot def build_order_history_features3(df, orderHistory, history): """ 热度分析 """ city_hot = orderHistory.groupby(['city']).count()['userid'].reset_index().rename(columns={'userid': 'hot'}) city_hot['hot'] = city_hot['hot'].astype(float) / sum(city_hot['hot']) country_hot = orderHistory.groupby(['country']).count()['userid'].reset_index().rename(columns={'userid': 'hot'}) country_hot['hot'] = country_hot['hot'].astype(float) / sum(country_hot['hot']) continent_hot = orderHistory.groupby(['continent']).count()['userid'].reset_index().rename(columns={'userid': 'hot'}) continent_hot['hot'] = continent_hot['hot'].astype(float) / sum(continent_hot['hot']) features = pd.DataFrame({'userid': df['userid']}) history_uids = history['userid'].unique() history_grouped = dict(list(history.groupby('userid'))) #给trade表打标签,若id在login表中,则打标签为1,否则为0 features['has_history_flag'] = features['userid'].map(lambda uid: uid in history_uids).astype(int) # features['history_city_hot_statistic'] = features.apply(lambda row: history_city_hot_statistic(row['userid'], history_grouped, row['has_history_flag'], city_hot, 'city'), axis=1) # features['history_city_hot_mean'] = features['history_city_hot_statistic'].map(lambda x:x[0]) # features['history_city_hot_max'] = features['history_city_hot_statistic'].map(lambda x:x[1]) # features['history_city_hot_min'] = features['history_city_hot_statistic'].map(lambda x:x[2]) # features['history_city_hot_std'] = features['history_city_hot_statistic'].map(lambda x:x[3]) # del features['history_city_hot_statistic'] # features['history_country_hot_statistic'] = features.apply(lambda row: history_city_hot_statistic(row['userid'], history_grouped, row['has_history_flag'], country_hot, 'country'), axis=1) # features['history_country_hot_mean'] = features['history_country_hot_statistic'].map(lambda x:x[0]) # features['history_country_hot_max'] = features['history_country_hot_statistic'].map(lambda x:x[1]) # features['history_country_hot_min'] = features['history_country_hot_statistic'].map(lambda x:x[2]) # features['history_country_hot_std'] = features['history_country_hot_statistic'].map(lambda x:x[3]) # del features['history_country_hot_statistic'] # features['history_continent_hot_statistic'] = features.apply(lambda row: history_city_hot_statistic(row['userid'], history_grouped, row['has_history_flag'], continent_hot, 'continent'), axis=1) # features['history_continent_hot_mean'] = features['history_continent_hot_statistic'].map(lambda x:x[0]) # features['history_continent_hot_max'] = features['history_continent_hot_statistic'].map(lambda x:x[1]) # features['history_continent_hot_min'] = features['history_continent_hot_statistic'].map(lambda x:x[2]) # features['history_continent_hot_std'] = features['history_continent_hot_statistic'].map(lambda x:x[3]) # del features['history_continent_hot_statistic'] # 只有 last_order_city_hot 线上A榜提升 features['last_order_city_hot'] = features.apply(lambda row: last_order_location_hot(row['userid'], history_grouped, row['has_history_flag'], city_hot, 'city'), axis=1) # features['last_order_country_hot'] = features.apply(lambda row: last_order_location_hot(row['userid'], history_grouped, row['has_history_flag'], country_hot, 'country'), axis=1) # features['last_order_continent_hot'] = features.apply(lambda row: last_order_location_hot(row['userid'], history_grouped, row['has_history_flag'], continent_hot, 'continent'), axis=1) del features['has_history_flag'] return features def multi_order_has_good_order(uid, history_grouped, flag): """ 多次订单并且有精品的老用户 """ if flag == 0: return 0 df = history_grouped[uid] if (df.shape[0] > 1) and sum(df['orderType']) > 0: return 1 return 0 def build_order_history_features4(df, history): features = pd.DataFrame({'userid': df['userid']}) history_uids = history['userid'].unique() history_grouped = dict(list(history.groupby('userid'))) #给trade表打标签,若id在login表中,则打标签为1,否则为0 features['has_history_flag'] = features['userid'].map(lambda uid: uid in history_uids).astype(int) # 多次订单并且有精品的老用户 features['multi_order_has_good_order'] = features.apply(lambda row: multi_order_has_good_order(row['userid'], history_grouped, row['has_history_flag']), axis=1) # 多次订单并且都没有精品订单 del features['has_history_flag'] return features def city_info(df): """ 城市订单特征 """ df_select = df.groupby(['city']).size().reset_index() df_select.columns = ['city', 'city_order_num'] df_select['city_order_ratio'] = df_select['city_order_num'] / (1.0 * df.shape[0]) df_select_1 = df[df['orderType'] == 1].groupby(['city']).size().reset_index() df_select_1.columns = ['city', 'city_high_order_num'] df_select = pd.merge(df_select, df_select_1, on='city', how='left') df_select['city_high_order_num'] = df_select['city_high_order_num'].fillna(0).astype(int) df_select['city_high_order_ratio'] = df_select['city_high_order_num'] / (1.0 * df_select['city_order_num']) del df_select_1 return df_select def country_info(df): """ 国家订单特征 """ df_select = df.groupby(['country']).size().reset_index() df_select.columns = ['country', 'country_order_num'] df_select['country_order_ratio'] = df_select['country_order_num'] / (1.0 * df.shape[0]) df_select_1 = df[df['orderType'] == 1].groupby(['country']).size().reset_index() df_select_1.columns = ['country', 'country_high_order_num'] df_select =
pd.merge(df_select, df_select_1, on='country', how='left')
pandas.merge
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_no_items_raises(self): with pytest.raises(ValueError, match="No objects to concatenate"): concat([]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces) tm.assert_frame_equal(result, df) with pytest.raises(ValueError, match="All objects passed were None"): concat([None, None]) def test_concat_keys_with_none(self): # #1649 df0 = DataFrame([[10, 20, 30], [10, 20, 30], [10, 20, 30]]) result = concat({"a": None, "b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) expected = concat({"b": df0, "c": df0[:2], "d": df0[:1], "e": df0}) tm.assert_frame_equal(result, expected) result = concat( [None, df0, df0[:2], df0[:1], df0], keys=["a", "b", "c", "d", "e"] ) expected =
concat([df0, df0[:2], df0[:1], df0], keys=["b", "c", "d", "e"])
pandas.concat
#!/usr/bin/env python # encoding:utf-8 '''sklearn doc ''' import re import os import sys import numpy as np import pandas as pd from time import time from sklearn.model_selection import GridSearchCV, cross_val_predict # RandomizedSearchCV cross_val_score train_test_split from skfeature.function.information_theoretical_based import MRMR from imblearn.over_sampling import SMOTE # from sklearn.feature_selection import SelectKBest, mutual_info_classif, mutual_info_regression,f_classif # from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from joblib import Memory, dump, load from sklearn import metrics from pycm import * #swiss-army knife of confusion matrice from collections import Counter # from sklearn.base import BaseEstimator,TransformerMixin # from imblearn.metrics import classification_report_imbalanced import utils import matplotlib.pyplot as plt import matplotlib matplotlib.use('agg') #UserWarning: from plotnine import * #ggplot #Global variables mem = Memory("./mycache") #A context object for caching a function's return value each time it is called with the same input arguments. import itertools # COLORS = 'bgrcmyk' #blue green red itertools.cycle(cmap.colors)) # cmaps['Qualitative'] = ['Pastel1', 'Pastel2', 'Paired', 'Accent', # 'Dark2', 'Set1', 'Set2', 'Set3', # 'tab10', 'tab20', 'tab20b', 'tab20c'] cmap = plt.get_cmap('Paired') COLORS = cmap.colors from sklearn_pipeline_config import * #SCALERS, Tree_based_CLASSIFIERS, Other_CLASSIFIERS RANDOM_STATE All_CLASSIFIERS = Tree_based_CLASSIFIERS + Other_CLASSIFIERS ######################## pipeline functions ################### def plot_tsne(df, Y=None, targets=None, filename='decomposition'): """to be fihished method= ['tsne', 'pca', 'tsvd'] t-SNE has a cost function that is not convex, i.e. with different initializations we can get different results PCA for dense data or TruncatedSVD for sparse data 但TSVD直接使用scipy.sparse矩阵,不需要densify操作,所以推荐使用TSVD而不是PCA """ from sklearn.manifold import TSNE from sklearn.decomposition import PCA, TruncatedSVD n_components = min(df.shape) if min(df.shape) <10 else 10 X = TSNE(random_state=RANDOM_STATE, learning_rate=100, n_components=2).fit_transform(df) pd.DataFrame(X).to_csv(filename + ".tSNE.csv") fig = plt.figure(figsize=(10, 6)) for c, i, target_name in zip('rgb', np.unique(Y), targets): plt.scatter(X[Y==i, 0], X[Y==i, 1], c=c, label=target_name) plt.xlabel('tSNE-1') plt.ylabel('tSNE-2') plt.title('tSNE') plt.legend() fig.savefig(filename + ".tSNE.svg") #pca pca = PCA(random_state=RANDOM_STATE, n_components=n_components) pca.fit(df) X = pca.transform(df) pd.DataFrame(X).to_csv(filename + ".pca.csv") fig = plt.figure(figsize=(10, 6)) for c, i, target_name in zip('rgb', np.unique(Y), targets): plt.scatter(X[Y==i, 0], X[Y==i, 1], c=c, label=target_name) p1,p2=pca.explained_variance_ratio_[:2] plt.xlabel('PCA-1 explained variance ratio: ' + '{:.2f}%'.format(p1)) plt.ylabel('PCA-2 explained variance ratio: ' + '{:.2f}%'.format(p2)) plt.title('PCA') plt.legend() # print("singular_values: ", pca.singular_values_) fig.savefig(filename + ".pca.svg") #tSVD tsvd=TruncatedSVD(random_state=RANDOM_STATE, n_components=n_components) tsvd.fit(df) X = tsvd.transform(df) pd.DataFrame(X).to_csv(filename + ".tSVD.csv") fig = plt.figure(figsize=(10, 6)) for c, i, target_name in zip('rgb', np.unique(Y), targets): plt.scatter(X[Y==i, 0], X[Y==i, 1], c=c, label=target_name) p1,p2=tsvd.explained_variance_ratio_[:2] plt.xlabel('tSVD-1 explained variance ratio: ' + '{:.2f}%'.format(p1)) plt.ylabel('tSVD-2 explained variance ratio: ' + '{:.2f}%'.format(p1)) plt.title('tSVD') plt.legend() fig.savefig(filename + ".tSVD.svg") @mem.cache def get_data(X_file, y_file): """features matrix and metadata group.mf with header and index_col,transform to relative abundance matrix""" if X_file.endswith("csv"): X = pd.read_csv(X_file, index_col=0, header=0) # rows =samples ,columns=genes(features) else: X = pd.read_csv(X_file, index_col=0, header=0,sep="\t") if y_file.endswith("csv"): y = pd.read_csv(y_file, index_col=0, header=0) # rows =samples else: y = pd.read_csv(y_file, index_col=0, header=0,sep="\t") return X, y def plot_classification_report(dict_report, filename="sklearn", width=6, heightight=3,dpi=300): report_df = round(pd.DataFrame(dict_report), 2) #保留2位小数 report_df.to_csv(filename + ".classification_report.csv") report_df = report_df.loc[report_df.index != 'support',] report_df.insert(0,'score',report_df.index) plt_df = report_df.melt(id_vars=['score'], value_vars=report_df.columns[1:]) base_plot=(ggplot(plt_df, aes( y = plt_df.columns[1],x=plt_df.columns[-1])) + geom_point(aes(fill="factor(variable)"),stat='identity',show_legend=False)+ facet_grid('~score')+ #,scales="free_x" xlim(0,1)+ theme_bw()+ labs(x="",y="") ) base_plot.save(filename=filename + '.classification_report.svg', dpi=dpi,width=width, height=heightight) def report_topN_cv_results(results, n_top=10, filename="report"): """输出topn,评估那个标准化和分类器最好,用gridsearch""" labels = [] mean_train_score=[] mean_test_score=[] std_test_score=[] mean_fit_time=[] for i in range(1, n_top + 1): candidates = np.flatnonzero(results['rank_test_score'] == i) for candidate in candidates: labeldict={key:value.__class__.__name__ for key, value in results['params'][candidate].items()} label = "_".join(labeldict[k] for k in ["scl","clf"]) labels.append(label) mean_train_score.append(results['mean_train_score'][candidate]) mean_test_score.append(results['mean_test_score'][candidate]) std_test_score.append(results['std_test_score'][candidate]) mean_fit_time.append(results['mean_fit_time'][candidate]) df = pd.DataFrame.from_dict( dict(zip(['label','mean_train_score', 'mean_test_score', 'std_test_score', 'mean_fit_time'], (labels, mean_train_score, mean_test_score, std_test_score, mean_fit_time)))) df.to_csv(filename + ".top{}.cv_results.csv".format(n_top) , index=False) fig = plt.figure(figsize=(12,5)) #fig size # plt.grid(which='major', axis='both') # You should use add_axes if you want exact control of the figure layout. eg. left = max([len(label) for label in labels])*0.008 bottom, width, height=[0.2, 0.5, 0.7] ax = fig.add_axes([left, bottom, width, height]) #axes position ax.barh(labels, mean_test_score, xerr=std_test_score, align='center', color=COLORS, ecolor='black') # ax.set_title("Compare the different scalers") ax.set_xlabel('Classification accuracy') # ax.set_ylabel('') #Different scalers ax.set_yticklabels(labels) ax.autoscale() fig.savefig(filename + ".top{}.cv_results.svg".format(n_top)) def csv2pycm_report(cm_csv): """readin cfm csv file and output report for multiple matrics""" df = pd.read_csv(cm_csv, index_col=0, header=0) matrix = df.T.to_dict() cm=ConfusionMatrix(matrix=matrix) cm.save_html(cm_csv + ".report") cm.save_csv(cm_csv + '.report') def plot_confusion_matrix(cfm_df, filename="confusionmatrix", cmap=plt.cm.Blues, accuracy=None): """or plt.cm.gray""" cfm_df.to_csv(filename + ".csv") labels = list(cfm_df.columns) fig, ax = plt.subplots() fig.set_size_inches(8,8) cfm_df_norm = cfm_df.astype('float') / cfm_df.sum(axis=1) # cax = ax.matshow(cfm_df, cmap=cmap) ax.imshow(cfm_df, interpolation='nearest', cmap=cmap) # ax.set_title("Accuracy: " + accuracy) # plt.title('title test',fontsize=12,color='r') ax.xaxis.set_ticks_position('bottom') if isinstance(labels,list): ax.set(xticks=np.arange(cfm_df.shape[1]+1)-.5, yticks=np.arange(cfm_df.shape[0]+1)-.5, # ... and label them with the respective list entries yticklabels=labels, title="Accuracy: " + accuracy, ylabel='True label', xlabel='Predicted label') ax.tick_params(length=.0) # plt.xlabel('Predicted label') # plt.ylabel('True label') # ax.legend().set_visible(False) #no legend ax.set_xticklabels(labels, rotation=45) fmt = '.2f' thresh = 0.4 # max(cfm_df.max()) / 2. for i, j in itertools.product(range(cfm_df.shape[0]), range(cfm_df.shape[1])): ax.text(j, i+0.1, format(cfm_df_norm.iloc[i, j], fmt), horizontalalignment="center", color="white" if cfm_df_norm.iloc[i, j] > thresh else "black") ax.text(j, i-0.1, cfm_df.iloc[i, j], horizontalalignment="center", color="white" if cfm_df_norm.iloc[i, j] > thresh else "black") plt.tight_layout() fig.savefig(filename + ".svg") def plot_mean_test_scores(labels,mean_test_score,error,filename): """评估那个标准化和特征筛选最好,用gridsearch""" fig = plt.figure(figsize=(8,4)) #fig size plt.grid(which='major', axis='both') # You should use add_axes if you want exact control of the figure layout. eg. left = max([len(label) for label in labels])*0.01 +0.1 bottom, width, height=[0.2, 0.5, 0.7] ax = fig.add_axes([left, bottom, width, height]) #axes position ax.barh(labels, mean_test_score, xerr=error, align='center', color=COLORS, ecolor='black') # ax.set_title("Compare the different scalers") ax.set_xlabel('Classification accuracy') # ax.set_ylabel('') #Different scalers ax.set_yticklabels(labels) ax.autoscale() fig.savefig(filename) def plot_feature_importance(df, k, filename): """plot feature importance for LGBMClassifier column0 features, column_1 importance """ fig = plt.figure(figsize=(6,8)) # plt.grid(which='major', axis='both') left = max([len(label) for label in df.iloc[:,0]])*0.01 +0.1 bottom, width, height=[0.1, 1-left-0.1, 0.85] indices_of_top_k = np.sort(np.argpartition(np.array(df.iloc[:,1]), -k)[-k:]) #np.argpartition: index, all smaller elements will be moved before it and all larger elements behind it #argpartition的效率比较高,据说是O(n) index 操作 df = df.iloc[indices_of_top_k,].sort_values(by='importance') ax = fig.add_axes([left, bottom, width, height]) #axes position ax.barh(df.iloc[:,0],df.iloc[:,1]) ax.set_ylim(-0.5,k-0.5) ax.set_xlim(0,max(df.importance)*1.1) for i, v in enumerate(df.iloc[:,1]): ax.text(v, i, '{0:0.2f}'.format(v), fontsize=8, horizontalalignment='left',verticalalignment='center') ax.set_xlabel("Feature importance") fig.savefig(filename) top_k_feature_names = df.feature_names return top_k_feature_names def plot_coefficients(df, topk=20, filename="filename"): """coefficients dataframe """ # Access the classes df = df.reindex(df.abs().sum(axis=1).sort_values(ascending=False).index).head(topk) classes = df.columns n_classes = len(classes) df = df.sort_values(by=classes[0]) fig,axes=plt.subplots(1,n_classes, sharey = True) if n_classes==1: axes=[axes] fig.set_size_inches(3*n_classes+ 1, 8) # fig.suptitle("Coefficient of the features") fontsize = "x-large" #if n_classes !=1 else "large" for i in range(n_classes): # Access the row containing the coefficients for this class class_coef = df.iloc[:,i] # sort_idx = np.argsort(class_coef) colors = [COLORS[7] if c < 0 else COLORS[3] for c in class_coef] yticks = np.arange(len(class_coef)) axes[i].barh(yticks, class_coef, color=colors)# # feature_names = np.array(feature_names) # Here I corrected the start to 0 (Your code has 1, which shifted the labels) axes[i].tick_params(axis = 'both', labelsize = fontsize) #which = 'minor', axes[i].set_yticks(yticks) axes[i].set_yticklabels(list(df.index)) # rotation=60,fontsize=fontsize ha="right" axes[i].set_title(classes[i],fontsize='xx-large') axes[i].set_ylim(-0.6, len(class_coef)-0.4) #bottom: float, top: float fig.text(0.5, 0.04, 'Coefficient of the features', ha='center',fontsize='xx-large') #'medium', 'large' 'x-large', 'xx-large' fig.savefig(filename + ".coef.svg") # np.logspace(2, 6, 6, base=2) def plot_bin_roc_curve(y_test, y_score,class_names,filename): """Score(pred)表示每个测试样本属于正样本的概率,从高到低,依次将“Score”值作为阈值threshold, 当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。 每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。 当我们将threshold设置为1和0时,分别可以得到ROC曲线上的(0,0)和(1,1)两个点。 将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当threshold取值越多,ROC曲线越平滑。 多分类的可以每个标签绘制一条ROC曲线 一图一表原则,样品mf命名以数字开头0_no, 1_CD,这样自动0是阴性样品,1是阳性样本 """ fpr, tpr, _ = metrics.roc_curve(y_test, y_score) roc_auc = metrics.auc(fpr,tpr) df = pd.DataFrame.from_dict( dict(zip(['classes', 'fpr', 'tpr', 'auc'], (class_names[1], fpr, tpr, roc_auc)))) df.to_csv(filename + ".roc_curve.csv", index=False) fig = plt.figure(figsize=(8,8)) lw=2 ax = fig.add_subplot(111) plt.grid(which='major', axis='both') ax.plot(fpr, tpr, color='darkorange', lw=2, label='{0} (area ={1:0.2f})'.format(class_names[1],roc_auc)) ###假正率为横坐标,真正率为纵坐标做曲线 ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc="lower right",fancybox=True, framealpha=0.8, fontsize=6) fig.savefig(filename + ".roc_curve.svg") # fpr, tpr, thresholds = roc_curve(Y[test], probas_[:, 1]) 二分类 #roc_auc: GridSearch(est, param_grid, scoring='roc_auc') # auc_score, by setting the new scoring parameter to roc_auc: GridSearch(est, param_grid, scoring='roc_auc'). It will do the right thing and use predict_proba (or decision_function if predict_proba is not available). def plot_multi_roc_curve(y_test, y_score,classes,filename): """ Learn to predict each class against the other Compute ROC curve and ROC area for each class classes order same as y_test """ from scipy import interp # 计算每一类的ROC n_classes=len(classes) fpr = dict() tpr = dict() roc_auc = dict() dfs = [] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = metrics.auc(fpr[i], tpr[i]) df = pd.DataFrame.from_dict( dict(zip(['classes', 'fpr', 'tpr', 'auc'], (classes[i], fpr[i], tpr[i], roc_auc[i])))) dfs.append(df) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = metrics.roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = metrics.auc(fpr["micro"], tpr["micro"]) df = pd.DataFrame.from_dict( dict(zip(['classes', 'fpr', 'tpr', 'auc'], ('micro', fpr["micro"], tpr["micro"], roc_auc["micro"])))) dfs.append(df) # Compute macro-average ROC curve and ROC area # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = metrics.auc(fpr["macro"], tpr["macro"]) df = pd.DataFrame.from_dict( dict(zip(['classes', 'fpr', 'tpr', 'auc'], ('macro', fpr["macro"], tpr["macro"], roc_auc["macro"])))) dfs.append(df) concat_dfs = pd.concat(dfs) concat_dfs.to_csv(filename + ".roc_curve.csv", index=False) # Plot all ROC curves lw=2 plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro_average (area = {0:0.2f})'.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=lw) plt.plot(fpr["macro"], tpr["macro"], label='macro_average (area = {0:0.2f})'.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=lw) colors = COLORS[:n_classes] for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label=' {0} (area = {1:0.2f})'.format(classes[i], roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.grid(b=True, ls=':') plt.legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=8) plt.savefig(filename + ".roc_curve.svg") ######################## pipeline functions END ################### class SklearnPipeline(): def __init__(self, X_filename, X, Y, log="SklearnPipeline.log", outdir="./"): """load the feature matrix(X) and maping file(Y) X should be normalized or relative transformed """ self.outdir = os.path.abspath(outdir) self.filename = os.path.join(self.outdir, X_filename) utils.create_dir(self.outdir) self.logger = utils.create_logger(log) self.logger.info("Start reading data from {}".format(X_filename)) self.X, self.Y = X, Y self.Y = self.Y.loc[self.X.index,:] #sort and select samples self.target_names=[re.sub(r" +", "_",name) for name in np.unique(self.Y.values)] #sorted in same order of 0 1 2 labels self.label_counts = Counter(self.Y.iloc[:,0]) self.logger.info('Finish loading data from {}, dimension is {}, \n \t\t\t label counts {}'.format( X_filename, self.X.shape, self.label_counts)) self.stats = [] self.stats.append(("original_dim", self.X.shape)) @utils.tryExcept def filter_low_prevalence_features(self, prevalence=0.2, to_relative=False): """pd.DataFrame: rows = feaures feature组内覆盖度最大的要大于prevalence, 保证特征在该覆盖度下可以代表该组,防止过滤掉组内特性富集的features 可以每个组内过滤低覆盖度的,group-specific filter, for update later OTU counts were converted to relative abundances, filtered at a minimum of 10% prevalence across samples 稀疏矩阵如何过滤。 """ self.X = self.X.loc[self.X.sum(axis=1)>0 , self.X.sum(axis=0)>0] #del 0 featrues and 0 samples if prevalence !=0: within_class_prevalence =[np.sum(self.X[self.Y.iloc[:,0].values==k]>0, axis=0)/v for k,v in self.label_counts.items()] # features within_class prevalence for each label list of n_class Series if to_relative : self.X = (self.X.T / self.X.sum(axis=1)).T # transform to relative abundance matrix, rows are samples self.X = self.X.loc[:, pd.DataFrame(within_class_prevalence).max() > prevalence] #filter low within class prevalence features self.X = self.X.loc[self.X.sum(axis=1)>0 ,:] # filter 0 samples 间接删除离群样本 self.X.to_csv(self.filename + ".filter_{}_prevalence.csv".format(prevalence)) self.Y = self.Y.loc[self.X.index,:] #sort and select samples after feature selection self.Y = LabelEncoder().fit_transform(self.Y.values.ravel()) self.logger.info("Filtered the features with max within_class prevalence lower than {}, dimension is {}".format(prevalence, self.X.shape)) self.stats.append(("prevalence_{}_dim".format(prevalence), self.X.shape)) @utils.tryExcept def mrmr_feature_select(self, n_selected_features=50): """ Brown, <NAME> al. "Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection." JMLR 2012 select features index[0] is the most important feature j_cmi: basic scoring criteria for linear combination of shannon information term j_cmi=I(f;y)-beta*sum_j(I(fj;f))+gamma*sum(I(fj;f|y)) conditional mutual information mrmr gama=0 互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。互信息是点间互信息(PMI)的期望值 MIfy: mutual information between selected features and response y """ # plot_tsne(self.X,Y=self.Y,targets=self.target_names, filename=self.filename +'.before_mrmr_feature_selection') n_samples, n_features = self.X.shape x=np.array(self.X) if n_selected_features and n_features > n_selected_features: # filter half more features or select 50 features int(n_features*percent) # # self.logger.info("selecting {} features using mrmr".format(num_fea)) idx, j_cmi, MIfy = MRMR.mrmr(x, self.Y, n_selected_features=n_selected_features) else: idx, j_cmi, MIfy = MRMR.mrmr(x, self.Y) #select automatically may still remain many features or num_fea = len(idx) # obtain the dataset on the selected features self.features = self.X.columns[idx].values mrmr_report = pd.DataFrame({"features":self.features, "j_cmi":j_cmi, "MIfy": MIfy}, columns=['features', 'j_cmi', 'MIfy']) mrmr_report = mrmr_report.sort_values('MIfy',ascending=False) mrmr_report.to_csv(self.filename + ".mrmr_features.report.csv",index=False) self.X = self.X.iloc[:,idx] #select mrmr features sel_bools = self.X.sum(axis=1)!=0 # filter all 0 rows samples. self.X = self.X[sel_bools] self.Y = self.Y[sel_bools] self.X.to_csv(self.filename + ".mrmr_sel_features.csv") self.logger.info("Selected {} features using mrmr".format(num_fea)) self.stats.append(("mrmr_dim", self.X.shape)) # plot_tsne(self.X,Y=self.Y,targets=self.target_names, filename=self.filename +'.after_mrmr_feature_selection') @utils.tryExcept def over_sampling(self): """Over-sampling the minority class for imbalance data using SMOTE https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/ The main objective of balancing classes is to either increasing the frequency of the minority class or decreasing the frequency of the majority class. Over-Sampling increases the number of instances in the minority class by randomly replicating them in order to present a higher representation of the minority class in the sample Disadvantages It increases the likelihood of overfitting since it replicates the minority class events. In most cases, synthetic techniques like SMOTE and MSMOTE will outperform the conventional oversampling and undersampling methods For better results, one can use synthetic sampling methods like SMOTE and MSMOTE along with advanced boosting methods like Gradient boosting and XG Boost. X G Boost is generally a more advanced form of Boosting and takes care of imbalanced data set by balancing it in itself try XG boosting on the imbalanced data directly set to get better results. """ class_sample_count = Counter(self.Y) self.stats.append(("ori_class_sample_count", class_sample_count)) isbalanced = len(set(class_sample_count.values())) if isbalanced ==1: self.logger.info('The dataset is balanced with class_sample_count {}'.format(class_sample_count)) self.features = self.X.columns else: self.logger.info('Dataset shape {} before over sampling'.format(class_sample_count)) sm = SMOTE(random_state=RANDOM_STATE) self.features = self.X.columns self.X, self.Y = sm.fit_resample(self.X, self.Y) self.X = pd.DataFrame(self.X,columns=self.features) self.stats.append(("smote_class_sample_count", Counter(self.Y))) self.logger.info('Over sampled dataset with SMOTE, shape {}'.format( Counter(self.Y) )) @utils.tryExcept def select_best_scl_clf(self, SCALERS, Tree_based_CLASSIFIERS, Other_CLASSIFIERS, scoring= 'accuracy', outer_cv=10, inner_cv=5, n_jobs=1, search=0): """选最好的标准化方法和classifier (default parameters) 组合 Each sample i.e. each row of the data matrix X = X_full[:, [0,1]] #根据前两个特征判断那种数据转化效果好, 用pca后可视化进行比较 数据转化过滤中同时考虑binarizer 和 abundance based的数据哪种转化方式更能提高分类效果,并考虑分类样本均衡的问题。 Compare the effect of different scalers on data with outliers https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html#sphx-glr-auto-examples-preprocessing-plot-all-scaling-py test one model with multiple scalers This example uses different scalers, transformers, and normalizers to bring the data within a pre-defined range In general, learning algorithms benefit from standardization of the data set. If some outliers are present in the set, robust scalers or transformers are more appropriate. The behaviors of the different scalers, transformers, and normalizers on a dataset containing marginal outliers is highlighted in Compare the effect of different scalers on data with outliers. A notable exception are decision tree-based estimators that are robust to arbitrary scaling of the data. """ self.search = search scls=[SCALER[0] for SCALER in SCALERS] clfs = [clf[0].__class__.__name__ for clf in Other_CLASSIFIERS] trees = [clf[0].__class__.__name__ for clf in Tree_based_CLASSIFIERS] if search: self.logger.info('Select the best tree-based classifiers: {} \n \t\t\t and combination of scalers: {} \n \t\t\t and classifiers: {} \n \t\t\t Tune each classifier with GridSearchCV'.format(trees, scls, clfs)) else: self.logger.info('Select the best tree-based classifiers: {} \n \t\t\t and combination of scalers: {} \n \t\t\t and classifiers: \n \t\t\t with default parameters'.format(trees, scls, clfs)) # search best combination with scalars and clfs with default params PARAM_GRID = [ { 'scl': [NonScaler()], 'clf': [clf[0] for clf in Tree_based_CLASSIFIERS] }, { 'scl': [scl[1] for scl in SCALERS], 'clf': [clf[0] for clf in Other_CLASSIFIERS], } ] # search best combination with scalars and hyper-parameters tuned clfs PARAM_GRID_SEARCH =[ dict({ 'scl': [NonScaler()], 'clf': [clf[0]], **clf[1] }) for clf in Tree_based_CLASSIFIERS ] + [ dict({ 'scl': [scl[1] for scl in SCALERS], 'clf': [clf[0]], **clf[1] }) for clf in Other_CLASSIFIERS ] pipeline = Pipeline(memory=mem, # memory: store the transformers of the pipeline steps= [ ('scl', NonScaler()), ('clf', GaussianNB()) ]) if search: param_grid = PARAM_GRID_SEARCH # {'scaler': [SCALER[1] for SCALER in SCALERS]} #grid 自动化并行比较多个scalers else: param_grid = PARAM_GRID grid_search = GridSearchCV(pipeline, param_grid=param_grid, scoring = scoring, iid=False, cv =inner_cv, n_jobs=n_jobs, verbose=1, return_train_score=True) grid_search.fit(self.X, self.Y)# Train the classifier with balanced data ; fit did nothing self.grid_search = grid_search self.scoring = scoring #通过交叉验证获得预测值 self.y_pred = cross_val_predict(grid_search, self.X, self.Y, cv=outer_cv, n_jobs=1) #n_job= -1 会出错,和inver_cv冲突 #for each element in the input, the prediction that was obtained for that element when it was in the test set. #In each iteration, label of i'th part of data gets predicted. In the end cross_val_predict merges all partially predicted labels and returns them as the final result. self.accuracy_score = '%0.2f' % metrics.accuracy_score(self.Y, self.y_pred) #balanced_accuracy_score(y_true, y_pred) self.best_estimator_ = grid_search.best_estimator_ #best estimator based on Mean accuracy of self.predict(X) wrt. y self.best_clf = self.best_estimator_.named_steps["clf"] self.scl_name = self.best_estimator_.named_steps["scl"].__class__.__name__ self.clf_name = self.best_clf.__class__.__name__ if not search: report_topN_cv_results(grid_search.cv_results_,n_top=10,filename=self.filename) #save cv_results df=pd.DataFrame(grid_search.cv_results_) df.to_csv(self.filename + ".all.cv_results.csv", index=False) @utils.tryExcept def hypertune_best_classifier(self, All_CLASSIFIERS, pltcfm=True, outer_cv=10, inner_cv=5,n_jobs=1): """compare classifiers by nested Cross-Validation hypertune best classifier RandomizedSearchCV 来优化胜出的分类器 n_components == min(n_samples, n_features)[defult] n_components=0.85 variance that needs to be explained is greater than the percentage There are more sophisticated ways to choose a number of components, of course, but a rule of thumb of 70% - 90% is a reasonable start. """ if self.search: 'no need to tune again' best_hypertuned_clf = self.best_clf grid_search = self.grid_search else: self.logger.info('Hypertune the best classifier {} with GridSearchCV'.format(self.clf_name)) # cross prediction do not need to split the data #X_train, X_test, y_train, y_test = train_test_split(self.X, self.Y, random_state=RANDOM_STATE) best_clf_index = [i[0] for i in All_CLASSIFIERS].index(self.best_clf) param_grid = All_CLASSIFIERS[best_clf_index][1] grid_search = GridSearchCV(self.best_estimator_, param_grid=param_grid, scoring= self.scoring, iid=False, #[independently identically distributed across the folds] return the average score across folds cv=inner_cv, #inner_cv train/validation dataset default 3 n_jobs=n_jobs,verbose=1,return_train_score=True) #Mean accuracy of self.predict(X) wrt. y grid_search.fit(self.X, self.Y) # Train the classifier with balanced data self.y_pred = cross_val_predict(grid_search, self.X, self.Y, cv=outer_cv) #outer_cv self.accuracy_score = '%0.2f' % metrics.accuracy_score(self.Y, self.y_pred) #balanced_accuracy_score(y_true, y_pred) self.best_estimator_ = grid_search.best_estimator_ best_hypertuned_clf = grid_search.best_estimator_.named_steps["clf"] #save cv_results df=pd.DataFrame(grid_search.cv_results_) df.to_csv(self.filename + ".{}.hypertuned.cv_results.csv".format(self.clf_name), index=False) self.logger.info("Best optimized classifier: {} , Accuracy:{}, Best Param:{}".format( self.clf_name, self.accuracy_score, grid_search.best_params_)) self.stats.append(("best_estimator", {k:v.__class__.__name__ for k,v in grid_search.best_estimator_.named_steps.items()})) self.stats.append(('hypertuned_best_parameters', grid_search.best_params_)) self.stats.append(('hypertuned_best_score_{}'.format(self.scoring), '%0.2f' % grid_search.best_score_)) #mean_test_score self.stats.append(('hypertuned_accuracy', self.accuracy_score)) #refit all samples score #plot hypertuned classification report report = metrics.classification_report(self.Y, self.y_pred, target_names=self.target_names, output_dict=True) filename = self.filename + ".{}.hypertuned".format(self.clf_name) plot_classification_report(report, filename=filename) #save model modelf = self.filename + ".{}_{}.model.z".format(self.scl_name, self.clf_name) dump(self.best_estimator_, modelf) # clf = load(modelf) if pltcfm: """plot cunfusion matrix""" cfmf=self.filename + '.{}.hypertuned.confusion_matrix'.format(self.clf_name) cfm_html = self.filename + '.{}.hypertuned.PyCM_report'.format(self.clf_name) dic=dict(zip(np.unique(self.Y),self.target_names)) actual_vector = [dic[i] for i in self.Y] predict_vector = [dic[i] for i in self.y_pred] cm = ConfusionMatrix(actual_vector=actual_vector, predict_vector=predict_vector) # pycm cm.save_html(cfm_html) # cross prediction result cfm = metrics.confusion_matrix(self.Y, self.y_pred) cfm_df=pd.DataFrame(cfm, columns=self.target_names,index=self.target_names) plot_confusion_matrix(cfm_df, filename=cfmf, accuracy = self.accuracy_score) #roc_auc_score = metrics.roc_auc_score(y_test, self.y_pred) #roc 不支持多分类 # plot roc courve # Yet this only counts for SVC where the distance to the decision plane is used to compute the probability - therefore no difference in the ROC. # refit all overfit y_proba = None if hasattr(best_hypertuned_clf, "decision_function"): y_proba = grid_search.decision_function(self.X) # decision_function, finds the distance to the separating hyperplane. # y_proba = cross_val_predict(grid_search, self.X, self.Y, cv=outer_cv, method='decision_function') elif hasattr(best_hypertuned_clf, "predict_proba"): # predict_proba is a method of a (soft) classifier outputting the probability of the instance being in each of the classes. # y_proba = cross_val_predict(grid_search, self.X, self.Y, cv=outer_cv, method='predict_proba') y_proba = grid_search.predict_proba(self.X)[:, 1] if y_proba is not None: # elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison if len(self.target_names)==2: plot_bin_roc_curve(self.Y, y_proba, self.target_names, filename) else: y_test = LabelBinarizer().fit_transform(self.Y) plot_multi_roc_curve(y_test, y_proba, self.target_names, filename) #plot topK important features and tsne scatter n_features = self.X.shape[1] k = 20 if n_features > 20 else n_features if hasattr(best_hypertuned_clf, "feature_importances_"): """plot feature importance""" feature_importances = best_hypertuned_clf.feature_importances_ csv = filename + ".feature_importance.csv" df = pd.DataFrame({ 'feature_names': self.features, 'importance': feature_importances, }) df.sort_values(by='importance',ascending=False).to_csv(csv, index=False) svg = filename + ".top{}.feature_importance.svg".format(k) top_k_feature_names = plot_feature_importance(df, k, svg) # topk_X = self.X[top_k_feature_names] # topk_X = topk_X.loc[topk_X.sum(axis=1)>0, : ] #del 0 samples and 0 featrues topk_X.sum(axis=0)>0 # topK_Y = self.Y[[i for i,j in enumerate(self.X.index) if j in topk_X.index]] #sort and select samples sel_bools = self.X.sum(axis=1)!=0 # # plot_tsne(topk_X,Y=topK_Y,targets=self.target_names, filename=self.filename +'.{}.hypertuned.top{}.important_features'.format(self.clf_name, k)) elif hasattr(best_hypertuned_clf, "coef_"): coef =best_hypertuned_clf.coef_ # As the second of the categories is the Yes category #https://www.displayr.com/how-to-interpret-logistic-regression-coefficients/ if coef.shape[0]==1: df=pd.DataFrame(coef.reshape(1,-1),index=[self.target_names[1]], columns=self.features) else: df=pd.DataFrame(coef,index=self.target_names,columns=self.features) df.T.to_csv(filename + ".coef.csv") plot_coefficients(df.T, topk=20, filename=filename) stats_df = pd.DataFrame({"stats_index":[i[0] for i in self.stats], "stats_value":[str(i[1]) for i in self.stats]}) stats_df.to_csv(self.filename + ".log_stats.csv",index=False) self.logger.info("Pipeline is finished") def make_predictions(self, test_df, model): '''test_df is in DataFrame format with index being samples''' load_model = load(model) predicts = load_model.predict(X) predict_labels = [self.target_names[i] for i in predicts] result =
pd.DataFrame({'SampleID': test_df.index, 'predicted label': predict_labels})
pandas.DataFrame
import pandas as pd df_growth = df_realgr["Real Growth"] df_vol = AvgVolUS['Avg Vol US'] df_series = df_inf["inflation"] df_series = pd.merge(df_series, df_growth, on="Date", how="outer") df_series =
pd.merge(df_series, df_vol, on="Date", how="outer")
pandas.merge
#! /usr/bin/env python from __future__ import division, print_function import argparse import collections import logging import os import random import threading import numpy as np import pandas as pd from itertools import cycle, islice import keras from keras import backend as K from keras import optimizers from keras.models import Model from keras.layers import Input, Dense, Dropout from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, LearningRateScheduler, TensorBoard from keras.utils import get_custom_objects from keras.utils.vis_utils import plot_model from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold from scipy.stats.stats import pearsonr import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import combo import p1_common # import p1_common_keras from solr_keras import CandleRemoteMonitor, compute_trainable_params, TerminateOnTimeOut # import argparser # from datasets import NCI60 import NCI60 import combo logger = logging.getLogger(__name__) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def set_seed(seed): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) if K.backend() == 'tensorflow': import tensorflow as tf tf.set_random_seed(seed) # session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) # Uncommit when running on an optimized tensorflow where NUM_INTER_THREADS and # NUM_INTRA_THREADS env vars are set. # session_conf = tf.ConfigProto(inter_op_parallelism_threads=int(os.environ['NUM_INTER_THREADS']), # intra_op_parallelism_threads=int(os.environ['NUM_INTRA_THREADS'])) # sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) # K.set_session(sess) def verify_path(path): folder = os.path.dirname(path) if folder and not os.path.exists(folder): os.makedirs(folder) def set_up_logger(logfile, verbose): verify_path(logfile) fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter("[%(asctime)s %(process)d] %(message)s", datefmt="%Y-%m-%d %H:%M:%S")) fh.setLevel(logging.DEBUG) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) logger.setLevel(logging.DEBUG) logger.addHandler(fh) logger.addHandler(sh) def extension_from_parameters(args): """Construct string for saving model with annotation of parameters""" ext = '' ext += '.A={}'.format(args.activation) ext += '.B={}'.format(args.batch_size) ext += '.E={}'.format(args.epochs) ext += '.O={}'.format(args.optimizer) # ext += '.LEN={}'.format(args.maxlen) ext += '.LR={}'.format(args.learning_rate) ext += '.CF={}'.format(''.join([x[0] for x in sorted(args.cell_features)])) ext += '.DF={}'.format(''.join([x[0] for x in sorted(args.drug_features)])) if args.feature_subsample > 0: ext += '.FS={}'.format(args.feature_subsample) if args.drop > 0: ext += '.DR={}'.format(args.drop) if args.warmup_lr: ext += '.wu_lr' if args.reduce_lr: ext += '.re_lr' if args.residual: ext += '.res' if args.use_landmark_genes: ext += '.L1000' if args.gen: ext += '.gen' if args.use_combo_score: ext += '.scr' for i, n in enumerate(args.dense): if n > 0: ext += '.D{}={}'.format(i+1, n) if args.dense_feature_layers != args.dense: for i, n in enumerate(args.dense): if n > 0: ext += '.FD{}={}'.format(i+1, n) return ext def discretize(y, bins=5): percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) return classes class ComboDataLoader(object): """Load merged drug response, drug descriptors and cell line essay data """ def __init__(self, seed, val_split=0.2, shuffle=True, cell_features=['expression'], drug_features=['descriptors'], use_landmark_genes=False, use_combo_score=False, preprocess_rnaseq=None, exclude_cells=[], exclude_drugs=[], feature_subsample=None, scaling='std', scramble=False, cv_partition='overlapping', cv=0): """Initialize data merging drug response, drug descriptors and cell line essay. Shuffle and split training and validation set Parameters ---------- seed: integer seed for random generation val_split : float, optional (default 0.2) fraction of data to use in validation cell_features: list of strings from 'expression', 'expression_5platform', 'mirna', 'proteome', 'all', 'categorical' (default ['expression']) use one or more cell line feature sets: gene expression, microRNA, proteome use 'all' for ['expression', 'mirna', 'proteome'] use 'categorical' for one-hot encoded cell lines drug_features: list of strings from 'descriptors', 'latent', 'all', 'categorical', 'noise' (default ['descriptors']) use dragon7 descriptors, latent representations from Aspuru-Guzik's SMILES autoencoder trained on NSC drugs, or both; use random features if set to noise use 'categorical' for one-hot encoded drugs shuffle : True or False, optional (default True) if True shuffles the merged data before splitting training and validation sets scramble: True or False, optional (default False) if True randomly shuffle dose response data as a control feature_subsample: None or integer (default None) number of feature columns to use from cellline expressions and drug descriptors use_landmark_genes: True or False only use LINCS1000 landmark genes use_combo_score: bool (default False) use combination score in place of percent growth (stored in 'GROWTH' column) scaling: None, 'std', 'minmax' or 'maxabs' (default 'std') type of feature scaling: 'maxabs' to [-1,1], 'maxabs' to [-1, 1], 'std' for standard normalization """ self.cv_partition = cv_partition np.random.seed(seed) df = NCI60.load_combo_dose_response(use_combo_score=use_combo_score, fraction=True, exclude_cells=exclude_cells, exclude_drugs=exclude_drugs) logger.info('Loaded {} unique (CL, D1, D2) response sets.'.format(df.shape[0])) if 'all' in cell_features: self.cell_features = ['expression', 'mirna', 'proteome'] else: self.cell_features = cell_features if 'all' in drug_features: self.drug_features = ['descriptors', 'latent'] else: self.drug_features = drug_features for fea in self.cell_features: if fea == 'expression' or fea == 'rnaseq': self.df_cell_expr = NCI60.load_cell_expression_rnaseq(ncols=feature_subsample, scaling=scaling, use_landmark_genes=use_landmark_genes, preprocess_rnaseq=preprocess_rnaseq) df = df.merge(self.df_cell_expr[['CELLNAME']], on='CELLNAME') elif fea == 'expression_u133p2': self.df_cell_expr = NCI60.load_cell_expression_u133p2(ncols=feature_subsample, scaling=scaling, use_landmark_genes=use_landmark_genes) df = df.merge(self.df_cell_expr[['CELLNAME']], on='CELLNAME') elif fea == 'expression_5platform': self.df_cell_expr = NCI60.load_cell_expression_5platform(ncols=feature_subsample, scaling=scaling, use_landmark_genes=use_landmark_genes) df = df.merge(self.df_cell_expr[['CELLNAME']], on='CELLNAME') elif fea == 'mirna': self.df_cell_mirna = NCI60.load_cell_mirna(ncols=feature_subsample, scaling=scaling) df = df.merge(self.df_cell_mirna[['CELLNAME']], on='CELLNAME') elif fea == 'proteome': self.df_cell_prot = NCI60.load_cell_proteome(ncols=feature_subsample, scaling=scaling) df = df.merge(self.df_cell_prot[['CELLNAME']], on='CELLNAME') elif fea == 'categorical': df_cell_ids = df[['CELLNAME']].drop_duplicates() cell_ids = df_cell_ids['CELLNAME'].map(lambda x: x.replace(':', '.')) df_cell_cat = pd.get_dummies(cell_ids) df_cell_cat.index = df_cell_ids['CELLNAME'] self.df_cell_cat = df_cell_cat.reset_index() for fea in self.drug_features: if fea == 'descriptors': self.df_drug_desc = NCI60.load_drug_descriptors(ncols=feature_subsample, scaling=scaling) df = df[df['NSC1'].isin(self.df_drug_desc['NSC']) & df['NSC2'].isin(self.df_drug_desc['NSC'])] elif fea == 'latent': self.df_drug_auen = NCI60.load_drug_autoencoded_AG(ncols=feature_subsample, scaling=scaling) df = df[df['NSC1'].isin(self.df_drug_auen['NSC']) & df['NSC2'].isin(self.df_drug_auen['NSC'])] elif fea == 'categorical': df_drug_ids = df[['NSC1']].drop_duplicates() df_drug_ids.columns = ['NSC'] drug_ids = df_drug_ids['NSC'] df_drug_cat = pd.get_dummies(drug_ids) df_drug_cat.index = df_drug_ids['NSC'] self.df_drug_cat = df_drug_cat.reset_index() elif fea == 'noise': ids1 = df[['NSC1']].drop_duplicates().rename(columns={'NSC1':'NSC'}) ids2 = df[['NSC2']].drop_duplicates().rename(columns={'NSC2':'NSC'}) df_drug_ids = pd.concat([ids1, ids2]).drop_duplicates() noise = np.random.normal(size=(df_drug_ids.shape[0], 500)) df_rand = pd.DataFrame(noise, index=df_drug_ids['NSC'], columns=['RAND-{:03d}'.format(x) for x in range(500)]) self.df_drug_rand = df_rand.reset_index() logger.info('Filtered down to {} rows with matching information.'.format(df.shape[0])) ids1 = df[['NSC1']].drop_duplicates().rename(columns={'NSC1':'NSC'}) ids2 = df[['NSC2']].drop_duplicates().rename(columns={'NSC2':'NSC'}) df_drug_ids = pd.concat([ids1, ids2]).drop_duplicates().reset_index(drop=True) n_drugs = df_drug_ids.shape[0] n_val_drugs = int(n_drugs * val_split) n_train_drugs = n_drugs - n_val_drugs logger.info('Unique cell lines: {}'.format(df['CELLNAME'].nunique())) logger.info('Unique drugs: {}'.format(n_drugs)) # df.to_csv('filtered.growth.min.tsv', sep='\t', index=False, float_format='%.4g') # df.to_csv('filtered.score.max.tsv', sep='\t', index=False, float_format='%.4g') if shuffle: df = df.sample(frac=1.0, random_state=seed).reset_index(drop=True) df_drug_ids = df_drug_ids.sample(frac=1.0, random_state=seed).reset_index(drop=True) self.df_response = df self.df_drug_ids = df_drug_ids self.train_drug_ids = df_drug_ids['NSC'][:n_train_drugs] self.val_drug_ids = df_drug_ids['NSC'][-n_val_drugs:] if scramble: growth = df[['GROWTH']] random_growth = growth.iloc[np.random.permutation(np.arange(growth.shape[0]))].reset_index() self.df_response[['GROWTH']] = random_growth['GROWTH'] logger.warn('Randomly shuffled dose response growth values.') logger.info('Distribution of dose response:') logger.info(self.df_response[['GROWTH']].describe()) self.total = df.shape[0] self.n_val = int(self.total * val_split) self.n_train = self.total - self.n_val logger.info('Rows in train: {}, val: {}'.format(self.n_train, self.n_val)) self.cell_df_dict = {'expression': 'df_cell_expr', 'expression_5platform': 'df_cell_expr', 'expression_u133p2': 'df_cell_expr', 'rnaseq': 'df_cell_expr', 'mirna': 'df_cell_mirna', 'proteome': 'df_cell_prot', 'categorical': 'df_cell_cat'} self.drug_df_dict = {'descriptors': 'df_drug_desc', 'latent': 'df_drug_auen', 'categorical': 'df_drug_cat', 'noise': 'df_drug_rand'} self.input_features = collections.OrderedDict() self.feature_shapes = {} for fea in self.cell_features: feature_type = 'cell.' + fea feature_name = 'cell.' + fea df_cell = getattr(self, self.cell_df_dict[fea]) self.input_features[feature_name] = feature_type self.feature_shapes[feature_type] = (df_cell.shape[1] - 1,) for drug in ['drug1', 'drug2']: for fea in self.drug_features: feature_type = 'drug.' + fea feature_name = drug + '.' + fea df_drug = getattr(self, self.drug_df_dict[fea]) self.input_features[feature_name] = feature_type self.feature_shapes[feature_type] = (df_drug.shape[1] - 1,) self.feature_shapes['dose'] = (1,) for dose in ['dose1', 'dose2']: self.input_features[dose] = 'dose' logger.info('Input features shapes:') for k, v in self.input_features.items(): logger.info(' {}: {}'.format(k, self.feature_shapes[v])) self.input_dim = sum([np.prod(self.feature_shapes[x]) for x in self.input_features.values()]) logger.info('Total input dimensions: {}'.format(self.input_dim)) if cv > 1: if cv_partition == 'disjoint': pass elif cv_partition == 'disjoint_cells': y = self.df_response['GROWTH'].values groups = self.df_response['CELLNAME'].values gkf = GroupKFold(n_splits=cv) splits = gkf.split(y, groups=groups) self.cv_train_indexes = [] self.cv_val_indexes = [] for index, (train_index, val_index) in enumerate(splits): print(index, train_index) self.cv_train_indexes.append(train_index) self.cv_val_indexes.append(val_index) else: y = self.df_response['GROWTH'].values # kf = KFold(n_splits=cv) # splits = kf.split(y) skf = StratifiedKFold(n_splits=cv, random_state=seed) splits = skf.split(y, discretize(y, bins=cv)) self.cv_train_indexes = [] self.cv_val_indexes = [] for index, (train_index, val_index) in enumerate(splits): print(index, train_index) self.cv_train_indexes.append(train_index) self.cv_val_indexes.append(val_index) def load_data_all(self, switch_drugs=False): df_all = self.df_response y_all = df_all['GROWTH'].values x_all_list = [] for fea in self.cell_features: df_cell = getattr(self, self.cell_df_dict[fea]) df_x_all = pd.merge(df_all[['CELLNAME']], df_cell, on='CELLNAME', how='left') x_all_list.append(df_x_all.drop(['CELLNAME'], axis=1).values) # for fea in loader.cell_features: # df_cell = getattr(loader, loader.cell_df_dict[fea]) # df_x_all = pd.merge(df_all[['CELLNAME']], df_cell, on='CELLNAME', how='left') # df_x_all[:1000].to_csv('df.{}.1k.csv'.format(fea), index=False, float_format="%g") drugs = ['NSC1', 'NSC2'] doses = ['pCONC1', 'pCONC2'] if switch_drugs: drugs = ['NSC2', 'NSC1'] doses = ['pCONC2', 'pCONC1'] for drug in drugs: for fea in self.drug_features: df_drug = getattr(self, self.drug_df_dict[fea]) df_x_all = pd.merge(df_all[[drug]], df_drug, left_on=drug, right_on='NSC', how='left') x_all_list.append(df_x_all.drop([drug, 'NSC'], axis=1).values) for dose in doses: x_all_list.append(df_all[dose].values) # for drug in drugs: # for fea in loader.drug_features: # df_drug = getattr(loader, loader.drug_df_dict[fea]) # df_x_all = pd.merge(df_all[[drug]], df_drug, left_on=drug, right_on='NSC', how='left') # print(df_x_all.shape) # df_x_all[:1000].drop([drug], axis=1).to_csv('df.{}.{}.1k.csv'.format(drug, fea), index=False, float_format="%g") # df_all[:1000].to_csv('df.growth.1k.csv', index=False, float_format="%g") return x_all_list, y_all, df_all def load_data_by_index(self, train_index, val_index): x_all_list, y_all, df_all = self.load_data_all() x_train_list = [x[train_index] for x in x_all_list] x_val_list = [x[val_index] for x in x_all_list] y_train = y_all[train_index] y_val = y_all[val_index] df_train = df_all.iloc[train_index, :] df_val = df_all.iloc[val_index, :] if self.cv_partition == 'disjoint': logger.info('Training drugs: {}'.format(set(df_train['NSC1']))) logger.info('Validation drugs: {}'.format(set(df_val['NSC1']))) elif self.cv_partition == 'disjoint_cells': logger.info('Training cells: {}'.format(set(df_train['CELLNAME']))) logger.info('Validation cells: {}'.format(set(df_val['CELLNAME']))) return x_train_list, y_train, x_val_list, y_val, df_train, df_val def load_data_cv(self, fold): train_index = self.cv_train_indexes[fold] val_index = self.cv_val_indexes[fold] # print('fold', fold) # print(train_index[:5]) return self.load_data_by_index(train_index, val_index) def load_data(self): if self.cv_partition == 'disjoint': train_index = self.df_response[(self.df_response['NSC1'].isin(self.train_drug_ids)) & (self.df_response['NSC2'].isin(self.train_drug_ids))].index val_index = self.df_response[(self.df_response['NSC1'].isin(self.val_drug_ids)) & (self.df_response['NSC2'].isin(self.val_drug_ids))].index else: train_index = range(self.n_train) val_index = range(self.n_train, self.total) return self.load_data_by_index(train_index, val_index) def load_data_old(self): # bad performance (4x slow) possibly due to incontiguous data df_train = self.df_response.iloc[:self.n_train, :] df_val = self.df_response.iloc[self.n_train:, :] y_train = df_train['GROWTH'].values y_val = df_val['GROWTH'].values x_train_list = [] x_val_list = [] for fea in self.cell_features: df_cell = getattr(self, self.cell_df_dict[fea]) df_x_train = pd.merge(df_train[['CELLNAME']], df_cell, on='CELLNAME', how='left') df_x_val = pd.merge(df_val[['CELLNAME']], df_cell, on='CELLNAME', how='left') x_train_list.append(df_x_train.drop(['CELLNAME'], axis=1).values) x_val_list.append(df_x_val.drop(['CELLNAME'], axis=1).values) for drug in ['NSC1', 'NSC2']: for fea in self.drug_features: df_drug = getattr(self, self.drug_df_dict[fea]) df_x_train = pd.merge(df_train[[drug]], df_drug, left_on=drug, right_on='NSC', how='left') df_x_val =
pd.merge(df_val[[drug]], df_drug, left_on=drug, right_on='NSC', how='left')
pandas.merge
import os, math import numpy as np import pandas as pd import matplotlib.pyplot as plt #from matplotlib.collections import PatchCollection from sklearn import linear_model from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from importlib import reload # Constants #files = ['time_series_19-covid-Confirmed', 'time_series_19-covid-Deaths', 'time_series_19-covid-Recovered'] #labels = ['Confirmed', 'Deaths', 'Recovered']# until 23 March 2020 # Since 24 March 2020 #files = ['time_series_covid19_confirmed_global', 'time_series_covid19_deaths_global'] #labels = ['confirmed', 'deaths'] # Since 28 March 2020 files = ['time_series_covid19_confirmed_global', 'time_series_covid19_deaths_global', 'time_series_covid19_recovered_global'] labels = ['confirmed', 'deaths', 'recovered'] def open_csvs(): ''' Finding and opening your most recent data download if timestamp == None. Alternatively, specify a substring of requested timestamp to select which files to open. ''' timestamp = None #timestamp = '20200330_15-26' df=dict() lists = list([list(), list(), list()]) with os.scandir() as it: for entry in it: for i in range(3): if (timestamp==None or timestamp in entry.name) and files[i] in entry.name\ and entry.is_file(): lists[i].append(entry.name) for i in range(3): lists[i].sort() df[labels[i]] = pd.read_csv(lists[i][-1]) return df def data_preparation(df, country, output): ''' This is used for the JHU CSSE dataset. output can be 'confirmed', 'deaths', 'recovered', 'active' or 'all' 'active' returns dft['confirmed']-dft['deaths']-dft['recovered'] 'all' returns all three as columns in a DataFrame as used in death_over_cases.py ''' sets = dict({'EU': ['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czechia', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg', 'Malta', 'Netherlands', 'Poland', 'Portugal', 'Romania', 'Slovakia', 'Slovenia', 'Spain', 'Sweden']})#, #'China': [['Anhui', 'China'], ['Beijing', 'China'], ['Chongqing', 'China'], ['Fujian', 'China'], ['Gansu', 'China'], ['Guangdong', 'China'], ['Guangxi', 'China'], ['Guizhou', 'China'], ['Hainan', 'China'], ['Hebei', 'China'], ['Heilongjiang', 'China'], ['Henan', 'China'], ['Hong Kong', 'China'], ['Hubei', 'China'], ['Hunan', 'China'], ['Inner Mongolia', 'China'], ['Jiangsu', 'China'], ['Jiangxi', 'China'], ['Jilin', 'China'], ['Liaoning', 'China'], ['Macau', 'China'], ['Ningxia', 'China'], ['Qinghai', 'China'], ['Shaanxi', 'China'], ['Shandong', 'China'], ['Shanghai', 'China'], ['Shanxi', 'China'], ['Sichuan', 'China'], ['Tianjin', 'China'], ['Tibet', 'China'], ['Xinjiang', 'China'], ['Yunnan', 'China'], ['Zhejiang', 'China']]}) #sets = dict({'EU': ['Croatia', 'Hungary']}) # test only l = list() if country == 'EU' or country == 'China' or country == 'Australia': ''' First, recursive implementation l_members = list() for member in sets[country]: l_members.append(data_preparation(df, member, only_cases)) dft_members = pd.concat(l_members, axis=1) return dft_members.sum(axis=1) ''' M = dict() # these matrices are the booleans of selections for each Province/State, we take their multiple for i in range(3): k = labels[i] M[k] = list() if country == 'China' or country == 'Australia': M[k].append((df[k]['Province/State'].notna()) & (df[k]['Country/Region']==country)) l.append(df[k][M[k][0]].iloc[:,4:].sum(axis=0)) else: # country == 'EU' for member in sets[country]: #print(member) if isinstance(member, str): M[k].append((df[k]['Province/State'].isna()) & (df[k]['Country/Region']==member)) elif len(member)==2: # if it's a pair of [Province/State, Country/Region] M[k].append((df[k]['Province/State']==member[0]) & (df[k]['Country/Region']==member[1])) l.append(df[k][np.sum(np.array(M[k]), axis=0)>=1].iloc[:,4:].sum(axis=0)) dft = pd.concat(l, ignore_index=True, axis=1) #dft.rename(columns={i: labels[i] for i in range(3)}, inplace=True) else: for i in range(3): k = labels[i] if isinstance(country, str): l.append(df[k][np.logical_and(df[k]['Province/State'].isna(), df[k]['Country/Region']==country)].iloc[:,4:]) elif len(country)==2: # if it's a pair of [Province/State, Country/Region] l.append(df[k][np.logical_and(df[k]['Province/State']==country[0], df[k]['Country/Region']==country[1])].iloc[:,4:]) dft = pd.concat(l, ignore_index=True, axis=0).transpose() #print(dft) dft.rename(columns={i: labels[i] for i in range(3)}, inplace=True) #print(dft) if output=='all': df_ts = dft elif output=='active': print('Number of recovered in the past eight days:') print(dft['recovered'][-8:]) df_ts = dft['confirmed']-dft['deaths']-dft['recovered'] # On 24 March 2020, recovered is not available; on 28 March 2020 it is there again. else: df_ts = dft[output] #print(df_ts) #df_ts.rename(index={df_ts.index[i]: pd.to_datetime(df_ts.index)[i] for i in range(len(df_ts.index))}, inplace=True) df_ts.rename(index=pd.Series(df_ts.index, index=df_ts.index).apply(lambda x: pd.to_datetime(x)), inplace=True) #print(df_ts) return df_ts def rm_early_zeros(ts): ''' Removes early zeros and NaNs from a pandas time series. It finds last (most recent) zero or NaN in time series and omits all elements before and including this last zero or NaN. Returns the remaining time series which is free of zeros and NaN. pd.Series([0,0,0,0,1,2,0,0,3,6]) -> pd.Series([3,6]) ''' zeroindices = ts[(ts==0) | ts.isna()].index if len(zeroindices)==0: return ts else: successor = np.nonzero((ts.index==zeroindices.max()))[0][0] + 1 return ts[successor:] def rm_consecutive_early_zeros(ts, keep=1): ''' Removes first consecutive subsequence of early zeros from a pandas time series except for the last keep if there are that many. rm_consecutive_early_zeros(pd.Series([0,0,0,0,1,2,3,6]), 2) -> pd.Series([0,0,1,2,3,6]) ''' zeroindices = ts[ts==0].index if len(zeroindices)==0: return ts else: first_pos_index = np.nonzero((ts.index==ts[ts>0].index[0]))[0][0] if first_pos_index <= keep: return ts else: return ts[first_pos_index-keep:] def separated(s, lang='en', k=3): ''' Input must be a string. Puts a comma between blocks of k=3 digits: '1000000' -> '1,000,000' ''' if lang == 'de': chr = '.' else: chr = ',' if len(s)>=5: l=list() for i in range(len(s)//k): l.insert(0, s[len(s)-(i+1)*k:len(s)-i*k]) if len(s) % k !=0: l.insert(0, s[:len(s)-(i+1)*k]) return chr.join(l) else: return s def x2str(x, width): ''' Rounds a number to tenths. If width is greater than its length, then it pads it with space. If width<0, then it does no padding. ''' #if x<0.1 and x>-0.1 and width>=6: # s = '{:.3f}'.format(x) #str(round(x*1000)/1000) if x<1 and x>-1 and width>=5: s = '{:.2f}'.format(x) #str(round(x*100)/100) elif x<10 and x>-10 and width>=4: s = '{:.1f}'.format(x) #str(round(x*10)/10) else: s = '{:.0f}'.format(x) #str(int(round(x))) if width > len(s): return s.rjust(width) else: return s def n2str(n, width): ''' Takes integers. If width is greater than its length, then it pads it with space. If width<0, then it does no padding. ''' s = str(n) if width > len(s): return s.rjust(width) else: return s def interpolate(df_ts, window_length): ''' This returns (or interpolates, if not found) from the cumulatives' time series the entry at last entry minus (window_length-1) days. ''' # date of interest: doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if doi in df_ts.index: return df_ts.loc[doi] else: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days return c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] elif len(nxt)>0: return nxt.iloc[0] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. return prv.iloc[-1] ''' def truncate_before(df_ts, window_length): #This returns (or interpolates, if not found) from the time series the entry at last entry minus # (window_length-1) days. # date of interest: doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if doi in df_ts.index: return df_ts.loc[doi:] else: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days df_ts.loc[doi] = c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] elif len(nxt)>0: df_ts.loc[doi] = nxt.iloc[0] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. df_ts.loc[doi] = prv.iloc[-1] df_ts = df_ts.sort_index(inplace=False) return df_ts.loc[doi:] ''' def truncate_before(df_ts, window_length, fill_all_missing): ''' This returns (or interpolates, if not found) from the cumulatives' time series the entries from (last entry minus (window_length-1) days) until the last entry. When some days are missing from the cumulative time series df_ts, then I could assign them zero increments and assign all increments to the first day after the gap. Instead, I spread out the growth uniformly across the missing days. The first solution (0, 0, all increment) would give the fitting a tendency to see quickly growing cumulatives. ''' df_ts_new = df_ts.copy() r = range(window_length-1, 0, -1) if fill_all_missing else [window_length-1] for i in r: # date of interest: #doi = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') doi = df_ts.index[-1]-pd.Timedelta(f'{i} days') if doi not in df_ts.index: prv = df_ts[df_ts.index<doi] nxt = df_ts[df_ts.index>doi] if len(prv)>0 and len(nxt)>0: i_prv = prv.index[-1] i_nxt = nxt.index[0] c_prv = (i_nxt-doi).days/(i_nxt-i_prv).days c_nxt = (doi-i_prv).days/(i_nxt-i_prv).days df_ts_new.loc[doi] = c_prv*df_ts.loc[i_prv] + c_nxt*df_ts.loc[i_nxt] elif len(nxt)>0: df_ts_new.loc[doi] = nxt.iloc[0] elif len(prv)>0: # It can never come this far, df_ts.iloc[-1] exists so nxt is not empty. df_ts_new.loc[doi] = prv.iloc[-1] df_ts_new = df_ts_new.sort_index(inplace=False) return df_ts_new.loc[df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days'):] def analysis(df_ts, window_length, exp_or_lin, extent='full'): ''' df_ts: pd.Series, it is a time series, can be totals or no. per e.g. 100,000 ppl window_length: int exp_or_lin in ['exp', 'lin'] For 'exp', because of log2, this requires all entries in df_ts to be positive. For 'lin', because of log2, this requires last entry in df_ts to be positive. extent in ['full', 'minimal'] 'minimal' doesn't compute predictions. output: results = [ daily increment in natural units (units of df_ts): float, daily growth rate in percentage: float, doubling time in days: float or 0 for 'minimal', current cases (df_ts.iloc[-1]), projection_lower: type(df_ts.dtype) or 0 for 'minimal', projection_upper: type(df_ts.dtype) or 0 for 'minimal', model_score=R^2: float, difference of model fit on last date and last data point in log space: float ] model: sklearn.linear_model #failure: 0 or 1; 1 if it failed due to nonpositive number in exponential fit or too short time series ''' i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments #if len(i_ts)<window_length:# or (exp_or_lin=='exp' and (i_ts.iloc[-window_length:]<=0).sum()>=5): if len(i_ts)==0 or (i_ts.index[-1]-i_ts.index[0]).days<window_length-1: results = 8 * [0] results[-1] = 100 return results, None intl_lo_days = 4 intl_hi_days = 6 results = [None] * 8 results[3] = df_ts.iloc[-1] model = linear_model.LinearRegression(fit_intercept=True) if exp_or_lin=='exp': df_ts_orig = df_ts.copy() df_ts_0 = truncate_before(df_ts_orig, window_length+1, fill_all_missing=False) # For the fit to increments. df_ts = truncate_before(df_ts, window_length+1, fill_all_missing=True) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments i_ts[i_ts<=0] = 1 y = i_ts.values ylog = np.log(y) model.fit((i_ts.index-i_ts.index[-1]).days.values.reshape(-1, 1), ylog) results[0] = math.exp(model.intercept_) # For doubling, the area of the increments is equal to df_ts[-1] # cf. https://www.wolframalpha.com/input/?i=integrate+%28exp%28a+t+%2Bb%29+dt%29+from+t%3D0+to+x if model.coef_[0]!=0: temp2 = math.exp(model.intercept_)/model.coef_[0] temp = model.coef_[0]*df_ts.iloc[-1]/math.exp(model.intercept_) + 1 if temp>0: results[2] = math.log(temp)/model.coef_[0] else: results[2] = np.inf else: results[2] = df_ts.iloc[-1]/math.exp(model.intercept_) if extent == 'full': if model.coef_[0]!=0: results[4] = (math.exp(model.coef_[0]*intl_lo_days)-1)*temp2 + df_ts.iloc[-1] results[5] = (math.exp(model.coef_[0]*intl_hi_days)-1)*temp2 + df_ts.iloc[-1] else: results[4] = math.exp(model.intercept_)*intl_lo_days + df_ts.iloc[-1] results[5] = math.exp(model.intercept_)*intl_hi_days + df_ts.iloc[-1] #if (i_ts_orig.iloc[-window_length:]>0).all(): #if (truncate_before(i_ts_orig, window_length, fill_all_missing=False)>0).all(): i_ts_0 = (df_ts_0 - df_ts_0.shift(1))[1:] if (i_ts_0>0).all(): #results[6] = model.score(np.arange(-window_length+1, 1).reshape(-1, 1), ylog) results[6] = model.score((i_ts_0.index-i_ts_0.index[-1]).days.values.reshape(-1, 1), ylog) else: results[6] = 0 #if df_ts.iloc[-1]==df_ts.iloc[-window_length]: #if df_ts.iloc[-1]==interpolate(df_ts, window_length): # If there is no growth, then exp is not good approx. first_day = df_ts.index[-1]-pd.Timedelta(f'{window_length-1} days') if df_ts.iloc[-1]==df_ts.loc[first_day]: # If there is no growth, then exp is not good approx. results[7] = 100 # Exp overestimates growth by a factor of infinity. else: if model.coef_[0]!=0: #results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 #results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-interpolate(df_ts, window_length))-1 results[7] = temp2*(1-math.exp(model.coef_[0]*(-window_length+1)))/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 else: #results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.iloc[-window_length])-1 #results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-interpolate(df_ts, window_length))-1 results[7] = math.exp(model.intercept_)*(-window_length+1)/(df_ts.iloc[-1]-df_ts.loc[first_day])-1 elif exp_or_lin=='lin': df_ts_orig = df_ts.copy() df_ts_0 = truncate_before(df_ts_orig, window_length+1, fill_all_missing=False) # For the fit to increments. df_ts = truncate_before(df_ts, window_length+1, fill_all_missing=True) i_ts = (df_ts - df_ts.shift(1))[1:] # i for increments y = i_ts.values model.fit((i_ts.index-i_ts.index[-1]).days.values.reshape(-1, 1), y) results[0] = model.intercept_ if model.coef_[0]!=0: if 2*model.coef_[0]*df_ts.iloc[-1] >= - model.intercept_*model.intercept_: results[2] = (-model.intercept_ + math.sqrt(model.intercept_*model.intercept_ + 2*model.coef_[0]*df_ts.iloc[-1]))/model.coef_[0] else: results[2] = np.inf else: if model.intercept_!=0: results[2] = df_ts.iloc[-1]/model.intercept_ else: if df_ts.iloc[-1]!=0: results[2] = np.inf else: results[2] = 0 # model.coef_[0]==model.intercept_==0 if extent == 'full': if model.coef_[0]*model.intercept_<0 and\ ((model.coef_[0]>0 and -model.intercept_<intl_lo_days*model.coef_)\ or (model.coef_[0]<0 and -model.intercept_>intl_lo_days*model.coef_)): # there is a zero-crossing until intl_lo_days results[4] = -model.intercept_*model.intercept_/(2*model.coef_[0]) + df_ts.iloc[-1] results[5] = results[4] elif model.coef_[0]*model.intercept_<0 and\ ((model.coef_[0]>0 and -model.intercept_<intl_hi_days*model.coef_)\ or (model.coef_[0]<0 and -model.intercept_>intl_hi_days*model.coef_)): # there is a zero-crossing after intl_lo_days, before intl_hi_days results[5] = -model.intercept_*model.intercept_/(2*model.coef_[0]) + df_ts.iloc[-1] if results[4] is None: results[4] = (model.coef_[0]*intl_lo_days/2+model.intercept_)*intl_lo_days + df_ts.iloc[-1] if results[5] is None: results[5] = (model.coef_[0]*intl_hi_days/2+model.intercept_)*intl_hi_days + df_ts.iloc[-1] #results[6] = model.score(np.arange(-window_length+1, 1).reshape(-1, 1), y) i_ts_0 = (df_ts_0 - df_ts_0.shift(1))[1:] results[6] = model.score((i_ts_0.index-i_ts_0.index[-1]).days.values.reshape(-1, 1), y) #if df_ts.iloc[-1]==df_ts.iloc[-window_length]: first_day = df_ts.index[-1]-
pd.Timedelta(f'{window_length-1} days')
pandas.Timedelta
######################################################################## # Copyright 2020 Battelle Energy Alliance, LLC ALL RIGHTS RESERVED # # Mobility Systems & Analytics Group, Idaho National Laboratory # ######################################################################## # Location Generalizer # Release 1.2 8/10/2021 import pyodbc import pandas as pd import pickle from datetime import datetime, timedelta import time import math import yaml from pathlib import Path import csv import numpy as np from sklearn.cluster import DBSCAN from shapely import geometry from shapely.geometry import MultiPoint from haversine import haversine, Unit import pynput from pandasql import sqldf import time from location_generalizer.utils import parallel_func_wrapper_update_vlocation from location_generalizer.dataclasses import StartSEColumnMappings, EndSEColumnMappings class cfg(): with open('locationGeneralizer.yml') as f: config = yaml.load(f, Loader=yaml.FullLoader) odbcConnectionString=config['odbcConnectionString'] inputTableOrCSV= config['inputTableOrCSV'] vehiclesInChunk = config['vehiclesInChunk'] qryVehicleIDList =config['qryVehicleIDList'] qryVehicleInfo = config['qryVehicleInfo'] qryVehicleIDList = qryVehicleIDList.replace('{inputsrc}', inputTableOrCSV) qryVehicleInfo = qryVehicleInfo.replace('{inputsrc}', inputTableOrCSV) errorLogFileName = config['errorLogFileName'] heartbeatFileName = config['heartbeatFileName'] locationInfoFileName = config['locationInfoFileName'] homeInfoFileName = config['homeInfoFileName'] pklCensusDivisionsFileName = config['pklCensusDivisionsFileName'] evseLookupFileName = config['evseLookupFileName'] bboxes = config['boundingBoxes'] gpsOdoThreshold_mi = config['gpsOdoThreshold_mi'] minTrips = config['minTrips'] minLastTrips = config['minLastTrips'] minPctParks = config['minPctParks'] numL2Rounding = config['numL2Rounding'] numDCRounding = config['numDCRounding'] doCheck = config['doCheck'] dayEndHours = config['dayEndHours'] dayEndMinutes = config['dayEndMinutes'] dbscan_eps_ft = config['dbscan_eps_ft'] dbscan_min_spls = config['dbscan_min_spls'] evseDistRange_Miles = config['evseDistRange_Miles'] evseLatRange = config['evseLatRange'] evseLonRange = config['evseLonRange'] addClusterIDtoLocationInfo = config['addClusterIDtoLocationInfo'] hdrErrorLogCSV = config['hdrErrorLogCSV'] if addClusterIDtoLocationInfo: hdrLocationInfoCSV = config['hdrClusterLocationInfoCSV'] else: hdrLocationInfoCSV = config['hdrLocationInfoCSV'] hdrHomeInfoCSV = config['hdrHomeInfoCSV'] if addClusterIDtoLocationInfo: colLocationInfo = config['colClusterLocationInfo'] else: colLocationInfo = config['colLocationInfo'] colHomeInfo = config['colHomeInfo'] verbosity = config['verbosity'] stopProcessing = False numCores = config['num_cores'] errFilePath = Path(errorLogFileName) if not errFilePath.exists(): # ErroLog output file hdr = pd.DataFrame(hdrErrorLogCSV) hdr.to_csv(errorLogFileName, index=False, header=False, mode='w') # use one line buffering - every line written is flushed to disk errorFile = open(errorLogFileName, mode='a', buffering=1, newline='') errorWriter = csv.writer(errorFile) def main(): # trust chained assignments (no warnings) pd.set_option('mode.chained_assignment', None) # LocationInfo output file locationFilePath = Path(cfg.locationInfoFileName) if not locationFilePath.exists(): hdr = pd.DataFrame(cfg.hdrLocationInfoCSV) hdr.to_csv(cfg.locationInfoFileName, index=False, header=False, mode='w') # HomeInfo output file homeFilePath = Path(cfg.homeInfoFileName) if not homeFilePath.exists(): hdr = pd.DataFrame(cfg.hdrHomeInfoCSV) hdr.to_csv(cfg.homeInfoFileName, index=False, header=False, mode='w') ## geopandas can read the shapefile directly, but we pickled it into one file ## a single pickle file simplifies distribution whereas, ## loading a shapefile requires several adjacent accompanying files divisions = pd.read_pickle(cfg.pklCensusDivisionsFileName) # get Public EVSE stations EVSEs = pd.read_csv(cfg.evseLookupFileName) # pyodbc attempts to turn off autocommit before returning connection and this causes file connections (like CSVs), which do not support transactions, to fail # when autocommit is explictly set, pyodbc will not attempt any changes cnxn = pyodbc.connect(cfg.odbcConnectionString, autocommit=True) lastVehicle = 0 hbFilePath = Path(cfg.heartbeatFileName) if hbFilePath.exists(): with open(hbFilePath, 'r') as hb: lastVehicle = hb.readline() cfg.errorWriter.writerow([datetime.now(), lastVehicle, -1,'Restarting after vehicle {}'.format(lastVehicle)]) print('Restarting after vehicle {}'.format(lastVehicle)) # get sorted list of all vehicle IDs qry = cfg.qryVehicleIDList.replace('{startVehicle}', str(lastVehicle)) df = pd.read_sql(qry, cnxn) numOfVehicles = cfg.vehiclesInChunk # number of vehicle to process at a time. We can't process all at once due to dataset size, so this is the "chunk size" to process vehicleList = df['VehicleID'].tolist() # divide up vehicle ID list into sections of <numOfVehicle> length chunks (we'll read data in one chunk at a time to avoid memory overrun) chunks = [vehicleList[i * numOfVehicles:(i+1)*numOfVehicles] for i in range((len(vehicleList) + numOfVehicles -1) // numOfVehicles)] i = 0 vcnt = 0 for chunk in chunks: chunkList = ','.join(str(e) for e in chunk) qry = cfg.qryVehicleInfo.format(chunkList) # insert vehicleIDs into "in" list if cfg.verbosity > 0: print('Fetching data') chunkData = pd.read_sql(qry, cnxn, parse_dates=['TripStartLocalTime', 'TripEndLocalTime']) # create new column for flag to exclude bad records chunkData['Include'] = True i += 1 print("chunk: {}, vehicle from {} through {}".format(i, chunk[0], chunk[-1])) # iterate through one vehicle at a time for v in chunk: if cfg.stopProcessing: exit() if cfg.verbosity > 0: print('Vehicle: {}'.format(v)) # create empty LocationInfo data frame # GPS coordinates are added here for convenience, but will not be carried into LocationInfo output file locationInfo = pd.DataFrame(columns = cfg.colLocationInfo) # create empty HomeInfo data frame homeInfo = pd.DataFrame(columns = cfg.colHomeInfo) homeInfo['HomeStartLocalTime'] = pd.NaT homeInfo['HomeEndLocalTime'] = pd.NaT vcnt += 1 # grab all records in vehicle v vData = chunkData[chunkData['VehicleID'] == v] # create new column to check for Odometer gaps, i.e missing trips vData['resid_Miles'] = vData['TripStartOdometer_Miles'].shift(periods=-1) - vData['TripEndOdometer_Miles'] ### Check validity of data, marking invalid records (Include = True/False) if cfg.verbosity > 1: print(' Check for valid values') if cfg.doCheck: vData = DoValidityChecking(v, vData) vData.resid_Miles = vData.resid_Miles.astype(object).where(vData.resid_Miles.notnull(), None) # set NaN to None (becomes Null for DB) # toss out rows that failed vailidity check vData = vData[vData.Include == True] numTrips = len(vData) if numTrips < cfg.minTrips: if cfg.verbosity > 1: print(' Not enough trips, vehicle skipped.') cfg.errorWriter.writerow([datetime.now(), v, -1,'Not enough trips, vehicle skipped. ({} need >= {})'.format(numTrips, cfg.minTrips)]) else: # create new column for identify first/last trip of day vData['TripFlag'] = None ### Identify first and last of trip of day if cfg.verbosity > 1: print(' Defining first/last trip of day') vData = flagTrips(v, vData) ### Find clusters of vehicle locations if cfg.verbosity > 1: print(' Clustering') vData = clusterData(v, vData) # # drop rows - remove previous vehicle info # homeInfo.drop(homeInfo.index, inplace=True) # locationInfo.drop(locationInfo.index, inplace=True) # add row to LocationInfo data frame liList = [vData[['VehicleID', 'TripStartLocalTime', 'TripEndLocalTime', 'TripStartLatitude', 'TripStartLongitude', 'TripEndLatitude','TripEndLongitude', 'TripStartClusterID', 'TripEndClusterID']]] locationInfo = locationInfo.append(liList, ignore_index=True) # add ParkEndLocalTime for convenience - its the same as TripStartLocalTime in next row vData['ParkEndLocalTime'] = vData['TripStartLocalTime'].shift(periods=-1) vData['ParkDuration_hr'] = (vData['ParkEndLocalTime'] - vData['TripEndLocalTime'])/np.timedelta64(1,'h') ######################## #### FIND HOME DECISION TREE return more than one home, but must returns an array to conform with other methods that may return more that one) if cfg.verbosity > 1: print(' Identifying home location') vData = findHome_DecisionTree(v, vData) homeClusters = list(set(vData[vData['location'] == 'home']['TripEndClusterID'])) ######################## if len(homeClusters) == 0: cfg.errorWriter.writerow([datetime.now(), v, -1,'No home clusters found - vehicle skipped.']) continue # continue with next vehicle ######################## #### PROCESS HOME AND LOCATION INFO returns the data we want to push as output files if cfg.verbosity > 1: print(' Calculating output metrics') isOK, locationInfo, homeInfo = processHome(v, divisions, vData, locationInfo, homeInfo, homeClusters, EVSEs) if not isOK: continue ######################## ############################# IMPORTANT ######################################### # CLEANUP HOMEINFO AND LOCATIONINFO FOR EXPORT (remove sensitive data) homeInfo.drop(homeInfo[homeInfo['Primary'].isnull()].index, inplace=True) homeInfo.drop(['CentroidLatitude', 'CentroidLongitude', 'Primary'], axis=1, inplace=True) locationInfo.drop(['TripStartLatitude','TripStartLongitude','TripEndLatitude','TripEndLongitude'], axis=1, inplace=True) if not cfg.addClusterIDtoLocationInfo: locationInfo.drop(['TripStartClusterID','TripEndClusterID'], axis=1, inplace=True) ################################################################################# # write to output files if cfg.verbosity > 1: print(' Writing to output files') locationInfo.to_csv(cfg.locationInfoFileName, index=False, header=False, mode='a') homeInfo.to_csv(cfg.homeInfoFileName, index=False, header=False, mode='a') # # use one line buffering - every line written is flushed to disk with open(cfg.heartbeatFileName, mode='w', buffering=1, newline='') as hb: hb.write(str(v)) def findHome_DecisionTree(v, vData): vData['location'] = 'unknown' ## apply filter rules to get qualifying clusters vQual = rule1(vData) # this does not find good clusters, but checks if there is enough vehicle data to continue if vQual.empty: cfg.errorWriter.writerow([datetime.now(), v, -1,'Vehicle failed at rule 1']) return vData # leave all clusters marked unknown vQual = rule2(vData) # vData (the complete datset) is passed and we start eliminating clusters to find only those of interest if vQual.empty: cfg.errorWriter.writerow([datetime.now(), v, -1,'Vehicle failed at rule 2']) return vData # leave all clusters marked unknown vQual = rule3(vQual) # vQual is passed and further filtered if vQual.empty: cfg.errorWriter.writerow([datetime.now(), v, -1,'Vehicle failed at rule 3']) return vData # leave all clusters marked unknown qualClusters = vQual['TripEndClusterID'] vData['location'] = 'away' # apply decision tree to get home clusters homeClusters = decision1(vData, qualClusters) # find home by 65% rule if not homeClusters.empty: vData.loc[vData.TripEndClusterID.isin(homeClusters.TripEndClusterID), ['location']] = 'home' homeClusters = decision2(vData, qualClusters) # look for home in remaining clusters if not homeClusters.empty: vData.loc[vData.TripEndClusterID.isin(homeClusters.tolist()), ['location']] = 'home' return vData def rule1(vQual): # 1. vehicle must have at least 30 days of known last trips ids = vQual[((vQual['TripFlag'] == 'L') | (vQual['TripFlag'] == 'FL')) & (vQual['resid_Miles'] > -1) & (vQual['resid_Miles'] < 1)]['TripEndClusterID'] if len(ids) < 30: vQual = vQual[0:0] return vQual def rule2(vQual): # 2. get clusters with > 21 days between first and last parks (i.e. 'cluster period') #### get number of days, grouped by cluster id, between first and last park ids = vQual.groupby('TripEndClusterID')['TripEndDateOffset'].max() - vQual.groupby('TripEndClusterID')['TripEndDateOffset'].min() if ids.empty: vQual = vQual[0:0] else: ids = ids.dt.days #### add one day to max-min range ids = ids.add(1) #### get cluster ids with more than 21 days between first and last park ids = ids[ids > 21] if ids.empty: vQual = vQual[0:0] else: #### get data belonging to qualifying clusters vQual = vQual[vQual['TripEndClusterID'].isin(ids.index.tolist())] return vQual def rule3(vQual): # 3. get clusters with >= 15 parks during the cluster period #### get number of parks, grouped by cluster id ids = vQual.groupby('TripEndClusterID')['TripEndClusterID'].count() #### get cluster ids having at least 15 parks ids = ids[ids >= 15] if ids.empty: vQual = vQual[0:0] else: #### get data belonging to qualifying clusters vQual = vQual[vQual['TripEndClusterID'].isin(ids.index.tolist())] return vQual def decision1(vData, qualClusters): # how many days in period, grouped by cluster ids = vData[((vData['TripFlag'] == 'L') | (vData['TripFlag'] == 'FL')) & (vData['resid_Miles'] > -1) & (vData['resid_Miles'] < 1)][['TripEndClusterID','TripEndDateOffset']] daysInPeriod = ids.groupby('TripEndClusterID').count() # NumDaysInPeriodWithParkAKLTInCluster # how many driving days in period, grouped by cluster vMin = vData.groupby('TripEndClusterID')['TripEndDateOffset'].min() vMax = vData.groupby('TripEndClusterID')['TripEndDateOffset'].max() vRange = pd.concat([vMin, vMax], axis=1) vRange.columns=['minDate', 'maxDate'] q = ''' select TripEndClusterId, count(*) numDrivingDays from ( select distinct v.TripEndClusterID, v.minDate, i.TripEndDateOffset, v.maxDate from ids i inner join vRange v on i.TripEndDateOffset >= v.minDate and i.TripEndDateOffset <= v.maxDate ) a group by TripEndClusterID ''' drivingDays = sqldf(q, locals()) # NumDrivingDaysInPeriodWithKnownLastTrip # percent days with park, grouped by cluster q = ''' select a.TripEndClusterID, a.TripEndDateOffset*1.0 / b.numDrivingDays parkDays_pct from daysInPeriod a inner join drivingDays b on a.TripEndClusterID = b.TripEndClusterID ''' parkDaysPct = sqldf(q, locals()) # PercDaysWithKLTWithParkAKLT homeClusters = parkDaysPct[parkDaysPct['parkDays_pct'] > 0.65] homeClusters = homeClusters[homeClusters['TripEndClusterID'].isin(qualClusters.to_list())] return homeClusters def decision2(vData, qualClusters): parkDistinctTimes = set(vData['TripEndDateOffset']) #### matches check query missingTrips = set(vData[(vData['resid_Miles'] > 1) | (vData['resid_Miles'] < -1)]['TripEndDateOffset']) #### matches check query goodTimes = parkDistinctTimes.difference(list(missingTrips)) #### matches check query goodTimes = pd.DataFrame(list(goodTimes), columns=['TripEndDateOffset']) # convert set to dataframe vDataGood = vData[vData['TripEndDateOffset'].isin(goodTimes['TripEndDateOffset'])] totalParkedTimeHr = vDataGood.groupby('TripEndClusterID')['ParkDuration_hr'].sum() vMin = vData.groupby('TripEndClusterID')['TripEndDateOffset'].min() vMax = vData.groupby('TripEndClusterID')['TripEndDateOffset'].max() vRange = pd.concat([vMin, vMax], axis=1) vRange.columns=['minDate', 'maxDate'] qry = ''' Select A.TripEndClusterID, COUNT(*) NumDrivingDaysWithNoMissingTripsInPeriod from ( Select distinct B.TripEndClusterID, B.MinDate, A.TripEndDateOffset, B.MaxDate from goodTimes A inner join vRange B on A.TripEndDateOffset >= B.minDate and A.TripEndDateOffset <= B.maxDate ) A group by TripEndClusterID ''' numDrivingDays = sqldf(qry, locals()) # NumDrivingDaysWithNoMissingTripsInPeriod totalParkedTimeHr = pd.DataFrame(totalParkedTimeHr) qry = ''' select b.TripEndClusterID, ParkDuration_hr / NumDrivingDaysWithNoMissingTripsInPeriod TotalParkedTimeInPeriodInCluster_hr_PerDrivingDayWNMT from totalParkedTimeHr a inner join numDrivingDays b on a.TripEndClusterID = b.TripEndClusterID ''' totalParked = sqldf(qry, locals()) homeClusters = totalParked[totalParked['TotalParkedTimeInPeriodInCluster_hr_PerDrivingDayWNMT'] > 9]['TripEndClusterID'] homeClusters = homeClusters[homeClusters.isin(set(qualClusters))] return homeClusters def getEVSEDistance(row, homeLat, homeLong): dist = haversine((row.Latitude, row.Longitude), (homeLat, homeLong), unit=Unit.MILES) return dist def getStartLocationDistance(row, homeLat, homeLong, homeStart, homeEnd): if (homeStart <= row['TripEndLocalTime'] <= homeEnd): startDist = round(haversine((row['TripStartLatitude'], row['TripStartLongitude']), (homeLat, homeLong), unit=Unit.MILES)) else: startDist = row['TripStartDistanceFromHome_Miles'] return startDist def getEndLocationDistance(row, homeLat, homeLong, homeStart, homeEnd): if (homeStart <= row['TripEndLocalTime'] <= homeEnd): endDist = round(haversine((row['TripEndLatitude'], row['TripEndLongitude']), (homeLat, homeLong), unit=Unit.MILES)) else: endDist = row['TripEndDistanceFromHome_Miles'] return endDist def getLocationInfoData(row, HomeInfo, HomeClusterID): return 1 def isInHomeCluster(se, TripClusterID, TripLocaltTime, homeInfo): homeID = -1 inRange = False ## is park in a home cluster (i.e. is park's cluster ID equal to a home cluster ID) if TripClusterID in set(homeInfo['HomeID']): homeID = TripClusterID ## in a home cluster, but is park time in home cluster period inRange = isInRangeSet(se, homeInfo[homeInfo['HomeID'] == homeID][['HomeStartLocalTime', 'HomeEndLocalTime']], TripLocaltTime) #inRange = True return homeID, inRange def isInRangeSet(se, homeStartEnd, locationTime): if se == 'Start': if len(homeStartEnd[(homeStartEnd['HomeStartLocalTime'] < locationTime) & (homeStartEnd['HomeEndLocalTime'] >= locationTime)]) > 0: return True return False else: if len(homeStartEnd[(homeStartEnd['HomeStartLocalTime'] <= locationTime) & (homeStartEnd['HomeEndLocalTime'] > locationTime)]) > 0: return True return False def isInRange(se, homeStartEnd, locationTime): if se == 'Start': if homeStartEnd['HomeStartLocalTime'] < locationTime <= homeStartEnd['HomeEndLocalTime']: return True return False else: if homeStartEnd['HomeStartLocalTime'] <= locationTime < homeStartEnd['HomeEndLocalTime']: return True return False def isInTupleRange(se, start, end, locationTime): if se == 'Start': if start < locationTime <= end: return True return False else: if start <= locationTime < end: return True return False def youHome(row, se, locationTime): if se == 'Start': if row['HomeStartLocalTime'] < locationTime <= row['HomeEndLocalTime']: row['locIn'] = True row['locIn'] = False else: if row['HomeStartLocalTime'] <= locationTime < row['HomeEndLocalTime']: row['locIn'] = True row['locIn'] = False def processHome(v, divisions, vData, vLocationInfo, homeInfo, homeClusters, EVSEs): for cID in homeClusters: dfPts = vData[vData['TripEndClusterID'] == cID][['TripEndLatitude', 'TripEndLongitude']] mpPts = MultiPoint(dfPts.to_numpy()) CP = mpPts.centroid CP = geometry.Point(CP.y, CP.x) for i, division in divisions.iterrows(): if division.geometry.contains(CP): st = EVSEs[(EVSEs['Latitude'] > (CP.y - cfg.evseLatRange)) & (EVSEs['Latitude'] < (CP.y + cfg.evseLatRange)) & (EVSEs['Longitude'] > (CP.x - cfg.evseLonRange)) & (EVSEs['Longitude'] < (CP.x + cfg.evseLonRange))] if not st.empty: st['hMiles'] = st.apply(getEVSEDistance, args=(CP.y, CP.x), axis=1) st = st[st['hMiles'] <= cfg.evseDistRange_Miles] l2Cnt = 0 dcCnt = 0 if not st.empty: l2Cnt = st['L2'].sum() dcCnt = st['DCFC'].sum() l2Cnt = round(l2Cnt, cfg.numL2Rounding) dcCnt = round(dcCnt, cfg.numDCRounding) if l2Cnt == 0: l2Cnt = 1 if dcCnt == 0: dcCnt = 1 homeStart = vData[vData['TripEndClusterID'] == cID]['TripEndLocalTime'].min() homeEnd = vData[vData['TripEndClusterID'] == cID]['TripEndLocalTime'].max() newRow = {'VehicleID':int(v), 'HomeID':cID, 'HomeStartLocalTime':homeStart, 'HomeEndLocalTime':homeEnd, 'HomeRegion':division['NAME'], 'PublicChargingDensityL2':l2Cnt, 'PublicChargingDensityDCFC':dcCnt, 'CentroidLatitude':CP.y, 'CentroidLongitude':CP.x, 'Primary': False} homeInfo = homeInfo.append(newRow, ignore_index=True) break # exit the division loop cfg.errorWriter.writerow([datetime.now(), v, -1,'No census division found for cluster.']) if homeInfo.empty: cfg.errorWriter.writerow([datetime.now(), v, -1,'No usable clusters found for homeInfo - vehicle skipped.']) return False, vLocationInfo, homeInfo # vehicles with only one home are marked as the primary home and primary home detection below is skipped if len(homeInfo) == 1: homeInfo['Primary'] = True else: # collect period start and period end date for each cluster # get cluster period start dates of each range sranges = vData[vData['TripEndClusterID'].isin(homeInfo['HomeID'])].groupby('TripEndClusterID')[['TripEndDateOffset', 'TripEndLocalTime']].min() eranges = vData[vData['TripEndClusterID'].isin(homeInfo['HomeID'])].groupby('TripEndClusterID')[['TripEndDateOffset', 'TripEndLocalTime']].max() sranges['period'] = 's' eranges['period'] = 'e' # assemble period start/end dates into sorted list of dates ranges = sranges.append(eranges) numDates = len(ranges['TripEndDateOffset']) numUniqDates = len(set(ranges['TripEndDateOffset'])) if numDates != numUniqDates: cfg.errorWriter.writerow([datetime.now(), v, -1,'Range dates are not unique - vehicle skipped.']) return False, vLocationInfo, homeInfo ranges = ranges.sort_values(by=['TripEndDateOffset']) # make date ranges from first date to second date, second date to third date, etc. rangesEnd = ranges.shift(-1) rangesEnd.rename(columns={'TripEndDateOffset': 'End', 'TripEndLocalTime': 'HomeEnd', 'period': 'endperiod'}, inplace=True) ranges.rename(columns={'TripEndDateOffset': 'Start', 'TripEndLocalTime': 'HomeStart', 'period': 'startperiod'}, inplace=True) ranges = pd.concat([ranges, rangesEnd], axis=1) ranges = ranges[:-1] # remove last row ranges = ranges.reset_index() # when a range start date originates from a cluster period end, it should be incremented eidxs = ranges[ranges['startperiod']=='e'].index erows = ranges[ranges.index.isin(eidxs)] erows['Start'] += timedelta(days=1) ranges[ranges.index.isin(eidxs)] = erows # when a range end date originates from a cluster period start, should be decremented sidxs = ranges[ranges['endperiod']=='s'].index srows = ranges[ranges.index.isin(sidxs)] srows['End'] += timedelta(days=-1) ranges[ranges.index.isin(sidxs)] = srows # create column for each home cluster for every park "after known last trip of day" (AKLT) days parked for x in list(homeInfo['HomeID']): ranges[x] = 0 ranges.drop(['TripEndClusterID'], axis=1, inplace=True) # get cluster id and end date (offset) for every AKLT aklt = vData[((vData['TripFlag'] == 'L') | (vData['TripFlag'] == 'FL')) & (vData['resid_Miles'] > -1) & (vData['resid_Miles'] < 1)][['TripEndClusterID','TripEndDateOffset']] # loop through ranges, counting days parked in each cluster for ridx, rng in ranges.iterrows(): st = rng['Start'] en = rng['End'] # get number of days parked in given range for each home cluster (returned as a Series) akltrow = aklt[(aklt['TripEndClusterID'].isin(homeInfo['HomeID'])) & (aklt['TripEndDateOffset'] >= st) & (aklt['TripEndDateOffset'] <= en)].groupby('TripEndClusterID')['TripEndClusterID'].count() # write days parked to ranges dataframe for cid, numdays in akltrow.iteritems(): rng[cid] = numdays ranges.iloc[ridx] = rng # initialize dataframes homeInRange = pd.DataFrame(columns = ['cID']) homeNumDays = pd.DataFrame(columns = ['cID']) for idx in ranges.index: homeInRange[idx] = 0 homeNumDays[idx] = 0 for cID in homeInfo['HomeID']: homeNumDays.loc[len(homeNumDays)] = [cID] + list(ranges[cID]) # find ranges that are within each cluster's period for idx, homeID in homeInfo['HomeID'].iteritems(): # initialize cluster's within range flag to 0 homeInRange.loc[len(homeInRange.index)] = [homeID] + ([0] * len(ranges)) # index list of ranges within homeID's period rin = list(ranges[(ranges['HomeStart'] >= homeInfo.iloc[idx]['HomeStartLocalTime']) & (ranges['HomeEnd'] <= homeInfo.iloc[idx]['HomeEndLocalTime'])].index) # set flag to 1 for ranges that are within the homeID's period row = homeInRange[homeInRange['cID'] == homeID] row[rin] = 1 homeInRange[homeInRange['cID'] == homeID] = row # check number of cluster within range - no cluster = primary home, one cluster = cID is primary home, else leave for number of days check # get row indexes of homeInfoRange that have more then 1 home in range r = homeInRange.iloc[:,1:].sum(axis=0) multiInRangeidxs = r[r[0:] > 1] ranges['Primary'] = False # set ranges with single home to primary primaryIdxs = homeInRange.sum(axis=0) primaryIdxs = primaryIdxs[primaryIdxs==1] for idx in primaryIdxs.index: homeIDIdx = homeInRange[idx].idxmax(axis=0) homeID = homeInRange.iloc[homeIDIdx]['cID'] row = ranges.iloc[idx] row['Primary'] = homeID ranges.iloc[idx] = row # in ranges with multi homes, if primary home can be determine, set it for col in list(multiInRangeidxs.index): # if range has multi homes set those with a single max num of days to primary, else not primary if len(homeNumDays[col][homeNumDays[col] == homeNumDays[col].max()]) == 1: idx = homeNumDays[col][homeNumDays[col] == homeNumDays[col].max()].index homeID = homeNumDays.iloc[idx]['cID'].item() row = ranges.iloc[col] row['Primary'] = homeID ranges.iloc[col] = row # create an add-on to homeInfo of ranges showing which HomeID was the primary home in that range newHomeInfo = pd.DataFrame() for i, row in ranges.iterrows(): # copy the homeInfo row as starting point, then update the other fields in the new row nh = homeInfo[homeInfo['HomeID'] == row['Primary']] nh['HomeStartLocalTime'] = row['HomeStart'] nh['HomeEndLocalTime'] = row['HomeEnd'] nh['Primary'] = True newHomeInfo = newHomeInfo.append(nh, ignore_index=True) homeInfo['Primary'] = None homeInfo = homeInfo.append(newHomeInfo) homeInfo = homeInfo.reset_index(drop=True) ### Update vLocationInfo for se in ['Start', 'End']: if se == 'Start': SEColumnMappings = StartSEColumnMappings() else: SEColumnMappings = EndSEColumnMappings() vLocationInfo = parallel_func_wrapper_update_vlocation(vLocationInfo, vectorizedUpdateVehicleLocationInfo, cfg.numCores, SEColumnMappings=SEColumnMappings, homeInfo=homeInfo) return True, vLocationInfo, homeInfo def vectorizedUpdateVehicleLocationInfo(vLocationInfo, SEColumnMappings=None, homeInfo=None): vLocationInfo = vLocationInfo.copy() vUpdateVehicleLocatioInfo = np.vectorize(updateVehicleLocationInfo, excluded=['homeInfo']) result = vUpdateVehicleLocatioInfo(SEColumnMappings.mapType, vLocationInfo[SEColumnMappings.tripClusterID], vLocationInfo[SEColumnMappings.tripTime], vLocationInfo[SEColumnMappings.tripLocation], vLocationInfo[SEColumnMappings.tripLatitude], vLocationInfo[SEColumnMappings.tripLongitude], homeInfo=homeInfo) vLocationInfo[SEColumnMappings.tripLocation] = result[0] vLocationInfo[SEColumnMappings.tripHomeID] = result[1] vLocationInfo[SEColumnMappings.tripDistance] = result[2] vLocationInfo.loc[vLocationInfo[SEColumnMappings.tripHomeID] == -1, SEColumnMappings.tripHomeID] = np.nan vLocationInfo.loc[vLocationInfo[SEColumnMappings.tripDistance] == -1, SEColumnMappings.tripDistance] = np.nan return vLocationInfo def updateVehicleLocationInfo(mapType, tripClusterID, tripLocaltTime, tripLocation, tripLatitude, tripLongitude, homeInfo=None): ### Set Trip(Start/End)LocationCategory and Trip(Start/End)HomeID # Does row match match a HomeID and is it in between any Home(Start/Local)LocalTime ranges homeID, inRange = isInHomeCluster(mapType, tripClusterID, tripLocaltTime, homeInfo) ## did not match a home if homeID == -1: category = 'unknown' # is park in any home cluster if isInRangeSet(mapType, homeInfo[['HomeStartLocalTime', 'HomeEndLocalTime']], tripLocaltTime): category = 'away' newTripLocation = category newTripHomeID = -1 ## matched a home and is in home cluster period if homeID != -1 and inRange: newTripLocation = 'home' newTripHomeID = homeID ## matched a home, but is not in home cluster period if homeID != -1 and inRange == False: category = 'unknown' # is park in any home cluster if isInRangeSet(mapType, homeInfo[['HomeStartLocalTime', 'HomeEndLocalTime']], tripLocaltTime): category = 'away' newTripLocation = category newTripHomeID = -1 homeLoc = [] for homerow in homeInfo[homeInfo['Primary'] == True].itertuples(): if isInTupleRange(mapType, homerow.HomeStartLocalTime, homerow.HomeEndLocalTime, tripLocaltTime): homeLoc.extend([homerow[0]]) # no homes if len(homeLoc) == 0: newTripDistance = -1 # one distinct home if len(homeLoc) == 1: if tripLocation == 'home': newTripDistance = 0 else: hm = homeInfo.iloc[homeLoc[0]] newTripDistance = math.ceil(haversine((tripLatitude, tripLongitude), (hm['CentroidLatitude'], hm['CentroidLongitude']), unit=Unit.MILES)) # in range with multiple homes if len(homeLoc) > 1: hm = homeInfo[homeInfo.index.isin(homeLoc) & (homeInfo['Primary'])] newTripDistance = math.ceil(haversine((tripLatitude, tripLongitude), (hm['CentroidLatitude'], hm['CentroidLongitude']), unit=Unit.MILES)) return (newTripLocation, newTripHomeID, newTripDistance) def flagTrips(v, vData): # use offset as end/start of day, e.g. 3:30 AM vData['TripStartDateOffset'] = (vData['TripStartLocalTime'] - timedelta(hours=cfg.dayEndHours, minutes=cfg.dayEndMinutes)).dt.date vData['TripEndDateOffset']= (vData['TripEndLocalTime'] - timedelta(hours=cfg.dayEndHours, minutes=cfg.dayEndMinutes)).dt.date lastIdx = len(vData) - 1 curParkEndDate = vData['TripStartDateOffset'][0:1].item() vData['TripFlag'][0:1] = 'F' tripsCnt = 0 # find first and last trips in the day for i in range(1, lastIdx): tripsCnt += 1 # compare current (i) record to endDate if vData['TripEndDateOffset'][i:i+1].item() != curParkEndDate: vData['TripFlag'][i-1:i] = 'FL' if vData['TripFlag'][i-1:i].item() == 'F' else 'L' vData['TripFlag'][i:i+1] = 'F' curParkEndDate = vData['TripEndDateOffset'][i:i+1].item() tripsCnt = 0 vData['TripFlag'][-1:] = 'FL' if vData['TripFlag'][lastIdx-1:lastIdx].item() == 'L' else 'L' return vData def InBoundingBox(vd, colLat, colLon): """Check a value (latitude or longitude) to see if it is within the given range""" if math.isnan(vd[colLat]) or math.isnan(vd[colLon]): vd['Include'] = False return vd x = vd[colLat] y = vd[colLon] isFound = False for k in cfg.bboxes.keys(): x1 = cfg.bboxes[k][0][0] # upper- y1 = cfg.bboxes[k][0][1] # left coordinates x2 = cfg.bboxes[k][1][0] # lower- y2 = cfg.bboxes[k][1][1] # right coordinates if x > x2 and x < x1 and y > y1 and y < y2: # note: x-axis decreases from bottom to top isFound = True break # don't change any previously "falsed" flags if not isFound: vd['Include'] = False return vd # check that dates and times are sane def CheckDateTime(vd, colname): try: if pd.isnull(vd[colname]): vd['Include'] = False return vd curdt = datetime.today() if vd[colname].year < 2011 or vd[colname] > curdt: vd['Include'] = False return vd except ValueError: vd['Include'] = False return vd # check that the Odometer mileage is not less than the calculated mileage from the GPS coordinates def CompareOdometerToGPS(vd, tripStart, tripEnd, stLat, stLng, enLat, enLng, threshold): odoDist = vd[tripEnd] - vd[tripStart] GPSDist = haversine((vd[stLat], vd[stLng]), (vd[enLat], vd[enLng]), unit=Unit.MILES) if (odoDist - GPSDist) < threshold: vd.Include = False return vd # check various types of data with the vehicle data data frame and return data frame with the Include flag set def DoValidityChecking(v, vData): incl = vData incl = incl.apply(lambda x: CheckDateTime(x, 'TripStartLocalTime'), axis=1) startErrs = incl['Include'][incl['Include'] == False].count() if startErrs > 0: cfg.errorWriter.writerow([datetime.now(), v, -1, 'TripStartLocalTimes ({})'.format(startErrs)]) incl = incl.apply(lambda x: CheckDateTime(x, 'TripEndLocalTime'), axis=1) endErrs = incl['Include'][incl['Include'] == False].count() - startErrs if endErrs > 0: cfg.errorWriter.writerow([datetime.now(), v, -1, 'TripEndLocalTime is bad ({})'.format(endErrs)]) incl = incl.apply(lambda x: InBoundingBox(x, 'TripStartLatitude', 'TripStartLongitude'), axis=1) startPtErrs = incl['Include'][incl['Include'] == False].count() - startErrs - endErrs if startPtErrs > 0: cfg.errorWriter.writerow([datetime.now(), v, -1, 'TripStartLatitude is bad ({})'.format(startPtErrs)]) incl = incl.apply(lambda x: InBoundingBox(x, 'TripEndLatitude', 'TripEndLongitude'), axis=1) endPtErrs = incl['Include'][incl['Include'] == False].count() - startErrs - endErrs - startPtErrs if endPtErrs > 0: cfg.errorWriter.writerow([datetime.now(), v, -1, 'TripEndLongitude is bad ({})'.format(endPtErrs)]) incl = incl.apply(lambda x: CompareOdometerToGPS(x, 'TripStartOdometer_Miles', 'TripEndOdometer_Miles', 'TripStartLatitude', 'TripStartLongitude', 'TripEndLatitude', 'TripEndLongitude', cfg.gpsOdoThreshold_mi), axis=1) odoErrs = incl['Include'][incl['Include'] == False].count() - startErrs - endErrs - startPtErrs - endPtErrs if odoErrs > 0: cfg.errorWriter.writerow([datetime.now(), v, -1, 'Trip ODO < straight line distance ({})'.format(odoErrs)]) return incl # find clusters of data using latitude and longitude of trip start and end def clusterData(v,vData): kms_per_radian = 6371.0088 epsilon = (cfg.dbscan_eps_ft / 3281) / kms_per_radian minSamples = cfg.dbscan_min_spls startPts = vData[['TripStartLatitude', 'TripStartLongitude']].to_numpy() endPts = vData[['TripEndLatitude', 'TripEndLongitude']].to_numpy() coords = np.append(startPts, endPts, axis=0) coordsSet = np.unique(coords, axis=0) db = DBSCAN(eps=epsilon, min_samples=minSamples, algorithm='ball_tree', metric='haversine').fit(np.radians(coordsSet)) clusterLbls = db.labels_ # db.labels seems to be an array of cluster IDs mapping to the coords array coordsClusters =
pd.DataFrame(coordsSet)
pandas.DataFrame
# -*- coding: utf-8 -*- # Copyright (c) 2016 by University of Kassel and Fraunhofer Institute for Wind Energy and Energy # System Technology (IWES), Kassel. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import copy import numpy as np import pandas as pd import math from functools import partial from pypower.idx_brch import F_BUS, T_BUS, BR_R, BR_X, BR_B, TAP, SHIFT, BR_STATUS, RATE_A, QT from pypower.idx_bus import BASE_KV from pandapower.auxiliary import get_indices, get_values def _build_branch_ppc(net, ppc, is_elems, bus_lookup, calculate_voltage_angles, trafo_model, set_opf_constraints=False): """ Takes the empty ppc network and fills it with the branch values. The branch datatype will be np.complex 128 afterwards. .. note:: The order of branches in the ppc is: 1. Lines 2. Transformers 3. 3W Transformers (each 3W Transformer takes up three branches) 4. Impedances 5. Internal branch for extended ward **INPUT**: **net** -The Pandapower format network **ppc** - The PYPOWER format network to fill in values """ # if len(net["trafo3w"]) > 0: # _one_3w_to_three_2w(net) line_end = len(net["line"]) trafo_end = line_end + len(net["trafo"]) trafo3w_end = trafo_end + len(net["trafo3w"]) * 3 impedance_end = trafo3w_end + len(net["impedance"]) xward_end = impedance_end + len(net["xward"]) ppc["branch"] = np.zeros(shape=(xward_end, QT + 1), dtype=np.complex128) ppc["branch"][:, :13] = np.array([0, 0, 0, 0, 0, 250, 250, 250, 1, 0, 1, -360, 360]) if line_end > 0: ppc["branch"][:line_end, [F_BUS, T_BUS, BR_R, BR_X, BR_B, BR_STATUS, RATE_A]] = \ _calc_line_parameter(net, ppc, bus_lookup, set_opf_constraints) if trafo_end > line_end: ppc["branch"][line_end:trafo_end, [F_BUS, T_BUS, BR_R, BR_X, BR_B, TAP, SHIFT, BR_STATUS, RATE_A]] = \ _calc_trafo_parameter(net, ppc, bus_lookup, calculate_voltage_angles, trafo_model, set_opf_constraints) if trafo3w_end > trafo_end: ppc["branch"][trafo_end:trafo3w_end, [F_BUS, T_BUS, BR_R, BR_X, BR_B, TAP, SHIFT, BR_STATUS]] = \ _calc_trafo3w_parameter(net, ppc, bus_lookup, calculate_voltage_angles, trafo_model) if impedance_end > trafo3w_end: ppc["branch"][trafo3w_end:impedance_end, [F_BUS, T_BUS, BR_R, BR_X, BR_STATUS]] = \ _calc_impedance_parameter(net, bus_lookup) if xward_end > impedance_end: ppc["branch"][impedance_end:xward_end, [F_BUS, T_BUS, BR_R, BR_X, BR_STATUS]] = \ _calc_xward_parameter(net, ppc, is_elems, bus_lookup) def _calc_trafo3w_parameter(net, ppc, bus_lookup, calculate_voltage_angles, trafo_model): trafo_df = _trafo_df_from_trafo3w(net) temp_para = np.zeros(shape=(len(trafo_df), 8), dtype=np.complex128) temp_para[:, 0] = get_indices(trafo_df["hv_bus"].values, bus_lookup) temp_para[:, 1] = get_indices(trafo_df["lv_bus"].values, bus_lookup) temp_para[:, 2:6] = _calc_branch_values_from_trafo_df( net, ppc, bus_lookup, trafo_model, trafo_df) if calculate_voltage_angles: temp_para[:, 6] = trafo_df["shift_degree"].values else: temp_para[:, 6] = np.zeros(shape=(len(trafo_df.index),), dtype=np.complex128) temp_para[:, 7] = trafo_df["in_service"].values return temp_para def _calc_line_parameter(net, ppc, bus_lookup, set_opf_constraints=False): """ calculates the line parameter in per unit. **INPUT**: **net** -The Pandapower format network **RETURN**: **t** - Temporary line parameter. Which is a complex128 Nunmpy array. with the following order: 0:bus_a; 1:bus_b; 2:r_pu; 3:x_pu; 4:b_pu """ # baseR converts Ohm to p.u. Formula is U^2/Sref. Sref is 1 MVA and vn_kv is # in kV U^2* ((10^3 V)^2/10^6 VA) = U^2 # Therefore division by 1 MVA is not necessary. line = net["line"] fb = get_indices(line["from_bus"], bus_lookup) tb = get_indices(line["to_bus"], bus_lookup) length = line["length_km"].values parallel = line["parallel"] baseR = np.square(ppc["bus"][fb, BASE_KV]) t = np.zeros(shape=(len(line.index), 7), dtype=np.complex128) t[:, 0] = fb t[:, 1] = tb t[:, 2] = line["r_ohm_per_km"] * length / baseR / parallel t[:, 3] = line["x_ohm_per_km"] * length / baseR / parallel t[:, 4] = 2 * net.f_hz * math.pi * line["c_nf_per_km"] * 1e-9 * baseR * length * parallel t[:, 5] = line["in_service"] if set_opf_constraints: max_load = line.max_loading_percent if "max_loading_percent" in line else 1000 vr = net.bus.vn_kv[fb].values * np.sqrt(3) t[:, 6] = max_load / 100 * line.imax_ka * line.df * parallel * vr return t def _calc_trafo_parameter(net, ppc, bus_lookup, calculate_voltage_angles, trafo_model, set_opf_constraints=False): ''' Calculates the transformer parameter in per unit. **INPUT**: **net** - The Pandapower format network **RETURN**: **temp_para** - Temporary transformer parameter. Which is a np.complex128 Numpy array. with the following order: 0:hv_bus; 1:lv_bus; 2:r_pu; 3:x_pu; 4:b_pu; 5:tab, 6:shift ''' temp_para = np.zeros(shape=(len(net["trafo"].index), 9), dtype=np.complex128) trafo = net["trafo"] temp_para[:, 0] = get_indices(trafo["hv_bus"].values, bus_lookup) temp_para[:, 1] = get_indices(trafo["lv_bus"].values, bus_lookup) temp_para[:, 2:6] = _calc_branch_values_from_trafo_df(net, ppc, bus_lookup, trafo_model) if calculate_voltage_angles: temp_para[:, 6] = trafo["shift_degree"].values else: temp_para[:, 6] = np.zeros(shape=(len(trafo.index),), dtype=np.complex128) temp_para[:, 7] = trafo["in_service"].values if set_opf_constraints: max_load = trafo.max_loading_percent if "max_loading_percent" in trafo else 1000 temp_para[:, 8] = max_load / 100 * trafo.sn_kva / 1000 return temp_para def _calc_branch_values_from_trafo_df(net, ppc, bus_lookup, trafo_model, trafo_df=None): """ Calculates the MAT/PYPOWER-branch-attributes from the pandapower trafo dataframe. PYPOWER and MATPOWER uses the PI-model to model transformers. This function calculates the resistance r, reactance x, complex susceptance c and the tap ratio according to the given parameters. .. warning:: This function returns the subsceptance b as a complex number **(-img + -re*i)**. MAT/PYPOWER is only intended to calculate the imaginary part of the subceptance. However, internally c is multiplied by i. By using subsceptance in this way, it is possible to consider the ferromagnetic loss of the coil. Which would otherwise be neglected. .. warning:: Tab switches effect calculation as following: On **high-voltage** side(=1) -> only **tab** gets adapted. On **low-voltage** side(=2) -> **tab, x, r** get adapted. This is consistent with Sincal. The Sincal method in this case is questionable. **INPUT**: **pd_trafo** - The Pandapower format Transformer Dataframe. The Transformer modell will only readfrom pd_net **RETURN**: **temp_para** - Temporary transformer parameter. Which is a complex128 Nunmpy array. with the following order: 0:r_pu; 1:x_pu; 2:b_pu; 3:tab; """ if trafo_df is None: trafo_df = net["trafo"] baseR = np.square(get_values(ppc["bus"][:, BASE_KV], trafo_df["lv_bus"].values, bus_lookup)) ### Construct np.array to parse results in ### # 0:r_pu; 1:x_pu; 2:b_pu; 3:tab; temp_para = np.zeros(shape=(len(trafo_df), 4), dtype=np.complex128) unh, unl = _calc_vn_from_dataframe(trafo_df) r, x, y = _calc_r_x_y_from_dataframe(trafo_df, unl, baseR, trafo_model) temp_para[:, 0] = r temp_para[:, 1] = x temp_para[:, 2] = y temp_para[:, 3] = _calc_tap_from_dataframe(ppc, trafo_df, unh, unl, bus_lookup) return temp_para def _calc_r_x_y_from_dataframe(trafo_df, unl, baseR, trafo_model): y = _calc_y_from_dataframe(trafo_df, baseR) r, x = _calc_r_x_from_dataframe(trafo_df) if trafo_model == "pi": return r, x, y elif trafo_model == "t": return _wye_delta(r, x, y) else: raise ValueError("Unkonwn Transformer Model %s - valid values ar 'pi' or 't'" % trafo_model) def _wye_delta(r, x, y): """ 20.05.2016 added by <NAME> Calculate transformer Pi-Data based on T-Data """ tidx = np.where(y != 0) za_star = (r[tidx] + x[tidx] * 1j) / 2 zc_star = -1j / y[tidx] zSum_triangle = za_star * za_star + 2 * za_star * zc_star zab_triangle = zSum_triangle / zc_star zbc_triangle = zSum_triangle / za_star r[tidx] = zab_triangle.real x[tidx] = zab_triangle.imag y[tidx] = -2j / zbc_triangle return r, x, y def _calc_y_from_dataframe(trafo_df, baseR): """ Calculate the subsceptance y from the transformer dataframe. INPUT: **trafo** (Dataframe) - The dataframe in net.trafo which contains transformer calculation values. RETURN: **subsceptance** (1d array, np.complex128) - The subsceptance in pu in the form (-b_img, -b_real) """ ### Calculate subsceptance ### unl_squared = trafo_df["vn_lv_kv"].values**2 b_real = trafo_df["pfe_kw"].values / (1000. * unl_squared) * baseR b_img = (trafo_df["i0_percent"].values / 100. * trafo_df["sn_kva"].values / 1000.)**2 \ - (trafo_df["pfe_kw"].values / 1000.)**2 b_img[b_img < 0] = 0 b_img = np.sqrt(b_img) * baseR / unl_squared return -b_real * 1j - b_img def _calc_vn_from_dataframe(trafo_df): """ Adjust the nominal voltage vnh and vnl to the active tab position "tp_pos". If "side" is 1 (high-voltage side) the high voltage vnh is adjusted. If "side" is 2 (low-voltage side) the low voltage vnl is adjusted INPUT: **trafo** (Dataframe) - The dataframe in pd_net["structure"]["trafo"] which contains transformer calculation values. RETURN: **vn_hv_kv** (1d array, float) - The adusted high voltages **vn_lv_kv** (1d array, float) - The adjusted low voltages """ # Changing Voltage on high-voltage side unh = copy.copy(trafo_df["vn_hv_kv"].values) m = (trafo_df["tp_side"] == "hv").values tap_os = np.isfinite(trafo_df["tp_pos"].values) & m if any(tap_os): unh[tap_os] *= np.ones((tap_os.sum()), dtype=np.float) + \ (trafo_df["tp_pos"].values[tap_os] - trafo_df["tp_mid"].values[tap_os]) * \ trafo_df["tp_st_percent"].values[tap_os] / 100. # Changing Voltage on high-voltage side unl = copy.copy(trafo_df["vn_lv_kv"].values) tap_us = np.logical_and(np.isfinite(trafo_df["tp_pos"].values), (trafo_df["tp_side"] == "lv").values) if any(tap_us): unl[tap_us] *= np.ones((tap_us.sum()), dtype=np.float) \ + (trafo_df["tp_pos"].values[tap_us] - trafo_df["tp_mid"].values[tap_us]) \ * trafo_df["tp_st_percent"].values[tap_us] / 100. return unh, unl def _calc_r_x_from_dataframe(trafo_df): """ Calculates (Vectorized) the resitance and reactance according to the transformer values """ z_sc = trafo_df["vsc_percent"].values / 100. / trafo_df.sn_kva.values * 1000. r_sc = trafo_df["vscr_percent"].values / 100. / trafo_df.sn_kva.values * 1000. x_sc = np.sqrt(z_sc**2 - r_sc**2) return r_sc, x_sc def _calc_tap_from_dataframe(ppc, trafo_df, vn_hv_kv, vn_lv_kv, bus_lookup): """ Calculates (Vectorized) the off nominal tap ratio:: (vn_hv_kv / vn_lv_kv) / (ub1_in_kv / ub2_in_kv) INPUT: **net** (Dataframe) - The net for which to calc the tap ratio. **vn_hv_kv** (1d array, float) - The adjusted nominal high voltages **vn_lv_kv** (1d array, float) - The adjusted nominal low voltages RETURN: **tab** (1d array, float) - The off-nominal tap ratio """ # Calculating tab (trasformer off nominal turns ratio) tap_rat = vn_hv_kv / vn_lv_kv nom_rat = get_values(ppc["bus"][:, BASE_KV], trafo_df["hv_bus"].values, bus_lookup) / \ get_values(ppc["bus"][:, BASE_KV], trafo_df["lv_bus"].values, bus_lookup) return tap_rat / nom_rat def z_br_to_bus(z, s): zbr_n = s[0] * np.array([z[0] / min(s[0], s[1]), z[1] / min(s[1], s[2]), z[2] / min(s[0], s[2])]) return .5 * s / s[0] * np.array([(zbr_n[0] + zbr_n[2] - zbr_n[1]), (zbr_n[1] + zbr_n[0] - zbr_n[2]), (zbr_n[2] + zbr_n[1] - zbr_n[0])]) def _trafo_df_from_trafo3w(net): trafos2w = {} nr_trafos = len(net["trafo3w"]) tap_variables = ("tp_pos", "tp_mid", "tp_max", "tp_min", "tp_st_percent") i = 0 for _, ttab in net["trafo3w"].iterrows(): uk = np.array([ttab.vsc_hv_percent, ttab.vsc_mv_percent, ttab.vsc_lv_percent]) ur = np.array([ttab.vscr_hv_percent, ttab.vscr_mv_percent, ttab.vscr_lv_percent]) sn = np.array([ttab.sn_hv_kva, ttab.sn_mv_kva, ttab.sn_lv_kva]) uk_2w = z_br_to_bus(uk, sn) ur_2w = z_br_to_bus(ur, sn) taps = [{tv: np.nan for tv in tap_variables} for _ in range(3)] for k in range(3): taps[k]["tp_side"] = None if pd.notnull(ttab.tp_side): if ttab.tp_side == "hv": tp_trafo = 0 elif ttab.tp_side == "mv": tp_trafo = 1 elif ttab.tp_side == "lv": tp_trafo = 3 for tv in tap_variables: taps[tp_trafo][tv] = ttab[tv] taps[tp_trafo]["tp_side"] = "hv" if tp_trafo == 0 else "lv" trafos2w[i] = {"hv_bus": ttab.hv_bus, "lv_bus": ttab.ad_bus, "sn_kva": ttab.sn_hv_kva, "vn_hv_kv": ttab.vn_hv_kv, "vn_lv_kv": ttab.vn_hv_kv, "vscr_percent": ur_2w[0], "vsc_percent": uk_2w[0], "pfe_kw": ttab.pfe_kw, "i0_percent": ttab.i0_percent, "tp_side": taps[0]["tp_side"], "tp_mid": taps[0]["tp_mid"], "tp_max": taps[0]["tp_max"], "tp_min": taps[0]["tp_min"], "tp_pos": taps[0]["tp_pos"], "tp_st_percent": taps[0]["tp_st_percent"], "in_service": ttab.in_service, "shift_degree": 0} trafos2w[i + nr_trafos] = {"hv_bus": ttab.ad_bus, "lv_bus": ttab.mv_bus, "sn_kva": ttab.sn_mv_kva, "vn_hv_kv": ttab.vn_hv_kv, "vn_lv_kv": ttab.vn_mv_kv, "vscr_percent": ur_2w[1], "vsc_percent": uk_2w[1], "pfe_kw": 0, "i0_percent": 0, "tp_side": taps[1]["tp_side"], "tp_mid": taps[1]["tp_mid"], "tp_max": taps[1]["tp_max"], "tp_min": taps[1]["tp_min"], "tp_pos": taps[1]["tp_pos"], "tp_st_percent": taps[1]["tp_st_percent"], "in_service": ttab.in_service, "shift_degree": ttab.shift_mv_degree} trafos2w[i + 2 * nr_trafos] = {"hv_bus": ttab.ad_bus, "lv_bus": ttab.lv_bus, "sn_kva": ttab.sn_lv_kva, "vn_hv_kv": ttab.vn_hv_kv, "vn_lv_kv": ttab.vn_lv_kv, "vscr_percent": ur_2w[2], "vsc_percent": uk_2w[2], "pfe_kw": 0, "i0_percent": 0, "tp_side": taps[2]["tp_side"], "tp_mid": taps[2]["tp_mid"], "tp_max": taps[2]["tp_max"], "tp_min": taps[2]["tp_min"], "tp_pos": taps[2]["tp_pos"], "tp_st_percent": taps[2]["tp_st_percent"], "in_service": ttab.in_service, "shift_degree": ttab.shift_lv_degree} i += 1 trafo_df =
pd.DataFrame(trafos2w)
pandas.DataFrame
# -*- coding: utf-8 -*- # @Author: <NAME> # @Email: <EMAIL> import os import sys import codecs import numpy as np import pandas as pd import torch import jieba from gensim.models import KeyedVectors from torch.utils.data import TensorDataset, DataLoader, Dataset # DOCKER data file data_dir = "/data" jieba.load_userdict(data_dir+"/cut_dict_uniq.txt") STOPWORDS = [line.strip() for line in codecs.open(data_dir+"/stopwords_1009.txt", "r", "utf-8").readlines()] # ================================= # Char Data Loader (Embedding) # ================================= def load_embedding(): char_vectors = KeyedVectors.load_word2vec_format(data_dir+"/embedding_char_300.bin", binary=True) char2index = {} zeros = np.zeros(char_vectors.vectors.shape[1], dtype=np.float32) embedding = np.insert(char_vectors.vectors, 0, zeros, axis=0) print("Char Embedding: ", embedding.shape) padding_value = 0 for i, w in enumerate(char_vectors.index2word): char2index[w] = i + 1 return embedding, char2index, padding_value class OnlineQA(Dataset): def __init__(self, max_len, data_fn, char2index): self.char2index = char2index self.max_len = max_len self.load(data_fn) self.y = torch.LongTensor(self.df["label"].tolist()) def load(self, data_fn): self.df = pd.read_csv(data_dir+"/{}".format(data_fn)).reset_index(drop=True) self.label =
pd.unique(self.df["label"])
pandas.unique
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') assert df.index.name is None def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = self.read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/parser/data/salaries.csv') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @pytest.mark.slow def test_file(self): dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(self): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError path = '%s.csv' % tm.rands(10) pytest.raises(compat.FileNotFoundError, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) assert result['D'].isna()[1:].all() def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) assert pd.isna(result.iloc[0, 29]) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) s.close() tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') assert len(result) == 50 if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') assert len(result) == 50 def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') assert got == expected def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') assert result['SEARCH_TERM'][2] == ('SLAGBORD, "Bergslagen", ' 'IKEA:s 1700-tals serie') tm.assert_index_equal(result.columns, Index(['SEARCH_TERM', 'ACTUAL_URL'])) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) tm.assert_series_equal(result['Numbers'], expected['Numbers']) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. assert type(df.a[0]) is np.float64 assert df.a.dtype == np.float def test_warn_if_chunks_have_mismatched_type(self): warning_type = False integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if self.engine == 'c' and self.low_memory: warning_type = DtypeWarning with tm.assert_produces_warning(warning_type): df = self.read_csv(StringIO(data)) assert df.a.dtype == np.object def test_integer_overflow_bug(self): # see gh-2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') assert result[0].dtype == np.float64 result = self.read_csv(StringIO(data), header=None, sep=r'\s+') assert result[0].dtype == np.float64 def test_catch_too_many_names(self): # see gh-5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" pytest.raises(ValueError, self.read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # see gh-3374, gh-6607 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # see gh-10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) assert len(result) == 2 # see gh-9735: this issue is C parser-specific (bug when # parsing whitespace and characters at chunk boundary) if self.engine == 'c': chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = self.read_csv(StringIO(chunk1 + chunk2), header=None) expected = DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # see gh-10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_empty_with_multiindex(self): # see gh-10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_float_parser(self): # see gh-9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_scientific_no_exponent(self): # see gh-12215 df = DataFrame.from_items([('w', ['2e']), ('x', ['3E']), ('y', ['42e']), ('z', ['632E'])]) data = df.to_csv(index=False) for prec in self.float_precision_choices: df_roundtrip = self.read_csv( StringIO(data), float_precision=prec) tm.assert_frame_equal(df_roundtrip, df) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" # 13007854817840016671868 > UINT64_MAX, so this # will overflow and return object as the dtype. result = self.read_csv(StringIO(data)) assert result['ID'].dtype == object # 13007854817840016671868 > UINT64_MAX, so attempts # to cast to either int64 or uint64 will result in # an OverflowError being raised. for conv in (np.int64, np.uint64): pytest.raises(OverflowError, self.read_csv, StringIO(data), converters={'ID': conv}) # These numbers fall right inside the int64-uint64 range, # so they should be parsed as string. ui_max = np.iinfo(np.uint64).max i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min, ui_max]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([x]) tm.assert_frame_equal(result, expected) # These numbers fall just outside the int64-uint64 range, # so they should be parsed as string. too_big = ui_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([str(x)]) tm.assert_frame_equal(result, expected) # No numerical dtype can hold both negative and uint64 values, # so they should be cast as string. data = '-1\n' + str(2**63) expected = DataFrame([str(-1), str(2**63)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) data = str(2**63) + '\n-1' expected = DataFrame([str(2**63), str(-1)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # see gh-9535 expected = DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(self.read_csv( StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records( result), expected, check_index_type=False) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = next(iter(self.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records(result), expected, check_index_type=False) def test_eof_states(self): # see gh-10728, gh-10548 # With skip_blank_lines = True expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # gh-10728: WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # gh-10548: EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') def test_uneven_lines_with_usecols(self): # See gh-12203 csv = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10 """ # make sure that an error is still thrown # when the 'usecols' parameter is not provided msg = r"Expected \d+ fields in line \d+, saw \d+" with tm.assert_raises_regex(ValueError, msg): df = self.read_csv(StringIO(csv)) expected = DataFrame({ 'a': [0, 3, 8], 'b': [1, 4, 9] }) usecols = [0, 1] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) usecols = ['a', 'b'] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) def test_read_empty_with_usecols(self): # See gh-12493 names = ['Dummy', 'X', 'Dummy_2'] usecols = names[1:2] # ['X'] # first, check to see that the response of # parser when faced with no provided columns # throws the correct error, with or without usecols errmsg = "No columns to parse from file" with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO('')) with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO(''), usecols=usecols) expected = DataFrame(columns=usecols, index=[0], dtype=np.float64) df = self.read_csv(StringIO(',,'), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) expected = DataFrame(columns=usecols) df = self.read_csv(StringIO(''), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa expected = DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # gh-8661, gh-8679: this should ignore six lines including # lines with trailing whitespace and blank lines df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # gh-8983: test skipping set of rows after a row with trailing spaces expected = DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_raise_on_sep_with_delim_whitespace(self): # see gh-6607 data = 'a b c\n1 2 3' with tm.assert_raises_regex(ValueError, 'you can only specify one'): self.read_table(StringIO(data), sep=r'\s', delim_whitespace=True) def test_single_char_leading_whitespace(self): # see gh-9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = np.array([[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep=r'\s+') tm.assert_numpy_array_equal(df.values, expected) expected = np.array([[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]]) df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_numpy_array_equal(df.values, expected) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = np.array([[1, 2., 4.], [5., np.nan, 10.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) def test_regex_separator(self): # see gh-6607 data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep=r'\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) assert expected.index.name is None tm.assert_frame_equal(df, expected) data = ' a b c\n1 2 3 \n4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) @tm.capture_stdout def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" # Engines are verbose in different ways. self.read_csv(StringIO(text), verbose=True) output = sys.stdout.getvalue() if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 3 NA values in column a\n' # Reset the stdout buffer. sys.stdout = StringIO() text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" self.read_csv(StringIO(text), verbose=True, index_col=0) output = sys.stdout.getvalue() # Engines are verbose in different ways. if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 1 NA values in column a\n' def test_iteration_open_handle(self): if PY3: pytest.skip( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break if self.engine == 'c': pytest.raises(Exception, self.read_table, f, squeeze=True, header=None) else: result = self.read_table(f, squeeze=True, header=None) expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) assert expected.A.dtype == 'int64' assert expected.B.dtype == 'float' assert expected.C.dtype == 'float' df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" df2 = self.read_csv(StringIO(data), sep=';', decimal=',') assert df2['Number1'].dtype == float assert df2['Number2'].dtype == float assert df2['Number3'].dtype == float def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,+Inf d,-Inf e,INF f,-INF g,+INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = self.read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = self.read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_raise_on_no_columns(self): # single newline data = "\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) # test with more than a single newline data = "\n\n\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) def test_compact_ints_use_unsigned(self): # see gh-13323 data = 'a,b,c\n1,9,258' # sanity check expected = DataFrame({ 'a': np.array([1], dtype=np.int64), 'b': np.array([9], dtype=np.int64), 'c': np.array([258], dtype=np.int64), }) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.int8), 'b': np.array([9], dtype=np.int8), 'c': np.array([258], dtype=np.int16), }) # default behaviour for 'use_unsigned' with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True) tm.assert_frame_equal(out, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=False) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.uint8), 'b': np.array([9], dtype=np.uint8), 'c': np.array([258], dtype=np.uint16), }) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=True) tm.assert_frame_equal(out, expected) def test_compact_ints_as_recarray(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) assert result.dtype == ex_dtype with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) assert result.dtype == ex_dtype def test_as_recarray(self): # basic test with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # index_col ignored with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, index_col=0) tm.assert_numpy_array_equal(out, expected) # respects names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = '1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), names=['a', 'b'], header=None, as_recarray=True) tm.assert_numpy_array_equal(out, expected) # header order is respected even though it conflicts # with the natural ordering of the column names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'b,a\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('b', '=i8'), ('a', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # overrides the squeeze parameter with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a\n1' expected = np.array([(1,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, squeeze=True) tm.assert_numpy_array_equal(out, expected) # does data conversions before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' conv = lambda x: int(x) + 1 expected = np.array([(2, 'a'), (3, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, converters={'a': conv}) tm.assert_numpy_array_equal(out, expected) # filters by usecols before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1,), (2,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, usecols=['a']) tm.assert_numpy_array_equal(out, expected) def test_memory_map(self): mmap_file = os.path.join(self.dirpath, 'test_mmap.csv') expected = DataFrame({ 'a': [1, 2, 3], 'b': ['one', 'two', 'three'], 'c': ['I', 'II', 'III'] }) out = self.read_csv(mmap_file, memory_map=True) tm.assert_frame_equal(out, expected) def test_null_byte_char(self): # see gh-2741 data = '\x00,foo' cols = ['a', 'b'] expected = DataFrame([[np.nan, 'foo']], columns=cols) if self.engine == 'c': out = self.read_csv(StringIO(data), names=cols) tm.assert_frame_equal(out, expected) else: msg = "NULL byte detected" with tm.assert_raises_regex(ParserError, msg): self.read_csv(StringIO(data), names=cols) def test_utf8_bom(self): # see gh-4793 bom = u('\ufeff') utf8 = 'utf-8' def _encode_data_with_bom(_data): bom_data = (bom + _data).encode(utf8) return BytesIO(bom_data) # basic test data = 'a\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8) tm.assert_frame_equal(out, expected) # test with "regular" quoting data = '"a"\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, quotechar='"') tm.assert_frame_equal(out, expected) # test in a data row instead of header data = 'b\n1' expected = DataFrame({'a': ['b', '1']}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, names=['a']) tm.assert_frame_equal(out, expected) # test in empty data row with skipping data = '\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, names=['a'], skip_blank_lines=True) tm.assert_frame_equal(out, expected) # test in empty data row without skipping data = '\n1' expected = DataFrame({'a': [np.nan, 1.0]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, names=['a'], skip_blank_lines=False) tm.assert_frame_equal(out, expected) def test_temporary_file(self): # see gh-13398 data1 = "0 0" from tempfile import TemporaryFile new_file = TemporaryFile("w+") new_file.write(data1) new_file.flush() new_file.seek(0) result = self.read_csv(new_file, sep=r'\s+', header=None) new_file.close() expected = DataFrame([[0, 0]]) tm.assert_frame_equal(result, expected) def test_read_csv_utf_aliases(self): # see gh issue 13549 expected = pd.DataFrame({'mb_num': [4.8], 'multibyte': ['test']}) for byte in [8, 16]: for fmt in ['utf-{0}', 'utf_{0}', 'UTF-{0}', 'UTF_{0}']: encoding = fmt.format(byte) data = 'mb_num,multibyte\n4.8,test'.encode(encoding) result = self.read_csv(BytesIO(data), encoding=encoding) tm.assert_frame_equal(result, expected) def test_internal_eof_byte(self): # see gh-5500 data = "a,b\n1\x1a,2" expected = pd.DataFrame([["1\x1a", 2]], columns=['a', 'b']) result = self.read_csv(StringIO(data))
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
# -*- coding: utf-8 -*- import numpy as np, pandas as pd, arviz as az, seaborn as sns, matplotlib.pyplot as plt from cmdstanpy import CmdStanModel raw_data = pd.read_csv("data/challenger_data.csv") raw_data["Date"] =
pd.to_datetime(raw_data["Date"], infer_datetime_format=True)
pandas.to_datetime
from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession import string, sys, re import pandas as pd import geopandas as gpd from pyspark.sql.types import * from pyspark.sql import SparkSession from geospark.register import upload_jars from geospark.register import GeoSparkRegistrator # Create Spark Session spark = SparkSession.builder.\ appName("SparkSessionExample").\ getOrCreate() # Uses findspark Python package to upload jar files to executor and nodes. upload_jars() # Registers all GeoSparkSQL functions GeoSparkRegistrator.registerAll(spark) # Load matrix of coordinates and US county data into Spark and GeoPandas original_matrix_df = spark.read.format("csv").option("header", "true").load("geospark_matrix.csv") original_geo_df = gpd.read_file("cb_2018_us_county_500k/cb_2018_us_county_500k.shp") # Map Polygon in geometry field of geo_d fto WKT (well-known-text) format and rename as counties_df wkts = map(lambda g: str(g.to_wkt()), original_geo_df.geometry) original_geo_df['wkt'] =
pd.Series(wkts)
pandas.Series
#!/usr/bin/env python3 """A tool to plot cumulative time taken for each planner to solve a collection of problems. Really needs to be renamed to avoid confusion with solution_time_plot.py.""" from argparse import ArgumentParser from collections import OrderedDict from json import load import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from asnets.scripts.solution_time_plot import add_common_parser_opts parser = ArgumentParser( description="plots of total running time for ICAPS/JFPDA slides (and " "maybe JAIR too)") parser.add_argument('--save', metavar='PATH', type=str, default=None, help="destination file for graph") parser.add_argument('--no-legend', dest='add_legend', default="brief", action='store_false', help='disable legend') parser.add_argument('--dims', nargs=2, type=float, metavar=('WIDTH', 'HEIGHT'), default=[7, 3], help="dimensions (in inches) for saved plot") parser.add_argument('--xmax', type=int, help='maximum time to show along x-axis') parser.add_argument('--title', help='title for the plot') parser.add_argument( '--presentation', default=False, action='store_true', help='use typeface/display choices appropriate for presentation (rather ' 'than printed work)') add_common_parser_opts(parser) def _load_inner_df(expt_str, args): """Load single experiment outcome as dataframe.""" try: label, path = expt_str.split(':', 1) except ValueError as e: print('Could not parse label:path pair "%s"' % expt_str) raise e # this is for data that we don't have because one method took forever to # solve anything :( no_data = path == 'EMPTY' if no_data: data = {'eval_names': [], 'eval_sizes': [], 'eval_runs': []} else: # load data with open(path, 'r') as fp: data = load(fp) # sometimes we have more names than sizes for some reasons (probably # collate_data is broken) num_runs_set = set( map(len, [data['eval_sizes'], data['eval_runs'], data['eval_names']])) assert len(num_runs_set), "inconsistent sizes (%s)" % (num_runs_set, ) # this is used for ASNets train_time = data.get('train_time', 0) # These are sometimes used by the calling code. name_arch is the name of # the architecture module (e.g. actprop_2l), and name_expt is the name of # the experiment module (e.g. ex_blocksworld). name_arch = data.get('name_arch', 'EMPTY') name_expt = data.get('name_expt', 'EMPTY') # record format: # { # "problem": <problem-name>, # "problem_size": <problem-size>, # "method": <algorithm-name>, # "goal_reached": <goal-reached>, # "cost": <cost-or-deadend-cost>, # "time": <time-or-timeout>, # "time_raw": <ray-time-maybe-none>, # "run_seq_num": <run-num-in-sequence>, # } # We'll make a DataFrame out of those! records = [] for name, size, data_dict in zip(data['eval_names'], data['eval_sizes'], data['eval_runs']): for seq_num, (goal_reached, cost, time) in enumerate( zip(data_dict['goal_reached'], data_dict['cost'], data_dict['time'])): if time is None: time_or_timeout = args.timeout else: # always add in training time time_or_timeout = time + train_time record = { "problem": name, "problem_size": size, "method": label, "goal_reached": goal_reached, "cost": cost, "time": time_or_timeout, # use nans instead of None to hint to Pandas that this series # should be float, and not object "time_raw": time if time is not None else float('nan'), "train_time": train_time, "run_seq_num": seq_num, "name_arch": name_arch, "name_expt": name_expt, } records.append(record) frame =
pd.DataFrame.from_records(records)
pandas.DataFrame.from_records
# 预处理复赛数据 import os import pandas as pd import lightgbm as lgb from sklearn.model_selection import StratifiedKFold import numpy as np from sklearn.metrics import f1_score path = './' w2v_path = path + '/w2v' train = pd.read_csv(path + '/train_2.csv') test = pd.read_csv(path + '/test_2.csv') train_stacking =
pd.read_csv(path + '/stack/train.csv')
pandas.read_csv
# pylint: disable=missing-docstring from copy import copy from unittest.mock import patch, call from datetime import datetime, timedelta from django.test import TestCase from django.utils import timezone from django.db.utils import DataError from django.core.exceptions import ValidationError import pandas as pd from server.models import Match, Team from server.tests.fixtures import data_factories from server.tests.fixtures.factories import FullMatchFactory class TestMatch(TestCase): fixtures = ["ml_models.json"] def setUp(self): match_datetime = timezone.make_aware(datetime(2018, 5, 5)) self.match = Match.objects.create( start_date_time=match_datetime, round_number=5, venue="Corporate Stadium" ) self.home_team = Team.objects.create(name="Richmond") self.away_team = Team.objects.create(name="Melbourne") self.match.teammatch_set.create( team=self.home_team, match=self.match, at_home=True, score=50 ) self.match.teammatch_set.create( team=self.away_team, match=self.match, at_home=False, score=100 ) def test_get_or_create_from_raw_data(self): fixture_data = data_factories.fake_fixture_data().to_dict("records")[0] match_count = Match.objects.count() with self.subTest("with validation error"): invalid_fixture_data = copy(fixture_data) invalid_fixture_data["venue"] = "venue" * 25 with self.assertRaises(DataError): Match.get_or_create_from_raw_data(invalid_fixture_data) self.assertEqual(Match.objects.count(), match_count) created_match = Match.get_or_create_from_raw_data(fixture_data) self.assertIsInstance(created_match, Match) self.assertEqual(Match.objects.count(), match_count + 1) with self.subTest("with existing match record"): gotten_match = Match.get_or_create_from_raw_data(fixture_data) self.assertEqual(gotten_match, created_match) self.assertEqual(Match.objects.count(), match_count + 1) def test_played_without_results(self): FullMatchFactory( start_date_time=timezone.localtime() - timedelta(days=1), home_team_match__score=0, away_team_match__score=0, ) FullMatchFactory( start_date_time=timezone.localtime() - timedelta(days=1), home_team_match__score=50, away_team_match__score=80, ) FullMatchFactory( start_date_time=timezone.localtime() + timedelta(days=1), home_team_match__score=0, away_team_match__score=0, ) played_matches_without_results = Match.played_without_results() self.assertEqual(played_matches_without_results.count(), 1) def test_earliest_date_time_without_results(self): FullMatchFactory( start_date_time=timezone.localtime() - timedelta(days=1), home_team_match__score=50, away_team_match__score=80, ) FullMatchFactory( start_date_time=timezone.localtime() + timedelta(days=1), home_team_match__score=0, away_team_match__score=0, ) with self.subTest("when all matches have results or haven't been played"): earliest_date_time_without_results = ( Match.earliest_date_time_without_results() ) self.assertIsNone(earliest_date_time_without_results) played_resultless = FullMatchFactory( start_date_time=timezone.localtime() - timedelta(days=1), home_team_match__score=0, away_team_match__score=0, ) earliest_date_time_without_results = Match.earliest_date_time_without_results() self.assertEqual( played_resultless.start_date_time, earliest_date_time_without_results ) @patch("server.models.match.Match.update_result") def test_update_results(self, mock_update_result): match_results = data_factories.fake_match_results_data() calls = [] for _idx, match_result in match_results.iterrows(): FullMatchFactory( home_team_match__score=0, away_team_match__score=0, start_date_time=match_result["date"], round_number=match_result["round_number"], home_team_match__team__name=match_result["home_team"], away_team_match__team__name=match_result["away_team"], venue=match_result["venue"], ) calls.append(call(match_result)) Match.update_results(match_results) self.assertEqual(mock_update_result.call_count, len(match_results)) def test_update_result(self): with self.subTest("When the match hasn't been played yet"): match = FullMatchFactory( future=True, with_predictions=True, home_team_match__score=0, away_team_match__score=0, ) match.update_result(pd.DataFrame()) # It doesn't update match scores score_sum = sum(match.teammatch_set.values_list("score", flat=True)) self.assertEqual(score_sum, 0) # It doesn't update prediction correctness self.assertEqual( match.prediction_set.filter(is_correct__in=[True, False]).count(), 0, ) # It doesn't update match winner or margin self.assertIsNone(match.winner) self.assertIsNone(match.margin) with self.subTest("When the match doesn't have results yet"): with self.subTest("and has been played within the last week"): yesterday = timezone.now() - timedelta(days=1) match = FullMatchFactory( with_predictions=True, start_date_time=yesterday, home_team_match__score=0, away_team_match__score=0, prediction__is_correct=None, prediction_two__is_correct=None, ) match.winner = None match.margin = None match.update_result(
pd.DataFrame()
pandas.DataFrame
import os import numpy as np import pandas as pd import nltk class Sentiment(): def __init__(self, data_rpath='data/'): # download nltk tokenizer nltk.download('punkt') # load data self._load_data(os.path.join(data_rpath, 'corpus.csv')) # build dictionary from data dictionary_path = os.path.join(data_rpath, 'dictionary.csv') # if not os.path.exists(dictionary_path): self._build_dictionary(np.concatenate([self.x_train, self.x_test, self.x_val]), dictionary_path) self.dictionary = self._load_dictionary(dictionary_path) def _load_data(self, path, val_size=100, test_size=100): data =
pd.read_csv(path, sep='\t', header=None)
pandas.read_csv
# Copyright 2019, by the California Institute of Technology. # ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. # Any commercial use must be negotiated with the Office of Technology # Transfer at the California Institute of Technology. # # This software may be subject to U.S. export control laws. By accepting # this software, the user agrees to comply with all applicable U.S. export # laws and regulations. User has the responsibility to obtain export # licenses, or other export authority as may be required before exporting # such information to foreign countries or providing access to foreign # persons. """ ============== test_subset.py ============== Test the subsetter functionality. """ import json import operator import os import shutil import tempfile import unittest from os import listdir from os.path import dirname, join, realpath, isfile, basename import geopandas as gpd import importlib_metadata import netCDF4 as nc import numpy as np import pandas as pd import pytest import xarray as xr from jsonschema import validate from shapely.geometry import Point from podaac.subsetter import subset from podaac.subsetter.subset import SERVICE_NAME from podaac.subsetter import xarray_enhancements as xre class TestSubsetter(unittest.TestCase): """ Unit tests for the L2 subsetter. These tests are all related to the subsetting functionality itself, and should provide coverage on the following files: - podaac.subsetter.subset.py - podaac.subsetter.xarray_enhancements.py """ @classmethod def setUpClass(cls): cls.test_dir = dirname(realpath(__file__)) cls.test_data_dir = join(cls.test_dir, 'data') cls.subset_output_dir = tempfile.mkdtemp(dir=cls.test_data_dir) cls.test_files = [f for f in listdir(cls.test_data_dir) if isfile(join(cls.test_data_dir, f)) and f.endswith(".nc")] cls.history_json_schema = { "$schema": "https://json-schema.org/draft/2020-12/schema", "$id": "https://harmony.earthdata.nasa.gov/history.schema.json", "title": "Data Processing History", "description": "A history record of processing that produced a given data file. For more information, see: https://wiki.earthdata.nasa.gov/display/TRT/In-File+Provenance+Metadata+-+TRT-42", "type": ["array", "object"], "items": {"$ref": "#/definitions/history_record"}, "definitions": { "history_record": { "type": "object", "properties": { "date_time": { "description": "A Date/Time stamp in ISO-8601 format, including time-zone, GMT (or Z) preferred", "type": "string", "format": "date-time" }, "derived_from": { "description": "List of source data files used in the creation of this data file", "type": ["array", "string"], "items": {"type": "string"} }, "program": { "description": "The name of the program which generated this data file", "type": "string" }, "version": { "description": "The version identification of the program which generated this data file", "type": "string" }, "parameters": { "description": "The list of parameters to the program when generating this data file", "type": ["array", "string"], "items": {"type": "string"} }, "program_ref": { "description": "A URL reference that defines the program, e.g., a UMM-S reference URL", "type": "string" }, "$schema": { "description": "The URL to this schema", "type": "string" } }, "required": ["date_time", "program"], "additionalProperties": False } } } @classmethod def tearDownClass(cls): # Remove the temporary directories used to house subset data shutil.rmtree(cls.subset_output_dir) def test_subset_variables(self): """ Test that all variables present in the original NetCDF file are present after the subset takes place, and with the same attributes. """ bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) for in_var, out_var in zip(in_ds.data_vars.items(), out_ds.data_vars.items()): # compare names assert in_var[0] == out_var[0] # compare attributes np.testing.assert_equal(in_var[1].attrs, out_var[1].attrs) # compare type and dimension names assert in_var[1].dtype == out_var[1].dtype assert in_var[1].dims == out_var[1].dims in_ds.close() out_ds.close() def test_subset_bbox(self): """ Test that all data present is within the bounding box given, and that the correct bounding box is used. This test assumed that the scanline *is* being cut. """ # pylint: disable=too-many-locals bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False) lat_var_name, lon_var_name = subset.get_coord_variable_names(out_ds) lat_var_name = lat_var_name[0] lon_var_name = lon_var_name[0] lon_bounds, lat_bounds = subset.convert_bbox(bbox, out_ds, lat_var_name, lon_var_name) lats = out_ds[lat_var_name].values lons = out_ds[lon_var_name].values np.warnings.filterwarnings('ignore') # Step 1: Get mask of values which aren't in the bounds. # For lon spatial condition, need to consider the # lon_min > lon_max case. If that's the case, should do # an 'or' instead. oper = operator.and_ if lon_bounds[0] < lon_bounds[1] else operator.or_ # In these two masks, True == valid and False == invalid lat_truth = np.ma.masked_where((lats >= lat_bounds[0]) & (lats <= lat_bounds[1]), lats).mask lon_truth = np.ma.masked_where(oper((lons >= lon_bounds[0]), (lons <= lon_bounds[1])), lons).mask # combine masks spatial_mask = np.bitwise_and(lat_truth, lon_truth) # Create a mask which represents the valid matrix bounds of # the spatial mask. This is used in the case where a var # has no _FillValue. if lon_truth.ndim == 1: bound_mask = spatial_mask else: rows = np.any(spatial_mask, axis=1) cols = np.any(spatial_mask, axis=0) bound_mask = np.array([[r & c for c in cols] for r in rows]) # If all the lat/lon values are valid, the file is valid and # there is no need to check individual variables. if np.all(spatial_mask): continue # Step 2: Get mask of values which are NaN or "_FillValue in # each variable. for _, var in out_ds.data_vars.items(): # remove dimension of '1' if necessary vals = np.squeeze(var.values) # Get the Fill Value fill_value = var.attrs.get('_FillValue') # If _FillValue isn't provided, check that all values # are in the valid matrix bounds go to the next variable if fill_value is None: combined_mask = np.ma.mask_or(spatial_mask, bound_mask) np.testing.assert_equal(bound_mask, combined_mask) continue # If the shapes of this var doesn't match the mask, # reshape the var so the comparison can be made. Take # the first index of the unknown dims. This makes # assumptions about the ordering of the dimensions. if vals.shape != out_ds[lat_var_name].shape and vals.shape: slice_list = [] for dim in var.dims: if dim in out_ds[lat_var_name].dims: slice_list.append(slice(None)) else: slice_list.append(slice(0, 1)) vals = np.squeeze(vals[tuple(slice_list)]) # In this mask, False == NaN and True = valid var_mask = np.invert(np.ma.masked_invalid(vals).mask) fill_mask = np.invert(np.ma.masked_values(vals, fill_value).mask) var_mask = np.bitwise_and(var_mask, fill_mask) # Step 3: Combine the spatial and var mask with 'or' combined_mask = np.ma.mask_or(var_mask, spatial_mask) # Step 4: compare the newly combined mask and the # spatial mask created from the lat/lon masks. They # should be equal, because the 'or' of the two masks # where out-of-bounds values are 'False' will leave # those values assuming there are only NaN values # in the data at those locations. np.testing.assert_equal(spatial_mask, combined_mask) out_ds.close() @pytest.mark.skip(reason="This is being tested currently. Temporarily skipped.") def test_subset_no_bbox(self): """ Test that the subsetted file is identical to the given file when a 'full' bounding box is given. """ bbox = np.array(((-180, 180), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) # pylint: disable=no-member in_nc = nc.Dataset(join(self.test_data_dir, file), 'r') out_nc = nc.Dataset(join(self.subset_output_dir, output_file), 'r') # Make sure the output dimensions match the input # dimensions, which means the full file was returned. for name, dimension in in_nc.dimensions.items(): assert dimension.size == out_nc.dimensions[name].size in_nc.close() out_nc.close() def test_subset_empty_bbox(self): """ Test that an empty file is returned when the bounding box contains no data. """ bbox = np.array(((120, 125), (-90, -85))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) empty_dataset = xr.open_dataset( join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False ) # Ensure all variables are present but empty. for variable_name, variable in empty_dataset.data_vars.items(): assert not variable.data def test_bbox_conversion(self): """ Test that the bounding box conversion returns expected results. Expected results are hand-calculated. """ ds_180 = xr.open_dataset(join(self.test_data_dir, "MODIS_A-JPL-L2P-v2014.0.nc"), decode_times=False, decode_coords=False) ds_360 = xr.open_dataset(join( self.test_data_dir, "ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc"), decode_times=False, decode_coords=False) # Elements in each tuple are: # ds type, lon_range, expected_result test_bboxes = [ (ds_180, (-180, 180), (-180, 180)), (ds_360, (-180, 180), (0, 360)), (ds_180, (-180, 0), (-180, 0)), (ds_360, (-180, 0), (180, 360)), (ds_180, (-80, 80), (-80, 80)), (ds_360, (-80, 80), (280, 80)), (ds_180, (0, 180), (0, 180)), (ds_360, (0, 180), (0, 180)), (ds_180, (80, -80), (80, -80)), (ds_360, (80, -80), (80, 280)), (ds_180, (-80, -80), (-180, 180)), (ds_360, (-80, -80), (0, 360)) ] lat_var = 'lat' lon_var = 'lon' for test_bbox in test_bboxes: dataset = test_bbox[0] lon_range = test_bbox[1] expected_result = test_bbox[2] actual_result, _ = subset.convert_bbox(np.array([lon_range, [0, 0]]), dataset, lat_var, lon_var) np.testing.assert_equal(actual_result, expected_result) def compare_java(self, java_files, cut): """ Run the L2 subsetter and compare the result to the equivelant legacy (Java) subsetter result. Parameters ---------- java_files : list of strings List of paths to each subsetted Java file. cut : boolean True if the subsetter should return compact. """ bbox_map = [("ascat_20150702_084200", ((-180, 0), (-90, 0))), ("ascat_20150702_102400", ((-180, 0), (-90, 0))), ("MODIS_A-JPL", ((65.8, 86.35), (40.1, 50.15))), ("MODIS_T-JPL", ((-78.7, -60.7), (-54.8, -44))), ("VIIRS", ((-172.3, -126.95), (62.3, 70.65))), ("AMSR2-L2B_v08_r38622", ((-180, 0), (-90, 0)))] for file_str, bbox in bbox_map: java_file = [file for file in java_files if file_str in file][0] test_file = [file for file in self.test_files if file_str in file][0] output_file = "{}_{}".format(self._testMethodName, test_file) subset.subset( file_to_subset=join(self.test_data_dir, test_file), bbox=np.array(bbox), output_file=join(self.subset_output_dir, output_file), cut=cut ) j_ds = xr.open_dataset(join(self.test_data_dir, java_file), decode_times=False, decode_coords=False, mask_and_scale=False) py_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False) for var_name, var in j_ds.data_vars.items(): # Compare shape np.testing.assert_equal(var.shape, py_ds[var_name].shape) # Compare meta np.testing.assert_equal(var.attrs, py_ds[var_name].attrs) # Compare data np.testing.assert_equal(var.values, py_ds[var_name].values) # Compare meta. History will always be different, so remove # from the headers for comparison. del j_ds.attrs['history'] del py_ds.attrs['history'] del py_ds.attrs['history_json'] np.testing.assert_equal(j_ds.attrs, py_ds.attrs) def test_compare_java_compact(self): """ Tests that the results of the subsetting operation is equivalent to the Java subsetting result on the same bounding box. For simplicity the subsetted Java granules have been manually run and copied into this project. This test DOES cut the scanline. """ java_result_files = [join("java_results", "cut", f) for f in listdir(join(self.test_data_dir, "java_results", "cut")) if isfile(join(self.test_data_dir, "java_results", "cut", f)) and f.endswith(".nc")] self.compare_java(java_result_files, cut=True) def test_compare_java(self): """ Tests that the results of the subsetting operation is equivalent to the Java subsetting result on the same bounding box. For simplicity the subsetted Java granules have been manually run and copied into this project. This runs does NOT cut the scanline. """ java_result_files = [join("java_results", "uncut", f) for f in listdir(join(self.test_data_dir, "java_results", "uncut")) if isfile(join(self.test_data_dir, "java_results", "uncut", f)) and f.endswith(".nc")] self.compare_java(java_result_files, cut=False) def test_history_metadata_append(self): """ Tests that the history metadata header is appended to when it already exists. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) subset.subset( file_to_subset=join(self.test_data_dir, test_file), bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) # Assert that the original granule contains history assert in_nc.attrs.get('history') is not None # Assert that input and output files have different history self.assertNotEqual(in_nc.attrs['history'], out_nc.attrs['history']) # Assert that last line of history was created by this service assert SERVICE_NAME in out_nc.attrs['history'].split('\n')[-1] # Assert that the old history is still in the subsetted granule assert in_nc.attrs['history'] in out_nc.attrs['history'] def test_history_metadata_create(self): """ Tests that the history metadata header is created when it does not exist. All test granules contain this header already, so for this test the header will be removed manually from a granule. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) # Remove the 'history' metadata from the granule in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) del in_nc.attrs['history'] in_nc.to_netcdf(join(self.subset_output_dir, 'int_{}'.format(output_file)), 'w') subset.subset( file_to_subset=join(self.subset_output_dir, "int_{}".format(output_file)), bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) # Assert that the input granule contains no history assert in_nc.attrs.get('history') is None # Assert that the history was created by this service assert SERVICE_NAME in out_nc.attrs['history'] # Assert that the history created by this service is the only # line present in the history. assert '\n' not in out_nc.attrs['history'] def test_specified_variables(self): """ Test that the variables which are specified when calling the subset operation are present in the resulting subsetted data file, and that the variables which are specified are not present. """ bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) included_variables = set([variable[0] for variable in in_ds.data_vars.items()][::2]) included_variables = list(included_variables) excluded_variables = list(set(variable[0] for variable in in_ds.data_vars.items()) - set(included_variables)) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), variables=included_variables ) # Get coord variables lat_var_names, lon_var_names = subset.get_coord_variable_names(in_ds) lat_var_name = lat_var_names[0] lon_var_name = lon_var_names[0] time_var_name = subset.get_time_variable_name(in_ds, in_ds[lat_var_name]) included_variables.append(lat_var_name) included_variables.append(lon_var_name) included_variables.append(time_var_name) included_variables.extend(in_ds.coords.keys()) if lat_var_name in excluded_variables: excluded_variables.remove(lat_var_name) if lon_var_name in excluded_variables: excluded_variables.remove(lon_var_name) if time_var_name in excluded_variables: excluded_variables.remove(time_var_name) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) out_vars = [out_var for out_var in out_ds.data_vars.keys()] out_vars.extend(out_ds.coords.keys()) assert set(out_vars) == set(included_variables) assert set(out_vars).isdisjoint(excluded_variables) in_ds.close() out_ds.close() def test_calculate_chunks(self): """ Test that the calculate chunks function in the subset module correctly calculates and returns the chunks dims dictionary. """ rs = np.random.RandomState(0) dataset = xr.DataArray( rs.randn(2, 4000, 4001), dims=['x', 'y', 'z'] ).to_dataset(name='foo') chunk_dict = subset.calculate_chunks(dataset) assert chunk_dict.get('x') is None assert chunk_dict.get('y') is None assert chunk_dict.get('z') == 4000 def test_missing_coord_vars(self): """ As of right now, the subsetter expects the data to contain lat and lon variables. If not present, an error is thrown. """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) # Manually remove var which will cause error when attempting # to subset. ds = ds.drop_vars(['lat']) output_file = '{}_{}'.format('missing_coords', file) ds.to_netcdf(join(self.subset_output_dir, output_file)) bbox = np.array(((-180, 180), (-90, 90))) with pytest.raises(ValueError): subset.subset( file_to_subset=join(self.subset_output_dir, output_file), bbox=bbox, output_file='' ) def test_data_1D(self): """ Test that subsetting a 1-D granule does not result in failure. """ merged_jason_filename = 'JA1_GPN_2PeP001_002_20020115_060706_20020115_070316.nc' output_file = "{}_{}".format(self._testMethodName, merged_jason_filename) subset.subset( file_to_subset=join(self.test_data_dir, merged_jason_filename), bbox=np.array(((-180, 0), (-90, 0))), output_file=join(self.subset_output_dir, output_file) ) xr.open_dataset(join(self.subset_output_dir, output_file)) def test_get_coord_variable_names(self): """ Test that the expected coord variable names are returned """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) old_lat_var_name = 'lat' old_lon_var_name = 'lon' lat_var_name, lon_var_name = subset.get_coord_variable_names(ds) assert lat_var_name[0] == old_lat_var_name assert lon_var_name[0] == old_lon_var_name new_lat_var_name = 'latitude' new_lon_var_name = 'x' ds = ds.rename({old_lat_var_name: new_lat_var_name, old_lon_var_name: new_lon_var_name}) lat_var_name, lon_var_name = subset.get_coord_variable_names(ds) assert lat_var_name[0] == new_lat_var_name assert lon_var_name[0] == new_lon_var_name def test_cannot_get_coord_variable_names(self): """ Test that, when given a dataset with coord vars which are not expected, a ValueError is raised. """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) old_lat_var_name = 'lat' new_lat_var_name = 'foo' ds = ds.rename({old_lat_var_name: new_lat_var_name}) # Remove 'coordinates' attribute for var_name, var in ds.items(): if 'coordinates' in var.attrs: del var.attrs['coordinates'] self.assertRaises(ValueError, subset.get_coord_variable_names, ds) def test_get_spatial_bounds(self): """ Test that the get_spatial_bounds function works as expected. The get_spatial_bounds function should return lat/lon min/max which is masked and scaled for both variables. The values should also be adjusted for -180,180/-90,90 coordinate types """ ascat_filename = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' ghrsst_filename = '20190927000500-JPL-L2P_GHRSST-SSTskin-MODIS_A-D-v02.0-fv01.0.nc' ascat_dataset = xr.open_dataset( join(self.test_data_dir, ascat_filename), decode_times=False, decode_coords=False, mask_and_scale=False ) ghrsst_dataset = xr.open_dataset( join(self.test_data_dir, ghrsst_filename), decode_times=False, decode_coords=False, mask_and_scale=False ) # ascat1 longitude is -0 360, ghrsst modis A is -180 180 # Both have metadata for valid_min # Manually calculated spatial bounds ascat_expected_lat_min = -89.4 ascat_expected_lat_max = 89.2 ascat_expected_lon_min = -180.0 ascat_expected_lon_max = 180.0 ghrsst_expected_lat_min = -77.2 ghrsst_expected_lat_max = -53.6 ghrsst_expected_lon_min = -170.5 ghrsst_expected_lon_max = -101.7 min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ascat_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ascat_expected_lat_min) assert np.isclose(max_lat, ascat_expected_lat_max) assert np.isclose(min_lon, ascat_expected_lon_min) assert np.isclose(max_lon, ascat_expected_lon_max) # Remove the label from the dataset coordinate variables indicating the valid_min. del ascat_dataset['lat'].attrs['valid_min'] del ascat_dataset['lon'].attrs['valid_min'] min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ascat_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ascat_expected_lat_min) assert np.isclose(max_lat, ascat_expected_lat_max) assert np.isclose(min_lon, ascat_expected_lon_min) assert np.isclose(max_lon, ascat_expected_lon_max) # Repeat test, but with GHRSST granule min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ghrsst_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ghrsst_expected_lat_min) assert np.isclose(max_lat, ghrsst_expected_lat_max) assert np.isclose(min_lon, ghrsst_expected_lon_min) assert np.isclose(max_lon, ghrsst_expected_lon_max) # Remove the label from the dataset coordinate variables indicating the valid_min. del ghrsst_dataset['lat'].attrs['valid_min'] del ghrsst_dataset['lon'].attrs['valid_min'] min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ghrsst_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ghrsst_expected_lat_min) assert np.isclose(max_lat, ghrsst_expected_lat_max) assert np.isclose(min_lon, ghrsst_expected_lon_min) assert np.isclose(max_lon, ghrsst_expected_lon_max) def test_shapefile_subset(self): """ Test that using a shapefile to subset data instead of a bbox works as expected """ shapefile = 'test.shp' ascat_filename = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' output_filename = f'{self._testMethodName}_{ascat_filename}' shapefile_file_path = join(self.test_data_dir, 'test_shapefile_subset', shapefile) ascat_file_path = join(self.test_data_dir, ascat_filename) output_file_path = join(self.subset_output_dir, output_filename) subset.subset( file_to_subset=ascat_file_path, bbox=None, output_file=output_file_path, shapefile=shapefile_file_path ) # Check that each point of data is within the shapefile shapefile_df = gpd.read_file(shapefile_file_path) with xr.open_dataset(output_file_path) as result_dataset: def in_shape(lon, lat): if np.isnan(lon) or np.isnan(lat): return point = Point(lon, lat) point_in_shapefile = shapefile_df.contains(point) assert point_in_shapefile[0] in_shape_vec = np.vectorize(in_shape) in_shape_vec(result_dataset.lon, result_dataset.lat) def test_variable_subset_oco2(self): """ variable subsets for groups and root group using a '/' """ oco2_file_name = 'oco2_LtCO2_190201_B10206Ar_200729175909s.nc4' output_file_name = 'oco2_test_out.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'OCO2', oco2_file_name), os.path.join(self.subset_output_dir, oco2_file_name)) bbox = np.array(((-180,180),(-90.0,90))) variables = ['/xco2','/xco2_quality_flag','/Retrieval/water_height','/sounding_id'] subset.subset( file_to_subset=join(self.test_data_dir, 'OCO2',oco2_file_name), bbox=bbox, variables=variables, output_file=join(self.subset_output_dir, output_file_name), ) out_nc = nc.Dataset(join(self.subset_output_dir, output_file_name)) var_listout = list(out_nc.groups['Retrieval'].variables.keys()) assert ('water_height' in var_listout) def test_variable_subset_oco3(self): """ multiple variable subset of variables in different groups in oco3 """ oco3_file_name = 'oco3_LtSIF_200226_B10206r_200709053505s.nc4' output_file_name = 'oco3_test_out.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'OCO3/OCO3_L2_LITE_SIF.EarlyR', oco3_file_name), os.path.join(self.subset_output_dir, oco3_file_name)) bbox = np.array(((-180,180),(-90.0,90))) variables = ['/Science/IGBP_index', '/Offset/SIF_Relative_SDev_757nm','/Meteo/temperature_skin'] subset.subset( file_to_subset=join(self.test_data_dir, 'OCO3/OCO3_L2_LITE_SIF.EarlyR',oco3_file_name), bbox=bbox, variables=variables, output_file=join(self.subset_output_dir, output_file_name), ) out_nc = nc.Dataset(join(self.subset_output_dir, output_file_name)) var_listout =list(out_nc.groups['Science'].variables.keys()) var_listout.extend(list(out_nc.groups['Offset'].variables.keys())) var_listout.extend(list(out_nc.groups['Meteo'].variables.keys())) assert ('IGBP_index' in var_listout) assert ('SIF_Relative_SDev_757nm' in var_listout) assert ('temperature_skin' in var_listout) def test_variable_subset_s6(self): """ multiple variable subset of variables in different groups in oco3 """ s6_file_name = 'S6A_P4_2__LR_STD__ST_002_140_20201207T011501_20201207T013023_F00.nc' output_file_name = 's6_test_out.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'sentinel_6', s6_file_name), os.path.join(self.subset_output_dir, s6_file_name)) bbox = np.array(((-180,180),(-90.0,90))) variables = ['/data_01/ku/range_ocean_mle3_rms', '/data_20/ku/range_ocean'] subset.subset( file_to_subset=join(self.test_data_dir, 'sentinel_6',s6_file_name), bbox=bbox, variables=variables, output_file=join(self.subset_output_dir, output_file_name), ) out_nc = nc.Dataset(join(self.subset_output_dir, output_file_name)) var_listout =list(out_nc.groups['data_01'].groups['ku'].variables.keys()) var_listout.extend(list(out_nc.groups['data_20'].groups['ku'].variables.keys())) assert ('range_ocean_mle3_rms' in var_listout) assert ('range_ocean' in var_listout) def test_transform_grouped_dataset(self): """ Test that the transformation function results in a correctly formatted dataset. """ s6_file_name = 'S6A_P4_2__LR_STD__ST_002_140_20201207T011501_20201207T013023_F00.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'sentinel_6', s6_file_name), os.path.join(self.subset_output_dir, s6_file_name)) nc_ds = nc.Dataset(os.path.join(self.test_data_dir, 'sentinel_6', s6_file_name)) nc_ds_transformed = subset.transform_grouped_dataset( nc.Dataset(os.path.join(self.subset_output_dir, s6_file_name), 'r'), os.path.join(self.subset_output_dir, s6_file_name) ) # The original ds has groups assert nc_ds.groups # There should be no groups in the new ds assert not nc_ds_transformed.groups # The original ds has no variables in the root group assert not nc_ds.variables # The new ds has variables in the root group assert nc_ds_transformed.variables # Each var in the new ds should map to a variable in the old ds for var_name, var in nc_ds_transformed.variables.items(): path = var_name.strip('__').split('__') group = nc_ds[path[0]] for g in path[1:-1]: group = group[g] assert var_name.strip('__').split('__')[-1] in group.variables.keys() def test_group_subset(self): """ Ensure a subset function can be run on a granule that contains groups without errors, and that the subsetted data is within the given spatial bounds. """ s6_file_name = 'S6A_P4_2__LR_STD__ST_002_140_20201207T011501_20201207T013023_F00.nc' s6_output_file_name = 'SS_S6A_P4_2__LR_STD__ST_002_140_20201207T011501_20201207T013023_F00.nc' # Copy S6 file to temp dir shutil.copyfile( os.path.join(self.test_data_dir, 'sentinel_6', s6_file_name), os.path.join(self.subset_output_dir, s6_file_name) ) # Make sure it runs without errors bbox = np.array(((150, 180), (-90, -50))) bounds = subset.subset( file_to_subset=os.path.join(self.subset_output_dir, s6_file_name), bbox=bbox, output_file=os.path.join(self.subset_output_dir, s6_output_file_name) ) # Check that bounds are within requested bbox assert bounds[0][0] >= bbox[0][0] assert bounds[0][1] <= bbox[0][1] assert bounds[1][0] >= bbox[1][0] assert bounds[1][1] <= bbox[1][1] def test_json_history_metadata_append(self): """ Tests that the json history metadata header is appended to when it already exists. First we create a fake json_history header for input file. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) input_file_subset = join(self.subset_output_dir, "int_{}".format(output_file)) fake_history = [ { "date_time": "2021-05-10T14:30:24.553263", "derived_from": basename(input_file_subset), "program": SERVICE_NAME, "version": importlib_metadata.distribution(SERVICE_NAME).version, "parameters": "bbox=[[-180.0, 180.0], [-90.0, 90.0]] cut=True", "program_ref": "https://cmr.earthdata.nasa.gov:443/search/concepts/S1962070864-POCLOUD", "$schema": "https://harmony.earthdata.nasa.gov/schemas/history/0.1.0/history-v0.1.0.json" } ] in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) in_nc.attrs['history_json'] = json.dumps(fake_history) in_nc.to_netcdf(join(self.subset_output_dir, 'int_{}'.format(output_file)), 'w') subset.subset( file_to_subset=input_file_subset, bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) history_json = json.loads(out_nc.attrs['history_json']) assert len(history_json) == 2 is_valid_shema = validate(instance=history_json, schema=self.history_json_schema) assert is_valid_shema is None for history in history_json: assert "date_time" in history assert history.get('program') == SERVICE_NAME assert history.get('derived_from') == basename(input_file_subset) assert history.get('version') == importlib_metadata.distribution(SERVICE_NAME).version assert history.get('parameters') == 'bbox=[[-180.0, 180.0], [-90.0, 90.0]] cut=True' assert history.get( 'program_ref') == "https://cmr.earthdata.nasa.gov:443/search/concepts/S1962070864-POCLOUD" assert history.get( '$schema') == "https://harmony.earthdata.nasa.gov/schemas/history/0.1.0/history-v0.1.0.json" def test_json_history_metadata_create(self): """ Tests that the json history metadata header is created when it does not exist. All test granules does not contain this header. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) # Remove the 'history' metadata from the granule in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) in_nc.to_netcdf(join(self.subset_output_dir, 'int_{}'.format(output_file)), 'w') input_file_subset = join(self.subset_output_dir, "int_{}".format(output_file)) subset.subset( file_to_subset=input_file_subset, bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) history_json = json.loads(out_nc.attrs['history_json']) assert len(history_json) == 1 is_valid_shema = validate(instance=history_json, schema=self.history_json_schema) assert is_valid_shema is None for history in history_json: assert "date_time" in history assert history.get('program') == SERVICE_NAME assert history.get('derived_from') == basename(input_file_subset) assert history.get('version') == importlib_metadata.distribution(SERVICE_NAME).version assert history.get('parameters') == 'bbox=[[-180.0, 180.0], [-90.0, 90.0]] cut=True' assert history.get( 'program_ref') == "https://cmr.earthdata.nasa.gov:443/search/concepts/S1962070864-POCLOUD" assert history.get( '$schema') == "https://harmony.earthdata.nasa.gov/schemas/history/0.1.0/history-v0.1.0.json" def test_json_history_metadata_create_origin_source(self): """ Tests that the json history metadata header is created when it does not exist. All test granules does not contain this header. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) # Remove the 'history' metadata from the granule in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) in_nc.to_netcdf(join(self.subset_output_dir, 'int_{}'.format(output_file)), 'w') input_file_subset = join(self.subset_output_dir, "int_{}".format(output_file)) subset.subset( file_to_subset=input_file_subset, bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file), origin_source="fake_original_file.nc" ) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) history_json = json.loads(out_nc.attrs['history_json']) assert len(history_json) == 1 is_valid_shema = validate(instance=history_json, schema=self.history_json_schema) assert is_valid_shema is None for history in history_json: assert "date_time" in history assert history.get('program') == SERVICE_NAME assert history.get('derived_from') == "fake_original_file.nc" assert history.get('version') == importlib_metadata.distribution(SERVICE_NAME).version assert history.get('parameters') == 'bbox=[[-180.0, 180.0], [-90.0, 90.0]] cut=True' assert history.get( 'program_ref') == "https://cmr.earthdata.nasa.gov:443/search/concepts/S1962070864-POCLOUD" assert history.get( '$schema') == "https://harmony.earthdata.nasa.gov/schemas/history/0.1.0/history-v0.1.0.json" def test_temporal_subset_ascat(self): """ Test that a temporal subset results in a granule that only contains times within the given bounds. """ bbox = np.array(((-180, 180), (-90, 90))) file = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' output_file = "{}_{}".format(self._testMethodName, file) min_time = '2015-07-02T09:00:00' max_time = '2015-07-02T10:00:00' subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), min_time=min_time, max_time=max_time ) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) # Check that 'time' types match assert in_ds.time.dtype == out_ds.time.dtype in_ds.close() out_ds.close() # Check that all times are within the given bounds. Open # dataset using 'decode_times=True' for auto-conversions to # datetime out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_coords=False) start_dt = subset.translate_timestamp(min_time) end_dt = subset.translate_timestamp(max_time) # All dates should be within the given temporal bounds. assert (out_ds.time >= pd.to_datetime(start_dt)).all() assert (out_ds.time <= pd.to_datetime(end_dt)).all() def test_temporal_subset_modis_a(self): """ Test that a temporal subset results in a granule that only contains times within the given bounds. """ bbox = np.array(((-180, 180), (-90, 90))) file = 'MODIS_A-JPL-L2P-v2014.0.nc' output_file = "{}_{}".format(self._testMethodName, file) min_time = '2019-08-05T06:57:00' max_time = '2019-08-05T06:58:00' # Actual min is 2019-08-05T06:55:01.000000000 # Actual max is 2019-08-05T06:59:57.000000000 subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), min_time=min_time, max_time=max_time ) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) # Check that 'time' types match assert in_ds.time.dtype == out_ds.time.dtype in_ds.close() out_ds.close() # Check that all times are within the given bounds. Open # dataset using 'decode_times=True' for auto-conversions to # datetime out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_coords=False) start_dt = subset.translate_timestamp(min_time) end_dt = subset.translate_timestamp(max_time) epoch_dt = out_ds['time'].values[0] # All timedelta + epoch should be within the given temporal bounds. assert out_ds.sst_dtime.min() + epoch_dt >= np.datetime64(start_dt) assert out_ds.sst_dtime.min() + epoch_dt <= np.datetime64(end_dt) def test_temporal_subset_s6(self): """ Test that a temporal subset results in a granule that only contains times within the given bounds. """ bbox = np.array(((-180, 180), (-90, 90))) file = 'S6A_P4_2__LR_STD__ST_002_140_20201207T011501_20201207T013023_F00.nc' # Copy S6 file to temp dir shutil.copyfile( os.path.join(self.test_data_dir, 'sentinel_6', file), os.path.join(self.subset_output_dir, file) ) output_file = "{}_{}".format(self._testMethodName, file) min_time = '2020-12-07T01:20:00' max_time = '2020-12-07T01:25:00' # Actual min is 2020-12-07T01:15:01.000000000 # Actual max is 2020-12-07T01:30:23.000000000 subset.subset( file_to_subset=join(self.subset_output_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), min_time=min_time, max_time=max_time ) # Check that all times are within the given bounds. Open # dataset using 'decode_times=True' for auto-conversions to # datetime out_ds = xr.open_dataset( join(self.subset_output_dir, output_file), decode_coords=False, group='data_01' ) start_dt = subset.translate_timestamp(min_time) end_dt = subset.translate_timestamp(max_time) # All dates should be within the given temporal bounds. assert (out_ds.time >= pd.to_datetime(start_dt)).all() assert (out_ds.time <= pd.to_datetime(end_dt)).all() def test_get_time_variable_name(self): for test_file in self.test_files: args = { 'decode_coords': False, 'mask_and_scale': False, 'decode_times': True } ds = xr.open_dataset(os.path.join(self.test_data_dir, test_file), **args) lat_var_name = subset.get_coord_variable_names(ds)[0][0] time_var_name = subset.get_time_variable_name(ds, ds[lat_var_name]) assert time_var_name is not None assert 'time' in time_var_name def test_subset_jason(self): bbox = np.array(((-180, 0), (-90, 90))) file = 'JA1_GPN_2PeP001_002_20020115_060706_20020115_070316.nc' output_file = "{}_{}".format(self._testMethodName, file) min_time = "2002-01-15T06:07:06Z" max_time = "2002-01-15T06:30:16Z" subset.subset( file_to_subset=os.path.join(self.test_data_dir, file), bbox=bbox, min_time=min_time, max_time=max_time, output_file=os.path.join(self.subset_output_dir, output_file) ) def test_subset_size(self): for file in self.test_files: bbox = np.array(((-180, 0), (-30, 90))) output_file = "{}_{}".format(self._testMethodName, file) input_file_path = os.path.join(self.test_data_dir, file) output_file_path = os.path.join(self.subset_output_dir, output_file) subset.subset( file_to_subset=input_file_path, bbox=bbox, output_file=output_file_path ) original_file_size = os.path.getsize(input_file_path) subset_file_size = os.path.getsize(output_file_path) assert subset_file_size < original_file_size def test_root_group(self): """test that the GROUP_DELIM string, '__', is added to variables in the root group""" sndr_file_name = 'SNDR.SNPP.CRIMSS.20200118T0024.m06.g005.L2_CLIMCAPS_RET.std.v02_28.G.200314032326.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'SNDR', sndr_file_name), os.path.join(self.subset_output_dir, sndr_file_name)) nc_dataset = nc.Dataset(os.path.join(self.subset_output_dir, sndr_file_name)) args = { 'decode_coords': False, 'mask_and_scale': False, 'decode_times': False } nc_dataset = subset.transform_grouped_dataset(nc_dataset, os.path.join(self.subset_output_dir, sndr_file_name)) with xr.open_dataset( xr.backends.NetCDF4DataStore(nc_dataset), **args ) as dataset: var_list = list(dataset.variables) assert (var_list[0][0:2] == subset.GROUP_DELIM) group_lst = [] for var_name in dataset.variables.keys(): #need logic if there is data in the top level not in a group group_lst.append('/'.join(var_name.split(subset.GROUP_DELIM)[:-1])) group_lst = ['/' if group=='' else group for group in group_lst] groups = set(group_lst) expected_group = {'/mw', '/ave_kern', '/', '/mol_lay', '/aux'} assert (groups == expected_group) def test_get_time_squeeze(self): """test builtin squeeze method on the lat and time variables so when the two have the same shape with a time and delta time in the tropomi product granuales the get_time_variable_name returns delta time as well""" tropomi_file_name = 'S5P_OFFL_L2__SO2____20200713T002730_20200713T020900_14239_01_020103_20200721T191355_subset.nc4' shutil.copyfile(os.path.join(self.test_data_dir, 'tropomi', tropomi_file_name), os.path.join(self.subset_output_dir, tropomi_file_name)) nc_dataset = nc.Dataset(os.path.join(self.subset_output_dir, tropomi_file_name)) args = { 'decode_coords': False, 'mask_and_scale': False, 'decode_times': False } nc_dataset = subset.transform_grouped_dataset(nc_dataset, os.path.join(self.subset_output_dir, tropomi_file_name)) with xr.open_dataset( xr.backends.NetCDF4DataStore(nc_dataset), **args ) as dataset: lat_var_name = subset.get_coord_variable_names(dataset)[0][0] time_var_name = subset.get_time_variable_name(dataset, dataset[lat_var_name]) lat_dims = dataset[lat_var_name].squeeze().dims time_dims = dataset[time_var_name].squeeze().dims assert (lat_dims == time_dims) def test_get_indexers_nd(self): """test that the time coordinate is not included in the indexers. Also test that the dimensions are the same for a global box subset""" tropomi_file_name = 'S5P_OFFL_L2__SO2____20200713T002730_20200713T020900_14239_01_020103_20200721T191355_subset.nc4' shutil.copyfile(os.path.join(self.test_data_dir, 'tropomi', tropomi_file_name), os.path.join(self.subset_output_dir, tropomi_file_name)) nc_dataset = nc.Dataset(os.path.join(self.subset_output_dir, tropomi_file_name)) args = { 'decode_coords': False, 'mask_and_scale': False, 'decode_times': False } nc_dataset = subset.transform_grouped_dataset(nc_dataset, os.path.join(self.subset_output_dir, tropomi_file_name)) with xr.open_dataset( xr.backends.NetCDF4DataStore(nc_dataset), **args ) as dataset: lat_var_name = subset.get_coord_variable_names(dataset)[0][0] lon_var_name = subset.get_coord_variable_names(dataset)[1][0] time_var_name = subset.get_time_variable_name(dataset, dataset[lat_var_name]) oper = operator.and_ cond = oper( (dataset[lon_var_name] >= -180), (dataset[lon_var_name] <= 180) ) & (dataset[lat_var_name] >= -90) & (dataset[lat_var_name] <= 90) & True indexers = xre.get_indexers_from_nd(cond, True) indexed_cond = cond.isel(**indexers) indexed_ds = dataset.isel(**indexers) new_dataset = indexed_ds.where(indexed_cond) assert ((time_var_name not in indexers.keys()) == True) #time can't be in the index assert (new_dataset.dims == dataset.dims) def test_variable_type_string_oco2(self): """Code passes a ceating a variable that is type object in oco2 file""" oco2_file_name = 'oco2_LtCO2_190201_B10206Ar_200729175909s.nc4' output_file_name = 'oco2_test_out.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'OCO2', oco2_file_name), os.path.join(self.subset_output_dir, oco2_file_name)) bbox = np.array(((-180,180),(-90.0,90))) subset.subset( file_to_subset=join(self.test_data_dir, 'OCO2',oco2_file_name), bbox=bbox, output_file=join(self.subset_output_dir, output_file_name), ) in_nc = xr.open_dataset(join(self.test_data_dir, 'OCO2',oco2_file_name)) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file_name)) assert (in_nc.variables['source_files'].dtype == out_nc.variables['source_files'].dtype) def test_variable_dims_matched_tropomi(self): """ Code must match the dimensions for each variable rather than assume all dimensions in a group are the same """ tropomi_file_name = 'S5P_OFFL_L2__SO2____20200713T002730_20200713T020900_14239_01_020103_20200721T191355_subset.nc4' output_file_name = 'tropomi_test_out.nc' shutil.copyfile(os.path.join(self.test_data_dir, 'tropomi', tropomi_file_name), os.path.join(self.subset_output_dir, tropomi_file_name)) in_nc = nc.Dataset(os.path.join(self.subset_output_dir, tropomi_file_name)) # Get variable dimensions from input dataset in_var_dims = { var_name: [dim.split(subset.GROUP_DELIM)[-1] for dim in var.dimensions] for var_name, var in in_nc.groups['PRODUCT'].variables.items() } # Include PRODUCT>SUPPORT_DATA>GEOLOCATIONS location in_var_dims.update( { var_name: [dim.split(subset.GROUP_DELIM)[-1] for dim in var.dimensions] for var_name, var in in_nc.groups['PRODUCT'].groups['SUPPORT_DATA'].groups['GEOLOCATIONS'].variables.items() } ) out_nc = subset.transform_grouped_dataset( in_nc, os.path.join(self.subset_output_dir, tropomi_file_name) ) # Get variable dimensions from output dataset out_var_dims = { var_name.split(subset.GROUP_DELIM)[-1]: [dim.split(subset.GROUP_DELIM)[-1] for dim in var.dimensions] for var_name, var in out_nc.variables.items() } self.assertDictEqual(in_var_dims, out_var_dims) def test_temporal_merged_topex(self): """ Test that a temporal subset results in a granule that only contains times within the given bounds. """ bbox = np.array(((-180, 180), (-90, 90))) file = 'Merged_TOPEX_Jason_OSTM_Jason-3_Cycle_002.V4_2.nc' # Copy S6 file to temp dir shutil.copyfile( os.path.join(self.test_data_dir, file), os.path.join(self.subset_output_dir, file) ) output_file = "{}_{}".format(self._testMethodName, file) min_time = '1992-01-01T00:00:00' max_time = '1992-11-01T00:00:00' # Actual min is 2020-12-07T01:15:01.000000000 # Actual max is 2020-12-07T01:30:23.000000000 subset.subset( file_to_subset=join(self.subset_output_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), min_time=min_time, max_time=max_time ) # Check that all times are within the given bounds. Open # dataset using 'decode_times=True' for auto-conversions to # datetime out_ds = xr.open_dataset( join(self.subset_output_dir, output_file), decode_coords=False ) start_dt = subset.translate_timestamp(min_time) end_dt = subset.translate_timestamp(max_time) # delta time from the MJD of this data collection mjd_dt = np.datetime64("1992-01-01") start_delta_dt = np.datetime64(start_dt) - mjd_dt end_delta_dt = np.datetime64(end_dt) - mjd_dt # All dates should be within the given temporal bounds. assert (out_ds.time.values >= start_delta_dt).all() assert (out_ds.time.values <= end_delta_dt).all() def test_temporal_variable_subset(self): """ Test that both a temporal and variable subset can be executed on a granule, and that all of the data within that granule is subsetted as expected. """ bbox = np.array(((-180, 180), (-90, 90))) file = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' output_file = "{}_{}".format(self._testMethodName, file) min_time = '2015-07-02T09:00:00' max_time = '2015-07-02T10:00:00' variables = [ 'wind_speed', 'wind_dir' ] subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), min_time=min_time, max_time=max_time, variables=variables ) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) # Check that 'time' types match assert in_ds.time.dtype == out_ds.time.dtype in_ds.close() out_ds.close() # Check that all times are within the given bounds. Open # dataset using 'decode_times=True' for auto-conversions to # datetime out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_coords=False) start_dt = subset.translate_timestamp(min_time) end_dt = subset.translate_timestamp(max_time) # All dates should be within the given temporal bounds. assert (out_ds.time >=
pd.to_datetime(start_dt)
pandas.to_datetime
""" Clean and format the texts in the data folder for learning. Prerequisites: nltk.download('stopwords') nltk.download('punkt') """ from pathlib import Path import numpy as np import pandas as pd from nltk.corpus import stopwords from nltk.tokenize import word_tokenize STOP_WORDS = set(stopwords.words('english')) DATA_PATH = Path('.') / '..' / 'data' DATA_SOURCES = [ DATA_PATH / 'amaz' / 'amaz_neg.csv', DATA_PATH / 'amaz' / 'amaz_pos.csv', DATA_PATH / 'news' / 'news_neg.csv', DATA_PATH / 'news' / 'news_pos.csv', DATA_PATH / 'yelp' / 'yelp_neg.csv', DATA_PATH / 'yelp' / 'yelp_pos.csv', ] def clean(text: str) -> str: # Build word tokenizations words = word_tokenize(text) # Remove non-alphabetic characters. words = [w for w in words if w.isalpha()] # Transform all words to lowercase. words = [w.lower() for w in words] # Remove all stopwords from the text. words = [w for w in words if w not in STOP_WORDS] # Join the text with spaces and return as a single string. return ' '.join(words) if __name__ == '__main__': neg = pd.DataFrame() # negative sentences pos = pd.DataFrame() # positive sentences # Clean the data from each data source. for src in DATA_SOURCES: # Read in the data source as a DataFrame with Pandas. df = pd.read_csv(src, header=None) # Clean and replace each row of the data source. for i, row in enumerate(df.values): df.at[i] = clean(row[0]) # Append the cleaned data set to the collection of negative or positive # data depending on its sentiment. if 'neg' in str(src): neg =
pd.concat([neg, df])
pandas.concat
import h5py import numpy as np import pandas as pd import os import sys import argparse """ Convert CME Trade Tick Data to hdf5 files indexe by date-time Format allows for rapid read into pandas """ class ToHDF5: def __init__(self): self.usecols = [0,1,2,3,4] self.names = ["date","time","price","qty","status"] self.dtypes={'date':'str','time':'str','price':'float','qty':'int','status':'str'} def convert(self, infile, outdir, lines): if infile.split(".")[-1] == "h5": print("ignoring file: %s already in h5 format" % infile) return df = pd.read_csv(infile, usecols=self.usecols, header=None, names=self.names, dtype=self.dtypes, sep=",") df['dt'] = df['date'] + " " + df['time'] df=df.drop(['date','time'], axis=1) df['dt'] = pd.to_datetime(df['dt'],format="%m/%d/%Y %H:%M:%S.%f") df.set_index('dt') outfiles = self.chunkDataFrame(df, ToHDF5.getSymbol(infile), outdir, lines) df = None return outfiles def getSymbol(infile): return os.path.basename(infile).split("_")[0] def splitFile(self, infile, outdir, lines, forceWrite=True): df =
pd.read_hdf(infile, 'table')
pandas.read_hdf
import pandas as pd import matplotlib.pyplot as plt import numpy as np from preprocessor import Preprocessor #importing task1 file from character import CharacterAnalyser #importing task2 file from word import WordAnalyser #importing task3 file from visualiser import AnalysisVisualiser # importing task4 file import sys #Making the objects of the respective classes p=Preprocessor() c=CharacterAnalyser() w=WordAnalyser() #function to convert normal df into relative df def rel_func(accept_df): accept_df=accept_df total=sum(accept_df['count']) #counts the total of the column with counts accept_df['rel_freq']= (accept_df['count']/total) #calculate the reklative frequency return accept_df #Below method performs required processing of data and return the relative frequency df def perform_processing(input_file): input_file=input_file p.tokenise_word(input_file) #send the words to get tokenised tokenised_punc_char_list=p.get_tokenised_punc_char_list() # retrieves the tokenised list which contains punctuation and characters c.analyse_characters(tokenised_punc_char_list) #retrieves the punctuation frequency #Required for task 4 pun_freq=c.get_punctuation_frequency() #store the punctuation frequency letter_freq=c.get_letter_frequency() #store the letter frequency analyse_words=p.get_tokenised_word_list() #get the tokensied word list w.analyse_words(analyse_words) #send it for processing #Required for task 4 stopword_freq=w.get_stopword_frequency() #store the stopword frequency word_length_freq=w.get_word_length_frequency() #store the word length frequency #relative freq of pun pun_rel_freq=rel_func(pun_freq) #convert normal df into relative frequency df pun_rel_freq.set_index('char', inplace=True) pun_rel_freq=pun_freq[['rel_freq']] #relative freq of letter letter_rel_freq=rel_func(letter_freq) #convert normal df into relative frequency df letter_rel_freq.set_index('char', inplace=True) letter_rel_freq=letter_rel_freq[['rel_freq']] #relative freq of stop word stopword_rel_freq=rel_func(stopword_freq) #convert normal df into relative frequency df stopword_rel_freq.set_index('stop_word', inplace=True) stopword_rel_freq=stopword_rel_freq[['rel_freq']] #relative freq of stop word length wordlen_rel_freq=rel_func(word_length_freq) #convert normal df into relative frequency df wordlen_rel_freq.set_index('wordlen', inplace=True) wordlen_rel_freq=wordlen_rel_freq[['rel_freq']] return pun_rel_freq,letter_rel_freq,stopword_rel_freq,wordlen_rel_freq #Below method is used to implement the visualisation def visualise(selection,accept_stats_df): if selection == 'pun': # if the visualisation is punctuation then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_punctuation_frequency() elif selection == 'letter': # if the visualisation is letter then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_character_frequency() elif selection == 'stopword': # if the visualisation is stop word then proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_stopword_frequency() else: # else the visualisation is word length and proceed a=AnalysisVisualiser(accept_stats_df) a.visualise_word_length_frequency() def main(): try: #Read the 6 files and store them with open('Edward_II_Marlowe.tok', 'r') as input_file: edward_inputfile = input_file.read() input_file.close() with open('Hamlet_Shakespeare.tok', 'r') as input_file: hamplet_inputfile = input_file.read() input_file.close() with open('Henry_VI_Part1_Shakespeare.tok', 'r') as input_file: henry_part1_inputfile = input_file.read() input_file.close() with open('Henry_VI_Part2_Shakespeare.tok', 'r') as input_file: henry_part2_inputfile = input_file.read() input_file.close() with open('Jew_of_Malta_Marlowe.tok', 'r') as input_file: jew_inputfile = input_file.read() input_file.close() with open('Richard_II_Shakespeare.tok', 'r') as input_file: richard_inputfile = input_file.read() input_file.close() #in below step send the individual input file to processing and the return has respective frequency of statistics edward_pun,edward_letter,edward_stopword,edward_wordlen=perform_processing(edward_inputfile) hamlet_pun,hamlet_letter,hamlet_stopword,hamlet_wordlen=perform_processing(hamplet_inputfile) henry_part1_pun,henry_part1_letter,henry_part1_stopword,henry_part1_wordlen=perform_processing(henry_part1_inputfile) henry_part2_pun,henry_part2_letter,henry_part2_stopword,henry_part2_wordlen=perform_processing(henry_part2_inputfile) jew_pun,jew_letter,jew_stopword,jew_wordlen=perform_processing(jew_inputfile) richard_pun,richard_letter,richard_stopword,richard_wordlen=perform_processing(richard_inputfile) # Merge total Letter from 6 files into single df and print total_letter_df=pd.DataFrame() total_letter_df=pd.concat([edward_letter,hamlet_letter,henry_part1_letter,henry_part2_letter,jew_letter,richard_letter],axis=1) total_letter_df=total_letter_df.fillna(0) #converting all nan into 0 total_letter_df.columns=['Edward_II_Marlowe','Hamlet_Shakespeare','Henry_VI_Part1_Shakespeare', 'Henry_VI_Part2_Shakespeare','Jew_of_Malta_Marlowe','Richard_II_Shakespeare'] print("\n ---------Comparison of all letter types---------\n",total_letter_df) # Merge total punctuation from 6 files into single df and print total_pun_df=
pd.DataFrame()
pandas.DataFrame
""" Unit tests for draft.py """ # Standard libraries import json import random # Third-party libraries import pandas as pd # Local libraries from turkey_bowl.draft import Draft def test_Draft_instantiation(): # Setup - none necessary # Exercise draft = Draft(2020) # Verify assert draft.year == 2020 assert draft.output_dir.as_posix() == "archive/2020" assert draft.draft_order_path.as_posix() == "archive/2020/2020_draft_order.json" assert draft.draft_sheet_path.as_posix() == "archive/2020/2020_draft_sheet.xlsx" assert draft.__repr__() == "Draft(2020)" assert draft.__str__() == "Turkey Bowl Draft: 2020" # Cleanup - none necessary def test_Draft_setup_nothing_exists(tmp_path, monkeypatch, capsys): """ Test Draft.setup() when no directories exist in root. """ # Setup - create temp archive dir (assumed to always exist) tmp_archive_dir = tmp_path.joinpath("archive") tmp_archive_dir.mkdir() # Ensure nothing exists prior to Draft.setup() call assert tmp_archive_dir.joinpath("2020").exists() is False assert tmp_archive_dir.joinpath("2020/2020_draft_order.json").exists() is False assert tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx").exists() is False # Exercise draft = Draft(2020) # Override input() func to always return same list of participants monkeypatch.setattr("builtins.input", lambda _: "logan, becca, dodd") # Override output dirs to temp path created for testing draft.output_dir = tmp_archive_dir.joinpath("2020") draft.draft_order_path = tmp_archive_dir.joinpath("2020/2020_draft_order.json") draft.draft_sheet_path = tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx") # Set random seed for draft order consistency in testing random.seed(42) draft.setup() # Verify assert draft.year == 2020 assert draft.output_dir == tmp_archive_dir.joinpath("2020") assert draft.draft_order_path == tmp_archive_dir.joinpath( "2020/2020_draft_order.json" ) assert draft.draft_sheet_path == tmp_archive_dir.joinpath( "2020/2020_draft_sheet.xlsx" ) assert tmp_archive_dir.joinpath("2020").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_order.json").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx").exists() is True assert draft.participant_list == ["logan", "becca", "dodd"] assert draft.draft_order == ["dodd", "logan", "becca"] with open( tmp_archive_dir.joinpath("2020/2020_draft_order.json"), "r" ) as written_json: loaded_json = json.load(written_json) assert list(loaded_json.keys()) == ["dodd", "logan", "becca"] draft_sheet_data = pd.read_excel( tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx"), sheet_name=None, engine="xlrd", ) assert list(draft_sheet_data) == ["Dodd", "Logan", "Becca"] for participant_draft_info in draft_sheet_data.values(): assert list(participant_draft_info.columns) == ["Position", "Player", "Team"] assert participant_draft_info["Position"].equals( pd.Series( [ "QB", "RB_1", "RB_2", "WR_1", "WR_2", "TE", "Flex (RB/WR/TE)", "K", "Defense (Team Name)", "Bench (RB/WR/TE)", ] ) ) captured = capsys.readouterr() assert captured.out == ( "\nDrafting in slot 1...\ndodd\n" + "\nDrafting in slot 2...\nlogan\n" + "\nDrafting in slot 3...\nbecca\n\n" + "\n\tDraft Order: ['dodd', 'logan', 'becca']\n" + f"\tSaved draft order to {tmp_archive_dir.joinpath('2020/2020_draft_order.json')}\n" ) # Cleanup - none necessary def test_Draft_setup_already_exists(tmp_path, capsys): """ Test Draft.setup() when files exist in root. """ # Setup tmp_archive_dir = tmp_path.joinpath("archive") tmp_archive_dir.mkdir() tmp_year_dir = tmp_archive_dir.joinpath("2020") tmp_year_dir.mkdir() existing_draft_order = ["yeager", "emily", "dodd", "logan", "becca_hud", "cindy"] existing_draft_order_dict = { "yeager": 1, "emily": 2, "dodd": 3, "logan": 4, "becca_hud": 5, "cindy": 6, } with open(tmp_year_dir.joinpath("2020_draft_order.json"), "w") as written_json: json.dump(existing_draft_order_dict, written_json) draft_info = { "Position": [ "QB", "RB_1", "RB_2", "WR_1", "WR_2", "TE", "Flex (RB/WR/TE)", "K", "Defense (Team Name)", "Bench (RB/WR/TE)", ], "Player": [" "] * 10, "Team": [" "] * 10, } draft_df = pd.DataFrame(draft_info) with pd.ExcelWriter(tmp_year_dir.joinpath("2020_draft_sheet.xlsx")) as writer: for participant in existing_draft_order: draft_df.to_excel(writer, sheet_name=participant.title(), index=False) # Ensure everything exists prior to Draft.setup() call assert tmp_archive_dir.joinpath("2020").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_order.json").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx").exists() is True # Exercise draft = Draft(2020) # Override output dirs to temp path crated for testing draft.output_dir = tmp_archive_dir.joinpath("2020") draft.draft_order_path = tmp_archive_dir.joinpath("2020/2020_draft_order.json") draft.draft_sheet_path = tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx") draft.setup() # Verify assert draft.year == 2020 assert draft.output_dir == tmp_archive_dir.joinpath("2020") assert draft.__repr__() == "Draft(2020)" assert draft.__str__() == "Turkey Bowl Draft: 2020" assert draft.draft_order_path == tmp_archive_dir.joinpath( "2020/2020_draft_order.json" ) assert draft.draft_sheet_path == tmp_archive_dir.joinpath( "2020/2020_draft_sheet.xlsx" ) assert tmp_archive_dir.joinpath("2020").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_order.json").exists() is True assert tmp_archive_dir.joinpath("2020/2020_draft_sheet.xlsx").exists() is True assert draft.participant_list == existing_draft_order assert draft.draft_order == existing_draft_order captured = capsys.readouterr() assert captured.out == ( f"\nDraft order already exists at {tmp_archive_dir.joinpath('2020/2020_draft_order.json')}\n" + f"\n\tDraft Order: {existing_draft_order}\n" ) # Cleanup - none necessary def test_Draft_load(tmp_path): # Setup tmp_archive_dir = tmp_path.joinpath("archive") tmp_archive_dir.mkdir() tmp_year_dir = tmp_archive_dir.joinpath("2005") tmp_year_dir.mkdir() existing_draft_order = ["yeager", "emily", "dodd", "logan", "becca_hud", "cindy"] existing_draft_order_dict = { "yeager": 1, "emily": 2, "dodd": 3, "logan": 4, "becca_hud": 5, "cindy": 6, } with open(tmp_year_dir.joinpath("2005_draft_order.json"), "w") as written_json: json.dump(existing_draft_order_dict, written_json) draft_info = { "Position": [ "QB", "RB_1", "RB_2", "WR_1", "WR_2", "TE", "Flex (RB/WR/TE)", "K", "Defense (Team Name)", "Bench (RB/WR/TE)", ], "Player": ["test"] * 10, "Team": ["test"] * 10, } draft_df = pd.DataFrame(draft_info) with pd.ExcelWriter(tmp_year_dir.joinpath("2005_draft_sheet.xlsx")) as writer: for participant in existing_draft_order: draft_df.to_excel(writer, sheet_name=participant.title(), index=False) # Ensure everything exists prior to Draft.setup() call assert tmp_archive_dir.joinpath("2005").exists() is True assert tmp_archive_dir.joinpath("2005/2005_draft_order.json").exists() is True assert tmp_archive_dir.joinpath("2005/2005_draft_sheet.xlsx").exists() is True # Exercise draft = Draft(2005) # Override output dirs to temp path crated for testing draft.output_dir = tmp_archive_dir.joinpath("2005") draft.draft_order_path = tmp_archive_dir.joinpath("2005/2005_draft_order.json") draft.draft_sheet_path = tmp_archive_dir.joinpath("2005/2005_draft_sheet.xlsx") draft.setup() result = draft.load() # Verify assert list(result.keys()) == [ "Yeager", "Emily", "Dodd", "Logan", "Becca_Hud", "Cindy", ] assert draft.year == 2005 assert draft.output_dir == tmp_archive_dir.joinpath("2005") assert draft.__repr__() == "Draft(2005)" assert draft.__str__() == "Turkey Bowl Draft: 2005" assert draft.draft_order_path == tmp_archive_dir.joinpath( "2005/2005_draft_order.json" ) assert draft.draft_sheet_path == tmp_archive_dir.joinpath( "2005/2005_draft_sheet.xlsx" ) assert tmp_archive_dir.joinpath("2005").exists() is True assert tmp_archive_dir.joinpath("2005/2005_draft_order.json").exists() is True assert tmp_archive_dir.joinpath("2005/2005_draft_sheet.xlsx").exists() is True assert draft.participant_list == existing_draft_order assert draft.draft_order == existing_draft_order # Cleanup - none necessary def test_Draft_load_stripping_whitespace(tmp_path): # Setup expected_players = [ "QB with spaces", "RB_1 with spaces", "RB_2 with spaces", "WR_1", "WR_2", "TE", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ] expected_teams = [ "MIA", "DAL", "CHI", "NE", "HOU", "GB", "PIT", "<NAME>", "<NAME>", "<NAME>", ] tmp_archive_dir = tmp_path.joinpath("archive") tmp_archive_dir.mkdir() tmp_year_dir = tmp_archive_dir.joinpath("2005") tmp_year_dir.mkdir() existing_draft_order = ["yeager", "emily", "dodd", "logan", "becca_hud", "cindy"] existing_draft_order_dict = { "yeager": 1, "emily": 2, "dodd": 3, "logan": 4, "becca_hud": 5, "cindy": 6, } with open(tmp_year_dir.joinpath("2005_draft_order.json"), "w") as written_json: json.dump(existing_draft_order_dict, written_json) draft_info = { "Position": [ "QB", "RB_1", "RB_2", "WR_1", "WR_2", "TE", "Flex (RB/WR/TE)", "K", "Defense (Team Name)", "Bench (RB/WR/TE)", ], "Player": [ " QB with spaces ", " RB_1 with spaces ", "RB_2 with spaces ", "WR_1 ", " WR_2", "TE ", " <NAME> ", " <NAME> ", " Chicago Bears ", " <NAME> ", ], "Team": [ " MIA ", " DAL ", "CHI ", "NE ", " HOU", "GB ", " PIT ", " <NAME> ", " Chicago Bears ", " <NAME> ", ], } draft_df = pd.DataFrame(draft_info) with pd.ExcelWriter(tmp_year_dir.joinpath("2005_draft_sheet.xlsx")) as writer: for participant in existing_draft_order: draft_df.to_excel(writer, sheet_name=participant.title(), index=False) # Exercise draft = Draft(2005) # Override output dirs to temp path crated for testing draft.output_dir = tmp_archive_dir.joinpath("2005") draft.draft_order_path = tmp_archive_dir.joinpath("2005/2005_draft_order.json") draft.draft_sheet_path = tmp_archive_dir.joinpath("2005/2005_draft_sheet.xlsx") draft.setup() result = draft.load() # Verify assert list(result.keys()) == [ "Yeager", "Emily", "Dodd", "Logan", "Becca_Hud", "Cindy", ] for participant, participant_team in result.items(): assert participant_team["Player"].tolist() == expected_players assert participant_team["Team"].tolist() == expected_teams def test_Draft_check_players_have_been_drafted_false(): # Setup mock_player_data = {"Player": ["", "", ""]} mock_participant_teams = { "Logan": pd.DataFrame(mock_player_data), "Dodd": pd.DataFrame(mock_player_data), "Becca": pd.DataFrame(mock_player_data), } # Exercise draft = Draft(2020) result = draft.check_players_have_been_drafted(mock_participant_teams) # Verify assert result is False # Cleanup - none necessary def test_Draft_check_players_have_been_drafted_true(): # Setup mock_player_data = {"Player": ["<NAME>", "<NAME>", "Trogdor"]} mock_participant_teams = { "Logan": pd.DataFrame(mock_player_data), "Dodd":
pd.DataFrame(mock_player_data)
pandas.DataFrame
import re import datetime import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder, OneHotEncoder # --------------------------------------------------- # Person data methods # --------------------------------------------------- class TransformGenderGetFromName: """Gets clients' genders from theirs russian second names. Parameters: column_name (str): Column name in InsolverDataFrame containing clients' names, column type is string. column_gender (str): Column name in InsolverDataFrame for clients' genders. gender_male (str): Return value for male gender in InsolverDataFrame, 'male' by default. gender_female (str): Return value for female gender in InsolverDataFrame, 'female' by default. """ def __init__(self, column_name, column_gender, gender_male='male', gender_female='female'): self.priority = 0 self.column_name = column_name self.column_gender = column_gender self.gender_male = gender_male self.gender_female = gender_female @staticmethod def _gender(client_name, gender_male, gender_female): if pd.isnull(client_name): gender = None elif len(client_name) < 2: gender = None elif client_name.upper().endswith(('ИЧ', 'ОГЛЫ')): gender = gender_male elif client_name.upper().endswith(('НА', 'КЫЗЫ')): gender = gender_female else: gender = None return gender def __call__(self, df): df[self.column_gender] = df[self.column_name].apply(self._gender, args=(self.gender_male, self.gender_female,)) return df class TransformAgeGetFromBirthday: """Gets clients' ages in years from theirs birth dates and policies' start dates. Parameters: column_date_birth (str): Column name in InsolverDataFrame containing clients' birth dates, column type is date. column_date_start (str): Column name in InsolverDataFrame containing policies' start dates, column type is date. column_age (str): Column name in InsolverDataFrame for clients' ages in years, column type is int. """ def __init__(self, column_date_birth, column_date_start, column_age): self.priority = 0 self.column_date_birth = column_date_birth self.column_date_start = column_date_start self.column_age = column_age @staticmethod def _age_get(datebirth_datestart): date_birth = datebirth_datestart[0] date_start = datebirth_datestart[1] if pd.isnull(date_birth): age = None elif pd.isnull(date_start): age = None elif date_birth > datetime.datetime.now(): age = None elif date_birth.year < datetime.datetime.now().year - 120: age = None elif date_birth > date_start: age = None else: age = int((date_start - date_birth).days // 365.25) return age def __call__(self, df): df[self.column_age] = df[[self.column_date_birth, self.column_date_start]].apply(self._age_get, axis=1) return df class TransformAge: """Transforms values of drivers' minimum ages in years. Values under 'age_min' are invalid. Values over 'age_max' will be grouped. Parameters: column_driver_minage (str): Column name in InsolverDataFrame containing drivers' minimum ages in years, column type is integer. age_min (int): Minimum value of drivers' age in years, lower values are invalid, 18 by default. age_max (int): Maximum value of drivers' age in years, bigger values will be grouped, 70 by default. """ def __init__(self, column_driver_minage, age_min=18, age_max=70): self.priority = 1 self.column_driver_minage = column_driver_minage self.age_min = age_min self.age_max = age_max @staticmethod def _age(age, age_min, age_max): if pd.isnull(age): age = None elif age < age_min: age = None elif age > age_max: age = age_max return age def __call__(self, df): df[self.column_driver_minage] = df[self.column_driver_minage].apply(self._age, args=(self.age_min, self.age_max)) return df class TransformAgeGender: """Gets intersections of drivers' minimum ages and genders. Parameters: column_age (str): Column name in InsolverDataFrame containing clients' ages in years, column type is integer. column_gender (str): Column name in InsolverDataFrame containing clients' genders. column_age_m (str): Column name in InsolverDataFrame for males' ages, for females default value is applied, column type is integer. column_age_f (str): Column name in InsolverDataFrame for females' ages, for males default value is applied, column type is integer. age_default (int): Default value of the age in years,18 by default. gender_male: Value for male gender in InsolverDataFrame, 'male' by default. gender_female: Value for male gender in InsolverDataFrame, 'female' by default. """ def __init__(self, column_age, column_gender, column_age_m, column_age_f, age_default=18, gender_male='male', gender_female='female'): self.priority = 2 self.column_age = column_age self.column_gender = column_gender self.column_age_m = column_age_m self.column_age_f = column_age_f self.age_default = age_default self.gender_male = gender_male self.gender_female = gender_female @staticmethod def _age_gender(age_gender, age_default, gender_male, gender_female): age = age_gender[0] gender = age_gender[1] if pd.isnull(age): age_m = None age_f = None elif
pd.isnull(gender)
pandas.isnull
# Copyright 2015-present The Scikit Flow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import pandas import tensorflow as tf from tensorflow.contrib import learn ### Training data # Downloads, unpacks and reads DBpedia dataset. dbpedia = learn.datasets.load_dataset('dbpedia') X_train, y_train = pandas.DataFrame(dbpedia.train.data)[1], pandas.Series(dbpedia.train.target) X_test, y_test =
pandas.DataFrame(dbpedia.test.data)
pandas.DataFrame
# -*- encoding: utf-8 -*- import random import warnings from contextlib import contextmanager from collections import OrderedDict, Counter, defaultdict try: from StringIO import StringIO # py2 (first as py2 also has io.StringIO, but only with unicode support) except: from io import StringIO # py3 import h2o import numpy as np from h2o.utils.ext_dependencies import get_matplotlib_pyplot from h2o.exceptions import H2OValueError def _display(object): """ Display the object. :param object: An object to be displayed. :returns: the input """ import matplotlib.figure plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if isinstance(object, matplotlib.figure.Figure) and matplotlib.get_backend().lower() != "agg": plt.show() else: try: import IPython.display IPython.display.display(object) except ImportError: print(object) if isinstance(object, matplotlib.figure.Figure): plt.close(object) print("\n") return object def _dont_display(object): """ Don't display the object :param object: that should not be displayed :returns: input """ import matplotlib.figure plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if isinstance(object, matplotlib.figure.Figure): plt.close() return object # UTILS class Header: """ Class representing a Header with pretty printing for IPython. """ def __init__(self, content, level=1): self.content = content self.level = level def _repr_html_(self): return "<h{level}>{content}</h{level}>".format(level=self.level, content=self.content) def _repr_markdown_(self): return "\n\n{} {}".format("#" * self.level, self.content) def _repr_pretty_(self, p, cycle): p.text(str(self)) def __str__(self): return self._repr_markdown_() class Description: """ Class representing a Description with pretty printing for IPython. """ DESCRIPTIONS = dict( leaderboard="Leaderboard shows models with their metrics. When provided with H2OAutoML object, " "the leaderboard shows 5-fold cross-validated metrics by default (depending on the " "H2OAutoML settings), otherwise it shows metrics computed on the frame. " "At most 20 models are shown by default.", leaderboard_row="Leaderboard shows models with their metrics and their predictions for a given row. " "When provided with H2OAutoML object, the leaderboard shows 5-fold cross-validated " "metrics by default (depending on the H2OAutoML settings), otherwise it shows " "metrics computed on the frame. At most 20 models are shown by default.", confusion_matrix="Confusion matrix shows a predicted class vs an actual class.", residual_analysis="Residual Analysis plots the fitted values vs residuals on a test dataset. Ideally, " "residuals should be randomly distributed. Patterns in this plot can indicate potential " "problems with the model selection, e.g., using simpler model than necessary, not accounting " "for heteroscedasticity, autocorrelation, etc. Note that if you see \"striped\" lines of " "residuals, that is an artifact of having an integer valued (vs a real valued) " "response variable.", variable_importance="The variable importance plot shows the relative importance of the most " "important variables in the model.", varimp_heatmap="Variable importance heatmap shows variable importance across multiple models. " "Some models in H2O return variable importance for one-hot (binary indicator) " "encoded versions of categorical columns (e.g. Deep Learning, XGBoost). " "In order for the variable importance of categorical columns to be compared " "across all model types we compute a summarization of the the variable importance " "across all one-hot encoded features and return a single variable importance for the " "original categorical feature. By default, the models and variables are ordered by " "their similarity.", model_correlation_heatmap="This plot shows the correlation between the predictions of the models. " "For classification, frequency of identical predictions is used. By default, " "models are ordered by their similarity (as computed by hierarchical clustering). " "Interpretable models, such as GAM, GLM, and RuleFit are highlighted using " "red colored text.", shap_summary="SHAP summary plot shows the contribution of the features for each instance (row of data). " "The sum of the feature contributions and the bias term is equal to the raw prediction of " "the model, i.e., prediction before applying inverse link function.", pdp="Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on " "the response. The effect of a variable is measured in change in the mean response. PDP assumes " "independence between the feature for which is the PDP computed and the rest.", ice="An Individual Conditional Expectation (ICE) plot gives a graphical depiction of the marginal effect " "of a variable on the response. ICE plots are similar to partial dependence plots (PDP); PDP shows the " "average effect of a feature while ICE plot shows the effect for a single instance. This function will " "plot the effect for each decile. In contrast to the PDP, ICE plots can provide more insight, especially " "when there is stronger feature interaction.", ice_row="Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal " "effect of a variable on the response for a given row. ICE plot is similar to partial " "dependence plot (PDP), PDP shows the average effect of a feature while ICE plot shows " "the effect for a single instance.", shap_explain_row="SHAP explanation shows contribution of features for a given instance. The sum " "of the feature contributions and the bias term is equal to the raw prediction of " "the model, i.e., prediction before applying inverse link function. H2O implements " "TreeSHAP which when the features are correlated, can increase contribution of a feature " "that had no influence on the prediction.", ) def __init__(self, for_what): self.content = self.DESCRIPTIONS[for_what] def _repr_html_(self): return "<blockquote>{}</blockquote>".format(self.content) def _repr_markdown_(self): return "\n> {}".format(self.content) def _repr_pretty_(self, p, cycle): p.text(str(self)) def __str__(self): return self._repr_markdown_() class H2OExplanation(OrderedDict): def _ipython_display_(self): from IPython.display import display for v in self.values(): display(v) @contextmanager def no_progress(): """ A context manager that temporarily blocks showing the H2O's progress bar. Used when a multiple models are evaluated. """ progress = h2o.job.H2OJob.__PROGRESS_BAR__ if progress: h2o.no_progress() try: yield finally: if progress: h2o.show_progress() class NumpyFrame: """ Simple class that very vaguely emulates Pandas DataFrame. Main purpose is to keep parsing from the List of Lists format to numpy. This class is meant to be used just in the explain module. Due to that fact it encodes the factor variables similarly to R/pandas - factors are mapped to numeric column which in turn makes it easier to plot it. """ def __init__(self, h2o_frame): # type: ("NumpyFrame", Union[h2o.H2OFrame, h2o.two_dim_table.H2OTwoDimTable]) -> None if isinstance(h2o_frame, h2o.two_dim_table.H2OTwoDimTable): self._columns = h2o_frame.col_header _is_numeric = np.array([type_ in ["double", "float", "long", "integer"] for type_ in h2o_frame.col_types], dtype=bool) _is_factor = np.array([type_ in ["string"] for type_ in h2o_frame.col_types], dtype=bool) df = h2o_frame.cell_values self._factors = dict() for col in range(len(self._columns)): if _is_factor[col]: levels = set(row[col] for row in df) self._factors[self._columns[col]] = list(levels) self._data = np.empty((len(df), len(self._columns))) df = [self._columns] + df elif isinstance(h2o_frame, h2o.H2OFrame): _is_factor = np.array(h2o_frame.isfactor(), dtype=np.bool) | np.array( h2o_frame.ischaracter(), dtype=np.bool) _is_numeric = h2o_frame.isnumeric() self._columns = h2o_frame.columns self._factors = {col: h2o_frame[col].asfactor().levels()[0] for col in np.array(h2o_frame.columns)[_is_factor]} df = h2o_frame.as_data_frame(False) self._data = np.empty((h2o_frame.nrow, h2o_frame.ncol)) else: raise RuntimeError("Unexpected type of \"h2o_frame\": {}".format(type(h2o_frame))) for idx, col in enumerate(df[0]): if _is_factor[idx]: convertor = self.from_factor_to_num(col) self._data[:, idx] = np.array( [float(convertor.get( row[idx] if not (len(row) == 0 or row[idx] == "") else "nan", "nan")) for row in df[1:]], dtype=np.float32) elif _is_numeric[idx]: self._data[:, idx] = np.array( [float(row[idx] if not (len(row) == 0 or row[idx] == "") else "nan") for row in df[1:]], dtype=np.float32) else: try: self._data[:, idx] = np.array([row[idx] if not (len(row) == 0 or row[idx] == "") else "nan" for row in df[1:]], dtype=np.datetime64) except Exception: raise RuntimeError("Unexpected type of column {}!".format(col)) def isfactor(self, column): # type: ("NumpyFrame", str) -> bool """ Is column a factor/categorical column? :param column: string containing the column name :returns: boolean """ return column in self._factors or self._get_column_and_factor(column)[0] in self._factors def from_factor_to_num(self, column): # type: ("NumpyFrame", str) -> Dict[str, int] """ Get a dictionary mapping a factor to its numerical representation in the NumpyFrame :param column: string containing the column name :returns: dictionary """ fact = self._factors[column] return dict(zip(fact, range(len(fact)))) def from_num_to_factor(self, column): # type: ("NumpyFrame", str) -> Dict[int, str] """ Get a dictionary mapping numerical representation of a factor to the category names. :param column: string containing the column name :returns: dictionary """ fact = self._factors[column] return dict(zip(range(len(fact)), fact)) def _get_column_and_factor(self, column): # type: ("NumpyFrame", str) -> Tuple[str, Optional[float]] """ Get a column name and possibly a factor name. This is used to get proper column name and factor name when provided with the output of some algos such as XGBoost which encode factor columns to "column_name.category_name". :param column: string containing the column name :returns: tuple (column_name: str, factor_name: Optional[str]) """ if column in self.columns: return column, None if column.endswith(".") and column[:-1] in self.columns: return column[:-1], None col_parts = column.split(".") for i in range(1, len(col_parts) + 1): if ".".join(col_parts[:i]) in self.columns: column = ".".join(col_parts[:i]) factor_name = ".".join(col_parts[i:]) if factor_name == "missing(NA)": factor = float("nan") else: factor = self.from_factor_to_num(column)[factor_name] return column, factor def __getitem__(self, indexer): # type: ("NumpyFrame", Union[str, Tuple[Union[int,List[int]], str]]) -> np.ndarray """ A low level way to get a column or a row within a column. NOTE: Returns numeric representation even for factors. :param indexer: string for the whole column or a tuple (row_index, column_name) :returns: a column or a row within a column """ row = slice(None) if isinstance(indexer, tuple): row = indexer[0] column = indexer[1] else: column = indexer if column not in self.columns: column, factor = self._get_column_and_factor(column) if factor is not None: if factor != factor: return np.asarray(np.isnan(self._data[row, self.columns.index(column)]), dtype=np.float32) return np.asarray(self._data[row, self.columns.index(column)] == factor, dtype=np.float32) return self._data[row, self.columns.index(column)] def get(self, column, as_factor=True): # type: ("NumpyFrame", str, bool) -> np.ndarray """ Get a column. :param column: string containing the column name :param as_factor: if True (default), factor column will contain string representation; otherwise numerical representation :returns: A column represented as numpy ndarray """ if as_factor and self.isfactor(column): column, factor_idx = self._get_column_and_factor(column) if factor_idx is not None: return self[column] == factor_idx convertor = self.from_num_to_factor(column) return np.array([convertor.get(row, "") for row in self[column]]) return self[column] def levels(self, column): # type: ("NumpyFrame", str) -> List[str] """ Get levels/categories of a factor column. :param column: a string containing the column name :returns: list of levels """ return self._factors.get(column, []) def nlevels(self, column): # type: ("NumpyFrame", str) -> int """ Get number of levels/categories of a factor column. :param column: string containing the column name :returns: a number of levels within a factor """ return len(self.levels(column)) @property def columns(self): # type: ("NumpyFrame") -> List[str] """ Column within the NumpyFrame. :returns: list of columns """ return self._columns @property def nrow(self): # type: ("NumpyFrame") -> int """ Number of rows. :returns: number of rows """ return self._data.shape[0] @property def ncol(self): # type: ("NumpyFrame") -> int """ Number of columns. :returns: number of columns """ return self._data.shape[1] @property def shape(self): # type: ("NumpyFrame") -> Tuple[int, int] """ Shape of the frame. :returns: tuple (number of rows, number of columns) """ return self._data.shape def sum(self, axis=0): # type: ("NumpyFrame", int) -> np.ndarray """ Calculate the sum of the NumpyFrame elements over the given axis. WARNING: This method doesn't care if the column is categorical or numeric. Use with care. :param axis: Axis along which a sum is performed. :returns: numpy.ndarray with shape same as NumpyFrame with the `axis` removed """ return self._data.sum(axis=axis) def mean(self, axis=0): # type: ("NumpyFrame", int) -> np.ndarray """ Calculate the mean of the NumpyFrame elements over the given axis. WARNING: This method doesn't care if the column is categorical or numeric. Use with care. :param axis: Axis along which a mean is performed. :returns: numpy.ndarray with shape same as NumpyFrame with the `axis` removed """ return self._data.mean(axis=axis) def items(self, with_categorical_names=False): # type: ("NumpyFrame", bool) -> Generator[Tuple[str, np.ndarray], None, None] """ Make a generator that yield column name and ndarray with values. :params with_categorical_names: if True, factor columns are returned as string columns; otherwise numerical :returns: generator to be iterated upon """ for col in self.columns: yield col, self.get(col, with_categorical_names) def _get_domain_mapping(model): """ Get a mapping between columns and their domains. :return: Dictionary containing a mapping column -> factors """ output = model._model_json["output"] return dict(zip(output["names"], output["domains"])) def _shorten_model_ids(model_ids): import re regexp = re.compile(r"(.*)_AutoML_[\d_]+((?:_.*)?)$") # nested group needed for Py2 shortened_model_ids = [regexp.sub(r"\1\2", model_id) for model_id in model_ids] if len(set(shortened_model_ids)) == len(set(model_ids)): return shortened_model_ids return model_ids def _get_algorithm(model, treat_xrt_as_algorithm=False): # type: (Union[str, h2o.model.ModelBase], bool) -> str """ Get algorithm type. Use model id to infer it if possible. :param model: model or a model_id :param treat_xrt_as_algorithm: boolean used for best_of_family :returns: string containing algorithm name """ if not isinstance(model, h2o.model.ModelBase): import re algo = re.search("^(DeepLearning|DRF|GAM|GBM|GLM|NaiveBayes|StackedEnsemble|RuleFit|XGBoost|XRT)(?=_)", model) if algo is not None: algo = algo.group(0).lower() if algo == "xrt" and not treat_xrt_as_algorithm: algo = "drf" return algo else: model = h2o.get_model(model) if treat_xrt_as_algorithm and model.algo == "drf": if model.actual_params.get("histogram_type") == "Random": return "xrt" return model.algo def _first_of_family(models, all_stackedensembles=False): # type: (Union[str, h2o.model.ModelBase], bool) -> Union[str, h2o.model.ModelBase] """ Get first of family models :param models: models or model ids :param all_stackedensembles: if True return all stacked ensembles :returns: list of models or model ids (the same type as on input) """ selected_models = [] included_families = set() for model in models: family = _get_algorithm(model, treat_xrt_as_algorithm=True) if family not in included_families or (all_stackedensembles and "stackedensemble" == family): selected_models.append(model) included_families.add(family) return selected_models def _density(xs, bins=100): # type: (np.ndarray, int) -> np.ndarray """ Make an approximate density estimation by blurring a histogram (used for SHAP summary plot). :param xs: numpy vector :param bins: number of bins :returns: density values """ hist = list(np.histogram(xs, bins=bins)) # gaussian blur hist[0] = np.convolve(hist[0], [0.00598, 0.060626, 0.241843, 0.383103, 0.241843, 0.060626, 0.00598])[3:-3] hist[0] = hist[0] / np.max(hist[0]) hist[1] = (hist[1][:-1] + hist[1][1:]) / 2 return np.interp(xs, hist[1], hist[0]) def _uniformize(data, col_name): # type: (NumpyFrame, str) -> np.ndarray """ Convert to quantiles. :param data: NumpyFrame :param col_name: string containing a column name :returns: quantile values of individual points in the column """ if col_name not in data.columns or data.isfactor(col_name): res = data[col_name] diff = (np.nanmax(res) - np.nanmin(res)) if diff <= 0 or np.isnan(diff): return res res = (res - np.nanmin(res)) / diff return res col = data[col_name] xs = np.linspace(0, 1, 100) quantiles = np.nanquantile(col, xs) res = np.interp(col, quantiles, xs) res = (res - np.nanmin(res)) / (np.nanmax(res) - np.nanmin(res)) return res # PLOTS def shap_summary_plot( model, # type: h2o.model.ModelBase frame, # type: h2o.H2OFrame columns=None, # type: Optional[Union[List[int], List[str]]] top_n_features=20, # type: int samples=1000, # type: int colorize_factors=True, # type: bool alpha=1, # type: float colormap=None, # type: str figsize=(12, 12), # type: Union[Tuple[float], List[float]] jitter=0.35 # type: float ): # type: (...) -> plt.Figure """ SHAP summary plot SHAP summary plot shows contribution of features for each instance. The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function. :param model: h2o tree model, such as DRF, XRT, GBM, XGBoost :param frame: H2OFrame :param columns: either a list of columns or column indices to show. If specified parameter top_n_features will be ignored. :param top_n_features: a number of columns to pick using variable importance (where applicable). :param samples: maximum number of observations to use; if lower than number of rows in the frame, take a random sample :param colorize_factors: if True, use colors from the colormap to colorize the factors; otherwise all levels will have same color :param alpha: transparency of the points :param colormap: colormap to use instead of the default blue to red colormap :param figsize: figure size; passed directly to matplotlib :param jitter: amount of jitter used to show the point density :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.estimators import H2OGradientBoostingEstimator >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train a GBM >>> gbm = H2OGradientBoostingEstimator() >>> gbm.train(y=response, training_frame=train) >>> >>> # Create SHAP summary plot >>> gbm.shap_summary_plot(test) """ import matplotlib.colors plt = get_matplotlib_pyplot(False, raise_if_not_available=True) blue_to_red = matplotlib.colors.LinearSegmentedColormap.from_list("blue_to_red", ["#00AAEE", "#FF1166"]) if colormap is None: colormap = blue_to_red else: colormap = plt.get_cmap(colormap) if top_n_features < 0: top_n_features = float("inf") # to prevent problems with data sorted in some logical way # (overplotting with latest result which might have different values # then the rest of the data in a given region) permutation = list(range(frame.nrow)) random.shuffle(permutation) if samples is not None: permutation = sorted(permutation[:min(len(permutation), samples)]) frame = frame[permutation, :] permutation = list(range(frame.nrow)) random.shuffle(permutation) with no_progress(): contributions = NumpyFrame(model.predict_contributions(frame)) frame = NumpyFrame(frame) contribution_names = contributions.columns feature_importance = sorted( {k: np.abs(v).mean() for k, v in contributions.items() if "BiasTerm" != k}.items(), key=lambda kv: kv[1]) if columns is None: top_n = min(top_n_features, len(feature_importance)) top_n_features = [fi[0] for fi in feature_importance[-top_n:]] else: picked_cols = [] columns = [frame.columns[col] if isinstance(col, int) else col for col in columns] for feature in columns: if feature in contribution_names: picked_cols.append(feature) else: for contrib in contribution_names: if contrib.startswith(feature + "."): picked_cols.append(contrib) top_n_features = picked_cols plt.figure(figsize=figsize) plt.grid(True) plt.axvline(0, c="black") for i in range(len(top_n_features)): col_name = top_n_features[i] col = contributions[permutation, col_name] dens = _density(col) plt.scatter( col, i + dens * np.random.uniform(-jitter, jitter, size=len(col)), alpha=alpha, c=_uniformize(frame, col_name)[permutation] if colorize_factors or not frame.isfactor(col_name) else np.full(frame.nrow, 0.5), cmap=colormap ) plt.clim(0, 1) cbar = plt.colorbar() cbar.set_label('Normalized feature value', rotation=270) cbar.ax.get_yaxis().labelpad = 15 plt.yticks(range(len(top_n_features)), top_n_features) plt.xlabel("SHAP value") plt.ylabel("Feature") plt.title("SHAP Summary plot for \"{}\"".format(model.model_id)) plt.tight_layout() fig = plt.gcf() return fig def shap_explain_row_plot( model, # type: h2o.model.ModelBase frame, # type: h2o.H2OFrame row_index, # type: int columns=None, # type: Optional[Union[List[int], List[str]]] top_n_features=10, # type: int figsize=(16, 9), # type: Union[List[float], Tuple[float]] plot_type="barplot", # type: str contribution_type="both" # type: str ): # type: (...) -> plt.Figure """ SHAP local explanation SHAP explanation shows contribution of features for a given instance. The sum of the feature contributions and the bias term is equal to the raw prediction of the model, i.e., prediction before applying inverse link function. H2O implements TreeSHAP which when the features are correlated, can increase contribution of a feature that had no influence on the prediction. :param model: h2o tree model, such as DRF, XRT, GBM, XGBoost :param frame: H2OFrame :param row_index: row index of the instance to inspect :param columns: either a list of columns or column indices to show. If specified parameter top_n_features will be ignored. :param top_n_features: a number of columns to pick using variable importance (where applicable). When plot_type="barplot", then top_n_features will be chosen for each contribution_type. :param figsize: figure size; passed directly to matplotlib :param plot_type: either "barplot" or "breakdown" :param contribution_type: One of "positive", "negative", or "both". Used only for plot_type="barplot". :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.estimators import H2OGradientBoostingEstimator >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train a GBM >>> gbm = H2OGradientBoostingEstimator() >>> gbm.train(y=response, training_frame=train) >>> >>> # Create SHAP row explanation plot >>> gbm.shap_explain_row_plot(test, row_index=0) """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if top_n_features < 0: top_n_features = float("inf") row = frame[row_index, :] with no_progress(): contributions = NumpyFrame(model.predict_contributions(row)) contribution_names = contributions.columns prediction = float(contributions.sum(axis=1)) bias = float(contributions["BiasTerm"]) contributions = sorted(filter(lambda pair: pair[0] != "BiasTerm", contributions.items()), key=lambda pair: -abs(pair[1])) if plot_type == "barplot": with no_progress(): prediction = model.predict(row)[0, "predict"] row = NumpyFrame(row) if contribution_type == "both": contribution_type = ["positive", "negative"] else: contribution_type = [contribution_type] if columns is None: picked_features = [] if "positive" in contribution_type: positive_features = sorted(filter(lambda pair: pair[1] >= 0, contributions), key=lambda pair: pair[1]) picked_features.extend(positive_features[-min(top_n_features, len(positive_features)):]) if "negative" in contribution_type: negative_features = sorted(filter(lambda pair: pair[1] < 0, contributions), key=lambda pair: pair[1]) picked_features.extend(negative_features[:min(top_n_features, len(negative_features))]) else: columns = [frame.columns[col] if isinstance(col, int) else col for col in columns] picked_cols = [] for feature in columns: if feature in contribution_names: picked_cols.append(feature) else: for contrib in contribution_names: if contrib.startswith(feature + "."): picked_cols.append(contrib) picked_features = [pair for pair in contributions if pair[0] in picked_cols] picked_features = sorted(picked_features, key=lambda pair: pair[1]) if len(picked_features) < len(contributions): contribution_subset_note = " using {} out of {} contributions".format( len(picked_features), len(contributions)) else: contribution_subset_note = "" contributions = dict( feature=np.array( ["{}={}".format(pair[0], str(row.get(pair[0])[0])) for pair in picked_features]), value=np.array([pair[1][0] for pair in picked_features]) ) plt.figure(figsize=figsize) plt.barh(range(contributions["feature"].shape[0]), contributions["value"], fc="#b3ddf2") plt.grid(True) plt.axvline(0, c="black") plt.xlabel("SHAP value") plt.ylabel("Feature") plt.yticks(range(contributions["feature"].shape[0]), contributions["feature"]) plt.title("SHAP explanation for \"{}\" on row {}{}\nprediction: {}".format( model.model_id, row_index, contribution_subset_note, prediction )) plt.gca().set_axisbelow(True) plt.tight_layout() fig = plt.gcf() return fig elif plot_type == "breakdown": if columns is None: if top_n_features + 1 < len(contributions): contributions = contributions[:top_n_features] + [ ("Remaining Features", sum(map(lambda pair: pair[1], contributions[top_n_features:])))] else: picked_cols = [] columns = [frame.columns[col] if isinstance(col, int) else col for col in columns] for feature in columns: if feature in contribution_names: picked_cols.append(feature) else: for contrib in contribution_names: if contrib.startswith(feature + "."): picked_cols.append(contrib) rest = np.array(sum(pair[1] for pair in contributions if pair[0] not in picked_cols)) contributions = [pair for pair in contributions if pair[0] in picked_cols] if len(contribution_names) - 1 > len(picked_cols): # Contribution names contain "BiasTerm" as well contributions += [("Remaining Features", rest)] contributions = contributions[::-1] contributions = dict( feature=np.array([pair[0] for pair in contributions]), value=np.array([pair[1][0] for pair in contributions]), color=np.array(["g" if pair[1] >= 0 else "r" for pair in contributions]) ) contributions["cummulative_value"] = [bias] + list( contributions["value"].cumsum()[:-1] + bias) plt.figure(figsize=figsize) plt.barh(contributions["feature"], contributions["value"], left=contributions["cummulative_value"], color=contributions["color"]) plt.axvline(prediction, label="Prediction") plt.axvline(bias, linestyle="dotted", color="gray", label="Bias") plt.vlines(contributions["cummulative_value"][1:], ymin=[y - 0.4 for y in range(contributions["value"].shape[0] - 1)], ymax=[y + 1.4 for y in range(contributions["value"].shape[0] - 1)], color="k") plt.legend() plt.grid(True) xlim = plt.xlim() xlim_diff = xlim[1] - xlim[0] plt.xlim((xlim[0] - 0.02 * xlim_diff, xlim[1] + 0.02 * xlim_diff)) plt.xlabel("SHAP value") plt.ylabel("Feature") plt.gca().set_axisbelow(True) plt.tight_layout() fig = plt.gcf() return fig def _get_top_n_levels(column, top_n): # type: (h2o.H2OFrame, int) -> List[str] """ Get top_n levels from factor column based on their frequency. :param column: string containing column name :param top_n: maximum number of levels to be returned :returns: list of levels """ counts = column.table().sort("Count", ascending=[False])[:, 0] return [ level[0] for level in counts[:min(counts.nrow, top_n), :].as_data_frame( use_pandas=False, header=False) ] def _factor_mapper(mapping): # type: (Dict) -> Callable """ Helper higher order function returning function that applies mapping to each element. :param mapping: dictionary that maps factor names to floats (for NaN; other values are integers) :returns: function to be applied on iterable """ def _(column): return [mapping.get(entry, float("nan")) for entry in column] return _ def _add_histogram(frame, column, add_rug=True, add_histogram=True, levels_order=None): # type: (H2OFrame, str, bool, bool) -> None """ Helper function to add rug and/or histogram to a plot :param frame: H2OFrame :param column: string containing column name :param add_rug: if True, adds rug :param add_histogram: if True, adds histogram :returns: None """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) ylims = plt.ylim() nf = NumpyFrame(frame[column]) if nf.isfactor(column) and levels_order is not None: new_mapping = dict(zip(levels_order, range(len(levels_order)))) mapping = _factor_mapper({k: new_mapping[v] for k, v in nf.from_num_to_factor(column).items()}) else: def mapping(x): return x if add_rug: plt.plot(mapping(nf[column]), [ylims[0] for _ in range(frame.nrow)], "|", color="k", alpha=0.2, ms=20) if add_histogram: if nf.isfactor(column): cnt = Counter(nf[column][np.isfinite(nf[column])]) hist_x = np.array(list(cnt.keys()), dtype=float) hist_y = np.array(list(cnt.values()), dtype=float) width = 1 else: hist_y, hist_x = np.histogram( mapping(nf[column][np.isfinite(nf[column])]), bins=20) hist_x = hist_x[:-1].astype(float) hist_y = hist_y.astype(float) width = hist_x[1] - hist_x[0] plt.bar(mapping(hist_x), hist_y / hist_y.max() * ((ylims[1] - ylims[0]) / 1.618), # ~ golden ratio bottom=ylims[0], align="center" if nf.isfactor(column) else "edge", width=width, color="gray", alpha=0.2) if nf.isfactor(column): plt.xticks(mapping(range(nf.nlevels(column))), nf.levels(column)) plt.ylim(ylims) def pd_plot( model, # type: h2o.model.model_base.ModelBase frame, # type: h2o.H2OFrame column, # type: str row_index=None, # type: Optional[int] target=None, # type: Optional[str] max_levels=30, # type: int figsize=(16, 9), # type: Union[Tuple[float], List[float]] colormap="Dark2", # type: str ): """ Plot partial dependence plot. Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. PDP assumes independence between the feature for which is the PDP computed and the rest. :param model: H2O Model object :param frame: H2OFrame :param column: string containing column name :param row_index: if None, do partial dependence, if integer, do individual conditional expectation for the row specified by this integer :param target: (only for multinomial classification) for what target should the plot be done :param max_levels: maximum number of factor levels to show :param figsize: figure size; passed directly to matplotlib :param colormap: colormap name; used to get just the first color to keep the api and color scheme similar with pd_multi_plot :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.estimators import H2OGradientBoostingEstimator >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train a GBM >>> gbm = H2OGradientBoostingEstimator() >>> gbm.train(y=response, training_frame=train) >>> >>> # Create partial dependence plot >>> gbm.pd_plot(test, column="alcohol") """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) is_factor = frame[column].isfactor()[0] if is_factor: if frame[column].nlevels()[0] > max_levels: levels = _get_top_n_levels(frame[column], max_levels) if row_index is not None: levels = list(set(levels + [frame[row_index, column]])) frame = frame[(frame[column].isin(levels)), :] # decrease the number of levels to the actual number of levels in the subset frame[column] = frame[column].ascharacter().asfactor() if target is not None and not isinstance(target, list): target = [target] if frame.type(column) == "string": raise ValueError("String columns are not supported!") color = plt.get_cmap(colormap)(0) with no_progress(): plt.figure(figsize=figsize) is_factor = frame[column].isfactor()[0] if is_factor: factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column)) tmp = NumpyFrame( model.partial_plot(frame, cols=[column], plot=False, row_index=row_index, targets=target, nbins=20 if not is_factor else 1 + frame[column].nlevels()[0])[0]) encoded_col = tmp.columns[0] if is_factor: plt.errorbar(factor_map(tmp.get(encoded_col)), tmp["mean_response"], yerr=tmp["stddev_response"], fmt='o', color=color, ecolor=color, elinewidth=3, capsize=0, markersize=10) else: plt.plot(tmp[encoded_col], tmp["mean_response"], color=color) plt.fill_between(tmp[encoded_col], tmp["mean_response"] - tmp["stddev_response"], tmp["mean_response"] + tmp["stddev_response"], color=color, alpha=0.2) _add_histogram(frame, column) if row_index is None: plt.title("Partial Dependence plot for \"{}\"{}".format( column, " with target = \"{}\"".format(target[0]) if target else "" )) plt.ylabel("Mean Response") else: if is_factor: plt.axvline(factor_map([frame[row_index, column]]), c="k", linestyle="dotted", label="Instance value") else: plt.axvline(frame[row_index, column], c="k", linestyle="dotted", label="Instance value") plt.title("Individual Conditional Expectation for column \"{}\" and row {}{}".format( column, row_index, " with target = \"{}\"".format(target[0]) if target else "" )) plt.ylabel("Response") ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) plt.xlabel(column) plt.grid(True) if is_factor: plt.xticks(rotation=45, rotation_mode="anchor", ha="right") plt.tight_layout() fig = plt.gcf() return fig def pd_multi_plot( models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, h2o.H2OFrame, List[h2o.model.model_base]] frame, # type: h2o.H2OFrame column, # type: str best_of_family=True, # type: bool row_index=None, # type: Optional[int] target=None, # type: Optional[str] max_levels=30, # type: int figsize=(16, 9), # type: Union[Tuple[float], List[float]] colormap="Dark2", # type: str markers=["o", "v", "s", "P", "*", "D", "X", "^", "<", ">", "."] # type: List[str] ): # type: (...) -> plt.Figure """ Plot partial dependencies of a variable across multiple models. Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. PDP assumes independence between the feature for which is the PDP computed and the rest. :param models: a list of H2O models, an H2O AutoML instance, or an H2OFrame with a 'model_id' column (e.g. H2OAutoML leaderboard) :param frame: H2OFrame :param column: string containing column name :param best_of_family: if True, show only the best models per family :param row_index: if None, do partial dependence, if integer, do individual conditional expectation for the row specified by this integer :param target: (only for multinomial classification) for what target should the plot be done :param max_levels: maximum number of factor levels to show :param figsize: figure size; passed directly to matplotlib :param colormap: colormap name :param markers: List of markers to use for factors, when it runs out of possible markers the last in this list will get reused :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.automl import H2OAutoML >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train an H2OAutoML >>> aml = H2OAutoML(max_models=10) >>> aml.train(y=response, training_frame=train) >>> >>> # Create a partial dependence plot >>> aml.pd_multi_plot(test, column="alcohol") """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if target is not None: if isinstance(target, (list, tuple)): if len(target) > 1: raise ValueError("Only one target can be specified!") target = target[0] target = [target] if frame.type(column) == "string": raise ValueError("String columns are not supported!") if _is_automl_or_leaderboard(models): all_models = _get_model_ids_from_automl_or_leaderboard(models) else: all_models = models is_factor = frame[column].isfactor()[0] if is_factor: if frame[column].nlevels()[0] > max_levels: levels = _get_top_n_levels(frame[column], max_levels) if row_index is not None: levels = list(set(levels + [frame[row_index, column]])) frame = frame[(frame[column].isin(levels)), :] # decrease the number of levels to the actual number of levels in the subset frame[column] = frame[column].ascharacter().asfactor() if best_of_family: models = _first_of_family(all_models) else: models = all_models models = [m if isinstance(m, h2o.model.ModelBase) else h2o.get_model(m) for m in models] colors = plt.get_cmap(colormap, len(models))(list(range(len(models)))) with no_progress(): plt.figure(figsize=figsize) is_factor = frame[column].isfactor()[0] if is_factor: factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column)) marker_map = dict(zip(range(len(markers) - 1), markers[:-1])) model_ids = _shorten_model_ids([model.model_id for model in models]) for i, model in enumerate(models): tmp = NumpyFrame( model.partial_plot(frame, cols=[column], plot=False, row_index=row_index, targets=target, nbins=20 if not is_factor else 1 + frame[column].nlevels()[0])[0]) encoded_col = tmp.columns[0] if is_factor: plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"], color=[colors[i]], label=model_ids[i], marker=marker_map.get(i, markers[-1])) else: plt.plot(tmp[encoded_col], tmp["mean_response"], color=colors[i], label=model_ids[i]) _add_histogram(frame, column) if row_index is None: plt.title("Partial Dependence plot for \"{}\"{}".format( column, " with target = \"{}\"".format(target[0]) if target else "" )) plt.ylabel("Mean Response") else: if is_factor: plt.axvline(factor_map([frame[row_index, column]]), c="k", linestyle="dotted", label="Instance value") else: plt.axvline(frame[row_index, column], c="k", linestyle="dotted", label="Instance value") plt.title("Individual Conditional Expectation for column \"{}\" and row {}{}".format( column, row_index, " with target = \"{}\"".format(target[0]) if target else "" )) plt.ylabel("Response") ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.xlabel(column) plt.grid(True) if is_factor: plt.xticks(rotation=45, rotation_mode="anchor", ha="right") plt.tight_layout(rect=[0, 0, 0.8, 1]) fig = plt.gcf() return fig def ice_plot( model, # type: h2o.model.ModelBase frame, # type: h2o.H2OFrame column, # type: str target=None, # type: Optional[str] max_levels=30, # type: int figsize=(16, 9), # type: Union[Tuple[float], List[float]] colormap="plasma", # type: str ): # type: (...) -> plt.Figure """ Plot Individual Conditional Expectations (ICE) for each decile Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response. ICE plot is similar to partial dependence plot (PDP), PDP shows the average effect of a feature while ICE plot shows the effect for a single instance. The following plot shows the effect for each decile. In contrast to partial dependence plot, ICE plot can provide more insight especially when there is stronger feature interaction. :param model: H2OModel :param frame: H2OFrame :param column: string containing column name :param target: (only for multinomial classification) for what target should the plot be done :param max_levels: maximum number of factor levels to show :param figsize: figure size; passed directly to matplotlib :param colormap: colormap name :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.estimators import H2OGradientBoostingEstimator >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train a GBM >>> gbm = H2OGradientBoostingEstimator() >>> gbm.train(y=response, training_frame=train) >>> >>> # Create the individual conditional expectations plot >>> gbm.ice_plot(test, column="alcohol") """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if target is not None: if isinstance(target, (list, tuple)): if len(target) > 1: raise ValueError("Only one target can be specified!") target = target[0] target = [target] if frame.type(column) == "string": raise ValueError("String columns are not supported!") with no_progress(): frame = frame.sort(model.actual_params["response_column"]) is_factor = frame[column].isfactor()[0] if is_factor: if frame[column].nlevels()[0] > max_levels: levels = _get_top_n_levels(frame[column], max_levels) frame = frame[(frame[column].isin(levels)), :] # decrease the number of levels to the actual number of levels in the subset frame[column] = frame[column].ascharacter().asfactor() factor_map = _factor_mapper(NumpyFrame(frame[column]).from_factor_to_num(column)) deciles = [int(round(frame.nrow * dec / 10)) for dec in range(11)] colors = plt.get_cmap(colormap, 11)(list(range(11))) plt.figure(figsize=figsize) for i, index in enumerate(deciles): tmp = NumpyFrame( model.partial_plot( frame, cols=[column], plot=False, row_index=index, targets=target, nbins=20 if not is_factor else 1 + frame[column].nlevels()[0] )[0] ) encoded_col = tmp.columns[0] if is_factor: plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"], color=[colors[i]], label="{}th Percentile".format(i * 10)) else: plt.plot(tmp[encoded_col], tmp["mean_response"], color=colors[i], label="{}th Percentile".format(i * 10)) tmp = NumpyFrame( model.partial_plot( frame, cols=[column], plot=False, targets=target, nbins=20 if not is_factor else 1 + frame[column].nlevels()[0] )[0] ) if is_factor: plt.scatter(factor_map(tmp.get(encoded_col)), tmp["mean_response"], color="k", label="Partial Dependence") else: plt.plot(tmp[encoded_col], tmp["mean_response"], color="k", linestyle="dashed", label="Partial Dependence") _add_histogram(frame, column) plt.title("Individual Conditional Expectation for \"{}\"\non column \"{}\"{}".format( model.model_id, column, " with target = \"{}\"".format(target[0]) if target else "" )) ax = plt.gca() box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.grid(True) if is_factor: plt.xticks(rotation=45, rotation_mode="anchor", ha="right") plt.tight_layout(rect=[0, 0, 0.85, 1]) fig = plt.gcf() return fig def _has_varimp(model): # type: (h2o.model.ModelBase) -> bool """ Does model have varimp? :param model: model or a string containing model_id :returns: bool """ assert isinstance(model, h2o.model.ModelBase) # check for cases when variable importance is disabled or # when a model is stopped sooner than calculating varimp (xgboost can rarely have no varimp). output = model._model_json["output"] return output.get("variable_importances") is not None def _is_automl_or_leaderboard(obj): # type: (object) -> bool """ Is obj an H2OAutoML object or a leaderboard? :param obj: object to test :return: bool """ return ( isinstance(obj, h2o.automl._base.H2OAutoMLBaseMixin) or (isinstance(obj, h2o.H2OFrame) and "model_id" in obj.columns) ) def _get_model_ids_from_automl_or_leaderboard(automl_or_leaderboard, filter_=lambda _: True): # type: (object) -> List[str] """ Get model ids from H2OAutoML object or leaderboard :param automl_or_leaderboard: AutoML :return: List[str] """ leaderboard = (automl_or_leaderboard.leaderboard if isinstance(automl_or_leaderboard, h2o.automl._base.H2OAutoMLBaseMixin) else automl_or_leaderboard) return [model_id[0] for model_id in leaderboard[:, "model_id"].as_data_frame(use_pandas=False, header=False) if filter_(model_id[0])] def _get_models_from_automl_or_leaderboard(automl_or_leaderboard, filter_=lambda _: True): # type: (object) -> Generator[h2o.model.ModelBase, None, None] """ Get model ids from H2OAutoML object or leaderboard :param automl_or_leaderboard: AutoML :param filter_: a predicate used to filter model_ids. Signature of the filter is (model) -> bool. :return: Generator[h2o.model.ModelBase, None, None] """ models = (h2o.get_model(model_id) for model_id in _get_model_ids_from_automl_or_leaderboard(automl_or_leaderboard)) return (model for model in models if filter_(model)) def _get_xy(model): # type: (h2o.model.ModelBase) -> Tuple[List[str], str] """ Get features (x) and the response column (y). :param model: H2O Model :returns: tuple (x, y) """ names = model._model_json["output"]["original_names"] or model._model_json["output"]["names"] y = model.actual_params["response_column"] not_x = [ y, # if there is no fold column, fold_column is set to None, thus using "or {}" instead of the second argument of dict.get (model.actual_params.get("fold_column") or {}).get("column_name"), (model.actual_params.get("weights_column") or {}).get("column_name"), (model.actual_params.get("offset_column") or {}).get("column_name"), ] + (model.actual_params.get("ignored_columns") or []) x = [feature for feature in names if feature not in not_x] return x, y def _consolidate_varimps(model): # type (h2o.model.ModelBase) -> Dict """ Get variable importances just for the columns that are present in the data set, i.e., when an encoded variables such as "column_name.level_name" are encountered, those variable importances are summed to "column_name" variable. :param model: H2O Model :returns: dictionary with variable importances """ x, y = _get_xy(model) varimp = {line[0]: line[3] for line in model.varimp()} consolidated_varimps = {k: v for k, v in varimp.items() if k in x} to_process = {k: v for k, v in varimp.items() if k not in x} domain_mapping = _get_domain_mapping(model) encoded_cols = ["{}.{}".format(name, domain) for name, domains in domain_mapping.items() if domains is not None for domain in domains + ["missing(NA)"]] if len(encoded_cols) > len(set(encoded_cols)): duplicates = encoded_cols[:] for x in set(encoded_cols): duplicates.remove(x) warnings.warn("Ambiguous encoding of the column x category pairs: {}".format(set(duplicates))) varimp_to_col = {"{}.{}".format(name, domain): name for name, domains in domain_mapping.items() if domains is not None for domain in domains + ["missing(NA)"] } for feature in to_process.keys(): if feature in varimp_to_col: column = varimp_to_col[feature] consolidated_varimps[column] = consolidated_varimps.get(column, 0) + to_process[feature] else: raise RuntimeError("Cannot find feature {}".format(feature)) total_value = sum(consolidated_varimps.values()) if total_value != 1: consolidated_varimps = {k: v / total_value for k, v in consolidated_varimps.items()} for col in x: if col not in consolidated_varimps: consolidated_varimps[col] = 0 return consolidated_varimps # This plot is meant to be used only in the explain module. # It provides the same capabilities as `model.varimp_plot` but without # either forcing "Agg" backend or showing the plot. # It also mimics the look and feel of the rest of the explain plots. def _varimp_plot(model, figsize, num_of_features=None): # type: (h2o.model.ModelBase, Tuple[Float, Float], Optional[int]) -> matplotlib.pyplot.Figure """ Variable importance plot. :param model: H2O model :param figsize: Figure size :param num_of_features: Maximum number of variables to plot. Defaults to 10. :return: """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) importances = model.varimp(use_pandas=False) feature_labels = [tup[0] for tup in importances] val = [tup[2] for tup in importances] pos = range(len(feature_labels))[::-1] if num_of_features is None: num_of_features = min(len(val), 10) plt.figure(figsize=figsize) plt.barh(pos[0:num_of_features], val[0:num_of_features], align="center", height=0.8, color="#1F77B4", edgecolor="none") plt.yticks(pos[0:num_of_features], feature_labels[0:num_of_features]) plt.ylim([min(pos[0:num_of_features]) - 1, max(pos[0:num_of_features]) + 1]) plt.title("Variable Importance for \"{}\"".format(model.model_id)) plt.xlabel("Variable Importance") plt.ylabel("Variable") plt.grid() plt.gca().set_axisbelow(True) plt.tight_layout() fig = plt.gcf() return fig def _interpretable(model): # type: (Union[str, h2o.model.ModelBase]) -> bool """ Returns True if model_id is easily interpretable. :param model: model or a string containing a model_id :returns: bool """ return _get_algorithm(model) in ["glm", "gam", "rulefit"] def _flatten_list(items): # type: (list) -> Generator[Any, None, None] """ Flatten nested lists. :param items: a list potentionally containing other lists :returns: flattened list """ for x in items: if isinstance(x, list): for xx in _flatten_list(x): yield xx else: yield x def _calculate_clustering_indices(matrix): # type: (np.ndarray) -> list """ Get a hierarchical clustering leaves order calculated from the clustering of columns. :param matrix: numpy.ndarray :returns: list of indices of columns """ cols = matrix.shape[1] dist = np.zeros((cols, cols)) for x in range(cols): for y in range(cols): if x < y: dist[x, y] = np.sum(np.power(matrix[:, x] - matrix[:, y], 2)) dist[y, x] = dist[x, y] elif x == y: dist[x, x] = float("inf") indices = [[i] for i in range(cols)] for i in range(cols - 1): idx = np.argmin(dist) x = idx % cols y = idx // cols assert x != y indices[x].append(indices[y]) indices[y] = [] dist[x, :] = np.min(dist[[x, y], :], axis=0) dist[y, :] = float("inf") dist[:, y] = float("inf") dist[x, x] = float("inf") result = list(_flatten_list(indices)) assert len(result) == cols return result def varimp_heatmap( models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, h2o.H2OFrame, List[h2o.model.ModelBase]] top_n=None, # type: Option[int] figsize=(16, 9), # type: Tuple[float] cluster=True, # type: bool colormap="RdYlBu_r" # type: str ): # type: (...) -> plt.Figure """ Variable Importance Heatmap across a group of models Variable importance heatmap shows variable importance across multiple models. Some models in H2O return variable importance for one-hot (binary indicator) encoded versions of categorical columns (e.g. Deep Learning, XGBoost). In order for the variable importance of categorical columns to be compared across all model types we compute a summarization of the the variable importance across all one-hot encoded features and return a single variable importance for the original categorical feature. By default, the models and variables are ordered by their similarity. :param models: a list of H2O models, an H2O AutoML instance, or an H2OFrame with a 'model_id' column (e.g. H2OAutoML leaderboard) :param top_n: DEPRECATED. use just top n models (applies only when used with H2OAutoML) :param figsize: figsize: figure size; passed directly to matplotlib :param cluster: if True, cluster the models and variables :param colormap: colormap to use :returns: a matplotlib figure object :examples: >>> import h2o >>> from h2o.automl import H2OAutoML >>> >>> h2o.init() >>> >>> # Import the wine dataset into H2O: >>> f = "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv" >>> df = h2o.import_file(f) >>> >>> # Set the response >>> response = "quality" >>> >>> # Split the dataset into a train and test set: >>> train, test = df.split_frame([0.8]) >>> >>> # Train an H2OAutoML >>> aml = H2OAutoML(max_models=10) >>> aml.train(y=response, training_frame=train) >>> >>> # Create the variable importance heatmap >>> aml.varimp_heatmap() """ plt = get_matplotlib_pyplot(False, raise_if_not_available=True) if isinstance(models, h2o.automl._base.H2OAutoMLBaseMixin): models = _check_deprecated_top_n_argument(models, top_n) varimps, model_ids, x = varimp(models=models, cluster=cluster, use_pandas=False) plt.figure(figsize=figsize) plt.imshow(varimps, cmap=plt.get_cmap(colormap)) plt.xticks(range(len(model_ids)), model_ids, rotation=45, rotation_mode="anchor", ha="right") plt.yticks(range(len(x)), x) plt.colorbar() plt.xlabel("Model Id") plt.ylabel("Feature") plt.title("Variable Importance Heatmap") plt.grid(False) fig = plt.gcf() return fig def varimp( models, # type: Union[h2o.automl._base.H2OAutoMLBaseMixin, h2o.H2OFrame, List[h2o.model.ModelBase]] cluster=True, # type: bool use_pandas=True # type: bool ): # type: (...) -> Union[pandas.DataFrame, Tuple[numpy.ndarray, List[str], List[str]]] """ Get data that are used to build varimp_heatmap plot. :param models: a list of H2O models, an H2O AutoML instance, or an H2OFrame with a 'model_id' column (e.g. H2OAutoML leaderboard) :param cluster: if True, cluster the models and variables :param use_pandas: if True, try to return pandas DataFrame. Otherwise return a triple (varimps, model_ids, variable_names) :returns: either pandas DataFrame (if use_pandas == True) or a triple (varimps, model_ids, variable_names) """ if _is_automl_or_leaderboard(models): models = list(_get_models_from_automl_or_leaderboard(models, filter_=_has_varimp)) else: # Filter out models that don't have varimp models = [model for model in models if _has_varimp(model)] if len(models) == 0: raise RuntimeError("No model with variable importance") varimps = [_consolidate_varimps(model) for model in models] x, y = _get_xy(models[0]) varimps = np.array([[varimp[col] for col in x] for varimp in varimps]) if cluster and len(models) > 2: order = _calculate_clustering_indices(varimps) x = [x[i] for i in order] varimps = varimps[:, order] varimps = varimps.transpose() order = _calculate_clustering_indices(varimps) models = [models[i] for i in order] varimps = varimps[:, order] else: varimps = varimps.transpose() model_ids = _shorten_model_ids([model.model_id for model in models]) if use_pandas: import pandas return
pandas.DataFrame(varimps, columns=model_ids, index=x)
pandas.DataFrame
""" July 2021 This code retrieves the calculation of sand use for concrete and glass production in the building sector in 26 global regions. For the original code & latest updates, see: https://github.com/ The dynamic material model is based on the BUMA model developed by <NAME>, Leiden University, the Netherlands. For the original code & latest updates, see: https://github.com/SPDeetman/BUMA The dynamic stock model is based on the ODYM model developed by <NAME>, Uni Freiburg, Germany. For the original code & latest updates, see: https://github.com/IndEcol/ODYM *NOTE: Insert location of GloBus-main folder in 'dir_path' (line 23) before running the code Software version: Python 3.7 """ #%% GENERAL SETTING & STATEMENTS import pandas as pd import numpy as np import os import ctypes import math # set current directory dir_path = "" os.chdir(dir_path) # Set general constants regions = 26 #26 IMAGE regions building_types = 4 #4 building types: detached, semi-detached, appartments & high-rise area = 2 #2 areas: rural & urban materials = 2 #2 materials: Concrete, Glass inflation = 1.2423 #gdp/cap inflation correction between 2005 (IMAGE data) & 2016 (commercial calibration) according to https://www.bls.gov/data/inflation_calculator.htm # Set Flags for sensitivity analysis flag_alpha = 0 # switch for the sensitivity analysis on alpha, if 1 the maximum alpha is 10% above the maximum found in the data flag_ExpDec = 0 # switch to choose between Gompertz and Exponential Decay function for commercial floorspace demand (0 = Gompertz, 1 = Expdec) flag_Normal = 0 # switch to choose between Weibull and Normal lifetime distributions (0 = Weibull, 1 = Normal) flag_Mean = 0 # switch to choose between material intensity settings (0 = regular regional, 1 = mean, 2 = high, 3 = low, 4 = median) #%%Load files & arrange tables ---------------------------------------------------- if flag_Mean == 0: file_addition = '' elif flag_Mean == 1: file_addition = '_mean' elif flag_Mean ==2: file_addition = '_high' elif flag_Mean ==3: file_addition = '_low' else: file_addition = '_median' # Load Population, Floor area, and Service value added (SVA) Database csv-files pop = pd.read_csv('files_population/pop.csv', index_col = [0]) # Pop; unit: million of people; meaning: global population (over time, by region) rurpop = pd.read_csv('files_population/rurpop.csv', index_col = [0]) # rurpop; unit: %; meaning: the share of people living in rural areas (over time, by region) housing_type = pd.read_csv('files_population\Housing_type.csv') # Housing_type; unit: %; meaning: the share of the NUMBER OF PEOPLE living in a particular building type (by region & by area) floorspace = pd.read_csv('files_floor_area/res_Floorspace.csv') # Floorspace; unit: m2/capita; meaning: the average m2 per capita (over time, by region & area) floorspace = floorspace[floorspace.Region != regions + 1] # Remove empty region 27 avg_m2_cap = pd.read_csv('files_floor_area\Average_m2_per_cap.csv') # Avg_m2_cap; unit: m2/capita; meaning: average square meters per person (by region & area (rural/urban) & building type) sva_pc_2005 = pd.read_csv('files_GDP/sva_pc.csv', index_col = [0]) sva_pc = sva_pc_2005 * inflation # we use the inflation corrected SVA to adjust for the fact that IMAGE provides gdp/cap in 2005 US$ # load material density data csv-files building_materials_concrete = pd.read_csv('files_material_density\Building_materials_concrete' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) building_materials_glass = pd.read_csv('files_material_density\Building_materials_glass' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) materials_commercial_concrete = pd.read_csv('files_material_density\materials_commercial_concrete' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) materials_commercial_glass = pd.read_csv('files_material_density\materials_commercial_glass' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) # Load fitted regression parameters for comercial floor area estimate if flag_alpha == 0: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters.csv', index_col = [0]) else: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters_alpha.csv', index_col = [0]) # Ensure full time series for pop & rurpop (interpolation, some years are missing) rurpop2 = rurpop.reindex(list(range(1970,2061,1))).interpolate() pop2 = pop.reindex(list(range(1970,2061,1))).interpolate() # Remove 1st year, to ensure same Table size as floorspace data (from 1971) pop2 = pop2.iloc[1:] rurpop2 = rurpop2.iloc[1:] #pre-calculate urban population urbpop = 1 - rurpop2 # urban population is 1 - the fraction of people living in rural areas (rurpop) # Restructure the tables to regions as columns; for floorspace floorspace_rur = floorspace.pivot(index="t", columns="Region", values="Rural") floorspace_urb = floorspace.pivot(index="t", columns="Region", values="Urban") # Restructuring for square meters (m2/cap) avg_m2_cap_urb = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_urb.columns = list(map(int,avg_m2_cap_urb.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_urb2 = avg_m2_cap_urb.drop(['Region']) # Remove idle row avg_m2_cap_rur = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_rur.columns = list(map(int,avg_m2_cap_rur.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_rur2 = avg_m2_cap_rur.drop(['Region']) # Remove idle row # Restructuring for the Housing types (% of population living in them) housing_type_urb = housing_type.loc[housing_type['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose housing_type_urb.columns = list(map(int,housing_type_urb.iloc[0])) # name columns according to the row containing the region-labels housing_type_urb2 = housing_type_urb.drop(['Region']) # Remove idle row housing_type_rur = housing_type.loc[housing_type['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose housing_type_rur.columns = list(map(int,housing_type_rur.iloc[0])) # name columns according to the row containing the region-labels housing_type_rur2 = housing_type_rur.drop(['Region']) # Remove idle row #%% COMMERCIAL building space demand (stock) calculated from Gomperz curve (fitted, using separate regression model) # Select gompertz curve paramaters for the total commercial m2 demand (stock) alpha = gompertz['All']['a'] if flag_ExpDec == 0 else 25.601 beta = gompertz['All']['b'] if flag_ExpDec == 0 else 28.431 gamma = gompertz['All']['c'] if flag_ExpDec == 0 else 0.0415 # find the total commercial m2 stock (in Millions of m2) commercial_m2_cap = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) for year in range(1971,2061): for region in range(1,27): if flag_ExpDec == 0: commercial_m2_cap[region][year] = alpha * math.exp(-beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) else: commercial_m2_cap[region][year] = max(0.542, alpha - beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) # Subdivide the total across Offices, Retail+, Govt+ & Hotels+ commercial_m2_cap_office = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Offices commercial_m2_cap_retail = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Retail & Warehouses commercial_m2_cap_hotels = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hotels & Restaurants commercial_m2_cap_govern = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hospitals, Education, Government & Transportation minimum_com_office = 25 minimum_com_retail = 25 minimum_com_hotels = 25 minimum_com_govern = 25 for year in range(1971,2061): for region in range(1,27): # get the square meter per capita floorspace for 4 commercial applications office = gompertz['Office']['a'] * math.exp(-gompertz['Office']['b'] * math.exp((-gompertz['Office']['c']/1000) * sva_pc[str(region)][year])) retail = gompertz['Retail+']['a'] * math.exp(-gompertz['Retail+']['b'] * math.exp((-gompertz['Retail+']['c']/1000) * sva_pc[str(region)][year])) hotels = gompertz['Hotels+']['a'] * math.exp(-gompertz['Hotels+']['b'] * math.exp((-gompertz['Hotels+']['c']/1000) * sva_pc[str(region)][year])) govern = gompertz['Govt+']['a'] * math.exp(-gompertz['Govt+']['b'] * math.exp((-gompertz['Govt+']['c']/1000) * sva_pc[str(region)][year])) #calculate minimum values for later use in historic tail(Region 20: China @ 134 $/cap SVA) minimum_com_office = office if office < minimum_com_office else minimum_com_office minimum_com_retail = retail if retail < minimum_com_retail else minimum_com_retail minimum_com_hotels = hotels if hotels < minimum_com_hotels else minimum_com_hotels minimum_com_govern = govern if govern < minimum_com_govern else minimum_com_govern # Then use the ratio's to subdivide the total commercial floorspace into 4 categories commercial_sum = office + retail + hotels + govern commercial_m2_cap_office[region][year] = commercial_m2_cap[region][year] * (office/commercial_sum) commercial_m2_cap_retail[region][year] = commercial_m2_cap[region][year] * (retail/commercial_sum) commercial_m2_cap_hotels[region][year] = commercial_m2_cap[region][year] * (hotels/commercial_sum) commercial_m2_cap_govern[region][year] = commercial_m2_cap[region][year] * (govern/commercial_sum) #%% Add historic tail (1720-1970) + 100 yr initial -------------------------------------------- # load historic population development hist_pop = pd.read_csv('files_initial_stock\hist_pop.csv', index_col = [0]) # initial population as a percentage of the 1970 population; unit: %; according to the Maddison Project Database (MPD) 2018 (Groningen University) # Determine the historical average global trend in floorspace/cap & the regional rural population share based on the last 10 years of IMAGE data floorspace_urb_trend_by_region = [0 for j in range(0,26)] floorspace_rur_trend_by_region = [0 for j in range(0,26)] rurpop_trend_by_region = [0 for j in range(0,26)] commercial_m2_cap_office_trend = [0 for j in range(0,26)] commercial_m2_cap_retail_trend = [0 for j in range(0,26)] commercial_m2_cap_hotels_trend = [0 for j in range(0,26)] commercial_m2_cap_govern_trend = [0 for j in range(0,26)] # For the RESIDENTIAL & COMMERCIAL floorspace: Derive the annual trend (in m2/cap) over the initial 10 years of IMAGE data for region in range(1,27): floorspace_urb_trend_by_year = [0 for i in range(0,10)] floorspace_rur_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_office_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_retail_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_hotels_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_govern_trend_by_year = [0 for i in range(0,10)] # Get the growth by year (for the first 10 years) for year in range(1970,1980): floorspace_urb_trend_by_year[year-1970] = floorspace_urb[region][year+1]/floorspace_urb[region][year+2] floorspace_rur_trend_by_year[year-1970] = floorspace_rur[region][year+1]/floorspace_rur[region][year+2] commercial_m2_cap_office_trend_by_year[year-1970] = commercial_m2_cap_office[region][year+1]/commercial_m2_cap_office[region][year+2] commercial_m2_cap_retail_trend_by_year[year-1970] = commercial_m2_cap_retail[region][year+1]/commercial_m2_cap_retail[region][year+2] commercial_m2_cap_hotels_trend_by_year[year-1970] = commercial_m2_cap_hotels[region][year+1]/commercial_m2_cap_hotels[region][year+2] commercial_m2_cap_govern_trend_by_year[year-1970] = commercial_m2_cap_govern[region][year+1]/commercial_m2_cap_govern[region][year+2] rurpop_trend_by_region[region-1] = ((1-(rurpop[str(region)][1980]/rurpop[str(region)][1970]))/10)*100 floorspace_urb_trend_by_region[region-1] = sum(floorspace_urb_trend_by_year)/10 floorspace_rur_trend_by_region[region-1] = sum(floorspace_rur_trend_by_year)/10 commercial_m2_cap_office_trend[region-1] = sum(commercial_m2_cap_office_trend_by_year)/10 commercial_m2_cap_retail_trend[region-1] = sum(commercial_m2_cap_retail_trend_by_year)/10 commercial_m2_cap_hotels_trend[region-1] = sum(commercial_m2_cap_hotels_trend_by_year)/10 commercial_m2_cap_govern_trend[region-1] = sum(commercial_m2_cap_govern_trend_by_year)/10 # Average global annual decline in floorspace/cap in %, rural: 1%; urban 1.2%; commercial: 1.26-2.18% /yr floorspace_urb_trend_global = (1-(sum(floorspace_urb_trend_by_region)/26))*100 # in % decrease per annum floorspace_rur_trend_global = (1-(sum(floorspace_rur_trend_by_region)/26))*100 # in % decrease per annum commercial_m2_cap_office_trend_global = (1-(sum(commercial_m2_cap_office_trend)/26))*100 # in % decrease per annum commercial_m2_cap_retail_trend_global = (1-(sum(commercial_m2_cap_retail_trend)/26))*100 # in % decrease per annum commercial_m2_cap_hotels_trend_global = (1-(sum(commercial_m2_cap_hotels_trend)/26))*100 # in % decrease per annum commercial_m2_cap_govern_trend_global = (1-(sum(commercial_m2_cap_govern_trend)/26))*100 # in % decrease per annum # define historic floorspace (1820-1970) in m2/cap floorspace_urb_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_urb.columns) floorspace_rur_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_rur.columns) rurpop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=rurpop.columns) pop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=pop2.columns) commercial_m2_cap_office_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_govern.columns) # Find minumum or maximum values in the original IMAGE data (Just for residential, commercial minimum values have been calculated above) minimum_urb_fs = floorspace_urb.values.min() # Region 20: China minimum_rur_fs = floorspace_rur.values.min() # Region 20: China maximum_rurpop = rurpop.values.max() # Region 9 : Eastern Africa # Calculate the actual values used between 1820 & 1970, given the trends & the min/max values for region in range(1,regions+1): for year in range(1820,1971): # MAX of 1) the MINimum value & 2) the calculated value floorspace_urb_1820_1970[region][year] = max(minimum_urb_fs, floorspace_urb[region][1971] * ((100-floorspace_urb_trend_global)/100)**(1971-year)) # single global value for average annual Decrease floorspace_rur_1820_1970[region][year] = max(minimum_rur_fs, floorspace_rur[region][1971] * ((100-floorspace_rur_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_office_1820_1970[region][year] = max(minimum_com_office, commercial_m2_cap_office[region][1971] * ((100-commercial_m2_cap_office_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_retail_1820_1970[region][year] = max(minimum_com_retail, commercial_m2_cap_retail[region][1971] * ((100-commercial_m2_cap_retail_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_hotels_1820_1970[region][year] = max(minimum_com_hotels, commercial_m2_cap_hotels[region][1971] * ((100-commercial_m2_cap_hotels_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_govern_1820_1970[region][year] = max(minimum_com_govern, commercial_m2_cap_govern[region][1971] * ((100-commercial_m2_cap_govern_trend_global)/100)**(1971-year)) # single global value for average annual Decrease # MIN of 1) the MAXimum value & 2) the calculated value rurpop_1820_1970[str(region)][year] = min(maximum_rurpop, rurpop[str(region)][1970] * ((100+rurpop_trend_by_region[region-1])/100)**(1970-year)) # average annual INcrease by region # just add the tail to the population (no min/max & trend is pre-calculated in hist_pop) pop_1820_1970[str(region)][year] = hist_pop[str(region)][year] * pop[str(region)][1970] urbpop_1820_1970 = 1 - rurpop_1820_1970 # To avoid full model setup in 1820 (all required stock gets built in yr 1) we assume another tail that linearly increases to the 1820 value over a 100 year time period, so 1720 = 0 floorspace_urb_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_urb.columns) floorspace_rur_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_rur.columns) rurpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=rurpop.columns) urbpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=urbpop.columns) pop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=pop2.columns) commercial_m2_cap_office_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_govern.columns) for region in range(1,27): for time in range(1721,1820): # MAX(0,...) Because of floating point deviations, leading to negative stock in some cases floorspace_urb_1721_1820[int(region)][time] = max(0.0, floorspace_urb_1820_1970[int(region)][1820] - (floorspace_urb_1820_1970[int(region)][1820]/100)*(1820-time)) floorspace_rur_1721_1820[int(region)][time] = max(0.0, floorspace_rur_1820_1970[int(region)][1820] - (floorspace_rur_1820_1970[int(region)][1820]/100)*(1820-time)) rurpop_1721_1820[str(region)][time] = max(0.0, rurpop_1820_1970[str(region)][1820] - (rurpop_1820_1970[str(region)][1820]/100)*(1820-time)) urbpop_1721_1820[str(region)][time] = max(0.0, urbpop_1820_1970[str(region)][1820] - (urbpop_1820_1970[str(region)][1820]/100)*(1820-time)) pop_1721_1820[str(region)][time] = max(0.0, pop_1820_1970[str(region)][1820] - (pop_1820_1970[str(region)][1820]/100)*(1820-time)) commercial_m2_cap_office_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_office_1820_1970[region][1820] - (commercial_m2_cap_office_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_retail_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_retail_1820_1970[region][1820] - (commercial_m2_cap_retail_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_hotels_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_hotels_1820_1970[region][1820] - (commercial_m2_cap_hotels_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_govern_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_govern_1820_1970[region][1820] - (commercial_m2_cap_govern_1820_1970[region][1820]/100)*(1820-time)) # combine historic with IMAGE data here rurpop_tail = rurpop_1820_1970.append(rurpop2, ignore_index=False) urbpop_tail = urbpop_1820_1970.append(urbpop, ignore_index=False) pop_tail = pop_1820_1970.append(pop2, ignore_index=False) floorspace_urb_tail = floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False) floorspace_rur_tail = floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False) rurpop_tail = rurpop_1721_1820.append(rurpop_1820_1970.append(rurpop2, ignore_index=False), ignore_index=False) urbpop_tail = urbpop_1721_1820.append(urbpop_1820_1970.append(urbpop, ignore_index=False), ignore_index=False) pop_tail = pop_1721_1820.append(pop_1820_1970.append(pop2, ignore_index=False), ignore_index=False) floorspace_urb_tail = floorspace_urb_1721_1820.append(floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False), ignore_index=False) floorspace_rur_tail = floorspace_rur_1721_1820.append(floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False), ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1721_1820.append(commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False), ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1721_1820.append(commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False), ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1721_1820.append(commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False), ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1721_1820.append(commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False), ignore_index=False) #%% SQUARE METER Calculations ----------------------------------------------------------- # adjust the share for urban/rural only (shares in csv are as percantage of the total(Rur + Urb), we needed to adjust the urban shares to add up to 1, same for rural) housing_type_rur3 = housing_type_rur2/housing_type_rur2.sum() housing_type_urb3 = housing_type_urb2/housing_type_urb2.sum() # calculte the total rural/urban population (pop2 = millions of people, rurpop2 = % of people living in rural areas) people_rur = pd.DataFrame(rurpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) people_urb = pd.DataFrame(urbpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) # calculate the total number of people (urban/rural) BY HOUSING TYPE (the sum of det,sem,app & hig equals the total population e.g. people_rur) people_det_rur = pd.DataFrame(housing_type_rur3.iloc[0].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_sem_rur = pd.DataFrame(housing_type_rur3.iloc[1].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_app_rur = pd.DataFrame(housing_type_rur3.iloc[2].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_hig_rur = pd.DataFrame(housing_type_rur3.iloc[3].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_det_urb = pd.DataFrame(housing_type_urb3.iloc[0].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_sem_urb = pd.DataFrame(housing_type_urb3.iloc[1].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_app_urb = pd.DataFrame(housing_type_urb3.iloc[2].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_hig_urb = pd.DataFrame(housing_type_urb3.iloc[3].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) # calculate the total m2 (urban/rural) BY HOUSING TYPE (= nr. of people * OWN avg m2, so not based on IMAGE) m2_unadjusted_det_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[0].values * people_det_rur.values, columns=people_det_rur.columns, index=people_det_rur.index) m2_unadjusted_sem_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[1].values * people_sem_rur.values, columns=people_sem_rur.columns, index=people_sem_rur.index) m2_unadjusted_app_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[2].values * people_app_rur.values, columns=people_app_rur.columns, index=people_app_rur.index) m2_unadjusted_hig_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[3].values * people_hig_rur.values, columns=people_hig_rur.columns, index=people_hig_rur.index) m2_unadjusted_det_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[0].values * people_det_urb.values, columns=people_det_urb.columns, index=people_det_urb.index) m2_unadjusted_sem_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[1].values * people_sem_urb.values, columns=people_sem_urb.columns, index=people_sem_urb.index) m2_unadjusted_app_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[2].values * people_app_urb.values, columns=people_app_urb.columns, index=people_app_urb.index) m2_unadjusted_hig_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[3].values * people_hig_urb.values, columns=people_hig_urb.columns, index=people_hig_urb.index) # Define empty dataframes for m2 adjustments total_m2_adj_rur = pd.DataFrame(index=m2_unadjusted_det_rur.index, columns=m2_unadjusted_det_rur.columns) total_m2_adj_urb = pd.DataFrame(index=m2_unadjusted_det_urb.index, columns=m2_unadjusted_det_urb.columns) # Sum all square meters in Rural area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_rur.loc[j,str(i)] = m2_unadjusted_det_rur.loc[j,str(i)] + m2_unadjusted_sem_rur.loc[j,str(i)] + m2_unadjusted_app_rur.loc[j,str(i)] + m2_unadjusted_hig_rur.loc[j,str(i)] # Sum all square meters in Urban area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_urb.loc[j,str(i)] = m2_unadjusted_det_urb.loc[j,str(i)] + m2_unadjusted_sem_urb.loc[j,str(i)] + m2_unadjusted_app_urb.loc[j,str(i)] + m2_unadjusted_hig_urb.loc[j,str(i)] # average square meter per person implied by our OWN data avg_m2_cap_adj_rur = pd.DataFrame(total_m2_adj_rur.values / people_rur.values, columns=people_rur.columns, index=people_rur.index) avg_m2_cap_adj_urb = pd.DataFrame(total_m2_adj_urb.values / people_urb.values, columns=people_urb.columns, index=people_urb.index) # factor to correct square meters per capita so that we respect the IMAGE data in terms of total m2, but we use our own distinction between Building types m2_cap_adj_fact_rur = pd.DataFrame(floorspace_rur_tail.values / avg_m2_cap_adj_rur.values, columns=floorspace_rur_tail.columns, index=floorspace_rur_tail.index) m2_cap_adj_fact_urb = pd.DataFrame(floorspace_urb_tail.values / avg_m2_cap_adj_urb.values, columns=floorspace_urb_tail.columns, index=floorspace_urb_tail.index) # All m2 by region (in millions), Building_type & year (using the correction factor, to comply with IMAGE avg m2/cap) m2_det_rur = pd.DataFrame(m2_unadjusted_det_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_sem_rur = pd.DataFrame(m2_unadjusted_sem_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_app_rur = pd.DataFrame(m2_unadjusted_app_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_hig_rur = pd.DataFrame(m2_unadjusted_hig_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_det_urb = pd.DataFrame(m2_unadjusted_det_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_sem_urb = pd.DataFrame(m2_unadjusted_sem_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_app_urb = pd.DataFrame(m2_unadjusted_app_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_hig_urb = pd.DataFrame(m2_unadjusted_hig_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) # Add a checksum to see if calculations based on adjusted OWN avg m2 (by building type) now match the total m2 according to IMAGE. m2_sum_rur_OWN = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur m2_sum_rur_IMAGE = pd.DataFrame(floorspace_rur_tail.values*people_rur.values, columns=m2_sum_rur_OWN.columns, index=m2_sum_rur_OWN.index) m2_checksum = m2_sum_rur_OWN - m2_sum_rur_IMAGE if m2_checksum.sum().sum() > 0.0000001 or m2_checksum.sum().sum() < -0.0000001: ctypes.windll.user32.MessageBoxW(0, "IMAGE & OWN m2 sums do not match", "Warning", 1) # total RESIDENTIAL square meters by region m2 = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur + m2_det_urb + m2_sem_urb + m2_app_urb + m2_hig_urb # Total m2 for COMMERCIAL Buildings commercial_m2_office = pd.DataFrame(commercial_m2_cap_office_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_retail = pd.DataFrame(commercial_m2_cap_retail_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_hotels = pd.DataFrame(commercial_m2_cap_hotels_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_govern = pd.DataFrame(commercial_m2_cap_govern_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) #%% MATERIAL STOCK CALCULATIONS #rural concrete stock material_concrete_det=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Detached')] material_concrete_det=material_concrete_det.set_index('Region') material_concrete_det=material_concrete_det.drop(['Building_type'],axis=1) material_concrete_det=pd.DataFrame(material_concrete_det.values.T, index=material_concrete_det.columns, columns=material_concrete_det.index) a=m2_det_rur.index material_concrete_det=material_concrete_det.set_index(a) kg_det_rur_concrete=m2_det_rur*material_concrete_det material_concrete_sem=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Semi-detached')] material_concrete_sem=material_concrete_sem.set_index('Region') material_concrete_sem=material_concrete_sem.drop(['Building_type'],axis=1) material_concrete_sem=pd.DataFrame(material_concrete_sem.values.T, index=material_concrete_sem.columns, columns=material_concrete_sem.index) a=m2_sem_rur.index material_concrete_sem=material_concrete_sem.set_index(a) kg_sem_rur_concrete=m2_sem_rur*material_concrete_sem material_concrete_app=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Appartments')] material_concrete_app=material_concrete_app.set_index('Region') material_concrete_app=material_concrete_app.drop(['Building_type'],axis=1) material_concrete_app=pd.DataFrame(material_concrete_app.values.T, index=material_concrete_app.columns, columns=material_concrete_app.index) a=m2_app_rur.index material_concrete_app=material_concrete_app.set_index(a) kg_app_rur_concrete=m2_app_rur*material_concrete_app material_concrete_hig=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='High-rise')] material_concrete_hig=material_concrete_hig.set_index('Region') material_concrete_hig=material_concrete_hig.drop(['Building_type'],axis=1) material_concrete_hig=pd.DataFrame(material_concrete_hig.values.T, index=material_concrete_hig.columns, columns=material_concrete_hig.index) a=m2_hig_rur.index material_concrete_hig=material_concrete_hig.set_index(a) kg_hig_rur_concrete=m2_hig_rur*material_concrete_hig #urban concrete stock material_concrete_det=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Detached')] material_concrete_det=material_concrete_det.set_index('Region') material_concrete_det=material_concrete_det.drop(['Building_type'],axis=1) material_concrete_det=pd.DataFrame(material_concrete_det.values.T, index=material_concrete_det.columns, columns=material_concrete_det.index) a=m2_det_urb.index material_concrete_det=material_concrete_det.set_index(a) kg_det_urb_concrete=m2_det_urb*material_concrete_det material_concrete_sem=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Semi-detached')] material_concrete_sem=material_concrete_sem.set_index('Region') material_concrete_sem=material_concrete_sem.drop(['Building_type'],axis=1) material_concrete_sem=pd.DataFrame(material_concrete_sem.values.T, index=material_concrete_sem.columns, columns=material_concrete_sem.index) a=m2_sem_urb.index material_concrete_sem=material_concrete_sem.set_index(a) kg_sem_urb_concrete=m2_sem_urb*material_concrete_sem material_concrete_app=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Appartments')] material_concrete_app=material_concrete_app.set_index('Region') material_concrete_app=material_concrete_app.drop(['Building_type'],axis=1) material_concrete_app=pd.DataFrame(material_concrete_app.values.T, index=material_concrete_app.columns, columns=material_concrete_app.index) a=m2_app_urb.index material_concrete_app=material_concrete_app.set_index(a) kg_app_urb_concrete=m2_app_urb*material_concrete_app material_concrete_hig=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='High-rise')] material_concrete_hig=material_concrete_hig.set_index('Region') material_concrete_hig=material_concrete_hig.drop(['Building_type'],axis=1) material_concrete_hig=pd.DataFrame(material_concrete_hig.values.T, index=material_concrete_hig.columns, columns=material_concrete_hig.index) a=m2_hig_urb.index material_concrete_hig=material_concrete_hig.set_index(a) kg_hig_urb_concrete=m2_hig_urb*material_concrete_hig #rural glass stock material_glass_det=building_materials_glass.loc[(building_materials_glass['Building_type']=='Detached')] material_glass_det=material_glass_det.set_index('Region') material_glass_det=material_glass_det.drop(['Building_type'],axis=1) material_glass_det=pd.DataFrame(material_glass_det.values.T, index=material_glass_det.columns, columns=material_glass_det.index) a=m2_det_rur.index material_glass_det=material_glass_det.set_index(a) kg_det_rur_glass=m2_det_rur*material_glass_det material_glass_sem=building_materials_glass.loc[(building_materials_glass['Building_type']=='Semi-detached')] material_glass_sem=material_glass_sem.set_index('Region') material_glass_sem=material_glass_sem.drop(['Building_type'],axis=1) material_glass_sem=pd.DataFrame(material_glass_sem.values.T, index=material_glass_sem.columns, columns=material_glass_sem.index) a=m2_sem_rur.index material_glass_sem=material_glass_sem.set_index(a) kg_sem_rur_glass=m2_sem_rur*material_glass_sem material_glass_app=building_materials_glass.loc[(building_materials_glass['Building_type']=='Appartments')] material_glass_app=material_glass_app.set_index('Region') material_glass_app=material_glass_app.drop(['Building_type'],axis=1) material_glass_app=pd.DataFrame(material_glass_app.values.T, index=material_glass_app.columns, columns=material_glass_app.index) a=m2_app_rur.index material_glass_app=material_glass_app.set_index(a) kg_app_rur_glass=m2_app_rur*material_glass_app material_glass_hig=building_materials_glass.loc[(building_materials_glass['Building_type']=='High-rise')] material_glass_hig=material_glass_hig.set_index('Region') material_glass_hig=material_glass_hig.drop(['Building_type'],axis=1) material_glass_hig=pd.DataFrame(material_glass_hig.values.T, index=material_glass_hig.columns, columns=material_glass_hig.index) a=m2_hig_rur.index material_glass_hig=material_glass_hig.set_index(a) kg_hig_rur_glass=m2_hig_rur*material_glass_hig #urban glass stock material_glass_det=building_materials_glass.loc[(building_materials_glass['Building_type']=='Detached')] material_glass_det=material_glass_det.set_index('Region') material_glass_det=material_glass_det.drop(['Building_type'],axis=1) material_glass_det=pd.DataFrame(material_glass_det.values.T, index=material_glass_det.columns, columns=material_glass_det.index) a=m2_det_urb.index material_glass_det=material_glass_det.set_index(a) kg_det_urb_glass=m2_det_urb*material_glass_det material_glass_sem=building_materials_glass.loc[(building_materials_glass['Building_type']=='Semi-detached')] material_glass_sem=material_glass_sem.set_index('Region') material_glass_sem=material_glass_sem.drop(['Building_type'],axis=1) material_glass_sem=pd.DataFrame(material_glass_sem.values.T, index=material_glass_sem.columns, columns=material_glass_sem.index) a=m2_sem_urb.index material_glass_sem=material_glass_sem.set_index(a) kg_sem_urb_glass=m2_sem_urb*material_glass_sem material_glass_app=building_materials_glass.loc[(building_materials_glass['Building_type']=='Appartments')] material_glass_app=material_glass_app.set_index('Region') material_glass_app=material_glass_app.drop(['Building_type'],axis=1) material_glass_app=pd.DataFrame(material_glass_app.values.T, index=material_glass_app.columns, columns=material_glass_app.index) a=m2_app_urb.index material_glass_app=material_glass_app.set_index(a) kg_app_urb_glass=m2_app_urb*material_glass_app material_glass_hig=building_materials_glass.loc[(building_materials_glass['Building_type']=='High-rise')] material_glass_hig=material_glass_hig.set_index('Region') material_glass_hig=material_glass_hig.drop(['Building_type'],axis=1) material_glass_hig=pd.DataFrame(material_glass_hig.values.T, index=material_glass_hig.columns, columns=material_glass_hig.index) a=m2_hig_urb.index material_glass_hig=material_glass_hig.set_index(a) kg_hig_urb_glass=m2_hig_urb*material_glass_hig # Commercial Building materials (in Million kg) #commercial concrete stock materials_concrete_office=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Offices')] materials_concrete_office=materials_concrete_office.drop(['Building_type'],axis=1) materials_concrete_office=pd.DataFrame(materials_concrete_office.values.T, index=materials_concrete_office.columns, columns=materials_concrete_office.index) a= commercial_m2_office.index materials_concrete_office=materials_concrete_office.set_index(a) kg_office_concrete=commercial_m2_office*materials_concrete_office materials_concrete_retail=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Retail+')] materials_concrete_retail=materials_concrete_retail.drop(['Building_type'],axis=1) materials_concrete_retail=pd.DataFrame(materials_concrete_retail.values.T, index=materials_concrete_retail.columns, columns=materials_concrete_retail.index) a= commercial_m2_retail.index materials_concrete_retail=materials_concrete_retail.set_index(a) kg_retail_concrete=commercial_m2_retail*materials_concrete_retail materials_concrete_hotels=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Hotels+')] materials_concrete_hotels=materials_concrete_hotels.drop(['Building_type'],axis=1) materials_concrete_hotels=pd.DataFrame(materials_concrete_hotels.values.T, index=materials_concrete_hotels.columns, columns=materials_concrete_hotels.index) a= commercial_m2_hotels.index materials_concrete_hotels=materials_concrete_hotels.set_index(a) kg_hotels_concrete=commercial_m2_hotels*materials_concrete_hotels materials_concrete_govern=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Govt+')] materials_concrete_govern=materials_concrete_govern.drop(['Building_type'],axis=1) materials_concrete_govern=pd.DataFrame(materials_concrete_govern.values.T, index=materials_concrete_govern.columns, columns=materials_concrete_govern.index) a= commercial_m2_govern.index materials_concrete_govern=materials_concrete_govern.set_index(a) kg_govern_concrete=commercial_m2_govern*materials_concrete_govern #commercial glass stock materials_glass_office=materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Offices')] materials_glass_office=materials_glass_office.drop(['Building_type'],axis=1) materials_glass_office=pd.DataFrame(materials_glass_office.values.T, index=materials_glass_office.columns, columns=materials_glass_office.index) a= commercial_m2_office.index materials_glass_office=materials_glass_office.set_index(a) kg_office_glass=commercial_m2_office*materials_glass_office materials_glass_retail=materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Retail+')] materials_glass_retail=materials_glass_retail.drop(['Building_type'],axis=1) materials_glass_retail=pd.DataFrame(materials_glass_retail.values.T, index=materials_glass_retail.columns, columns=materials_glass_retail.index) a= commercial_m2_retail.index materials_glass_retail=materials_glass_retail.set_index(a) kg_retail_glass=commercial_m2_retail*materials_glass_retail materials_glass_hotels=materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Hotels+')] materials_glass_hotels=materials_glass_hotels.drop(['Building_type'],axis=1) materials_glass_hotels=pd.DataFrame(materials_glass_hotels.values.T, index=materials_glass_hotels.columns, columns=materials_glass_hotels.index) a= commercial_m2_hotels.index materials_glass_hotels=materials_glass_hotels.set_index(a) kg_hotels_glass=commercial_m2_hotels*materials_glass_hotels materials_glass_govern=materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Govt+')] materials_glass_govern=materials_glass_govern.drop(['Building_type'],axis=1) materials_glass_govern=pd.DataFrame(materials_glass_govern.values.T, index=materials_glass_govern.columns, columns=materials_glass_govern.index) a= commercial_m2_govern.index materials_glass_govern=materials_glass_govern.set_index(a) kg_govern_glass=commercial_m2_govern*materials_glass_govern # Summing commercial material stock (Million kg) kg_concrete_comm = kg_office_concrete + kg_retail_concrete + kg_hotels_concrete + kg_govern_concrete kg_glass_comm = kg_office_glass + kg_retail_glass + kg_hotels_glass + kg_govern_glass # Summing across RESIDENTIAL building types (millions of kg, in stock) kg_concrete_urb = kg_hig_urb_concrete + kg_app_urb_concrete + kg_sem_urb_concrete + kg_det_urb_concrete kg_concrete_rur = kg_hig_rur_concrete + kg_app_rur_concrete + kg_sem_rur_concrete + kg_det_rur_concrete kg_glass_urb = kg_hig_urb_glass + kg_app_urb_glass + kg_sem_urb_glass + kg_det_urb_glass kg_glass_rur = kg_hig_rur_glass + kg_app_rur_glass + kg_sem_rur_glass + kg_det_rur_glass # Sums for total building material use (in-stock, millions of kg) kg_concrete = kg_concrete_urb + kg_concrete_rur + kg_concrete_comm kg_glass = kg_glass_urb + kg_glass_rur + kg_glass_comm #%% INFLOW & OUTFLOW import sys sys.path.append(dir_path) import dynamic_stock_model from dynamic_stock_model import DynamicStockModel as DSM idx = pd.IndexSlice # needed for slicing multi-index #if flag_Normal == 0: # lifetimes_DB = pd.read_csv('files_lifetimes\lifetimes.csv') # Weibull parameter database (shape & scale parameters given by region, area & building-type) #else: # lifetimes_DB = pd.read_csv('files_lifetimes\lifetimes_normal.csv') # Normal distribution database (Mean & StDev parameters given by region, area & building-type, though only defined by region for now) lifetimes_DB_shape = pd.read_csv(dir_path + '/files_lifetimes/lifetimes_shape.csv') lifetimes_DB_scale= pd.read_csv(dir_path + '/files_lifetimes/lifetimes_scale.csv') # actual inflow calculations def inflow_outflown(shape, scale, stock, length): # length is the number of years in the entire period out_oc_reg = pd.DataFrame(index=range(1721,2061), columns= pd.MultiIndex.from_product([list(range(1,27)), list(range(1721,2061))])) # Multi-index columns (region & years), to contain a matrix of years*years for each region out_i_reg = pd.DataFrame(index=range(1721,2061), columns=range(1,27)) out_s_reg = pd.DataFrame(index=range(1721,2061), columns=range(1,27)) out_o_reg = pd.DataFrame(index=range(1721,2061), columns=range(1,27)) for region in range(1,27): shape_list = shape.loc[region] scale_list = scale.loc[region] if flag_Normal == 0: DSMforward = DSM(t = np.arange(0,length,1), s=np.array(stock[region]), lt = {'Type': 'Weibull', 'Shape': np.array(shape_list), 'Scale': np.array(scale_list)}) else: DSMforward = DSM(t = np.arange(0,length,1), s=np.array(stock[region]), lt = {'Type': 'FoldNorm', 'Mean': np.array(shape_list), 'StdDev': np.array(scale_list)}) # shape & scale list are actually Mean & StDev here out_sc, out_oc, out_i = DSMforward.compute_stock_driven_model(NegativeInflowCorrect = True) out_i_reg[region] = out_i out_oc[out_oc < 0] = 0 # remove negative outflow, replace by 0 out_oc_reg.loc[:,idx[region,:]] = out_oc # If you are only interested in the total outflow, you can sum the outflow by cohort out_o_reg[region] = out_oc.sum(axis=1) out_o_reg_corr = out_o_reg._get_numeric_data() out_o_reg_corr[out_o_reg_corr < 0] = 0 out_s_reg[region] = out_sc.sum(axis=1) #Stock return out_i_reg, out_oc_reg length = len(m2_hig_urb[1]) # = 340 nindex=np.arange(0,26) shape_selection_m2_det_rur = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Rural') & (lifetimes_DB_shape['Type'] == 'Detached')] scale_selection_m2_det_rur = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Rural') & (lifetimes_DB_scale['Type'] == 'Detached')] shape_selection_m2_sem_rur = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Rural') & (lifetimes_DB_shape['Type'] == 'Semi-detached')] scale_selection_m2_sem_rur = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Rural') & (lifetimes_DB_scale['Type'] == 'Semi-detached')] shape_selection_m2_app_rur = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Rural') & (lifetimes_DB_shape['Type'] == 'Appartments')] scale_selection_m2_app_rur = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Rural') & (lifetimes_DB_scale['Type'] == 'Appartments')] shape_selection_m2_hig_rur = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Rural') & (lifetimes_DB_shape['Type'] == 'High-rise')] scale_selection_m2_hig_rur = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Rural') & (lifetimes_DB_scale['Type'] == 'High-rise')] shape_selection_m2_det_rur=shape_selection_m2_det_rur.set_index('Region') shape_selection_m2_det_rur=shape_selection_m2_det_rur.drop(['Type', 'Area'],axis=1) scale_selection_m2_det_rur=scale_selection_m2_det_rur.set_index('Region') scale_selection_m2_det_rur=scale_selection_m2_det_rur.drop(['Type', 'Area'],axis=1) shape_selection_m2_sem_rur=shape_selection_m2_sem_rur.set_index('Region') shape_selection_m2_sem_rur=shape_selection_m2_sem_rur.drop(['Type', 'Area'],axis=1) scale_selection_m2_sem_rur=scale_selection_m2_sem_rur.set_index('Region') scale_selection_m2_sem_rur=scale_selection_m2_sem_rur.drop(['Type', 'Area'],axis=1) shape_selection_m2_app_rur=shape_selection_m2_app_rur.set_index('Region') shape_selection_m2_app_rur=shape_selection_m2_app_rur.drop(['Type', 'Area'],axis=1) scale_selection_m2_app_rur=scale_selection_m2_app_rur.set_index('Region') scale_selection_m2_app_rur=scale_selection_m2_app_rur.drop(['Type', 'Area'],axis=1) shape_selection_m2_hig_rur=shape_selection_m2_hig_rur.set_index('Region') shape_selection_m2_hig_rur=shape_selection_m2_hig_rur.drop(['Type', 'Area'],axis=1) scale_selection_m2_hig_rur=scale_selection_m2_hig_rur.set_index('Region') scale_selection_m2_hig_rur=scale_selection_m2_hig_rur.drop(['Type', 'Area'],axis=1) shape_selection_m2_det_urb=lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Urban') & (lifetimes_DB_shape['Type'] == 'Detached')] scale_selection_m2_det_urb=lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Urban') & (lifetimes_DB_scale['Type'] == 'Detached')] shape_selection_m2_sem_urb = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Urban') & (lifetimes_DB_shape['Type'] == 'Semi-detached')] scale_selection_m2_sem_urb = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Urban') & (lifetimes_DB_scale['Type'] == 'Semi-detached')] shape_selection_m2_app_urb =lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Urban') & (lifetimes_DB_shape['Type'] == 'Appartments')] scale_selection_m2_app_urb =lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Urban') & (lifetimes_DB_scale['Type'] == 'Appartments')] shape_selection_m2_hig_urb = lifetimes_DB_shape.loc[(lifetimes_DB_shape['Area'] == 'Urban') & (lifetimes_DB_shape['Type'] == 'High-rise')] scale_selection_m2_hig_urb = lifetimes_DB_scale.loc[(lifetimes_DB_scale['Area'] == 'Urban') & (lifetimes_DB_scale['Type'] == 'High-rise')] shape_selection_m2_det_urb=shape_selection_m2_det_urb.set_index('Region') shape_selection_m2_det_urb=shape_selection_m2_det_urb.drop(['Type', 'Area'],axis=1) scale_selection_m2_det_urb=scale_selection_m2_det_urb.set_index('Region') scale_selection_m2_det_urb=scale_selection_m2_det_urb.drop(['Type', 'Area'],axis=1) shape_selection_m2_sem_urb=shape_selection_m2_sem_urb.set_index('Region') shape_selection_m2_sem_urb=shape_selection_m2_sem_urb.drop(['Type', 'Area'],axis=1) scale_selection_m2_sem_urb=scale_selection_m2_sem_urb.set_index('Region') scale_selection_m2_sem_urb=scale_selection_m2_sem_urb.drop(['Type', 'Area'],axis=1) shape_selection_m2_app_urb=shape_selection_m2_app_urb.set_index('Region') shape_selection_m2_app_urb=shape_selection_m2_app_urb.drop(['Type', 'Area'],axis=1) scale_selection_m2_app_urb=scale_selection_m2_app_urb.set_index('Region') scale_selection_m2_app_urb=scale_selection_m2_app_urb.drop(['Type', 'Area'],axis=1) shape_selection_m2_hig_urb=shape_selection_m2_hig_urb.set_index('Region') shape_selection_m2_hig_urb=shape_selection_m2_hig_urb.drop(['Type', 'Area'],axis=1) scale_selection_m2_hig_urb=scale_selection_m2_hig_urb.set_index('Region') scale_selection_m2_hig_urb=scale_selection_m2_hig_urb.drop(['Type', 'Area'],axis=1) ## # Hardcoded lifetime parameters for COMMERCIAL building lifetime (avg. lt = 45 yr) lifetimes_comm_shape = pd.read_csv(dir_path + '/files_lifetimes/lifetimes_shape_comm.csv') lifetimes_comm_scale = pd.read_csv(dir_path + '/files_lifetimes/lifetimes_scale_comm.csv') shape_comm = lifetimes_comm_shape.set_index('Region') scale_comm = lifetimes_comm_scale.set_index('Region') #Define the calculation of material outflow by cohort def material_outflow(m2_outflow_cohort,material_density): emp =[] for i in range(0,26): md = material_density.iloc[:,i] m2 = m2_outflow_cohort.loc[:,(i+1,1721):(i+1,2060)] m2.columns = md.index material_outflow_cohort = m2*md material_outflow_cohort_sum = material_outflow_cohort.sum(1) emp.append(material_outflow_cohort_sum) result = pd.DataFrame(emp) result.index = range(1, 27) return result.T # call the actual stock model to derive inflow & outflow based on stock & lifetime m2_det_rur_i, m2_det_rur_oc = inflow_outflown(shape_selection_m2_det_rur, scale_selection_m2_det_rur, m2_det_rur, length) m2_sem_rur_i, m2_sem_rur_oc = inflow_outflown(shape_selection_m2_sem_rur, scale_selection_m2_sem_rur, m2_sem_rur, length) m2_app_rur_i, m2_app_rur_oc = inflow_outflown(shape_selection_m2_app_rur, scale_selection_m2_app_rur, m2_app_rur, length) m2_hig_rur_i, m2_hig_rur_oc = inflow_outflown(shape_selection_m2_hig_rur, scale_selection_m2_hig_rur, m2_hig_rur, length) m2_det_urb_i, m2_det_urb_oc = inflow_outflown(shape_selection_m2_det_urb, scale_selection_m2_det_urb, m2_det_urb, length) m2_sem_urb_i, m2_sem_urb_oc = inflow_outflown(shape_selection_m2_sem_urb, scale_selection_m2_sem_urb, m2_sem_urb, length) m2_app_urb_i, m2_app_urb_oc = inflow_outflown(shape_selection_m2_app_urb, scale_selection_m2_app_urb, m2_app_urb, length) m2_hig_urb_i, m2_hig_urb_oc = inflow_outflown(shape_selection_m2_hig_urb, scale_selection_m2_hig_urb, m2_hig_urb, length) m2_office_i, m2_office_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_office, length) m2_retail_i, m2_retail_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_retail, length) m2_hotels_i, m2_hotels_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_hotels, length) m2_govern_i, m2_govern_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_govern, length) # total MILLIONS of square meters inflow m2_res_i = m2_det_rur_i + m2_sem_rur_i + m2_app_rur_i + m2_hig_rur_i + m2_det_urb_i + m2_sem_urb_i + m2_app_urb_i + m2_hig_urb_i m2_comm_i = m2_office_i + m2_retail_i + m2_hotels_i + m2_govern_i kg_det_rur_concrete_i = m2_det_rur_i * material_concrete_det kg_det_rur_glass_i = m2_det_rur_i * material_glass_det kg_sem_rur_concrete_i = m2_sem_rur_i * material_concrete_sem kg_sem_rur_glass_i = m2_sem_rur_i * material_glass_sem kg_app_rur_concrete_i = m2_app_rur_i * material_concrete_app kg_app_rur_glass_i = m2_app_rur_i * material_glass_app kg_hig_rur_concrete_i = m2_hig_rur_i * material_concrete_hig kg_hig_rur_glass_i = m2_hig_rur_i * material_glass_hig # URBAN material inflow (millions of kgs) kg_det_urb_concrete_i = m2_det_urb_i * material_concrete_det kg_det_urb_glass_i = m2_det_urb_i * material_glass_det kg_sem_urb_concrete_i = m2_sem_urb_i * material_concrete_sem kg_sem_urb_glass_i = m2_sem_urb_i * material_glass_sem kg_app_urb_concrete_i = m2_app_urb_i * material_concrete_app kg_app_urb_glass_i = m2_app_urb_i * material_glass_app kg_hig_urb_concrete_i = m2_hig_urb_i * material_concrete_hig kg_hig_urb_glass_i = m2_hig_urb_i * material_glass_hig # Commercial Building materials INFLOW (in Million kg) kg_office_concrete_i = m2_office_i * materials_concrete_office kg_office_glass_i = m2_office_i * materials_glass_office kg_retail_concrete_i = m2_retail_i * materials_concrete_retail kg_retail_glass_i = m2_retail_i * materials_glass_retail kg_hotels_concrete_i = m2_hotels_i * materials_concrete_hotels kg_hotels_glass_i = m2_hotels_i * materials_glass_hotels kg_govern_concrete_i = m2_govern_i * materials_concrete_govern kg_govern_glass_i = m2_govern_i * materials_glass_govern #% Material outflow # RURAL material OUTflow (Millions of kgs = *1000 tons) kg_det_rur_concrete_o = material_outflow(m2_det_rur_oc,material_concrete_det) kg_det_rur_glass_o = material_outflow(m2_det_rur_oc, material_glass_det) kg_sem_rur_concrete_o = material_outflow(m2_sem_rur_oc, material_concrete_sem) kg_sem_rur_glass_o = material_outflow(m2_sem_rur_oc, material_glass_sem) kg_app_rur_concrete_o = material_outflow(m2_app_rur_oc, material_concrete_app) kg_app_rur_glass_o = material_outflow(m2_app_rur_oc, material_glass_app) kg_hig_rur_concrete_o = material_outflow(m2_hig_rur_oc, material_concrete_hig) kg_hig_rur_glass_o = material_outflow(m2_hig_rur_oc, material_glass_hig) # URBAN material OUTflow (millions of kgs) kg_det_urb_concrete_o = material_outflow(m2_det_urb_oc, material_concrete_det) kg_det_urb_glass_o = material_outflow(m2_det_urb_oc, material_glass_det) kg_sem_urb_concrete_o = material_outflow(m2_sem_urb_oc, material_concrete_sem) kg_sem_urb_glass_o = material_outflow(m2_sem_urb_oc, material_glass_sem) kg_app_urb_concrete_o = material_outflow(m2_app_urb_oc, material_concrete_app) kg_app_urb_glass_o = material_outflow(m2_app_urb_oc, material_glass_app) kg_hig_urb_concrete_o = material_outflow(m2_hig_urb_oc, material_concrete_hig) kg_hig_urb_glass_o = material_outflow(m2_hig_urb_oc, material_glass_hig) # Commercial Building materials OUTFLOW (in Million kg) kg_office_concrete_o = material_outflow(m2_office_oc, materials_concrete_office) kg_office_glass_o = material_outflow(m2_office_oc, materials_glass_office) kg_retail_concrete_o = material_outflow(m2_retail_oc, materials_concrete_retail) kg_retail_glass_o = material_outflow(m2_retail_oc, materials_glass_retail) kg_hotels_concrete_o = material_outflow(m2_hotels_oc, materials_concrete_hotels) kg_hotels_glass_o = material_outflow(m2_hotels_oc, materials_glass_hotels) kg_govern_concrete_o = material_outflow(m2_govern_oc, materials_concrete_govern) kg_govern_glass_o = material_outflow(m2_govern_oc, materials_glass_govern) #%% CSV output (material stock & m2 stock) length = 3 tag = ['stock', 'inflow', 'outflow'] # RURAL kg_det_rur_concrete_out = [[]] * length kg_det_rur_concrete_out[0] = kg_det_rur_concrete.transpose() kg_det_rur_concrete_out[1] = kg_det_rur_concrete_i.transpose() kg_det_rur_concrete_out[2] = kg_det_rur_concrete_o.transpose() for item in range(0,length): kg_det_rur_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_det_rur_concrete_out[item].insert(0,'area', ['rural'] * 26) kg_det_rur_concrete_out[item].insert(0,'type', ['detached'] * 26) kg_det_rur_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_det_rur_glass_out = [[]] * length kg_det_rur_glass_out[0] = kg_det_rur_glass.transpose() kg_det_rur_glass_out[1] = kg_det_rur_glass_i.transpose() kg_det_rur_glass_out[2] = kg_det_rur_glass_o.transpose() for item in range(0,length): kg_det_rur_glass_out[item].insert(0,'material', ['glass'] * 26) kg_det_rur_glass_out[item].insert(0,'area', ['rural'] * 26) kg_det_rur_glass_out[item].insert(0,'type', ['detached'] * 26) kg_det_rur_glass_out[item].insert(0,'flow', [tag[item]] * 26) kg_sem_rur_concrete_out = [[]] * length kg_sem_rur_concrete_out[0] = kg_sem_rur_concrete.transpose() kg_sem_rur_concrete_out[1] = kg_sem_rur_concrete_i.transpose() kg_sem_rur_concrete_out[2] = kg_sem_rur_concrete_o.transpose() for item in range(0,length): kg_sem_rur_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_sem_rur_concrete_out[item].insert(0,'area', ['rural'] * 26) kg_sem_rur_concrete_out[item].insert(0,'type', ['semi-detached'] * 26) kg_sem_rur_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_sem_rur_glass_out = [[]] * length kg_sem_rur_glass_out[0] = kg_sem_rur_glass.transpose() kg_sem_rur_glass_out[1] = kg_sem_rur_glass_i.transpose() kg_sem_rur_glass_out[2] = kg_sem_rur_glass_o.transpose() for item in range(0,length): kg_sem_rur_glass_out[item].insert(0,'material', ['glass'] * 26) kg_sem_rur_glass_out[item].insert(0,'area', ['rural'] * 26) kg_sem_rur_glass_out[item].insert(0,'type', ['semi-detached'] * 26) kg_sem_rur_glass_out[item].insert(0,'flow', [tag[item]] * 26) kg_app_rur_concrete_out = [[]] * length kg_app_rur_concrete_out[0] = kg_app_rur_concrete.transpose() kg_app_rur_concrete_out[1] = kg_app_rur_concrete_i.transpose() kg_app_rur_concrete_out[2] = kg_app_rur_concrete_o.transpose() for item in range(0,length): kg_app_rur_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_app_rur_concrete_out[item].insert(0,'area', ['rural'] * 26) kg_app_rur_concrete_out[item].insert(0,'type', ['appartments'] * 26) kg_app_rur_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_app_rur_glass_out = [[]] * length kg_app_rur_glass_out[0] = kg_app_rur_glass.transpose() kg_app_rur_glass_out[1] = kg_app_rur_glass_i.transpose() kg_app_rur_glass_out[2] = kg_app_rur_glass_o.transpose() for item in range(0,length): kg_app_rur_glass_out[item].insert(0,'material', ['glass'] * 26) kg_app_rur_glass_out[item].insert(0,'area', ['rural'] * 26) kg_app_rur_glass_out[item].insert(0,'type', ['appartments'] * 26) kg_app_rur_glass_out[item].insert(0,'flow', [tag[item]] * 26) kg_hig_rur_concrete_out = [[]] * length kg_hig_rur_concrete_out[0] = kg_hig_rur_concrete.transpose() kg_hig_rur_concrete_out[1] = kg_hig_rur_concrete_i.transpose() kg_hig_rur_concrete_out[2] = kg_hig_rur_concrete_o.transpose() for item in range(0,length): kg_hig_rur_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_hig_rur_concrete_out[item].insert(0,'area', ['rural'] * 26) kg_hig_rur_concrete_out[item].insert(0,'type', ['high-rise'] * 26) kg_hig_rur_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_hig_rur_glass_out = [[]] * length kg_hig_rur_glass_out[0] = kg_hig_rur_glass.transpose() kg_hig_rur_glass_out[1] = kg_hig_rur_glass_i.transpose() kg_hig_rur_glass_out[2] = kg_hig_rur_glass_o.transpose() for item in range(0,length): kg_hig_rur_glass_out[item].insert(0,'material', ['glass'] * 26) kg_hig_rur_glass_out[item].insert(0,'area', ['rural'] * 26) kg_hig_rur_glass_out[item].insert(0,'type', ['high-rise'] * 26) kg_hig_rur_glass_out[item].insert(0,'flow', [tag[item]] * 26) # URBAN kg_det_urb_concrete_out = [[]] * length kg_det_urb_concrete_out[0] = kg_det_urb_concrete.transpose() kg_det_urb_concrete_out[1] = kg_det_urb_concrete_i.transpose() kg_det_urb_concrete_out[2] = kg_det_urb_concrete_o.transpose() for item in range(0,length): kg_det_urb_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_det_urb_concrete_out[item].insert(0,'area', ['urban'] * 26) kg_det_urb_concrete_out[item].insert(0,'type', ['detached'] * 26) kg_det_urb_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_det_urb_glass_out = [[]] * length kg_det_urb_glass_out[0] = kg_det_urb_glass.transpose() kg_det_urb_glass_out[1] = kg_det_urb_glass_i.transpose() kg_det_urb_glass_out[2] = kg_det_urb_glass_o.transpose() for item in range(0,length): kg_det_urb_glass_out[item].insert(0,'material', ['glass'] * 26) kg_det_urb_glass_out[item].insert(0,'area', ['urban'] * 26) kg_det_urb_glass_out[item].insert(0,'type', ['detached'] * 26) kg_det_urb_glass_out[item].insert(0,'flow', [tag[item]] * 26) kg_sem_urb_concrete_out = [[]] * length kg_sem_urb_concrete_out[0] = kg_sem_urb_concrete.transpose() kg_sem_urb_concrete_out[1] = kg_sem_urb_concrete_i.transpose() kg_sem_urb_concrete_out[2] = kg_sem_urb_concrete_o.transpose() for item in range(0,length): kg_sem_urb_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_sem_urb_concrete_out[item].insert(0,'area', ['urban'] * 26) kg_sem_urb_concrete_out[item].insert(0,'type', ['semi-detached'] * 26) kg_sem_urb_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_sem_urb_glass_out = [[]] * length kg_sem_urb_glass_out[0] = kg_sem_urb_glass.transpose() kg_sem_urb_glass_out[1] = kg_sem_urb_glass_i.transpose() kg_sem_urb_glass_out[2] = kg_sem_urb_glass_o.transpose() for item in range(0,length): kg_sem_urb_glass_out[item].insert(0,'material', ['glass'] * 26) kg_sem_urb_glass_out[item].insert(0,'area', ['urban'] * 26) kg_sem_urb_glass_out[item].insert(0,'type', ['semi-detached'] * 26) kg_sem_urb_glass_out[item].insert(0,'flow', [tag[item]] * 26) # kg_app_urb_concrete_out = [[]] * length kg_app_urb_concrete_out[0] = kg_app_urb_concrete.transpose() kg_app_urb_concrete_out[1] = kg_app_urb_concrete_i.transpose() kg_app_urb_concrete_out[2] = kg_app_urb_concrete_o.transpose() for item in range(0,length): kg_app_urb_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_app_urb_concrete_out[item].insert(0,'area', ['urban'] * 26) kg_app_urb_concrete_out[item].insert(0,'type', ['appartments'] * 26) kg_app_urb_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_app_urb_glass_out = [[]] * length kg_app_urb_glass_out[0] = kg_app_urb_glass.transpose() kg_app_urb_glass_out[1] = kg_app_urb_glass_i.transpose() kg_app_urb_glass_out[2] = kg_app_urb_glass_o.transpose() for item in range(0,length): kg_app_urb_glass_out[item].insert(0,'material', ['glass'] * 26) kg_app_urb_glass_out[item].insert(0,'area', ['urban'] * 26) kg_app_urb_glass_out[item].insert(0,'type', ['appartments'] * 26) kg_app_urb_glass_out[item].insert(0,'flow', [tag[item]] * 26) kg_hig_urb_concrete_out = [[]] * length kg_hig_urb_concrete_out[0] = kg_hig_urb_concrete.transpose() kg_hig_urb_concrete_out[1] = kg_hig_urb_concrete_i.transpose() kg_hig_urb_concrete_out[2] = kg_hig_urb_concrete_o.transpose() for item in range(0,length): kg_hig_urb_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_hig_urb_concrete_out[item].insert(0,'area', ['urban'] * 26) kg_hig_urb_concrete_out[item].insert(0,'type', ['high-rise'] * 26) kg_hig_urb_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_hig_urb_glass_out = [[]] * length kg_hig_urb_glass_out[0] = kg_hig_urb_glass.transpose() kg_hig_urb_glass_out[1] = kg_hig_urb_glass_i.transpose() kg_hig_urb_glass_out[2] = kg_hig_urb_glass_o.transpose() for item in range(0,length): kg_hig_urb_glass_out[item].insert(0,'material', ['glass'] * 26) kg_hig_urb_glass_out[item].insert(0,'area', ['urban'] * 26) kg_hig_urb_glass_out[item].insert(0,'type', ['high-rise'] * 26) kg_hig_urb_glass_out[item].insert(0,'flow', [tag[item]] * 26) # COMMERCIAL ------------------------------------------------------------------ # offices kg_office_concrete_out = [[]] * length kg_office_concrete_out[0] = kg_office_concrete.transpose() kg_office_concrete_out[1] = kg_office_concrete_i.transpose() kg_office_concrete_out[2] = kg_office_concrete_o.transpose() for item in range(0,length): kg_office_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_office_concrete_out[item].insert(0,'area', ['commercial'] * 26) kg_office_concrete_out[item].insert(0,'type', ['office'] * 26) kg_office_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_office_glass_out = [[]] * length kg_office_glass_out[0] = kg_office_glass.transpose() kg_office_glass_out[1] = kg_office_glass_i.transpose() kg_office_glass_out[2] = kg_office_glass_o.transpose() for item in range(0,length): kg_office_glass_out[item].insert(0,'material', ['glass'] * 26) kg_office_glass_out[item].insert(0,'area', ['commercial'] * 26) kg_office_glass_out[item].insert(0,'type', ['office'] * 26) kg_office_glass_out[item].insert(0,'flow', [tag[item]] * 26) # shops & retail kg_retail_concrete_out = [[]] * length kg_retail_concrete_out[0] = kg_retail_concrete.transpose() kg_retail_concrete_out[1] = kg_retail_concrete_i.transpose() kg_retail_concrete_out[2] = kg_retail_concrete_o.transpose() for item in range(0,length): kg_retail_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_retail_concrete_out[item].insert(0,'area', ['commercial'] * 26) kg_retail_concrete_out[item].insert(0,'type', ['retail'] * 26) kg_retail_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_retail_glass_out = [[]] * length kg_retail_glass_out[0] = kg_retail_glass.transpose() kg_retail_glass_out[1] = kg_retail_glass_i.transpose() kg_retail_glass_out[2] = kg_retail_glass_o.transpose() for item in range(0,length): kg_retail_glass_out[item].insert(0,'material', ['glass'] * 26) kg_retail_glass_out[item].insert(0,'area', ['commercial'] * 26) kg_retail_glass_out[item].insert(0,'type', ['retail'] * 26) kg_retail_glass_out[item].insert(0,'flow', [tag[item]] * 26) # hotels & restaurants kg_hotels_concrete_out = [[]] * length kg_hotels_concrete_out[0] = kg_hotels_concrete.transpose() kg_hotels_concrete_out[1] = kg_hotels_concrete_i.transpose() kg_hotels_concrete_out[2] = kg_hotels_concrete_o.transpose() for item in range(0,length): kg_hotels_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_hotels_concrete_out[item].insert(0,'area', ['commercial'] * 26) kg_hotels_concrete_out[item].insert(0,'type', ['hotels'] * 26) kg_hotels_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_hotels_glass_out = [[]] * length kg_hotels_glass_out[0] = kg_hotels_glass.transpose() kg_hotels_glass_out[1] = kg_hotels_glass_i.transpose() kg_hotels_glass_out[2] = kg_hotels_glass_o.transpose() for item in range(0,length): kg_hotels_glass_out[item].insert(0,'material', ['glass'] * 26) kg_hotels_glass_out[item].insert(0,'area', ['commercial'] * 26) kg_hotels_glass_out[item].insert(0,'type', ['hotels'] * 26) kg_hotels_glass_out[item].insert(0,'flow', [tag[item]] * 26) # government (schools, government, public transport, hospitals) kg_govern_concrete_out = [[]] * length kg_govern_concrete_out[0] = kg_govern_concrete.transpose() kg_govern_concrete_out[1] = kg_govern_concrete_i.transpose() kg_govern_concrete_out[2] = kg_govern_concrete_o.transpose() for item in range(0,length): kg_govern_concrete_out[item].insert(0,'material', ['concrete'] * 26) kg_govern_concrete_out[item].insert(0,'area', ['commercial'] * 26) kg_govern_concrete_out[item].insert(0,'type', ['govern'] * 26) kg_govern_concrete_out[item].insert(0,'flow', [tag[item]] * 26) kg_govern_glass_out = [[]] * length kg_govern_glass_out[0] = kg_govern_glass.transpose() kg_govern_glass_out[1] = kg_govern_glass_i.transpose() kg_govern_glass_out[2] = kg_govern_glass_o.transpose() for item in range(0,length): kg_govern_glass_out[item].insert(0,'material', ['glass'] * 26) kg_govern_glass_out[item].insert(0,'area', ['commercial'] * 26) kg_govern_glass_out[item].insert(0,'type', ['govern'] * 26) kg_govern_glass_out[item].insert(0,'flow', [tag[item]] * 26) # stack into 1 dataframe frames = [kg_det_rur_concrete_out[0], kg_det_rur_glass_out[0], kg_sem_rur_concrete_out[0], kg_sem_rur_glass_out[0], kg_app_rur_concrete_out[0], kg_app_rur_glass_out[0], kg_hig_rur_concrete_out[0], kg_hig_rur_glass_out[0], kg_det_urb_concrete_out[0], kg_det_urb_glass_out[0], kg_sem_urb_concrete_out[0], kg_sem_urb_glass_out[0], kg_app_urb_concrete_out[0], kg_app_urb_glass_out[0], kg_hig_urb_concrete_out[0], kg_hig_urb_glass_out[0], kg_office_concrete_out[0], kg_office_glass_out[0], kg_retail_concrete_out[0], kg_retail_glass_out[0], kg_hotels_concrete_out[0], kg_hotels_glass_out[0], kg_govern_concrete_out[0], kg_govern_glass_out[0], kg_det_rur_concrete_out[1], kg_det_rur_glass_out[1], kg_sem_rur_concrete_out[1], kg_sem_rur_glass_out[1], kg_app_rur_concrete_out[1], kg_app_rur_glass_out[1], kg_hig_rur_concrete_out[1], kg_hig_rur_glass_out[1], kg_det_urb_concrete_out[1], kg_det_urb_glass_out[1], kg_sem_urb_concrete_out[1], kg_sem_urb_glass_out[1], kg_app_urb_concrete_out[1], kg_app_urb_glass_out[1], kg_hig_urb_concrete_out[1], kg_hig_urb_glass_out[1], kg_office_concrete_out[1], kg_office_glass_out[1], kg_retail_concrete_out[1], kg_retail_glass_out[1], kg_hotels_concrete_out[1], kg_hotels_glass_out[1], kg_govern_concrete_out[1], kg_govern_glass_out[1], kg_det_rur_concrete_out[2], kg_det_rur_glass_out[2], kg_sem_rur_concrete_out[2], kg_sem_rur_glass_out[2], kg_app_rur_concrete_out[2], kg_app_rur_glass_out[2], kg_hig_rur_concrete_out[2], kg_hig_rur_glass_out[2], kg_det_urb_concrete_out[2], kg_det_urb_glass_out[2], kg_sem_urb_concrete_out[2], kg_sem_urb_glass_out[2], kg_app_urb_concrete_out[2], kg_app_urb_glass_out[2], kg_hig_urb_concrete_out[2], kg_hig_urb_glass_out[2], kg_office_concrete_out[2], kg_office_glass_out[2], kg_retail_concrete_out[2], kg_retail_glass_out[2], kg_hotels_concrete_out[2], kg_hotels_glass_out[2], kg_govern_concrete_out[2], kg_govern_glass_out[2] ] material_output = pd.concat(frames) material_output.to_csv('output_material\\concrete_glass_output.csv') ##sand in concrete and glass building_materials = pd.read_csv('output_material//concrete_glass_output.csv') # Building_materials_inflow; unit: kg; meaning: the materials inflow (by building type, by region & by area) #building_materials = material_output # Building_materials_inflow; unit: kg; meaning: the materials inflow (by building type, by region & by area) building_materials_inflow = building_materials.loc[(building_materials['flow']=='inflow')] building_materials_inflow = building_materials_inflow.set_index('Unnamed: 0') building_materials_outflow = building_materials.loc[(building_materials['flow']=='outflow')] building_materials_outflow = building_materials_outflow.set_index('Unnamed: 0') # recovery and reuse recovery_rate = pd.read_csv('files_recovery_rate//recovery_rate.csv') recovery_rate = recovery_rate.set_index('Unnamed: 0') reuse_rate = pd.read_csv('files_recovery_rate//reuse_rate.csv') reuse_rate = reuse_rate.set_index('Unnamed: 0') materials_recovery_avaliable = building_materials_outflow.iloc[:,4:] * recovery_rate.iloc[:,4:] materials_reuse_avaliable = building_materials_outflow.iloc[:,4:] * reuse_rate.iloc[:,4:] # secondary material #materials_secondary = materials_recovery - materials_reuse # not good! a = building_materials_inflow.iloc[:,4:].values b = materials_recovery_avaliable.values c = materials_reuse_avaliable.values materials_recovery = pd.DataFrame(np.where(a < b, a, b), index=materials_recovery_avaliable.index, columns=materials_recovery_avaliable.columns) materials_reuse = pd.DataFrame(np.where(a < c, a, c), index=materials_reuse_avaliable.index, columns=materials_reuse_avaliable.columns) materials_primary = building_materials_inflow - materials_recovery materials_secondary = materials_recovery - materials_reuse # primary material input eqauls the inflow minus recovery materials_primary = building_materials_inflow.iloc[:,4:]-materials_recovery sand_primary_per_kg = pd.read_csv('files_sand_factor//sand_primary_per_kg.csv') sand_primary_per_kg = sand_primary_per_kg.set_index('Unnamed: 0') sand_secondary_per_kg =
pd.read_csv('files_sand_factor//sand_secondary_per_kg.csv')
pandas.read_csv
""" Preprocess sites scripts. Written by <NAME>. Winter 2020 """ import os import configparser import json import csv import math import glob import pandas as pd import geopandas as gpd import pyproj from shapely.geometry import Polygon, MultiPolygon, mapping, shape, MultiLineString, LineString from shapely.ops import transform, unary_union, nearest_points import fiona from fiona.crs import from_epsg import rasterio from rasterio.mask import mask from rasterstats import zonal_stats import networkx as nx from rtree import index import numpy as np import random CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_INTERMEDIATE = os.path.join(BASE_PATH, 'intermediate') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') def find_country_list(continent_list): """ This function produces country information by continent. Parameters ---------- continent_list : list Contains the name of the desired continent, e.g. ['Africa'] Returns ------- countries : list of dicts Contains all desired country information for countries in the stated continent. """ glob_info_path = os.path.join(BASE_PATH, 'global_information.csv') countries = pd.read_csv(glob_info_path, encoding = "ISO-8859-1") countries = countries[countries.exclude != 1] if len(continent_list) > 0: data = countries.loc[countries['continent'].isin(continent_list)] else: data = countries output = [] for index, country in data.iterrows(): output.append({ 'country_name': country['country'], 'iso3': country['ISO_3digit'], 'iso2': country['ISO_2digit'], 'regional_level': country['lowest'], 'region': country['region'] }) return output def process_coverage_shapes(country): """ Load in coverage maps, process and export for each country. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] iso2 = country['iso2'] technologies = [ 'GSM', '3G', '4G' ] for tech in technologies: folder_coverage = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') filename = 'coverage_{}.shp'.format(tech) path_output = os.path.join(folder_coverage, filename) if os.path.exists(path_output): continue print('----') print('Working on {} in {}'.format(tech, iso3)) filename = 'Inclusions_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') inclusions = gpd.read_file(os.path.join(folder, filename)) if iso2 in inclusions['CNTRY_ISO2']: filename = 'MCE_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_MCE') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] else: filename = 'OCI_201812_{}.shp'.format(tech) folder = os.path.join(DATA_RAW, 'mobile_coverage_explorer', 'Data_OCI') coverage = gpd.read_file(os.path.join(folder, filename)) coverage = coverage.loc[coverage['CNTRY_ISO3'] == iso3] if len(coverage) > 0: print('Dissolving polygons') coverage['dissolve'] = 1 coverage = coverage.dissolve(by='dissolve', aggfunc='sum') coverage = coverage.to_crs('epsg:3857') print('Excluding small shapes') coverage['geometry'] = coverage.apply(clean_coverage,axis=1) print('Removing empty and null geometries') coverage = coverage[~(coverage['geometry'].is_empty)] coverage = coverage[coverage['geometry'].notnull()] print('Simplifying geometries') coverage['geometry'] = coverage.simplify( tolerance = 0.005, preserve_topology=True).buffer(0.0001).simplify( tolerance = 0.005, preserve_topology=True ) coverage = coverage.to_crs('epsg:4326') if not os.path.exists(folder_coverage): os.makedirs(folder_coverage) coverage.to_file(path_output, driver='ESRI Shapefile') return #print('Processed coverage shapes') def process_regional_coverage(country): """ This functions estimates the area covered by each cellular technology. Parameters ---------- country : dict Contains specific country parameters. Returns ------- output : dict Results for cellular coverage by each technology for each region. """ level = country['regional_level'] iso3 = country['iso3'] gid_level = 'GID_{}'.format(level) filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) technologies = [ 'GSM', '3G', '4G' ] output = {} for tech in technologies: folder = os.path.join(DATA_INTERMEDIATE, iso3, 'coverage') path = os.path.join(folder, 'coverage_{}.shp'.format(tech)) if os.path.exists(path): coverage = gpd.read_file(path, encoding="utf-8") segments = gpd.overlay(regions, coverage, how='intersection') tech_coverage = {} for idx, region in segments.iterrows(): area_km2 = round(area_of_polygon(region['geometry']) / 1e6) tech_coverage[region[gid_level]] = area_km2 output[tech] = tech_coverage return output def get_regional_data(country): """ Extract regional data including luminosity and population. Parameters ---------- country : string Three digit ISO country code. """ iso3 = country['iso3'] level = country['regional_level'] gid_level = 'GID_{}'.format(level) path_output = os.path.join(DATA_INTERMEDIATE, iso3, 'regional_coverage.csv') if os.path.exists(path_output): return #print('Regional data already exists') path_country = os.path.join(DATA_INTERMEDIATE, iso3, 'national_outline.shp') coverage = process_regional_coverage(country) single_country = gpd.read_file(path_country) # print('----') # print('working on {}'.format(iso3)) path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') filename = 'regions_{}_{}.shp'.format(level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path) results = [] for index, region in regions.iterrows(): with rasterio.open(path_settlements) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] area_km2 = round(area_of_polygon(region['geometry']) / 1e6) if 'GSM' in [c for c in coverage.keys()]: if region[gid_level] in coverage['GSM']: coverage_GSM_km2 = coverage['GSM'][region[gid_level]] else: coverage_GSM_km2 = 0 else: coverage_GSM_km2 = 0 if '3G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['3G']: coverage_3G_km2 = coverage['3G'][region[gid_level]] else: coverage_3G_km2 = 0 else: coverage_3G_km2 = 0 if '4G' in [c for c in coverage.keys()]: if region[gid_level] in coverage['4G']: coverage_4G_km2 = coverage['4G'][region[gid_level]] else: coverage_4G_km2 = 0 else: coverage_4G_km2 = 0 results.append({ 'GID_0': region['GID_0'], 'GID_id': region[gid_level], 'GID_level': gid_level, # 'mean_luminosity_km2': luminosity_summation / area_km2 if luminosity_summation else 0, 'population': population_summation, # 'pop_under_10_pop': pop_under_10_pop, 'area_km2': area_km2, 'population_km2': population_summation / area_km2 if population_summation else 0, # 'pop_adults_km2': ((population_summation - pop_under_10_pop) / # area_km2 if pop_under_10_pop else 0), 'coverage_GSM_percent': round(coverage_GSM_km2 / area_km2 * 100 if coverage_GSM_km2 else 0, 1), 'coverage_3G_percent': round(coverage_3G_km2 / area_km2 * 100 if coverage_3G_km2 else 0, 1), 'coverage_4G_percent': round(coverage_4G_km2 / area_km2 * 100 if coverage_4G_km2 else 0, 1), }) # print('Working on backhaul') backhaul_lut = estimate_backhaul(iso3, country['region'], '2025') # print('Working on estimating sites') results = estimate_sites(results, iso3, backhaul_lut) results_df = pd.DataFrame(results) results_df.to_csv(path_output, index=False) # print('Completed {}'.format(single_country.NAME_0.values[0])) return #print('Completed night lights data querying') def find_pop_under_10(region, iso3): """ Find the estimated population under 10 years old. Parameters ---------- region : pandas series The region being modeled. iso3 : string ISO3 country code. Returns ------- population : int Population sum under 10 years of age. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'under_10') all_paths = glob.glob(path + '/*.tif') population = [] for path in all_paths: with rasterio.open(path) as src: affine = src.transform array = src.read(1) array[array <= 0] = 0 population_summation = [d['sum'] for d in zonal_stats( region['geometry'], array, stats=['sum'], nodata=0, affine=affine)][0] if population_summation is not None: population.append(population_summation) return sum(population) def estimate_sites(data, iso3, backhaul_lut): """ Estimate the sites by region. Parameters ---------- data : dataframe Pandas df with regional data. iso3 : string ISO3 country code. backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] existing_site_data_path = os.path.join(DATA_INTERMEDIATE, iso3, 'sites', 'sites.csv') existing_site_data = {} if os.path.exists(existing_site_data_path): site_data = pd.read_csv(existing_site_data_path) site_data = site_data.to_dict('records') for item in site_data: existing_site_data[item['GID_id']] = item['sites'] population = 0 for region in data: if region['population'] == None: continue population += int(region['population']) path = os.path.join(DATA_RAW, 'wb_mobile_coverage', 'wb_population_coverage_2G.csv') coverage = pd.read_csv(path, encoding='latin-1') coverage = coverage.loc[coverage['Country ISO3'] == iso3] if len(coverage) > 1: coverage = coverage['2020'].values[0] else: coverage = 0 population_covered = population * (coverage / 100) path = os.path.join(DATA_RAW, 'real_site_data', 'site_counts.csv') towers = pd.read_csv(path, encoding = "ISO-8859-1") towers = towers.loc[towers['iso3'] == iso3] towers = towers['sites'].values[0] if np.isnan(towers): towers = 0 towers_per_pop = 0 else: towers_per_pop = towers / population_covered tower_backhaul_lut = estimate_backhaul_type(backhaul_lut) data = sorted(data, key=lambda k: k['population_km2'], reverse=True) covered_pop_so_far = 0 for region in data: #first try to use actual data if len(existing_site_data) > 0: sites_estimated_total = existing_site_data[region['GID_id']] if region['area_km2'] > 0: sites_estimated_km2 = sites_estimated_total / region['area_km2'] else: sites_estimated_km2 = 0 #or if we don't have data estimates of sites per area else: if covered_pop_so_far < population_covered: sites_estimated_total = region['population'] * towers_per_pop sites_estimated_km2 = region['population_km2'] * towers_per_pop else: sites_estimated_total = 0 sites_estimated_km2 = 0 backhaul_fiber = 0 backhaul_copper = 0 backhaul_wireless = 0 backhaul_satellite = 0 for i in range(1, int(round(sites_estimated_total)) + 1): num = random.uniform(0, 1) if num <= tower_backhaul_lut['fiber']: backhaul_fiber += 1 elif tower_backhaul_lut['fiber'] < num <= tower_backhaul_lut['copper']: backhaul_copper += 1 elif tower_backhaul_lut['copper'] < num <= tower_backhaul_lut['microwave']: backhaul_wireless += 1 elif tower_backhaul_lut['microwave'] < num: backhaul_satellite += 1 output.append({ 'GID_0': region['GID_0'], 'GID_id': region['GID_id'], 'GID_level': region['GID_level'], # 'mean_luminosity_km2': region['mean_luminosity_km2'], 'population': region['population'], # 'pop_under_10_pop': region['pop_under_10_pop'], 'area_km2': region['area_km2'], 'population_km2': region['population_km2'], # 'pop_adults_km2': region['pop_adults_km2'], 'coverage_GSM_percent': region['coverage_GSM_percent'], 'coverage_3G_percent': region['coverage_3G_percent'], 'coverage_4G_percent': region['coverage_4G_percent'], 'total_estimated_sites': sites_estimated_total, 'total_estimated_sites_km2': sites_estimated_km2, 'sites_3G': sites_estimated_total * (region['coverage_3G_percent'] /100), 'sites_4G': sites_estimated_total * (region['coverage_4G_percent'] /100), 'backhaul_fiber': backhaul_fiber, 'backhaul_copper': backhaul_copper, 'backhaul_wireless': backhaul_wireless, 'backhaul_satellite': backhaul_satellite, }) if region['population'] == None: continue covered_pop_so_far += region['population'] return output def estimate_backhaul(iso3, region, year): """ Get the correct backhaul composition for the region. Parameters ---------- iso3 : string ISO3 country code. region : string The continent the country is part of. year : int The year of the backhaul composition desired. Returns ------- output : list of dicts All regional data with estimated sites. """ output = [] path = os.path.join(BASE_PATH, 'raw', 'gsma', 'backhaul.csv') backhaul_lut = pd.read_csv(path) backhaul_lut = backhaul_lut.to_dict('records') for item in backhaul_lut: if region == item['Region'] and int(item['Year']) == int(year): output.append({ 'tech': item['Technology'], 'percentage': int(item['Value']), }) return output def estimate_backhaul_type(backhaul_lut): """ Process the tower backhaul lut. Parameters ---------- backhaul_lut : dict Lookup table of backhaul composition. Returns ------- output : dict Tower backhaul lookup table. """ output = {} preference = [ 'fiber', 'copper', 'microwave', 'satellite' ] perc_so_far = 0 for tech in preference: for item in backhaul_lut: if tech == item['tech'].lower(): perc = item['percentage'] output[tech] = (perc + perc_so_far) / 100 perc_so_far += perc return output def area_of_polygon(geom): """ Returns the area of a polygon. Assume WGS84 before converting to projected crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- poly_area : int Area of polygon in square kilometers. """ geod = pyproj.Geod(ellps="WGS84") poly_area, poly_perimeter = geod.geometry_area_perimeter( geom ) return abs(int(poly_area)) def length_of_line(geom): """ Returns the length of a linestring. Assume WGS84 as crs. Parameters ---------- geom : shapely geometry A shapely geometry object. Returns ------- total_length : int Length of the linestring given in kilometers. """ geod = pyproj.Geod(ellps="WGS84") total_length = geod.line_length(*geom.xy) return abs(int(total_length)) def estimate_numers_of_sites(linear_regressor, x_value): """ Function to predict the y value from the stated x value. Parameters ---------- linear_regressor : object Linear regression object. x_value : float The stated x value we want to use to predict y. Returns ------- result : float The predicted y value. """ if not x_value == 0: result = linear_regressor.predict(x_value) result = result[0,0] else: result = 0 return result def exclude_small_shapes(x): """ Remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': return x.geometry # if its a multipolygon, we start trying to simplify # and remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': area1 = 0.01 area2 = 50 # dont remove shapes if total area is already very small if x.geometry.area < area1: return x.geometry # remove bigger shapes if country is really big if x['GID_0'] in ['CHL','IDN']: threshold = 0.01 elif x['GID_0'] in ['RUS','GRL','CAN','USA']: threshold = 0.01 elif x.geometry.area > area2: threshold = 0.1 else: threshold = 0.001 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def clean_coverage(x): """ Cleans the coverage polygons by remove small multipolygon shapes. Parameters --------- x : polygon Feature to simplify. Returns ------- MultiPolygon : MultiPolygon Shapely MultiPolygon geometry without tiny shapes. """ # if its a single polygon, just return the polygon geometry if x.geometry.geom_type == 'Polygon': if x.geometry.area > 1e7: return x.geometry # if its a multipolygon, we start trying to simplify and # remove shapes if its too big. elif x.geometry.geom_type == 'MultiPolygon': threshold = 1e7 # save remaining polygons as new multipolygon for # the specific country new_geom = [] for y in x.geometry: if y.area > threshold: new_geom.append(y) return MultiPolygon(new_geom) def estimate_core_nodes(iso3, pop_density_km2, settlement_size): """ This function identifies settlements which exceed a desired settlement size. It is assumed fiber exists at settlements over, for example, 20,000 inhabitants. Parameters ---------- iso3 : string ISO 3 digit country code. pop_density_km2 : int Population density threshold for identifying built up areas. settlement_size : int Overall sittelement size assumption, e.g. 20,000 inhabitants. Returns ------- output : list of dicts Identified major settlements as Geojson objects. """ path = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') with rasterio.open(path) as src: data = src.read() threshold = pop_density_km2 data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') nodes = nodes[nodes['sum'] >= settlement_size] nodes['geometry'] = nodes['geometry'].centroid nodes = get_points_inside_country(nodes, iso3) output = [] for index, item in enumerate(nodes.to_dict('records')): output.append({ 'type': 'Feature', 'geometry': mapping(item['geometry']), 'properties': { 'network_layer': 'core', 'id': 'core_{}'.format(index), 'node_number': index, } }) return output def get_points_inside_country(nodes, iso3): """ Check settlement locations lie inside target country. Parameters ---------- nodes : dataframe A geopandas dataframe containing settlement nodes. iso3 : string ISO 3 digit country code. Returns ------- nodes : dataframe A geopandas dataframe containing settlement nodes. """ filename = 'national_outline.shp' path = os.path.join(DATA_INTERMEDIATE, iso3, filename) national_outline = gpd.read_file(path) bool_list = nodes.intersects(national_outline.unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) return nodes def generate_agglomeration_lut(country): """ Generate a lookup table of agglomerations. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') if not os.path.exists(folder): os.makedirs(folder) path_output = os.path.join(folder, 'agglomerations.shp') if os.path.exists(path_output): return print('Agglomeration processing has already completed') print('Working on {} agglomeration lookup table'.format(iso3)) filename = 'regions_{}_{}.shp'.format(regional_level, iso3) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'regions') path = os.path.join(folder, filename) regions = gpd.read_file(path, crs="epsg:4326") path_settlements = os.path.join(DATA_INTERMEDIATE, iso3, 'settlements.tif') settlements = rasterio.open(path_settlements, 'r+') settlements.nodata = 255 settlements.crs = {"epsg:4326"} folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') if not os.path.exists(folder_tifs): os.makedirs(folder_tifs) for idx, region in regions.iterrows(): bbox = region['geometry'].envelope geo = gpd.GeoDataFrame() geo = gpd.GeoDataFrame({'geometry': bbox}, index=[idx]) coords = [json.loads(geo.to_json())['features'][0]['geometry']] #chop on coords out_img, out_transform = mask(settlements, coords, crop=True) # Copy the metadata out_meta = settlements.meta.copy() out_meta.update({"driver": "GTiff", "height": out_img.shape[1], "width": out_img.shape[2], "transform": out_transform, "crs": 'epsg:4326'}) path_output = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path_output, "w", **out_meta) as dest: dest.write(out_img) print('Completed settlement.tif regional segmentation') nodes, missing_nodes = find_nodes(country, regions) missing_nodes = get_missing_nodes(country, regions, missing_nodes, 10, 10) nodes = nodes + missing_nodes nodes = gpd.GeoDataFrame.from_features(nodes, crs='epsg:4326') bool_list = nodes.intersects(regions['geometry'].unary_union) nodes = pd.concat([nodes, bool_list], axis=1) nodes = nodes[nodes[0] == True].drop(columns=0) agglomerations = [] print('Identifying agglomerations') for idx1, region in regions.iterrows(): seen = set() for idx2, node in nodes.iterrows(): if node['geometry'].intersects(region['geometry']): agglomerations.append({ 'type': 'Feature', 'geometry': mapping(node['geometry']), 'properties': { 'id': idx1, 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': node['sum'], } }) seen.add(region[GID_level]) if len(seen) == 0: agglomerations.append({ 'type': 'Feature', 'geometry': mapping(region['geometry'].centroid), 'properties': { 'id': 'regional_node', 'GID_0': region['GID_0'], GID_level: region[GID_level], 'population': 1, } }) agglomerations = gpd.GeoDataFrame.from_features( [ { 'geometry': item['geometry'], 'properties': { 'id': item['properties']['id'], 'GID_0':item['properties']['GID_0'], GID_level: item['properties'][GID_level], 'population': item['properties']['population'], } } for item in agglomerations ], crs='epsg:4326' ) folder = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations') path_output = os.path.join(folder, 'agglomerations' + '.shp') agglomerations.to_file(path_output) agglomerations['lon'] = agglomerations['geometry'].x agglomerations['lat'] = agglomerations['geometry'].y agglomerations = agglomerations[['lon', 'lat', GID_level, 'population']] agglomerations.to_csv(os.path.join(folder, 'agglomerations.csv'), index=False) return print('Agglomerations layer complete') def process_existing_fiber(country): """ Load and process existing fiber data. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] iso2 = country['iso2'].lower() folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') if not os.path.exists(folder): os.makedirs(folder) filename = 'core_edges_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Existing fiber already processed') path = os.path.join(DATA_RAW, 'afterfiber', 'afterfiber.shp') shape = fiona.open(path) data = [] for item in shape: if item['properties']['iso2'].lower() == iso2.lower(): if item['geometry']['type'] == 'LineString': if int(item['properties']['live']) == 1: data.append({ 'type': 'Feature', 'geometry': { 'type': 'LineString', 'coordinates': item['geometry']['coordinates'], }, 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) if item['geometry']['type'] == 'MultiLineString': if int(item['properties']['live']) == 1: try: geom = MultiLineString(item['geometry']['coordinates']) for line in geom: data.append({ 'type': 'Feature', 'geometry': mapping(line), 'properties': { 'operators': item['properties']['operator'], 'source': 'existing' } }) except: # some geometries are incorrect from data source # exclude to avoid issues pass if len(data) == 0: return print('No existing infrastructure') data = gpd.GeoDataFrame.from_features(data) data.to_file(path_output, crs='epsg:4326') return print('Existing fiber processed') def find_nodes_on_existing_infrastructure(country): """ Find those agglomerations which are within a buffered zone of existing fiber links. Parameters ---------- country : dict Contains all country specfic information. """ iso3 = country['iso3'] folder = os.path.join(DATA_INTERMEDIATE, iso3, 'network_existing') filename = 'core_nodes_existing.shp' path_output = os.path.join(folder, filename) if os.path.exists(path_output): return print('Already found nodes on existing infrastructure') else: if not os.path.dirname(path_output): os.makedirs(os.path.dirname(path_output)) path = os.path.join(folder, 'core_edges_existing.shp') if not os.path.exists(path): return print('No existing infrastructure') existing_infra = gpd.read_file(path, crs='epsg:4326') existing_infra = existing_infra.to_crs(epsg=3857) existing_infra['geometry'] = existing_infra['geometry'].buffer(5000) existing_infra = existing_infra.to_crs(epsg=4326) # shape_output = os.path.join(DATA_INTERMEDIATE, iso3, 'network', 'core_edges_buffered.shp') # existing_infra.to_file(shape_output, crs='epsg:4326') path = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'agglomerations.shp') agglomerations = gpd.read_file(path, crs='epsg:4326') bool_list = agglomerations.intersects(existing_infra.unary_union) agglomerations = pd.concat([agglomerations, bool_list], axis=1) agglomerations = agglomerations[agglomerations[0] == True].drop(columns=0) agglomerations['source'] = 'existing' agglomerations.to_file(path_output, crs='epsg:4326') return print('Found nodes on existing infrastructure') def find_nodes(country, regions): """ Find key nodes. Parameters ---------- country : dict Contains all country specfic information. regions : dataframe All regions to be assessed. Returns ------- interim : list of dicts Contains geojson dicts for nodes. missing_nodes : list Contains the id of regions with missing nodes. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) threshold = country['pop_density_km2'] settlement_size = country['settlement_size'] folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') interim = [] missing_nodes = set() print('Working on gathering data from regional rasters') for idx, region in regions.iterrows(): path = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path) as src: data = src.read() data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) geojson_region = [ { 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level] } } ] gpd_region = gpd.GeoDataFrame.from_features( [ {'geometry': poly['geometry'], 'properties':{ GID_level: poly['properties'][GID_level] }} for poly in geojson_region ], crs='epsg:4326' ) if len(shapes_df) == 0: continue nodes = gpd.overlay(shapes_df, gpd_region, how='intersection') stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df = pd.DataFrame(stats) nodes = pd.concat([shapes_df, stats_df], axis=1).drop(columns='value') nodes_subset = nodes[nodes['sum'] >= settlement_size] if len(nodes_subset) == 0: missing_nodes.add(region[GID_level]) for idx, item in nodes_subset.iterrows(): interim.append({ 'geometry': item['geometry'].centroid, 'properties': { GID_level: region[GID_level], 'count': item['count'], 'sum': item['sum'] } }) return interim, missing_nodes def get_missing_nodes(country, regions, missing_nodes, threshold, settlement_size): """ Find any missing nodes. Parameters ---------- country : dict Contains all country specfic information. regions : dataframe All regions to be assessed. missing_nodes : list Contains the id of regions with missing nodes. threshold : int Population density threshold in persons per square kilometer. settlement_size : int Overall settlement size threshold. Returns ------- interim : list of dicts Contains geojson dicts for nodes. """ iso3 = country['iso3'] regional_level = country['regional_level'] GID_level = 'GID_{}'.format(regional_level) folder_tifs = os.path.join(DATA_INTERMEDIATE, iso3, 'agglomerations', 'tifs') interim = [] for idx, region in regions.iterrows(): if not region[GID_level] in list(missing_nodes): continue path = os.path.join(folder_tifs, region[GID_level] + '.tif') with rasterio.open(path) as src: data = src.read() data[data < threshold] = 0 data[data >= threshold] = 1 polygons = rasterio.features.shapes(data, transform=src.transform) shapes_df = gpd.GeoDataFrame.from_features( [ {'geometry': poly, 'properties':{'value':value}} for poly, value in polygons if value > 0 ], crs='epsg:4326' ) geojson_region = [ { 'geometry': region['geometry'], 'properties': { GID_level: region[GID_level] } } ] gpd_region = gpd.GeoDataFrame.from_features( [ {'geometry': poly['geometry'], 'properties':{ GID_level: poly['properties'][GID_level] }} for poly in geojson_region ], crs='epsg:4326' ) nodes = gpd.overlay(shapes_df, gpd_region, how='intersection') stats = zonal_stats(shapes_df['geometry'], path, stats=['count', 'sum']) stats_df =
pd.DataFrame(stats)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas from dateutils import relativedelta from datetime import date from sqlalchemy import func, desc, asc from mako.template import Template from bokeh.charts import Bar, TimeSeries from bokeh.embed import components from models import Key, Signature class HTMLOutput(): def __init__(self, session, ca_key, domain): self.session = session self.ca_key = ca_key self.domain = domain def domain_query(self, *args): if self.domain is not None: return self.session.query(*args).filter(Key.email.like('%{}'.format(self.domain))) else: return self.session.query(*args) @property def total_sigs(self): return self.session.query(Signature).count() @property def total_sigs_this_month(self): return self.session.query(Signature).filter(Signature.sign_date >= date.today().replace(day=1)).count() @property def total_ca_auto_sigs(self): return self.session.query(Signature).filter(Signature.signer_key == self.ca_key).count() @property def total_ca_auto_sigs_this_month(self): return self.session.query(Signature).filter( Signature.signer_key == self.ca_key, Signature.sign_date >= date.today().replace(day=1) ).count() @property def total_keys_and_sigs(self): sigs = self.domain_query( func.COUNT(Signature.id).label('num_sigs'), Signature.sign_date ).join(Key).filter( Signature.sign_date > date.today()-relativedelta(years=2) ).group_by(Signature.sign_date).order_by(asc(Signature.sign_date)).all() current_num_sigs = self.session.query(Signature).filter(Signature.sign_date <= date.today()-relativedelta(years=2)).count() if self.ca_key is not None: ca_sigs = self.domain_query( func.COUNT(Signature.id).label('num_sigs'), Signature.sign_date ).join(Key).filter( Signature.sign_date > date.today()-relativedelta(years=2), Signature.signer_key == self.ca_key ).group_by(Signature.sign_date).order_by(asc(Signature.sign_date)).all() current_num_ca_sigs = self.session.query(Signature).filter( Signature.sign_date <= date.today()-relativedelta(years=2), Signature.signer_key == self.ca_key).count() else: ca_sigs = [] current_num_ca_sigs = 0 keys = self.domain_query( func.COUNT(Key.id).label('num_keys'), Key.created ).filter( Key.created > date.today()-relativedelta(years=2) ).group_by(Key.created).order_by(asc(Key.created)).all() current_num_keys = self.session.query(Key).filter(Key.created <= date.today()-relativedelta(years=2)).count() sig_dates = [pandas.Timestamp(sig.sign_date) for sig in sigs] ca_sig_dates = [pandas.Timestamp(sig.sign_date) for sig in ca_sigs] key_dates = [
pandas.Timestamp(key.created)
pandas.Timestamp
import numpy as np import pandas as pd import matplotlib.pyplot as plt import json import folium import requests import plotly.graph_objects as go from sklearn.linear_model import LinearRegression import streamlit as st from streamlit_folium import folium_static import streamlit.components.v1 as components from bs4 import BeautifulSoup import regex with st.echo(code_location='below'): # st.set_page_config(layout="wide") st.write('Цель данного проекта - рассмотрение статистики по правонарушениям и преступлениям (англ. - offenses) ' 'в США в течение последних десяти лет.') # #BLOCK1 # entrypoint = "https://api.usa.gov/crime/fbi/sapi/api/agencies" # query = {'api_key': 'e8vEnIM7V1Msff37SGU86c4r27dVzZOUow7LFCiM'} # r = requests.get(entrypoint, params=query) # data = r.json() # columns_all = ['ori', 'agency_name', 'agency_type_name', 'state_name', 'state_abbr', 'division_name', 'region_name', # 'region_desc', 'county_name', 'nibrs', 'latitude', 'longitude', 'nibrs_start_date'] # summ_all = pd.DataFrame(columns=columns_all) # for i in data: # for j in data[i]: # a = (data[i][j]) # new = [] # for k in a: # new += [a[k]] # summ_all.loc[len(summ_all)] = new # print(summ_all) summ_all = pd.read_csv("summ_all.csv") # BLOCK2 summ_all = (summ_all).dropna() st.write( 'На данной карте представлены все агентства, подключенные к системе NIBRS (Национальная система отчетности об инцидентах) ' 'Можно заметить, что данной системой активно пользуются в восточной части страны, а западной части сотаются ' 'целые штаты, в которых ни одно агентство не используют NIBRS. ' 'Например, в Пенсильвании находится более 1500 агентств, однако системой пользуют только 25 агентств. ') m = folium.Map([41.75215, -97.61819], zoom_start=4) for ind, row in summ_all.iterrows(): folium.Circle([row.latitude, row.longitude], radius=10, control_scale=True).add_to(m) folium_static(m) # ct = summ_all[(summ_all['state_abbr'] == "KS")].reset_index().dropna() # ct["Cases"] = np.nan # for ori in ct['ori']: # entrypoint = "https://api.usa.gov/crime/fbi/sapi/api/data/arrest/agencies/offense/" + ori + "/all/2019/2019" # query = {'api_key': 'e8vEnIM7V1Msff37SGU86c4r27dVzZOUow7LFCiM'} # data2 = requests.get(entrypoint, params=query).json() # for h in data2: # if type(data2[h]) == list and data2[h] != []: # data2[h][0].pop("data_year") # data2[h][0].pop("csv_header") # values = data2[h][0].values() # ct["Cases"][ct['ori'] == ori] = sum(values) ct = pd.read_csv("ct.csv") # BLOCK3 st.write( 'Давайте более подробно изучим статистики в одном из штатов. На карте расположены все агенства штата Канзас. ' 'Размер точек зависит от количества зарегистрированных правонарушений или преступлений в 2019 году. ') st.write("Число агентств в Казасе:") st.write(pd.value_counts(summ_all['state_abbr'])["KS"]) ct = ct.dropna() ct = ct.sort_values(by="Cases") fig = go.Figure() ct['text'] = "Number of registered offenses in " + ct['agency_name'] + " is " + (ct["Cases"]).astype(str) limits = [(0, 10), (10, 100), (100, 1000), (1000, 3000), (3000, 15000)] colors = ["royalblue", "crimson", "lightseagreen", "orange", "lightgrey"] cities = [] scale = 5 fig = go.Figure() # print(sum(ct["Cases"])) for i in range(len(limits)): lim = limits[i] df_sub = ct[(ct["Cases"] >= lim[0]) & (ct["Cases"] < lim[1])] fig.add_trace(go.Scattergeo( locationmode='USA-states', lon=df_sub['longitude'], lat=df_sub['latitude'], text=df_sub['text'], marker=dict( size=df_sub['Cases'] / scale, color=colors[i], line_color='rgb(40,40,40)', line_width=0.5, sizemode='area' ), name='{0} - {1}'.format(lim[0], lim[1]))) fig.update_layout(width=800, height=400, geo=dict( scope='north america', showland=True, landcolor="rgb(212, 212, 212)", subunitcolor="rgb(255, 255, 255)", center_lon=-98.0, center_lat=38.45, resolution=50, coastlinecolor="white", lonaxis=dict( range=[-102.0, -93.0] ), lataxis=dict( range=[36.8, 40.2] ), domain=dict(x=[0, 1], y=[0, 1])), title='Agencies by offenses, Kansas, 2019', ) st.plotly_chart(fig) # #BLOCK4 # # state_data=((summ_all['state_abbr'].unique())) # state_data = ['HI', 'DE', 'PR', 'TX', 'MA', 'MD', 'ME', 'IA', 'ID', 'MI', 'UT', 'MN', 'MO', 'IL', # 'IN', 'MS', 'MT', 'AK', 'VA', 'AL', 'AR', 'VI', 'NC', 'ND', 'RI', 'NE', 'AZ', 'NH', # 'NJ', 'VT', 'NM', 'FL', 'NV', 'WA', 'NY', 'SC', 'SD', 'WI', 'OH', 'GA', 'OK', 'CA', # 'WV', 'WY', 'OR', 'GM', 'KS', 'CO', 'KY', 'PA', 'CT', 'LA', 'TN', 'DC'] # # EXCLUDE "PR" # offenses = ["aggravated-assault", "burglary", "larceny", "motor-vehicle-theft", "homicide", "rape", "robbery", # "arson", # "violent-crime", "property-crime"] # col_det = ["ori", "data_year", "offense", "state_abbr", "cleared", "actual"] # years = ['2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019'] # summ_off = pd.DataFrame() # for abbr in state_data: # state_alloff = pd.DataFrame() # for off in offenses: # state_off = pd.DataFrame(np.nan, index=[abbr], columns=years) # entrypoint1 = "https://api.usa.gov/crime/fbi/sapi/api/nibrs/" + off + "/victim/states/" + abbr + "/count" # print(entrypoint1) # query = {'api_key': 'e8vEnIM7V1Msff37SGU86c4r27dVzZOUow7LFCiM'} # r1 = requests.get(entrypoint1, params=query) # data1 = r1.json() # for i in data1: # if type(data1[i]) == list and data1[i] != ['Count'] and data1[i] != []: # for j in data1[i]: # if years.count(str(j['data_year'])) == 1: # state_off[str(j['data_year'])] = j['value'] # state_off["Offense"] = off # # state_alloff = state_alloff.append(state_off) # summ_off = summ_off.append(state_alloff) summ_off = pd.read_csv("summ_off.csv") # print(summ_off) # BLOCK5 state_data = ['HI', 'DE', 'PR', 'TX', 'MA', 'MD', 'ME', 'IA', 'ID', 'MI', 'UT', 'MN', 'MO', 'IL', 'IN', 'MS', 'MT', 'AK', 'VA', 'AL', 'AR', 'VI', 'NC', 'ND', 'RI', 'NE', 'AZ', 'NH', 'NJ', 'VT', 'NM', 'FL', 'NV', 'WA', 'NY', 'SC', 'SD', 'WI', 'OH', 'GA', 'OK', 'CA', 'WV', 'WY', 'OR', 'GM', 'KS', 'CO', 'KY', 'PA', 'CT', 'LA', 'TN', 'DC'] columns_all = summ_off.columns agr_off = pd.DataFrame() agr_off = pd.DataFrame(columns=columns_all) for i in range(len(state_data)): agr_off.loc[len(agr_off)] = summ_off.iloc[range(i, i + 10), :].sum(numeric_only=True) agr_off["Offense"] = state_data agr_off = (agr_off.set_index("Offense")) sort = agr_off.sort_values(by="2019", ascending=False).head(10) # sort.to_csv("sorted_by_state.csv") # BLOCK6 name = "https://datausa.io/profile/geo/kansas" r = requests.get(name) soup = BeautifulSoup(r.text) ans = soup.find("head") cont = ((soup.find("head")).find_all("meta", {"name": "description"}))[0]['content'] st.write('Возьмём информацию о населении Канзаса с сайта datausa.io: ') st.write(cont) pop = (regex.findall(r"(?<=[^\Wm])\s[\d]+\W+[\d]+\w[M]", cont)) st.write("С помощью регулярных выражений найдем население Канзаса в 2018 году - ") st.write(pop) # BLOCK7 st.write('Далее рассмотрим правонарушения или преступления, совершенные с 2010 года, вычислив общее количество ' 'преступлений в каждый год. Можно заметить, что суммарное число правонарушений или преступлений в год ' 'снижается. На основе этих данных построим предсказание на 2020 год. ') ind_list = range(460, 470) ks_off = (summ_off.iloc[ind_list, :]) ks_total = ks_off.sum(numeric_only=True) usa_total = summ_off.sum(numeric_only=True) regr = LinearRegression() X = np.array([2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]).reshape((-1, 1)) y = [0] y[0] = ks_total regr.fit(X, y[0]) figpr = plt.figure() plt.plot(X, y[0]) plt.title("Offenses in Kansas, 2010-2019") plt.plot(X, regr.predict(X), color='C1') st.pyplot(figpr) st.write('Предсказание для 2020') st.write(regr.predict(np.array([[2020]]))) # BLOCK8 st.write('Рассчитаем корреляцию между уровенем безработицы, ВВП на душу населения' 'и числом правонарушений.') unemp = np.array((pd.read_csv("KSURN.csv"))["KSURN"]) gdp_h = np.array((pd.read_csv("MEHOINUSKSA672N.csv"))["MEHOINUSKSA672N"]) u, u_sd = (np.around(np.mean(unemp), decimals=3), np.around(np.std(unemp), decimals=3)) g, g_sd = (np.around(np.mean(gdp_h / 1000), decimals=3), np.around(np.std(gdp_h / 1000), decimals=3)) st.write('Безработица и ВВП на душу населения в Канзасе, 2009-2019:') st.write(
pd.read_csv("KSURN.csv")
pandas.read_csv
# Copyright WillianFuks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Uses the posterior distribution to prepare inferences for the Causal Impact summary and plotting functionalities. """ from typing import List, Optional, Tuple, Union import numpy as np import pandas as pd import tensorflow as tf import tensorflow_probability as tfp from causalimpact.misc import maybe_unstandardize tfd = tfp.distributions def get_lower_upper_percentiles(alpha: float) -> List[float]: """ Returns the lower and upper quantile values for the chosen `alpha` value. Args ---- alpha: float Sets the size of the credible interval. If `alpha=0.05` then extracts the 95% credible interval for forecasts. Returns ------- List[float] First value is the lower quantile and second value is upper. """ return [alpha * 100. / 2., 100 - alpha * 100. / 2.] def compile_posterior_inferences( original_index: pd.core.indexes.base.Index, pre_data: pd.DataFrame, post_data: pd.DataFrame, one_step_dist: tfd.Distribution, posterior_dist: tfd.Distribution, mu_sig: Optional[Tuple[float, float]], alpha: float = 0.05, niter: int = 1000 ) -> pd.DataFrame: """ Uses the posterior distribution of the structural time series probabilistic model to run predictions and forecasts for observed data. Results are stored for later usage on the summary and plotting functionalities. Args ---- original_index: pd.core.indexes.base.Index Original index from input data. If it's a `RangeIndex` then cast inferences index to be of the same type. pre_data: pd.DataFrame This is the original input data, that is, it's not standardized. post_data: pd.DataFrame Same as `pre_data`. This is the original input data, that is, it's not standardized. one_step_dist: tfd.Distribution Uses posterior parameters to run one-step-prediction on past observed data. posterior_dist: tfd.Distribution Uses posterior parameters to run forecasts on post intervention data. mu_sig: Optional[Tuple[float, float]] First value is the mean used for standardization and second value is the standard deviation. alpha: float Sets credible interval size. niter: int Total mcmc samples to sample from the posterior structural model. Returns ------- inferences: pd.DataFrame Final dataframe with all data related to one-step predictions and forecasts. """ lower_percen, upper_percen = get_lower_upper_percentiles(alpha) # Integrates pre and post index for cumulative index data. cum_index = build_cum_index(pre_data.index, post_data.index) # We create a pd.Series with a single 0 (zero) value to work as the initial value # when computing the cumulative inferences. Without this value the plotting of # cumulative data breaks at the initial point. zero_series = pd.Series([0]) simulated_pre_ys = one_step_dist.sample(niter) # shape (niter, n_train_timestamps, 1) simulated_pre_ys = maybe_unstandardize( np.squeeze(simulated_pre_ys.numpy()), mu_sig ) # shape (niter, n_forecasts) simulated_post_ys = posterior_dist.sample(niter) # shape (niter, n_forecasts, 1) simulated_post_ys = maybe_unstandardize( np.squeeze(simulated_post_ys.numpy()), mu_sig ) # shape (niter, n_forecasts) # Pre inference pre_preds_means = one_step_dist.mean() pre_preds_means = pd.Series( np.squeeze( maybe_unstandardize(pre_preds_means, mu_sig) ), index=pre_data.index ) pre_preds_lower, pre_preds_upper = np.percentile( simulated_pre_ys, [lower_percen, upper_percen], axis=0 ) pre_preds_lower = pd.Series(pre_preds_lower, index=pre_data.index) pre_preds_upper = pd.Series(pre_preds_upper, index=pre_data.index) # Post inference post_preds_means = posterior_dist.mean() post_preds_means = pd.Series( np.squeeze( maybe_unstandardize(post_preds_means, mu_sig) ), index=post_data.index ) post_preds_lower, post_preds_upper = np.percentile( simulated_post_ys, [lower_percen, upper_percen], axis=0 ) post_preds_lower = pd.Series(post_preds_lower, index=post_data.index) post_preds_upper = pd.Series(post_preds_upper, index=post_data.index) # Concatenations complete_preds_means = pd.concat([pre_preds_means, post_preds_means]) complete_preds_lower =
pd.concat([pre_preds_lower, post_preds_lower])
pandas.concat
# -*- coding: utf-8 -*- import six import numpy as np import pandas as pd from functools import lru_cache from .utils import wrap_formula_exc, FormulaException, func_counter from .context import ExecutionContext __updated__ = "2021-06-11" @func_counter def get_bars(freq): @lru_cache(maxsize=256) def _check_return_none(order_book_id, data_backend, current_date, start_date, freq): # if security is suspend, just skip trading_dates = ExecutionContext.get_data_backend( ).get_trading_dates(start=start_date, end=current_date) if data_backend.skip_suspended and bars["datetime"][-1] // 1000000 != trading_dates[-1] and freq not in ( "W", "M"): return order_book_id else: return "" data_backend = ExecutionContext.get_data_backend() current_date = ExecutionContext.get_current_date() order_book_id = ExecutionContext.get_current_security() start_date = ExecutionContext.get_start_date() try: bars = data_backend.get_price( order_book_id, start=start_date, end=current_date, freq=freq) except KeyError: return np.array([]) if len(bars) > 0 and _check_return_none(order_book_id, data_backend, current_date, start_date, freq): return np.array([]) return bars @func_counter def fit_series(*series_list): size = min(len(series) for series in series_list) if size == 0: raise FormulaException("series size == 0") new_series_list = [series[-size:] for series in series_list] return new_series_list def get_value(val): if isinstance(val, TimeSeries): return val.value else: return val @func_counter def get_series(val, size=640000): """todo 如果不再需要原始数组,则应在切片后调用 copy""" if isinstance(val, TimeSeries): return val.series else: return DuplicateNumericSeries(val, size).series @func_counter def ensure_timeseries(series): if isinstance(series, TimeSeries): return series else: return DuplicateNumericSeries(series) class TimeSeries(object): ''' https://docs.python.org/3/library/operator.html ''' @property def series(self): raise NotImplementedError @property @wrap_formula_exc def value(self): try: return self.series[-1] except IndexError: raise FormulaException("DATA UNAVAILABLE") def __len__(self): return len(self.series) @wrap_formula_exc def __lt__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 < s2 return BoolSeries(series) @wrap_formula_exc def __gt__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 > s2 return BoolSeries(series) @wrap_formula_exc def __eq__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 == s2 return BoolSeries(series) @wrap_formula_exc def __ne__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 != s2 return BoolSeries(series) @wrap_formula_exc def __ge__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 >= s2 return BoolSeries(series) @wrap_formula_exc def __le__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 <= s2 return BoolSeries(series) @wrap_formula_exc def __sub__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 - s2 return NumericSeries(series) @wrap_formula_exc def __rsub__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s2 - s1 return NumericSeries(series) @wrap_formula_exc def __add__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 + s2 return NumericSeries(series) @wrap_formula_exc def __radd__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s2 + s1 return NumericSeries(series) @wrap_formula_exc def __mul__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 * s2 return NumericSeries(series) @wrap_formula_exc def __rmul__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s2 * s1 return NumericSeries(series) @wrap_formula_exc def __truediv__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s1 / s2 return NumericSeries(series) @wrap_formula_exc def __rtruediv__(self, other): s1, s2 = fit_series(self.series, get_series(other)) with np.errstate(invalid='ignore'): series = s2 / s1 return NumericSeries(series) __div__ = __truediv__ def __bool__(self): return len(self) > 0 and bool(self.value) def __and__(self, other): s1, s2 = fit_series(self.series, get_series(other)) if s1.dtype != bool: s1 = s1 > 0 if s2.dtype != bool: s2 = s2 > 0 return BoolSeries(s1 & s2) def __or__(self, other): s1, s2 = fit_series(self.series, get_series(other)) return BoolSeries(s1 | s2) @wrap_formula_exc def __invert__(self): with np.errstate(invalid='ignore'): series = ~self.series return BoolSeries(series) # fix bug in python 2 # __nonzero__ = __bool__ def __repr__(self): if len(self.series) == 0: return '' return str(self.value) def __int__(self): return int(self.value) def shift(self, n: int=1, fill_value=np.nan): from .utils import shift return self.__class__(shift(self.series, n, fill_value)) class NumericSeries(TimeSeries): def __init__(self, series=[]): super(NumericSeries, self).__init__() self._series = series self.extra_create_kwargs = {} @property @func_counter def series(self): return self._series def to_list(self): """返回list""" if self.series is not None: return self.series.to_list() else: return [] def to_df(self): """返回pd.Dataframe""" if self.series is not None: return
pd.DataFrame(self.series)
pandas.DataFrame
# pylint: disable-msg=W0402 from datetime import datetime import random import string from numpy.random import randn import numpy as np from pandas.core.api import (DateRange, Index, Series, DataFrame, DataMatrix, WidePanel) N = 30 K = 4 def rands(n): choices = string.letters + string.digits return ''.join([random.choice(choices) for _ in xrange(n)]) def equalContents(arr1, arr2): """Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def isiterable(obj): return hasattr(obj, '__iter__') def assert_almost_equal(a, b): if isiterable(a): np.testing.assert_(isiterable(b)) np.testing.assert_equal(len(a), len(b)) for i in xrange(len(a)): assert_almost_equal(a[i], b[i]) return True err_msg = lambda a, b: 'expected %.5f but got %.5f' % (a, b) if np.isnan(a): np.testing.assert_(np.isnan(b)) return # case for zero if abs(a) < 1e-5: np.testing.assert_almost_equal( a, b, decimal=5, err_msg=err_msg(a, b), verbose=False) else: np.testing.assert_almost_equal( 1, a/b, decimal=5, err_msg=err_msg(a, b), verbose=False) def is_sorted(seq): return assert_almost_equal(seq, np.sort(np.array(seq))) def assert_dict_equal(a, b, compare_keys=True): a_keys = frozenset(a.keys()) b_keys = frozenset(b.keys()) if compare_keys: assert(a_keys == b_keys) for k in a_keys: assert_almost_equal(a[k], b[k]) def assert_series_equal(left, right): assert_almost_equal(left, right) assert(np.array_equal(left.index, right.index)) def assert_frame_equal(left, right): for col, series in left.iteritems(): assert(col in right) assert_series_equal(series, right[col]) for col in right: assert(col in left) def assert_contains_all(iterable, dic): for k in iterable: assert(k in dic) def getCols(k): return string.ascii_uppercase[:k] def makeStringIndex(k): return Index([rands(10) for _ in xrange(k)]) def makeIntIndex(k): return Index(np.arange(k)) def makeDateIndex(k): dates = list(DateRange(datetime(2000, 1, 1), periods=k)) return Index(dates) def makeFloatSeries(): index = makeStringIndex(N) return Series(randn(N), index=index) def makeStringSeries(): index = makeStringIndex(N) return Series(randn(N), index=index) def makeObjectSeries(): dateIndex = makeDateIndex(N) index = makeStringIndex(N) return
Series(dateIndex, index=index)
pandas.core.api.Series
import logging import math import warnings import numpy as np import pandas as pd import pytest import scipy.stats from dask import array as da, dataframe as dd from distributed.utils_test import ( # noqa: F401 captured_logger, cluster, gen_cluster, loop, ) from sklearn.linear_model import SGDClassifier from dask_ml._compat import DISTRIBUTED_2_5_0 from dask_ml.datasets import make_classification from dask_ml.model_selection import ( HyperbandSearchCV, IncrementalSearchCV, SuccessiveHalvingSearchCV, ) from dask_ml.model_selection._hyperband import _get_hyperband_params from dask_ml.utils import ConstantFunction from dask_ml.wrappers import Incremental pytestmark = pytest.mark.skipif(not DISTRIBUTED_2_5_0, reason="hangs") @pytest.mark.parametrize( "array_type, library, max_iter", [ ("dask.array", "dask-ml", 9), ("numpy", "sklearn", 9), ("numpy", "ConstantFunction", 15), ("numpy", "ConstantFunction", 20), ], ) def test_basic(array_type, library, max_iter): @gen_cluster(client=True) def _test_basic(c, s, a, b): rng = da.random.RandomState(42) n, d = (50, 2) # create observations we know linear models can fit X = rng.normal(size=(n, d), chunks=n // 2) coef_star = rng.uniform(size=d, chunks=d) y = da.sign(X.dot(coef_star)) if array_type == "numpy": X, y = yield c.compute((X, y)) params = { "loss": ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"], "average": [True, False], "learning_rate": ["constant", "invscaling", "optimal"], "eta0": np.logspace(-2, 0, num=1000), } model = SGDClassifier( tol=-np.inf, penalty="elasticnet", random_state=42, eta0=0.1 ) if library == "dask-ml": model = Incremental(model) params = {"estimator__" + k: v for k, v in params.items()} elif library == "ConstantFunction": model = ConstantFunction() params = {"value": np.linspace(0, 1, num=1000)} search = HyperbandSearchCV(model, params, max_iter=max_iter, random_state=42) classes = c.compute(da.unique(y)) yield search.fit(X, y, classes=classes) if library == "dask-ml": X, y = yield c.compute((X, y)) score = search.best_estimator_.score(X, y) assert score == search.score(X, y) assert 0 <= score <= 1 if library == "ConstantFunction": assert score == search.best_score_ else: # These are not equal because IncrementalSearchCV uses a train/test # split and we're testing on the entire train dataset, not only the # validation/test set. assert abs(score - search.best_score_) < 0.1 assert type(search.best_estimator_) == type(model) assert isinstance(search.best_params_, dict) num_fit_models = len(set(search.cv_results_["model_id"])) num_pf_calls = sum( [v[-1]["partial_fit_calls"] for v in search.model_history_.values()] ) models = {9: 17, 15: 17, 20: 17, 27: 49, 30: 49, 81: 143} pf_calls = {9: 69, 15: 101, 20: 144, 27: 357, 30: 379, 81: 1581} assert num_fit_models == models[max_iter] assert num_pf_calls == pf_calls[max_iter] best_idx = search.best_index_ if isinstance(model, ConstantFunction): assert search.cv_results_["test_score"][best_idx] == max( search.cv_results_["test_score"] ) model_ids = {h["model_id"] for h in search.history_} if math.log(max_iter, 3) % 1.0 == 0: # log(max_iter, 3) % 1.0 == 0 is the good case when max_iter is a # power of search.aggressiveness # In this case, assert that more models are tried then the max_iter assert len(model_ids) > max_iter else: # Otherwise, give some padding "almost as many estimators are tried # as max_iter". 3 is a fudge number chosen to be the minimum; when # max_iter=20, len(model_ids) == 17. assert len(model_ids) + 3 >= max_iter assert all("bracket" in id_ for id_ in model_ids) _test_basic() @pytest.mark.parametrize("max_iter,aggressiveness", [(27, 3), (30, 4)]) def test_hyperband_mirrors_paper_and_metadata(max_iter, aggressiveness): @gen_cluster(client=True) def _test_mirrors_paper(c, s, a, b): X, y = make_classification(n_samples=10, n_features=4, chunks=10) model = ConstantFunction() params = {"value": np.random.rand(max_iter)} alg = HyperbandSearchCV( model, params, max_iter=max_iter, random_state=0, aggressiveness=aggressiveness, ) yield alg.fit(X, y) assert alg.metadata == alg.metadata_ assert isinstance(alg.metadata["brackets"], list) assert set(alg.metadata.keys()) == {"n_models", "partial_fit_calls", "brackets"} # Looping over alg.metadata["bracketes"] is okay because alg.metadata # == alg.metadata_ for bracket in alg.metadata["brackets"]: assert set(bracket.keys()) == { "n_models", "partial_fit_calls", "bracket", "SuccessiveHalvingSearchCV params", "decisions", } if aggressiveness == 3: assert alg.best_score_ == params["value"].max() _test_mirrors_paper() @gen_cluster(client=True) def test_hyperband_patience(c, s, a, b): # Test to make sure that specifying patience=True results in less # computation X, y = make_classification(n_samples=10, n_features=4, chunks=10) model = ConstantFunction() params = {"value": scipy.stats.uniform(0, 1)} max_iter = 27 alg = HyperbandSearchCV( model, params, max_iter=max_iter, patience=True, random_state=0 ) yield alg.fit(X, y) alg_patience = max_iter // alg.aggressiveness actual_decisions = [b.pop("decisions") for b in alg.metadata_["brackets"]] paper_decisions = [b.pop("decisions") for b in alg.metadata["brackets"]] for paper_iter, actual_iter in zip(paper_decisions, actual_decisions): trimmed_paper_iter = {k for k in paper_iter if k <= alg_patience} # This makes sure that the algorithm is executed faithfully when # patience=True (and the proper decision points are preserved even if # other stop-on-plateau points are added) assert trimmed_paper_iter.issubset(set(actual_iter)) # This makes sure models aren't trained for too long assert all(x <= alg_patience + 1 for x in actual_iter) assert alg.metadata_["partial_fit_calls"] <= alg.metadata["partial_fit_calls"] assert alg.best_score_ >= 0.9 max_iter = 6 kwargs = dict(max_iter=max_iter, aggressiveness=2) alg = HyperbandSearchCV(model, params, patience=2, **kwargs) with pytest.warns(UserWarning, match="The goal of `patience`"): yield alg.fit(X, y) alg = HyperbandSearchCV(model, params, patience=2, tol=np.nan, **kwargs) yield alg.fit(X, y) assert
pd.DataFrame(alg.history_)
pandas.DataFrame
import numpy as np import pandas as pd import time, copy import pickle as pickle import sklearn from sklearn.linear_model import LogisticRegression from sklearn.metrics import log_loss from scipy.special import expit import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier import statsmodels.api as sm import tensorflow as tf from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Dense, Dropout, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import LearningRateScheduler from tensorflow.python.eager.context import num_gpus from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from sub_utils import exp_decay_scheduler, keras_count_nontrainable_params, resample_and_shuffle, create_tf_dataset, reshape_model_input class Naive_Classifier: ''' Create naive baseline classifier, that assigns a constant surrender rate, regardsless of the feature configuration. Parameters ---------- rate: Constant probability prediction ''' def __init__(self, rate, ): self.rate = rate def predict_proba(self, X): pred = np.zeros(shape=(len(X),2)) pred[:,0] = 1-self.rate pred[:,1]= self.rate return pred def predict(self, X): return self.predict_proba(X) def predict_class(self, X, threshold=0.5): return self.predict_proba(X)>threshold def create_ann(widths: list, actv: list, dropout: float, n_input: int, lrate: float): ''' Create individual ANNs for ANN_bagging. ''' model = Sequential() for j in range(len(widths)): if j==0: # Specify input size for first layer model.add(Dense(units = widths[j], activation = actv[j], input_dim = n_input)) else: model.add(Dense(units = widths[j], activation = actv[j])) if j<(len(widths)-1): # No dropout after output layer model.add(Dropout(rate = dropout)) model.compile(loss = 'binary_crossentropy', metrics= ['acc'], optimizer=Adam(lr=lrate)) return model def hpsearch_ann(**params): ''' Use params obtained via a hpsearch to create an ann. This function is a helper function, to simplify the varying notation. ''' widths = [params['width_{}'.format(1+i)] for i in range(params['depth'])]+[1] actv = params['depth']*[params['actv']]+['sigmoid'] dropout = params['dropout'] n_input = params['n_input'] lrate = params['lrate'] model = create_ann(widths=widths, actv=actv, dropout=dropout, n_input= n_input, lrate = lrate) return model def hpsearch_boost_ann(resampler ='None', tf_dist_strat = None, **params): ''' Helper function to map params to ANN_boost object initialization. ''' N_boosting = params['n_boosting'] n_input = params['n_input'] boost_width = params['width'] actv = params['actv'] lrate = params['lrate'] return ANN_boost(N_models = N_boosting, N_input = n_input, width=boost_width, act_fct=actv, lr = lrate, resampler = resampler, tf_dist_strat=tf_dist_strat) class Logit_model: ''' A bagged version of the sklearn LogisticRegression model. ''' def __init__(self, params, poly_degrees, N_bag = 5, resampler = 'None'): self.poly_degrees = poly_degrees self.resampler = resampler self.N_bag = N_bag try: del params['random_state'] except: pass self.models = [LogisticRegression(**params) for _ in range(self.N_bag)] def fit(self, X_train, y_train): ''' Fit all individual models independently for data X, y. ''' for i in range(self.N_bag): # optional resampling if self.resampler == 'undersampling': X,y = RandomUnderSampler(sampling_strategy= 'majority').fit_resample(X=X_train, y=y_train) # shuffle data, otherwise all oversampled data are appended X,y = sklearn.utils.shuffle(X,y) elif self.resampler == 'SMOTE': X,y = SMOTE().fit_resample(X=X_train, y=y_train) # shuffle data, otherwise all oversampled data are appended X,y = sklearn.utils.shuffle(X,y) else: X,y = X_train, y_train X,y = sklearn.utils.shuffle(X,y) # polynomial feature engineering X_logit, y_logit = reshape_model_input(X, degrees_lst = self.poly_degrees), y # fit model self.models[i].fit(X_logit, y_logit) # [self.models[i].fit(*shuffle(X_logit, y_logit, random_state=i)) for i in range(self.N_bag)] return self # allow for one-line notation of creating and fitting the model def predict_proba(self, X): ''' Predict probabilities using the full ensembles of self.N_bag individual models. ''' X_logit = reshape_model_input(X, degrees_lst = self.poly_degrees) return np.sum(np.array([self.models[i].predict_proba(X_logit) for i in range(self.N_bag)]), axis = 0)/self.N_bag def predict_proba_running_avg(self, X): ''' Predict probabilities for all individual logit-models and report rolling average results, i.e. the benefit of adding more individual models to the ensemble. ''' X_logit = reshape_model_input(X, degrees_lst = self.poly_degrees) return np.cumsum(np.array([self.models[i].predict_proba(X_logit) for i in range(self.N_bag)]), axis = 0)/np.arange(1, self.N_bag+1).reshape((-1,1,1)) def predict_proba_individual(self, X): ''' Predict probabilities for all individual logit-models and report them as an array of shape (N_bag, len(X), 2). ''' X_logit = reshape_model_input(X, degrees_lst = self.poly_degrees) return np.array([self.models[i].predict_proba(X_logit) for i in range(self.N_bag)]) class ANN_bagging: """ Purpose: Build multiple ANN models, use the bagged predictor in combination with an optional resampling procedure to reduce the variance of a predictor. New version - compatible with hpsklearn optimized parameter values as input Initialize the architecture of all individual models in the bagging procedure. Inputs: ------- N_models: Number of models to be included in bagging procedure N_input: Number of input nodes width_lst: List containing the width for all layers, and hence implicitely also the depth of the network act_fct_lst: List containing the activation function for all layers dropout_rate: Dropout rate applied to all layers (except output layer) dropout_rate = 0 will effectively disable dropout resampler: 'None': No resampling 'SMOTE': SMOTE resampling 'undersampling': RandomUndersampling loss: loss function which the model will be compiled with. Standard option: 'binary_crossentropy' optimizer: loss function which the model will be compiled with. Standard option: 'adam' Outputs: -------- None. Creates self.model object with type(object) = dict """ def __init__(self, N_models: int, hparams:dict, tf_dist_strat, resampler = 'None'): self.resampler = resampler self.model = {} self.hparams = hparams self.lr = hparams['lrate'] self.tf_dist_strat = tf_dist_strat for i in range(N_models): # create model i try: with self.tf_dist_strat.scope(): self.model[i] = hpsearch_ann(**hparams) except: self.model[i] = hpsearch_ann(**hparams) # set ensemble model try: with self.tf_dist_strat.scope(): INPUT = Input(shape = (self.hparams['n_input'],)) self.ensemble = Model(inputs=INPUT, outputs = tf.keras.layers.Average()([self.model[i](INPUT) for i in range(len(self.model))])) # reduce learning rate for final fine-tuning of collective bagged model self.ensemble.compile(optimizer = Adam(learning_rate=self.lr/2), loss = 'binary_crossentropy', metrics = ['acc']) except: INPUT = Input(shape = (self.hparams['n_input'],)) self.ensemble = Model(inputs=INPUT, outputs = tf.keras.layers.Average()([self.model[i](INPUT) for i in range(len(self.model))])) # reduce learning rate for final fine-tuning of collective bagged model self.ensemble.compile(optimizer = Adam(learning_rate=self.lr/2), loss = 'binary_crossentropy', metrics = ['acc']) def re_init_ensemble(self): ''' Note: If we load old parametrizations by setting self.model[i] = value, the self.ensemble does not update automatically. Hence, we need this value for consistently loading old values. ''' # re-set ensemble model try: with self.tf_dist_strat.scope(): INPUT = Input(shape = (self.hparams['n_input'],)) self.ensemble = Model(inputs=INPUT, outputs = tf.keras.layers.Average()([self.model[i](INPUT) for i in range(len(self.model))])) # reduce learning rate for final fine-tuning of collective bagged model self.ensemble.compile(optimizer = Adam(learning_rate=self.lr/2), loss = 'binary_crossentropy', metrics = ['acc']) except: INPUT = Input(shape = (self.hparams['n_input'],)) self.ensemble = Model(inputs=INPUT, outputs = tf.keras.layers.Average()([self.model[i](INPUT) for i in range(len(self.model))])) # reduce learning rate for final fine-tuning of collective bagged model self.ensemble.compile(optimizer = Adam(learning_rate=self.lr/2), loss = 'binary_crossentropy', metrics = ['acc']) def fit(self, X_train, y_train, callbacks = [], val_share = 0.3, N_epochs = 200): """ Purpose: Train all model instances in the bagging procedure. output: \t None. Updates parameters of all models in self.model input \t X_train, y_train: \t Training data \t resampling_option: \t 'None': No resampling is performed \t \t 'undersampling': random undersampling of the majority class \t \t 'SMOTE': SMOTE methodology applied \t callbacks: \t callbacks for training \t val_share, N_epochs, N_batch: \t Additional arguments for training """ # handle pandas-datatype if type(X_train)==type(pd.DataFrame([1])): X_train=X_train.values if type(y_train) == type(pd.DataFrame([1])): y_train=y_train.values # check if GPUs are available try: N_GPUs = self.tf_dist_strat.num_replicas_in_sync() except: N_GPUs = 1 for i in range(len(self.model)): # utilze concept of resampling X,y = resample_and_shuffle(X_train, y_train, self.resampler) # transform into tf.data.Dataset try: train_data, val_data = create_tf_dataset(X, y, val_share, self.hparams['batch_size']*num_gpus()) except: # go on with regular, numpy-data-type print('tf.data.Dataset could not be constructed. Continuing with numpy-data.') pass if len(self.model)==1: try: self.model[i].fit(x=train_data, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_data = val_data, verbose = 2, callbacks=callbacks) except: print('using non-tf.data-format') self.model[i].fit(x=X, y = y, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_split= val_share, verbose = 2, callbacks=callbacks) else: if i==0: # More compact view on models' training progress print('Data of shape {} '.format(X.shape) + 'and balance factor {}'.format(sum(y)/len(y))) # Start training of model print('Training Model {}'.format(i)) t_start = time.time() try: self.model[i].fit(x=train_data, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_data= val_data, verbose = 2, callbacks=callbacks+[LearningRateScheduler(exp_decay_scheduler)]) except: print('using non-tf.data-format') self.model[i].fit(x=X, y = y, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_split= val_share, verbose = 2, callbacks=callbacks+[LearningRateScheduler(exp_decay_scheduler)]) n_epochs_trained = len(self.model[i].history.history['loss']) print('\t ... {} epochs'.format(n_epochs_trained)) # plt.plot(self.model[i].history.history['loss'], label='loss') # plt.plot(self.model[i].history.history['val_loss'], label='val_loss') # plt.legend() # plt.show() for _ in range(3): print('\t ... Fine tuning') # reduce learning rate self.model[i].optimizer.learning_rate = self.model[i].optimizer.learning_rate/2 try: self.model[i].fit(x=train_data, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_data= val_data, verbose = 2, callbacks=callbacks+[LearningRateScheduler(exp_decay_scheduler)])#, initial_epoch= n_epochs_trained) except: print('using non-tf.data-format') self.model[i].fit(x=X, y = y, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_split= val_share, verbose = 2, callbacks=callbacks+[LearningRateScheduler(exp_decay_scheduler)])#, initial_epoch= n_epochs_trained) # print(self.model[i].history.history) # n_epochs_trained += len(self.model[i].history.history['loss']) print('\t ... Overall time: {} sec.'.format(time.time()-t_start)) print('\t ... Done!') # plt.plot(self.model[i].history.history['loss'], label='loss') # plt.plot(self.model[i].history.history['val_loss'], label='val_loss') # plt.legend() # plt.show() print('Final fine tuning of whole bagged estimator:') t_start = time.time() try: self.ensemble.fit(x=train_data, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_data= val_data, verbose = 0, callbacks=callbacks) except: print('using non-tf.data-format') self.ensemble.fit(x=X, y = y, batch_size= N_GPUs*self.hparams['batch_size'], epochs = N_epochs, validation_split= val_share, verbose = 0, callbacks=callbacks) print('\t ... {} epochs'.format(len(self.ensemble.history.history['val_loss']))) print('\t ... {} sec.'.format(time.time()-t_start)) print('\t ... Done!') # Return object to allow for shorter/ single-line notation, i.e. ANN_bagging().fit() return self def predict(self, X): """ Purpose: Predict event probability for data Inputs: ------- \t X: \t Input data Outputs: -------- \t Predictions for all input data """ # handle pandas-datatype if type(X)==type(pd.DataFrame([1])): X=X.values return self.ensemble.predict(X) def predict_proba(self, X): """ Purpose: Predict event probability for data Replicate predict_proba method of Sequential() or Model() class to unify notation. See documentation of self.predict() method. """ # handle pandas-datatype if type(X)==type(pd.DataFrame([1])): X=X.values return self.predict(X) def predict_classes(self, X, threshold = 0.5): """ Purpose: Predict class memberships/ labels for data Replicate predict_classes method of Sequential() or Model() class to unify notation. """ # handle pandas-datatype if type(X)==type(pd.DataFrame([1])): X=X.values return (self.predict(X)>= threshold) class ANN_boost: ''' Create a boosting instance with neural networks as weak learner instances. As we add a new weak learner it will train primarily on errors of previous models. Boost rate equal 1, i.e. weak learners added by summation. For the purpose of binary classification we impose a binary_crossentropy loss. ''' def __init__(self, N_models, N_input, width: int, act_fct: str, lr = 0.001, tf_dist_strat = None, resampler = 'None'): """ Initialize the architecture of all individual models in the bagging procedure. Model style of weak learner: input->hidden_layer-> actv_fct-> single output (incl linear actv) -> sigmoid actv (to be carved off when combining multiple weak learners) Inputs: ------- N_models: Number of models to be included in bagging procedure N_input: Number of input nodes width_lst: List containing the width for all layers, and hence implicitely also the depth of the network act_fct_lst: List containing the activation function for all layers. Last entry should be linear, as boosting models add a final sigmoid activation to the added weak learners to ensure a proper probability distribution. dropout_rate: Dropout rate applied to all layers (except output layer) dropout_rate = 0 will effectively disable dropout loss: loss function which the model will be compiled with. Standard option: 'binary_crossentropy' optimizer: loss function which the model will be compiled with. Standard option: 'adam' Outputs: -------- None. Creates self.model_base objects with type(object) = dict """ self.N_models = N_models self.loss = 'binary_crossentropy' self.N_input = N_input self.width = width self.act_fct = act_fct self.tf_dist = tf_dist_strat # self.dropout_rate = dropout_rate # canceled; not useful with only one hidden layer of which we tune its width self.lr_init = lr self.optimizer = Adam(learning_rate=self.lr_init) self.resampler = resampler self.history_val = [] self.history_train = [] self.training_steps = 0 # boosted models will be assigned during fitting procedure #self.model_boost = [None]*self.N_models # depreciated version self.model_boost = None # Save memory by reusing file-space, i.e. not saving each intermediate boosting step separately as they are recorded by self.model_base # Create list of weak learner instances (compilation happens in creating functions) # try: # with self.tf_dist.scope(): # self.model_base = [self.create_model_prior()]+[self.create_model_learner() for _ in range(self.N_models-1)] # except Exception as e: # print('Leaners not created within tf-distribution-strategy due to:') # print(e) self.model_base = [self.create_model_prior()]+[self.create_model_learner() for _ in range(self.N_models-1)] def fit(self, x, y, callbacks = [], val_share = 0.3, N_epochs = 200, N_batch = 64, correction_freq = 5): ''' Fitting procedure for the ANN_boost object. Inputs: ------- x: Input Data y: Targets callbacks: list of tf.keras.callbacks objects, e.g. earlyStopping val_share: share of (x,y) used for validation of the model during training and for potential callback options N_epochs: number of epochs for training N_batch: batch size for training correction_freq: frequency in which a corrective step is performed, e.g. 0: never, 1: every epoch, 5: every 5 epochs, ... ''' # handle pandas-datatype if type(x)==type(pd.DataFrame([1])): x=x.values #print('ANN_boost.fit: x values changed from pandas.DataFrame to numpy.array') if type(y) == type(pd.DataFrame([1])): y=y.values #print('ANN_boost.fit: y values changed from pandas.DataFrame to numpy.array') # optional resampling x,y = resample_and_shuffle(x, y, self.resampler) # transform into tf.data.Dataset (important: transformation after optional resampling) try: train_data, val_data = create_tf_dataset(x,y,val_share, N_batch*num_gpus()) except: # go on with regular, numpy-data-type print('tf.data.Dataset could not be constructed. Continuing with numpy-data.') pass if self.N_input != x.shape[1]: raise ValueError('Error: Invalid input shape. Expected ({},) but given ({},)'.format(self.N_input, x.shape[1])) # iterate over number of weak learners included in boosting INPUT = Input(shape= (self.N_input,)) # re-use this input layer to avoid more cache-intensiv multi-inputs models for n in range(1,self.N_models+1): try: with self.tf_dist.scope(): if n == 1: # Note: Average Layer expects >= 2 inputs # Add final sigmoid Activation for classification self.model_boost = Model(inputs = INPUT, outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)(self.model_base[0](INPUT))) else: self.model_boost = Model(inputs = INPUT,#[self.model_base[i].input for i in range(n)], # Note: Average() needs list as input; use .output, not .outputs (-> list of lists) outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)( tf.keras.layers.Add()( [self.model_base[i](INPUT) for i in range(n)]# .output for i in range(n)] ) ) ) # set trainable = True for newly added weak learner (relevant if we retrain model) self.model_base[n-1].trainable = True # compile model self.model_boost.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) except Exception as e: print('Booster not created within distribution strategy due to:') print(e) if n == 1: # Note: Average Layer expects >= 2 inputs # Add final sigmoid Activation for classification self.model_boost = Model(inputs = INPUT, outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)(self.model_base[0](INPUT)))#.output)) else: self.model_boost = Model(inputs = INPUT,#[self.model_base[i].input for i in range(n)], # Note: Average() needs list as input; use .output, not .outputs (-> list of lists) outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)( tf.keras.layers.Add()( [self.model_base[i](INPUT) for i in range(n)]# .output for i in range(n)] ) ) ) # set trainable = True for newly added weak learner (relevant if we retrain model) self.model_base[n-1].trainable = True # compile model self.model_boost.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) # train boosting model print('Training Model {}'.format(n)) print('\t trainable params: '+ str(keras_count_nontrainable_params(self.model_boost, trainable=True))) print('\t nontrainable params: '+ str(keras_count_nontrainable_params(self.model_boost, trainable=False))) t_start = time.time() if (n==1): # set weights = 0 and bias = sigmoid^-1(baseline_hazard) try: with self.tf_dist.scope(): self.model_boost.layers[1].set_weights([np.array([0]*self.N_input).reshape((-1,1)), np.array([np.log(y.mean()/(1-y.mean()))])]) except Exception as e: print('Setting weights of baseline-learner not performed within tf-distribution-strategy due to:') print(e) self.model_boost.layers[1].set_weights([np.array([0]*self.N_input).reshape((-1,1)), np.array([np.log(y.mean()/(1-y.mean()))])]) else: try: # if data in tf.data.Dataset format available print('\t .. training on tf.data.Dataset') self.model_boost.fit(x=train_data, validation_data = val_data, epochs = N_epochs, verbose = 2, callbacks=callbacks) except Exception as e: print('Leaners not created within tf-distribution-strategy due to:') print(e) self.model_boost.fit(x=x, y = y, batch_size= N_batch, epochs = N_epochs, validation_split= val_share, verbose = 0, callbacks=callbacks) self.history_val += self.model_boost.history.history['val_loss'] self.history_train += self.model_boost.history.history['loss'] # evolutionary fitting of boosting model #self.fit_evolutionary(x=x, y=y, batch_size=N_batch, epochs=N_epochs, epochs_per_it=25, validation_split=val_share, callbacks=callbacks) print('\t ... {} epochs'.format(len(self.history_val)-self.training_steps)) self.training_steps = len(self.history_val) print('\t ... {} sec.'.format(time.time()-t_start)) #print('\t ... eval.: ', self.model_boost.evaluate(x,y, verbose=0)) # optional: display to observe progress of training; however, slows down training. print('\t ... Done!') # decaying influence of weak learners #self.optimizer.lr = self.lr_init*0.9**n # corrective step: set all parameters as trainable and update them using SGD if n>1: if (correction_freq > 0) & (n%correction_freq ==0): self.corrective_step(model = self.model_boost, x=x, y=y, callbacks=callbacks, val_share=val_share, N_epochs = N_epochs, N_batch= N_batch) # set trainable = False for weak learner that has been included in the boosting model self.model_base[n-1].trainable = False def fit_evolutionary(self, x, y, batch_size, epochs, epochs_per_it, validation_split, callbacks): ''' Customized training scheme, using early stopping/ callbacks and a iterative reduction of the initial learning rate. ## DEPRECIATED as not very affective in the given scenario ''' self.model_boost.fit(x=x, y = y, batch_size= batch_size, epochs = epochs_per_it, validation_split=validation_split, verbose = 0, callbacks=callbacks) self.history_train += self.model_boost.history.history['loss'] self.history_val += self.model_boost.history.history['val_loss'] #print(self.history_train) #print(type(self.history_train)) val_loss = min(self.history_val) #print('minimum val_loss: ', val_loss) evol_patience = 0 for ep in range(epochs//epochs_per_it): self.optimizer.lr= self.lr_init*1.2**(1+ep%4) # compile to effectively update lr self.model_boost.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) print(' \t Fine tuning step ', ep, '...', ' (val_loss: ', np.round_(val_loss,4), ')') self.model_boost.fit(x=x, y = y, batch_size=batch_size, epochs = epochs_per_it, validation_split=validation_split, verbose = 0, callbacks=callbacks) # record training/ validation history self.history_train += self.model_boost.history.history['loss'] self.history_val += self.model_boost.history.history['val_loss'] if min(self.history_val) < val_loss*0.99: val_loss = min(self.history_val) else: evol_patience += 1 if evol_patience > 3: break def corrective_step(self, model, x, y, callbacks = [], val_share = 0.3, N_epochs = 200, N_batch = 64): ''' Perform a corrective step by updating all parameters of boosting model, i.e. all included weak learners. ''' # handle pandas-datatype if type(x)==type(pd.DataFrame([1])): x=x.values #print('ANN_boost.fit: x values changed from pandas.DataFrame to numpy.array') if type(y) == type(pd.DataFrame([1])): y=y.values #print('ANN_boost.fit: y values changed from pandas.DataFrame to numpy.array') # transform into tf.data.Dataset try: train_data, val_data = create_tf_dataset(x,y,val_share, N_batch*num_gpus()) except: # go on with regular, numpy-data-type print('tf.data.Dataset could not be constructed. Continuing with numpy-data.') pass # allow updating of all parameters try: with self.tf_dist.scope(): model.trainable = True model.compile(optimizer = Adam(lr=self.lr_init/2), loss = self.loss, metrics = ['acc']) except Exception as e: print('Leaners not created within tf-distribution-strategy due to:') print(e) model.trainable = True model.compile(optimizer = Adam(lr=self.lr_init/2), loss = self.loss, metrics = ['acc']) print('Corrective Step ... ') print('\t trainable params: '+ str(keras_count_nontrainable_params(model, trainable=True))) print('\t nontrainable params: '+ str(keras_count_nontrainable_params(model, trainable=False))) t_start = time.time() #self.fit_evolutionary(x=x, y=y, batch_size=N_batch, epochs=N_epochs, epochs_per_it=25, validation_split=val_share, callbacks=callbacks) try: # train with tf.data.dataset; explicitly indicate val_data; batch_size indicated in tf.data.dataset model.fit(x=train_data, epochs = N_epochs, validation_data= val_data, verbose = 2, callbacks=callbacks) except Exception as e: print('Model not created within tf-distribution-strategy due to:') print(e) model.fit(x=x, y = y, batch_size= N_batch, epochs = N_epochs, validation_split= val_share, verbose = 2, callbacks=callbacks) print('\t ... {} epochs'.format(len(model.history.history['val_loss']))) run_time = time.time()-t_start print('\t ... {} sec.'.format(run_time)) print('\t ... Correction performed!') # Lock updates model.trainable = False return run_time def save_object(self, path): ''' Function to save the ANN_boost object. Required, as e.g. Sequential()-Object in self.model_base[i] cannot be pickled or dilled. Hence, we save only the respective weights and provide a function load_object to restore the fully functional ANN_boost object. Note: load_ANN_boost_object is no ANN_boost object function. However, the loaded ANN_boost object uses object.restore_learners() to restore learners and boosted models. ''' # save weights of learners #self.model_base = [self.model_base[i].get_weights() for i in range(self.N_models)] # delete boosted models temporarily for pickling; can be restored with weights of (trained) learners #cache = clone_model(self.model_boost) #cache.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) model_backup = ANN_boost(N_models= self.N_models, N_input= self.N_input, width = self.width, act_fct = self.act_fct) model_backup.model_base = [sub_model.get_weights() for sub_model in self.model_base] # save only weights -> to be restored in self.restore_learners() # Note: Adam-object cannot be pickled in tf 2.4. # workaround: switch to string-information and restore full optimizer (incl. learning_rate) in restore_learners model_backup.optimizer = 'adam' #self.model_boost = None#*self.N_models with open( path, "wb" ) as file: pickle.dump(model_backup, file) print('ANN object dumped to ', path) #self.model_boost = cache def restore_learners(self): ''' Restore the full Sequential() architecture of self.model_base[i] and self.model_boost[i] which were replaced by their weights to pickle dump the object. ''' weights = copy.copy(self.model_base) self.model_base = [self.create_model_prior()]+[self.create_model_learner() for _ in range(1,self.N_models)] [self.model_base[i].set_weights(weights[i]) for i in range(self.N_models)] #print(self.model_base) # iterate over number of weak learners included in boosting for n in range(1,self.N_models+1): INPUT = Input(shape= (self.N_input,)) if n == 1: # Note: Average Layer expects >= 2 inputs # Add final sigmoid Activation for classification #self.model_boost[n-1] = Model(inputs = self.model_base[0].input, # outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)(self.model_base[0].output)) self.model_boost = Model(inputs = INPUT,#self.model_base[0].input, outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)(self.model_base[0](INPUT)))#.output)) else: #self.model_boost[n-1] self.model_boost = Model(inputs = INPUT,#[self.model_base[i].input for i in range(n)], # Note: Average() needs list as input; use .output, not .outputs (-> list of lists) outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)( tf.keras.layers.Add()( [self.model_base[i](INPUT) for i in range(n)]# .output for i in range(n)] ) ) ) # set trainable = True for newly added weak learner (relevant if we retrain model) self.model_base[n-1].trainable = True # compile model self.model_boost.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) def create_model_prior(self): ''' Base model 0 in boosting structure; expresses a prior estimate (here constant rate) that will be improved by subsequent model created by create_model_learner. ''' model = Sequential() model.add(Dense(1, activation= 'linear', input_dim = self.N_input)) model.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) return model def create_model_learner(self): ''' Create architecture for weak learners in boosting strategy. ''' model = Sequential() # Hidden layer try: model.add(Dense(units = self.width, activation = self.act_fct, input_dim = self.N_input)) except: # old implementation model.add(Dense(units = self.width_lst[0], activation = self.act_fct_lst[0], input_dim = self.N_input)) print('sub_surrender_models, create_model_learner(): atributes width_lst and act_fct_lst depreciated!') # Output layer model.add(Dense(units = 1, activation = 'linear')) model.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) return model def prune_booster(self, n_learners:int): ''' Take user input how many weak learners should be utilized. The rest will be discarded. ''' assert n_learners<= self.N_models assert n_learners > 1 INPUT = Input(shape= (self.N_input,)) # re-use this input layer to avoid more cache-intensiv multi-inputs models self.model_boost = Model(inputs = INPUT,#[self.model_base[i].input for i in range(n)], # Note: Average() needs list as input; use .output, not .outputs (-> list of lists) outputs = tf.keras.layers.Activation(tf.keras.activations.sigmoid)( tf.keras.layers.Add()( [self.model_base[i](INPUT) for i in range(n_learners)]# .output for i in range(n)] ) ) ) # compile model self.model_boost.compile(optimizer = self.optimizer, loss = self.loss, metrics = ['acc']) def evaluate(self, x, y=None): try: # x is tf.data.Dataset return self.model_boost.evaluate(x, verbose=0) except: return self.model_boost.evaluate(x,y, verbose=0) def predict_proba(self, x): """ Purpose: Predict event probability for data output: \t Predictions for all input data input: \t X: \t Input data """ # handle pandas-datatype if type(x)==type(pd.DataFrame([1])): x=x.values #print('ANN_boost.fit: x values changed from pandas.DataFrame to numpy.array') # Use last iteration of boosting procedure # Note: tf.keras.models.Model() does not posses .predict_proba(), but only .predict() return self.model_boost.predict(x) def predict(self, x): """ Purpose: Predict event probability for data output: \t Predictions for all input data input: \t X: \t Input data """ # handle pandas-datatype if type(x)==type(
pd.DataFrame([1])
pandas.DataFrame
""" This script reads the the long form dataset and trims it. It does this by grouping the dataset by free-flowing status, continent, and ocean connectivity. The script then individually sums the length, volume, and discharge of the river reaches within each category. """ import pandas as pd #%% # Set to the directory that your csv file is in # data_dir = curr_dir + "RiverReaches.csv" data_dir = "" RiverReaches = pd.read_csv(data_dir + "RiverReaches.csv", low_memory=False) river_df =
pd.DataFrame(RiverReaches)
pandas.DataFrame
from typing import Type, Callable, Tuple, Union import numpy as np import pandas as pd import pytest from py4j.java_gateway import JVMView from keanu import set_deterministic_state from keanu.context import KeanuContext from keanu.vartypes import tensor_arg_types, primitive_types, numpy_types, pandas_types from keanu.vertex import Gaussian, Const, UniformInt, Bernoulli, IntegerProxy, Double from keanu.vertex.base import Vertex @pytest.fixture def jvm_view(): from py4j.java_gateway import java_import jvm_view = KeanuContext().jvm_view() java_import(jvm_view, "io.improbable.keanu.vertices.tensor.number.floating.dbl.probabilistic.GaussianVertex") return jvm_view def assert_vertex_value_equals_scalar(vertex: Vertex, expected_type: Type, scalar: primitive_types) -> None: vertex_value = vertex.get_value() assert vertex_value == scalar assert type(vertex_value) == numpy_types assert vertex_value.shape == () assert vertex_value.dtype == expected_type def assert_vertex_value_equals_ndarray(vertex: Vertex, expected_type: Type, ndarray: numpy_types) -> None: vertex_value = vertex.get_value() expected_value = ndarray.astype(expected_type) assert np.array_equal(vertex_value, expected_value) assert np.issubdtype(vertex_value.dtype, expected_type) def assert_vertex_value_equals_pandas(vertex: Vertex, expected_type: Type, pandas: pandas_types) -> None: get_value = vertex.get_value() expected_value = pandas.values.astype(expected_type).reshape(get_value.shape) assert np.array_equal(get_value, expected_value) assert np.issubdtype(get_value.dtype, expected_type) def test_can_pass_scalar_to_vertex() -> None: gaussian = Gaussian(0., 1.) sample = gaussian.sample() assert type(sample) == numpy_types assert sample.shape == () assert sample.dtype == float def test_can_pass_ndarray_to_vertex() -> None: gaussian = Gaussian(np.array([0.1, 0.4]), np.array([0.4, 0.5])) sample = gaussian.sample() assert sample.shape == (2,) def test_can_pass_pandas_dataframe_to_vertex() -> None: gaussian = Gaussian(pd.DataFrame(data=[0.1, 0.4]), pd.DataFrame(data=[0.1, 0.4])) sample = gaussian.sample() assert sample.shape == (2, 1) def test_can_pass_pandas_series_to_vertex() -> None: gaussian = Gaussian(pd.Series(data=[0.1, 0.4]), pd.Series(data=[0.1, 0.4])) sample = gaussian.sample() assert sample.shape == (2,) def test_can_pass_vertex_to_vertex(jvm_view: JVMView) -> None: mu = Gaussian(0., 1.) gaussian = Vertex(jvm_view.GaussianVertex, "gaussian", mu, Const(1.)) sample = gaussian.sample() assert type(sample) == numpy_types assert sample.shape == () assert sample.dtype == float def test_can_pass_array_to_vertex(jvm_view: JVMView) -> None: gaussian = Vertex(jvm_view.GaussianVertex, "gaussian", [3, 3], Const(0.), Const(1.)) sample = gaussian.sample() assert sample.shape == (3, 3) def test_cannot_pass_generic_to_vertex(jvm_view: JVMView) -> None: class GenericExampleClass: pass with pytest.raises(ValueError, match=r"Can't parse generic argument. Was given {}".format(GenericExampleClass)): Vertex( # type: ignore # this is expected to fail mypy jvm_view.GaussianVertex, "gaussian", GenericExampleClass(), GenericExampleClass()) def test_int_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[1, 2], [3, 4]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.int64 or value.dtype == np.int32 assert (value == ndarray).all() def test_float_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[1., 2.], [3., 4.]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.float64 assert (value == ndarray).all() def test_boolean_vertex_value_is_a_numpy_array() -> None: ndarray = np.array([[True, True], [False, True]]) vertex = Const(ndarray) value = vertex.get_value() assert type(value) == np.ndarray assert value.dtype == np.bool_ assert (value == ndarray).all() def test_scalar_vertex_value_is_a_numpy_array() -> None: scalar = 1. vertex = Const(scalar) value = vertex.get_value() assert type(value) == numpy_types assert value.shape == () assert value.dtype == float assert value == scalar def test_vertex_sample_is_a_numpy_array() -> None: mu = np.array([[1., 2.], [3., 4.]]) sigma = np.array([[.1, .2], [.3, .4]]) vertex = Gaussian(mu, sigma) value = vertex.sample() assert type(value) == np.ndarray assert value.dtype == np.float64 assert value.shape == (2, 2) def test_get_connected_graph() -> None: gaussian = Gaussian(0., 1.) connected_graph = set(gaussian.iter_connected_graph()) assert len(connected_graph) == 3 def test_id_str_of_downstream_vertex_is_higher_than_upstream() -> None: hyper_params = Gaussian(0., 1.) gaussian = Gaussian(0., hyper_params) hyper_params_id = hyper_params.get_id() gaussian_id = gaussian.get_id() assert type(hyper_params_id) == tuple assert type(gaussian_id) == tuple assert hyper_params_id < gaussian_id def test_construct_vertex_with_java_vertex() -> None: java_vertex = Gaussian(0., 1.).unwrap() python_vertex = Vertex._from_java_vertex(java_vertex) assert tuple(java_vertex.getId().getValue()) == python_vertex.get_id() def test_java_collections_to_generator() -> None: gaussian = Gaussian(0., 1.) java_collections = gaussian.unwrap().getConnectedGraph() python_list = list(Vertex._to_generator(java_collections)) java_vertex_ids = [Vertex._get_python_id(java_vertex) for java_vertex in java_collections] assert java_collections.size() == len(python_list) assert all(type(element) == Double and element.get_id() in java_vertex_ids for element in python_list) def test_get_vertex_id() -> None: gaussian = Gaussian(0., 1.) java_id = gaussian.unwrap().getId().getValue() python_id = gaussian.get_id() assert all(value in python_id for value in java_id) def test_ids_are_reset() -> None: gaussian = Gaussian(0., 1.) set_deterministic_state() gaussian2 = Gaussian(0., 1.) assert gaussian.get_id() == gaussian2.get_id() @pytest.mark.parametrize("vertex, expected_type", [(Gaussian(0., 1.), np.floating), (UniformInt(0, 10), np.integer), (Bernoulli(0.5), np.bool_)]) @pytest.mark.parametrize("value, assert_vertex_value_equals", [(np.array([[4]]), assert_vertex_value_equals_ndarray), (np.array([[5.]]), assert_vertex_value_equals_ndarray), (np.array([[True]]), assert_vertex_value_equals_ndarray), (np.array([[1, 2], [3, 4]]), assert_vertex_value_equals_ndarray), (pd.Series(data=[4]), assert_vertex_value_equals_pandas), (pd.Series(data=[5.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True]), assert_vertex_value_equals_pandas), (pd.Series(data=[1, 2, 3]), assert_vertex_value_equals_pandas), (pd.Series(data=[1., 2., 3.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True, False, False]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[4]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[5.]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[True]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1, 2, 3]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1., 2., 3.]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[True, False, False]]), assert_vertex_value_equals_pandas)]) def test_you_can_set_value(vertex: Vertex, expected_type: Type, value: tensor_arg_types, assert_vertex_value_equals: Callable) -> None: vertex.set_value(value) assert_vertex_value_equals(vertex, expected_type, value) @pytest.mark.parametrize("vertex, expected_type, value", [(Gaussian(0., 1.), float, 4.), (UniformInt(0, 10), int, 5), (Bernoulli(0.5), bool, True)]) def test_you_can_set_scalar_value(vertex, expected_type, value): vertex.set_value(value) assert_vertex_value_equals_scalar(vertex, expected_type, value) @pytest.mark.parametrize("ctor, args, expected_type", [(Gaussian, (0., 1.), np.floating), (UniformInt, (0, 10), np.integer), (Bernoulli, (0.5,), np.bool_)]) @pytest.mark.parametrize("value, assert_vertex_value_equals", [(np.array([[4]]), assert_vertex_value_equals_ndarray), (np.array([[5.]]), assert_vertex_value_equals_ndarray), (np.array([[True]]), assert_vertex_value_equals_ndarray), (np.array([[1, 2], [3, 4]]), assert_vertex_value_equals_ndarray), (pd.Series(data=[4]), assert_vertex_value_equals_pandas), (pd.Series(data=[5.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True]), assert_vertex_value_equals_pandas), (pd.Series(data=[1, 2, 3]), assert_vertex_value_equals_pandas), (pd.Series(data=[1., 2., 3.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True, False, False]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[4]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[5.]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[True]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1, 2, 3]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1., 2., 3.]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[True, False, False]]), assert_vertex_value_equals_pandas)]) def test_you_can_set_and_cascade(ctor: Callable, args: Union[Tuple[float, ...], Tuple[int, ...]], expected_type: Type, value: tensor_arg_types, assert_vertex_value_equals: Callable) -> None: vertex1 = ctor(*args) vertex2 = ctor(*args) equal_vertex = vertex1 == vertex2 not_equal_vertex = vertex1 != vertex2 vertex1.set_value(value) vertex2.set_and_cascade(value) assert_vertex_value_equals(vertex1, expected_type, value) assert_vertex_value_equals(vertex2, expected_type, value) two_values_are_equal = equal_vertex.get_value() is_scalar = type(two_values_are_equal) == bool assert type(two_values_are_equal) == bool or two_values_are_equal.dtype == np.bool_ if not is_scalar: assert two_values_are_equal.shape == vertex1.get_value().shape == vertex2.get_value().shape assert np.all(two_values_are_equal) two_values_are_not_equal = not_equal_vertex.get_value() assert type(two_values_are_equal) == bool or two_values_are_not_equal.dtype == np.bool_ if not is_scalar: assert two_values_are_not_equal.shape == vertex1.get_value().shape == vertex2.get_value().shape assert np.all(np.invert(two_values_are_not_equal)) @pytest.mark.parametrize("ctor, args, expected_type, value", [(Gaussian, (0., 1.), float, 4.), (UniformInt, (0, 10), int, 5), (Bernoulli, (0.5,), bool, True)]) def test_you_can_set_and_cascade_scalar(ctor, args, expected_type, value) -> None: test_you_can_set_and_cascade(ctor, args, expected_type, value, assert_vertex_value_equals_scalar) @pytest.mark.parametrize("ctor, args, expected_type", [(Gaussian, (0., 1.), np.floating), (UniformInt, (0, 10), np.integer), (Bernoulli, (0.5,), np.bool_)]) @pytest.mark.parametrize("value, assert_vertex_value_equals", [(np.array([[4]]), assert_vertex_value_equals_ndarray), (np.array([[5.]]), assert_vertex_value_equals_ndarray), (np.array([[True]]), assert_vertex_value_equals_ndarray), (np.array([[1, 2], [3, 4]]), assert_vertex_value_equals_ndarray), (pd.Series(data=[4]), assert_vertex_value_equals_pandas), (pd.Series(data=[5.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True]), assert_vertex_value_equals_pandas), (pd.Series(data=[1, 2, 3]), assert_vertex_value_equals_pandas), (pd.Series(data=[1., 2., 3.]), assert_vertex_value_equals_pandas), (pd.Series(data=[True, False, False]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[4]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[5.]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[True]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1, 2, 3]]), assert_vertex_value_equals_pandas), (pd.DataFrame(data=[[1., 2., 3.]]), assert_vertex_value_equals_pandas), (
pd.DataFrame(data=[[True, False, False]])
pandas.DataFrame
import pandas as pd def get_zipcode(lat, lon, all_l): row = all_l[(all_l['latitude'] == lat) & (all_l['longitude'] == lon)] print(row) print("*") if __name__ == "__main__": root_path = "/Users/shravya/Documents/CMU/Interactive_Data_Science/Assignments/3/Code2/data/" reviews = {'NYC': pd.read_csv(root_path + 'NYC_reviews.csv')} NYC_listings = {'01': pd.read_csv(root_path + '2020/NYC/listings_01.csv'), '02': pd.read_csv(root_path + '2020/NYC/listings_02.csv'), '03': pd.read_csv(root_path + '2020/NYC/listings_03.csv'), '04': pd.read_csv(root_path + '2020/NYC/listings_04.csv'), '05': pd.read_csv(root_path + '2020/NYC/listings_05.csv'), '06': pd.read_csv(root_path + '2020/NYC/listings_06.csv'), '07': pd.read_csv(root_path + '2020/NYC/listings_07.csv')} covid_data = pd.read_csv(root_path + 'data-by-modzcta.csv') covid_data = covid_data.rename(columns={"MODIFIED_ZCTA": "zipcode"}) for key in NYC_listings.keys(): df = NYC_listings[key] df = df[['zipcode', 'latitude', 'longitude']] NYC_listings[key] = df all_listings = pd.concat([NYC_listings['01'], NYC_listings['02'], NYC_listings['03'], NYC_listings['04'], NYC_listings['05'], NYC_listings['06'], NYC_listings['07']], ignore_index=True) all_listings.drop_duplicates(subset=['zipcode'], inplace=True, keep='last') all_listings['latitude'] = pd.to_numeric(all_listings['latitude']) all_listings['longitude'] = pd.to_numeric(all_listings['longitude']) # Now join zipcode info with covid covid_data['zipcode'] = covid_data['zipcode'].apply(str) covid_zipcode = covid_data.merge(all_listings, on='zipcode', how='left') covid_zipcode = covid_zipcode.dropna(subset=['latitude', 'longitude']) # Write to a file # covid_zipcode.to_csv('covid_data_cleaned.csv', index=False) # Get zipcode for months 8 and 9 month8 = pd.read_csv(root_path + '2020/NYC/listings_08.csv') month9 = pd.read_csv(root_path + '2020/NYC/listings_09.csv') NYC_listings = {'01': pd.read_csv(root_path + '2020/NYC/listings_01.csv'), '02': pd.read_csv(root_path + '2020/NYC/listings_02.csv'), '03': pd.read_csv(root_path + '2020/NYC/listings_03.csv'), '04': pd.read_csv(root_path + '2020/NYC/listings_04.csv'), '05':
pd.read_csv(root_path + '2020/NYC/listings_05.csv')
pandas.read_csv
import librosa import numpy as np import pandas as pd from os import listdir from os.path import isfile, join from audioread import NoBackendError def extract_features(path, label, emotionId, startid): """ 提取path目录下的音频文件的特征,使用librosa库 :param path: 文件路径 :param label: 情绪类型 :param startid: 开始的序列号 :return: 特征矩阵 pandas.DataFrame """ id = startid # 序列号 feature_set = pd.DataFrame() # 特征矩阵 # 单独的特征向量 labels = pd.Series() emotion_vector = pd.Series() songname_vector = pd.Series() tempo_vector =
pd.Series()
pandas.Series
''' This method uses these features ['dow', 'year', 'month', 'day_of_week', 'holiday_flg', 'min_visitors', 'mean_visitors', 'median_visitors', 'max_visitors', 'count_observations', 'air_genre_name', 'air_area_name', 'latitude', 'longitude', 'rs1_x', 'rv1_x', 'rs2_x', 'rv2_x', 'rs1_y', 'rv1_y', 'rs2_y', 'rv2_y', 'total_reserv_sum', 'total_reserv_mean', 'total_reserv_dt_diff_mean'] RMSE GradientBoostingRegressor: 0.501477019571 RMSE KNeighborsRegressor: 0.421517079307 ''' import glob, re import numpy as np import pandas as pd from sklearn import * from datetime import datetime def RMSLE(y, pred): return metrics.mean_squared_error(y, pred)**0.5 data = { 'tra': pd.read_csv('./data/air_visit_data.csv'), 'as': pd.read_csv('./data/air_store_info.csv'), 'hs':
pd.read_csv('./data/hpg_store_info.csv')
pandas.read_csv
#!/usr/bin/env python import argparse import pandas as pd import re #read arguments parser = argparse.ArgumentParser(description="Recluster the gene clusters by species pairs based on orthopairs") parser.add_argument("--orthopairs", "-op", required=True) parser.add_argument("--orthogroups", "-og", required=True) parser.add_argument("--species1", "-s1", required=True) parser.add_argument("--species2", "-s2", required=True) parser.add_argument("--output_file", "-out", required=True) args = parser.parse_args() my_orthopairs = args.orthopairs my_orthogroup = args.orthogroups species1 = args.species1 species2 = args.species2 my_output = args.output_file #### Main #read input orthopairs_df = pd.read_table(my_orthopairs, sep="\t", header=0, names=["GeneID1", "GeneID2"]) orthopairs_df["GeneID1"] = [re.sub(".*\\|", "", element) for element in list(orthopairs_df["GeneID1"])] orthopairs_df["GeneID2"] = [re.sub(".*\\|", "", element) for element in list(orthopairs_df["GeneID2"])] orthogroups_df = pd.read_table(my_orthogroup, sep="\t", header=0, names=["ClusterID", "Species", "GeneID", ""], index_col=None) #add Species to orthopairs geneID_species_dict = pd.Series(orthogroups_df.Species.values, index=orthogroups_df.GeneID).to_dict() orthopairs_df["Species1"] = orthopairs_df["GeneID1"].map(geneID_species_dict) orthopairs_df["Species2"] = orthopairs_df["GeneID2"].map(geneID_species_dict) #add ClusterID to orthopairs geneID_clusterID_dict = pd.Series(orthogroups_df.ClusterID.values, index=orthogroups_df.GeneID).to_dict() orthopairs_df["ClusterID"] = orthopairs_df["GeneID1"].map(geneID_clusterID_dict) #GeneID1 and GeneID2 would do the same job here. #filter only for species1 and species2 orthologs. species_pair_df = orthopairs_df.loc[orthopairs_df.Species1.isin([species1, species2])] species_pair_df = species_pair_df.loc[orthopairs_df.Species2.isin([species1, species2])] #group by gene cluster species_pair_grouped_df = species_pair_df.groupby("ClusterID") final_df =
pd.DataFrame()
pandas.DataFrame
# Environment Setup # ---------------------------------------------------------------- # Dependencies import csv import pandas as pd import random import numpy as np # Output File Name file_output_players = "generated_data/players_complete.csv" file_output_items = "generated_data/items_complete.csv" # file_output_purchases_json = "generated_data/purchase_data_3.json" file_output_purchases_csv = "generated_data/purchase_data.csv" # Convert the Players List to a Data Frame players = pd.read_csv("raw_data/players.csv", dtype="str", header=0) total_players = len(players) items = pd.read_table("raw_data/items.txt", delimiter="\t", dtype="str") total_items = len(items) # Generator Conditions (Change as Needed) # ---------------------------------------------------------------- # Population Counts total_purchase_count = 780 player_count = len(players) - 27 item_count = len(items) - 6 # Player Weight genders = ["Male", "Female", "Other / Non-Disclosed"] gender_weights = [0.82, 0.16, 0.02] age_ranges = [7, 15, 20, 25, 30, 35, 40, 45] age_weights = [0.01, 0.09, 0.20, 0.46, 0.10, 0.08, 0.05, 0.01] # Item Prices low_price = 1 high_price = 5 # Generate Players # ---------------------------------------------------------------- # Generate all gender probabilities gender_probabilities = zip(genders, gender_weights) gender_profiles = [] # Generate a sufficient number of genders for gender in gender_probabilities: gender_profiles = gender_profiles + \ [gender[0]] * int(gender[1] * total_players) # Generate random ages age_probabilities = zip(age_ranges, age_weights) age_counts = [] age_profiles = [] for age in age_probabilities: age_counts = age_counts + [int(age[1] * total_players)] age_probabilities = zip(age_counts, age_ranges) # Generate right number of random numbers prev_age = age_ranges[0] for age in age_probabilities: for x in range(age[0]): age_profiles = age_profiles + [random.randint(prev_age, age[1])] prev_age = age[1] random.shuffle(gender_profiles) random.shuffle(age_profiles) # Convert lists into pandas data frames gender_profiles_pd = pd.Series(gender_profiles) age_profiles_pd =
pd.Series(age_profiles)
pandas.Series
# -*- coding: utf-8 -*- """ @author: meslami """ # Multilayer Perceptron import pandas import numpy # fix random seed for reproducibility seed = 7 numpy.random.seed(seed) import tensorflow.keras import math from tensorflow.keras.utils import plot_model from tensorflow.keras.models import Model from tensorflow.keras.layers import Conv2DTranspose,Input, Reshape, Conv2D, Flatten from tensorflow.keras.layers import Dense,concatenate from sklearn.metrics import mean_squared_error import argparse #from tensorflow.keras.utils.np_utils import to_categorical import tensorflow as tf import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from tensorflow.keras.layers import Dropout import numpy as np from sklearn.metrics import r2_score from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.model_selection import StratifiedKFold from scipy.stats import pearsonr, spearmanr #################### ####### Functions ############# #################### def custom_loss_2 (y_true, y_pred): A = tensorflow.keras.losses.mean_absolute_error(y_true, y_pred) return A def lrelu(x): #from pix2pix code a=0.2 # adding these together creates the leak part and linear part # then cancels them out by subtracting/adding an absolute value term # leak: a*x/2 - a*abs(x)/2 # linear: x/2 + abs(x)/2 # this block looks like it has 2 inputs on the graph unless we do this x = tf.identity(x) return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x) def lrelu_output_shape(input_shape): shape = list(input_shape) return tuple(shape) from tensorflow.keras.layers import Lambda layer_lrelu=Lambda(lrelu, output_shape=lrelu_output_shape) def FnCreateTargetImages(Labels): OutputImages=np.zeros(shape=(len(Labels),45,45,3)) lables_int=Labels.astype(int) for i in range(len(Labels)): OutputImages[i,10:35,:lables_int[i],0]=0 OutputImages[i,10:35,:lables_int[i],1]=1 OutputImages[i,10:35,:lables_int[i],2]=1 return OutputImages def FnCreateValidLabes(Labels): return range(len(Labels)) #################### ###### End of functions ############## #################### #################### ###### Reading input arguments ############## ######################################################### ######### Hyper paramters configurations ################## ########### ########################################################## parser = argparse.ArgumentParser() parser.add_argument("--output", ) parser.add_argument("--max_epochs", ) parser.add_argument("--BatchSize", ) parser.add_argument("--k", ) parser.add_argument("--m", ) a = parser.parse_args() a.max_epochs=300 a.BatchSize=1000 a.output='./1/' import os try: os.stat(a.output) except: os.mkdir(a.output) #################### ###### Preparing Data ############## ###### code from https://github.com/daniel-codes/hospital-los-predictor ############## #################### ###### Reading Data #################### # Primary Admissions information df =
pandas.read_csv('./data/ADMISSIONS.csv')
pandas.read_csv
import base64 import datetime import io import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from xlrd.xldate import xldate_as_datetime from yattag import Doc plt.rcParams.update({"figure.autolayout": True}) import matplotlib.gridspec as gridspec import pandas as pd import scipy.stats import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import logging """ TF_CPP_MIN_LOG_LEVEL: Defaults to 0, so all logs are shown. Set TF_CPP_MIN_LOG_LEVEL to 1 to filter out INFO logs, 2 to additionally filter out WARNING, 3 to additionally filter out ERROR. """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" from tensorflow import keras class NNetwork(object): def __init__(self, network_count=200, epochs=1000): logging.getLogger().setLevel(logging.INFO) self.xl_dateformat = r"%Y-%m-%dT%H:%M" self.model = None self.pretrained_networks = [] self.software_version = "2.0.1" self.input_filename = None self.today = str(datetime.date.today()) self.avg_time_elapsed = 0 self.predictors_scaler = MinMaxScaler(feature_range=(-1, 1)) self.targets_scaler = MinMaxScaler(feature_range=(-1, 1)) self.history = None self.file = None self.skipped_rows = [] self.ruleset = [] self.layer1_neurons = 12 self.network_count = network_count self.epochs = epochs self.predictors = None self.targets = None self.predictions = None self.avg_case_results_am = None self.avg_case_results_pm = None self.worst_case_results_am = None self.worst_case_results_pm = None self.WB_bandwidth = None self.post_process_check = False # Is post-processed better than raw. If False, uses raw results, if true, uses post-processed results self.optimizer = keras.optimizers.Nadam(lr=0.01, beta_1=0.9, beta_2=0.999) self.model = keras.models.Sequential() self.model.add( keras.layers.Dense(self.layer1_neurons, input_dim=5, activation="tanh") ) self.model.add(keras.layers.Dense(1, activation="linear")) self.model.compile(loss="mse", optimizer=self.optimizer, metrics=["mse"]) def import_data_from_csv(self, filename): """ Imports data to the network by a comma-separated values (CSV) file. Load data to a network that are stored in .csv file format. The data loaded from this method can be used both for training reasons as well as to make predictions. :param filename: String containing the filename of the .csv file containing the input data (e.g "input_data.csv") """ df = pd.read_csv(filename) self.file = df.copy() global FRC_IN global FRC_OUT global WATTEMP global COND # Locate the fields used as inputs/predictors and outputs in the loaded file # and split them if "se1_frc" in self.file.columns: FRC_IN = "se1_frc" WATTEMP = "se1_wattemp" COND = "se1_cond" FRC_OUT = "se4_frc" elif "ts_frc1" in self.file.columns: FRC_IN = "ts_frc1" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc1" elif "ts_frc" in self.file.columns: FRC_IN = "ts_frc" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc" # Standardize the DataFrame by specifying rules # To add a new rule, call the method execute_rule with the parameters (description, affected_column, query) self.execute_rule("Invalid tapstand FRC", FRC_IN, self.file[FRC_IN].isnull()) self.execute_rule("Invalid household FRC", FRC_OUT, self.file[FRC_OUT].isnull()) self.execute_rule( "Invalid tapstand date/time", "ts_datetime", self.valid_dates(self.file["ts_datetime"]), ) self.execute_rule( "Invalid household date/time", "hh_datetime", self.valid_dates(self.file["hh_datetime"]), ) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) # fix dropped indices in pandas # Locate the rows of the missing data drop_threshold = 0.90 * len(self.file.loc[:, [FRC_IN]]) nan_rows_watt = self.file.loc[self.file[WATTEMP].isnull()] if len(nan_rows_watt) < drop_threshold: self.execute_rule( "Missing Water Temperature Measurement", WATTEMP, self.file[WATTEMP].isnull(), ) nan_rows_cond = self.file.loc[self.file[COND].isnull()] if len(nan_rows_cond) < drop_threshold: self.execute_rule("Missing EC Measurement", COND, self.file[COND].isnull()) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) start_date = self.file["ts_datetime"] end_date = self.file["hh_datetime"] durations = [] all_dates = [] collection_time = [] for i in range(len(start_date)): try: # excel type start = float(start_date[i]) end = float(end_date[i]) start = xldate_as_datetime(start, datemode=0) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = xldate_as_datetime(end, datemode=0) except ValueError: # kobo type start = start_date[i][:16].replace("/", "-") end = end_date[i][:16].replace("/", "-") start = datetime.datetime.strptime(start, self.xl_dateformat) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = datetime.datetime.strptime(end, self.xl_dateformat) durations.append((end - start).total_seconds()) all_dates.append(datetime.datetime.strftime(start, self.xl_dateformat)) self.durations = durations self.time_of_collection = collection_time self.avg_time_elapsed = np.mean(durations) # Extract the column of dates for all data and put them in YYYY-MM-DD format self.file["formatted_date"] = all_dates predictors = { FRC_IN: self.file[FRC_IN], "elapsed time": (np.array(self.durations) / 3600), "time of collection (0=AM, 1=PM)": self.time_of_collection, } self.targets = self.file.loc[:, FRC_OUT] self.var_names = [ "Tapstand FRC (mg/L)", "Elapsed Time", "time of collection (0=AM, 1=PM)", ] self.predictors = pd.DataFrame(predictors) if len(nan_rows_watt) < drop_threshold: self.predictors[WATTEMP] = self.file[WATTEMP] self.var_names.append("Water Temperature(" + r"$\degree$" + "C)") self.median_wattemp = np.median(self.file[WATTEMP].dropna().to_numpy()) self.upper95_wattemp = np.percentile( self.file[WATTEMP].dropna().to_numpy(), 95 ) if len(nan_rows_cond) < drop_threshold: self.predictors[COND] = self.file[COND] self.var_names.append("EC (" + r"$\mu$" + "s/cm)") self.median_cond = np.median(self.file[COND].dropna().to_numpy()) self.upper95_cond = np.percentile(self.file[COND].dropna().to_numpy(), 95) self.targets = self.targets.values.reshape(-1, 1) self.datainputs = self.predictors self.dataoutputs = self.targets self.input_filename = filename def set_up_model(self): self.optimizer = keras.optimizers.Nadam(lr=0.01, beta_1=0.9, beta_2=0.999) self.model = keras.models.Sequential() self.model.add( keras.layers.Dense( self.layer1_neurons, input_dim=len(self.datainputs.columns), activation="tanh", ) ) self.model.add(keras.layers.Dense(1, activation="linear")) self.model.compile(loss="mse", optimizer=self.optimizer) def train_SWOT_network(self, directory): """Train the set of 200 neural networks on SWOT data Trains an ensemble of 200 neural networks on se1_frc, water temperature, water conductivity.""" if not os.path.exists(directory): os.makedirs(directory) self.predictors_scaler = self.predictors_scaler.fit(self.predictors) self.targets_scaler = self.targets_scaler.fit(self.targets) x = self.predictors t = self.targets self.calibration_predictions = [] self.trained_models = {} for i in range(self.network_count): logging.info('Training Network ' + str(i)) model_out = self.train_network(x, t, directory) self.trained_models.update({'model_' + str(i): model_out}) def train_network(self, x, t, directory): """ Trains a single Neural Network on imported data. This method trains Neural Network on data that have previously been imported to the network using the import_data_from_csv() method. The network used is a Multilayer Perceptron (MLP). Input and Output data are normalized using MinMax Normalization. The input dataset is split in training and validation datasets, where 80% of the inputs are the training dataset and 20% is the validation dataset. The training history is stored in a variable called self.history (see keras documentation: keras.model.history object) Performance metrics are calculated and stored for evaluating the network performance. """ tf.keras.backend.clear_session() early_stopping_monitor = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=10, restore_best_weights=True) x_norm = self.predictors_scaler.transform(x) t_norm = self.targets_scaler.transform(t) trained_model = keras.models.clone_model(self.model) x_norm_train, x_norm_val, t_norm_train, t_norm_val = train_test_split(x_norm, t_norm, train_size=0.333, shuffle=True) new_weights = [np.random.uniform(-0.05, 0.05, w.shape) for w in trained_model.get_weights()] trained_model.set_weights(new_weights) trained_model.compile(loss='mse', optimizer=self.optimizer) trained_model.fit(x_norm_train, t_norm_train, epochs=self.epochs, validation_data=(x_norm_val, t_norm_val), callbacks=[early_stopping_monitor], verbose=0, batch_size=len(t_norm_train)) self.calibration_predictions.append(self.targets_scaler.inverse_transform(trained_model.predict(x_norm))) return trained_model def calibration_performance_evaluation(self, filename): Y_true = np.array(self.targets) Y_pred = np.array(self.calibration_predictions) FRC_X = self.datainputs[FRC_IN].to_numpy() capture_all = ( np.less_equal(Y_true, np.max(Y_pred, axis=0)) * np.greater_equal(Y_true, np.min(Y_pred, axis=0)) * 1 ) capture_90 = ( np.less_equal(Y_true, np.percentile(Y_pred, 95, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 5, axis=0)) * 1 ) capture_80 = ( np.less_equal(Y_true, np.percentile(Y_pred, 90, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 10, axis=0)) * 1 ) capture_70 = ( np.less_equal(Y_true, np.percentile(Y_pred, 85, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 15, axis=0)) * 1 ) capture_60 = ( np.less_equal(Y_true, np.percentile(Y_pred, 80, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 20, axis=0)) * 1 ) capture_50 = ( np.less_equal(Y_true, np.percentile(Y_pred, 75, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 25, axis=0)) * 1 ) capture_40 = ( np.less_equal(Y_true, np.percentile(Y_pred, 70, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 30, axis=0)) * 1 ) capture_30 = ( np.less_equal(Y_true, np.percentile(Y_pred, 65, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 35, axis=0)) * 1 ) capture_20 = ( np.less_equal(Y_true, np.percentile(Y_pred, 60, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 40, axis=0)) * 1 ) capture_10 = ( np.less_equal(Y_true, np.percentile(Y_pred, 55, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 45, axis=0)) * 1 ) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) length_20 = np.sum(np.less(Y_true, 0.2)) test_len = len(Y_true) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture = [ capture_10_sum / test_len, capture_20_sum / test_len, capture_30_sum / test_len, capture_40_sum / test_len, capture_50_sum / test_len, capture_60_sum / test_len, capture_70_sum / test_len, capture_80_sum / test_len, capture_90_sum / test_len, capture_all_sum / test_len, ] capture_20 = [ capture_10_20_sum / length_20, capture_20_20_sum / length_20, capture_30_20_sum / length_20, capture_40_20_sum / length_20, capture_50_20_sum / length_20, capture_60_20_sum / length_20, capture_70_20_sum / length_20, capture_80_20_sum / length_20, capture_90_20_sum / length_20, capture_all_20_sum / length_20, ] self.percent_capture_cal = capture_all_sum / test_len self.percent_capture_02_cal = capture_all_20_sum / length_20 self.CI_reliability_cal = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) self.CI_reliability_02_cal = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) # Rank Histogram rank = [] for a in range(0, len(Y_true)): n_lower = np.sum(np.greater(Y_true[a], Y_pred[:, a])) n_equal = np.sum(np.equal(Y_true[a], Y_pred[:, a])) deviate_rank = np.random.random_integers(0, n_equal) rank = np.append(rank, n_lower + deviate_rank) rank_hist = np.histogram(rank, bins=self.network_count + 1) delta = np.sum((rank_hist[0] - (test_len / ((self.network_count + 1)))) ** 2) delta_0 = self.network_count * test_len / (self.network_count + 1) self.delta_score_cal = delta / delta_0 c = self.network_count alpha = np.zeros((test_len, (c + 1))) beta = np.zeros((test_len, (c + 1))) low_outlier = 0 high_outlier = 0 for a in range(0, test_len): observation = Y_true[a] forecast = np.sort(Y_pred[:, a]) for b in range(1, c): if observation > forecast[b]: alpha[a, b] = forecast[b] - forecast[b - 1] beta[a, b] = 0 elif forecast[b] > observation > forecast[b - 1]: alpha[a, b] = observation - forecast[b - 1] beta[a, b] = forecast[b] - observation else: alpha[a, b] = 0 beta[a, b] = forecast[b] - forecast[b - 1] # overwrite boundaries in case of outliers if observation < forecast[0]: beta[a, 0] = forecast[0] - observation low_outlier += 1 if observation > forecast[c - 1]: alpha[a, c] = observation - forecast[c - 1] high_outlier += 1 alpha_bar = np.mean(alpha, axis=0) beta_bar = np.mean(beta, axis=0) g_bar = alpha_bar + beta_bar o_bar = beta_bar / (alpha_bar + beta_bar) if low_outlier > 0: o_bar[0] = low_outlier / test_len g_bar[0] = beta_bar[0] / o_bar[0] else: o_bar[0] = 0 g_bar[0] = 0 if high_outlier > 0: o_bar[c] = high_outlier / test_len g_bar[c] = alpha_bar[c] / o_bar[c] else: o_bar[c] = 0 g_bar[c] = 0 p_i = np.arange(0 / c, (c + 1) / c, 1 / c) self.CRPS_cal = np.sum( g_bar * ((1 - o_bar) * (p_i**2) + o_bar * ((1 - p_i) ** 2)) ) CI_x = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00] fig = plt.figure(figsize=(15, 10), dpi=100) gridspec.GridSpec(2, 3) plt.subplot2grid((2, 3), (0, 0), colspan=2, rowspan=2) plt.axhline(0.2, c="k", ls="--", label="Point-of-consumption FRC = 0.2 mg/L") plt.scatter( FRC_X, Y_true, edgecolors="k", facecolors="None", s=20, label="Observed" ) plt.scatter( FRC_X, np.median(Y_pred, axis=0), facecolors="r", edgecolors="None", s=10, label="Forecast Median", ) plt.vlines( FRC_X, np.min(Y_pred, axis=0), np.max(Y_pred, axis=0), color="r", label="Forecast Range", ) plt.xlabel("Point-of-Distribution FRC (mg/L)") plt.ylabel("Point-of-Consumption FRC (mg/L)") plt.xlim([0, np.max(FRC_X)]) plt.legend( bbox_to_anchor=(0.001, 0.999), shadow=False, labelspacing=0.1, fontsize="small", handletextpad=0.1, loc="upper left", ) ax1 = fig.axes[0] ax1.set_title("(a)", y=0.88, x=0.05) plt.subplot2grid((2, 3), (0, 2), colspan=1, rowspan=1) plt.plot(CI_x, CI_x, c="k") plt.scatter(CI_x, capture, label="All observations") plt.scatter(CI_x, capture_20, label="Point-of-Consumption FRC below 0.2 mg/L") plt.xlabel("Ensemble Confidence Interval") plt.ylabel("Percent Capture") plt.ylim([0, 1]) plt.xlim([0, 1]) plt.legend( bbox_to_anchor=(0.001, 0.999), shadow=False, labelspacing=0.1, fontsize="small", handletextpad=0.1, loc="upper left", ) ax2 = fig.axes[1] ax2.set_title("(b)", y=0.88, x=0.05) plt.subplot2grid((2, 3), (1, 2), colspan=1, rowspan=1) plt.hist(rank, bins=(self.network_count + 1), density=True) plt.xlabel("Rank") plt.ylabel("Probability") ax3 = fig.axes[2] ax3.set_title("(c)", y=0.88, x=0.05) plt.savefig( os.path.splitext(filename)[0] + "_Calibration_Diagnostic_Figs.png", format="png", bbox_inches="tight", ) plt.close() myStringIOBytes = io.BytesIO() plt.savefig(myStringIOBytes, format="png", bbox_inches="tight") myStringIOBytes.seek(0) my_base_64_pngData = base64.b64encode(myStringIOBytes.read()) return my_base_64_pngData def get_bw(self): Y_true = np.array(self.targets) Y_pred = np.array(self.calibration_predictions)[:, :, 0] s2 = [] xt_yt = [] for a in range(0, len(Y_true)): observation = Y_true[a] forecast = np.sort(Y_pred[:, a]) s2 = np.append(s2, np.var(forecast)) xt_yt = np.append(xt_yt, (np.mean(forecast) - observation) ** 2) WB_bw = np.mean(xt_yt) - (1 + 1 / self.network_count) * np.mean(s2) return WB_bw def post_process_performance_eval(self, bandwidth): Y_true = np.squeeze(np.array(self.targets)) Y_pred = np.array(self.calibration_predictions)[:, :, 0] test_len = len(Y_true) min_CI = [] max_CI = [] CI_90_Lower = [] CI_90_Upper = [] CI_80_Lower = [] CI_80_Upper = [] CI_70_Lower = [] CI_70_Upper = [] CI_60_Lower = [] CI_60_Upper = [] CI_50_Lower = [] CI_50_Upper = [] CI_40_Lower = [] CI_40_Upper = [] CI_30_Lower = [] CI_30_Upper = [] CI_20_Lower = [] CI_20_Upper = [] CI_10_Lower = [] CI_10_Upper = [] CI_median = [] CRPS = [] Kernel_Risk = [] evaluation_range = np.arange(-10, 10.001, 0.001) # compute CRPS as well as the confidence intervals of each ensemble forecast for a in range(0, test_len): scipy_kde = scipy.stats.gaussian_kde(Y_pred[:, a], bw_method=bandwidth) scipy_pdf = scipy_kde.evaluate(evaluation_range) * 0.001 scipy_cdf = np.cumsum(scipy_pdf) min_CI = np.append( min_CI, evaluation_range[np.max(np.where(scipy_cdf == 0)[0])] ) max_CI = np.append(max_CI, evaluation_range[np.argmax(scipy_cdf)]) CI_90_Lower = np.append( CI_90_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.05)))] ) CI_90_Upper = np.append( CI_90_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.95)))] ) CI_80_Lower = np.append( CI_80_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.1)))] ) CI_80_Upper = np.append( CI_80_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.9)))] ) CI_70_Lower = np.append( CI_70_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.15)))] ) CI_70_Upper = np.append( CI_70_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.85)))] ) CI_60_Lower = np.append( CI_60_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.2)))] ) CI_60_Upper = np.append( CI_60_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.8)))] ) CI_50_Lower = np.append( CI_50_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.25)))] ) CI_50_Upper = np.append( CI_50_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.75)))] ) CI_40_Lower = np.append( CI_40_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.3)))] ) CI_40_Upper = np.append( CI_40_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.7)))] ) CI_30_Lower = np.append( CI_30_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.35)))] ) CI_30_Upper = np.append( CI_30_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.65)))] ) CI_20_Lower = np.append( CI_20_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.4)))] ) CI_20_Upper = np.append( CI_20_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.6)))] ) CI_10_Lower = np.append( CI_10_Lower, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.45)))] ) CI_10_Upper = np.append( CI_10_Upper, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.55)))] ) CI_median = np.append( CI_median, evaluation_range[np.argmin(np.abs((scipy_cdf - 0.50)))] ) Kernel_Risk = np.append(Kernel_Risk, scipy_kde.integrate_box_1d(-10, 0.2)) Heaviside = (evaluation_range >= Y_true[a]).astype(int) CRPS_dif = (scipy_cdf - Heaviside) ** 2 CRPS = np.append(CRPS, np.sum(CRPS_dif * 0.001)) mean_CRPS = np.mean(CRPS) capture_all = ( np.less_equal(Y_true, max_CI) * np.greater_equal(Y_true, min_CI) * 1 ) capture_90 = ( np.less_equal(Y_true, CI_90_Upper) * np.greater_equal(Y_true, CI_90_Lower) * 1 ) capture_80 = ( np.less_equal(Y_true, CI_80_Upper) * np.greater_equal(Y_true, CI_80_Lower) * 1 ) capture_70 = ( np.less_equal(Y_true, CI_70_Upper) * np.greater_equal(Y_true, CI_70_Lower) * 1 ) capture_60 = ( np.less_equal(Y_true, CI_60_Upper) * np.greater_equal(Y_true, CI_60_Lower) * 1 ) capture_50 = ( np.less_equal(Y_true, CI_50_Upper) * np.greater_equal(Y_true, CI_50_Lower) * 1 ) capture_40 = ( np.less_equal(Y_true, CI_40_Upper) * np.greater_equal(Y_true, CI_40_Lower) * 1 ) capture_30 = ( np.less_equal(Y_true, CI_30_Upper) * np.greater_equal(Y_true, CI_30_Lower) * 1 ) capture_20 = ( np.less_equal(Y_true, CI_20_Upper) * np.greater_equal(Y_true, CI_20_Lower) * 1 ) capture_10 = ( np.less_equal(Y_true, CI_10_Upper) * np.greater_equal(Y_true, CI_10_Lower) * 1 ) length_20 = np.sum(np.less(Y_true, 0.2)) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture_sum_squares = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) capture_20_sum_squares = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) return ( mean_CRPS, capture_sum_squares, capture_20_sum_squares, capture_all_sum / test_len, capture_all_20_sum / length_20, ) def post_process_cal(self): self.WB_bandwidth = self.get_bw() ( self.CRPS_post_cal, self.CI_reliability_post_cal, self.CI_reliability_02_post_cal, self.percent_capture_post_cal, self.percent_capture_02_post_cal, ) = self.post_process_performance_eval(self.WB_bandwidth) CRPS_Skill = (self.CRPS_post_cal - self.CRPS_cal) / (0 - self.CRPS_cal) CI_Skill = (self.CI_reliability_post_cal - self.CI_reliability_cal) / ( 0 - self.CI_reliability_cal ) CI_20_Skill = (self.CI_reliability_02_post_cal - self.CI_reliability_02_cal) / ( 0 - self.CI_reliability_02_cal ) PC_Skill = (self.percent_capture_post_cal - self.percent_capture_cal) / ( 1 - self.percent_capture_cal ) PC_20_Skill = ( self.percent_capture_02_post_cal - self.percent_capture_02_cal ) / (1 - self.percent_capture_02_cal) Net_Score = CRPS_Skill + CI_Skill + CI_20_Skill + PC_Skill + PC_20_Skill if Net_Score > 0: self.post_process_check = True else: self.post_process_check = False def full_performance_evaluation(self, directory): x_norm = self.predictors_scaler.transform(self.predictors) t_norm = self.targets_scaler.transform(self.targets) base_model = self.model base_model.save(directory + "\\base_network.h5") x_cal_norm, x_test_norm, t_cal_norm, t_test_norm = train_test_split( x_norm, t_norm, test_size=0.25, shuffle=False, random_state=10 ) self.verifying_observations = self.targets_scaler.inverse_transform(t_test_norm) self.test_x_data = self.predictors_scaler.inverse_transform(x_test_norm) early_stopping_monitor = keras.callbacks.EarlyStopping( monitor="val_loss", min_delta=0, patience=10, restore_best_weights=True ) self.verifying_predictions = [] for i in range(0, self.network_count): tf.keras.backend.clear_session() self.model = keras.models.load_model(directory + "\\base_network.h5") x_norm_train, x_norm_val, t_norm_train, t_norm_val = train_test_split( x_cal_norm, t_cal_norm, train_size=1 / 3, shuffle=True, random_state=i**2, ) new_weights = [ np.random.uniform(-0.05, 0.05, w.shape) for w in self.model.get_weights() ] self.model.set_weights(new_weights) self.model.fit( x_norm_train, t_norm_train, epochs=self.epochs, validation_data=(x_norm_val, t_norm_val), callbacks=[early_stopping_monitor], verbose=0, batch_size=len(t_norm_train), ) self.verifying_predictions.append(self.targets_scaler.inverse_transform(self.model.predict(x_test_norm))) Y_true = np.array(self.verifying_observations) Y_pred = np.array(self.verifying_predictions) FRC_X = self.test_x_data[:, 0] capture_all = ( np.less_equal(Y_true, np.max(Y_pred, axis=0)) * np.greater_equal(Y_true, np.min(Y_pred, axis=0)) * 1 ) capture_90 = ( np.less_equal(Y_true, np.percentile(Y_pred, 95, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 5, axis=0)) * 1 ) capture_80 = ( np.less_equal(Y_true, np.percentile(Y_pred, 90, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 10, axis=0)) * 1 ) capture_70 = ( np.less_equal(Y_true, np.percentile(Y_pred, 85, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 15, axis=0)) * 1 ) capture_60 = ( np.less_equal(Y_true, np.percentile(Y_pred, 80, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 20, axis=0)) * 1 ) capture_50 = ( np.less_equal(Y_true, np.percentile(Y_pred, 75, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 25, axis=0)) * 1 ) capture_40 = ( np.less_equal(Y_true, np.percentile(Y_pred, 70, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 30, axis=0)) * 1 ) capture_30 = ( np.less_equal(Y_true, np.percentile(Y_pred, 65, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 35, axis=0)) * 1 ) capture_20 = ( np.less_equal(Y_true, np.percentile(Y_pred, 60, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 40, axis=0)) * 1 ) capture_10 = ( np.less_equal(Y_true, np.percentile(Y_pred, 55, axis=0)) * np.greater_equal(Y_true, np.percentile(Y_pred, 45, axis=0)) * 1 ) capture_all_20 = capture_all * np.less(Y_true, 0.2) capture_90_20 = capture_90 * np.less(Y_true, 0.2) capture_80_20 = capture_80 * np.less(Y_true, 0.2) capture_70_20 = capture_70 * np.less(Y_true, 0.2) capture_60_20 = capture_60 * np.less(Y_true, 0.2) capture_50_20 = capture_50 * np.less(Y_true, 0.2) capture_40_20 = capture_40 * np.less(Y_true, 0.2) capture_30_20 = capture_30 * np.less(Y_true, 0.2) capture_20_20 = capture_20 * np.less(Y_true, 0.2) capture_10_20 = capture_10 * np.less(Y_true, 0.2) length_20 = np.sum(np.less(Y_true, 0.2)) test_len = len(Y_true) capture_all_sum = np.sum(capture_all) capture_90_sum = np.sum(capture_90) capture_80_sum = np.sum(capture_80) capture_70_sum = np.sum(capture_70) capture_60_sum = np.sum(capture_60) capture_50_sum = np.sum(capture_50) capture_40_sum = np.sum(capture_40) capture_30_sum = np.sum(capture_30) capture_20_sum = np.sum(capture_20) capture_10_sum = np.sum(capture_10) capture_all_20_sum = np.sum(capture_all_20) capture_90_20_sum = np.sum(capture_90_20) capture_80_20_sum = np.sum(capture_80_20) capture_70_20_sum = np.sum(capture_70_20) capture_60_20_sum = np.sum(capture_60_20) capture_50_20_sum = np.sum(capture_50_20) capture_40_20_sum = np.sum(capture_40_20) capture_30_20_sum = np.sum(capture_30_20) capture_20_20_sum = np.sum(capture_20_20) capture_10_20_sum = np.sum(capture_10_20) capture = [ capture_10_sum / test_len, capture_20_sum / test_len, capture_30_sum / test_len, capture_40_sum / test_len, capture_50_sum / test_len, capture_60_sum / test_len, capture_70_sum / test_len, capture_80_sum / test_len, capture_90_sum / test_len, capture_all_sum / test_len, ] capture_20 = [ capture_10_20_sum / length_20, capture_20_20_sum / length_20, capture_30_20_sum / length_20, capture_40_20_sum / length_20, capture_50_20_sum / length_20, capture_60_20_sum / length_20, capture_70_20_sum / length_20, capture_80_20_sum / length_20, capture_90_20_sum / length_20, capture_all_20_sum / length_20, ] self.percent_capture_cal = capture_all_sum / test_len self.percent_capture_02_cal = capture_all_20_sum / length_20 self.CI_reliability_cal = ( (0.1 - capture_10_sum / test_len) ** 2 + (0.2 - capture_20_sum / test_len) ** 2 + (0.3 - capture_30_sum / test_len) ** 2 + (0.4 - capture_40_sum / test_len) ** 2 + (0.5 - capture_50_sum / test_len) ** 2 + (0.6 - capture_60_sum / test_len) ** 2 + (0.7 - capture_70_sum / test_len) ** 2 + (0.8 - capture_80_sum / test_len) ** 2 + (0.9 - capture_90_sum / test_len) ** 2 + (1 - capture_all_sum / test_len) ** 2 ) self.CI_reliability_02_cal = ( (0.1 - capture_10_20_sum / length_20) ** 2 + (0.2 - capture_20_20_sum / length_20) ** 2 + (0.3 - capture_30_20_sum / length_20) ** 2 + (0.4 - capture_40_20_sum / length_20) ** 2 + (0.5 - capture_50_20_sum / length_20) ** 2 + (0.6 - capture_60_20_sum / length_20) ** 2 + (0.7 - capture_70_20_sum / length_20) ** 2 + (0.8 - capture_80_20_sum / length_20) ** 2 + (0.9 - capture_90_20_sum / length_20) ** 2 + (1 - capture_all_20_sum / length_20) ** 2 ) # Rank Histogram rank = [] for a in range(0, len(Y_true)): n_lower = np.sum(np.greater(Y_true[a], Y_pred[:, a])) n_equal = np.sum(np.equal(Y_true[a], Y_pred[:, a])) deviate_rank = np.random.random_integers(0, n_equal) rank = np.append(rank, n_lower + deviate_rank) rank_hist = np.histogram(rank, bins=self.network_count + 1) delta = np.sum((rank_hist[0] - (test_len / ((self.network_count + 1)))) ** 2) delta_0 = self.network_count * test_len / (self.network_count + 1) self.delta_score_cal = delta / delta_0 CI_x = [0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00] fig = plt.figure(figsize=(15, 10), dpi=100) gridspec.GridSpec(2, 3) plt.subplot2grid((2, 3), (0, 0), colspan=2, rowspan=2) plt.axhline(0.2, c="k", ls="--", label="Point-of-consumption FRC = 0.2 mg/L") plt.scatter( FRC_X, Y_true, edgecolors="k", facecolors="None", s=20, label="Observed" ) plt.scatter( FRC_X, np.median(Y_pred, axis=0), facecolors="r", edgecolors="None", s=10, label="Forecast Median", ) plt.vlines( FRC_X, np.min(Y_pred, axis=0), np.max(Y_pred, axis=0), color="r", label="Forecast Range", ) plt.xlabel("Point-of-Distribution FRC (mg/L)") plt.ylabel("Point-of-Consumption FRC (mg/L)") plt.subplot2grid((2, 3), (0, 2), colspan=1, rowspan=1) plt.plot(CI_x, CI_x, c='k') plt.scatter(CI_x, capture) plt.scatter(CI_x, capture_20) plt.xlabel("Ensemble Confidence Interval") plt.ylabel("Percent Capture") plt.ylim([0, 1]) plt.xlim([0, 1]) plt.subplot2grid((2, 3), (1, 2), colspan=1, rowspan=1) plt.hist(rank, bins=(self.network_count + 1), density=True) plt.xlabel('Rank') plt.ylabel('Probability') plt.savefig(directory + "\\Verification_Diagnostic_Figs.png", format='png') plt.close() myStringIOBytes = io.BytesIO() plt.savefig(myStringIOBytes, format='png') myStringIOBytes.seek(0) my_base_64_pngData = base64.b64encode(myStringIOBytes.read()) return my_base_64_pngData def set_inputs_for_table(self, storage_target): frc = np.arange(0.20, 2.05, 0.05) lag_time = [storage_target for i in range(0, len(frc))] am_collect = [0 for i in range(0, len(frc))] pm_collect = [1 for i in range(0, len(frc))] temp_med_am = { "ts_frc": frc, "elapsed time": lag_time, "time of collection (0=AM, 1=PM)": am_collect, } temp_med_pm = { "ts_frc": frc, "elapsed time": lag_time, "time of collection (0=AM, 1=PM)": pm_collect, } temp_95_am = { "ts_frc": frc, "elapsed time": lag_time, "time of collection (0=AM, 1=PM)": am_collect, } temp_95_pm = { "ts_frc": frc, "elapsed time": lag_time, "time of collection (0=AM, 1=PM)": pm_collect, } if WATTEMP in self.datainputs.columns: watt_med = [self.median_wattemp for i in range(0, len(frc))] watt_95 = [self.upper95_wattemp for i in range(0, len(frc))] temp_med_am.update({"ts_wattemp": watt_med}) temp_med_pm.update({"ts_wattemp": watt_med}) temp_95_am.update({"ts_wattemp": watt_95}) temp_95_pm.update({"ts_wattemp": watt_95}) if COND in self.datainputs.columns: cond_med = [self.median_cond for i in range(0, len(frc))] cond_95 = [self.upper95_cond for i in range(0, len(frc))] temp_med_am.update({"ts_cond": cond_med}) temp_med_pm.update({"ts_cond": cond_med}) temp_95_am.update({"ts_cond": cond_95}) temp_95_pm.update({"ts_cond": cond_95}) self.avg_case_predictors_am =
pd.DataFrame(temp_med_am)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/05-orchestrator.ipynb (unless otherwise specified). __all__ = ['retry_request', 'if_possible_parse_local_datetime', 'SP_and_date_request', 'handle_capping', 'date_range_request', 'year_request', 'construct_year_month_pairs', 'year_and_month_request', 'clean_year_week', 'construct_year_week_pairs', 'year_and_week_request', 'non_temporal_request', 'query_orchestrator'] # Cell import pandas as pd from tqdm import tqdm from warnings import warn from requests.models import Response from . import utils, raw # Cell def retry_request(raw, method, kwargs, n_attempts=3): attempts = 0 success = False while (attempts < n_attempts) and (success == False): try: r = getattr(raw, method)(**kwargs) utils.check_status(r) success = True except Exception as e: attempts += 1 if attempts == n_attempts: raise e return r def if_possible_parse_local_datetime(df): dt_cols_with_period_in_name = ['startTimeOfHalfHrPeriod', 'initialForecastPublishingPeriodCommencingTime', 'latestForecastPublishingPeriodCommencingTime', 'outTurnPublishingPeriodCommencingTime'] dt_cols = [col for col in df.columns if 'date' in col.lower() or col in dt_cols_with_period_in_name] sp_cols = [col for col in df.columns if 'period' in col.lower() and col not in dt_cols_with_period_in_name] if len(dt_cols)==1 and len(sp_cols)==1: df = utils.parse_local_datetime(df, dt_col=dt_cols[0], SP_col=sp_cols[0]) return df def SP_and_date_request( method: str, kwargs_map: dict, func_params: list, api_key: str, start_date: str, end_date: str, n_attempts: int=3, **kwargs ): assert start_date is not None, '`start_date` must be specified' assert end_date is not None, '`end_date` must be specified' df = pd.DataFrame() stream = '_'.join(method.split('_')[1:]) kwargs.update({ 'APIKey': api_key, 'ServiceType': 'xml' }) df_dates_SPs = utils.dt_rng_to_SPs(start_date, end_date) date_SP_tuples = list(df_dates_SPs.reset_index().itertuples(index=False, name=None))[:-1] for datetime, query_date, SP in tqdm(date_SP_tuples, desc=stream, total=len(date_SP_tuples)): kwargs.update({ kwargs_map['date']: datetime.strftime('%Y-%m-%d'), kwargs_map['SP']: SP, }) missing_kwargs = list(set(func_params) - set(['SP', 'date'] + list(kwargs.keys()))) assert len(missing_kwargs) == 0, f"The following kwargs are missing: {', '.join(missing_kwargs)}" r = retry_request(raw, method, kwargs, n_attempts=n_attempts) df_SP = utils.parse_xml_response(r) df = pd.concat([df, df_SP]) df = utils.expand_cols(df) df = if_possible_parse_local_datetime(df) return df # Cell def handle_capping( r: Response, df: pd.DataFrame, method: str, kwargs_map: dict, func_params: list, api_key: str, end_date: str, request_type: str, **kwargs ): capping_applied = utils.check_capping(r) assert capping_applied != None, 'No information on whether or not capping limits had been breached could be found in the response metadata' if capping_applied == True: # only subset of date range returned dt_cols_with_period_in_name = ['startTimeOfHalfHrPeriod'] dt_cols = [col for col in df.columns if ('date' in col.lower() or col in dt_cols_with_period_in_name) and ('end' not in col.lower())] if len(dt_cols) == 1: start_date = pd.to_datetime(df[dt_cols[0]]).max().strftime('%Y-%m-%d') if 'start_time' in kwargs.keys(): kwargs['start_time'] = '00:00' if pd.to_datetime(start_date) >= pd.to_datetime(end_date): warnings.warn(f'The `end_date` ({end_date}) was earlier than `start_date` ({start_date})\nThe `start_date` will be set one day earlier than the `end_date`.') start_date = (pd.to_datetime(end_date) -
pd.Timedelta(days=1)
pandas.Timedelta
# Read Matches and Find Players # Modules from espncricinfo.player import Player from espncricinfo.match import Match from espncricinfo.series import Series import json import pdb from collections import Counter from tqdm import tqdm import pandas as pd import os ## TO ADD: OUTPUT TOTAL MATCHES AND NUMBER OF RAIN AFFECTED MATCHES path = os.getcwd() # Read CSVs all_matches = pd.read_csv('c_champ_matches.csv') rain_matches =
pd.read_csv('rain_matches.csv')
pandas.read_csv
import logging import os import re import xml.etree.ElementTree as ET from pathlib import Path from typing import Any, Tuple, Optional import pandas as pd from python import TOPIC_ID, SUBTOPIC, DOCUMENT_NUMBER, DOCUMENT_ID, SENTENCE_IDX, TOKEN_IDX, TOKEN_IDX_TO, \ TOKEN_IDX_FROM, TOKEN, MENTION_ID, EVENT, MENTION_TYPE, DESCRIPTION, MENTION_TYPES_ACTION logger = logging.getLogger() def read_xml(xml_path) -> Tuple[Any, Any, Any, Any, Any]: tree = ET.parse(xml_path) # 1: read document info root = tree.getroot() assert root.tag == "Document" doc_filename = root.attrib["doc_name"] doc_id = root.attrib["doc_id"] m = re.match(r"(?P<topic_id>\d+)_(?P<document_number>\d+)(?P<subtopic>\w+)\.xml", doc_filename) topic_id = m.group("topic_id") subtopic = m.group("subtopic") document_number = int(m.group("document_number")) documents_index = pd.MultiIndex.from_tuples([(topic_id, subtopic, doc_id)], names=[TOPIC_ID, SUBTOPIC, DOCUMENT_ID]) documents = pd.DataFrame({DOCUMENT_ID: pd.Series(doc_id, index=documents_index), DOCUMENT_NUMBER: pd.Series(document_number, index=documents_index)}) # 2: read document content contents_rows = [] contents_index = [] for token_elmt in root.iter("token"): # index content sentence_idx = int(token_elmt.attrib["sentence"]) token_idx = int(token_elmt.attrib["number"]) contents_index.append((doc_id, sentence_idx, token_idx)) # content token = token_elmt.text contents_rows.append({TOKEN: token}) contents_index =
pd.MultiIndex.from_tuples(contents_index, names=[DOCUMENT_ID, SENTENCE_IDX, TOKEN_IDX])
pandas.MultiIndex.from_tuples
from datetime import ( datetime, timedelta, timezone, ) import numpy as np import pytest import pytz from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, Period, Series, Timedelta, Timestamp, date_range, isna, ) import pandas._testing as tm class TestSeriesFillNA: def test_fillna_nat(self): series = Series([0, 1, 2, NaT.value], dtype="M8[ns]") filled = series.fillna(method="pad") filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="pad") filled2 = df.fillna(value=series.values[2]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) series = Series([NaT.value, 0, 1, 2], dtype="M8[ns]") filled = series.fillna(method="bfill") filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] tm.assert_series_equal(filled, expected) tm.assert_series_equal(filled2, expected) df = DataFrame({"A": series}) filled = df.fillna(method="bfill") filled2 = df.fillna(value=series[1]) expected = DataFrame({"A": expected}) tm.assert_frame_equal(filled, expected) tm.assert_frame_equal(filled2, expected) def test_fillna_value_or_method(self, datetime_series): msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_series.fillna(value=0, method="ffill") def test_fillna(self): ts = Series([0.0, 1.0, 2.0, 3.0, 4.0], index=tm.makeDateIndex(5)) tm.assert_series_equal(ts, ts.fillna(method="ffill")) ts[2] = np.NaN exp = Series([0.0, 1.0, 1.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="ffill"), exp) exp = Series([0.0, 1.0, 3.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(method="backfill"), exp) exp = Series([0.0, 1.0, 5.0, 3.0, 4.0], index=ts.index) tm.assert_series_equal(ts.fillna(value=5), exp) msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): ts.fillna() def test_fillna_nonscalar(self): # GH#5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.0]) tm.assert_series_equal(result, expected) result = s1.fillna({}) tm.assert_series_equal(result, s1) result = s1.fillna(Series((), dtype=object)) tm.assert_series_equal(result, s1) result = s2.fillna(s1) tm.assert_series_equal(result, s2) result = s1.fillna({0: 1}) tm.assert_series_equal(result, expected) result = s1.fillna({1: 1}) tm.assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) tm.assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) tm.assert_series_equal(result, s1) def test_fillna_aligns(self): s1 = Series([0, 1, 2], list("abc")) s2 = Series([0, np.nan, 2], list("bac")) result = s2.fillna(s1) expected = Series([0, 0, 2.0], list("bac")) tm.assert_series_equal(result, expected) def test_fillna_limit(self): ser = Series(np.nan, index=[0, 1, 2]) result = ser.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) result = ser.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) tm.assert_series_equal(result, expected) def test_fillna_dont_cast_strings(self): # GH#9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ["0", "1.5", "-0.3"] for val in vals: ser = Series([0, 1, np.nan, np.nan, 4], dtype="float64") result = ser.fillna(val) expected = Series([0, 1, val, val, 4], dtype="object") tm.assert_series_equal(result, expected) def test_fillna_consistency(self): # GH#16402 # fillna with a tz aware to a tz-naive, should result in object ser = Series([Timestamp("20130101"), NaT]) result = ser.fillna(Timestamp("20130101", tz="US/Eastern")) expected = Series( [Timestamp("20130101"), Timestamp("2013-01-01", tz="US/Eastern")], dtype="object", ) tm.assert_series_equal(result, expected) msg = "The 'errors' keyword in " with tm.assert_produces_warning(FutureWarning, match=msg): # where (we ignore the errors=) result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, match=msg): result = ser.where( [True, False], Timestamp("20130101", tz="US/Eastern"), errors="ignore" ) tm.assert_series_equal(result, expected) # with a non-datetime result = ser.fillna("foo") expected = Series([Timestamp("20130101"), "foo"]) tm.assert_series_equal(result, expected) # assignment ser2 = ser.copy() ser2[1] = "foo" tm.assert_series_equal(ser2, expected) def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 ser = Series([1.0, np.nan]) result = ser.fillna(0, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) # infer int64 from float64 when fillna value is a dict ser = Series([1.0, np.nan]) result = ser.fillna({1: 0}, downcast="infer") expected = Series([1, 0]) tm.assert_series_equal(result, expected) def test_timedelta_fillna(self, frame_or_series): # GH#3371 ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) td = ser.diff() obj = frame_or_series(td) # reg fillna result = obj.fillna(Timedelta(seconds=0)) expected = Series( [ timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # interpreted as seconds, no longer supported msg = "value should be a 'Timedelta', 'NaT', or array of those. Got 'int'" with pytest.raises(TypeError, match=msg): obj.fillna(1) result = obj.fillna(Timedelta(seconds=1)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(timedelta(days=1, seconds=1)) expected = Series( [ timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(np.timedelta64(10 ** 9)) expected = Series( [ timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ] ) expected = frame_or_series(expected) tm.assert_equal(result, expected) result = obj.fillna(NaT) expected = Series( [ NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1), ], dtype="m8[ns]", ) expected = frame_or_series(expected) tm.assert_equal(result, expected) # ffill td[2] = np.nan obj = frame_or_series(td) result = obj.ffill() expected = td.fillna(Timedelta(seconds=0)) expected[0] = np.nan expected = frame_or_series(expected) tm.assert_equal(result, expected) # bfill td[2] = np.nan obj = frame_or_series(td) result = obj.bfill() expected = td.fillna(Timedelta(seconds=0)) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) expected = frame_or_series(expected) tm.assert_equal(result, expected) def test_datetime64_fillna(self): ser = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130102"), Timestamp("20130103 9:01:01"), ] ) ser[2] = np.nan # ffill result = ser.ffill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) # bfill result = ser.bfill() expected = Series( [ Timestamp("20130101"), Timestamp("20130101"), Timestamp("20130103 9:01:01"), Timestamp("20130103 9:01:01"), ] ) tm.assert_series_equal(result, expected) def test_datetime64_fillna_backfill(self): # GH#6587 # make sure that we are treating as integer when filling msg = "containing strings is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): # this also tests inference of a datetime-like with NaT's ser = Series([NaT, NaT, "2013-08-05 15:30:00.000001"]) expected = Series( [ "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", "2013-08-05 15:30:00.000001", ], dtype="M8[ns]", ) result = ser.fillna(method="backfill") tm.assert_series_equal(result, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "Asia/Tokyo"]) def test_datetime64_tz_fillna(self, tz): # DatetimeLikeBlock ser = Series( [ Timestamp("2011-01-01 10:00"), NaT, Timestamp("2011-01-03 10:00"), NaT, ] ) null_loc = Series([False, True, False, True]) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) # check s is not changed tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-02 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00"), "AAA", Timestamp("2011-01-03 10:00"), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( {1: Timestamp("2011-01-02 10:00"), 3: Timestamp("2011-01-04 10:00")} ) expected = Series( [ Timestamp("2011-01-01 10:00"), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00"), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # DatetimeTZBlock idx = DatetimeIndex(["2011-01-01 10:00", NaT, "2011-01-03 10:00", NaT], tz=tz) ser = Series(idx) assert ser.dtype == f"datetime64[ns, {tz}]" tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-02 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz)) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna(Timestamp("2011-01-02 10:00", tz=tz).to_pydatetime()) idx = DatetimeIndex( [ "2011-01-01 10:00", "2011-01-02 10:00", "2011-01-03 10:00", "2011-01-02 10:00", ], tz=tz, ) expected = Series(idx) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna("AAA") expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), "AAA", Timestamp("2011-01-03 10:00", tz=tz), "AAA", ], dtype=object, ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00"), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) result = ser.fillna( { 1: Timestamp("2011-01-02 10:00", tz=tz), 3: Timestamp("2011-01-04 10:00", tz=tz), } ) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2011-01-02 10:00", tz=tz), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2011-01-04 10:00", tz=tz), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) # filling with a naive/other zone, coerce to object result = ser.fillna(Timestamp("20130101")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) with tm.assert_produces_warning(FutureWarning, match="mismatched timezone"): result = ser.fillna(Timestamp("20130101", tz="US/Pacific")) expected = Series( [ Timestamp("2011-01-01 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), Timestamp("2011-01-03 10:00", tz=tz), Timestamp("2013-01-01", tz="US/Pacific"), ] ) tm.assert_series_equal(expected, result) tm.assert_series_equal(isna(ser), null_loc) def test_fillna_dt64tz_with_method(self): # with timezone # GH#15855 ser = Series([Timestamp("2012-11-11 00:00:00+01:00"), NaT]) exp = Series( [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] ) tm.assert_series_equal(ser.fillna(method="pad"), exp) ser = Series([NaT, Timestamp("2012-11-11 00:00:00+01:00")]) exp = Series( [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] ) tm.assert_series_equal(ser.fillna(method="bfill"), exp) def test_fillna_pytimedelta(self): # GH#8209 ser = Series([np.nan, Timedelta("1 days")], index=["A", "B"]) result = ser.fillna(timedelta(1)) expected = Series(Timedelta("1 days"), index=["A", "B"]) tm.assert_series_equal(result, expected) def test_fillna_period(self): # GH#13737 ser = Series([Period("2011-01", freq="M"), Period("NaT", freq="M")]) res = ser.fillna(
Period("2012-01", freq="M")
pandas.Period
# -*- coding: utf-8 -*- import nose import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class TestIndexCoercion(tm.TestCase): _multiprocess_can_split_ = True def test_setitem_index_numeric_coercion_int(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4]) self.assertEqual(s.index.dtype, np.int64) # int + int -> int temp = s.copy() temp[5] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 5])) self.assertEqual(temp.index.dtype, np.int64) # int + float -> float temp = s.copy() temp[1.1] = 5 tm.assert_series_equal(temp, pd.Series([1, 2, 3, 4, 5], index=[0, 1, 2, 3, 1.1])) self.assertEqual(temp.index.dtype, np.float64) def test_setitem_index_numeric_coercion_float(self): # tests setitem with non-existing numeric key s = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(s.index.dtype, np.float64) # float + int -> int temp = s.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float temp = s.copy() temp[5.1] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=[1.1, 2.1, 3.1, 4.1, 5.1]) tm.assert_series_equal(temp, exp) self.assertEqual(temp.index.dtype, np.float64) def test_insert_numeric_coercion_int(self): idx = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(idx.dtype, np.int64) # int + int -> int res = idx.insert(1, 1) tm.assert_index_equal(res, pd.Index([1, 1, 2, 3, 4])) self.assertEqual(res.dtype, np.int64) # int + float -> float res = idx.insert(1, 1.1) tm.assert_index_equal(res, pd.Index([1, 1.1, 2, 3, 4])) self.assertEqual(res.dtype, np.float64) # int + bool -> int res = idx.insert(1, False) tm.assert_index_equal(res,
pd.Index([1, 0, 2, 3, 4])
pandas.Index
"""Tests for the sdv.constraints.base module.""" import warnings from unittest.mock import Mock, patch import pandas as pd import pytest from copulas.multivariate.gaussian import GaussianMultivariate from copulas.univariate import GaussianUnivariate from rdt.hyper_transformer import HyperTransformer from sdv.constraints.base import Constraint, _get_qualified_name, get_subclasses, import_object from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ColumnFormula, UniqueCombinations def test__get_qualified_name_class(): """Test the ``_get_qualified_name`` function, if a class is passed. The ``_get_qualified_name`` function is expected to: - Return the Fully Qualified Name from a class. Input: - A class. Output: - The class qualified name. """ # Run fully_qualified_name = _get_qualified_name(Constraint) # Assert expected_name = 'sdv.constraints.base.Constraint' assert fully_qualified_name == expected_name def test__get_qualified_name_function(): """Test the ``_get_qualified_name`` function, if a function is passed. The ``_get_qualified_name`` function is expected to: - Return the Fully Qualified Name from a function. Input: - A function. Output: - The function qualified name. """ # Run fully_qualified_name = _get_qualified_name(_get_qualified_name) # Assert expected_name = 'sdv.constraints.base._get_qualified_name' assert fully_qualified_name == expected_name def test_get_subclasses(): """Test the ``get_subclasses`` function. The ``get_subclasses`` function is expected to: - Recursively find subclasses for the class object passed. Setup: - Create three classes, Parent, Child and GrandChild, which inherit of each other hierarchically. Input: - The Parent class. Output: - Dict of the subclasses of the class: ``Child`` and ``GrandChild`` classes. """ # Setup class Parent: pass class Child(Parent): pass class GrandChild(Child): pass # Run subclasses = get_subclasses(Parent) # Assert expected_subclasses = { 'Child': Child, 'GrandChild': GrandChild } assert subclasses == expected_subclasses def test_import_object_class(): """Test the ``import_object`` function, when importing a class. The ``import_object`` function is expected to: - Import a class from its qualifed name. Input: - Qualified name of the class. Output: - The imported class. """ # Run obj = import_object('sdv.constraints.base.Constraint') # Assert assert obj is Constraint def test_import_object_function(): """Test the ``import_object`` function, when importing a function. The ``import_object`` function is expected to: - Import a function from its qualifed name. Input: - Qualified name of the function. Output: - The imported function. """ # Run imported = import_object('sdv.constraints.base.import_object') # Assert assert imported is import_object class TestConstraint(): def test__identity(self): """Test ```Constraint._identity`` method. ``_identity`` method should return whatever it is passed. Input: - anything Output: - Input """ # Run instance = Constraint('all') output = instance._identity('input') # Asserts assert output == 'input' def test___init___transform(self): """Test ```Constraint.__init__`` method when 'transform' is passed. If 'transform' is given, the ``__init__`` method should replace the ``is_valid`` method with an identity and leave ``transform`` and ``reverse_transform`` untouched. Input: - transform Side effects: - is_valid == identity - transform != identity - reverse_transform != identity """ # Run instance = Constraint(handling_strategy='transform') # Asserts assert instance.filter_valid == instance._identity assert instance.transform != instance._identity assert instance.reverse_transform != instance._identity def test___init___reject_sampling(self): """Test ``Constraint.__init__`` method when 'reject_sampling' is passed. If 'reject_sampling' is given, the ``__init__`` method should replace the ``transform`` and ``reverse_transform`` methods with an identity and leave ``is_valid`` untouched. Input: - reject_sampling Side effects: - is_valid != identity - transform == identity - reverse_transform == identity """ # Run instance = Constraint(handling_strategy='reject_sampling') # Asserts assert instance.filter_valid != instance._identity assert instance.transform == instance._identity assert instance.reverse_transform == instance._identity def test___init___all(self): """Test ``Constraint.__init__`` method when 'all' is passed. If 'all' is given, the ``__init__`` method should leave ``transform``, ``reverse_transform`` and ``is_valid`` untouched. Input: - all Side effects: - is_valid != identity - transform != identity - reverse_transform != identity """ # Run instance = Constraint(handling_strategy='all') # Asserts assert instance.filter_valid != instance._identity assert instance.transform != instance._identity assert instance.reverse_transform != instance._identity def test___init___not_kown(self): """Test ``Constraint.__init__`` method when a not known ``handling_strategy`` is passed. If a not known ``handling_strategy`` is given, a ValueError is raised. Input: - not_known Side effects: - ValueError """ # Run with pytest.raises(ValueError): Constraint(handling_strategy='not_known') def test_fit(self): """Test the ``Constraint.fit`` method. The base ``Constraint.fit`` method is expected to: - Call ``_fit`` method. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3] }) instance = Constraint(handling_strategy='transform', fit_columns_model=False) instance._fit = Mock() # Run instance.fit(table_data) # Assert instance._fit.assert_called_once_with(table_data) @patch('sdv.constraints.base.GaussianMultivariate', spec_set=GaussianMultivariate) def test_fit_gaussian_multivariate_correct_distribution(self, gm_mock): """Test the ``GaussianMultivariate`` from the ``Constraint.fit`` method. The ``GaussianMultivariate`` is expected to be called with default distribution set as ``GaussianUnivariate``. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1, 2, 3] }) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.assert_called_once_with(distribution=GaussianUnivariate) @patch('sdv.constraints.base.GaussianMultivariate', spec_set=GaussianMultivariate) @patch('sdv.constraints.base.HyperTransformer', spec_set=HyperTransformer) def test_fit_trains_column_model(self, ht_mock, gm_mock): """Test the ``Constraint.fit`` method trains the column model. When ``fit_columns_model`` is True and there are multiple ``constraint_columns``, the ``Constraint.fit`` method is expected to: - Call ``_fit`` method. - Create ``_hyper_transformer``. - Create ``_column_model`` and train it. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6] }) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.return_value.fit.assert_called_once() calls = ht_mock.return_value.fit_transform.mock_calls args = calls[0][1] assert len(calls) == 1 pd.testing.assert_frame_equal(args[0], table_data) def test_transform(self): """Test the ``Constraint.transform`` method. It is an identity method for completion, to be optionally overwritten by subclasses. The ``Constraint.transform`` method is expected to: - Return the input data unmodified. Input: - Anything Output: - Input """ # Run instance = Constraint(handling_strategy='transform') output = instance.transform('input') # Assert assert output == 'input' def test_transform_calls__transform(self): """Test that the ``Constraint.transform`` method calls ``_transform``. The ``Constraint.transform`` method is expected to: - Return value returned by ``_transform``. Input: - Anything Output: - Result of ``_transform(input)`` """ # Setup constraint_mock = Mock() constraint_mock.fit_columns_model = False constraint_mock._transform.return_value = 'the_transformed_data' constraint_mock._validate_columns.return_value = pd.DataFrame() # Run output = Constraint.transform(constraint_mock, 'input') # Assert assert output == 'the_transformed_data' def test_transform_model_disabled_any_columns_missing(self): """Test the ``Constraint.transform`` method with invalid data. If ``table_data`` is missing any columns and ``fit_columns_model`` is False, it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint(handling_strategy='transform', fit_columns_model=False) instance._transform = lambda x: x instance.constraint_columns = ('a',) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c'])) def test_transform_model_enabled_all_columns_missing(self): """Test the ``Constraint.transform`` method with missing columns. If ``table_data`` is missing all of the ``constraint_columns`` and ``fit_columns_model`` is True, it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a',) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame()) def test_transform_model_enabled_some_columns_missing(self): """Test that the ``Constraint.transform`` method uses column model. If ``table_data`` is missing some of the ``constraint_columns``, the ``_column_model`` should be used to sample the rest and the data should be transformed. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() conditions = [ pd.DataFrame([[5, 1, 2]], columns=['a', 'b', 'c']), pd.DataFrame([[6, 3, 4]], columns=['a', 'b', 'c']) ] transformed_conditions = [ pd.DataFrame([[1]], columns=['b']), pd.DataFrame([[3]], columns=['b']) ] instance._columns_model.sample.return_value = pd.DataFrame([ [1, 2, 3] ], columns=['b', 'c', 'a']) instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform.side_effect = conditions # Run data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']) transformed_data = instance.transform(data) # Assert expected_tranformed_data = pd.DataFrame([[1, 2, 3]], columns=['b', 'c', 'a']) expected_result = pd.DataFrame([ [5, 1, 2], [6, 3, 4] ], columns=['a', 'b', 'c']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 1}) instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 3}) reverse_transform_calls = instance._hyper_transformer.reverse_transform.mock_calls pd.testing.assert_frame_equal(reverse_transform_calls[0][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(reverse_transform_calls[1][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(transformed_data, expected_result) def test_transform_model_enabled_reject_sampling(self): """Test the ``Constraint.transform`` method's reject sampling. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. Setup: - The ``_columns_model`` returns some valid_rows the first time, and then the rest with the next call. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = [pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])] instance._columns_model.sample.side_effect = [ pd.DataFrame([ [1, 2], [1, 3] ], columns=['a', 'b']), pd.DataFrame([ [1, 4], [1, 5], [1, 6], [1, 7] ], columns=['a', 'b']), ] instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform = lambda x: x # Run data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) transformed_data = instance.transform(data) # Assert expected_result = pd.DataFrame([ [1, 2], [1, 3], [1, 4], [1, 5], [1, 6] ], columns=['a', 'b']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=5, conditions={'b': 1}) assert model_calls[1][2]['num_rows'] > 3 pd.testing.assert_frame_equal(transformed_data, expected_result) def test_transform_model_enabled_reject_sampling_error(self): """Test that the ``Constraint.transform`` method raises an error appropriately. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. If it doesn't get any valid rows in 100 tries, a ``ValueError`` is raised. Setup: - The ``_columns_model`` is fixed to always return an empty ``DataFrame``. Input: - Table with some missing columns. Side Effect: - ``ValueError`` raised. """ # Setup instance = Constraint(handling_strategy='transform') instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = pd.DataFrame([[1]], columns=['b']) instance._columns_model.sample.return_value = pd.DataFrame() instance._hyper_transformer.transform.return_value = transformed_conditions instance._hyper_transformer.reverse_transform.return_value = pd.DataFrame() # Run / Assert data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']) with pytest.raises(ValueError): instance.transform(data) def test_transform_model_enabled_reject_sampling_duplicates_valid_rows(self): """Test the ``Constraint.transform`` method's reject sampling fall back. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. If after 100 tries, some valid rows are created but not enough, then the valid rows are duplicated to meet the ``num_rows`` requirement. Setup: - The ``_columns_model`` returns some valid rows the first time, and then an empy ``DataFrame`` for every other call. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = [pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b'])] instance._columns_model.sample.side_effect = [ pd.DataFrame([ [1, 2], [1, 3] ], columns=['a', 'b']) ] + [pd.DataFrame()] * 100 instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform = lambda x: x # Run data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) transformed_data = instance.transform(data) # Assert expected_result = pd.DataFrame([ [1, 2], [1, 3], [1, 2], [1, 3], [1, 2] ], columns=['a', 'b']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 101 instance._columns_model.sample.assert_any_call(num_rows=5, conditions={'b': 1}) pd.testing.assert_frame_equal(transformed_data, expected_result) def test_fit_transform(self): """Test the ``Constraint.fit_transform`` method. The ``Constraint.fit_transform`` method is expected to: - Call the ``fit`` method. - Call the ``transform`` method. - Return the input data unmodified. Input: - Anything Output: - self.transform output Side Effects: - self.fit is called with input - self.transform is called with input """ # Setup constraint_mock = Mock() constraint_mock.transform.return_value = 'the_transformed_data' # Run data = 'my_data' output = Constraint.fit_transform(constraint_mock, data) # Assert assert output == 'the_transformed_data' constraint_mock.fit.assert_called_once_with('my_data') constraint_mock.transform.assert_called_once_with('my_data') def test_reverse_transform(self): """Test the ``Constraint.reverse_transform`` method. It is an identity method for completion, to be optionally overwritten by subclasses. The ``Constraint.reverse_transform`` method is expected to: - Return the input data unmodified. Input: - Anything Output: - Input """ # Run instance = Constraint(handling_strategy='transform') output = instance.reverse_transform('input') # Assert assert output == 'input' def test_is_valid(self): """Test the ``Constraint.is_valid` method. This should be overwritten by all the subclasses that have a way to decide which rows are valid and which are not. The ``Constraint.is_valid`` method is expected to: - Say whether the given table rows are valid. Input: - Table data (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3] }) # Run instance = Constraint(handling_strategy='transform') out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_filter_valid(self): """Test the ``Constraint.filter_valid`` method. The ``Constraint.filter_valid`` method is expected to: - Filter the input data by calling the method ``is_valid``. Input: - Table data (pandas.DataFrame) Output: - Table data, with only the valid rows (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3] }) constraint_mock = Mock() constraint_mock.is_valid.return_value = pd.Series([True, True, False]) # Run out = Constraint.filter_valid(constraint_mock, table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2] })
pd.testing.assert_frame_equal(expected_out, out)
pandas.testing.assert_frame_equal