prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ Created on Fri Jul 26 13:13:19 2019 @author: <NAME> """ import pandas as pd import os import numpy as np import math # Get the location of this file file_dir = os.path.dirname(os.path.abspath(__file__)) def read_attributes(): att_df =
pd.read_csv("all_catchment_attributes.csv", encoding='latin-1', sep=";", index_col=1)
pandas.read_csv
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestPinyi(unittest.TestCase): def test_one_hot(self): data = np.array([ ["assisbragasm", 1], ["assiseduc", 1], ["assist", 1], ["assiseduc", 1], ["assistebrasil", 1], ["assiseduc", 1], ["assistebrasil", 1], ["assistencialgsamsung", 1] ]) # load data df =
pd.DataFrame({"query": data[:, 0], "weight": data[:, 1]})
pandas.DataFrame
"""Provide methodologies for preprocessing the data.""" import logging from datetime import datetime, timedelta from pathlib import Path from typing import Any, Dict, Generator, List, Optional, Tuple import pandas as pd from hoqunm.data_tools.base import ( AGE, BEGIN, BIRTH, CURRENT_CLASS, CURRENT_WARD, DATECOLUMNS, DIAGNR, END, EXTERNAL, FA_BEGIN, FLOW, GLOB_BEGIN, GLOB_END, INTERNAL, PATIENT, POST_CLASS, POST_WARD, PRE_CLASS, PRE_WARD, SEX, URGENCY, and_query, column_query, or_query, split_data) from hoqunm.utils.utils import get_logger pd.set_option('mode.chained_assignment', None) class Preprocessor: """A class holding different functionalities for preprocessing the data from the hospital. The aim is to preprocess the data in so far as to give it to class Data. To do it clean i would imagine sth like a validation function, which validates that the data is in the correct format. :param filepath: The file path to the data (as csv/xls/...). :param sep: The separator with which columns are separated. :parma **kwargs: Additional arguments used by pandas.read_csv. """ def __init__(self, filepath: Path = Path(), sep: str = ";", startdate: datetime = datetime(2018, 1, 1), enddate: datetime = datetime(2020, 1, 1), datescale: timedelta = timedelta(1), logger: Optional[logging.Logger] = None, **kwargs: Any) -> None: self.data = pd.read_csv(filepath, sep=sep, **kwargs) self.startdate = startdate self.enddate = enddate self.datescale = datescale self.data_backup = self.data.copy() self.logger = logger if logger is not None else get_logger( "Preprocessor", filepath.parent.joinpath("preprocessor.log")) def split_data(self) -> None: """The first row of the data could contain the start- and enddate. Therefore, the data should be splitted. """ self.backup() self.data, self.startdate, self.enddate = split_data(self.data) def backup(self) -> None: """Save the current state of self.data in self.data_backup.""" self.data_backup = self.data.copy() def reset(self) -> None: """Replace self.data with self.data_backup (last data state).""" self.data = self.data_backup.copy() def add(self, filepath: Path = Path(), sep: str = ";", **kwargs: Any) -> None: """Add new data to existing data. :param filepath: The file path to the data (as csv/xls/...). :param sep: The separator with which columns are separated. :parma **kwargs: Additional arguments used by pandas.read_csv. """ data = pd.read_csv(filepath, sep=sep, **kwargs) assert all(data.columns == self.data.columns) self.data = self.data.append(data, ignore_index=True) def write(self, filepath: Path, sep: str = ";", **kwargs: Any) -> None: """Save the current state in a csv file. :param filepath: The file path to the data (as csv/xls/...). :param sep: The separator with which columns are separated. :parma **kwargs: Additional arguments used by pandas.to_csv. """ data = pd.DataFrame(columns=self.data.columns) time_ser = pd.Series(index=self.data.columns) time_ser[GLOB_BEGIN] = self.startdate time_ser[GLOB_END] = self.enddate data = data.append(time_ser, ignore_index=True) data = data.append(self.data, ignore_index=True) data.to_csv(filepath, sep=sep, **kwargs) # pylint: disable=redefined-builtin def datetimes_to_float(self, format: str = "%d.%m.%Y %H:%M", startdate: Optional[datetime] = None, scale: Optional[timedelta] = None, columns: Optional[List[str]] = None) -> None: """Make date string to dates and the to floats. Set errors to NaN. Set all datetimes before start of analysis to negative values. :param format: The format in which the datetimes are currently given. :param startdate: A date indicating, when analysis should start. :param scale: T timedelta indicating at which level one should scale. Days seem reasonable. :param columns: The columns under consideration. """ if startdate is None: startdate = self.startdate if scale is None: scale = self.datescale if columns is None: columns = DATECOLUMNS datecolumns = pd.DataFrame({ datecolumn: pd.to_datetime(self.data[datecolumn], format=format, errors="coerce") for datecolumn in columns }) naindex = [ datecolumns.loc[:, datecolumn].isnull() for datecolumn in columns ] datecolumns = datecolumns.fillna( datetime.max.replace(year=2100, second=0, microsecond=0)) self.data[columns] = (datecolumns - startdate) / scale self.data[columns] = self.data[columns].astype("float") for i, column in enumerate(columns): self.data.loc[naindex[i], column] = float("inf") def make_flow(self, split_str: str = " \\f:9919\\Þ\\f:-\\ ") -> None: """The csv file is not well formatted. Split the column FLOW into PRE_WARD and CURRENT_WARD. :param split_str: The string separating PRE_WARD from CURRENT_WARD. """ self.backup() self.data.loc[:, PRE_WARD] = float("NaN") self.data.loc[:, CURRENT_WARD] = float("NaN") for i, row in self.data.iterrows(): split = row[FLOW].split(split_str) self.data.loc[i, PRE_WARD] = split[0] self.data.loc[i, CURRENT_WARD] = split[-1] self.data = self.data.drop(columns=FLOW) def replace_ward_keys(self, ward_map: Optional[Dict[str, List[str]]] = None, internal_prefix: Optional[List[str]] = None) -> None: """The csv file has more information than needed. Convert unimportant wards (not given in ward_map) to EXTERNAL ward and map the remaining wards as given via ward_map. :param ward_map: Key is the ward name with its values. All names for it in the csv. :param internal_prefix: List of internal prefixs to consider. """ if ward_map is not None: self.backup() for ward, keys in ward_map.items(): self.data = self.data.replace(keys, ward) all_wards = list(self.data.loc[:, CURRENT_WARD].unique()) + list( self.data.loc[:, PRE_WARD].unique()) internal_wards = [ ward for ward in all_wards if ward not in ward_map and ((internal_prefix is None) or any( ward.startswith(internal_prefix_) for internal_prefix_ in internal_prefix)) ] external_wards = [ ward for ward in all_wards if ward not in list(ward_map) and ward not in internal_wards ] self.data = self.data.replace(internal_wards, INTERNAL) self.data = self.data.replace(external_wards, EXTERNAL) else: self.logger.warning( "No ward map given. No ward keys have been replace.") def make_urgency(self, split_str: str = "\\f:9919\\Þ\\f:-\\ ") -> None: """Get the main information from URGENCY (N0,...,N5). :split_st: String to split at. """ self.backup() if URGENCY in self.data.columns: for i, row in self.data.iterrows(): split = row[URGENCY].split(split_str) if len(split[1]) > 1: try: self.data.loc[i, URGENCY] = int(split[1][1]) except ValueError: self.data.loc[i, URGENCY] = float("NaN") else: self.data.loc[i, URGENCY] = float("NaN") # pylint: disable=redefined-builtin def make_age(self, reference_date: datetime = datetime.today(), format: str = "%d.%m.%Y") -> None: """Make an age value from the BIRTH column given a reference date. This could be helfpul for CART and some other analysis. :param reference_date: The data at which the age will be interpreted. :param format: The date format of BIRTH. """ self.backup() if BIRTH in self.data.columns: scale = timedelta(365) self.data.loc[:, AGE] = self.data.loc[:, BIRTH].copy() self.datetimes_to_float(format=format, startdate=reference_date, scale=scale, columns=[AGE]) self.data.loc[:, AGE] *= -1 self.data.loc[:, AGE] = self.data.loc[:, AGE].astype("int") def clean_empty(self): """The data has empty END entries which can be dropped.""" self.backup() qry = column_query(END, " ") empty_index = self.data.query(qry).index self.data = self.data.drop(index=empty_index) def _clean_patient_data(self, patient_data: pd.DataFrame) -> pd.DataFrame: """Clean all the data for a given patient. This should refelct the special needs for the data sheets obtained from the hospital. :param patient_data: The sorted entries for one patient. :return: Cleaned data. """ df = pd.DataFrame(columns=patient_data.columns) rowi = patient_data.iloc[0, :].copy() if rowi.loc[PRE_WARD] == rowi.loc[CURRENT_WARD]: rowi.loc[PRE_WARD] = EXTERNAL for _, rowj in patient_data.iloc[1:, :].iterrows(): if rowi.loc[CURRENT_WARD] in [EXTERNAL, INTERNAL]: # entry is not interesting, go on rowi = rowj.copy() elif rowi.loc[END] == rowj.loc[BEGIN] and rowi.loc[ CURRENT_WARD] == rowj.loc[CURRENT_WARD]: # enough evidence for a multiple entry, change the END of the last row rowi.loc[END] = rowj.loc[END] elif rowi.loc[END] == rowj.loc[BEGIN] and rowi.loc[ CURRENT_WARD] == rowj.loc[PRE_WARD]: # found a new row, so save rowi and make new rowi.loc[POST_WARD] = rowj.loc[CURRENT_WARD] df = df.append(rowi) rowi = rowj.copy() elif rowj.loc[PRE_WARD] in [EXTERNAL, INTERNAL]: # maybe the patient visited again, so drop the current row and start sth new rowi.loc[POST_WARD] = rowj.loc[PRE_WARD] df = df.append(rowi) rowi = rowj.copy() else: # there are some errors in the data set concerning multiple # entries for different ICPM. # just go to the next row, hoping not to mess things up self.logger.warning("Warning. Something else happened.") if rowi.loc[CURRENT_WARD] not in [EXTERNAL, INTERNAL]: if not rowi.isna().loc[END]: rowi.loc[POST_WARD] = EXTERNAL df = df.append(rowi) return df def clean_data(self) -> None: """Clean the data from multiple entries regarding the same stay. This should refelct the special needs for the data sheets obtained from the hospital. """ self.backup() data = self.data.copy() data.loc[:, PATIENT] = float("NaN") data.loc[:, POST_WARD] = float("NaN") df =
pd.DataFrame(columns=data.columns)
pandas.DataFrame
import pandas as pd import pandas.testing as pdt import pytest import pytz from werkzeug.exceptions import RequestEntityTooLarge from sfa_api.conftest import ( VALID_FORECAST_JSON, VALID_CDF_FORECAST_JSON, demo_forecasts) from sfa_api.utils import request_handling from sfa_api.utils.errors import ( BadAPIRequest, StorageAuthError, NotFoundException) @pytest.mark.parametrize('start,end', [ ('invalid', 'invalid'), ('NaT', 'NaT') ]) def test_validate_start_end_fail(app, forecast_id, start, end): url = f'/forecasts/single/{forecast_id}/values?start={start}&end={end}' with pytest.raises(request_handling.BadAPIRequest): with app.test_request_context(url): request_handling.validate_start_end() @pytest.mark.parametrize('start,end', [ ('20190101T120000Z', '20190101T130000Z'), ('20190101T120000', '20190101T130000'), ('20190101T120000', '20190101T130000Z'), ('20190101T120000Z', '20190101T130000+00:00'), ('20190101T120000Z', '20190101T140000+01:00'), ]) def test_validate_start_end_success(app, forecast_id, start, end): url = f'/forecasts/single/{forecast_id}/values?start={start}&end={end}' with app.test_request_context(url): request_handling.validate_start_end() @pytest.mark.parametrize('query,exc', [ ('?start=20200101T0000Z', {'end'}), ('?end=20200101T0000Z', {'start'}), ('?start=20200101T0000Z&end=20210102T0000Z', {'end'}), ('', {'start', 'end'}), pytest.param('?start=20200101T0000Z&end=20200102T0000Z', {}, marks=pytest.mark.xfail(strict=True)) ]) def test_validate_start_end_not_provided(app, forecast_id, query, exc): url = f'/forecasts/single/{forecast_id}/values{query}' with app.test_request_context(url): with pytest.raises(BadAPIRequest) as err: request_handling.validate_start_end() if exc: assert set(err.value.errors.keys()) == exc @pytest.mark.parametrize('content_type,payload', [ ('text/csv', ''), ('application/json', '{}'), ('application/json', '{"values": "nope"}'), ('text/plain', 'nope'), ]) def test_validate_parsable_fail(app, content_type, payload, forecast_id): url = f'/forecasts/single/{forecast_id}/values/' with pytest.raises(request_handling.BadAPIRequest): with app.test_request_context( url, content_type=content_type, data=payload, method='POST', content_length=len(payload)): request_handling.validate_parsable_values() @pytest.mark.parametrize('content_type', [ ('text/csv'), ('application/json'), ('application/json'), ]) def test_validate_parsable_fail_too_large(app, content_type, forecast_id): url = f'/forecasts/single/{forecast_id}/values/' with pytest.raises(RequestEntityTooLarge): with app.test_request_context( url, content_type=content_type, method='POST', content_length=17*1024*1024): request_handling.validate_parsable_values() @pytest.mark.parametrize('content_type,payload', [ ('text/csv', 'timestamp,value\n2019-01-01T12:00:00Z,5'), ('application/json', ('{"values":[{"timestamp": "2019-01-01T12:00:00Z",' '"value": 5}]}')), ]) def test_validate_parsable_success(app, content_type, payload, forecast_id): with app.test_request_context(f'/forecasts/single/{forecast_id}/values/', content_type=content_type, data=payload, method='POST'): request_handling.validate_parsable_values() def test_validate_observation_values(): df = pd.DataFrame({'value': [0.1, '.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) request_handling.validate_observation_values(df) def test_validate_observation_values_bad_value(): df = pd.DataFrame({'value': [0.1, 's.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'value' in e.value.errors def test_validate_observation_values_no_value(): df = pd.DataFrame({'quality_flag': [0.0, 1], 'timestamp': ['20190101T0000Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'value' in e.value.errors def test_validate_observation_values_bad_timestamp(): df = pd.DataFrame({'value': [0.1, '.2'], 'quality_flag': [0.0, 1], 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'timestamp' in e.value.errors def test_validate_observation_values_no_timestamp(): df = pd.DataFrame({ 'value': [0.1, '.2'], 'quality_flag': [0.0, 1]}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'timestamp' in e.value.errors @pytest.mark.parametrize('quality', [ [1, .1], [1, '0.9'], [2, 0], ['ham', 0] ]) def test_validate_observation_values_bad_quality(quality): df = pd.DataFrame({'value': [0.1, .2], 'quality_flag': quality, 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'quality_flag' in e.value.errors def test_validate_observation_values_no_quality(): df = pd.DataFrame({'value': [0.1, '.2'], 'timestamp': ['20190101T008Z', '2019-01-01T03:00:00+07:00']}) with pytest.raises(BadAPIRequest) as e: request_handling.validate_observation_values(df) assert 'quality_flag' in e.value.errors expected_parsed_df = pd.DataFrame({ 'a': [1, 2, 3, 4], 'b': [4, 5, 6, 7], }) csv_string = "a,b\n1,4\n2,5\n3,6\n4,7\n" json_string = '{"values":{"a":[1,2,3,4],"b":[4,5,6,7]}}' def test_parse_csv_success(): test_df = request_handling.parse_csv(csv_string) pdt.assert_frame_equal(test_df, expected_parsed_df) @pytest.mark.parametrize('csv_input', [ '', "a,b\n1,4\n2.56,2.45\n1,2,3\n" ]) def test_parse_csv_failure(csv_input): with pytest.raises(request_handling.BadAPIRequest): request_handling.parse_csv(csv_input) def test_parse_json_success(): test_df = request_handling.parse_json(json_string) pdt.assert_frame_equal(test_df, expected_parsed_df) @pytest.mark.parametrize('json_input', [ '', "{'a':[1,2,3]}" ]) def test_parse_json_failure(json_input): with pytest.raises(request_handling.BadAPIRequest): request_handling.parse_json(json_input) null_df = pd.DataFrame({ 'timestamp': [ '2018-10-29T12:00:00Z', '2018-10-29T13:00:00Z', '2018-10-29T14:00:00Z', '2018-10-29T15:00:00Z', ], 'value': [32.93, 25.17, None, None], 'quality_flag': [0, 0, 1, 0] }) def test_parse_csv_nan(): test_df = request_handling.parse_csv(""" # comment line timestamp,value,quality_flag 2018-10-29T12:00:00Z,32.93,0 2018-10-29T13:00:00Z,25.17,0 2018-10-29T14:00:00Z,,1 # this value is NaN 2018-10-29T15:00:00Z,NaN,0 """) pdt.assert_frame_equal(test_df, null_df) def test_parse_json_nan(): test_df = request_handling.parse_json(""" {"values":[ {"timestamp": "2018-10-29T12:00:00Z", "value": 32.93, "quality_flag": 0}, {"timestamp": "2018-10-29T13:00:00Z", "value": 25.17, "quality_flag": 0}, {"timestamp": "2018-10-29T14:00:00Z", "value": null, "quality_flag": 1}, {"timestamp": "2018-10-29T15:00:00Z", "value": null, "quality_flag": 0} ]} """)
pdt.assert_frame_equal(test_df, null_df)
pandas.testing.assert_frame_equal
import random import pandas as pd from collections import Counter from django.contrib.auth.models import User, Group from django.db.models import Q from psycopg2._psycopg import IntegrityError from api.sms import send_sms from broker.models import Broker, BrokerVehicle from owner.models import Vehicle from restapi.helper_api import generate_random_string from team.models import ManualBookingSummary, ManualBooking from utils.models import AahoOffice, State def mumbai_directory(): df = pd.read_excel('../../data/Mumbai Transport Directory.xlsx') df = df.fillna('') print(df.columns) for i, row in df.iterrows(): print(row['name']) def broker_aaho_office(): data = [] for broker in Broker.objects.all(): bookings = broker.team_booking_broker.all() if bookings.count() > 0: aaho_source_offices = list(bookings.values_list('source_office__branch__name', flat=True)) aaho_destination_offices = list(bookings.values_list('destination_office__branch__name', flat=True)) print(['{}: {}'.format(office, aaho_source_offices.count(office)) for office in set(aaho_source_offices)]) data.append([ broker.id, broker.get_name(), broker.get_phone(), bookings.order_by('shipment_date').first().shipment_date, bookings.order_by('shipment_date').last().shipment_date, '\n'.join(['{}: {}'.format(office, aaho_source_offices.count(office)) for office in set(aaho_source_offices)]), '\n'.join(['{}: {}'.format(office, aaho_destination_offices.count(office)) for office in set(aaho_destination_offices)]) ]) df = pd.DataFrame(data=data, columns=['ID', 'Name', 'Phone', 'First Booking Date', 'Last Booking Date', 'Source Booking Offices', 'Dest Booking Office']) df.to_excel('Aaho office wise Brokers.xlsx', index=False) def update_broker_aaho_office(): for broker in Broker.objects.all(): bookings = broker.team_booking_broker.all() if bookings.count() > 0: aaho_source_offices = list(bookings.values_list('source_office__id', flat=True)) data = {} for office in set(aaho_source_offices): data[office] = aaho_source_offices.count(office) office_id = max(data.iterkeys(), key=lambda k: data[k]) aaho_office = AahoOffice.objects.get(id=office_id) broker.aaho_office = aaho_office broker.save() # print([{'{}: {}'.format(office, aaho_source_offices.count(office))} for office in set(aaho_source_offices)]) def broker_aaho_office_data(): for broker in Broker.objects.all(): print(broker.aaho_office.to_json() if broker.aaho_office else {}) def broker_vehicle(): vehicle = Vehicle.objects.get(id=3834) broker = Broker.objects.get(id=616) BrokerVehicle.objects.create(broker=broker, vehicle=vehicle) def broker_data(): data = [] for broker in Broker.objects.all().order_by('-id'): print(broker) data.append([ broker.id, broker.get_name(), broker.get_phone(), broker.city.name if broker.city else '', broker.aaho_office.branch_name if broker.aaho_office else '' ]) df = pd.DataFrame(data=data, columns=['ID', 'Name', 'Phone', 'City', 'Aaho Office']) df.to_excel('Brokers.xlsx', index=False) broker = Broker.objects.get(id=616) # BrokerVehicle.objects.create(broker=broker, vehicle=vehicle) def update_state_name(): df =
pd.read_excel('/Users/mani/Downloads/Supplier Destination States.xlsx', sheet_name='New')
pandas.read_excel
import pdb import numpy as np import pandas as pd from metabolite_mapping import folder2spectrumregion, folder2ppm, folder2dataset # convert keys from folder names to dataset entries dataset2spectrumregion = {} for f_key in folder2spectrumregion.keys(): dataset2spectrumregion[folder2dataset[f_key]] = folder2spectrumregion[f_key] dataset2ppmregion = {} for f_key in folder2ppm.keys(): dataset2ppmregion[folder2dataset[f_key]] = folder2ppm[f_key] # create dataframe from region dictionaries ppm_region_df = pd.DataFrame(dict([(k,
pd.Series(v)
pandas.Series
# Library for final plots used in the paper # Created on: Jan 7, 2021 # Author: <NAME> import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from os.path import join import numpy as np from scipy.stats import norm, stats, spearmanr import pylab as pl import matplotlib.ticker as mtick import math import matplotlib as mpl from datetime import datetime, timezone from dateutil import tz from scipy.stats import zscore from matplotlib import ticker from scipy.signal import find_peaks from matplotlib.lines import Line2D mpl.use("pgf") text_size = 14 plt.rcParams.update({'font.size': text_size}) plt.rc('xtick',labelsize=text_size) plt.rc('ytick',labelsize=text_size) preamble = [r'\usepackage{fontspec}', r'\usepackage{physics}'] params = {'font.family': 'serif', 'text.usetex': True, 'pgf.rcfonts': False, 'pgf.texsystem': 'xelatex', 'pgf.preamble': preamble} mpl.rcParams.update(params) def plot_run_spread_temporally(path_to_cluster_info, save_dir): ''' Plots the temporal behavior of runs in the clusters. Parameters ---------- path_to_cluster_info: string Path to csv file with clustering temporal run information. Returns ------- None ''' df = pd.read_csv(path_to_cluster_info, index_col=0) range = [] for n in df['Total Time']: if(n<86400): range.append('<1d') elif(n<259200): range.append('1-\n3d') elif(n<604800): range.append('3d-\n1w') elif(n<(2592000/2)): range.append('1w-\n2w') elif(n<2592000): range.append('2w-\n1M') elif(n<7776000): range.append('1-\n3M') elif(n<15552000): range.append('3-\n6M') else: print("don't forget: %d"%n) df['Range'] = range read_df = df[df['Operation']=='Read'] write_df = df[df['Operation']=='Write'] rm = np.median(read_df[read_df['Range']=='1w-\n2w']['Temporal Coefficient of Variation']) wm = np.median(write_df[write_df['Range']=='1w-\n2w']['Temporal Coefficient of Variation']) print('Median for read at 1-2w: %.3f'%rm) print('Median for write at 1-2w: %.3f'%wm) # Barplot of time periods to temporal CoV fig, axes = plt.subplots(1, 2, sharey=True, figsize=[5,1.8]) fig.subplots_adjust(left=0.19, right=0.990, top=0.96, bottom=0.48, wspace=0.03) order = ['<1d', '1-\n3d', '3d-\n1w', '1w-\n2w', '2w-\n1M', '1-\n3M', '3-\n6M'] PROPS = {'boxprops':{'facecolor':'skyblue', 'edgecolor':'black'}, 'medianprops':{'color':'black'}, 'whiskerprops':{'color':'black'},'capprops':{'color':'black'}} sns.boxplot(ax=axes[0], x='Range', y='Temporal Coefficient of Variation', data=read_df, order=order, color='skyblue', fliersize=0, **PROPS) PROPS = {'boxprops':{'facecolor':'maroon', 'edgecolor':'black'}, 'medianprops':{'color':'white', 'linewidth': 1.25}, 'whiskerprops':{'color':'black'},'capprops':{'color':'black'}} sns.boxplot(ax=axes[1], x='Range', y='Temporal Coefficient of Variation', data=write_df, order=order,color='maroon', fliersize=0, **PROPS) # iterate over boxes for i,box in enumerate(axes[0].artists): box.set_edgecolor('black') axes[0].set_ylabel('') axes[1].set_ylabel('') fig.text(0.005, 0.45, 'Inter-arrival\nTimes CoV', rotation=90) axes[0].set_xlabel('') axes[1].set_xlabel('') fig.text(0.38, 0.13, '(a) Read', ha='center') fig.text(0.80, 0.13, '(b) Write', ha='center') fig.text(0.58, 0.03, 'Cluster Time Span', ha='center') #fig.text(0.001, 0.65, "Performance\nCoV (%)", rotation=90, va='center', multialignment='center') axes[0].yaxis.grid(color='lightgrey', linestyle=':') axes[1].yaxis.grid(color='lightgrey', linestyle=':') axes[0].set_axisbelow(True) axes[1].set_axisbelow(True) axes[0].set_yticks([0,1000,2000,3000]) axes[0].set_ylim(0,3000) plt.savefig(join('./time_period_v_temp_cov.pdf')) plt.close() plt.clf() def plot_run_spread_span_frequency(path_to_cluster_info, save_dir): ''' Plots the temporal behavior of runs in the clusters. Parameters ---------- path_to_cluster_info: string Path to csv file with clustering temporal run information. Returns ------- None ''' df = pd.read_csv(path_to_cluster_info, index_col=0) read_df = df[df['Operation']=='Read'] write_df = df[df['Operation']=='Write'] # CDF of time periods and frequency fig, axes = plt.subplots(1, 2, sharey=True, figsize=[5, 2.2]) fig.subplots_adjust(left=0.15, right=0.965, top=.94, bottom=0.34, wspace=0.05) read_info = read_df['Total Time']/86400 write_info = write_df['Total Time']/86400 read_median = np.median(read_info) write_median = np.median(write_info) read_info = np.log10(read_info) write_info = np.log10(write_info) read_median_plotting = np.median(read_info) write_median_plotting = np.median(write_info) read_bins = np.arange(0, int(math.ceil(max(read_info)))+1, 0.01) hist = np.histogram(read_info, bins=read_bins)[0] cdf_read = np.cumsum(hist) cdf_read = [x/cdf_read[-1] for x in cdf_read] write_bins = np.arange(0, int(math.ceil(max(write_info)))+1, 0.01) hist = np.histogram(write_info, bins=write_bins)[0] cdf_write = np.cumsum(hist) cdf_write = [x/cdf_write[-1] for x in cdf_write] print(cdf_write[100]) axes[0].plot(read_bins[:-1], cdf_read, color='skyblue', linewidth=2, label='Read') axes[0].plot(write_bins[:-1], cdf_write, color='maroon', linewidth=2, label='Write') axes[0].set_ylabel('CDF of Clusters') axes[0].set_xlabel('(a) Cluster Time\nSpan (days)') axes[0].yaxis.grid(color='lightgrey', linestyle=':') axes[0].set_axisbelow(True) axes[0].set_ylim(0,1) axes[0].set_xlim(0,3) axes[0].set_yticks(np.arange(0,1.2,0.25)) positions = [1, 2, 3] labels = ['$10^1$', '$10^2$', '$10^3$'] axes[0].xaxis.set_major_locator(ticker.FixedLocator(positions)) axes[0].xaxis.set_major_formatter(ticker.FixedFormatter(labels)) vals = axes[0].get_yticks() axes[0].set_yticklabels(['{:,.0%}'.format(x) for x in vals]) # Add minor ticks ticks = [1,2,3,4,5,6,7,8,9] f_ticks = [] tmp_ticks = [np.log10(x) for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+1 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+2 for x in ticks] f_ticks = f_ticks + tmp_ticks axes[0].set_xticks(f_ticks, minor=True) # Add vertical lines for medians axes[0].axvline(np.log10(4), color='skyblue', zorder=0, linestyle='--', linewidth=2) axes[0].axvline(write_median_plotting, color='maroon', zorder=0, linestyle=':', linewidth=2) print("Median of Read: %f"%read_median) print("Median of Write: %f"%write_median) # Add legend axes[0].legend(loc='lower right', fancybox=True) read_info = read_df['Average Runs per Day'].tolist() write_info = write_df['Average Runs per Day'].tolist() read_median = np.median(read_info) write_median = np.median(write_info) read_info = np.log10(read_info) write_info = np.log10(write_info) read_bins = np.arange(0, int(math.ceil(max(read_info)))+1, 0.01) hist = np.histogram(read_info, bins=read_bins)[0] cdf_read = np.cumsum(hist) cdf_read = [x/cdf_read[-1] for x in cdf_read] write_bins = np.arange(0, int(math.ceil(max(write_info)))+1, 0.01) hist = np.histogram(write_info, bins=write_bins)[0] cdf_write = np.cumsum(hist) cdf_write = [x/cdf_write[-1] for x in cdf_write] axes[1].plot(read_bins[:-1], cdf_read, color='skyblue', linewidth=2, label='Read') axes[1].plot(write_bins[:-1], cdf_write, color='maroon', linewidth=2, label='Write') axes[1].set_xlabel('(b) Run Frequency\n(runs/day)') axes[1].yaxis.grid(color='lightgrey', linestyle=':') axes[1].set_axisbelow(True) axes[1].set_ylim(0,1) axes[1].set_xlim(0,3) axes[1].set_yticks(np.arange(0,1.2,0.25)) positions = [1, 2, 3] labels = ['$10^1$', '$10^2$', '$10^3$'] axes[1].xaxis.set_major_locator(ticker.FixedLocator(positions)) axes[1].xaxis.set_major_formatter(ticker.FixedFormatter(labels)) vals = axes[0].get_yticks() axes[1].set_yticklabels(['{:,.0%}'.format(x) for x in vals]) # Add minor ticks ticks = [1,2,3,4,5,6,7,8,9] f_ticks = [] tmp_ticks = [np.log10(x) for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+1 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+2 for x in ticks] f_ticks = f_ticks + tmp_ticks axes[1].set_xticks(f_ticks, minor=True) # Add vertical lines for medians axes[1].axvline(np.log10(read_median), color='skyblue', zorder=0, linestyle='--', linewidth=2) axes[1].axvline(np.log10(write_median), color='maroon', zorder=0, linestyle=':', linewidth=2) print("Median of Read: %f"%read_median) print("Median of Write: %f"%write_median) # Add legend axes[0].legend(loc='lower right', fancybox=True) #axes[1].get_legend().remove() plt.savefig(join(save_dir, 'time_periods_freq.pdf')) plt.close() plt.clf() return None def plot_time_of_day_v_perf(path_to_data, save_dir): ''' Plots time period effects on performance. Parameters ---------- path_to_data: string Returns ------- None ''' df = pd.read_csv(path_to_data, index_col=0) range_tod = [] range_tow = [] from_zone = tz.gettz('UTC') to_zone = tz.gettz('America/Chicago') for n in df['Start Time']: datetime_time = datetime.fromtimestamp(n).replace(tzinfo=from_zone).astimezone(to_zone) h = int(datetime_time.hour) d = int(datetime_time.weekday()) # Group by time of day ''' if(h == 0 or h == 1 or h == 2): range_tod.append('12-\n3am') elif(h == 3 or h == 4 or h == 5): range_tod.append('3-\n6am') elif(h == 6 or h == 7 or h == 8): range_tod.append('6-\n9am') elif(h == 9 or h == 10 or h == 11): range_tod.append('9am-\n12pm') elif(h == 12 or h == 13 or h == 14): range_tod.append('12-\n3pm') elif(h == 15 or h == 16 or h == 17): range_tod.append('3-\n6pm') elif(h == 18 or h == 19 or h == 20): range_tod.append('6-\n9pm') elif(h == 21 or h == 22 or h == 23): range_tod.append('9pm-\n12am') else: print("don't forget: %d"%n) ''' if(h == 0 or h == 1 or h == 2): range_tod.append('0-\n3') elif(h == 3 or h == 4 or h == 5): range_tod.append('3-\n6') elif(h == 6 or h == 7 or h == 8): range_tod.append('6-\n9') elif(h == 9 or h == 10 or h == 11): range_tod.append('9-\n12') elif(h == 12 or h == 13 or h == 14): range_tod.append('12-\n15') elif(h == 15 or h == 16 or h == 17): range_tod.append('15-\n18') elif(h == 18 or h == 19 or h == 20): range_tod.append('18-\n21') elif(h == 21 or h == 22 or h == 23): range_tod.append('21-\n24') else: print("don't forget: %d"%n) # Now for time of week if(d == 0): range_tow.append('Mo') elif(d == 1): range_tow.append('Tu') elif(d == 2): range_tow.append('We') elif(d == 3): range_tow.append('Th') elif(d == 4): range_tow.append('Fr') elif(d == 5): range_tow.append('Sa') elif(d == 6): range_tow.append('Su') else: print("don't forget: %d"%n) df['Range, Time of Day'] = range_tod df['Range, Time of Week'] = range_tow # Rid of outliers to make cleaner plots order = ['0-\n3', '3-\n6', '6-\n9', '9-\n12', '12-\n15', '15-\n18', '18-\n21', '21-\n24'] df_tod = pd.DataFrame(columns=['Range, Time of Day', 'Operation', 'Performance Z-Score']) for tod in order: working_df = df[df['Range, Time of Day']==tod].reset_index(drop=True) working_df['Z-Score of Z-Scores'] = (working_df['Performance Z-Score'] - working_df['Performance Z-Score'].mean())/working_df['Performance Z-Score'].std(ddof=0) working_df = working_df[working_df['Z-Score of Z-Scores'] < 2] working_df = working_df[working_df['Z-Score of Z-Scores'] > -2] working_df = working_df.drop(labels=['Application', 'Cluster Number', 'Start Time', 'Range, Time of Week', 'Z-Score of Z-Scores'], axis='columns') df_tod = df_tod.append(working_df, ignore_index=True) df_tow = pd.DataFrame(columns=['Range, Time of Week', 'Operation', 'Performance Z-Score']) for tow in ['Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su']: working_df = df[df['Range, Time of Week']==tow].reset_index(drop=True) working_df['Z-Score of Z-Scores'] = (working_df['Performance Z-Score'] - working_df['Performance Z-Score'].mean())/working_df['Performance Z-Score'].std(ddof=0) working_df = working_df[working_df['Z-Score of Z-Scores'] < 2] working_df = working_df[working_df['Z-Score of Z-Scores'] > -2] working_df = working_df.drop(labels=['Application', 'Cluster Number', 'Start Time', 'Range, Time of Day', 'Z-Score of Z-Scores'], axis='columns') df_tow = df_tow.append(working_df, ignore_index=True) # Barplot of time of day to performance CoV read_df = df_tod[df_tod['Operation']=='Read'] write_df = df_tod[df_tod['Operation']=='Write'] fig, axes = plt.subplots(1, 2, sharey=True, figsize=[5,2]) fig.subplots_adjust(left=0.16, right=0.990, top=0.96, bottom=0.45, wspace=0.03) #order = ['12-\n3am', '3-\n6am', '6-\n9am', '9am-\n12pm', '12-\n3pm', '3-\n6pm', '6-\n9pm', '9pm-\n12am'] #PROPS = {'boxprops':{'facecolor':'skyblue', 'edgecolor':'black'}, 'medianprops':{'color':'black'}, # 'whiskerprops':{'color':'black'},'capprops':{'color':'black'}} sns.violinplot(ax=axes[0], x='Range, Time of Day', y='Performance Z-Score', data=read_df, order=order, color='skyblue', inner='quartile', linewidth=2) sns.violinplot(ax=axes[1], x='Range, Time of Day', y='Performance Z-Score', data=write_df, order=order, color='maroon', inner='quartile', linewidth=2) #violins = [art for art in axes[0].get_children()] #for i in range(len(violins)): # violins[i].set_edgecolor('black') axes[0].set_ylabel('') axes[1].set_ylabel('') fig.text(0.37, 0.14, '(a) Read', ha='center') fig.text(0.78, 0.14, '(b) Write', ha='center') fig.text(0.58, 0.02, 'Time of Day (24-hr)', ha='center') fig.text(0.001, 0.65, "Performance\nZ-Score", rotation=90, va='center', multialignment='center') axes[0].set_xlabel('') axes[1].set_xlabel('') axes[0].yaxis.grid(color='lightgrey', linestyle=':') axes[1].yaxis.grid(color='lightgrey', linestyle=':') axes[0].set_axisbelow(True) axes[1].set_axisbelow(True) axes[0].set_ylim(-3,3) axes[0].set_yticks(range(-3,4,1)) axes[0].tick_params(axis='x', labelsize=13) axes[1].tick_params(axis='x', labelsize=13) axes[0].tick_params(axis='y', labelsize=14) axes[1].tick_params(axis='y', labelsize=14) for l in axes[0].lines: l.set_linestyle('--') l.set_linewidth(0.6) l.set_color('black') l.set_alpha(0.8) for l in axes[0].lines[1::3]: l.set_linestyle('-') l.set_linewidth(1.2) l.set_color('black') l.set_alpha(0.8) for l in axes[1].lines: l.set_linestyle('--') l.set_linewidth(0.6) l.set_color('white') l.set_alpha(0.8) for l in axes[1].lines[1::3]: l.set_linestyle('-') l.set_linewidth(1.2) l.set_color('white') l.set_alpha(0.8) plt.savefig(join(save_dir, 'time_day_v_perf.pdf')) plt.close() plt.clf() # Barplot of time of week to performance CoV read_df = df_tow[df_tow['Operation']=='Read'] write_df = df_tow[df_tow['Operation']=='Write'] fig, axes = plt.subplots(1, 2, sharey=True, figsize=[5,1.9]) fig.subplots_adjust(left=0.16, right=0.990, top=0.96, bottom=0.38, wspace=0.03) order = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'Sa', 'Su'] sns.violinplot(ax=axes[0], x='Range, Time of Week', y='Performance Z-Score', data=read_df, order=order, color='skyblue', inner='quartile', edgecolor='black') sns.violinplot(ax=axes[1], x='Range, Time of Week', y='Performance Z-Score', data=write_df, order=order, color='maroon', inner='quartile') axes[0].set_ylabel('') axes[1].set_ylabel('') fig.text(0.37, 0.135, '(a) Read', ha='center') fig.text(0.78, 0.135, '(b) Write', ha='center') fig.text(0.58, 0.02, 'Day of Week', ha='center') fig.text(0.001, 0.65, "Performance\nZ-Score", rotation=90, va='center', multialignment='center') axes[0].set_xlabel('') axes[1].set_xlabel('') axes[0].yaxis.grid(color='lightgrey', linestyle=':') axes[1].yaxis.grid(color='lightgrey', linestyle=':') axes[0].set_axisbelow(True) axes[1].set_axisbelow(True) axes[0].set_ylim(-3,3) axes[0].set_yticks(range(-3,4,1)) axes[0].tick_params(axis='x', labelsize=14) axes[1].tick_params(axis='x', labelsize=14) axes[0].tick_params(axis='y', labelsize=14) axes[1].tick_params(axis='y', labelsize=14) for l in axes[0].lines: l.set_linestyle('--') l.set_linewidth(0.6) l.set_color('black') l.set_alpha(0.8) for l in axes[0].lines[1::3]: l.set_linestyle('-') l.set_linewidth(1.2) l.set_color('black') l.set_alpha(0.8) for l in axes[1].lines: l.set_linestyle('--') l.set_linewidth(0.6) l.set_color('white') l.set_alpha(0.8) for l in axes[1].lines[1::3]: l.set_linestyle('-') l.set_linewidth(1.2) l.set_color('white') l.set_alpha(0.8) plt.savefig(join(save_dir, 'time_week_v_perf.pdf'), backend='pgf') plt.close() plt.clf() return None def plot_no_user_app_characterizations(path_to_data, path_to_normal_data, save_dir): ''' Plots the cluster characterizations of clusters formed without being separated by user and application. Parameters ---------- path_to_data: string Path to directory with data from clusters without user/app sorting. path_to_normal_data: string Path to directory with data from clusters with user/app sorting. save_dir: string Path to the directory to save the plots in. Returns ------- None ''' # Plot CoV of cluster sizes path = join(path_to_data, 'no_runs_in_clusters_read.txt') with open(path, 'r') as f: no_read_clusters = f.read().split("\n") f.close() no_read_clusters = pd.Series(no_read_clusters).astype(int) no_read_clusters = no_read_clusters[no_read_clusters > 40] path = join(path_to_data, 'no_runs_in_clusters_write.txt') with open(path, 'r') as f: no_write_clusters = f.read().split("\n") f.close() no_write_clusters = pd.Series(no_write_clusters).astype(int) no_write_clusters = no_write_clusters[no_write_clusters > 40] path = join(path_to_normal_data, 'no_runs_in_clusters_read.txt') with open(path, 'r') as f: no_read_clusters_o = f.read().split("\n") f.close() no_read_clusters_o = pd.Series(no_read_clusters_o).astype(int) no_read_clusters_o = no_read_clusters_o[no_read_clusters_o > 40] path = join(path_to_normal_data, 'no_runs_in_clusters_write.txt') with open(path, 'r') as f: no_write_clusters_o = f.read().split("\n") f.close() no_write_clusters_o = pd.Series(no_write_clusters_o).astype(int) no_write_clusters_o = no_write_clusters_o[no_write_clusters_o > 40] fig, axes = plt.subplots(1, 2, sharey=True, figsize=[12,5]) fig.subplots_adjust(left=0.075, right=0.992, top=0.97, bottom=0.12, wspace=0.07) n_bins = 10000 plt.setp(axes, xlim=(40,3000)) hist = np.histogram(no_read_clusters, bins=range(max(no_read_clusters)+1))[0] cdf_read = np.cumsum(hist) cdf_read = [x/cdf_read[-1] for x in cdf_read] hist = np.histogram(no_write_clusters, bins=range(max(no_write_clusters)+1))[0] cdf_write = np.cumsum(hist) cdf_write = [x/cdf_write[-1] for x in cdf_write] hist = np.histogram(no_read_clusters_o, bins=range(max(no_read_clusters_o)+1))[0] cdf_read_o = np.cumsum(hist) cdf_read_o = [x/cdf_read_o[-1] for x in cdf_read_o] hist = np.histogram(no_write_clusters_o, bins=range(max(no_write_clusters_o)+1))[0] cdf_write_o = np.cumsum(hist) cdf_write_o = [x/cdf_write_o[-1] for x in cdf_write_o] axes[0].plot(cdf_read, color='skyblue', label='False', linewidth=4) axes[0].plot(cdf_read_o, color='mediumseagreen', label='True', linewidth=4, linestyle='--') axes[1].plot(cdf_write, color='maroon', label='False', linewidth=4) axes[1].plot(cdf_write_o, color='gold', label='True', linewidth=4, linestyle='--') axes[0].set_ylim(0,1) vals = axes[0].get_yticks() axes[0].set_yticklabels(['{:,.0%}'.format(x) for x in vals]) axes[0].set_ylabel('Percent of Clusters') axes[0].set_xlabel('Number of Runs in a Read Cluster') axes[1].set_xlabel('Number of Runs in a Write Cluster') axes[0].legend(title='Clustered by Application', loc='lower right') axes[1].legend(title='Clustered by Application', loc='lower right') axes[0].yaxis.grid(color='lightgrey', linestyle=':') axes[1].yaxis.grid(color='lightgrey', linestyle=':') axes[0].set_axisbelow(True) axes[1].set_axisbelow(True) ticks = [40, 500, 1000, 1500, 2000, 2500, 3000] axes[0].set_xticks(ticks) axes[1].set_xticks(ticks) plt.savefig(join(save_dir, 'cluster_sizes_no_user_app.pdf')) plt.clf() plt.close() def plot_no_runs_v_no_clusters(path_to_data, save_dir): ''' shows correlation between an application having more runs and cluster. Parameters ---------- path_to_data: string Returns ------- None ''' df = pd.read_csv(path_to_data, index_col=0) df = df[df['Number of Runs']!=0] fig, ax = plt.subplots(1, 1, figsize=[6,3]) fig.subplots_adjust(left=0.115, right=0.97, top=.95, bottom=0.21, wspace=0.03) ax.set_ylim(-.1,3) ax.set_xlim(1,5) df['Number of Clusters'] = np.log10(df['Number of Clusters']) df['Number of Runs'] = np.log10(df['Number of Runs']) sns.regplot(data=df[df['Operation']=='Read'], x='Number of Runs', y='Number of Clusters', color='skyblue', ax=ax, ci=None, order=0, label='Read', scatter_kws={'edgecolors':'black', 'zorder':1}, line_kws={'zorder':0}) sns.regplot(data=df[df['Operation']=='Write'], x='Number of Runs', y='Number of Clusters', color='maroon', ax=ax, ci=None, order=0, label='Write', scatter_kws={'edgecolors':'black', 'zorder':1}, line_kws={'zorder':0}) ax.yaxis.grid(color='lightgrey', linestyle=':') ax.set_axisbelow(True) ax.legend(loc='upper left', fancybox=True) ax.set_ylabel('Number of Clusters') ax.set_xlabel('Number of Runs of an Application') positions = [0, 1, 2, 3] labels = ['$10^0$', '$10^1$', '$10^2$', '$10^3$'] ax.yaxis.set_major_locator(ticker.FixedLocator(positions)) ax.yaxis.set_major_formatter(ticker.FixedFormatter(labels)) positions = [0, 1, 2, 3, 4 , 5] labels = ['0', '$10^1$', '$10^2$', '$10^3$', '$10^4$', '$10^5$'] ax.xaxis.set_major_locator(ticker.FixedLocator(positions)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(labels)) # Add minor ticks ticks = [1,2,3,4,5,6,7,8,9] f_ticks = [np.log10(x) for x in ticks] tmp_ticks = [np.log10(x)+1 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+2 for x in ticks] f_ticks = f_ticks + tmp_ticks ax.set_yticks(f_ticks, minor=True) f_ticks = [] tmp_ticks = [np.log10(x)+1 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+2 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+3 for x in ticks] f_ticks = f_ticks + tmp_ticks tmp_ticks = [np.log10(x)+4 for x in ticks] f_ticks = f_ticks + tmp_ticks ax.set_xticks(f_ticks, minor=True) plt.savefig(join(save_dir, 'no_runs_v_no_clusters_in_app.pdf')) plt.clf() plt.close() def plot_cluster_sizes(path_to_data, save_dir): ''' CDFs of read and write cluster sizes. Parameters ---------- path_to_data: string Returns ------- None ''' df =
pd.read_csv(path_to_data, index_col=0)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import csv from jsonapi_client import Session, Filter from plotnine import * import pandas API_BASE = "https://www.ebi.ac.uk/metagenomics/api/v1" TAX_RANK = "phylum" # MGYS00002474 (DRP001073) Metabolically active microbial communities # in marine sediment under high-CO2 and low-pH extremes study_accession = "MGYS00002474" # MGYS00002421 (ERP009568) Prokaryotic microbiota associated to the digestive # cavity of the jellyfish Cotylorhiza tuberculata # study_accession = "MGYS00002421" # MGYS00002371 (DRP000490) Porcupine Seabight 16S Ribosomal RNA # study_accession = "MGYS00002371" # MGYS00002441 EMG produced TPA metagenomics assembly of # the doi: 10.3389/fmicb.2016.00579 # study_accession = "MGYS00002441" # MGYS00002394 (SRP051741) Subgingival plaque and peri-implant biofilm # study_accession = "MGYS00002394" # MGYS00001211 (SRP076746) Human gut metagenome Metagenome # study_accession = "MGYS00001211" # MGYS00000601 (ERP013908) Assessment of Bacterial DNA Extraction Procedures for Metagenomic Sequencing Evaluated # on Different Environmental Matrices. # study_accession = "MGYS00000601" # MGYS00002115 # The study includes fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses # study_accession = "MGYS00002115" resource = "studies/" + study_accession + "/analyses" rows = [] with Session(API_BASE) as session: analyses = session.get(resource).resources analyses_accs = [a.accession for a in analyses] for analysis_accession in analyses_accs: tax_annotations = session.get( "/".join(["analyses", analysis_accession, "taxonomy", "ssu"]) ).resources for t in tax_annotations: if t.hierarchy.get(TAX_RANK): rows.append( { "analysis": analysis_accession, "study": study_accession, TAX_RANK: t.hierarchy.get(TAX_RANK), "count": t.count, "rel_abundance": 0, # this will be filled afterwards }, ) data_frame =
pandas.DataFrame(rows)
pandas.DataFrame
from pull_datacb import getCBHistory, getLastRow from datetime import timedelta, datetime from dotenv import load_dotenv from max_min import MaxMin from slope import slope, slope_tick import pandas as pd import cbpro import sys import os # While working within the sandbox you will only be able to trade BTC-USD and ETH-BTC # When connected to the actual cbpro clien you will be able to trade all pairs available on coinbase load_dotenv() cb_key = os.getenv("CBP_SB_KEY") cb_pass = os.getenv("CBP_SB_PHRASE") cb_secret = os.getenv("CBP_SB_SECRET") # A websocket class to get streaming data from the coinbase pr API # Currently testing on the sandbox class TextWebsocketClient(cbpro.WebsocketClient): def __init__(self, url="wss://ws-feed.pro.coinbase.com", products=None, message_type="subscribe", mongo_collection=None, should_print=True, auth=False, api_key="", api_secret="", api_passphrase="", channels: str=None, period: int=None, symbol: str=None): super().__init__(url, products, message_type, mongo_collection, should_print, auth, api_key, api_secret, api_passphrase, channels) try: self.period = int(period) except: print("You must enter an integer") self.symbol = symbol.upper() self.order_book = [] def on_open(self): # Open socket connect with sandbox init message counter self.client = cbpro.AuthenticatedClient( cb_key, cb_secret, cb_pass, api_url=url ) print('websocket open') self.url = "wss://ws-feed-public.sandbox.exchange.coinbase.com" self.message_count = 0 self.dataframe = getCBHistory(self.symbol, self.period, cycles=4) def updater(self, symbol: str, period: int): row = getLastRow(symbol, period) row = row[::-1] row_time = pd.to_datetime(row.index[-1]) ltime =
pd.to_datetime(self.dataframe.index[-1])
pandas.to_datetime
# -*- coding: utf-8 -*- # Copyright (c) 2016-2019 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import copy import functools import os from time import time import numpy as np import pandas as pd from pandapower.io_utils import JSONSerializableClass from pandapower.io_utils import mkdirs_if_not_existent from pandapower.pd2ppc import _pd2ppc from pandapower.pypower.idx_bus import VM, VA, NONE, BUS_TYPE from pandapower.run import _init_runpp_options from pandapower.timeseries.read_batch_results import v_to_i_s, get_batch_line_results, get_batch_trafo3w_results, \ get_batch_trafo_results, get_batch_bus_results try: import pplog except ImportError: import logging as pplog logger = pplog.getLogger(__name__) class OutputWriter(JSONSerializableClass): """ The OutputWriter class is used to store and format specific outputs from a time series calculation. It contains a python-dictionary *output* which is a container for result DataFrames or arbitrary information you would like to store. By default a pandas DataFrame is initialized for the key *Parameters*, which has the columns "time_step", "controller_unstable", "powerflow_failed". To simple log outputs during a time series simulation use **ow.log_variable(table, column)** where table is the name of the (result) table, e.g. "res_bus", and column the name of the column, e.g. "vm_pu". More sophisticated outputs can be added as well since for each value to be stored a function is added to the *output_list* which is called at the end of each time step. The function reads the calculation results and returns the desired values to store. These values are then stored in the *output* DataFrame in a column named after the function you implemented. Such a function can be used to store only some information of the power flow results, like the highest values of the line loading in a time step or the mean values. Check the "advanced time series example" jupyter notebook for an example. INPUT: **net** - The pandapower format network **time_steps** (list) - time_steps to calculate as a list (or range) OPTIONAL: **output_path** (string, None) - Path to a folder where the output is written to. **output_file_type** (string, ".p") - output filetype to use. Allowed file extensions: [*.xls, *.xlsx, *.csv, *.p, *.json] Note: XLS has a maximum number of 256 rows. **csv_separator** (string, ";") - The separator used when writing to a csv file **write_time** (int, None) - Time to save periodically to disk in minutes. Deactivated by default **log_variables** (list, None) - list of tuples with (table, column) values to be logged by output writer. Defaults are: res_bus.vm_pu and res_line.loading_percent. Additional variables can be added later on with ow.log_variable or removed with ow.remove_log_variable EXAMPLE: >>> from pandapower.timeseries.output_writer import OutputWriter >>> from pandapower.networks as nw >>> net = nw.simple_four_bus_system() >>> ow = OutputWriter(net) # create an OutputWriter >>> ow.log_variable('res_bus', 'vm_pu') # add logging for bus voltage magnitudes >>> ow.log_variable('res_line', 'loading_percent') # add logging for line loadings in percent """ def __init__(self, net, time_steps=None, output_path=None, output_file_type=".p", write_time=None, log_variables=None, csv_separator=";"): super().__init__() self.net = net self.output_path = output_path self.output_file_type = output_file_type self.write_time = write_time self.log_variables = log_variables # these are the default log variables which are added if log_variables is None self.default_log_variables = [("res_bus", "vm_pu"), ("res_line", "loading_percent")] self._add_log_defaults() self.csv_separator = csv_separator if write_time is not None: self.write_time *= 60.0 # convert to seconds # init the matrix and the list of output functions self.output = dict() # internal results stored as numpy arrays in dict. Is created from output_list self.np_results = dict() # output list contains functools.partial with tables, variables, index... self.output_list = [] # real time is tracked to save results to disk regularly self.cur_realtime = time() # total time steps to calculate self.time_steps = time_steps # add output_writer to net self.add_to_net(element="output_writer", index=0, overwrite=True) # inits dataframes and numpy arrays which store results # self.init_all() # Saves all parameters as object attributes to store in JSON def __str__(self): # return self.__class__.__name__ return self.__repr__() def __repr__(self): s = "%s: writes output to '%s'" % (self.__class__.__name__, self.output_path) s += " and logs:" for output in self.log_variables: table, variable = output[0], output[1] s += "\n'" + str(table) + "." + str(variable) + "'" return s def _monkey_patch(self, method, new): from types import MethodType setattr(self, method, MethodType(new, self)) def _add_log_defaults(self): if self.log_variables is None: self.log_variables = list() self.log_variables = copy.copy(self.default_log_variables) if not isinstance(self.log_variables, list): raise TypeError("log_variables must be None or a list of tuples like [('res_bus', 'vm_pu')]") def init_log_variables(self): """ inits the log variables given to output writer. log_variables is a list with tuples of DataFrame columns to log. Example: [("res_bus", "vm_pu"), ("res_bus", "va_degree")] If None are given the defaults are: res_bus.vm_pu res_line.loading_percent """ for log_args in self.log_variables: # add log variable self._init_log_variable(*log_args) def init_all(self): if isinstance(self.time_steps, list) or isinstance(self.time_steps, range): self.output = dict() self.np_results = dict() self.output_list = list() self.init_log_variables() self.init_timesteps(self.time_steps) self._init_np_results() self._init_output() else: logger.debug("Time steps not set at init ") def _init_output(self): self.output = dict() # init parameters self.output["Parameters"] = pd.DataFrame(False, index=self.time_steps, columns=["time_step", "controller_unstable", "powerflow_failed"]) self.output["Parameters"].loc[:, "time_step"] = self.time_steps def _init_np_results(self): # inits numpy array (contains results) self.np_results = dict() for partial_func in self.output_list: self._init_np_array(partial_func) def _save_separate(self, append): for partial in self.output_list: if isinstance(partial, tuple): # if batch output is used table = partial[0] variable = partial[1] else: # if output_list contains functools.partial table = partial.args[0] variable = partial.args[1] if table is not "Parameters": file_path = os.path.join(self.output_path, table) mkdirs_if_not_existent(file_path) if append: file_name = str(variable) + "_" + str(self.cur_realtime) + self.output_file_type else: file_name = str(variable) + self.output_file_type file_path = os.path.join(file_path, file_name) data = self.output[self._get_output_name(table, variable)] if self.output_file_type == ".json": data.to_json(file_path) elif self.output_file_type == ".p": data.to_pickle(file_path) elif self.output_file_type in [".xls", ".xlsx"]: try: data.to_excel(file_path) except ValueError as e: if data.shape[1] > 255: raise ValueError("pandas.to_excel() is not capable to handle large data" + "with more than 255 columns. Please use other " + "file_extensions instead, e.g. 'json'.") else: raise ValueError(e) elif self.output_file_type == ".csv": data.to_csv(file_path, sep=self.csv_separator) def dump_to_file(self, append=False, recycle_options=None): """ Save the output to separate files in output_path with the file_type output_file_type. This is called after the time series simulation by default. **append** (bool, False) - Option for appending instead of overwriting the file """ save_single = False self._np_to_pd() if recycle_options not in [None, False]: self.get_batch_outputs(recycle_options) if self.output_path is not None: try: if save_single and self.output_file_type in [".xls", ".xlsx"]: self._save_single_xls_sheet(append) elif self.output_file_type in [".csv", ".xls", ".xlsx", ".json", ".p"]: self._save_separate(append) else: raise UserWarning( "Specify output file with .csv, .xls, .xlsx, .p or .json ending") if append: self._init_output() except Exception: raise def dump(self, recycle_options=None): append = False if self.time_step == self.time_steps[-1] else True self.dump_to_file(append=append, recycle_options=recycle_options) self.cur_realtime = time() # reset real time counter for next period def save_results(self, time_step, pf_converged, ctrl_converged, recycle_options=None): # Saves the results of the current time step to a matrix, # using the output functions in the self.output_list # remember the last time step self.time_step = time_step # add an entry to the output matrix if something failed if not pf_converged: self.save_nans_to_parameters() self.output["Parameters"].loc[time_step, "powerflow_failed"] = True elif not ctrl_converged: self.output["Parameters"].loc[time_step, "controller_unstable"] = True else: self.save_to_parameters() # if write time is exceeded or it is the last time step, data is written if self.write_time is not None: if time() - self.cur_realtime > self.write_time: self.dump() if self.time_step == self.time_steps[-1]: self.dump(recycle_options) def save_to_parameters(self): # Saves the results of the current time step to self.output, # using the output functions in the self.output_list for of in self.output_list: try: of() except: import traceback traceback.print_exc() logger.error("Error in output function! Stored NaN for '%s' in time-step %i" % (of.__name__, self.time_step)) self.save_nans_to_parameters() def save_nans_to_parameters(self): # Saves NaNs to for the given time step. time_step_idx = self.time_step_lookup[self.time_step] for of in self.output_list: self.output["Parameters"].loc[time_step_idx, of.__name__] = np.NaN def remove_log_variable(self, table, variable=None): """ removes a logged variable from outputs INPUT: **table** (str) - name of the DataFrame table (example: "res_bus") OPTIONAL: **variable** (str, None) - column name of the DataFrame table (example: "vm_pu"). If None all are variables of table are removed """ # remove variables from list if variable is not None: self.output_list = [o for o in self.output_list if not (o.args[0] == table and o.args[1] == variable)] self.log_variables = [o for o in self.log_variables if not (o[0] == table and o[1] == variable)] else: self.output_list = [o for o in self.output_list if not (o.args[0] == table)] self.log_variables = [o for o in self.log_variables if not (o[0] == table)] # init output container again self._init_np_results() def log_variable(self, table, variable, index=None, eval_function=None, eval_name=None): """ Adds a variable to log during simulation and appends it to output_list. INPUT: **table** (str) - The DataFrame table where the variable is located as a string (e.g. "res_bus") **variable** (str) - variable that should be logged as string (e.g. "p_mw") OPTIONAL: **index** (iterable, None) - Can be either one index or a list of indices, or a numpy array of indices, or a pandas Index, or a pandas Series (e.g. net.load.bus) for which the variable will be logged. If no index is given, the variable will be logged for all elements in the table **eval_function** (function, None) - A function to be applied on the table / variable / index combination. example: pd.min or pd.mean **eval_name** (str, None) - The name for an applied function. If None the name consists of the table, variable, index and eval function example: "Sir_Lancelot" EXAMPLE: >>> ow.log_variable('res_bus', 'vm_pu') # add logging for bus voltage magnitudes >>> ow.log_variable('res_line', 'loading_percent', index=[0, 2, 5]) # add logging for line loading of lines with indices 0, 2, 5 >>> ow.log_variable('res_line', 'loading_percent', eval_function=pd.max) # get the highest line loading only """ del_indices = list() append_args = set() append = True # check if new log_variable is already in log_variables. If so either append or delete for i, log_args in enumerate(self.log_variables): if log_args[0] == table and log_args[1] == variable: # table and variable exist in log_variables if eval_function is not None or eval_name is not None: append = True continue if len(log_args) == 2 and eval_function is None: # everything from table / variable is logged append = False continue if log_args[2] is not None and index is not None and eval_function is None: # if index is given and an index was given before extend the index and get unique log_args[2] = set(log_args[2].extend(index)) else: del_indices.append(i) append_args.add((table, variable)) append = False for i in del_indices: del self.log_variables[i] for log_arg in append_args: self.log_variables.append(log_arg) if append: self.log_variables.append((table, variable, index, eval_function, eval_name)) def _init_ppc_logging(self, table, variable, index, eval_function, eval_name): var_name = self._get_output_name(table, variable) ppc = self.net["_ppc"] if ppc is None: # if no ppc is in net-> create one options = dict(algorithm='nr', calculate_voltage_angles="auto", init="auto", max_iteration="auto", tolerance_mva=1e-8, trafo_model="t", trafo_loading="current", enforce_q_lims=False, check_connectivity=True, voltage_depend_loads=True, consider_line_temperature=False) _init_runpp_options(self.net, **options) ppc, _ = _pd2ppc(self.net) self.net["_ppc"] = ppc index = list(range(sum(ppc['bus'][:, BUS_TYPE] != NONE))) self._append_output_list(table, variable, index, eval_function, eval_name, var_name, func=self._log_ppc) return index def _init_log_variable(self, table, variable, index=None, eval_function=None, eval_name=None): if "ppc" in table: index = self._init_ppc_logging(table, variable, index, eval_function, eval_name) if np.any(pd.isnull(index)): # check how many elements there are in net index = self.net[table.split("res_")[-1]].index if not hasattr(index, '__iter__'): index = [index] if isinstance(index, (np.ndarray, pd.Index, pd.Series)): index = index.tolist() if eval_function is not None and eval_name is None: eval_name = "%s.%s.%s.%s" % (table, variable, str(index), eval_function.__name__) if eval_function is None and eval_name is not None: logger.info("'eval_name' is to give a name in case of evaluation functions. Since " + "no function is given for eval_name '%s', " % eval_name + "eval_name is neglected.") eval_name = None # var_name = self._get_hash((table, variable, index, eval_function)) var_name = self._get_output_name(table, variable) idx = self._get_same_log_variable_partial_func_idx(table, variable, eval_function, eval_name) if idx is not None: self._append_existing_log_variable_partial_func(idx, index) else: self._append_output_list(table, variable, index, eval_function, eval_name, var_name) def _get_same_log_variable_partial_func_idx(self, table, variable, eval_function, eval_name): """ Returns the position index in self.output_list of partial_func which has the same table and variable and no evaluation function. """ if eval_function is None and eval_name is None: for i, partial_func in enumerate(self.output_list): partial_args = partial_func.args match = partial_args[0] == table match &= partial_args[1] == variable if match: return i def _append_existing_log_variable_partial_func(self, idx, index): """ Appends the index of existing, same partial_func in output_list. """ for i in index: if i not in self.output_list[idx].args[2]: self.output_list[idx].args[2].append(i) def _append_output_list(self, table, variable, index, eval_function, eval_name, var_name, func=None): """ Appends the output_list by an additional partial_func. """ func = self._log if func is None else func partial_func = functools.partial(func, table, variable, index, eval_function, eval_name) partial_func.__name__ = var_name self.output_list.append(partial_func) if self.time_steps is not None: self._init_np_array(partial_func) def _log(self, table, variable, index, eval_function=None, eval_name=None): try: # ToDo: Create a mask for the numpy array in the beginning and use this one for getting the values. Faster if self.net[table].index.equals(pd.Index(index)): # if index equals all values -> get numpy array directly result = self.net[table][variable].values else: # get by loc (slow) result = self.net[table].loc[index, variable].values if eval_function is not None: result = eval_function(result) # save results to numpy array time_step_idx = self.time_step_lookup[self.time_step] hash_name = self._get_np_name((table, variable, index, eval_function, eval_name)) self.np_results[hash_name][time_step_idx, :] = result except Exception as e: logger.error("Error at index %s for %s[%s]: %s" % (index, table, variable, e)) def _log_ppc(self, table, variable, index, eval_function=None, eval_name=None): # custom log function fo ppc results ppci = self.net["_ppc"]["internal"] if variable == "vm": v = VM elif variable == "va": v = VA else: raise NotImplementedError("No other variable implemented yet.") result = ppci[table.split("_")[-1]][:, v] if eval_function is not None: result = eval_function(result) # save results to numpy array time_step_idx = self.time_step_lookup[self.time_step] hash_name = self._get_np_name((table, variable, index, eval_function, eval_name)) self.np_results[hash_name][time_step_idx, :] = result def _np_to_pd(self): # convert numpy arrays (faster so save results) into pd Dataframes (user friendly) # intended use: At the end of time series simulation write results to pandas for partial_func in self.output_list: (table, variable, index, eval_func, eval_name) = partial_func.args # res_name = self._get_hash(table, variable) res_name = self._get_output_name(table, variable) np_name = self._get_np_name(partial_func.args) columns = index if eval_name is not None: columns = [eval_name] res_df = pd.DataFrame(self.np_results[np_name], index=self.time_steps, columns=columns) if res_name in self.output and eval_name is not None: try: self.output[res_name] = pd.concat([self.output[res_name], res_df], axis=1, sort=False) except TypeError: # pandas legacy < 0.21 self.output[res_name] =
pd.concat([self.output[res_name], res_df], axis=1)
pandas.concat
"""Class and methods to retrieve and analyze EDGAR text data - SEC Edgar, 10K, 8K, MD&A, Business Descriptions - BeautifulSoup, requests, regular expressions Author: <NAME> License: MIT """ import lxml from bs4 import BeautifulSoup import pandas as pd from pandas import DataFrame, Series import os, sys, time, re import requests, zipfile, io, gzip, csv, json, unicodedata, glob import numpy as np import matplotlib.pyplot as plt import config def _print(*args, echo=config.ECHO, **kwargs): if echo: print(*args, **kwargs) def requests_get(url, params=None, retry=7, sleep=2, timeout=3, delay=0.25, trap=False, headers=config.headers, echo=config.ECHO): """Wrapper over requests.get, with retry loops and delays Parameters ---------- url : str URL address to request params : dict of {key: value} (optional), default is None Payload of &key=value to append to url headers : dict (optional) e.g. User-Agent, Connection and other headers parameters timeout : int (optional), default is 3 Number of seconds before timing out one request try retry : int (optional), default is 5 Number of times to retry request sleep : int (optional), default is 2 Number of seconds to wait between retries trap : bool (optional), default is True On timed-out after retries: if True raise exception, else return False delay : int (optional), default is 0 Number of seconds to initially wait echo : bool (optional), default is True whether to display verbose messages to aid debugging Returns ------- r : requests.Response object, or None None if timed-out or status_code != 200 """ _print(url, echo=echo) if delay: time.sleep(delay + (delay * np.random.rand())) for i in range(retry): try: r = requests.get(url, headers=headers,timeout=timeout,params=params) assert(r.status_code >= 200 and r.status_code <= 404) break except Exception as e: time.sleep(sleep * (2 ** i) + sleep*np.random.rand()) _print(e, r.status_code, echo=echo) r = None if r is None: # likely timed-out after retries: if trap: # raise exception if trap, else silently return None raise Exception(f"requests_get: {url} {time.time()}") return None if r.status_code != 200: _print(r.status_code, r.content, echo=echo) return None return r class Edgar: """Class to retrieve and pre-process Edgar website documents Attributes ---------- forms_ : dict with key in {'10-K', '10-Q', '8-K'} Values are list of form names str Notes ----- https://www.sec.gov/edgar/searchedgar/accessing-edgar-data.htm https://www.investor.gov/introduction-investing/general-resources/ news-alerts/alerts-bulletins/investor-bulletins/how-read-8 """ # Create .forms_ list: EDGAR_Forms_v2.1.py from ND-SRAF / McDonald 201606 f_10K = ['10-K', '10-K405', '10KSB', '10-KSB', '10KSB40'] f_10KA = ['10-K/A', '10-K405/A', '10KSB/A', '10-KSB/A', '10KSB40/A'] f_10KT = ['10-KT', '10KT405', '10-KT/A', '10KT405/A'] f_10Q = ['10-Q', '10QSB', '10-QSB'] f_10QA = ['10-Q/A', '10QSB/A', '10-QSB/A'] f_10QT = ['10-QT', '10-QT/A'] forms_ = {'10-K' : f_10K + f_10KA + f_10KT, '10-Q' : f_10Q + f_10QA + f_10QT, '8-K' : ['8-K']} url_prefix = 'https://www.sec.gov/Archives' # # Static methods to fetch documents from SEC Edgar website # @staticmethod def basename(date, form, cik, pathname, **kwargs): """Construct base filename from components of the filing pathname""" base = os.path.split(pathname)[-1] return f"{date}_{form.replace('/A', '-A')}_edgar_data_{cik}_{base}" @staticmethod def from_path(pathname, filename=None): """Extract meta info from edgar pathname""" items = pathname.split('.')[0].split('/') adsh = items[-1].replace('-','') resource = os.path.join(*items[:-1], adsh) indexname = os.path.join(resource, items[-1] + '-index.html') return (os.path.join(resource, filename) if filename else {'root': Edgar.url_prefix, 'adsh': adsh, 'indexname': indexname, 'resource' : resource}) @staticmethod def fetch_tickers(echo=config.ECHO): """Fetch tickers-to-cik lookup from SEC web page as a pandas Series""" url = 'https://www.sec.gov/include/ticker.txt' tickers = requests_get(url, echo=echo).text df = DataFrame(data = [t.split('\t') for t in tickers.split('\n')], columns = ['ticker','cik']) return df.set_index('ticker')['cik'].astype(int) @staticmethod def fetch_index(date=None, year=None, quarter=None, echo=config.ECHO): """Fetch edgar daily or master index, or walk to get all daily dates""" # https://www.sec.gov/Archives/edgar/data/51143/0000051143-13-000007.txt if year and quarter: # get full-index by year/quarter root = 'https://www.sec.gov/Archives/edgar/full-index/' url = f"{root}{year}/QTR{quarter}/master.idx" r = requests_get(url, echo=echo) if r is None: return None df = pd.read_csv( io.BytesIO(r.content), sep='|', quoting=3, encoding='latin-1', header=None, low_memory=False, na_filter=False, #skiprows=7, names=['cik', 'name', 'form', 'date', 'pathname']) df['date'] = df['date'].str.replace('-','') df = df[df['date'].str.isdigit() & df['cik'].str.isdigit()] df = df.drop_duplicates(['pathname', 'date', 'form', 'cik']) df = df[df['date'].str.isdigit() & df['cik'].str.isdigit()] df['cik'] = df['cik'].astype(int) df['date'] = df['date'].astype(int) return df.reset_index(drop=True) elif date is not None: # get daily-index root = 'https://www.sec.gov/Archives/edgar/daily-index/' q = (((date // 100) % 100) + 2) // 3 url = f"{root}{date//10000}/QTR{q}/master.{date}.idx" r = requests_get(url, echo=echo) if r is None: d = ((date // 10000) % 100) + ((date % 10000) * 100) url = f"{root}{date//10000}/QTR{q}/master.{d:06d}.idx" r = requests_get(url, echo=echo) df = pd.read_csv( io.BytesIO(r.content), sep='|', quoting=3, encoding='utf-8', low_memory=False, na_filter=False, header=None, #skiprows=7, names=['cik', 'name', 'form', 'date', 'pathname']) df = df[df['date'].str.isdigit() & df['cik'].str.isdigit()] df['cik'] = df['cik'].astype(int) df['date'] = df['date'].astype(int) return df.reset_index(drop=True) elif not date: raise Exception('Invalid arguments to fetch_index') # called with no arguments => fetch category tree leaf = {} queue = [''] while len(queue): sub = queue.pop() f = io.BytesIO(requests_get(root + sub + "index.json", echo=echo).content) nodes = json.loads(f.read().decode('utf-8'))['directory']['item'] for node in nodes: if node['type'] == 'dir': queue += [sub + node['href']] #print(str(node)) else: s = node['name'].split('.') if s[0] == 'master' and s[2] == 'idx': d = int(s[1]) if d <= 129999: d = (d%100)*10000 + (d//100) # 070194->940701 if d <= 129999: d += 20000000 # 091231->20011231 if d <= 999999: d += 19000000 # 970102->19970102 leaf[d] = sub + node['name'] return
Series(leaf)
pandas.Series
from io import StringIO from pathlib import Path import pytest import pandas as pd from pandas import DataFrame, read_json import pandas._testing as tm from pandas.io.json._json import JsonReader @pytest.fixture def lines_json_df(): df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) return df.to_json(lines=True, orient="records") def test_read_jsonl(): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_to_jsonl(): # GH9180 df = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":1,"b":2}\n{"a":1,"b":2}' assert result == expected df = DataFrame([["foo}", "bar"], ['foo"', "bar"]], columns=["a", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a":"foo}","b":"bar"}\n{"a":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(read_json(result, lines=True), df) # GH15096: escaped characters in columns and data df = DataFrame([["foo\\", "bar"], ['foo"', "bar"]], columns=["a\\", "b"]) result = df.to_json(orient="records", lines=True) expected = '{"a\\\\":"foo\\\\","b":"bar"}\n{"a\\\\":"foo\\"","b":"bar"}' assert result == expected tm.assert_frame_equal(read_json(result, lines=True), df) @pytest.mark.parametrize("chunksize", [1, 1.0]) def test_readjson_chunks(lines_json_df, chunksize): # Basic test that read_json(chunks=True) gives the same result as # read_json(chunks=False) # GH17048: memory usage when lines=True unchunked = read_json(StringIO(lines_json_df), lines=True) reader = read_json(StringIO(lines_json_df), lines=True, chunksize=chunksize) chunked = pd.concat(reader) tm.assert_frame_equal(chunked, unchunked) def test_readjson_chunksize_requires_lines(lines_json_df): msg = "chunksize can only be passed if lines=True" with pytest.raises(ValueError, match=msg): pd.read_json(StringIO(lines_json_df), lines=False, chunksize=2) def test_readjson_chunks_series(): # Test reading line-format JSON to Series with chunksize param s = pd.Series({"A": 1, "B": 2}) strio = StringIO(s.to_json(lines=True, orient="records")) unchunked = pd.read_json(strio, lines=True, typ="Series") strio = StringIO(s.to_json(lines=True, orient="records")) chunked = pd.concat(pd.read_json(strio, lines=True, typ="Series", chunksize=1)) tm.assert_series_equal(chunked, unchunked) def test_readjson_each_chunk(lines_json_df): # Other tests check that the final result of read_json(chunksize=True) # is correct. This checks the intermediate chunks. chunks = list(pd.read_json(StringIO(lines_json_df), lines=True, chunksize=2)) assert chunks[0].shape == (2, 2) assert chunks[1].shape == (1, 2) def test_readjson_chunks_from_file(): with tm.ensure_clean("test.json") as path: df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) df.to_json(path, lines=True, orient="records") chunked = pd.concat(pd.read_json(path, lines=True, chunksize=1)) unchunked = pd.read_json(path, lines=True)
tm.assert_frame_equal(unchunked, chunked)
pandas._testing.assert_frame_equal
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import datetime import logging import warnings import os import pandas_datareader as pdr from collections import Counter from scipy import stats from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_percentage_error, mean_absolute_error from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.seasonal import seasonal_decompose logging.basicConfig(filename='warnings.log',level=logging.WARNING) logging.captureWarnings(True) warnings.simplefilter("ignore") def mape(y,pred): return None if 0 in y else mean_absolute_percentage_error(y,pred) # average o(1) worst-case o(n) def rmse(y,pred): return mean_squared_error(y,pred)**.5 def mae(y,pred): return mean_absolute_error(y,pred) def r2(y,pred): return r2_score(y,pred) _estimators_ = {'arima', 'mlr', 'mlp', 'gbt', 'xgboost', 'rf', 'prophet', 'hwes', 'elasticnet','svr','knn','combo'} _metrics_ = {'r2','rmse','mape','mae'} _determine_best_by_ = {'TestSetRMSE','TestSetMAPE','TestSetMAE','TestSetR2','InSampleRMSE','InSampleMAPE','InSampleMAE', 'InSampleR2','ValidationMetricValue','LevelTestSetRMSE','LevelTestSetMAPE','LevelTestSetMAE', 'LevelTestSetR2',None} _colors_ = [ '#FFA500','#DC143C','#00FF7F','#808000','#BC8F8F','#A9A9A9', '#8B008B','#FF1493','#FFDAB9','#20B2AA','#7FFFD4','#A52A2A', '#DCDCDC','#E6E6FA','#BDB76B','#DEB887' ]*10 class ForecastError(Exception): class CannotUndiff(Exception): pass class NoGrid(Exception): pass class PlottingError(Exception): pass class Forecaster: def __init__(self, y=pd.Series([]), current_dates=
pd.Series([])
pandas.Series
from datetime import datetime import warnings import numpy as np import pytest from pandas.core.dtypes.generic import ABCDateOffset import pandas as pd from pandas import ( DatetimeIndex, Index, PeriodIndex, Series, Timestamp, bdate_range, date_range, ) from pandas.tests.test_base import Ops import pandas.util.testing as tm from pandas.tseries.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Series' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.format(op)): getattr(self.dt_series, op) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) index = pd.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = pd.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = pd.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_value_counts_unique(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = pd.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", pd.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [pd.NaT, "2011-01-03", "2011-01-05", "2011-01-02", pd.NaT], [pd.NaT, pd.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.drop_duplicates() tm.assert_index_equal(idx, result) assert idx.freq == result.freq idx_dup = idx.append(idx) assert idx_dup.freq is None # freq is reset result = idx_dup.drop_duplicates() tm.assert_index_equal(idx, result) assert result.freq is None def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") idx = base.append(base[:5]) res = idx.drop_duplicates()
tm.assert_index_equal(res, base)
pandas.util.testing.assert_index_equal
from io import StringIO import pandas as pd import numpy as np import pytest import bioframe import bioframe.core.checks as checks # import pyranges as pr # def bioframe_to_pyranges(df): # pydf = df.copy() # pydf.rename( # {"chrom": "Chromosome", "start": "Start", "end": "End"}, # axis="columns", # inplace=True, # ) # return pr.PyRanges(pydf) # def pyranges_to_bioframe(pydf): # df = pydf.df # df.rename( # {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, # axis="columns", # inplace=True, # ) # return df # def pyranges_overlap_to_bioframe(pydf): # ## convert the df output by pyranges join into a bioframe-compatible format # df = pydf.df.copy() # df.rename( # { # "Chromosome": "chrom_1", # "Start": "start_1", # "End": "end_1", # "Start_b": "start_2", # "End_b": "end_2", # }, # axis="columns", # inplace=True, # ) # df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories # df["chrom_2"] = df["chrom_1"].values # return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) ### select with non-standard column names region1 = "chrX:4-6" new_names = ["chr", "chrstart", "chrend"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=new_names, ) df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=new_names, ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) region1 = "chrX" pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) ### select from a DataFrame with NaNs colnames = ["chrom", "start", "end", "view_region"] df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_result = pd.DataFrame( [["chr1", -6, 12, "chr1p"]], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) region1 = "chr1:0-1" pd.testing.assert_frame_equal( df_result, bioframe.select(df, region1).reset_index(drop=True) ) def test_trim(): ### trim with view_df view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 32, 36, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 26, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) with pytest.raises(ValueError): bioframe.trim(df, view_df=view_df) # df_view_col already exists, so need to specify it: pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col="view_region") ) ### trim with view_df interpreted from dictionary for chromsizes chromsizes = {"chr1": 20, "chrX_0": 5} df = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX_0", 1, 8], ], columns=["chrom", "startFunky", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 20], ["chrX_0", 1, 5], ], columns=["chrom", "startFunky", "end"], ).astype({"startFunky": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_trimmed, bioframe.trim( df, view_df=chromsizes, cols=["chrom", "startFunky", "end"], return_view_columns=False, ), ) ### trim with default limits=None and negative values df = pd.DataFrame( [ ["chr1", -4, 12], ["chr1", 13, 26], ["chrX", -5, -1], ], columns=["chrom", "start", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX", 0, 0], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim when there are NaN intervals df = pd.DataFrame( [ ["chr1", -4, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", -5, -1, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 0, 0, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim with view_df and NA intervals view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12], ["chr1", 0, 12], [pd.NA, pd.NA, pd.NA], ["chrX", 1, 20], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, pd.NA], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) # infer df_view_col with assign_view and ignore NAs pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col=None, return_view_columns=True)[ ["chrom", "start", "end", "view_region"] ], ) def test_expand(): d = """chrom start end 0 chr1 1 5 1 chr1 50 55 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+") expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 -9 15 1 chr1 40 65 2 chr2 90 210""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with negative pad expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 110 190""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp, side="left") d = """chrom start end 0 chr1 3 5 1 chr1 52 55 2 chr2 110 200""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with multiplicative pad mult = 0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 150 150""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) mult = 2.0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 -1 7 1 chr1 48 58 2 chr2 50 250""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with NA and non-integer multiplicative pad d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) mult = 1.10 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 95 205""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df, fake_expanded) def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False # p1 = bioframe_to_pyranges(df1) # p2 = bioframe_to_pyranges(df2) # pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # bb = bioframe.overlap(df1, df2, how="inner")[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # pp = pp.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # bb = bb.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) # print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 ### test keep_order and NA handling df1 = pd.DataFrame( [ ["chr1", 8, 12, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 1, 8, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 7, 10, "-"]], columns=["chrom2", "start2", "end2", "strand"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=True, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) assert ~df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=False, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chrX", 1, 8, pd.NA, pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, pd.NA, "tiger"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert ( bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, keep_order=False, ).shape == (3, 12) ) ### result of overlap should still have bedframe-like properties overlap_df = bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) overlap_df = bioframe.overlap( df1, df2, how="innter", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) # test keep_order incompatible if how!= 'left' with pytest.raises(ValueError): bioframe.overlap( df1, df2, how="outer", on=["animal"], cols2=["chrom2", "start2", "end2"], keep_order=True, ) def test_cluster(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) # assert ( # (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) # == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values # ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() ### test cluster with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.cluster(df1)["cluster"].max() == 3 assert bioframe.cluster(df1, on=["strand"])["cluster"].max() == 4 pd.testing.assert_frame_equal(df1, bioframe.cluster(df1)[df1.columns]) assert checks.is_bedframe( bioframe.cluster(df1, on=["strand"]), cols=["chrom", "cluster_start", "cluster_end"], ) assert checks.is_bedframe( bioframe.cluster(df1), cols=["chrom", "cluster_start", "cluster_end"] ) assert checks.is_bedframe(bioframe.cluster(df1)) def test_merge(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # # test consistency with pyranges # pd.testing.assert_frame_equal( # pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), # bioframe.merge(df1), # check_dtype=False, # check_exact=False, # ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) # merge with repeated indices df = pd.DataFrame( {"chrom": ["chr1", "chr2"], "start": [100, 400], "end": [110, 410]} ) df.index = [0, 0] pd.testing.assert_frame_equal( df.reset_index(drop=True), bioframe.merge(df)[["chrom", "start", "end"]] ) # test merge with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.merge(df1).shape[0] == 4 assert bioframe.merge(df1)["start"].iloc[0] == 1 assert bioframe.merge(df1)["end"].iloc[0] == 12 assert bioframe.merge(df1, on=["strand"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[1] == df1.shape[1] + 1 assert checks.is_bedframe(bioframe.merge(df1, on=["strand", "animal"])) def test_complement(): ### complementing a df with no intervals in chrX by a view with chrX should return entire chrX region df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14]], columns=["chrom", "start", "end"], ) df1_chromsizes = {"chr1": 100, "chrX": 100} df1_complement = pd.DataFrame( [ ["chr1", 0, 1, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with two chromosomes ### df1.iloc[0, 0] = "chrX" df1_complement = pd.DataFrame( [ ["chr1", 0, 3, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 1, "chrX:0-100"], ["chrX", 5, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with no view_df and a negative interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-9223372036854775807"], ["chr1", 20, np.iinfo(np.int64).max, "chr1:0-9223372036854775807"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1), df1_complement) ### test complement with an overhanging interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) chromsizes = {"chr1": 15} df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-15"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=chromsizes, view_name_col="VR"), df1_complement ) ### test complement where an interval from df overlaps two different regions from view ### test complement with no view_df and a negative interval df1 = pd.DataFrame([["chr1", 5, 15]], columns=["chrom", "start", "end"]) chromsizes = [("chr1", 0, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] df1_complement = pd.DataFrame( [["chr1", 0, 5, "chr1p"], ["chr1", 15, 20, "chr1q"]], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) ### test complement with NAs df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 5, 15], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) with pytest.raises(ValueError): # no NAs allowed in chromsizes bioframe.complement( df1, [("chr1", pd.NA, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] ) assert checks.is_bedframe(bioframe.complement(df1, chromsizes)) def test_closest(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 4, 8], ["chr1", 10, 11]], columns=["chrom", "start", "end"] ) ### closest(df1,df2,k=1) ### d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 4 8 0""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### closest(df1,df2, ignore_overlaps=True)) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True) ) ### closest(df1,df2,k=2) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0 1 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), k=2) ) ### closest(df2,df1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 4 8 chr1 1 5 0 1 chr1 10 11 chr1 1 5 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df2, df1, suffixes=("_1", "_2"))) ### change first interval to new chrom ### df2.iloc[0, 0] = "chrA" d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### test other return arguments ### df2.iloc[0, 0] = "chr1" d = """ index index_ have_overlap overlap_start overlap_end distance 0 0 0 True 4 5 0 1 0 1 False <NA> <NA> 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.closest( df1, df2, k=2, return_overlap=True, return_index=True, return_input=False, return_distance=True, ), check_dtype=False, ) # closest should ignore empty groups (e.g. from categorical chrom) df = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) d = """ chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chrX 1 8 chrX 2 10 0 1 chrX 2 10 chrX 1 8 0""" df_closest = pd.read_csv(StringIO(d), sep=r"\s+") df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df = df.astype({"chrom": df_cat}) pd.testing.assert_frame_equal( df_closest, bioframe.closest(df, suffixes=("_1", "_2")), check_dtype=False, check_categorical=False, ) # closest should ignore null rows: code will need to be modified # as for overlap if an on=[] option is added df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_1": pd.Int64Dtype(), "end_1": pd.Int64Dtype(), "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True, k=5) ) with pytest.raises(ValueError): # inputs must be valid bedFrames df1.iloc[0, 0] = "chr10" bioframe.closest(df1, df2) def test_coverage(): #### coverage does not exceed length of original interval df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chr1", 2, 10]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of interval on different chrom returns zero for coverage and n_overlaps df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chrX", 3, 8]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 0 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### when a second overlap starts within the first df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8]], columns=["chrom", "start", "end"] ) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of NA interval returns zero for coverage df1 = pd.DataFrame( [ ["chr1", 10, 20], [pd.NA, pd.NA, pd.NA], ["chr1", 3, 8], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ) df1 = bioframe.sanitize_bedframe(df1) df2 = bioframe.sanitize_bedframe(df2) df_coverage = pd.DataFrame( [ ["chr1", 10, 20, 0], [pd.NA, pd.NA, pd.NA, 0], ["chr1", 3, 8, 5], [pd.NA, pd.NA, pd.NA, 0], ], columns=["chrom", "start", "end", "coverage"], ).astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype(), "coverage": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_coverage, bioframe.coverage(df1, df2)) ### coverage without return_input returns a single column dataFrame assert ( bioframe.coverage(df1, df2, return_input=False)["coverage"].values == np.array([0, 0, 5, 0]) ).all() def test_subtract(): ### no intervals should be left after self-subtraction df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) assert len(bioframe.subtract(df1, df1)) == 0 ### no intervals on chrX should remain after subtracting a longer interval ### interval on chr1 should be split. ### additional column should be propagated to children. df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 5, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### no intervals on chrX should remain after subtracting a longer interval df2 = pd.DataFrame( [["chrX", 0, 4], ["chr1", 6, 6], ["chrX", 4, 9]], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 6, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### subtracting dataframes funny column names funny_cols = ["C", "chromStart", "chromStop"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=funny_cols, ) df1["strand"] = "+" assert len(bioframe.subtract(df1, df1, cols1=funny_cols, cols2=funny_cols)) == 0 funny_cols2 = ["chr", "st", "e"] df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=funny_cols2, ) df_result = pd.DataFrame( [["chr1", 4, 5, "+"], ["chr1", 6, 7, "+"]], columns=funny_cols + ["strand"], ) df_result = df_result.astype( {funny_cols[1]: pd.Int64Dtype(), funny_cols[2]: pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2, cols1=funny_cols, cols2=funny_cols2) .sort_values(funny_cols) .reset_index(drop=True), ) # subtract should ignore empty groups df1 = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 1, 8], ], columns=["chrom", "start", "end"], ) df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df1 = df1.astype({"chrom": df_cat}) df_subtracted = pd.DataFrame( [ ["chrX", 8, 10], ], columns=["chrom", "start", "end"], ) assert bioframe.subtract(df1, df1).empty pd.testing.assert_frame_equal( df_subtracted.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2), check_dtype=False, check_categorical=False, ) ## test transferred from deprecated bioframe.split df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 4], ["chr1", 5], ], columns=["chrom", "pos"], ) df2["start"] = df2["pos"] df2["end"] = df2["pos"] df_result = ( pd.DataFrame( [ ["chrX", 1, 4], ["chrX", 3, 4], ["chrX", 4, 5], ["chrX", 4, 8], ["chr1", 5, 7], ["chr1", 4, 5], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) .astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # Test the case when a chromosome should not be split (now implemented with subtract) df1 = pd.DataFrame( [ ["chrX", 3, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame([["chrX", 4]], columns=["chrom", "pos"]) df2["start"] = df2["pos"].values df2["end"] = df2["pos"].values df_result = ( pd.DataFrame( [ ["chrX", 3, 4], ["chrX", 4, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # subtract should ignore null rows df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 1, 5]], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ ["chrX", 1, 5], [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_subtracted = pd.DataFrame( [ ["chr1", 1, 4], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_subtracted, bioframe.subtract(df1, df2)) df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert len(bioframe.subtract(df1, df2)) == 0 # empty df1 but valid chroms in df2 with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df1) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df2) def test_setdiff(): cols1 = ["chrom1", "start", "end"] cols2 = ["chrom2", "start", "end"] df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=cols1 + ["strand", "animal"], ) df2 = pd.DataFrame( [ ["chrX", 7, 10, "-", "dog"], ["chr1", 6, 10, "-", "cat"], ["chr1", 6, 10, "-", "cat"], ], columns=cols2 + ["strand", "animal"], ) assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=None, ) ) == 0 ) # everything overlaps assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["animal"], ) ) == 1 ) # two overlap, one remains assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["strand"], ) ) == 2 ) # one overlaps, two remain # setdiff should ignore nan rows df1 = pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])[ ["chrom1", "start", "end", "strand", "animal"] ] df1 = df1.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) df2 = pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])[ ["chrom2", "start", "end", "strand", "animal"] ] df2 = df2.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) assert (2, 5) == np.shape(bioframe.setdiff(df1, df1, cols1=cols1, cols2=cols1)) assert (2, 5) == np.shape(bioframe.setdiff(df1, df2, cols1=cols1, cols2=cols2)) assert (4, 5) == np.shape( bioframe.setdiff(df1, df2, on=["strand"], cols1=cols1, cols2=cols2) ) def test_count_overlaps(): df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [ ["chr1", 6, 10, "+", "dog"], ["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ], columns=["chrom2", "start2", "end2", "strand", "animal"], ) assert ( bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 2, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 0, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand", "animal"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([0, 0, 0]) ).all() # overlaps with pd.NA counts_no_nans = bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) df1_na = (pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } )[["chrom1", "start", "end", "strand", "animal"]] df2_na = (pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])).astype( { "start2": pd.Int64Dtype(), "end2": pd.Int64Dtype(), } )[["chrom2", "start2", "end2", "strand", "animal"]] counts_nans_inserted_after = ( pd.concat([pd.DataFrame([pd.NA]), counts_no_nans,
pd.DataFrame([pd.NA])
pandas.DataFrame
'''GDELTeda.py Project: WGU Data Management/Analytics Undergraduate Capstone <NAME> August 2021 Class for collecting Pymongo and Pandas operations to automate EDA on subsets of GDELT records (Events/Mentions, GKG, or joins). Basic use should be by import and implementation within an IDE, or by editing section # C00 and running this script directly. Primary member functions include descriptive docstrings for their intent and use. WARNING: project file operations are based on relative pathing from the 'scripts' directory this Python script is located in, given the creation of directories 'GDELTdata' and 'EDAlogs' parallel to 'scripts' upon first GDELTbase and GDELTeda class initializations. If those directories are not already present, a fallback method for string-literal directory reorientation may be found in '__init__()' at this tag: # A02b - Project directory path. Specification for any given user's main project directory should be made for that os.chdir() call. See also GDELTbase.py, tag # A01a - backup path specification, as any given user's project directory must be specified there, also. Contents: A00 - GDELTeda A01 - shared class data A02 - __init__ with instanced data A02a - Project directory maintenance A02b - Project directory path specification Note: Specification at A02b should be changed to suit a user's desired directory structure, given their local filesystem. B00 - class methods B01 - batchEDA() B02 - eventsBatchEDA() B03 - mentionsBatchEDA() B04 - gkgBatchEDA() Note: see GDELTedaGKGhelpers.py for helper function code & docs B05 - realtimeEDA() B06 - loopEDA() C00 - main w/ testing C01 - previously-run GDELT realtime EDA testing ''' import json import multiprocessing import numpy as np import os import pandas as pd import pymongo import shutil import wget from datetime import datetime, timedelta, timezone from GDELTbase import GDELTbase from GDELTedaGKGhelpers import GDELTedaGKGhelpers from pandas_profiling import ProfileReport from pprint import pprint as pp from time import time, sleep from urllib.error import HTTPError from zipfile import ZipFile as zf # A00 class GDELTeda: '''Collects Pymongo and Pandas operations for querying GDELT records subsets and performing semi-automated EDA. Shared class data: ----------------- logPath - dict Various os.path objects for EDA log storage. configFilePaths - dict Various os.path objects for pandas_profiling.ProfileReport configuration files, copied to EDA log storage directories upon __init__, for use in report generation. Instanced class data: -------------------- gBase - GDELTbase instance Used for class member functions, essential for realtimeEDA(). Class methods: ------------- batchEDA() eventsBatchEDA() mentionsBatchEDA() gkgBatchEDA() realtimeEDA() loopEDA() Helper functions from GDELTedaGKGhelpers.py used in gkgBatchEDA(): pullMainGKGcolumns() applyDtypes() convertDatetimes() convertGKGV15Tone() mainReport() locationsReport() countsReport() themesReport() personsReport() organizationsReport() ''' # A01 - shared class data # These paths are set relative to the location of this script, one directory # up and in 'EDAlogs' parallel to the script directory, which can be named # arbitrarily. logPath = {} logPath['base'] = os.path.join(os.path.abspath(__file__), os.path.realpath('..'), 'EDAlogs') logPath['events'] = {} logPath['events'] = { 'table' : os.path.join(logPath['base'], 'events'), 'batch' : os.path.join(logPath['base'], 'events', 'batch'), 'realtime' : os.path.join(logPath['base'], 'events', 'realtime'), } logPath['mentions'] = { 'table' : os.path.join(logPath['base'], 'mentions'), 'batch' : os.path.join(logPath['base'], 'mentions', 'batch'), 'realtime' : os.path.join(logPath['base'], 'mentions', 'realtime'), } logPath['gkg'] = { 'table' : os.path.join(logPath['base'], 'gkg'), 'batch' : os.path.join(logPath['base'], 'gkg', 'batch'), 'realtime' : os.path.join(logPath['base'], 'gkg', 'realtime'), } # Turns out, the following isn't the greatest way of keeping track # of each configuration file. It's easiest to just leave them in the # exact directories where ProfileReport.to_html() is aimed (via # os.chdir()), since it's pesky maneuvering outside parameters into # multiprocessing Pool.map() calls. # Still, these can and are used in realtimeEDA(), since the size of # just the most recent datafiles should permit handling them without # regard for Pandas DataFrame RAM impact (it's greedy, easiest method # for mitigation is multiprocessing threads, that shouldn't be # necessary for realtimeEDA()). # Regardless, all these entries are for copying ProfileReport config # files to their appropriate directories for use, given base-copies # present in the 'scripts' directory. Those base copies may be edited # in 'scripts', since each file will be copied from there. configFilePaths = {} configFilePaths['events'] = { 'batch' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTeventsEDAconfig_batch.yaml"), 'realtime' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTeventsEDAconfig_realtime.yaml"), } configFilePaths['mentions'] = { 'batch' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTmentionsEDAconfig_batch.yaml"), 'realtime' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTmentionsEDAconfig_realtime.yaml"), } configFilePaths['gkg'] = {} configFilePaths['gkg']['batch'] = { 'main' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgMainEDAconfig_batch.yaml"), 'locations' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgLocationsEDAconfig_batch.yaml"), 'counts' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgCountsEDAconfig_batch.yaml"), 'themes' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgThemesEDAconfig_batch.yaml"), 'persons' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgPersonsEDAconfig_batch.yaml"), 'organizations' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgOrganizationsEDAconfig_batch.yaml"), } configFilePaths['gkg']['realtime'] = { 'main' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgMainEDAconfig_realtime.yaml"), 'locations' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgLocationsEDAconfig_realtime.yaml"), 'counts' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgCountsEDAconfig_realtime.yaml"), 'themes' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgThemesEDAconfig_realtime.yaml"), 'persons' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgPersonsEDAconfig_realtime.yaml"), 'organizations' : os.path.join(logPath['base'], os.path.realpath('..'), 'scripts', "GDELTgkgOrganizationsEDAconfig_realtime.yaml"), } # A02 def __init__(self, tableList = ['events', 'mentions', 'gkg']): '''GDELTeda class initialization, takes a list of GDELT tables to perform EDA on. Instantiates a GDELTbase() instance for use by class methods and checks for presence of EDAlogs directories, creating them if they aren't present, and copying all ProfileReport-required config files to their applicable directories. Parameters: ---------- tableList - list of strings, default ['events','mentions','gkg'] Controls detection and creation of .../EDALogs/... subdirectories for collection of Pandas Profiling ProfileReport HTML EDA document output. Also controls permission for class member functions to perform operations on tables specified by those functions' tableList parameters as a failsafe against a lack of project directories required for those operations, specifically output of HTML EDA documents. output: ------ Produces exhaustive EDA for GDELT record subsets for specified tables through Pandas Profiling ProfileReport-output HTML documents. All procedurally automated steps towards report generation are shown in console output during script execution. ''' # instancing tables for operations to be passed to member functions self.tableList = tableList print("Instantiating GDELTeda...\n") self.gBase = GDELTbase() if 'events' not in tableList and \ 'mentions' not in tableList and \ 'gkg' not in tableList: print("Error! 'tableList' values do not include a valid GDELT table.", "\nPlease use one or more of 'events', 'mentions', and/or 'gkg'.") # instancing trackers for realtimeEDA() and loopEDA() self.realtimeStarted = False self.realtimeLooping = False self.realtimeWindow = 0 self.lastRealDatetime = '' self.nextRealDatetime = '' # A02a - Project EDA log directories confirmation and/or creation, and # Pandas Profiling ProfileReport configuration file copying from 'scripts' # directory. print(" Checking log directory...") if not os.path.isdir(self.logPath['base']): print(" Doesn't exist! Making...") # A02b - Project directory path # For obvious reasons, any user of this script should change this # string to suit their needs. The directory described with this string # should be one directory above the location of the 'scripts' directory # this file should be in. If this file is not in 'scripts', unpredictable # behavior may occur, and no guarantees of functionality are intended for # such a state. os.chdir('C:\\Users\\urf\\Projects\\WGU capstone') os.mkdir(self.logPath['base']) for table in tableList: # switch to EDAlogs directory os.chdir(self.logPath['base']) # Branch: table subdirectories not found, create all if not os.path.isdir(self.logPath[table]['table']): print("Did not find .../EDAlogs/", table, "...") print(" Creating .../EDAlogs/", table, "...") os.mkdir(self.logPath[table]['table']) os.chdir(self.logPath[table]['table']) print(" Creating .../EDAlogs/", table, "/batch") os.mkdir(self.logPath[table]['batch']) print(" Creating .../EDAlogs/", table, "/realtime") os.mkdir(self.logPath[table]['realtime']) os.chdir(self.logPath[table]['realtime']) # Branch: table subdirectories found, create batch/realtime directories # if not present. else: print(" Found .../EDAlogs/", table,"...") os.chdir(self.logPath[table]['table']) if not os.path.isdir(self.logPath[table]['batch']): print(" Did not find .../EDAlogs/", table, "/batch , creating...") os.mkdir(self.logPath[table]['batch']) if not os.path.isdir(self.logPath[table]['realtime']): print(" Did not find .../EDAlogs/", table, "/realtime , creating...") os.mkdir(self.logPath[table]['realtime']) os.chdir(self.logPath[table]['realtime']) # Copying pandas_profiling.ProfileReport configuration files print(" Copying configuration files...\n") if table == 'gkg': # There's a lot of these, but full normalization of GKG is # prohibitively RAM-expensive, so reports need to be generated for # both the main columns and the main columns normalized for each # variable-length subfield. shutil.copy(self.configFilePaths[table]['realtime']['main'], self.logPath[table]['realtime']) shutil.copy(self.configFilePaths[table]['realtime']['locations'], self.logPath[table]['realtime']) shutil.copy(self.configFilePaths[table]['realtime']['counts'], self.logPath[table]['realtime']) shutil.copy(self.configFilePaths[table]['realtime']['themes'], self.logPath[table]['realtime']) shutil.copy(self.configFilePaths[table]['realtime']['persons'], self.logPath[table]['realtime']) shutil.copy(self.configFilePaths[table]['realtime']['organizations'], self.logPath[table]['realtime']) os.chdir(self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['main'], self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['locations'], self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['counts'], self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['themes'], self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['persons'], self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch']['organizations'], self.logPath[table]['batch']) else: shutil.copy(self.configFilePaths[table]['realtime'], self.logPath[table]['realtime']) os.chdir(self.logPath[table]['batch']) shutil.copy(self.configFilePaths[table]['batch'], self.logPath[table]['batch']) # B00 - class methods # B01 def batchEDA(self, tableList = ['events','mentions','gkg']): '''Reshapes and re-types GDELT records for generating Pandas Profiling ProfileReport()-automated, simple EDA reports from Pandas DataFrames, from MongoDB-query-cursors. WARNING: extremely RAM, disk I/O, and processing intensive. Be aware of what resources are available for these operations at runtime. Relies on Python multiprocessing.Pool.map() calls against class member functions eventsBatchEDA() and mentionsBatchEDA(), and a regular call on gkgBatchEDA(), which uses multiprocessing.Pool.map() calls within it. Parameters: ---------- tableList - list of strings, default ['events','mentions','gkg'] Permits limiting analysis to one or more tables. Output: ------ Displays progress through the function's operations via console output while producing Pandas Profiling ProfileReport.to_file() html documents for ''' if tableList != self.tableList: print("\n Error: this GDELTeda object may have been initialized\n", " without checking for the presence of directories\n", " required for this function's operations.\n", " Please check GDELTeda parameters and try again.") for table in tableList: print("\n------------------------------------------------------------\n") print("Executing batch EDA on GDELT table", table, "records...") # WARNING: RAM, PROCESSING, and DISK I/O INTENSIVE # Events and Mentions are both much easier to handle than GKG, so # they're called in their own collective function threads with # multiprocessing.Pool(1).map(). if table == 'events': os.chdir(self.logPath['events']['batch']) pool = multiprocessing.Pool(1) eventsReported = pool.map(self.eventsBatchEDA(), ['batch']) pool.close() pool.join() if table == 'mentions': os.chdir(self.logPath['mentions']['batch']) pool = multiprocessing.Pool(1) mentionsReported = pool.map(self.mentionsBatchEDA(), ['batch']) pool.close() pool.join() if table == 'gkg': # Here's the GKG bottleneck! Future investigation of parallelization # improvements may yield gains here, as normalization of all subfield # and variable-length measures is very RAM expensive, given the # expansion in records required. # So, current handling of GKG subfield and variable-length measures # is isolating most operations in their own process threads within # gkgBatchEDA() execution, forcing deallocation of those resources upon # each Pool.close(), as with Events and Mentions table operations above # which themselves do not require any additional subfield handling. os.chdir(self.logPath['gkg']['batch']) self.gkgBatchEDA() # B02 def eventsBatchEDA(mode): '''Performs automatic EDA on GDELT Events record subsets. See function batchEDA() for "if table == 'events':" case handling and how this function is invoked as a multiprocessing.Pool.map() call, intended to isolate its RAM requirements for deallocation upon Pool.close(). In its current state, this function can handle collections of GDELT Events records up to at least the size of the batch EDA test subset used in this capstone project, the 30 day period from 05/24/2020 to 06/22/2020. Parameters: ---------- mode - arbitrary This parameter is included to meet Python multiprocessing.Pool.map() function requirements. As such, it is present only to receive a parameter determined by map(), e.g. one iteration of the function will execute. Output: ------ Console displays progress through steps with time taken throughout, and function generates EDA profile html documents in appropriate project directories. ''' columnNames = [ 'GLOBALEVENTID', 'Actor1Code', 'Actor1Name', 'Actor1CountryCode', 'Actor1Type1Code', 'Actor1Type2Code', 'Actor1Type3Code', 'Actor2Code', 'Actor2Name', 'Actor2CountryCode', 'Actor2Type1Code', 'Actor2Type2Code', 'Actor2Type3Code', 'IsRootEvent', 'EventCode', 'EventBaseCode', 'EventRootCode', 'QuadClass', 'AvgTone', 'Actor1Geo_Type', 'Actor1Geo_FullName', 'Actor1Geo_Lat', 'Actor1Geo_Long', 'Actor2Geo_Type', 'Actor2Geo_FullName', 'Actor2Geo_Lat', 'Actor2Geo_Long', 'ActionGeo_Type', 'ActionGeo_FullName', 'ActionGeo_Lat', 'ActionGeo_Long', 'DATEADDED', 'SOURCEURL', ] columnTypes = { 'GLOBALEVENTID' : type(1), 'Actor1Code': pd.StringDtype(), 'Actor1Name': pd.StringDtype(), 'Actor1CountryCode': pd.StringDtype(), 'Actor1Type1Code' : pd.StringDtype(), 'Actor1Type2Code' : pd.StringDtype(), 'Actor1Type3Code' : pd.StringDtype(), 'Actor2Code': pd.StringDtype(), 'Actor2Name': pd.StringDtype(), 'Actor2CountryCode': pd.StringDtype(), 'Actor2Type1Code' : pd.StringDtype(), 'Actor2Type2Code' : pd.StringDtype(), 'Actor2Type3Code' : pd.StringDtype(), 'IsRootEvent': type(True), 'EventCode': pd.StringDtype(), 'EventBaseCode': pd.StringDtype(), 'EventRootCode': pd.StringDtype(), 'QuadClass': type(1), 'AvgTone': type(1.1), 'Actor1Geo_Type': type(1), 'Actor1Geo_FullName': pd.StringDtype(), 'Actor1Geo_Lat': pd.StringDtype(), 'Actor1Geo_Long': pd.StringDtype(), 'Actor2Geo_Type': type(1), 'Actor2Geo_FullName': pd.StringDtype(), 'Actor2Geo_Lat': pd.StringDtype(), 'Actor2Geo_Long': pd.StringDtype(), 'ActionGeo_Type': type(1), 'ActionGeo_FullName': pd.StringDtype(), 'ActionGeo_Lat': pd.StringDtype(), 'ActionGeo_Long': pd.StringDtype(), 'DATEADDED' : pd.StringDtype(), 'SOURCEURL': pd.StringDtype(), } timecheckG = time() print(" Creating another thread-safe connection to MongoDB...") localDb = {} localDb['client'] = pymongo.MongoClient() localDb['database'] = localDb['client'].capstone localDb['collection'] = localDb['database'].GDELT.events configFilePath = os.path.join(os.path.abspath(__file__), "GDELTeventsEDAconfig_batch.yaml"), datetimeField = "DATEADDED" datetimeFormat = "%Y-%m-%dT%H:%M:%S.000000Z" strftimeFormat = "%Y-%m-%dh%Hm%M" print(" Pulling events records (long wait)... ", end = '') eventsDF = pd.DataFrame.from_records( list(localDb['collection'].find(projection = {"_id" : False}, allow_disk_use=True, no_cursor_timeout = True)), columns = columnNames, ) print(" Complete!( %0.3f s )" % (float(time())-float(timecheckG))) timecheckG = time() print(" Setting dtypes... ", end='') eventsDF = eventsDF.astype(dtype = columnTypes, copy = False) print(" Complete!( %0.3f s )" % (float(time())-float(timecheckG))) print(" Converting datetimes...", end = '') eventsDF[datetimeField] = pd.to_datetime(eventsDF[datetimeField], format = datetimeFormat) print(" Complete!( %0.3f s )" % (float(time())-float(timecheckG))) print("\n Events records DataFrame .info():\n") print(eventsDF.info()) edaDates = "".join([ eventsDF[datetimeField].min().strftime(strftimeFormat),"_to_", eventsDF[datetimeField].max().strftime(strftimeFormat), ]) edaLogName = "".join(["GDELT_events_EDA_", edaDates,".html"]) timecheckG = time() print(" Complete!( %0.3f s )" % (float(time())-float(timecheckG))) timecheckG = time() print(" File output:", edaLogName, "\n") print(" Generating events 'batch' EDA report...") eventsProfile = ProfileReport(eventsDF, config_file = configFilePath) eventsProfile.to_file(edaLogName) del eventsDF del eventsProfile print(" Complete!( %0.fd s )" % (float(time())-float(timecheckG))) print("All Events EDA operations complete. Please check EDAlogs", "directories for any resulting Events EDA profile reports.") return True # B03 def mentionsBatchEDA(mode): '''Performs automatic EDA on GDELT Mentions record subsets. See function batchEDA() for "if table == 'mentions':" case handling and how this function is invoked as a multiprocessing.Pool.map() call, intended to isolate its RAM requirements for deallocation upon Pool.close(). In its current state, this function can handle collections of GDELT Mentions records up to at least the size of the batch EDA test subset used in this capstone project, the 30 day period from 05/24/2020 to 06/22/2020. Parameters: ---------- mode - arbitrary This parameter is included to meet Python multiprocessing.Pool.map() function requirements. As such, it it present only to receive a parameter determined by imap(chunksize = 1), e.g. one iteration of the function will execute. Output: ------ Console displays progress through steps with time taken throughout, and function generates EDA profile html documents in appropriate project directories. ''' print(" Creating new thread-safe connection to MongoDB...") columnNames = [ 'GLOBALEVENTID', 'EventTimeDate', 'MentionTimeDate', 'MentionType', 'MentionSourceName', 'MentionIdentifier', 'InRawText', 'Confidence', 'MentionDocTone', ] columnTypes = { 'GLOBALEVENTID' : type(1), 'EventTimeDate' : pd.StringDtype(), 'MentionTimeDate' : pd.StringDtype(), 'MentionType' : pd.StringDtype(), 'MentionSourceName' : pd.StringDtype(), 'MentionIdentifier' : pd.StringDtype(), 'InRawText' : type(True), 'Confidence' : type(1), 'MentionDocTone' : type(1.1), } localDb = {} localDb['client'] = pymongo.MongoClient() localDb['database'] = localDb['client'].capstone localDb['collection'] = localDb['database'].GDELT.mentions configFileName = "GDELTmentionsEDAconfig_batch.yaml" datetimeField01 = "MentionTimeDate" datetimeField02 = "EventTimeDate" datetimeFormat = "%Y-%m-%dT%H:%M:%S.000000Z" strftimeFormat = "%Y-%m-%dh%Hm%M" print("\n Pulling mentions records (long wait)...") tableDF = pd.DataFrame.from_records( list(localDb['collection'].find(projection = {"_id" : False}, allow_disk_use=True, no_cursor_timeout = True)), columns = columnNames, ) print(" Complete!") print(" Setting dtypes...") tableDF = tableDF.astype(dtype = columnTypes, copy = False) print(" Complete!") print(" Converting datetimes...") tableDF[datetimeField01] = pd.to_datetime(tableDF[datetimeField01], format = datetimeFormat) tableDF[datetimeField02] = pd.to_datetime(tableDF[datetimeField02], format = datetimeFormat) print(" Complete!") print(" Mentions records DataFrame .info():") print(tableDF.info()) edaDates = "".join([ tableDF[datetimeField01].min().strftime(strftimeFormat),"_to_", tableDF[datetimeField01].max().strftime(strftimeFormat), ]) edaLogName = "".join(["GDELT_mentions_EDA_", edaDates,".html"]) print(" File output:", edaLogName, "\n") print("\n Generating mentions 'batch' EDA report...") profile = ProfileReport(tableDF, config_file= configFileName) profile.to_file(edaLogName) print("\n Complete!") return True # B04 def gkgBatchEDA(self): '''Performs automatic EDA on GDELT Global Knowledge Graph (GKG) record subsets. Makes use of these helper functions for multiprocessing.Pool.map() calls, from GDELTedaGKGhelpers. a separate file as part of ensuring compatibility with this class's Python.multiprocessing calls (all 'AXX' tags are for 'find' use in GDELTedaGKGhelpers.py): A02 - pullMainGKGcolumns A03 - applyDtypes A04 - convertDatetimes A05 - convertGKGV15Tone A06 - mainReport A07 - locationsReport A08 - countsReport A09 - themesReport A10 - personsReport A11 - organizationsReport The intent behind this implementation is to reduce the amount of total RAM required for all operations, as .close() upon appropriate process pools should result in deallocation of their memory structures, which just isn't going to be forced otherwise due to Pandas and Python memory handling. Well-known issues with underlying treatment of allocation and deallocation of DataFrames, regardless of whether all references to a DataFrame are passed to 'del' statements, restrict completion of the processing necessary for normalization of all GKG columns, which is necessary for execution of EDA on those columns. The apparent RAM requirements for those operations on the batch test GKG data set are not mitigable under these hardware circumstances, barring further subset of the data into small enough component pieces with each their own EDA profile, which could not be converted to batch EDA without processing outside the scope of this capstone project. The uncommented code in this function represent a working state which can produce full batch EDA on at least the primary information-holding GKG columns, but not for the majority of variable-length and subfielded columns. V1Locations batch EDA has been produced from at least one attempt, but no guarantee of its error-free operation on similarly-sized subsets of GDELT GKG records is intended or encouraged. Output: ------ Console displays progress through steps with time taken throughout, and function generates EDA profile html documents in appropriate project directories. ''' timecheck = time() print(" Pulling non-variable-length GKG columns...") pool = multiprocessing.Pool(1) # For pullMainGKGcolumns documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A02' tableDF = pool.map(GDELTedaGKGhelpers.pullMainGKGcolumns, ['batch']) pool.close() pool.join() print(" Records acquired. ( %0.3f s )" % (float(time())-float(timecheck))) print("\n GKG records DataFrame .info():") tableDF = tableDF.pop() pp(tableDF.info()) timecheck = time() print("\n Setting dtypes...") # This only sets 'GKGRECORDID', 'V21DATE', 'V2SourceCommonName', # and 'V2DocumentIdentifier' dtypes to pd.StringDtype() pool = multiprocessing.Pool(1) # For applyDtypes documentation, See GDELTedaGKGhelpers.py, 'find' # tag '# A03' tableDF = pool.map(GDELTedaGKGhelpers.applyDtypes, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) tableDF = tableDF.pop() timecheck = time() print("\n Converting datetimes...") pool = multiprocessing.Pool(1) # For convertDatetimes documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A04' tableDF = pool.map(GDELTedaGKGhelpers.convertDatetimes, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) tableDF = tableDF.pop() timecheck = time() print("\n Splitting V15Tone dicts to columns...") pool = multiprocessing.Pool(1) # For convertGKGV15Tone code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A05' tableDF = pool.map(GDELTedaGKGhelpers.convertGKGV15Tone, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) tableDF = tableDF.pop() print("\n Main GKG records (non-variable-length columns) DataFrame", ".info():\n") pp(tableDF.info()) # Generating report excluding fields that require substantially more # records (normalization), and so more resources for reporting. timecheck = time() print("\n Generating non-variable-length subfield report...") pool = multiprocessing.Pool(1) # For mainReport code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A06' booleanSuccess = pool.map(GDELTedaGKGhelpers.mainReport, [tableDF]) pool.close() pool.join() print("\n Complete! ( %0.3f s )" % (float(time())-float(timecheck))) # # These columns may be dropped from this point on in order to # # accomodate the increased RAM, CPU, and disk I/O requirements for # # normalizing variable length columns, but this is commented out in order # # to further check RAM requirements for full normalization. # timecheck = time() # print("\n Dropping excess columns before normalizing for variable-length", # "columns...") # tableDF.drop(columns = ['V2SourceCommonName', # 'V2DocumentIdentifier', # 'V15Tone_Positive', # 'V15Tone_Negative', # 'V15Tone_Polarity', # 'V15Tone_ARD', # 'V15Tone_SGRD', # 'V15Tone_WordCount'], inplace = True) # print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) # Working implementation with locationsReport timecheck = time() print("\n Splitting V1Locations dicts and generating report...") pool = multiprocessing.Pool(1) # For locationsReport code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A07' booleanSuccess = pool.map(GDELTedaGKGhelpers.locationsReport, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) ''' # This section of calls are commented out due to their current inability # to complete processing for the batch EDA test subset of GKG records. # Future attempts to complete these sections will see this comment area # removed and this section cleaned of work-in-progress documentation. # Non-working implementation of countsReport. Tempted to think it's due # to Pandas limitations for long-running jobs, but it's also just a huge # DataFrame I'm attempting to normalize, thanks to the variable quantities # of 'V1Counts' values with subfielded values per record. # timecheck = time() # print("\n Splitting V1Counts lists and generating report...") # pool = multiprocessing.Pool(1) # # For countsReport code/documentation, See GDELTedaGKGhelpers.py, # # 'find' tag '# A08' # booleanSuccess = pool.map(GDELTedaGKGhelpers.countsReport, [tableDF]) # pool.close() # pool.join() # print(" Complete! (%0.3f seconds)" % (float(time())-float(timecheck))) # Ditto the rest of the normalization helper functions, because the # normalization necessary for EDA on this large a subset of GKG records is # just too high, given how this field has so many values of varying and # sometimes ridiculous length. If Pandas Profiling could be coerced to not # care about allocating smaller data structures for columns of varying # type, this wouldn't matter, because I could leave all but key column # values as NaN, but Pandas wants to allocate massive amounts of empty # memory structures, and when records total over 16 million and Pandas # wants that many 64-bit float values, even if there's only 8 million real # values in the column to work with, Pandas will create however many extra # copies of those 8 million empty 64-bit float memory signatures, or at # least demand them until the system can't help but except the process. timecheck = time() print("\n Splitting V1Themes lists and generating report...") pool = multiprocessing.Pool(1) # For themesReport code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A09' booleanSuccess = pool.map(GDELTedaGKGhelpers.themesReport, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) timecheck = time() print("\n Generating Persons report...") pool = multiprocessing.Pool(1) # For personsReport code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A10' booleanSuccess = pool.map(GDELTedaGKGhelpers.personsReport, [tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) timecheck = time() print("\n Generating Organizations report...") pool = multiprocessing.Pool(1) # For organizationsReport code/documentation, See GDELTedaGKGhelpers.py, # 'find' tag '# A11' booleanSuccess = pool.map(GDELTedaGKGhelpers.organizationsReport,[tableDF]) pool.close() pool.join() print(" Complete! ( %0.3f s )" % (float(time())-float(timecheck))) ''' print("All GKG EDA operations complete. Please check EDAlogs directories", " for any resulting EDA profile reports.") print("\n--------------------------------------------------------------\n") # B05 def realtimeEDA(self, tableList = ['events','mentions','gkg']): '''Performs automatic EDA on the latest GDELT datafiles for records from Events/Mentions and GKG. This function is enabled by loopEDA() to download a specified window of datafiles, or else just most-recent datafiles if called by itself, or for a default loopEDA() call. Current testing on recent GDELT updates confirms that this function may complete all EDA processing on each datafile set well within the fifteen minute window before each successive update. Parameters: ---------- tableList - list of strings, default ['events','mentions','gkg'] Permits limiting of operations to one or more tables. Output: ------ Console displays progress through steps with time taken throughout, and function generates EDA profile html documents in appropriate project directories. ''' if tableList != self.tableList: print("\n Error: this GDELTeda object may have been initialized\n", " without checking for the presence of directories\n", " required for this function's operations.\n", " Please check GDELTeda parameters and try again.") # using a tuple to track failed execution return (False, 'tableList') print("--------------------------------------------------------------\n") print("Beginning realtime GDELT EDA collection for these tables:") print(tableList) # Decrementing remaining iterations to track 'last' run, in order to # delay report generation until desired window is collected. if self.realtimeWindow > 1: self.realtimeWindow -= 1 self.realtimeLooping == True elif self.realtimeWindow == 1: self.realtimeWindow -= 1 lastRun = False if self.realtimeWindow < 1: lastRun = True fileURLs = { 'events' : '', 'mentions' : '', 'gkg' : '', } priorURLs = { 'events' : '', 'mentions' : '', 'gkg' : '', } EDAFiles = { 'events' : [], 'mentions' : [], 'gkg' : [], } # Tracking function runtime timecheckF = time() # applicable for all tables datetimeFormat = "%Y-%m-%dT%H:%M:%S.000000Z" strptimeFormat = "%Y%m%d%H%M%S" strftimeFormat = "%Y-%m-%dh%Hm%M" # Downloading and parsing lastupdate.txt # That text file consists of three lines, one for each main GDELT # table's last datafile update. URLs/Filenames follow conventions used in # GDELTbase download, cleaning, and MongoDB export functions, e.g. a base # URL followed by 14 char numeric strings for the current UTC datetime at # the resolution of seconds, at 15-minute intervals, followed by csv and # zip extensions. # As of 2021/09/08, that page is working and updates on the schedule # described in GDELT docs. Exact update times likely vary with volume of # current world news coverage, but should be at least every fifteen # minutes, with all dates and times reported by UTC zone. os.chdir(self.gBase.toolData['path']['base']) print(" Checking http://data.gdeltproject.org/gdeltv2/lastupdate.txt...") lastFilesURL = 'http://data.gdeltproject.org/gdeltv2/lastupdate.txt' lastFiles = wget.download(lastFilesURL, 'lastupdate.txt') with open(lastFiles) as lastupdate: lines = lastupdate.readlines() # Table order is reversed from most other loops in this project, here, # because list.pop() pulls in reverse and I'm too short on time to bother # juggling these strings more than necessary. Regardless, GKG is first in # this order, distinct from most elsewhere. for table in ['gkg', 'mentions', 'events']: fileURLs[table] = lines.pop().split(' ')[-1].replace("\n", '') # form a current datetime from lastupdate.txt strings thisDatetime = \ datetime.strptime(fileURLs[table][37:51], strptimeFormat).replace(tzinfo = timezone.utc) # Form a 'last' datetime and string from the current lastupdates.txt # datetime string. Worst-case is dead midnight UTC ( 5pm PST, 6pm MST, # 8pm EST ) since the "last" file before then will be an irregular amount # of time prior: 00:00 UTC - 22:45 UTC = -1 hour 15 minutes if thisDatetime.hour == 0 and thisDatetime.minute == 0: lastDatetime = lastDatetime - timedelta(hours = 1) lastDatetime = (thisDatetime - timedelta(minutes = 15)) lastDatestring = lastDatetime.strftime(strptimeFormat) # First-run datetime, timedelta, and string juggling for generating # last-most-recent URLS for download. for table in ['gkg', 'mentions', 'events']: priorURLs[table] = ''.join([self.gBase.toolData['URLbase'], lastDatestring, '.', self.gBase.toolData['extensions'][table]]) # Shouldn't apply for first run, since no last/next file is set yet, and # shouldn't matter for the last run, since self.realtimeWindow running out # will halt execution in loopEDA() anyway. if self.lastRealDatetime != '' and self.nextRealDatetime != '': if thisDatetime == self.lastRealDatetime: print("\n----------------------------------------------------------\n") print("Isn't %s the same as %s ? Too early! No new update yet!" % (thisDatetime.strftime[strftimeFormat], self.lastRealDatetime.strftime[strftimeFormat])) return (False, 'tooEarly') elif thisDatetime > self.nextRealDatetime: print("\n----------------------------------------------------------\n") print("%s is a little later than %s . Too late! We missed one!" % (thisDatetime.strftime[strftimeFormat], self.lastRealDatetime.strftime[strftimeFormat])) return (False, 'tooLate') print(" URLs acquired:\n") print("current:") pp(fileURLs) print("prior:") pp(priorURLs) print("Beginning per-table operations...\n") for table in tableList: # B05a - every-table operations # Note that order of execution for all tables will be project-typical. # Tracking per-table loop times timecheckT = time() print("Trying downloading and cleaning for most recent", table, "file...") # making use of alternate-mode functionality for GDELTbase methods. thisDL = self.gBase.downloadGDELTFile(fileURLs[table], table, verbose = True, mode = 'realtime') # Matching the same input formatting requirements, typically performed # in the 'table' versions of GDELTbase methods fileName = fileURLs[table].replace(self.gBase.toolData['URLbase'], '') fileName = fileName.replace('.zip', '') # cleaning the file (exported to realtimeClean as .json) thisClean = self.gBase.cleanFile(fileName, verbose = True, mode = 'realtime') # tracking prior URLs, still, might delete this section lastFileName = priorURLs[table].replace(self.gBase.toolData['URLbase'], '') lastFileName = lastFileName.replace('.zip', '') # GKG still has different extensions... if table == 'gkg': cleanFileName = fileName.replace('.csv', '.json') cleanLastFileName = lastFileName.replace('.csv', '.json') else: cleanFileName = fileName.replace('.CSV', '.json') cleanLastFileName = lastFileName.replace('.CSV', '.json') # Each iterative run of this function will add another most-recent # datafile, so long as it hasn't already been collected and cleaned, but # the first run should wipe per-table collections before populating 'em # with records. if not self.realtimeStarted: print(" Dropping any old realtime GDELT MongoDB collection...") self.gBase.localDb['collections']['realtime'][table].drop() print("Starting MongoDB export for acquired file...") thisMongo = self.gBase.mongoFile(cleanFileName, table, verbose = True, mode = 'realtime') print('') # Permitting delay of report generation for N iterations if lastRun: pass # bails on this loop iteration if not final realtimeEDA() iteration else: continue # If lastRun == True, EDA processing will be executed in this iteration # for any records in the 'realtime' MongoDB collection for this table. print("Beginning EDA processing...") # switching to table-appropriate logPath directory... os.chdir(self.logPath[table]['realtime']) # B05b - Events/Mentions handling # Per-table records querying, DataFrame shaping, and Pandas Profiling # EDA ProfileReport() generation. if table == 'events' or table == 'mentions': timecheckG = time() print("\n Loading", table, "realtimeEDA files held locally...", end = '') thisDF = pd.DataFrame.from_records(list( self.gBase.localDb['collections']['realtime'][table].find( projection = {"_id" : 0}, allow_disk_use = True, no_cursor_timeout = True, ), ), columns = self.gBase.toolData['names'][table]['reduced']) print(" ") print(" Setting dtypes...") thisDF = thisDF.astype( dtype = self.gBase.toolData['columnTypes'][table], copy = False, ) print(" Converting datetimes...") if table == 'events': datetimeField = 'DATEADDED' # mentions has an extra datetime field, 'EventTimeDate', converted here if table == 'mentions': datetimeField = 'MentionTimeDate' thisDF['EventTimeDate'] = pd.to_datetime(thisDF['EventTimeDate'], format = datetimeFormat) thisDF[datetimeField] = pd.to_datetime(thisDF[datetimeField], format = datetimeFormat) print("\n ", table, "DataFrame .info():\n") print(thisDF.info(),'\n') edaDateString = thisDF[datetimeField].min().strftime(strftimeFormat) if table == 'events': configName = "GDELTeventsEDAconfig_realtime.yaml" edaLogName = ''.join(["GDELT_Events_realtime_EDA_", edaDateString, ".html"]) if table == 'mentions': configName = "GDELTmentionsEDAconfig_realtime.yaml" edaLogName = ''.join(["GDELT_Mentions_realtime_EDA_", edaDateString, ".html"]) print(" File to output:", edaLogName) profile = ProfileReport(thisDF, config_file = configName) print(" Generating html from report...") profile.to_file(edaLogName) EDAFiles[table].append(edaLogName) del profile del thisDF print('') print('------------------------------------------------------------\n') # B05c - GKG handling if table == 'gkg': print("\n Pulling any", table, "realtime EDA files...", end = '') timecheckG = time() thisDF = pd.DataFrame.from_records(list( self.gBase.localDb['collections']['realtime'][table].find( projection = {"_id" : 0}, allow_disk_use = True, no_cursor_timeout = True, ), ), columns = self.gBase.toolData['names']['gkg']['reduced']) print(" ( %0.3f s )" % (float(time()) - float(timecheckG))) # Reusing GDELTedaGKGhelpers.py functions, since they'll work # in this context. See that file for code and documentation. timecheckG = time() print(" Applying initial dtypes...", end = '') thisDF = GDELTedaGKGhelpers.applyDtypes(thisDF) print(" ( %0.3f s )" % (float(time()) - float(timecheckG))) timecheckG = time() print(" Converting datetimes...", end = '') thisDF = GDELTedaGKGhelpers.convertDatetimes(thisDF) print(" ( %0.3f s )" % (float(time()) - float(timecheckG))) edaDateString = thisDF['V21DATE'].min().strftime(strftimeFormat) timecheckG = time() print(" Splitting and forming columns from V15Tone...") thisDF = GDELTedaGKGhelpers.convertGKGV15Tone(thisDF) print(" ( took %0.3f s )" % (float(time()) - float(timecheckG))) # B05d - GKG non-variable-length EDA generation # Isolating main columns for their own EDA, dropping variable-length # columns for copy (not inplace). timecheckG = time() print(" Starting EDA generation for main GKG columns only...", end='') mainDF = thisDF.drop(columns = ['V1Locations', 'V1Counts', 'V1Themes', 'V1Persons', 'V1Organizations']) print(" ( drop/copy: %0.3f s )" % (float(time()) - float(timecheckG))) print("\n GKG main columns DataFrame .info():\n") print(mainDF.info()) print('') # constructing EDA output filename configName = "GDELTgkgMainEDAconfig_realtime.yaml" edaLogName = ''.join(["GDELT_GKG_realtime_main_EDA_", edaDateString, ".html"]) # Generating non-variable-length-subfield column EDA print("\n File to output:", edaLogName) profile = ProfileReport(mainDF, config_file = configName) print(" Generating html from report...") profile.to_file(edaLogName) EDAFiles[table].append(edaLogName) print("\n ( ProfileReport() + .to_file() : %0.3f s )" % (float(time()) - float(timecheckG))) del profile del mainDF print(" Continuing processing with separate normalization of each", "variable-length subfield...\n") # B05e - V1Locations EDA generation timecheckG = time() print(" Exploding V1Locations...", end = '') locationDF = thisDF.drop(columns = ['V1Counts', 'V1Themes', 'V1Persons', 'V1Organizations']) locationDF = locationDF.explode('V1Locations') print(" ( drop/explode: %0.3f s )" % \ (float(time()) - float(timecheckG))) timecheckG = time() print(" Normalizing V1Locations...", end = '') subcols = pd.json_normalize(locationDF['V1Locations']) print(" ( %0.3f s )" % (float(time()) - float(timecheckG))) timecheckG = time() print(" Renaming columns, dropping old, rejoining, astyping...", end = '') subcols.columns = [f"V1Locations_{c}" for c in subcols.columns] locationDF = locationDF.drop(columns = ['V1Locations']).join( subcols).astype({'V1Locations_FullName' : pd.StringDtype(), 'V1Locations_CountryCode' : pd.StringDtype(), 'V1Locations_ADM1Code' :
pd.StringDtype()
pandas.StringDtype
#!/usr/bin/env python # coding: utf-8 # # COVID-19 World Charts # <NAME>, 2020 # In[1]: """ LICENSE MIT 2020 <NAME> Website : http://www.guillaumerozier.fr Mail : <EMAIL> This file contains scripts that download data from CSSE (John Hopkins) Github Repository and then process it to build many graphes. I'm currently cleaning the code, please come back soon it will be easier to read and edit it! The charts are exported to 'charts/images/'. Data is download to/imported from 'data/'. """ # In[2]: import requests import random from tqdm import tqdm import json from datetime import date from datetime import datetime import numpy as np import math import sys import chart_studio import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly from plotly.subplots import make_subplots import chart_studio.plotly as py import sys import matplotlib.pyplot as plt from plotly.validators.scatter.marker import SymbolValidator colors = px.colors.qualitative.D3 + plotly.colors.DEFAULT_PLOTLY_COLORS + px.colors.qualitative.Plotly + px.colors.qualitative.Dark24 + px.colors.qualitative.Alphabet #If you want to uplaod charts to your Plotly account (and switch "upload" to True just below): #chart_studio.tools.set_credentials_file(username='', api_key='') PATH = "../../" today = datetime.now().strftime("%Y-%m-%d %H:%M") "build : " + today # If you want to display charts here, please change "show" variable to True: # In[3]: upload = False show = False export = True # In[4]: if len(sys.argv) >= 2: if (sys.argv[1]).lower() == "true": upload = True if len(sys.argv) >= 3: if (sys.argv[2]).lower() == "true": show = True if len(sys.argv) >= 4: if (sys.argv[3]).lower() == "true": export = True "build : " + today # ## Functions # In[5]: def compute_offset(df, col_of_reference, col_to_align, countries): diffs = [] for offset in range(len(df)-15): a = df[col_of_reference][1:].shift(offset, fill_value=0)/countries[col_of_reference]["pop"] b = df[col_to_align][1:]/countries[col_to_align]["pop"] if len(a) > len(b): a = a[:-2] m = min(len(a), len(b)) delta = ((a[offset:] - b[offset:])**2)**(1/2) diffs.append(abs(delta.sum())) xa = [i for i in range(offset, len(a))] xb = [i for i in range(offset, len(b))] ret = diffs.index(min(diffs)) if col_of_reference == col_to_align: return 0 return ret # # ## DATA # #### Download data # In[6]: def download_data(): #url_confirmed = "https://cowid.netlify.com/data/total_cases.csv" #url_deaths = "https://cowid.netlify.com/data/total_deaths.csv" url_confirmed_csse = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv" url_deaths_csse = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv" url_france_data = "https://raw.githubusercontent.com/opencovid19-fr/data/master/dist/chiffres-cles.csv" #r_confirmed = requests.get(url_confirmed) #r_deaths = requests.get(url_deaths) r_confirmed_csse = requests.get(url_confirmed_csse) r_deaths_csse = requests.get(url_deaths_csse) r_france_data = requests.get(url_france_data) #with open('data/total_cases_who.csv', 'wb') as f: #f.write(r_confirmed.content) #with open('data/total_deaths_who.csv', 'wb') as f: #f.write(r_deaths.content) with open(PATH+'data/total_cases_csse.csv', 'wb') as f: f.write(r_confirmed_csse.content) with open(PATH+'data/total_deaths_csse.csv', 'wb') as f: f.write(r_deaths_csse.content) with open(PATH+'data/france_data.csv', 'wb') as f: f.write(r_france_data.content) print("> data downloaded") #"build : " + today # #### Import data and merge # In[7]: def import_files(): # CSSE data df_confirmed_csse = pd.read_csv(PATH+'data/total_cases_csse.csv') df_deaths_csse = pd.read_csv(PATH+'data/total_deaths_csse.csv') # WHO data #df_confirmed_who = pd.read_csv('data/total_cases_who.csv') #df_deaths_who = pd.read_csv('data/total_deaths_who.csv') # Perso data df_confirmed_perso = pd.read_csv(PATH+'data/total_cases_perso.csv') df_deaths_perso = pd.read_csv(PATH+'data/total_deaths_perso.csv') df_france_data =
pd.read_csv(PATH+'data/france_data.csv')
pandas.read_csv
# -*- coding: utf-8 -*- # school-bot-demo # All doxxing information has been removed. #Image------------------------------------------------------------------------- import re #try: # from PIL import Image #except ImportError: # import Image #import pytesseract # #pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' # #def readimage(imagepath): # return(pytesseract.image_to_string(Image.open(imagepath))) # # #def findclasses(theschedule): # person = [] # for i in range(len(classdata)): # try: # m = re.search(classdata['Key'][i], theschedule.lower()) # if m: # person.append(i) # except AttributeError: # continue # if 7 in person and 18 in person: # person.remove(7) # return person #Data-------------------------------------------------------------------------- import pandas as pd botpath = '' #botpath = './' #botpath = '' #botpath = '' classdata = pd.read_csv(botpath + 'classes.csv') classdata = classdata.set_index('ID') usrdata = pd.read_csv(botpath + 'users.csv') graderole = {'6': '6th Grade', '7': '7th Grade', '8': '8th Grade', '9': 'Freshman', '10': 'Sophomore', '11': 'Junior', '12': 'Senior', '13': 'Graduate', '14': 'Teacher'} guestStatus = {0 : "Not in SCHOOL", 1 : "SCHOOL 1", 2 : "SCHOOL 2", 3 : "Other SCHOOL", '0' : "Not in SCHOOL", '1' : "SCHOOL 1", '2' : "SCHOOL 2", '3' : "Other SCHOOL"} #Register---------------------------------------------------------------------- async def Register(user): global usrdata issues = 0 print(datetime.datetime.now(), "Registering", user.name) await user.send("Welcome to the SCHOOL 1 discord (unofficial)! You may say 'cancel' at any point to exit and '" + prefix + "register' to retry.") embed = discord.Embed(title = "Are you currently in SCHOOL? (Graduates included)", description = "0: Not in SCHOOL\n1: In SCHOOL 1\n2: SCHOOL 2\n3: Other SCHOOL School", color = discord.Color.dark_purple()) chooseGuest = await user.send(embed = embed) emojilist = [str(i) + "\N{combining enclosing keycap}" for i in range(0,4)] for i in emojilist: await chooseGuest.add_reaction(i) def check2(reaction, person): nonlocal emojilist return person == user and str(reaction) in emojilist try: reaction, _ = await client.wait_for('reaction_add', timeout = 600.0, check = check2) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at choose from list") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None guest = str(reaction)[0] await user.send("What is your real name? (First and last, if you would not like to give your name say 'Anonymous')") print(datetime.datetime.now(), user.name, "on step name") while True: def check(m): return m.guild == None and m.author == user try: msg = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at name") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg.content.lower() == "cancel": await user.send("Cancelled registration. You may do " + prefix + "register to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at name") return None elif ''.join(re.split(' |-|,', msg.content)).isalpha(): irlname = msg.content.lower() break else: await user.send("Please only use letters a-z in your name. Enter your name again and contact an admin if you continue having issues.") issues += 1 print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at name") continue await user.send("Now, please say your grade (number 6-12, graduate = 13, teacher = 14)") print(datetime.datetime.now(), user.name, "on step grade") while True: try: msg2 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at grade") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg2.content in graderole: grade = msg2.content break elif msg2.content.lower() == "cancel": await user.send("Cancelled registration. You may do " + prefix + "register to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at grade") return None else: await user.send("Please only use numbers 6-14 in your grade. Enter your grade again and contact an admin if you continue having issues.") issues += 1 print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at grade") continue if guest == "1": await user.send("Great, now begin to list your classes one by one (most abbreviations are allowed) or send a picture of your schedule (Coming soon!) and say 'done' when you are done. (Say done now to skip) (For precalc use 'pre-calc')") print(datetime.datetime.now(), user.name, "on step classes") listofclasses = [] while True: if listofclasses: embed = discord.Embed(title = "Classes for " + user.name + ":", description = ''.join([classdata.loc[i]['Name'] + "\n" for i in listofclasses]), color = discord.Color.dark_purple()) embed.set_footer(text = "Continue listing your classes and say 'done' when all of your classes are on this list") embed.set_thumbnail(url = user.avatar_url) await user.send(embed = embed) try: msg3 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at classes") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg3.attachments: await user.send("Feature not implemented yet, please list your classes through text.") continue # await user.send("Reading schedule...") # await msg3.attachments[0].save(botpath + 'Saved/sched_' + user.name + '.png') # print(datetime.datetime.now(), "Saved schedule from", user.name, "as sched_" + user.name + ".png") # classes = pytesseract.image_to_string(Image.open(botpath + 'Saved/sched_' + user.name + '.png')) # listofclasses.append(findclasses(classes)) # if len(listofclasses) >= 7: # embed = discord.Embed(title = "Classes for " + user.name + ":", description = ''.join([classdata.loc[i]['Name'] + "\n" for i in listofclasses]), color = discord.Color.dark_purple()) # embed.set_thumbnail(url = user.avatar_url) # await user.send(embed = embed) # await user.send("Is this correct?") # try: # msg4 = await client.wait_for('message', timeout = 60.0, check = check) # except asyncio.TimeoutError: # print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at check classes") # await user.send("Registration failed. You may do " + prefix + "register to retry.") # return None # if msg4.content.lower().startswith("y"): # listofclasses.sort() # usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':[str(listofclasses)], 'IRL' : [irlname], 'Grade' : [grade]}), sort = False, ignore_index = True) # usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') # usrdata = pd.read_csv(botpath + 'users.csv') # print(datetime.datetime.now(), "Registered", user.name, "with classes in users.csv and", issues, "issues") # break # elif msg4.content.lower() == "cancel": # await user.send("Cancelled registration. You may do " + prefix + "register to retry.") # print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at image (Check classes)") # return None # else: # await user.send("Please send a better image or say no to skip adding classes. You may contact an admin if you continue having issues.") # issues += 1 # print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at image (incorrect classes)") # continue # else: # await user.send("Only found " + str(len(listofclasses)) + " classes, please send a better image or say no to skip adding classes. You may contact an admin if you continue having issues.") # issues += 1 # print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at image (too few classes - " + str(len(listofclasses)) + ")") # continue elif msg3.content.lower() == "cancel": await user.send("Cancelled registration. You may do " + prefix + "register to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at classes (send)") return None elif msg3.content.lower() == "done": if len(listofclasses) >= 7: listofclasses.sort() usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':[str(listofclasses)], 'IRL' : [irlname], 'Grade' : [grade], 'Guest' : [guest]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Registered", user.name, "with classes in users.csv and", issues, "issues") break elif listofclasses: await user.send("You have only added " + str(len(listofclasses)) + " classes, are you sure?") try: msg4 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at check classes") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg4.content.lower().startswith("y"): listofclasses.sort usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':[str(listofclasses)], 'IRL' : [irlname], 'Grade' : [grade], 'Guest' : [guest]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Registered", user.name, "with classes in users.csv and", issues, "issues") break elif msg4.content.lower() == "cancel": await user.send("Cancelled registration. You may do " + prefix + "register to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at classes (Check classes)") return None else: await user.send("Please continue listing classes one by one and say 'done' when all of your classes are added.") continue else: await user.send("No classes added. Are you sure you would like to continue without adding your classes?") try: msg4 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at check classes") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg4.content.lower().startswith("y"): listofclasses = [0] usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':['[0]'], 'IRL' : [irlname], 'Grade' : [grade], 'Guest' : [guest]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Registered", user.name, "without classes in users.csv and", issues, "issues") break elif msg4.content.lower() == "cancel": await user.send("Cancelled registration. You may do " + prefix + "register to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at classes (Check classes)") return None else: await user.send("Please continue listing classes one by one and say 'done' when all of your classes are added.") continue else: classmatches = [] for i in range(len(classdata)): matches = 0 for word in msg3.content.lower().split(" "): if word == "i": word = "1" elif word == "ii": word = "2" elif word == "iii": word = "3" classname = classdata['Name'][i].lower().split(" ") for part in range(len(classname)): if classname[part] == "i": classname[part] = "1" elif classname[part] == "ii": classname[part] = "2" elif classname[part] == "iii": classname[part] = "3" classname = ''.join([i + " " for i in classname])[:-1] if word in classname: matches += 1 if matches == len(msg3.content.split(" ")): classmatches.append(i) if len(classmatches) == 0: await user.send("Class " + msg3.content + " not found, please try again. Write the class as it is written on the schedule, but abbreviations such as 'honors chem' and 'ap lang' are allowed.") issues += 1 print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at listclasses (class not found - " + msg3.content + ")") continue elif len(classmatches) == 1: await user.send("Found class " + classdata['Name'][classmatches[0]] + ", is this correct?") try: msg4 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at choose from list") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if msg4.content.lower().startswith("y"): listofclasses.append(classmatches[0]) await user.send("Class " + classdata['Name'][classmatches[0]] + " added to your schedule.") continue else: await user.send("Please try again. Write the class as it is written on the schedule, but abbreviations such as 'honors chem' and 'ap lang' are allowed.") issues += 1 print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at listclasses (incorrect classes)") continue elif len(classmatches) > 8: await user.send("Found " + str(len(classmatches)) + " matches, please be more specific.") else: embed = discord.Embed(title = "Multiple classes found, please select the correct one by number:", description = "0: None of these\n" + ''.join([str(j + 1) + ": " + classdata['Name'][classmatches[j]] + "\n" for j in range(len(classmatches))]), color = discord.Color.dark_purple()) chooseclass = await user.send(embed = embed) emojilist = ['0\N{combining enclosing keycap}'] + [str(i + 1) + '\N{combining enclosing keycap}' for i in range(len(classmatches))] for i in emojilist: await chooseclass.add_reaction(i) def check2(reaction, person): nonlocal emojilist return person == user and str(reaction) in emojilist try: reaction, _ = await client.wait_for('reaction_add', timeout = 300.0, check = check2) except asyncio.TimeoutError: print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at choose from list") await user.send("Registration failed. You may do " + prefix + "register to retry.") return None if str(reaction)[0] == "0": await user.send("Please try again. Write the class as it is written on the schedule, but abbreviations such as 'honors chem' and 'ap lang' are allowed.") issues += 1 print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at listclasses (incorrect classes)") continue else: listofclasses.append(classmatches[int(str(reaction)[0]) - 1]) await user.send("Class " + classdata['Name'][classmatches[int(str(reaction)[0]) - 1]] + " added to your schedule.") continue else: listofclasses = [0] usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':['[0]'], 'IRL' : [irlname], 'Grade' : [grade], 'Guest' : [guest]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Registered", user.name, "without classes in users.csv and", issues, "issues") if guest == "0": await discord.utils.find(lambda m: m.id == user.id, schoolserver.members).add_roles(discord.utils.get(schoolserver.roles, name = "Not in SCHOOL")) elif guest == "2": await discord.utils.find(lambda m: m.id == user.id, schoolserver.members).add_roles(discord.utils.get(schoolserver.roles, name = "SCHOOL 2")) elif guest == "3": await discord.utils.find(lambda m: m.id == user.id, schoolserver.members).add_roles(discord.utils.get(schoolserver.roles, name = "Other SCHOOL")) elif guest == "1": await discord.utils.find(lambda m: m.id == user.id, schoolserver.members).add_roles(discord.utils.get(schoolserver.roles, name = graderole[grade])) await user.send("Thank you for registering! Your info is now visible through the .userinfo (user) command and you will be given access to the proper channels") await editwhois() #Discord----------------------------------------------------------------------- import asyncio #import nest_asyncio #nest_asyncio.apply() import datetime import discord from discord.ext import commands prefix = "." client = commands.Bot(command_prefix = prefix) client.remove_command('help') schoolserver = '' whoischannel = '' @client.event async def on_ready(): print(datetime.datetime.now(), "Connected as", client.user) await client.change_presence(activity = discord.Game(".register to be added!")) global schoolserver, whoischannel schoolserver = client.get_guild(InsertID) whoischannel = schoolserver.get_channel(InsertID) global teacherlist, graduatelist, seniorlist, juniorlist, sophomorelist, freshmanlist, eighthlist, seventhlist, sixthlist, school2list, otherschoollist, notinschoollist teacherlist = await whoischannel.fetch_message(InsertID) graduatelist = await whoischannel.fetch_message(InsertID) seniorlist = await whoischannel.fetch_message(InsertID) juniorlist = await whoischannel.fetch_message(InsertID) sophomorelist = await whoischannel.fetch_message(InsertID) freshmanlist = await whoischannel.fetch_message(InsertID) eighthlist = await whoischannel.fetch_message(InsertID) seventhlist = await whoischannel.fetch_message(InsertID) sixthlist = await whoischannel.fetch_message(InsertID) school2list = await whoischannel.fetch_message(InsertID) otherschoollist = await whoischannel.fetch_message(InsertID) notinschoollist = await whoischannel.fetch_message(InsertID) @client.event async def on_member_join(member): print(datetime.datetime.now(), member.name, "joined, attempting to register") if 'a' + str(member.id) in usrdata.values: print(datetime.datetime.now(), "Not registering", member.name + ", already registered") else: await Register(member) @client.event async def on_member_remove(member): print(datetime.datetime.now, member.name, "left, attempting to remove from data") global usrdata if 'a' + str(member.id) in usrdata.values: usrdata = usrdata.set_index('User') usrdata = usrdata.drop('a' + str(member.id), axis = 0) usrdata.to_csv(botpath + 'users.csv', encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Deleted info for", member.name, "from users.csv") await editwhois() else: print(datetime.datetime.now, member.name, "was not registered") @client.command() async def ping(ctx): await ctx.send("Pong! (Latency: " + str(round(client.latency * 1000, 1)) + " ms)") print(datetime.datetime.now(), "Pinged by", ctx.author.name, ", latency was", str(round(client.latency * 1000, 1)), "ms") @client.command() async def reloadclasses(ctx): print(datetime.datetime.now(), ctx.author.name, "did command reloadclasses") global classdata if ctx.message.author.guild_permissions.administrator: classdata = pd.read_csv(botpath + 'classes.csv') classdata = classdata.set_index('ID') await ctx.send("Reloaded classes.csv") print(datetime.datetime.now(), "Reloaded classes.csv") else: print(datetime.datetime.now(), "Didn't reload, insufficient permissions") await ctx.send("You do not have permissions for this command!") @client.command() async def reloadusers(ctx): print(datetime.datetime.now(), ctx.author.name, "did command reloadusers") global usrdata if ctx.message.author.guild_permissions.administrator: usrdata = pd.read_csv(botpath + 'users.csv') await ctx.send("Reloaded users.csv") print(datetime.datetime.now(), "Reloaded users.csv") else: print(datetime.datetime.now(), "Didn't reload, insufficient permissions") await ctx.send("You do not have permissions for this command!") @client.command() async def register(ctx, args = ''): if args and ctx.message.author.guild_permissions.administrator: try: user = ctx.message.mentions[0] await ctx.send("Messaged " + user.name) except IndexError: user = ctx.message.author else: user = ctx.message.author print(datetime.datetime.now(), ctx.author.name, "did command register for", user.name) if 'a' + str(user.id) in usrdata.values: if user == ctx.message.author: await ctx.send("Your info has already been saved! Use " + prefix + "delinfo to change it.") else: await ctx.send(user.name, "has already been registered!") print(datetime.datetime.now(), "Not registering", user.name + ", already registered") else: if ctx.guild: if user == ctx.message.author: await ctx.send("You have been messaged, please answer the messages through DM") elif user != ctx.message.author: await ctx.send(user, "has been messaged.") await Register(user) @client.command() async def delinfo(ctx, args = ''): if ctx.message.author.guild_permissions.administrator: try: user = ctx.message.mentions[0] except IndexError: user = ctx.message.author global usrdata print(datetime.datetime.now(), ctx.author.name, "did command delinfo for", user) if 'a' + str(user.id) in usrdata.values: if user == ctx.message.author: await ctx.send("Are you sure you want to delete your info? This cannot be undone, and you will have to re-do .register") else: await ctx.send("Are you sure you want to delete info for " + user.name + "? This cannot be undone.") def check(m): return m.channel == ctx.channel and m.author == ctx.author try: msg = await client.wait_for('message', check = check, timeout = 60.0) except asyncio.TimeoutError: print(datetime.datetime.now(), "Delinfo for", user.name, "failed: Timed out") await ctx.send("Delinfo failed. You may do " + prefix + "delinfo to retry.") return None if msg.content.lower().startswith("y"): await ctx.send("Deleting info...") usrdata = usrdata.set_index('User') usrdata = usrdata.drop('a' + str(user.id), axis = 0) usrdata.to_csv(botpath + 'users.csv', encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') await ctx.send("Deleted info.") print(datetime.datetime.now(), "Deleted info for", user.name, "from users.csv") await editwhois() else: if user == ctx.message.author: await ctx.send("Alright, I won't delete your info.") else: await ctx.send("Alright, I won't delete " + user.name + "'s info.") else: if user == ctx.message.author: await ctx.send("You don't have your info saved! Use " + prefix + "register to add your info.") else: await ctx.send(user.name + " doesn't have their info saved!") else: print(datetime.datetime.now(), ctx.author.name, "did command delinfo, no permissions") await ctx.send("You do not have permissions for this command!") @client.command() async def userinfo(ctx, arg = ""): if arg: try: user = ctx.message.mentions[0] except IndexError: user = ctx.message.author else: user = ctx.message.author print(datetime.datetime.now(),ctx.author.name, "did command userinfo for", user.name) if 'a' + str(user.id) in usrdata.values: for i in range(len(usrdata)): if usrdata['User'][i] == 'a' + str(user.id): embed = discord.Embed(color = discord.Color.dark_purple()) embed.set_author(name = "Info for " + user.name + ":", icon_url = user.avatar_url) embed.add_field(name = "Name:", value = usrdata['IRL'][i].title(), inline = True) embed.add_field(name = "Grade:", value = usrdata['Grade'][i], inline = True) embed.add_field(name = "SCHOOL Status:", value = guestStatus[usrdata['Guest'][i]], inline = False) embed.add_field(name = "Classes:", value = ''.join([classdata.loc[int(j)]['Name'] + "\n" for j in usrdata['Classes'][i][1:-1].split(', ')]), inline = False) embed.set_thumbnail(url = user.avatar_url) await ctx.send(embed = embed) else: if user == ctx.message.author: await ctx.send("You are not registered! Use " + prefix + "register to add your info.") else: await ctx.send(user.name + " is not registered! Use " + prefix + "info to add your info.") @client.command() async def rawuserinfo(ctx, arg = ""): if arg: try: user = ctx.message.mentions[0] except IndexError: user = ctx.message.author else: user = ctx.message.author print(datetime.datetime.now(),ctx.author.name, "did command rawuserinfo for", user.name) if 'a' + str(user.id) in usrdata.values: for i in range(len(usrdata)): if usrdata['User'][i] == 'a' + str(user.id): await ctx.send(usrdata['User'][i] + ", " + str(usrdata['Guest'][i]) + ", " + str(usrdata['Grade'][i]) + ", " + str(usrdata['Classes'][i]) + ", "+ usrdata['IRL'][i]) else: if user == ctx.message.author: await ctx.send("You are not registered! Use " + prefix + "register to add your info.") else: await ctx.send(user.name + " is not registered! Use " + prefix + "info to add your info.") @client.command() async def getroles(ctx): print(datetime.datetime.now(), ctx.author.name, "did command getroles") if 'a' + str(ctx.author.id) in usrdata.values: for i in range(len(usrdata)): if usrdata['User'][i] == 'a' + str(ctx.author.id): if int(usrdata['Guest'][i]) == 1: await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name = graderole[usrdata['Grade'][i]])) else: await ctx.author.add_roles(discord.utils.get(ctx.author.guild.roles, name = guestStatus[usrdata['Guest'][i]])) else: await ctx.send("You are not registered! Use " + prefix + "register to add your info.") # @client.command() # async def listusers(ctx): # print(datetime.datetime.now(), ctx.author.name, "did command listusers") # users = [] # for i in range(len(usrdata)): # users.append(discord.utils.find(lambda m: m.id == int(usrdata['User'][i][1:]), schoolserver.members).mention + " - " + usrdata['IRL'][i].title()) # embed = discord.Embed(title = "Registered Users:", description = ''.join([j + "\n" for j in users]), color = discord.Color.dark_purple()) # embed.set_footer(text = "Total number of users: " + str(len(usrdata))) # await ctx.send(embed = embed) @client.command() async def listclasses(ctx): if ctx.message.author.guild_permissions.administrator: print(datetime.datetime.now(), ctx.author.name, "did command listclasses") classes = [] for i in range(1, int(len(classdata)/2)): classes.append(classdata['Name'][i]) embed = discord.Embed(title = "Classes:", description = ''.join([", " + j for j in classes])[2:], color = discord.Color.dark_purple()) embed.set_footer(text = "Total number of classes: " + str(len(classdata) - 1)) await ctx.send(embed = embed) classes = [] for i in range(int(len(classdata)/2), len(classdata)): classes.append(classdata['Name'][i]) embed = discord.Embed(title = "Classes:", description = ''.join([", " + j for j in classes])[2:], color = discord.Color.dark_purple()) embed.set_footer(text = "Total number of classes: " + str(len(classdata) - 1)) await ctx.send(embed = embed) else: print(datetime.datetime.now(), ctx.author.name, "did command listclasses, no permissions") await ctx.send("You do not have permissions for this command") @client.command() async def edit(ctx, name = '', change = '', *args): if ctx.message.author.guild_permissions.administrator: print(datetime.datetime.now(), ctx.author.name, "did command edit") if name and change and args: if change.lower() == "classes": to_change = 1 elif change.lower() == "irl" or change.lower() == "name": to_change = 2 elif change.lower() == "grade": to_change = 3 elif change.lower() == "guest": to_change = 4 else: await ctx.send("Invalid syntax: use " + prefix + "edit (user) (field) (value)") print(datetime.datetime.now(), ctx.author.name, "did command edit, invalid syntax") return None try: user = ctx.message.mentions[0] except IndexError: await ctx.send("Invalid syntax: use " + prefix + "edit (user) (field) (value)") print(datetime.datetime.now(), ctx.author.name, "did command edit, invalid syntax") return None global usrdata for i in range(len(usrdata)): if 'a' + str(user.id) == usrdata['User'][i]: person = [usrdata['User'][i], usrdata['Classes'][i], usrdata['IRL'][i], usrdata['Grade'][i], usrdata['Guest'][i]] await user.remove_roles(discord.utils.get(schoolserver.roles, name = graderole[str(person[3])])) await user.remove_roles(discord.utils.get(schoolserver.roles, name = guestStatus[str(person[4])])) if to_change == 2 or to_change == 1: person[to_change] = "".join([" " + i for i in args])[1:] else: person[to_change] = args[0] usrdata = usrdata.set_index('User') usrdata = usrdata.drop('a' + str(user.id), axis = 0) usrdata.to_csv(botpath + 'users.csv', encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') usrdata = usrdata.append(pd.DataFrame({'User' : [person[0]], 'Classes' : [person[1]], 'IRL' : [person[2]], 'Grade' : [person[3]], 'Guest' : [person[4]]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') if person[4] == "0": await user.add_roles(discord.utils.get(schoolserver.roles, name = "Not in SCHOOL")) elif person[4] == "2": await user.add_roles(discord.utils.get(schoolserver.roles, name = "SCHOOL 2")) elif person[4] == "3": await user.add_roles(discord.utils.get(schoolserver.roles, name = "Other SCHOOL")) elif person[4] == "1": await user.add_roles(discord.utils.get(schoolserver.roles, name = graderole[str(person[3])])) print(datetime.datetime.now(), "Updated", user.name, "in users.csv") embed = discord.Embed(color = discord.Color.dark_purple()) embed.set_author(name = "Info for " + user.name + ":", icon_url = user.avatar_url) embed.add_field(name = "Name:", value = person[2].title(), inline = True) embed.add_field(name = "Grade:", value = person[3], inline = True) embed.add_field(name = "SCHOOL Status:", value = guestStatus[person[4]], inline = False) embed.add_field(name = "Classes:", value = ''.join([classdata.loc[int(j)]['Name'] + "\n" for j in person[1][1:-1].split(', ')]), inline = False) embed.set_thumbnail(url = user.avatar_url) await ctx.send("Updated info for " + user.name, embed = embed) break await editwhois() else: await ctx.send("Invalid syntax: use " + prefix + "edit (user) (field) (value)") print(datetime.datetime.now(), ctx.author.name, "did command edit, invalid syntax") else: print(datetime.datetime.now(), ctx.author.name, "did command edit, no permissions") await ctx.send("You do not have permissions for this command") @client.command() async def addclasses(ctx): print(datetime.datetime.now(), ctx.author.name, "did command addclasses") await ctx.send("You have been messaged, please answer the messages through DM") user = ctx.message.author await user.send("Begin to list your classes one by one (most abbreviations are allowed) or send a picture of your schedule (Coming soon!) and say 'done' when you are done. (For precalc use 'pre-calc')") listofclasses = [] issues = 0 global usrdata while True: if listofclasses: embed = discord.Embed(title = "Classes for " + user.name + ":", description = ''.join([classdata.loc[i]['Name'] + "\n" for i in listofclasses]), color = discord.Color.dark_purple()) embed.set_footer(text = "Continue listing your classes and say 'done' when all of your classes are on this list") embed.set_thumbnail(url = user.avatar_url) await user.send(embed = embed) def check(m): return m.guild == None and m.author == user try: msg3 = await client.wait_for('message', timeout = 300.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Addclasses for", user.name, "failed: Timed out at classes") await user.send("Addclasses failed. You may do " + prefix + "addclasses to retry.") return None if msg3.attachments: await user.send("Feature not implemented yet, please list your classes through text.") continue # await user.send("Reading schedule...") # await msg3.attachments[0].save(botpath + 'Saved/sched_' + user.name + '.png') # print(datetime.datetime.now(), "Saved schedule from", user.name, "as sched_" + user.name + ".png") # classes = pytesseract.image_to_string(Image.open(botpath + 'Saved/sched_' + user.name + '.png')) # listofclasses.append(findclasses(classes)) # if len(listofclasses) >= 7: # embed = discord.Embed(title = "Classes for " + user.name + ":", description = ''.join([classdata.loc[i]['Name'] + "\n" for i in listofclasses]), color = discord.Color.dark_purple()) # embed.set_thumbnail(url = user.avatar_url) # await user.send(embed = embed) # await user.send("Is this correct?") # # try: # msg4 = await client.wait_for('message', timeout = 60.0, check = check) # except asyncio.TimeoutError: # print(datetime.datetime.now(), "Registration for", user.name, "failed: Timed out at check classes") # await user.send("Registration failed. You may do " + prefix + "register to retry.") # return None # if msg4.content.lower().startswith("y"): # listofclasses.sort() # usrdata = usrdata.append(pd.DataFrame({'User':['a' + str(user.id)], 'Classes':[str(listofclasses)], 'IRL' : [irlname], 'Grade' : [grade]}), sort = False, ignore_index = True) # usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') # usrdata = pd.read_csv(botpath + 'users.csv') # print(datetime.datetime.now(), "Registered", user.name, "with classes in users.csv and", issues, "issues") # break # elif msg4.content.lower() == "cancel": # await user.send("Cancelled registration. You may do " + prefix + "register to retry.") # print(datetime.datetime.now(), "User", user.name, "cancelled registration with", issues, "issues at image (Check classes)") # return None # else: # await user.send("Please send a better image or say no to skip adding classes. You may contact an admin if you continue having issues.") # issues += 1 # print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at image (incorrect classes)") # continue # else: # await user.send("Only found " + str(len(listofclasses)) + " classes, please send a better image or say no to skip adding classes. You may contact an admin if you continue having issues.") # issues += 1 # print(datetime.datetime.now(), "User", user.name, "had issue", issues, "with register at image (too few classes - " + str(len(listofclasses)) + ")") # continue elif msg3.content.lower() == "cancel": await user.send("Cancelled addclasses. You may do " + prefix + "addclasses to retry.") print(datetime.datetime.now(), "User", user.name, "cancelled addclasses with", issues, "issues") return None elif msg3.content.lower() == "done": if len(listofclasses) >= 7: listofclasses.sort() for i in range(len(usrdata)): if 'a' + str(user.id) == usrdata['User'][i]: person = [usrdata['User'][i], usrdata['Classes'][i], usrdata['IRL'][i], usrdata['Grade'][i], usrdata['Guest'][i]] person[1] = listofclasses usrdata = usrdata.set_index('User') usrdata = usrdata.drop('a' + str(user.id), axis = 0) usrdata.to_csv(botpath + 'users.csv', encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') usrdata = usrdata.append(pd.DataFrame({'User' : [person[0]], 'Classes' : [person[1]], 'IRL' : [person[2]], 'Grade' : [person[3]], 'Guest' : [person[4]]}), sort = False, ignore_index = True) usrdata.to_csv(botpath + 'users.csv', index = False, encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') print(datetime.datetime.now(), "Added classes for", user.name, "in users.csv") embed = discord.Embed(color = discord.Color.dark_purple()) embed.set_author(name = "Info for " + user.name + ":", icon_url = user.avatar_url) embed.add_field(name = "Name:", value = person[2].title(), inline = True) embed.add_field(name = "Grade:", value = person[3], inline = True) embed.add_field(name = "SCHOOL Status:", value = guestStatus[person[4]], inline = False) embed.add_field(name = "Classes:", value = ''.join([classdata.loc[int(j)]['Name'] + "\n" for j in str(person[1])[1:-1].split(', ')]), inline = False) embed.set_thumbnail(url = user.avatar_url) await user.send("Updated info for " + user.name, embed = embed) break print(datetime.datetime.now(), "Added classes for", user.name, "in users.csv with", issues, "issues") break elif listofclasses: await user.send("You have only added " + str(len(listofclasses)) + " classes, are you sure?") try: msg4 = await client.wait_for('message', timeout = 60.0, check = check) except asyncio.TimeoutError: print(datetime.datetime.now(), "Addclasses for", user.name, "failed: Timed out at check classes") await user.send("Addclasses failed. You may do " + prefix + "register to retry.") return None if msg4.content.lower().startswith("y"): listofclasses.sort for i in range(len(usrdata)): if 'a' + str(user.id) == usrdata['User'][i]: person = [usrdata['User'][i], usrdata['Classes'][i], usrdata['IRL'][i], usrdata['Grade'][i]] person[1] = listofclasses usrdata = usrdata.set_index('User') usrdata = usrdata.drop('a' + str(user.id), axis = 0) usrdata.to_csv(botpath + 'users.csv', encoding = 'utf8') usrdata = pd.read_csv(botpath + 'users.csv') usrdata = usrdata.append(
pd.DataFrame({'User' : [person[0]], 'Classes' : [person[1]], 'IRL' : [person[2]], 'Grade' : [person[3]], 'Guest' : [person[4]]})
pandas.DataFrame
import os import spacy import pandas as pd from ...utils.time_functions import time_it class NaicsStandard: @time_it() def __init__(self, english_pipeline: str='en_core_web_lg'): self.filedir = os.path.abspath(os.path.dirname(__file__)) self.load_nlp(english_pipeline=english_pipeline) self.load_naics() def load_nlp(self, english_pipeline): ''' Create self.nlp It is necessary to have the vectors of words downloaded. This snippet downloads it automatically if not found (first time). ''' try: self.nlp = spacy.load(english_pipeline) except Exception: os.system(f"python -m spacy download {english_pipeline}") self.nlp = spacy.load(english_pipeline) def load_naics(self): naics_full_path = os.path.join(self.filedir, 'naics.csv') self.naics_df = pd.read_csv(naics_full_path, dtype={'Codes': str}) self.naics_df.drop('Total Marketable US Businesses', axis=1, inplace=True) # Filtering level 3 self.naics_df = self.naics_df[self.naics_df.Codes.str.len() <= 4] self.naics_df['level'] = self.naics_df.Codes.str.len() / 2 self.naics_df['nlp'] = self.naics_df.Titles.apply(self.nlp) def _classify(self, text, n=1, th=None): text_nlp = self.nlp(text) self.naics_df['similarity'] = self.naics_df.nlp.apply( lambda x: text_nlp.similarity(x) ) l2 = self.naics_df.loc[self.naics_df.level == 2, :].copy() l2.drop(['nlp', 'level'], axis=1, inplace=True) l2['text'] = text l2.rename(columns={'Codes': 'naics_2', 'Titles': 'title_2'}, inplace=True) l2.sort_values('similarity', ascending=False, inplace=True) if th is not None: top_2 = l2[l2.similarity >= th].copy() else: top_2 = l2.iloc[0: n].copy() top_2['naics_1'] = top_2.naics_2.str[:2] top_2['title_1'] = top_2.naics_1.map( self.naics_df[self.naics_df.level == 1].set_index('Codes')['Titles'] ) top_2 = top_2[[ 'text', 'title_1', 'naics_1', 'title_2', 'naics_2', 'similarity' ]] print(f'Processed: {self.counter} / {self.total}', end='\r') self.counter += 1 return top_2 @time_it() def classify(self, text: str or list, n=1, th=None, as_df=True): text = [text] if isinstance(text, str) else text unique_text = set(text) self.total = len(unique_text) self.counter = 1 print(f'To be processed: {self.total}') results = [self._classify(i, n=n, th=th) for i in unique_text] df =
pd.concat(results, axis=0, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """Datareader for cell testers and potentiostats. This module is used for loading data and databases created by different cell testers. Currently it only accepts arbin-type res-files (access) data as raw data files, but we intend to implement more types soon. It also creates processed files in the hdf5-format. Example: >>> d = CellpyData() >>> d.loadcell(names = [file1.res, file2.res]) # loads and merges the runs >>> voltage_curves = d.get_cap() >>> d.save("mytest.hdf") Todo: * Remove mass dependency in summary data * use pd.loc[row,column] e.g. pd.loc[:,"charge_cap"] for col or pd.loc[(pd.["step"]==1),"x"] """ import os from pathlib import Path import logging import sys import collections import warnings import csv import itertools import time from scipy import interpolate import numpy as np import pandas as pd from pandas.errors import PerformanceWarning from cellpy.parameters import prms from cellpy.exceptions import WrongFileVersion, DeprecatedFeature, NullData from cellpy.parameters.internal_settings import ( get_headers_summary, get_cellpy_units, get_headers_normal, get_headers_step_table, ATTRS_CELLPYFILE, ) from cellpy.readers.core import ( FileID, Cell, CELLPY_FILE_VERSION, MINIMUM_CELLPY_FILE_VERSION, xldate_as_datetime, ) HEADERS_NORMAL = get_headers_normal() HEADERS_SUMMARY = get_headers_summary() HEADERS_STEP_TABLE = get_headers_step_table() # TODO: @jepe - performance warnings - mixed types within cols (pytables) performance_warning_level = "ignore" # "ignore", "error" warnings.filterwarnings( performance_warning_level, category=pd.io.pytables.PerformanceWarning ) pd.set_option("mode.chained_assignment", None) # "raise", "warn", None module_logger = logging.getLogger(__name__) class CellpyData(object): """Main class for working and storing data. This class is the main work-horse for cellpy where all the functions for reading, selecting, and tweaking your data is located. It also contains the header definitions, both for the cellpy hdf5 format, and for the various cell-tester file-formats that can be read. The class can contain several tests and each test is stored in a list. If you see what I mean... Attributes: cells (list): list of DataSet objects. """ def __str__(self): txt = "<CellpyData>\n" if self.name: txt += f"name: {self.name}\n" if self.table_names: txt += f"table_names: {self.table_names}\n" if self.tester: txt += f"tester: {self.tester}\n" if self.cells: txt += "datasets: [ ->\n" for i, d in enumerate(self.cells): txt += f" ({i})\n" for t in str(d).split("\n"): txt += " " txt += t txt += "\n" txt += "\n" txt += "]" else: txt += "datasets: []" txt += "\n" return txt def __bool__(self): if self.cells: return True else: return False def __init__( self, filenames=None, selected_scans=None, profile=False, filestatuschecker=None, # "modified" fetch_one_liners=False, tester=None, initialize=False, ): """CellpyData object Args: filenames: list of files to load. selected_scans: profile: experimental feature. filestatuschecker: property to compare cellpy and raw-files; default read from prms-file. fetch_one_liners: experimental feature. tester: instrument used (e.g. "arbin") (checks prms-file as default). initialize: create a dummy (empty) dataset; defaults to False. """ if tester is None: self.tester = prms.Instruments.tester else: self.tester = tester self.loader = None # this will be set in the function set_instrument self.logger = logging.getLogger(__name__) self.logger.debug("created CellpyData instance") self.name = None self.profile = profile self.minimum_selection = {} if filestatuschecker is None: self.filestatuschecker = prms.Reader.filestatuschecker else: self.filestatuschecker = filestatuschecker self.forced_errors = 0 self.summary_exists = False if not filenames: self.file_names = [] else: self.file_names = filenames if not self._is_listtype(self.file_names): self.file_names = [self.file_names] if not selected_scans: self.selected_scans = [] else: self.selected_scans = selected_scans if not self._is_listtype(self.selected_scans): self.selected_scans = [self.selected_scans] self.cells = [] self.status_datasets = [] self.selected_cell_number = 0 self.number_of_datasets = 0 self.capacity_modifiers = ["reset"] self.list_of_step_types = [ "charge", "discharge", "cv_charge", "cv_discharge", "taper_charge", "taper_discharge", "charge_cv", "discharge_cv", "ocvrlx_up", "ocvrlx_down", "ir", "rest", "not_known", ] # - options self.force_step_table_creation = prms.Reader.force_step_table_creation self.force_all = prms.Reader.force_all self.sep = prms.Reader.sep self._cycle_mode = prms.Reader.cycle_mode # self.max_res_filesize = prms.Reader.max_res_filesize self.load_only_summary = prms.Reader.load_only_summary self.select_minimal = prms.Reader.select_minimal # self.chunk_size = prms.Reader.chunk_size # 100000 # self.max_chunks = prms.Reader.max_chunks # self.last_chunk = prms.Reader.last_chunk self.limit_loaded_cycles = prms.Reader.limit_loaded_cycles # self.load_until_error = prms.Reader.load_until_error self.ensure_step_table = prms.Reader.ensure_step_table self.daniel_number = prms.Reader.daniel_number # self.raw_datadir = prms.Reader.raw_datadir self.raw_datadir = prms.Paths.rawdatadir # self.cellpy_datadir = prms.Reader.cellpy_datadir self.cellpy_datadir = prms.Paths.cellpydatadir # search in prm-file for res and hdf5 dirs in loadcell: self.auto_dirs = prms.Reader.auto_dirs # - headers and instruments self.headers_normal = get_headers_normal() self.headers_summary = get_headers_summary() self.headers_step_table = get_headers_step_table() self.table_names = None # dictionary defined in set_instruments self.set_instrument() # - units used by cellpy self.cellpy_units = get_cellpy_units() if initialize: self.initialize() def initialize(self): self.logger.debug("Initializing...") self.cells.append(Cell()) @property def cell(self): """returns the DataSet instance""" # could insert a try-except thingy here... cell = self.cells[self.selected_cell_number] return cell @property def dataset(self): """returns the DataSet instance""" # could insert a try-except thingy here... warnings.warn("The .dataset property is deprecated, please use .cell instead.") cell = self.cells[self.selected_cell_number] return cell @property def empty(self): """gives False if the CellpyData object is empty (or un-functional)""" return not self.check() # TODO: @jepe - merge the _set_xxinstrument methods into one method def set_instrument(self, instrument=None): """Set the instrument (i.e. tell cellpy the file-type you use). Args: instrument: (str) in ["arbin", "bio-logic-csv", "bio-logic-bin",...] Sets the instrument used for obtaining the data (i.e. sets fileformat) """ self.logger.debug(f"Setting instrument: {instrument}") if instrument is None: instrument = self.tester if instrument in ["arbin", "arbin_res"]: self._set_arbin() self.tester = "arbin" elif instrument == "arbin_sql": self._set_arbin_sql() self.tester = "arbin" elif instrument == "arbin_experimental": self._set_arbin_experimental() self.tester = "arbin" elif instrument in ["pec", "pec_csv"]: self._set_pec() self.tester = "pec" elif instrument in ["biologics", "biologics_mpr"]: self._set_biologic() self.tester = "biologic" elif instrument == "custom": self._set_custom() self.tester = "custom" else: raise Exception(f"option does not exist: '{instrument}'") def _set_biologic(self): warnings.warn("Experimental! Not ready for production!") from cellpy.readers.instruments import biologics_mpr as instr self.loader_class = instr.MprLoader() # ----- get information -------------------------- self.raw_units = self.loader_class.get_raw_units() self.raw_limits = self.loader_class.get_raw_limits() # ----- create the loader ------------------------ self.loader = self.loader_class.loader def _set_pec(self): warnings.warn("Experimental! Not ready for production!") from cellpy.readers.instruments import pec as instr self.loader_class = instr.PECLoader() # ----- get information -------------------------- self.raw_units = self.loader_class.get_raw_units() self.raw_limits = self.loader_class.get_raw_limits() # ----- create the loader ------------------------ self.loader = self.loader_class.loader def _set_maccor(self): warnings.warn("not implemented") def _set_custom(self): # use a custom format (csv with information lines on top) from cellpy.readers.instruments import custom as instr self.loader_class = instr.CustomLoader() # ----- get information -------------------------- self.raw_units = self.loader_class.get_raw_units() self.raw_limits = self.loader_class.get_raw_limits() # ----- create the loader ------------------------ logging.debug("setting custom file-type (will be used when loading raw") self.loader = self.loader_class.loader def _set_arbin_sql(self): warnings.warn("not implemented") def _set_arbin(self): from cellpy.readers.instruments import arbin as instr self.loader_class = instr.ArbinLoader() # ----- get information -------------------------- self.raw_units = self.loader_class.get_raw_units() self.raw_limits = self.loader_class.get_raw_limits() # ----- create the loader ------------------------ self.loader = self.loader_class.loader # def _set_arbin_experimental(self): # # Note! All these _set_instrument methods can be generalized to one # # method. At the moment, I find it # # more transparent to separate them into respective methods pr # # instrument. # from .instruments import arbin_experimental as instr # self.loader_class = instr.ArbinLoader() # # get information # self.raw_units = self.loader_class.get_raw_units() # self.raw_limits = self.loader_class.get_raw_limits() # # send information (should improve this later) # # loader_class.load_only_summary = self.load_only_summary # # loader_class.select_minimal = self.select_minimal # # loader_class.max_res_filesize = self.max_res_filesize # # loader_class.chunk_size = self.chunk_size # # loader_class.max_chunks = self.max_chunks # # loader_class.last_chunk = self.last_chunk # # loader_class.limit_loaded_cycles = self.limit_loaded_cycles # # loader_class.load_until_error = self.load_until_error # # # create loader # self.loader = self.loader_class.loader def _create_logger(self): from cellpy import log self.logger = logging.getLogger(__name__) log.setup_logging(default_level="DEBUG") def set_cycle_mode(self, cycle_mode): """set the cycle mode""" self._cycle_mode = cycle_mode @property def cycle_mode(self): return self._cycle_mode @cycle_mode.setter def cycle_mode(self, cycle_mode): self.logger.debug(f"-> cycle_mode: {cycle_mode}") self._cycle_mode = cycle_mode def set_raw_datadir(self, directory=None): """Set the directory containing .res-files. Used for setting directory for looking for res-files.@ A valid directory name is required. Args: directory (str): path to res-directory Example: >>> d = CellpyData() >>> directory = "MyData/Arbindata" >>> d.set_raw_datadir(directory) """ if directory is None: self.logger.info("No directory name given") return if not os.path.isdir(directory): self.logger.info(directory) self.logger.info("Directory does not exist") return self.raw_datadir = directory def set_cellpy_datadir(self, directory=None): """Set the directory containing .hdf5-files. Used for setting directory for looking for hdf5-files. A valid directory name is required. Args: directory (str): path to hdf5-directory Example: >>> d = CellpyData() >>> directory = "MyData/HDF5" >>> d.set_raw_datadir(directory) """ if directory is None: self.logger.info("No directory name given") return if not os.path.isdir(directory): self.logger.info("Directory does not exist") return self.cellpy_datadir = directory def check_file_ids(self, rawfiles, cellpyfile): """Check the stats for the files (raw-data and cellpy hdf5). This function checks if the hdf5 file and the res-files have the same timestamps etc to find out if we need to bother to load .res -files. Args: cellpyfile (str): filename of the cellpy hdf5-file. rawfiles (list of str): name(s) of raw-data file(s). Returns: False if the raw files are newer than the cellpy hdf5-file (update needed). If return_res is True it also returns list of raw-file_names as second argument. """ txt = "Checking file ids - using '%s'" % self.filestatuschecker self.logger.info(txt) ids_cellpy_file = self._check_cellpy_file(cellpyfile) self.logger.debug(f"cellpyfile ids: {ids_cellpy_file}") if not ids_cellpy_file: # self.logger.debug("hdf5 file does not exist - needs updating") return False ids_raw = self._check_raw(rawfiles) similar = self._compare_ids(ids_raw, ids_cellpy_file) if not similar: # self.logger.debug("hdf5 file needs updating") return False else: # self.logger.debug("hdf5 file is updated") return True def _check_raw(self, file_names, abort_on_missing=False): """Get the file-ids for the res_files.""" strip_file_names = True check_on = self.filestatuschecker if not self._is_listtype(file_names): file_names = [file_names] ids = dict() for f in file_names: self.logger.debug(f"checking res file {f}") fid = FileID(f) # self.logger.debug(fid) if fid.name is None: warnings.warn(f"file does not exist: {f}") if abort_on_missing: sys.exit(-1) else: if strip_file_names: name = os.path.basename(f) else: name = f if check_on == "size": ids[name] = int(fid.size) elif check_on == "modified": ids[name] = int(fid.last_modified) else: ids[name] = int(fid.last_accessed) return ids def _check_cellpy_file(self, filename): """Get the file-ids for the cellpy_file.""" strip_filenames = True check_on = self.filestatuschecker self.logger.debug("checking cellpy-file") self.logger.debug(filename) if not os.path.isfile(filename): self.logger.debug("cellpy-file does not exist") return None try: store = pd.HDFStore(filename) except Exception as e: self.logger.debug(f"could not open cellpy-file ({e})") return None try: fidtable = store.select("CellpyData/fidtable") except KeyError: self.logger.warning("no fidtable -" " you should update your hdf5-file") fidtable = None finally: store.close() if fidtable is not None: raw_data_files, raw_data_files_length = self._convert2fid_list(fidtable) txt = "contains %i res-files" % (len(raw_data_files)) self.logger.debug(txt) ids = dict() for fid in raw_data_files: full_name = fid.full_name size = fid.size mod = fid.last_modified self.logger.debug(f"fileID information for: {full_name}") self.logger.debug(f" modified: {mod}") self.logger.debug(f" size: {size}") if strip_filenames: name = os.path.basename(full_name) else: name = full_name if check_on == "size": ids[name] = int(fid.size) elif check_on == "modified": ids[name] = int(fid.last_modified) else: ids[name] = int(fid.last_accessed) return ids else: return None @staticmethod def _compare_ids(ids_res, ids_cellpy_file): similar = True l_res = len(ids_res) l_cellpy = len(ids_cellpy_file) if l_res == l_cellpy and l_cellpy > 0: for name, value in list(ids_res.items()): if ids_cellpy_file[name] != value: similar = False else: similar = False return similar def loadcell( self, raw_files, cellpy_file=None, mass=None, summary_on_raw=False, summary_ir=True, summary_ocv=False, summary_end_v=True, only_summary=False, only_first=False, force_raw=False, use_cellpy_stat_file=None, ): """Loads data for given cells. Args: raw_files (list): name of res-files cellpy_file (path): name of cellpy-file mass (float): mass of electrode or active material summary_on_raw (bool): use raw-file for summary summary_ir (bool): summarize ir summary_ocv (bool): summarize ocv steps summary_end_v (bool): summarize end voltage only_summary (bool): get only the summary of the runs only_first (bool): only use the first file fitting search criteria force_raw (bool): only use raw-files use_cellpy_stat_file (bool): use stat file if creating summary from raw Example: >>> srnos = my_dbreader.select_batch("testing_new_solvent") >>> cell_datas = [] >>> for srno in srnos: >>> ... my_run_name = my_dbreader.get_cell_name(srno) >>> ... mass = my_dbreader.get_mass(srno) >>> ... rawfiles, cellpyfiles = \ >>> ... filefinder.search_for_files(my_run_name) >>> ... cell_data = cellreader.CellpyData() >>> ... cell_data.loadcell(raw_files=rawfiles, >>> ... cellpy_file=cellpyfiles) >>> ... cell_data.set_mass(mass) >>> ... if not cell_data.summary_exists: >>> ... cell_data.make_summary() # etc. etc. >>> ... cell_datas.append(cell_data) >>> """ # This is a part of a dramatic API change. It will not be possible to # load more than one set of datasets (i.e. one single cellpy-file or # several raw-files that will be automatically merged) self.logger.info("Started cellpy.cellreader.loadcell") if cellpy_file is None: similar = False elif force_raw: similar = False else: similar = self.check_file_ids(raw_files, cellpy_file) self.logger.debug("checked if the files were similar") if only_summary: self.load_only_summary = True else: self.load_only_summary = False if not similar: self.logger.debug("cellpy file(s) needs updating - loading raw") self.logger.info("Loading raw-file") self.logger.debug(raw_files) self.from_raw(raw_files) self.logger.debug("loaded files") # Check if the run was loaded ([] if empty) if self.status_datasets: if mass: self.set_mass(mass) if summary_on_raw: self.make_summary( all_tests=False, find_ocv=summary_ocv, find_ir=summary_ir, find_end_voltage=summary_end_v, use_cellpy_stat_file=use_cellpy_stat_file, ) else: self.logger.warning("Empty run!") else: self.load(cellpy_file) if mass: self.set_mass(mass) return self def from_raw(self, file_names=None, **kwargs): """Load a raw data-file. Args: file_names (list of raw-file names): uses CellpyData.file_names if None. If the list contains more than one file name, then the runs will be merged together. """ # This function only loads one test at a time (but could contain several # files). The function from_res() also implements loading several # datasets (using list of lists as input). if file_names: self.file_names = file_names if not isinstance(file_names, (list, tuple)): self.file_names = [file_names] # file_type = self.tester raw_file_loader = self.loader set_number = 0 test = None counter = 0 self.logger.debug("start iterating through file(s)") for f in self.file_names: self.logger.debug("loading raw file:") self.logger.debug(f"{f}") new_tests = raw_file_loader(f, **kwargs) if new_tests: if test is not None: self.logger.debug("continuing reading files...") _test = self._append(test[set_number], new_tests[set_number]) if not _test: self.logger.warning(f"EMPTY TEST: {f}") continue test[set_number] = _test self.logger.debug("added this test - started merging") for j in range(len(new_tests[set_number].raw_data_files)): raw_data_file = new_tests[set_number].raw_data_files[j] file_size = new_tests[set_number].raw_data_files_length[j] test[set_number].raw_data_files.append(raw_data_file) test[set_number].raw_data_files_length.append(file_size) counter += 1 if counter > 10: self.logger.debug("ERROR? Too many files to merge") raise ValueError( "Too many files to merge - " "could be a p2-p3 zip thing" ) else: self.logger.debug("getting data from first file") if new_tests[set_number].no_data: self.logger.debug("NO DATA") else: test = new_tests else: self.logger.debug("NOTHING LOADED") self.logger.debug("finished loading the raw-files") test_exists = False if test: if test[0].no_data: self.logging.debug( "the first dataset (or only dataset) loaded from the raw data file is empty" ) else: test_exists = True if test_exists: if not prms.Reader.sorted_data: self.logger.debug("sorting data") test[set_number] = self._sort_data(test[set_number]) self.cells.append(test[set_number]) else: self.logger.warning("No new datasets added!") self.number_of_datasets = len(self.cells) self.status_datasets = self._validate_datasets() self._invent_a_name() return self def from_res(self, filenames=None, check_file_type=True): """Convenience function for loading arbin-type data into the datastructure. Args: filenames: ((lists of) list of raw-file names): uses cellpy.file_names if None. If list-of-list, it loads each list into separate datasets. The files in the inner list will be merged. check_file_type (bool): check file type if True (res-, or cellpy-format) """ raise DeprecatedFeature def _validate_datasets(self, level=0): self.logger.debug("validating test") level = 0 # simple validation for finding empty datasets - should be expanded to # find not-complete datasets, datasets with missing prms etc v = [] if level == 0: for test in self.cells: # check that it contains all the necessary headers # (and add missing ones) # test = self._clean_up_normal_table(test) # check that the test is not empty v.append(self._is_not_empty_dataset(test)) self.logger.debug(f"validation array: {v}") return v def check(self): """Returns False if no datasets exists or if one or more of the datasets are empty""" if len(self.status_datasets) == 0: return False if all(self.status_datasets): return True return False def _is_not_empty_dataset(self, dataset): if dataset is self._empty_dataset(): return False else: return True def _clean_up_normal_table(self, test=None, dataset_number=None): # check that test contains all the necessary headers # (and add missing ones) raise NotImplementedError def _report_empty_dataset(self): self.logger.info("Empty set") @staticmethod def _empty_dataset(): return None def _invent_a_name(self, filename=None, override=False): if filename is None: self.name = "nameless" return if self.name and not override: return path = Path(filename) self.name = path.with_suffix("").name def load(self, cellpy_file, parent_level=None, return_cls=True): """Loads a cellpy file. Args: cellpy_file (path, str): Full path to the cellpy file. parent_level (str, optional): Parent level. return_cls (bool): Return the class. """ try: self.logger.debug("loading cellpy-file (hdf5):") self.logger.debug(cellpy_file) new_datasets = self._load_hdf5(cellpy_file, parent_level) self.logger.debug("cellpy-file loaded") except AttributeError: new_datasets = [] self.logger.warning( "This cellpy-file version is not supported by" "current reader (try to update cellpy)." ) if new_datasets: for dataset in new_datasets: self.cells.append(dataset) else: # raise LoadError self.logger.warning("Could not load") self.logger.warning(str(cellpy_file)) self.number_of_datasets = len(self.cells) self.status_datasets = self._validate_datasets() self._invent_a_name(cellpy_file) if return_cls: return self def _load_hdf5(self, filename, parent_level=None): """Load a cellpy-file. Args: filename (str): Name of the cellpy file. parent_level (str) (optional): name of the parent level (defaults to "CellpyData") Returns: loaded datasets (DataSet-object) """ # TODO: option for reading version and relabelling dfsummary etc # if the version is older data = None if parent_level is None: parent_level = prms._cellpyfile_root if parent_level != prms._cellpyfile_root: self.logger.debug( "Using non-default parent label for the " "hdf-store: {}".format(parent_level) ) if CELLPY_FILE_VERSION > 4: raw_dir = prms._cellpyfile_raw step_dir = prms._cellpyfile_step summary_dir = prms._cellpyfile_summary meta_dir = "/info" # hard-coded fid_dir = prms._cellpyfile_fid else: raw_dir = "/raw" step_dir = "/step_table" summary_dir = "/dfsummary" meta_dir = "/info" fid_dir = "/fidtable" if not os.path.isfile(filename): self.logger.info(f"File does not exist: {filename}") raise IOError with pd.HDFStore(filename) as store: data, meta_table = self._create_initial_data_set_from_cellpy_file( meta_dir, parent_level, store ) if data.cellpy_file_version < MINIMUM_CELLPY_FILE_VERSION: raise WrongFileVersion if data.cellpy_file_version > CELLPY_FILE_VERSION: raise WrongFileVersion if data.cellpy_file_version < CELLPY_FILE_VERSION: if data.cellpy_file_version < 5: self.logger.debug(f"version: {data.cellpy_file_version}") _raw_dir = "/dfdata" _step_dir = "/step_table" _summary_dir = "/dfsummary" _fid_dir = "/fidtable" self._check_keys_in_cellpy_file( meta_dir, parent_level, _raw_dir, store, _summary_dir ) self._extract_summary_from_cellpy_file( data, parent_level, store, _summary_dir ) self._extract_raw_from_cellpy_file( data, parent_level, _raw_dir, store ) self._extract_steps_from_cellpy_file( data, parent_level, _step_dir, store ) fid_table, fid_table_selected = self._extract_fids_from_cellpy_file( _fid_dir, parent_level, store ) self._extract_meta_from_cellpy_file(data, meta_table, filename) warnings.warn( "Loaded old cellpy-file version (<5). " "Please update and save again." ) else: self._check_keys_in_cellpy_file( meta_dir, parent_level, raw_dir, store, summary_dir ) self._extract_summary_from_cellpy_file( data, parent_level, store, summary_dir ) self._extract_raw_from_cellpy_file(data, parent_level, raw_dir, store) self._extract_steps_from_cellpy_file( data, parent_level, step_dir, store ) fid_table, fid_table_selected = self._extract_fids_from_cellpy_file( fid_dir, parent_level, store ) self._extract_meta_from_cellpy_file(data, meta_table, filename) if fid_table_selected: data.raw_data_files, data.raw_data_files_length = self._convert2fid_list( fid_table ) else: data.raw_data_files = None data.raw_data_files_length = None # this does not yet allow multiple sets new_tests = [ data ] # but cellpy is ready when that time comes (if it ever happens) return new_tests def _create_initial_data_set_from_cellpy_file(self, meta_dir, parent_level, store): # Remark that this function is run before selecting loading method # based on version. If you change the meta_dir prm to something else than # "/info" it will most likely fail. data = Cell() meta_table = None try: meta_table = store.select(parent_level + meta_dir) except KeyError as e: self.logger.info("This file is VERY old - no info given here") self.logger.info("You should convert the files to a newer version!") self.logger.debug(e) try: data.cellpy_file_version = self._extract_from_dict( meta_table, "cellpy_file_version" ) except Exception as e: data.cellpy_file_version = 0 warnings.warn(f"Unhandled exception raised: {e}") self.logger.debug(f"cellpy file version. {data.cellpy_file_version}") return data, meta_table def _check_keys_in_cellpy_file( self, meta_dir, parent_level, raw_dir, store, summary_dir ): required_keys = [raw_dir, summary_dir, meta_dir] required_keys = ["/" + parent_level + _ for _ in required_keys] for key in required_keys: if key not in store.keys(): self.logger.info( f"This cellpy-file is not good enough - " f"at least one key is missing: {key}" ) raise Exception( f"OH MY GOD! At least one crucial key" f"is missing {key}!" ) self.logger.debug(f"Keys in current cellpy-file: {store.keys()}") def _extract_raw_from_cellpy_file(self, data, parent_level, raw_dir, store): data.raw = store.select(parent_level + raw_dir) def _extract_summary_from_cellpy_file(self, data, parent_level, store, summary_dir): data.summary = store.select(parent_level + summary_dir) def _extract_fids_from_cellpy_file(self, fid_dir, parent_level, store): try: fid_table = store.select( parent_level + fid_dir ) # remark! changed spelling from # lower letter to camel-case! fid_table_selected = True except Exception as e: self.logger.debug(e) self.logger.debug("could not get fid from cellpy-file") fid_table = [] warnings.warn("no fid_table - you should update your cellpy-file") fid_table_selected = False return fid_table, fid_table_selected def _extract_steps_from_cellpy_file(self, data, parent_level, step_dir, store): try: data.steps = store.select(parent_level + step_dir) except Exception as e: self.logging.debug("could not get steps from cellpy-file") data.steps = pd.DataFrame() warnings.warn(f"Unhandled exception raised: {e}") def _extract_meta_from_cellpy_file(self, data, meta_table, filename): # get attributes from meta table for attribute in ATTRS_CELLPYFILE: value = self._extract_from_dict(meta_table, attribute) # some fixes due to errors propagated into the cellpy-files if attribute == "creator": if not isinstance(value, str): value = "no_name" if attribute == "test_no": if not isinstance(value, (int, float)): value = 0 setattr(data, attribute, value) if data.mass is None: data.mass = 1.0 else: data.mass_given = True data.loaded_from = str(filename) # hack to allow the renaming of tests to datasets try: name = self._extract_from_dict_hard(meta_table, "name") if not isinstance(name, str): name = "no_name" data.name = name except KeyError: self.logger.debug(f"missing key in meta table: name") print(meta_table) warnings.warn("OLD-TYPE: Recommend to save in new format!") try: name = self._extract_from_dict(meta_table, "test_name") except Exception as e: name = "no_name" self.logger.debug("name set to 'no_name") warnings.warn(f"Unhandled exception raised: {e}") data.name = name # unpacking the raw data limits for key in data.raw_limits: try: data.raw_limits[key] = self._extract_from_dict_hard(meta_table, key) except KeyError: self.logger.debug(f"missing key in meta_table: {key}") warnings.warn("OLD-TYPE: Recommend to save in new format!") @staticmethod def _extract_from_dict(t, x, default_value=None): try: value = t[x].values if value: value = value[0] except KeyError: value = default_value return value @staticmethod def _extract_from_dict_hard(t, x): value = t[x].values if value: value = value[0] return value def _create_infotable(self, dataset_number=None): # needed for saving class/DataSet to hdf5 dataset_number = self._validate_dataset_number(dataset_number) if dataset_number is None: self._report_empty_dataset() return test = self.get_cell(dataset_number) infotable = collections.OrderedDict() for attribute in ATTRS_CELLPYFILE: value = getattr(test, attribute) infotable[attribute] = [value] infotable["cellpy_file_version"] = [CELLPY_FILE_VERSION] limits = test.raw_limits for key in limits: infotable[key] = limits[key] infotable = pd.DataFrame(infotable) self.logger.debug("_create_infotable: fid") fidtable = collections.OrderedDict() fidtable["raw_data_name"] = [] fidtable["raw_data_full_name"] = [] fidtable["raw_data_size"] = [] fidtable["raw_data_last_modified"] = [] fidtable["raw_data_last_accessed"] = [] fidtable["raw_data_last_info_changed"] = [] fidtable["raw_data_location"] = [] fidtable["raw_data_files_length"] = [] fids = test.raw_data_files fidtable["raw_data_fid"] = fids if fids: for fid, length in zip(fids, test.raw_data_files_length): fidtable["raw_data_name"].append(fid.name) fidtable["raw_data_full_name"].append(fid.full_name) fidtable["raw_data_size"].append(fid.size) fidtable["raw_data_last_modified"].append(fid.last_modified) fidtable["raw_data_last_accessed"].append(fid.last_accessed) fidtable["raw_data_last_info_changed"].append(fid.last_info_changed) fidtable["raw_data_location"].append(fid.location) fidtable["raw_data_files_length"].append(length) else: warnings.warn("seems you lost info about your raw-data") fidtable = pd.DataFrame(fidtable) return infotable, fidtable def _convert2fid_list(self, tbl): self.logger.debug("converting loaded fidtable to FileID object") fids = [] lengths = [] counter = 0 for item in tbl["raw_data_name"]: fid = FileID() fid.name = item fid.full_name = tbl["raw_data_full_name"][counter] fid.size = tbl["raw_data_size"][counter] fid.last_modified = tbl["raw_data_last_modified"][counter] fid.last_accessed = tbl["raw_data_last_accessed"][counter] fid.last_info_changed = tbl["raw_data_last_info_changed"][counter] fid.location = tbl["raw_data_location"][counter] length = tbl["raw_data_files_length"][counter] counter += 1 fids.append(fid) lengths.append(length) if counter < 1: self.logger.debug("info about raw files missing") return fids, lengths def merge(self, datasets=None, separate_datasets=False): """This function merges datasets into one set.""" self.logger.info("Merging") if separate_datasets: warnings.warn( "The option seperate_datasets=True is" "not implemented yet. Performing merging, but" "neglecting the option." ) else: if datasets is None: datasets = list(range(len(self.cells))) first = True for dataset_number in datasets: if first: dataset = self.cells[dataset_number] first = False else: dataset = self._append(dataset, self.cells[dataset_number]) for raw_data_file, file_size in zip( self.cells[dataset_number].raw_data_files, self.cells[dataset_number].raw_data_files_length, ): dataset.raw_data_files.append(raw_data_file) dataset.raw_data_files_length.append(file_size) self.cells = [dataset] self.number_of_datasets = 1 return self def _append(self, t1, t2, merge_summary=True, merge_step_table=True): self.logger.debug( f"merging two datasets (merge summary = {merge_summary}) " f"(merge step table = {merge_step_table})" ) if t1.raw.empty: self.logger.debug("OBS! the first dataset is empty") if t2.raw.empty: t1.merged = True self.logger.debug("the second dataset was empty") self.logger.debug(" -> merged contains only first") return t1 test = t1 # finding diff of time start_time_1 = t1.start_datetime start_time_2 = t2.start_datetime diff_time = xldate_as_datetime(start_time_2) - xldate_as_datetime(start_time_1) diff_time = diff_time.total_seconds() if diff_time < 0: self.logger.warning("Wow! your new dataset is older than the old!") self.logger.debug(f"diff time: {diff_time}") sort_key = self.headers_normal.datetime_txt # DateTime # mod data points for set 2 data_point_header = self.headers_normal.data_point_txt try: last_data_point = max(t1.raw[data_point_header]) except ValueError: last_data_point = 0 t2.raw[data_point_header] = t2.raw[data_point_header] + last_data_point # mod cycle index for set 2 cycle_index_header = self.headers_normal.cycle_index_txt try: last_cycle = max(t1.raw[cycle_index_header]) except ValueError: last_cycle = 0 t2.raw[cycle_index_header] = t2.raw[cycle_index_header] + last_cycle # mod test time for set 2 test_time_header = self.headers_normal.test_time_txt t2.raw[test_time_header] = t2.raw[test_time_header] + diff_time # merging if not t1.raw.empty: raw2 = pd.concat([t1.raw, t2.raw], ignore_index=True) # checking if we already have made a summary file of these datasets # (to be used if merging summaries (but not properly implemented yet)) if t1.summary_made and t2.summary_made: dfsummary_made = True else: dfsummary_made = False # checking if we already have made step tables for these datasets if t1.steps_made and t2.steps_made: step_table_made = True else: step_table_made = False if merge_summary: # check if (self-made) summary exists. self_made_summary = True try: test_it = t1.summary[cycle_index_header] except KeyError as e: self_made_summary = False try: test_it = t2.summary[cycle_index_header] except KeyError as e: self_made_summary = False if self_made_summary: # mod cycle index for set 2 last_cycle = max(t1.summary[cycle_index_header]) t2.summary[cycle_index_header] = ( t2.summary[cycle_index_header] + last_cycle ) # mod test time for set 2 t2.summary[test_time_header] = ( t2.summary[test_time_header] + diff_time ) # to-do: mod all the cumsum stuff in the summary (best to make # summary after merging) merging else: t2.summary[data_point_header] = ( t2.summary[data_point_header] + last_data_point ) summary2 = pd.concat([t1.summary, t2.summary], ignore_index=True) test.summary = summary2 if merge_step_table: if step_table_made: cycle_index_header = self.headers_normal.cycle_index_txt t2.steps[self.headers_step_table.cycle] = ( t2.raw[self.headers_step_table.cycle] + last_cycle ) steps2 =
pd.concat([t1.steps, t2.steps], ignore_index=True)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import sys sys.path.append("../") import pandas as pd import numpy as np import pathlib import pickle import os import itertools import argparse import logging import helpers.feature_helpers as fh from collections import Counter OUTPUT_DF_TR = 'df_steps_tr.csv' OUTPUT_DF_VAL = 'df_steps_val.csv' OUTPUT_DF_TRAIN = 'df_steps_train.csv' OUTPUT_DF_TEST = 'df_steps_test.csv' OUTPUT_DF_SESSIONS = 'df_sessions.csv' OUTPUT_ENCODING_DICT = 'enc_dicts_v02.pkl' OUTPUT_CONFIG = 'config.pkl' OUTPUT_NORMLIZATIONS_VAL = 'Dwell_normalizations_val.pkl' OUTPUT_NORMLIZATIONS_SUBM = 'Dwell_normalizations_submission.pkl' DEFAULT_FEATURES_DIR_NAME = 'nn_vnormal' DEFAULT_PREPROC_DIR_NAME = 'data_processed_vnormal' def setup_args_parser(): parser = argparse.ArgumentParser(description='Create cv features') parser.add_argument('--processed_data_dir_name', help='path to preprocessed data', default=DEFAULT_PREPROC_DIR_NAME) parser.add_argument('--features_dir_name', help='features directory name', default=DEFAULT_FEATURES_DIR_NAME) #parser.add_argument('--split_option', help='split type. Options: normal, future', default=DEFAULT_SPLIT) parser.add_argument('--debug', help='debug mode (verbose output and no saving)', action='store_true') return parser def setup_logger(debug): logger = logging.getLogger() logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) if debug: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) return logger def main(): parser = setup_args_parser() args = parser.parse_args() logger = setup_logger(args.debug) #logger.info('split option: %s' % args.split_option) logger.info(100*'-') logger.info('Running 013_Features_Dwell.py') logger.info(100*'-') logger.info('processed data directory name: %s' % args.processed_data_dir_name) logger.info('features directory name: %s' % args.features_dir_name) #Set up arguments # # split_option # if args.split_option=='normal': # SPLIT_OPTION = 'normal' # elif args.split_option=='future': # SPLIT_OPTION = 'leave_out_only_clickout_with_nans' # processed data path DATA_PATH = '../data/' + args.processed_data_dir_name + '/' #os.makedirs(DATA_PATH) if not os.path.exists(DATA_PATH) else None logger.info('processed data path: %s' % DATA_PATH) # features data path FEATURES_PATH = '../features/' + args.features_dir_name + '/' #os.makedirs(FEATURES_PATH) if not os.path.exists(FEATURES_PATH) else None logger.info('features path: %s' % FEATURES_PATH) # End of set up arguments config = pickle.load(open(DATA_PATH+OUTPUT_CONFIG, "rb" )) config # ### read data df_steps_tr = pd.read_csv(DATA_PATH+OUTPUT_DF_TR) df_steps_val = pd.read_csv(DATA_PATH+OUTPUT_DF_VAL) df_steps_train =
pd.read_csv(DATA_PATH+OUTPUT_DF_TRAIN)
pandas.read_csv
###################################################################### # Copyright (C) 2021 BFH # # Script with base routines for processing steps in the FINT-CH project. # # Author: <NAME>, BFH-HAFL, December 2021 ###################################################################### import os import sys import math from rasterstats import zonal_stats #Path to the folder containing pyFINT PYFINT_HOME = os.environ.get("PYFINT_HOME") sys.path.append(PYFINT_HOME) from pyfintcontroller import * #Path to the folder containing the FINT-CH artifacts FINTCH_HOME = os.environ.get("FINTCH_HOME") sys.path.append(os.path.join(FINTCH_HOME,"Common")) from fintch_utilities import * import numpy as np import pandas as pd import geopandas as gpd from geopandas.tools import sjoin from osgeo import ogr, osr, gdal from osgeo.gdalconst import * from osgeo.gdalnumeric import * import psycopg2 from shapely.wkt import dumps, loads from shapely.geometry import Point, box from datetime import datetime, date, time, timedelta import time from multiprocessing import Process, Pool, Queue, JoinableQueue, current_process, freeze_support import logging import traceback def create_db_tables(table_schema, table_base_name, table_owner, srid, db_connection): """Method for creating the PostGIS database tables needed in the FINT-CH process. Existing tables are dropped beforehand. Args: table_schema (string): Name of the schema to create the tables in table_base_name (string): Base name for the created tables table_owner (string): Owner of the created tables db_connection (connection): psycopg2 connection to use for creating the tables """ create_table_template = """ ---- -- Table: raw detected trees ---- DROP TABLE IF EXISTS {0}.{1}_tree_detected; CREATE TABLE {0}.{1}_tree_detected ( gid serial NOT NULL, x double precision, y double precision, hoehe real, dominanz real, bhd real, geom geometry(Point,{3}), parameterset_id smallint, perimeter_id integer, flaeche_id integer, hoehe_modified real, CONSTRAINT {1}_tree_detected_pkey PRIMARY KEY (gid) ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; ALTER TABLE {0}.{1}_tree_detected OWNER to {2}; -- Index: geom CREATE INDEX sidx_{1}_tree_detected_geom_idx ON {0}.{1}_tree_detected USING gist (geom) TABLESPACE pg_default; -- Index parameterset_id CREATE INDEX idx_{1}_tree_detected_parameterset_id ON {0}.{1}_tree_detected USING btree (parameterset_id) TABLESPACE pg_default; -- Index parameterset_id, perimeter_id CREATE INDEX idx_{1}_tree_detected_parameterset_id_perimeter_id ON {0}.{1}_tree_detected USING btree (parameterset_id, perimeter_id) TABLESPACE pg_default; ---- -- Table: detection perimeter ---- DROP TABLE IF EXISTS {0}.{1}_perimeter; CREATE TABLE {0}.{1}_perimeter ( gid serial NOT NULL, geom geometry(Polygon,{3}), perimeter_id integer, flaeche_id integer, CONSTRAINT {1}_perimeter_pkey PRIMARY KEY (gid) ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; ALTER TABLE {0}.{1}_perimeter OWNER to {2}; -- Index: geom CREATE INDEX sidx_{1}_perimeter_geom ON {0}.{1}_perimeter USING gist (geom) TABLESPACE pg_default; ---- -- Table: forest structure type raster ---- DROP TABLE IF EXISTS {0}.{1}_fst_raster; CREATE TABLE {0}.{1}_fst_raster ( gid serial NOT NULL, geom geometry(Polygon,{3}), flaeche_id integer, perimeter_id integer, tile_id bigint, hdom smallint, dg smallint, nh smallint, fst smallint, CONSTRAINT {1}_fst_raster_pkey PRIMARY KEY (gid) ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; ALTER TABLE {0}.{1}_fst_raster OWNER to {2}; -- Index: geom CREATE INDEX sidx_{1}_fst_raster_geom_idx ON {0}.{1}_fst_raster USING gist (geom) TABLESPACE pg_default; -- Index flaeche_id, perimeter_id CREATE INDEX idx_{1}_fst_raster_flaeche_id_perimeter_id ON {0}.{1}_fst_raster USING btree (flaeche_id, perimeter_id) TABLESPACE pg_default; ---- -- Table: trees filtered by forest structure type ---- DROP TABLE IF EXISTS {0}.{1}_processed_tree; CREATE TABLE {0}.{1}_processed_tree ( gid serial NOT NULL, x double precision, y double precision, hoehe real, dominanz real, bhd real, geom geometry(Point,{3}), parameterset_id smallint, fst_raster_id integer, flaeche_id integer, hoehe_modified real, fst smallint, CONSTRAINT {1}_processed_tree_pkey PRIMARY KEY (gid) ) WITH ( OIDS = FALSE ) TABLESPACE pg_default; ALTER TABLE {0}.{1}_processed_tree OWNER to {2}; -- Index: geom CREATE INDEX sidx_{1}_processed_tree_geom_idx ON {0}.{1}_processed_tree USING gist (geom) TABLESPACE pg_default; """ cursor = db_connection.cursor() sql = create_table_template.format(table_schema, table_base_name, table_owner, srid) cursor.execute(sql) db_connection.commit() cursor.close() def generate_grid(min_x, min_y, max_x, max_y, out_shape_path, crs=2056, step_x=25,step_y=25): # create output file srs = osr.SpatialReference() srs.ImportFromEPSG( crs ) logger = logging.getLogger() out_driver = ogr.GetDriverByName('ESRI Shapefile') if os.path.exists(out_shape_path): delete_shapefile(out_shape_path) out_ds = out_driver.CreateDataSource(out_shape_path) out_layer = None try: out_layer = out_ds.CreateLayer(out_shape_path,srs=srs,geom_type=ogr.wkbPolygon ) except Error as ex: logger.error("Error generating grid ", out_shape_path) logger.error(traceback.format_exception(*sys.exc_info())) raise ex out_layer.CreateField(ogr.FieldDefn('id', ogr.OFTInteger64)) feature_defn = out_layer.GetLayerDefn() cur_x = min_x cur_y = min_y col = 0 row = -1 e = len(str(int(min_x))) f = 10**e # create grid cells while cur_y < max_y: row += 1 cur_x = min_x col = -1 while cur_x < max_x: col += 1 ring = ogr.Geometry(ogr.wkbLinearRing) ring.AddPoint(cur_x, cur_y) ring.AddPoint(cur_x+step_x, cur_y) ring.AddPoint(cur_x+step_x, cur_y+step_y) ring.AddPoint(cur_x, cur_y+step_y) ring.AddPoint(cur_x, cur_y) poly = ogr.Geometry(ogr.wkbPolygon) poly.AddGeometry(ring) # add new geom to layer out_feature = ogr.Feature(feature_defn) out_feature.SetGeometry(poly) out_feature.SetField('id', cur_x*f+cur_y ) out_layer.CreateFeature(out_feature) out_feature.Destroy cur_x += step_x cur_y += step_y # Close DataSources out_ds.Destroy() def determine_fst(grid_path,vhm150_path,mixing_degree_path,envelope): output_folder = os.path.dirname(grid_path) logger = logging.getLogger() #Clip VHM vhm_output_file = os.path.join(output_folder,"vhm150_clip.tif") try: crop_image(vhm150_path, vhm_output_file, [envelope]) # Nodata Value may depend on source! except ValueError as ve: logger.error(grid_path) logger.error(traceback.format_exception(*sys.exc_info())) return -1 #Clip NH mg_output_file = os.path.join(output_folder,"mg_clip.tif") try: crop_image(mixing_degree_path, mg_output_file, [envelope]) # Nodata Value may depend on source! except ValueError as ve: logger.error(grid_path) logger.error(traceback.format_exception(*sys.exc_info())) return -1 ## ## Calculate hdom ## stats = zonal_stats(grid_path, vhm_output_file, stats=['percentile_80'], all_touched=True) # open grid polygon shapefile driver = ogr.GetDriverByName("ESRI Shapefile") grid_ds = driver.Open(grid_path, 1) layer = grid_ds.GetLayer() # add grid attribute fields layer.CreateField(ogr.FieldDefn('hdom', ogr.OFTInteger)) layer.CreateField(ogr.FieldDefn('nh', ogr.OFTInteger)) layer.CreateField(ogr.FieldDefn('dg_min', ogr.OFTReal)) layer.CreateField(ogr.FieldDefn('dg', ogr.OFTInteger)) layer.CreateField(ogr.FieldDefn('FST', ogr.OFTInteger)) # iterate over all features and add stand attribute values counter = 0 for feature in layer: hp80 = 0 if stats[counter].get('percentile_80') is not None: hp80 = stats[counter].get('percentile_80') # set and store hdom feature.SetField('hdom', hp80) layer.SetFeature(feature) counter += 1 grid_ds, layer = None, None ## ## Calculate nh ## stats = zonal_stats(grid_path, mg_output_file, stats=['mean'], all_touched=True) grid_ds = driver.Open(grid_path, 1) layer = grid_ds.GetLayer() # iterate over all features and add stand attribute values counter = 0 for feature in layer: nh = 0 if stats[counter].get('mean') is not None: nh = stats[counter].get('mean') nh = round(nh/100) # set and store nh feature.SetField('nh', nh) layer.SetFeature(feature) counter += 1 grid_ds, layer = None, None ## ## Calculate dg ## grid_ds = driver.Open(grid_path, 1) layer = grid_ds.GetLayer() # tmp files dg_classified_path = os.path.join(output_folder,"dg_layer.tif") tmp_lim_dg_path = os.path.join(output_folder,"dg_lim_dg.tif") # Layer threshold values (based on NFI definition, www.lfi.ch) min_height_hdom_factor_ms = 1.0 / 3.0 min_height_hdom_factor_os = 2.0 / 3.0 for feature in layer: # calculate and store dg_min hdom = feature.GetFieldAsInteger('hdom') if hdom < 14: #Fix small stands issue dg_min = hdom*min_height_hdom_factor_ms else: dg_min = hdom*min_height_hdom_factor_os feature.SetField('dg_min', dg_min ) layer.SetFeature(feature) counter += 1 # Rasterize dg_min vhm_output_file vhm_ds = gdal.Open(vhm_output_file,GA_ReadOnly) driver_gtiff = gdal.GetDriverByName('GTiff') dg_min_ds = driver_gtiff.Create(tmp_lim_dg_path,vhm_ds.RasterXSize, vhm_ds.RasterYSize,1,gdal.GDT_Float32) dg_min_ds.SetGeoTransform(vhm_ds.GetGeoTransform()) dg_min_ds.SetProjection(vhm_ds.GetProjection()) dst_options = ['ATTRIBUTE=dg_min'] gdal.RasterizeLayer(dg_min_ds, [1], layer, None, options=dst_options) # Produce "1" / "0" raster for each layer vhm_b1 = vhm_ds.GetRasterBand(1) dg_min_b1 = dg_min_ds.GetRasterBand(1) data_vhm = np.array(vhm_b1.ReadAsArray()) data_dg_min = np.array(dg_min_b1.ReadAsArray()) data_out = data_vhm>data_dg_min zoLembda = lambda x: 1 if x else 0 vfunc = np.vectorize(zoLembda) data_out = vfunc(data_out) # Write the out file dst_options = ['COMPRESS=LZW'] dg_ds = driver_gtiff.Create(dg_classified_path, vhm_ds.RasterXSize, vhm_ds.RasterYSize, 1, gdal.GDT_Byte, dst_options) CopyDatasetInfo(vhm_ds, dg_ds) band_out = dg_ds.GetRasterBand(1) BandWriteArray(band_out, data_out) vhm_ds, dg_min_ds, dg_ds = None, None, None # Zonal stats stats = zonal_stats(grid_path, dg_classified_path, stats=['mean'], all_touched=True) # iterate over all features and add stand attribute values counter = 0 for feature in layer: dg = 0 if stats[counter].get('mean') is not None: dg = stats[counter].get('mean') dg = round(dg*100) hdom = feature.GetFieldAsInteger('hdom') nh = feature.GetFieldAsInteger('nh') if nh <= 30: digit1 = 1 elif 30 < nh <= 70: digit1 = 2 else: digit1 = 3 if dg <= 80: digit2 = 1 else: digit2 = 2 if hdom <= 22: digit3 = 1 else: digit3 = 2 fst = int(str(digit1) + str(digit2) + str(digit3)) # set and store dg and FST feature.SetField('dg', dg) feature.SetField('FST', fst) layer.SetFeature(feature) counter += 1 grid_ds, layer = None, None # Cleanup delete_raster(dg_classified_path) delete_raster(tmp_lim_dg_path) delete_raster(vhm_output_file) delete_raster(mg_output_file) return 0 def process_detection(record, db_connection): cursor = db_connection.cursor() fint_controller = pyFintController() logger = logging.getLogger() table_schema = record["table_schema"] table_base_name = record["table_base_name"] perimeter_insert_template = "INSERT INTO "+table_schema+"."+table_base_name+"_perimeter(geom, perimeter_id, flaeche_id) VALUES (ST_SetSRID(ST_GeomFromText('{0}'),{1}), {2}, {3});" tree_insert_template = "INSERT INTO "+table_schema+"."+table_base_name+"_tree_detected(x, y, hoehe, bhd, dominanz, geom, parameterset_id, perimeter_id, flaeche_id, hoehe_modified) VALUES ({0}, {1}, {2}, {3}, {4}, ST_SetSRID(ST_GeomFromText('{5}'),{6}), {7}, {8},{9},{10});" result_base_path = record["result_base_path"] perimeter_buffer = record["perimeter_buffer"] r_max = record["r_max"] epsg = record["epsg"] crs = record["crs"] perimeter_id = record["perimeter_id"] flaeche_id = record["flaeche_id"] folder_name = "{0}_{1}".format(flaeche_id,perimeter_id) output_folder = os.path.join(result_base_path,folder_name) if not os.path.isdir(output_folder): os.mkdir(output_folder) geom = record["geometry"] (minx, miny, maxx, maxy) = geom.bounds #Envelope by group bx = box(minx, miny, maxx, maxy) envelope = bx.buffer(perimeter_buffer, resolution=1).envelope sql = perimeter_insert_template.format(geom.wkt,epsg,perimeter_id,flaeche_id) cursor.execute(sql) db_connection.commit() parameter_sets = record["parameter_sets"] vhm_input_file = record["vhm_input_file"] fint_tree_dataframes = [] for paramterset_id in parameter_sets: parameter_set = parameter_sets[paramterset_id] parameter_set["id"] = paramterset_id detection_result = detect_trees(parameter_set, output_folder, vhm_input_file, envelope, crs, fint_controller) if type(detection_result) == type(None): continue else: detection_result["parameterset_id"] = paramterset_id fint_tree_dataframes.append(detection_result) if len(fint_tree_dataframes)==0: cursor.close() return fint_trees_df = gpd.GeoDataFrame(
pd.concat(fint_tree_dataframes, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File : dataset.py # Author : <NAME> <<EMAIL>> # Date : 01.11.2020 # Last Modified Date: 09.11.2021 # Last Modified By : <NAME> <<EMAIL>> # # Copyright (c) 2020, Imperial College, London # All rights reserved. # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of Imperial College nor the names of its contributors may # be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # this library provides support for the primary dataset class import random import numpy as np import pandas as pd import torch import cv2 import pytesseract from PIL import Image from transformers import AutoTokenizer, AutoConfig from torch.utils.data import DataLoader, Dataset from torchvision import transforms class ToxDataset(Dataset): def __init__( self, dataframes, transforms=None, tokenizer="bert-base-uncased", text_only=0, selection_probs=[], max_sequence_length=None, test=False, language_model=False, read_text=True, read_title=True, read_img=True, read_img_text=True, ): """ Dataset, supports mono and multitask learning Args: dataframes: a list of dataframes to use transforms: transforms to apply to the images tokenizer: name of the huggingface tokenizer to use text_only: deprecated, ignored selection_probs: list of probabilities of selecting each task max_sequence_length: maximum number of tokens in sequence, will default to the max number allowed in the specified transformer test: whether the dataset is in test mode or train mode language_model: whether the model to be trained is a LM, if true and max_seq_len None, will pad title and text to half max len read_text: whether to read the text from the dataframe read_title: whether to read the title from the dataframe read_img: whether to read the image (and any text in the image) from the dataframe """ if isinstance(dataframes, pd.DataFrame): # then there is a single data source self.dataframes = [dataframes] self.selection_probs = [1.0] else: self.dataframes = dataframes # if the dataframes and selection probs aren't the same size, then default to equal weighting self.selection_probs = ( selection_probs if len(selection_probs) == len(dataframes) else [1.0 / len(dataframes) for _ in range(len(dataframes))] ) self.max_sequence_length = ( AutoConfig.from_pretrained(tokenizer).max_position_embeddings if max_sequence_length is None and not language_model else AutoConfig.from_pretrained(tokenizer).max_position_embeddings // 2 - 1 if max_sequence_length is None and language_model else max_sequence_length ) if self.max_sequence_length == 514: # this fixes distil roberta self.max_sequence_length = 512 self.tokenizer = AutoTokenizer.from_pretrained(tokenizer) if self.tokenizer.pad_token is None: # if using gpt or something self.tokenizer.pad_token = self.tokenizer.eos_token self.pad_token_id = self.tokenizer.convert_tokens_to_ids( self.tokenizer.pad_token ) self.transforms = transforms self.test = test if test: # if testing we want to check all of the examples, and not massage etc examples_per_class = [len(df) for df in self.dataframes] self.dataframes = pd.concat(self.dataframes) self.dataframes["task_index"] = sum( [[task] * num for task, num in enumerate(examples_per_class)], [] ) self.read_text = read_text self.read_title = read_title self.read_img = read_img self.read_img_text = read_img_text def __len__(self): return len(self.dataframes) if self.test else max(map(len, self.dataframes)) def __getitem__(self, idx): if self.test: data = self.dataframes.iloc[idx] task_indices = data.task_index else: task_indices = random.choices( list(range(len(self.selection_probs))), weights=self.selection_probs )[0] data = self.dataframes[task_indices].iloc[ idx % len(self.dataframes[task_indices]) ] # some datasets might not have some modes for some points or the whole dataset, # so we keep track of what it does have # elements represent text, title, image, label modalities = [1, 1, 1, 1] if self.read_text and "text" in data and not pd.isna(data.text) and data.text: encoding = torch.cat( ( self.tokenizer.encode( data.text, max_length=self.max_sequence_length, padding=False, truncation=True, return_tensors="pt", ).flatten(), torch.tensor([self.tokenizer.pad_token_id]), ) ) if encoding.size() == torch.Size([1, 0]): encoding = torch.full((1,), self.pad_token_id, dtype=torch.long) mask = torch.zeros(encoding.size(), dtype=torch.float) mask[encoding != self.pad_token_id] = 1 else: encoding = torch.zeros(1, dtype=torch.long) mask = encoding.clone().type(torch.float) modalities[0] = 0 if ( self.read_title and "title" in data and not pd.isna(data.title) and data.title ): title = torch.cat( ( self.tokenizer.encode( data.title, max_length=self.max_sequence_length, padding=False, truncation=True, return_tensors="pt", ).flatten(), torch.tensor([self.tokenizer.pad_token_id]), ) ) if title.size() == torch.Size([1, 0]): title = torch.full((1,), self.pad_token_id, dtype=torch.long) title_mask = torch.zeros(title.size(), dtype=torch.float) title_mask[title != self.pad_token_id] = 1 else: title = torch.zeros(1, dtype=torch.long) title_mask = title.clone().type(torch.float) modalities[1] = 0 if self.read_img and "img" in data and not pd.isna(data.img) and data.img: img = cv2.imread(data.img) if self.read_img_text: img_text_string = pytesseract.image_to_string(data.img) try: img_text = torch.cat( ( self.tokenizer.encode( img_text_string, max_length=self.max_sequence_length, padding=False, truncation=True, return_tensors="pt", ).flatten(), torch.tensor([self.tokenizer.pad_token_id]), ) ) if img_text.size() == torch.Size([1, 0]): img_text = torch.full((1,), self.pad_token_id, dtype=torch.long) except pytesseract.pytesseract.TesseractError: # if the image doesn't have dimensions in it's metadata, will throw # an error, this catches img_text = torch.full((1,), self.pad_token_id, dtype=torch.long) img_text_mask = torch.zeros(img_text.size(), dtype=torch.float) img_text_mask[img_text != self.pad_token_id] = 1 else: img_text = torch.full((1,), self.pad_token_id, dtype=torch.long) img_text_mask = torch.zeros(img_text.size(), dtype=torch.float) img_text_mask[img_text != self.pad_token_id] = 1 if self.transforms: img = self.transforms(img) else: img = torch.zeros(3, 1, 1) img_text = torch.full((1,), self.pad_token_id, dtype=torch.long) img_text_mask = torch.zeros(img_text.size(), dtype=torch.float) img_text_mask[img_text != self.pad_token_id] = 1 if self.transforms: img = self.transforms(img) modalities[2] = 0 if "label" in data and not
pd.isna(data.label)
pandas.isna
import pandas as pd from datetime import date, datetime from functools import wraps import importlib_resources import requests import time import os import io token = "<KEY>" #<PASSWORD> #8a0ff681501b0bac557bf90fe6a036f7 def counter(func): """ A decorator that counts how many times we executed a funciton. In our case we use it to track how many times we executed request() to do not exceed API 1000 requests/hour limit. When we aproach the limit functino automatically time sleeps. """ @wraps(func) def wrapper(*args, **kwargs): wrapper.count += 1 if wrapper.count == 2: global start #we like to live dangerously ;) (it is neccessary here to have global var; otherwise it would not be recognized at line 32) start = time.time() if wrapper.count == 998: end = time.time() wait_time = end - start + 120 print("You aproached the limit of requests per hour. The download will automatically continue after " + str(int(wait_time)) + " seconds.") time.sleep(wait_time) return func(*args, **kwargs) else: return func(*args, **kwargs) wrapper.count = 1 return wrapper @counter def request(token, page = 1, items_per_page = 5000, start_date = "1.1.2020", end_date = "24.12.2021", pause = 0.1): """ Request data from API and returs the response in json. The data in API are bounded to pages, one request obtains data for onepage (5000 rows) Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet page : int specifies page which will be downloaded (default 1) items_per_page : int number of rows per page (defualt 5000) start_date = str begining date of the dataset - datum in format "dd.mm.YYYY" (default is "1.1.2020") end_date = str end date of the dataset - datum in format "dd.mm.YYYY" (default is "24.12.2021") pause : int to not overload the API (default 0.1) Raises ------ Exception if response of API is not 200 or 429. Returns ------- r response of the API, in json """ url = "https://onemocneni-aktualne.mzcr.cz/api/v3/osoby?page={a}&itemsPerPage={b}&datum%5Bbefore%5D={d}&datum%5Bafter%5D={c}".format(a = page, b = items_per_page, c = start_date, d = end_date) r = requests.get(url, {"apiToken": token}) if r.status_code == 200: None elif r.status_code == 429: #API limit per request reached msg = r.json()["message"] #shows message with info about when next request can be made t = "".join(a for a in msg if a.isdigit()) print("Holy Moly! You exceeded the requests limit per hour, now you need to wait " + t + " seconds...") time.sleep(int(t)+60) request.count = 1 start = time.time() r = request(token, page) else: #In case of different errors raise Exception("Status code: " + r.status_code, "Error message: " + r.text, "Stopped on page: " + str(page)) time.sleep(pause) return r def get_total_pages(token, start_date = "1.1.2020", end_date = "24.12.2021"): """ Indetify how much pages needs to be downloaded to download whole dataset for given start date and date. Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet start_date : str begining date of the dataset - datum in format "dd.mm.YYYY" (default is "1.1.2020") end_date : str end date of the dataset - datum in format "dd.mm.YYYY" (default is "24.12.2021") Returns ------- total_pages : int total number of pages for given period """ r = request(token, start_date = start_date, end_date = end_date) total_pages = int(r.json()["hydra:view"]["hydra:last"].split("=")[-1]) return total_pages def get_total_items(token, start_date = "1.1.2020", end_date = "24.12.2021"): """ Indetify how much rows is in the dataset for gievn start date and end date Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet start_date = str begining date of the dataset - datum in format "dd.mm.YYYY" (default is "1.1.2020") end_date = str end date of the dataset - datum in format "dd.mm.YYYY" (default is "24.12.2021") Returns ------- total_items : int total number of rows in dataset for given time period """ r = request(token, start_date = start_date, end_date = end_date) total_items = int(r.json()['hydra:totalItems']) return total_items def get_vacination(): r = requests.get("https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19/ockovani-pozitivni-hospitalizovani.csv-metadata.json") url = "https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19/" + r.json()["url"] csv = requests.get("url") csv = csv.content.decode('utf8') csv_df = pd.read_csv(io.StringIO(csv)) csv_df.to_parquet('dataz.gzip',compression='gzip') return csv_df def duplicates_handling(df, i, P, pdf, total_len, start_date = "1.1.2020", end_date = "24.12.2021"): """Search for values that were not downloaded due to duplicates. The API provides data based on pages - each pages can contain only certain amount of rows (in our case 5000). But we are downloading dataset with more than 2mil. rows, hence we need to download about 500 pages and merge them together. Unforunatelly, the data on each page are not exactly ordered and it may happend that same value is on page 1 and page 2, for example. In other words, the obervations are not entirely fixed to specific row, thus when we request for page 1 many time we do not get exactly the same results for each request. We solved it by indetifying if there was any duplicates and if yes, then we iterate for multiple times in neighbourhood of the page untill we get the missed values. Parameters ---------- df : dataframe dataframe with covid data i : int a page where we curretly are P : dic dictionary that stores duplicates P = {page:duplicates} start_date = str begining date of the dataset - datum in format "dd.mm.YYYY" (default is "1.1.2020") end_date = str end date of the dataset - datum in format "dd.mm.YYYY" (default is "24.12.2021") Returns ------- df returns the dataframe hopefully with more rows """ duplicates = pdf + 10000 - len(df) #if len(df), after download of two pages, did not increse by 10000 -> duplicates #print("duplicates: ", duplicates) if duplicates > 0: print("Handling duplicates...") m = 1 # defiend to prevent infinite while loop while duplicates > 0: #should handle missing values due to duplicates if m == 8: #stops, if it does not find it can still happen that whole dataset will be downloaded (sometimes it finds more than is the actual number of duplicates) if total_len + 10000 - duplicates > i * 5000: print("succesful") P[i] = duplicates else: print("unsucceseful") P[i] = duplicates break elif m % 2 == 0: #softer force, 5000 rows per page for j in range(max(i - 2, 1), i + 1): e = request(token, j, start_date = start_date, end_date = end_date) df = df.merge(pd.DataFrame.from_dict(e.json()["hydra:member"]), how = "outer").drop_duplicates() duplicates = pdf + 10000 - len(df) #print("small", duplicates) else: #harder force 10000 rows per page for n in range(max(int(i/2) - 1, 1), int(i/2) + 1): e = request(token, n, 10000, start_date = start_date, end_date = end_date) df = df.merge(pd.DataFrame.from_dict(e.json()["hydra:member"]), how = "outer").drop_duplicates() duplicates = pdf + 10000 - len(df) #print("big", duplicates) m += 1 if m < 5: print("Solved!") P[i] = duplicates return df def saving_interim_results(df, i): """ Saves partial downloads of the dataframe to your folder. The saving happens every 50 pages. It enables the code to run faster as when the part of the dataset is saved it is also drop. The data are saved as parquet with snappy compression, b/c it is fast to load. So we maximally work with df of length 280 000. And if your download is interapted you then do not need to start over again and can begin close to where you stoped. Parameters ---------- df : dataframe dataframe with covid data i : int a page on which the download is Returns ------- df last 30000 rows of your dataframe (the dataframe is not drop entirely, b/c there might be duplicaes between pages, so 30000 rows are left) """ df.to_parquet('data{a}.parquet'.format(a = int(i/50)), compression = 'snappy') df = pd.read_parquet('data{a}.parquet'.format(a = int(i/50)), engine = 'fastparquet').iloc[-30000:] return df def merging_interim_results(pages_total, intial_df = "1"): """ Merges all the interim results created by function saving_interim_results(df, i) into final data set. And attemps to delete the interim results from your folder. We save the fianl dataset with .gzip compressino, which should be the best for space limition in parquet. Parameters ---------- pages_total : int total number of pages for given period intial_df : str a first interim result Returns ------- data the final downloaded dataset """ L = list(range(2, int(pages_total/50) + 2)) #list of numbers of saved interim datasets data = pd.read_parquet('data{a}.parquet'.format(a = intial_df), engine = 'fastparquet') cwd = os.getcwd() os.remove(cwd + "/data{a}.parquet".format(a = 1)) for j in L: data = data.merge(pd.read_parquet('data{a}.parquet'.format(a = j), engine = 'fastparquet'), how = "outer") try: cwd = os.getcwd() os.remove(cwd + "/data{a}.parquet".format(a = j)) #removes saved interim dataset except: None return data class Covid_Data: """A class used to manage covid data - storing, downloading and upadating ... Attributes ---------- data : pandas data frame data frame of the covid data info : dic dictionary of information regarding covid data in attribute data (total cases(rows), start_date, end_date) total_pages : int information regarding how pages needs to be requested from API (loads by calling method get_page(token, items_per_page = 5000)) my_page : int states on what page is your data set, helpful when only fraction of data were donwloaded (loads by calling method get_page(token, items_per_page = 5000)) Methods ------- get_info() loads info about the covid data in attribute data get_page(token, items_per_page = 5000) obtain info about how many pages were downloaded out of total pages (API send the data in pages) downloader(token, start_page = 1, start_date = "1.1.2020", end_date = "24.12.2021", upd = "N") downloads covid data from API updater(token, end_date = date.today()) updates covid data stored in attribute data """ def __init__(self): """ Parameters ---------- data : int, dataframe if you already downloaded covid that then input the dataframe, otherwise input 0 - the data can be donwloaded by method download """ print("Class initialize, if you want to load data provided by this package - use method load_data() or you can download it on your own using method download(*args, *kwargs) You can access documentation at: "+str(importlib_resources.files("app"))+"/docs/_build/html/index.html") self.data = 0 self.info = {"total cases": [], "start_date": [], "end_date": []} if isinstance(self.data, int): print("No data loaded or downloaded.") else: print("The provided data were loaded.") self.get_info() def load_data(self): """ loads data stored in package (from 1.3.2020 - 24.12.2021) """ my_resources = importlib_resources.files("app") path = (str(my_resources) + "/data/datacovid.bz2") self.data = pd.read_pickle(path, compression='bz2') self.get_info() print("Data loaded") def get_info(self): """ loads info about the covid data in attribute data if no data frame is loaded/downloaded yet it returns empty dictionary """ self.info["total cases"] = len(self.data) self.data.datum = pd.to_datetime(self.data.datum) self.data = self.data.sort_values(by = ["datum"]) self.info["start_date"] = str(self.data.iloc[1].datum.strftime("%d.%m.%Y")) self.info["end_date"] = str(self.data.iloc[-1].datum.strftime("%d.%m.%Y")) def get_page(self, token): """ obtain info about how many pages were downloaded out of total pages (API send the data in pages) Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet """ self.total_pages = get_total_pages(token, start_date = self.info["start_date"], end_date = self.info["end_date"]) self.my_page = int(len(self.data)/5000) + 1 self.to_update = get_total_pages(token, start_date = self.info["start_date"], end_date = date.today()) print("You downloaded " + str(self.my_page) + " pages out of total " + str(self.total_pages) + " pages. \nTo upadte your dataset to today date you need to get total: " + str(self.to_update)+ " pages") def downloader(self, token, start_page = 1, start_date = "1.1.2020", end_date = "24.12.2021", upd = "N"): """ downloads covid data from API Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet start_page : int declare on page you want to start the download - if you begin then 1, if you already downloaded some part you can resume but page where you stoped needs to be specialzed, it can be found out througt method get_page() (default is 1) start_date = str begining of the covid data - datum in format "dd.mm.YYYY" (default is "1.1.2020") end_date = str end of the covid data - datum in format "dd.mm.YYYY" (default is "24.12.2021") upd = str only used by updater, irelevant for you (default is "N") """ if start_page == 1: #if you begin your download r_0 = request(token, start_page, start_date = start_date, end_date = end_date) df = pd.DataFrame.from_dict(r_0.json()["hydra:member"]) total_len = len(df) pdf = 0 pr_total_len = 0 else: #if you continue from specified page start_page = int(start_page/50) * 50 df = pd.read_parquet('data1.parquet', engine='fastparquet') #estabilis df, on which will be the merge preformed for k in range(1, int(start_page/50) + 1): #loads saved interim results df = df.merge(pd.read_parquet('data{a}.parquet'.format(a = k), engine = 'fastparquet'), how = "outer").drop_duplicates() pr_total_len = len(df) - int(start_page/50) * 50 * 5000 df = df.iloc[-30000:] pdf = len(df) pages_total = get_total_pages(token, start_date = start_date, end_date = end_date) items_total = get_total_items(token, start_date = start_date, end_date = end_date) P = {1 : 0} #dict where numbers of dupliates are saved for i in range(start_page + 1, pages_total + 1): #loop for requesting and actual downloading r = request(token, i, start_date = start_date, end_date = end_date) df = df.merge(pd.DataFrame.from_dict(r.json()["hydra:member"]), how = "outer").drop_duplicates() if i % 2 == 0 or i == pages_total: #every second page we check for duplicates and display progress df = duplicates_handling(df, i, P, pdf, total_len, start_date = start_date, end_date = end_date) total_len = i * 5000 - sum(P.values()) + pr_total_len print("Currently on page " + str(i) + ". Progress: " + str(round((total_len/items_total) * 100, 1)) + " %.") #print(total_len, i*5000, len(df)) pdf = len(df) if i % 50 == 0: #every fifthy pages we save current dataset and drop it #(not whole, keep last 30000 row to check for possible duplicates between page 50 a 51, 100 101 and so on) df = saving_interim_results(df, i) pdf = 30000 #we load last 30000 rows to check for duplicates to previous pages #print(len(df), i * 5000, "ahead/behind: " + str(total_len - i*5000)) #print(P) df.to_parquet('data{a}.parquet'.format(a = int(i/50)+1), compression = 'snappy') data = merging_interim_results(pages_total) if upd == "N": #save with diff name if download data.to_parquet('datafinal{a}.gzip'.format(a = str("update"+upd)), compression = 'gzip') self.data = data else: data.to_parquet('dataupdate.gzip', compression = 'gzip') return data def updater(self, token, end_date = datetime.today()): """ updates covid data from API Parameters ---------- token : str input token for the API - can be obatained here: https://onemocneni-aktualne.mzcr.cz/vytvorit-ucet end_date : str, datetime until what date you want to update the date (default date.today()) """ if isinstance(end_date, str): #we need correct format of date in string try: end_date_dtformat = datetime.strptime(end_date, "%d.%m.%Y") print("updating...") except: print("Incorrect date type, should be DD.MM.YYYY") else: #if end_date is not filled then we need to transform datetype to str end_date_dtformat = end_date end_date = end_date.strftime("%d.%m.%Y") print("updating...") if end_date_dtformat < datetime.strptime(self.info["end_date"], "%d.%m.%Y"): raise ValueError("End date before start date!") data_new = self.downloader(token, start_page = 1, start_date = self.info["end_date"], end_date = end_date, upd = "Y") data_new.datum =
pd.to_datetime(data_new.datum)
pandas.to_datetime
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns import tqdm def load_data(index=0): """ 0: C7 1: C8 2: C9 3: C11 4: C13 5: C14 6: C15 7: C16 Note that C7 and C13 included a short break (for about 100 timestamps long) between the two procedure. """ fp = os.path.dirname(__file__) if index == 0: df = pd.read_csv(fp + '/C7-1.csv.gz') df = pd.concat([df, pd.read_csv(fp + '/C7-2.csv.gz')]) df = df.reset_index(drop=True) df.Timestamp = df.index.values return df elif index == 1: return pd.read_csv(fp + '/C8.csv.gz') elif index == 2: return pd.read_csv(fp + '/C9.csv.gz') elif index == 3: return pd.read_csv(fp + '/C11.csv.gz') elif index == 4: df = pd.read_csv(fp + '/C13-1.csv.gz') df = pd.concat([df, pd.read_csv(fp + '/C13-2.csv.gz')]) df = df.reset_index(drop=True) df.Timestamp = df.index.values return df elif index == 5: return pd.read_csv(fp + '/C14.csv.gz') elif index == 6: return pd.read_csv(fp + '/C15.csv.gz') elif index == 7: return pd.read_csv(fp + '/C16.csv.gz') else: raise ValueError def rename_components(df): """ current and speed """ # Rename L L_curr = ['L_1', 'L_3', 'L_4', 'L_7', 'L_9'] L_speed = ['L_2', 'L_6', 'L_5', 'L_8', 'L_10'] df = df.rename(columns={k: f'c{i}_curr' for i, k in enumerate(L_curr)}) df = df.rename(columns={k: f'c{i}_speed' for i, k in enumerate(L_speed)}) # Rename A, B, and C df = df.rename(columns={f'A_{i}': f'c5_val{i}' for i in range(1, 6)}) df = df.rename(columns={f'B_{i}': f'c6_val{i}' for i in range(1, 6)}) df = df.rename(columns={f'C_{i}': f'c7_val{i}' for i in range(1, 6)}) return df[df.columns.sort_values()] def load_clean_data(index=0): return rename_components(load_data(index=index)) def set_broken_labels(df, size): labels = np.zeros(df.shape[0]) labels[-size:] = 1 df['broken'] = labels return df def run_to_failure_aux(df, n_sample, desc=''): seq_len = df.shape[0] samples = [] pbar = tqdm.tqdm(total=n_sample, desc=desc) while len(samples) < n_sample: # random censoring t = np.random.randint(2, seq_len) sample = {'lifetime': t, 'broken': df.loc[t, 'broken']} sample = pd.DataFrame(sample, index=[0]) features = df.iloc[:t].mean(axis=0)[:-1] sample[features.keys()] = features.values samples.append(sample) # break pbar.update(1) return
pd.concat(samples, axis=0)
pandas.concat
import os import pandas as pd from typing import Dict, List, Any, Optional, Union def write_metadata_emb(cats_d: Dict[str, List[Any]], log_dir: str, names_d: Optional[ Dict[str, Union[str, pd.DataFrame]]] = None, ) -> Dict[str, str]: """Book-keeping and writing of human-readable metadata for embeddings Args: cats_d: Dictionary of categories log_dir: Directory to write metadata to (should be the same as the log directory of checkpoints etc) names_d: Dictionary of human-readable labels per element in vocab. The values can either be a path to a csv file or a dataframe. The index should be in the same units as stored in `cats_d`. The other columns will be used as label names (can have multiple columns for multiple labels). If `None`, the embedding projector will just use the raw id of the vocab Returns: Dictionary of written metadata paths """ metas_written_d = {} for feat_name, cats in cats_d.items(): path_out = os.path.join(log_dir, f'metadata-{feat_name}.tsv') if names_d and (feat_name in names_d): name_path_or_df = names_d[feat_name] if isinstance(name_path_or_df, str): names_df = pd.read_csv( names_d[feat_name], index_col=feat_name) elif isinstance(name_path_or_df, pd.DataFrame): names_df = name_path_or_df else: raise ValueError('Name mapping must be path or dataframe') lbls_embs = names_df.reindex(cats).reset_index(drop=True) lbls_embs.index.name = 'index' lbls_embs.to_csv(path_out, sep='\t') else: # Write single column with just the raw vocab id lbls_embs =
pd.Series(cats)
pandas.Series
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright © Spyder Project Contributors # # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) # ----------------------------------------------------------------------------- """ Tests for the dataframe editor. """ from __future__ import division # Standard library imports import os import sys from datetime import datetime from unittest.mock import Mock, ANY # Third party imports from pandas import (DataFrame, date_range, read_csv, concat, Index, RangeIndex, MultiIndex, CategoricalIndex, Series) from qtpy.QtGui import QColor from qtpy.QtCore import Qt, QTimer import numpy import pytest from flaky import flaky # Local imports from spyder.utils.programs import is_module_installed from spyder.utils.test import close_message_box from spyder.plugins.variableexplorer.widgets import dataframeeditor from spyder.plugins.variableexplorer.widgets.dataframeeditor import ( DataFrameEditor, DataFrameModel) # ============================================================================= # Constants # ============================================================================= FILES_PATH = os.path.dirname(os.path.realpath(__file__)) # ============================================================================= # Utility functions # ============================================================================= def colorclose(color, hsva_expected): """ Compares HSV values which are stored as 16-bit integers. """ hsva_actual = color.getHsvF() return all(abs(a-b) <= 2**(-16) for (a,b) in zip(hsva_actual, hsva_expected)) def data(dfm, i, j): return dfm.data(dfm.createIndex(i, j)) def bgcolor(dfm, i, j): return dfm.get_bgcolor(dfm.createIndex(i, j)) def data_header(dfh, i, j, role=Qt.DisplayRole): return dfh.data(dfh.createIndex(i, j), role) def data_index(dfi, i, j, role=Qt.DisplayRole): return dfi.data(dfi.createIndex(i, j), role) def generate_pandas_indexes(): """ Creates a dictionary of many possible pandas indexes """ return { 'Index': Index(list('ABCDEFGHIJKLMNOPQRST')), 'RangeIndex': RangeIndex(0, 20), 'Float64Index': Index([i/10 for i in range(20)]), 'DatetimeIndex': date_range(start='2017-01-01', periods=20, freq='D'), 'MultiIndex': MultiIndex.from_product( [list('ABCDEFGHIJ'), ('foo', 'bar')], names=['first', 'second']), 'CategoricalIndex': CategoricalIndex(list('abcaadaccbbacabacccb'), categories=['a', 'b', 'c']), } # ============================================================================= # Tests # ============================================================================= def test_dataframemodel_index_sort(qtbot): """Validate the data in the model for index when sorting.""" ds = Series(numpy.arange(10)) editor = DataFrameEditor(None) editor.setup_and_check(ds) index = editor.table_index.model() index.sort(-1, order=Qt.AscendingOrder) assert data_index(index, 0, 0, Qt.DisplayRole) == '0' assert data_index(index, 9, 0, Qt.DisplayRole) == '9' index.sort(-1, order=Qt.DescendingOrder) assert data_index(index, 0, 0, Qt.DisplayRole) == '9' assert data_index(index, 9, 0, Qt.DisplayRole) == '0' def test_dataframe_to_type(qtbot): """Regression test for spyder-ide/spyder#12296""" # Setup editor d = {'col1': [1, 2], 'col2': [3, 4]} df = DataFrame(data=d) editor = DataFrameEditor() assert editor.setup_and_check(df, 'Test DataFrame To action') with qtbot.waitExposed(editor): editor.show() # Check editor doesn't have changes to save and select an initial element assert not editor.btn_save_and_close.isEnabled() view = editor.dataTable view.setCurrentIndex(view.model().index(0, 0)) # Show context menu and select option `To bool` view.menu.show() qtbot.keyPress(view.menu, Qt.Key_Down) qtbot.keyPress(view.menu, Qt.Key_Down) qtbot.keyPress(view.menu, Qt.Key_Return) # Check that changes where made from the editor assert editor.btn_save_and_close.isEnabled() def test_dataframe_datetimeindex(qtbot): """Regression test for spyder-ide/spyder#11129 .""" ds = Series( numpy.arange(10), index=date_range('2019-01-01', periods=10)) editor = DataFrameEditor(None) editor.setup_and_check(ds) index = editor.table_index.model() assert data_index(index, 0, 0) == '2019-01-01 00:00:00' assert data_index(index, 9, 0) == '2019-01-10 00:00:00' def test_dataframe_simpleindex(qtbot): """Test to validate proper creation and handling of a simpleindex.""" df = DataFrame(numpy.random.randn(6, 6)) editor = DataFrameEditor(None) editor.setup_and_check(df) header = editor.table_header.model() assert header.headerData(0, Qt.Horizontal, Qt.DisplayRole) == "0" assert header.headerData(1, Qt.Horizontal, Qt.DisplayRole) == "1" assert header.headerData(5, Qt.Horizontal, Qt.DisplayRole) == "5" def test_dataframe_simpleindex_custom_columns(): """Test to validate proper creation and handling of custom simpleindex.""" df = DataFrame(numpy.random.randn(10, 5), columns=['a', 'b', 'c', 'd', 'e']) editor = DataFrameEditor(None) editor.setup_and_check(df) header = editor.table_header.model() assert header.headerData(0, Qt.Horizontal, Qt.DisplayRole) == "a" assert header.headerData(1, Qt.Horizontal, Qt.DisplayRole) == "b" assert header.headerData(4, Qt.Horizontal, Qt.DisplayRole) == "e" def test_dataframe_multiindex(): """Test to validate proper creation and handling of a multiindex.""" arrays = [numpy.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']), numpy.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])] tuples = list(zip(*arrays)) index = MultiIndex.from_tuples(tuples, names=['first', 'second']) df = DataFrame(numpy.random.randn(6, 6), index=index[:6], columns=index[:6]) editor = DataFrameEditor(None) editor.setup_and_check(df) header = editor.table_header.model() assert header.headerData(0, Qt.Horizontal, Qt.DisplayRole) == 0 assert data_header(header, 0, 0) == 'bar' assert data_header(header, 1, 0) == 'one' assert data_header(header, 0, 1) == 'bar' assert data_header(header, 1, 1) == 'two' assert data_header(header, 0, 2) == 'baz' assert data_header(header, 1, 2) == 'one' assert data_header(header, 0, 3) == 'baz' assert data_header(header, 1, 3) == 'two' assert data_header(header, 0, 4) == 'foo' assert data_header(header, 1, 4) == 'one' assert data_header(header, 0, 5) == 'foo' assert data_header(header, 1, 5) == 'two' def test_header_bom(): """Test for BOM data in the headers.""" df = read_csv(os.path.join(FILES_PATH, 'issue_2514.csv')) editor = DataFrameEditor(None) editor.setup_and_check(df) header = editor.table_header.model() assert header.headerData(0, Qt.Horizontal, Qt.DisplayRole) == "Date (MMM-YY)" @pytest.mark.skipif(is_module_installed('pandas', '<0.19'), reason="It doesn't work for Pandas 0.19-") def test_header_encoding(): """Test for header encoding handling.""" df = read_csv(os.path.join(FILES_PATH, 'issue_3896.csv')) editor = DataFrameEditor(None) editor.setup_and_check(df) header = editor.table_header.model() assert header.headerData(0, Qt.Horizontal, Qt.DisplayRole) == "Unnamed: 0" assert "Unieke_Idcode" in header.headerData(1, Qt.Horizontal, Qt.DisplayRole) assert header.headerData(2, Qt.Horizontal, Qt.DisplayRole) == "a" assert header.headerData(3, Qt.Horizontal, Qt.DisplayRole) == "b" assert header.headerData(4, Qt.Horizontal, Qt.DisplayRole) == "c" assert header.headerData(5, Qt.Horizontal, Qt.DisplayRole) == "d" def test_dataframemodel_basic(): df = DataFrame({'colA': [1, 3], 'colB': ['c', 'a']}) dfm = DataFrameModel(df) assert dfm.rowCount() == 2 assert dfm.columnCount() == 2 assert data(dfm, 0, 0) == '1' assert data(dfm, 0, 1) == 'c' assert data(dfm, 1, 0) == '3' assert data(dfm, 1, 1) == 'a' def test_dataframemodel_sort(): """Validate the data in the model.""" df = DataFrame({'colA': [1, 3], 'colB': ['c', 'a']}) dfm = DataFrameModel(df) dfm.sort(1) assert data(dfm, 0, 0) == '3' assert data(dfm, 1, 0) == '1' assert data(dfm, 0, 1) == 'a' assert data(dfm, 1, 1) == 'c' def test_dataframemodel_sort_is_stable(): # cf. spyder-ide/spyder#3010. """Validate the sort function.""" df = DataFrame([[2,14], [2,13], [2,16], [1,3], [2,9], [1,15], [1,17], [2,2], [2,10], [1,6], [2,5], [2,8], [1,11], [1,1], [1,12], [1,4], [2,7]]) dfm = DataFrameModel(df) dfm.sort(1) dfm.sort(0) col2 = [data(dfm, i, 1) for i in range(len(df))] assert col2 == [str(x) for x in [1, 3, 4, 6, 11, 12, 15, 17, 2, 5, 7, 8, 9, 10, 13, 14, 16]] def test_dataframemodel_max_min_col_update(): df = DataFrame([[1, 2.0], [2, 2.5], [3, 9.0]]) dfm = DataFrameModel(df) assert dfm.max_min_col == [[3, 1], [9.0, 2.0]] def test_dataframemodel_max_min_col_update_constant(): df =
DataFrame([[1, 2.0], [1, 2.0], [1, 2.0]])
pandas.DataFrame
#!/usr/bin/env python import pandas as pd import numpy as np import multiprocessing import argparse import operator import os import random import sys import time import random import subprocess import pysam import collections import warnings import math import re from Bio import SeqIO base_path = os.path.split(__file__)[0] def fragment_distribution(samfile): all_reads = samfile.fetch() size_freq = collections.defaultdict(int) for read in all_reads: if read.rnext == read.tid and read.is_paired: size = abs(read.isize) size_freq[size] += 1 return size_freq def FragMAD(freq): """ calculate median and median absolute deviation fragment size distribution """ all_size = [] for key, value in freq.items(): all_size.extend([key] * int(value)) median_size = np.median(all_size) residuals = abs(np.array(all_size) - median_size) mad_size = 1.4826 * np.median(residuals) return median_size, mad_size def split_sam(args): split_command = ' '.join(['sh', os.path.join(base_path, "split_sam.sh"), args.assemblies, args.bamfile, args.output, args.samtools]) os.system(split_command) def seq_parse(args): input = SeqIO.parse(args.assemblies, "fasta") contig_seqs = {} for record in input: if len(record.seq) >= args.min_length: contig_seqs[record.id] = str(record.seq) return contig_seqs def kmer_parse(seq, pool): seq_kmer = {"position": [], "KAD": []} for i in range(len(seq)): if seq[i:(i + 25)] in pool: seq_kmer["KAD"].append(pool[seq[i:(i + 25)]]) seq_kmer["position"].append(i + 1) if (i + 25) >= len(seq): break return seq_kmer def KAD_window_cal(seq_kmer): KAD_window_dict = {"start_pos": [], "mean_KAD": [], "abnormal_KAD_ratio": [], "dev_KAD": []} for i in range(300, len(seq_kmer['position']), 100): KAD_window_dict["start_pos"].append(i) mean_KAD = np.mean(np.abs(seq_kmer['KAD'][i:i + 100])) KAD_window_dict["mean_KAD"].append(mean_KAD) KAD_window_dict["abnormal_KAD_ratio"].append( np.sum(np.abs(seq_kmer['KAD'][i:i + 100]) > 0.5) / 100) KAD_window_dict["dev_KAD"].append( np.sqrt(np.var(np.abs(seq_kmer['KAD'][i:i + 100])))) return KAD_window_dict def KAD_feature(args): seq_data = seq_parse(args) KAD_dict = {"contig": [], 'start_pos': [], 'mean_KAD': [], 'abnormal_KAD_ratio': [], 'dev_KAD': []} for contig, seq in seq_data.items(): if len(seq) < args.min_length: continue if os.path.exists(os.path.join(args.output, "temp/KAD/KAD_data/", "{}.KAD".format(str(contig)))): try: KAD_data = pd.read_csv(os.path.join(args.output, "temp/KAD/KAD_data/", "{}.KAD".format(str(contig))), index_col=0, sep="\t") KAD_data = KAD_data.drop_duplicates(['k-mer']) except BaseException: continue KAD_data.index = KAD_data['k-mer'] KAD_pool = KAD_data.loc[:, 'KAD'].to_dict() seq_kmer = kmer_parse(seq, KAD_pool) KAD_window = KAD_window_cal(seq_kmer) KAD_dict["contig"].extend([contig] * len(KAD_window['start_pos'])) KAD_dict["start_pos"].extend(KAD_window['start_pos']) KAD_dict["mean_KAD"].extend(KAD_window["mean_KAD"]) KAD_dict["abnormal_KAD_ratio"].extend( KAD_window["abnormal_KAD_ratio"]) KAD_dict["dev_KAD"].extend(KAD_window["dev_KAD"]) return KAD_dict def KAD(args, contig, file): if os.path.exists(os.path.join(args.output, "temp/KAD/KAD_data/", str(contig), ".KAD")): return 0 contig_file = os.path.join(args.output, "temp/split/contigs/", "{}.fa".format(file)) read_file = os.path.join(args.output, "temp/split/reads/{}.read.fa".format(str(contig))) # kmer count outputdir = os.path.join(args.output, "temp/KAD/temp") contig_command1 = ' '.join([args.jellyfish, "count -m 25 -o", os.path.join(outputdir, '{}.jf'.format(str(contig))), "-s 100M -t 8", contig_file]) contig_command2 = ' '.join([args.jellyfish, "dump -c -t -o", os.path.join(outputdir, '{}_count.txt'.format(str(contig))), os.path.join(outputdir, '{}.jf'.format(str(contig)))]) os.system(contig_command1) os.system(contig_command2) read_command1 = ' '.join([args.jellyfish, "count -m 25 -o", os.path.join(outputdir, '{}.read.jf'.format(str(contig))), "-s 100M -t 8", read_file]) read_command2 = ' '.join([args.jellyfish, "dump -c -t -o", os.path.join(outputdir, '{}_count.read.txt'.format(str(contig))), os.path.join(outputdir, '{}.read.jf'.format(str(contig)))]) os.system(read_command1) os.system(read_command2) assembly_kmer = pd.read_csv(os.path.join(args.output, "temp/KAD/temp/", "{}_count.txt".format(str(contig))), sep="\t", header=None) assembly_kmer.index = assembly_kmer[0] try: read_kmer = pd.read_csv(os.path.join(args.output, "temp/KAD/temp/", "{}_count.read.txt".format(str(contig))), sep="\t", header=None) read_kmer.index = read_kmer[0] except BaseException: # zero reads mapped to contig return 0 shared_kmer = set(assembly_kmer.loc[assembly_kmer[1] == 1, 0]).intersection(read_kmer.index) if len(shared_kmer) == 0: kmer_depth = pd.value_counts(read_kmer.loc[read_kmer[1] > 5, 1]).index[0] else: kmer_depth = pd.value_counts(read_kmer.loc[shared_kmer, ][1]).index[0] assembly_kmer.columns = ['k-mer', 'assembly_count'] read_kmer.columns = ['k-mer', 'read_count'] assembly_kmer.index = range(assembly_kmer.shape[0]) read_kmer.index = range(read_kmer.shape[0]) kmer_result = pd.merge(assembly_kmer, read_kmer, how='outer') kmer_result = kmer_result.fillna(0) kmer_result['KAD'] = np.log2((kmer_result['read_count'] + kmer_depth) / (kmer_depth * (kmer_result['assembly_count'] + 1))) kmer_result.loc[(kmer_result['read_count'] == 1) * (kmer_result['assembly_count'] == 0), 'KAD'] = np.nan kmer_result = kmer_result.loc[kmer_result['KAD'] == kmer_result['KAD'], ] kmer_result.loc[:, ['k-mer', 'KAD']].to_csv( os.path.join(args.output, "temp/KAD/KAD_data/", "{}.KAD".format(str(contig))), sep="\t") def fragment_coverage_cal(reads, mu, dev, length): """ calculate fragment coverage per contig """ frag_coverage = np.array([0] * length) for read in reads: if read.rnext == read.tid and read.is_proper_pair: size = abs(read.isize) if (mu - 3 * dev <= size <= mu + 3 * dev): if read.next_reference_start < read.reference_start: start = min(read.next_reference_start, read.reference_start, read.reference_end) end = start + size frag_coverage[start:end] += 1 return frag_coverage def window_read_cal(reads, mu, dev): read_dict = {"start_pos": [], "read_count": [], "proper_read_count": [], "inversion_read_count": [], "clipped_read_count": [], "supplementary_read_count": [], "discordant_size_count": [], "discordant_loc_count": []} read_temp = {"num_read": 0, "num_proper": 0, "num_inversion": 0, "num_clipped": 0, "num_supplementary": 0, "num_discordant_size": 0, "num_discordant_loc": 0} pos = 0 for read in reads: new_pos = math.floor((read.reference_start - 300) / 100) * 100 + 300 if read.reference_start < 300: continue if pos == 0: pos = new_pos elif new_pos != pos: read_dict["start_pos"].append(pos) read_dict["read_count"].append(read_temp["num_read"]) read_dict["proper_read_count"].append(read_temp["num_proper"]) read_dict["inversion_read_count"].append( read_temp["num_inversion"]) read_dict["clipped_read_count"].append(read_temp["num_clipped"]) read_dict["supplementary_read_count"].append( read_temp["num_supplementary"]) read_dict["discordant_size_count"].append( read_temp["num_discordant_size"]) read_dict["discordant_loc_count"].append( read_temp["num_discordant_loc"]) read_temp = {"num_read": 0, "num_proper": 0, "num_inversion": 0, "num_clipped": 0, "num_supplementary": 0, "num_discordant_size": 0, "num_discordant_loc": 0} pos = new_pos read_temp["num_read"] += 1 if read.is_paired: if read.rnext == read.tid: if read.is_proper_pair: read_temp["num_proper"] += 1 if (read.is_reverse + read.mate_is_reverse) != 1: read_temp["num_inversion"] += 1 if not mu - 3 * dev <= abs(read.isize) <= mu + 3 * dev: read_temp["num_discordant_size"] += 1 else: read_temp["num_discordant_loc"] += 1 if read.get_cigar_stats()[0][4] > 20: read_temp["num_clipped"] += 1 if (read.is_supplementary and read.get_cigar_stats()[0][5] > 20): read_temp["num_supplementary"] += 1 return read_dict def window_frag_cal(coverage): """ Using sliding window approach to smooth out features """ coverage = np.array(coverage) cov = {"pos": [], "coverage": [], "deviation": []} for i in range(300, len(coverage), 100): start = i end = i + 100 cov["coverage"].append(np.mean(coverage[start:end])) cov["deviation"].append( np.sqrt(np.var(coverage[start:end])) / np.mean(coverage[start:end])) cov["pos"].append(start) if len(coverage) - end <= 300: break return cov def contig_pool(samfile): contig_len = {} for (ref, lens) in zip(samfile.references, samfile.lengths): contig_len[ref] = lens return contig_len def pileup_window_cal(pileup_dict): window_dict = {"contig": [], "start_pos": [], "correct_portion": [], "ambiguous_portion": [], "disagree_portion": [], "deletion_portion": [], "insert_portion": [], "coverage": [], "deviation": []} for i in range(300, len(pileup_dict['correct']), 100): start = i end = i + 100 total = np.sum(pileup_dict['depth'][start:end]) window_dict["contig"].append(pileup_dict["contig"][0]) window_dict["start_pos"].append(start) window_dict["correct_portion"].append( np.sum(pileup_dict['correct'][start:end]) / total) window_dict["ambiguous_portion"].append( np.sum(pileup_dict["ambiguous"][start:end]) / total) window_dict["insert_portion"].append( np.sum(pileup_dict['insert'][start:end]) / total) window_dict["deletion_portion"].append( np.sum(pileup_dict['deletion'][start:end]) / total) window_dict["disagree_portion"].append( np.sum(pileup_dict['disagree'][start:end]) / total) window_dict["coverage"].append( np.mean(pileup_dict["depth"][start:end])) window_dict["deviation"].append(np.sqrt(np.var( pileup_dict["depth"][start:end])) / np.mean(pileup_dict["depth"][start:end])) if len(pileup_dict['correct']) - (i + 100) <= 300: break return window_dict def read_breakpoint_per_contig(samfile, ref, lens): reads = samfile.fetch(contig=ref) break_count = {"breakcount": np.array([0] * lens), "readcount": np.array( [0] * lens)} for read in reads: ref_end = read.reference_end ref_start = read.reference_start read_start = read.query_alignment_start read_end = read.query_alignment_end break_count["readcount"][ref_start:ref_end] += 1 if read.is_supplementary: if re.match('^([0-9]+H)', read.cigarstring): break_count["breakcount"][read.get_blocks()[0][0]] += 1 else: if len(read.get_blocks()) == 1: break_count["breakcount"][read.get_blocks()[0][1] - 1] += 1 else: break_count["breakcount"][read.get_blocks()[-1][1] - 1] += 1 if read.get_cigar_stats()[0][4] > 0: if re.match('^([0-9]+S)', read.cigarstring): break_count["breakcount"][read.get_blocks()[0][0]] += 1 if (read.cigarstring).endswith('S'): if len(read.get_blocks()) == 1: break_count["breakcount"][read.get_blocks()[0][1] - 1] += 1 else: break_count["breakcount"][read.get_blocks()[-1][1] - 1] += 1 data =
pd.DataFrame(break_count)
pandas.DataFrame
from data_fetchers.remc_fetchers import fetchFcaDayAheadDf, fetchFcaForeVsActDf, fetchFcaForeVsActPrevDf, fetchIftDayAheadDf, fetchIftForeVsActDf, fetchAleaDayAheadDf, fetchAleaForeVsActDf, fetchEnerDayAheadDf, fetchEnerForeVsActDf, fetchResDayAheadDf, fetchResForeVsActDf import pandas as pd from operator import add # constants for data store names FCA_DAY_AHEAD_STORE_NAME = 'fcaDayAheadStore' FCA_FORECAST_VS_ACTUAL_STORE_NAME = 'fcaForecastVsActualStore' FCA_FORECAST_VS_ACTUAL_PREV_STORE_NAME = 'fcaForecastVsActualPrevStore' IFT_DAY_AHEAD_STORE_NAME = 'iftDayAheadStore' IFT_FORECAST_VS_ACTUAL_STORE_NAME = 'iftForecastVsActualStore' ALEA_DAY_AHEAD_STORE_NAME = 'aleaDayAheadStore' ALEA_FORECAST_VS_ACTUAL_STORE_NAME = 'aleaForecastVsActualStore' ENER_DAY_AHEAD_STORE_NAME = 'enerDayAheadStore' ENER_FORECAST_VS_ACTUAL_STORE_NAME = 'enerForecastVsActualStore' RES_DAY_AHEAD_STORE_NAME = 'resDayAheadStore' RES_FORECAST_VS_ACTUAL_STORE_NAME = 'resForecastVsActualStore' def loadRemcDataStore(storeName): global g_fcaDayAheadDf global g_fcaForecastVsActual global g_fcaForecastVsActualPrev global g_iftDayAheadDf global g_iftForecastVsActual global g_aleaDayAheadDf global g_aleaForecastVsActual global g_enerDayAheadDf global g_enerForecastVsActual global g_resDayAheadDf global g_resForecastVsActual if storeName == FCA_DAY_AHEAD_STORE_NAME: g_fcaDayAheadDf = fetchFcaDayAheadDf() elif storeName == FCA_FORECAST_VS_ACTUAL_STORE_NAME: g_fcaForecastVsActual = fetchFcaForeVsActDf() elif storeName == FCA_FORECAST_VS_ACTUAL_PREV_STORE_NAME: g_fcaForecastVsActualPrev = fetchFcaForeVsActPrevDf() elif storeName == IFT_DAY_AHEAD_STORE_NAME: g_iftDayAheadDf = fetchIftDayAheadDf() elif storeName == IFT_FORECAST_VS_ACTUAL_STORE_NAME: g_iftForecastVsActual = fetchIftForeVsActDf() elif storeName == ALEA_DAY_AHEAD_STORE_NAME: g_aleaDayAheadDf = fetchAleaDayAheadDf() elif storeName == ALEA_FORECAST_VS_ACTUAL_STORE_NAME: g_aleaForecastVsActual = fetchAleaForeVsActDf() elif storeName == ENER_DAY_AHEAD_STORE_NAME: g_enerDayAheadDf = fetchEnerDayAheadDf() elif storeName == ENER_FORECAST_VS_ACTUAL_STORE_NAME: g_enerForecastVsActual = fetchEnerForeVsActDf() elif storeName == RES_DAY_AHEAD_STORE_NAME: g_resDayAheadDf = fetchResDayAheadDf() elif storeName == RES_FORECAST_VS_ACTUAL_STORE_NAME: g_resForecastVsActual = fetchResForeVsActDf() def deleteRemcDataStore(storeName): global g_fcaDayAheadDf global g_fcaForecastVsActual global g_fcaForecastVsActualPrev global g_iftDayAheadDf global g_iftForecastVsActual global g_aleaDayAheadDf global g_aleaForecastVsActual global g_enerDayAheadDf global g_enerForecastVsActual global g_resDayAheadDf global g_resForecastVsActual if storeName == FCA_DAY_AHEAD_STORE_NAME: g_fcaDayAheadDf = pd.DataFrame() elif storeName == FCA_FORECAST_VS_ACTUAL_STORE_NAME: g_fcaForecastVsActual = pd.DataFrame() elif storeName == FCA_FORECAST_VS_ACTUAL_PREV_STORE_NAME: g_fcaForecastVsActualPrev = pd.DataFrame() elif storeName == IFT_DAY_AHEAD_STORE_NAME: g_iftDayAheadDf = pd.DataFrame() elif storeName == IFT_FORECAST_VS_ACTUAL_STORE_NAME: g_iftForecastVsActual = pd.DataFrame() elif storeName == ALEA_DAY_AHEAD_STORE_NAME: g_aleaDayAheadDf = pd.DataFrame() elif storeName == ALEA_FORECAST_VS_ACTUAL_STORE_NAME: g_aleaForecastVsActual =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding=utf-8 # vim: set filetype=python: from __future__ import print_function from __future__ import absolute_import from __future__ import division import os import posixpath import sys import math import datetime import string from functools import wraps import traceback import xlrd3 as xlrd import openpyxl import unicodecsv as csv from math import log10, floor from pandas.api.types import is_string_dtype import pandas as pd import numpy as np import six import six.moves import orjson as json from plaidcloud.rpc import utc from plaidcloud.rpc.connection.jsonrpc import SimpleRPC from plaidcloud.rpc.rpc_connect import Connect from plaidcloud.utilities.query import Connection, Table from plaidcloud.utilities import data_helpers as dh __author__ = '<NAME>' __maintainer__ = '<NAME> <<EMAIL>>' __copyright__ = '© Copyright 2013-2021, Tartan Solutions, Inc' __license__ = 'Apache 2.0' CSV_TYPE_DELIMITER = '::' class ContainerLogger(object): def info(self, msg): print(msg, file=sys.stderr) def debug(self, msg): self.info(msg) def exception(self, msg=None): print(traceback.format_exc(), file=sys.stderr) if msg is not None: print(msg, file=sys.stderr) logger = ContainerLogger() def sql_from_dtype(dtype): """Returns a sql datatype given a pandas datatype Args: dtype (str): The pandas datatype to convert Returns: str: the equivalent SQL datatype Examples: >>> sql_from_dtype('bool') 'boolean' >>> sql_from_dtype('float64') 'numeric' >>> sql_from_dtype('number') 'numeric' >>> sql_from_dtype('varchar(123)') 'text' >>> sql_from_dtype('char(3)') 'text' >>> sql_from_dtype('xml') 'text' >>> sql_from_dtype('bytea') 'largebinary' """ mapping = { 'bool': 'boolean', 'boolean': 'boolean', 's8': 'text', 's16': 'text', 's32': 'text', 's64': 'text', 's128': 'text', 's256': 'text', 'object': 'text', 's512': 'text', 's1024': 'text', 'text': 'text', 'string': 'text', 'int8': 'smallint', # 2 bytes 'int16': 'integer', 'smallint': 'smallint', 'int32': 'integer', # 4 bytes 'integer': 'integer', 'int64': 'bigint', # 8 bytes 'bigint': 'bigint', 'float8': 'numeric', 'float16': 'numeric', # variable but ensures precision 'float32': 'numeric', # variable but ensures precision 'float64': 'numeric', # variable but ensures precision 'numeric': 'numeric', 'serial': 'serial', 'bigserial': 'bigserial', 'datetime64[s]': 'timestamp', # This may have to cover all datettimes 'datetime64[d]': 'timestamp', 'datetime64[ns]': 'timestamp', 'timestamp': 'timestamp', 'timestamp without time zone': 'timestamp', 'timedelta64[s]': 'interval', # This may have to cover all timedeltas 'timedelta64[d]': 'interval', 'timedelta64[ns]': 'interval', 'interval': 'interval', 'date': 'date', 'time': 'time', 'binary': 'largebinary', 'bytea': 'largebinary', 'largebinary': 'largebinary', 'xml': 'text', 'uuid': 'text', 'money': 'numeric', 'real': 'numeric', 'json': 'text', 'cidr': 'text', 'inet': 'text', 'macaddr': 'text', } dtype = str(dtype).lower() if dtype.startswith('num'): dtype = 'numeric' elif 'char' in dtype: dtype = 'text' return mapping[dtype] def save_typed_psv(df, outfile, sep='|', **kwargs): """Saves a typed psv, from a pandas dataframe. Types are analyze compatible sql types, written in the header, like {column_name}::{column_type}, ... Args: df (`pandas.DataFrame`): The dataframe to create the psv from outfile (file object or str): The path to save the output file to sep (str, optional): The separator to use in the output file """ # ADT2017: _write_copy_from did something special with datetimes, but I'm # not sure it's necessary, so I'm leaving it out. #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. def cleaned(name): return six.text_type(name).replace(CSV_TYPE_DELIMITER, '') column_names = [cleaned(n) for n in list(df)] column_types = [sql_from_dtype(d) for d in df.dtypes] header = [ CSV_TYPE_DELIMITER.join((name, sqltype)) for name, sqltype in six.moves.zip(column_names, column_types) ] df.to_csv(outfile, header=header, index=False, sep=sep) def list_of_dicts_to_typed_psv(lod, outfile, types, fieldnames=None, sep='|'): """ Saves a list of dicts as a typed psv. Needs a dict of sql types. If provided, fieldnames will specify the column order. Args: lod (:type:`list` of :type:`dict`): The list of dicts containing the data to use to create the psv outfile (str): The path to save the output file to, including file name types (dict): a dict with column names as the keys and column datatypes as the values fieldnames (:type:`list` of :type:`str`, optional): A list of the field names. If none is provided, defaults to the keys in `types` sep (str): The separator to use in the output file """ def cleaned(name): return six.text_type(name).replace(CSV_TYPE_DELIMITER, '') header = { name: CSV_TYPE_DELIMITER.join((cleaned(name), sqltype)) for name, sqltype in types.items() } if fieldnames is None: # Caller doesn't care about the order fieldnames = list(types.keys()) if isinstance(outfile, six.string_types): buf = open(outfile, 'wb') else: buf = outfile try: writer = csv.DictWriter(buf, fieldnames=fieldnames, delimiter=sep) writer.writerow(header) # It's not just the keys, so we're not using writeheader for row in lod: writer.writerow(row) finally: if isinstance(outfile, six.string_types): buf.close() #Otherwise leave it open, since this function didn't open it. def get_project_variables(token, uri, project_id): """It opens a connection to Analyze and then gets vars for a given project Args: token (str): oAuth token to pass into uri (str): Typically https://ci.plaidcloud.com/json-rpc/, https://plaidcloud.com/json-rpc/ or local dev machine equiv. Would typically originate from a local config. project_id (str): Id of the Project for which to grab the variables Returns: dict: Variables as key/values """ rpc = SimpleRPC(token, uri, verify_ssl=True) try: project_vars = rpc.analyze.project.variables(project_id=project_id) except: project_vars = rpc.analyze.project.variables(project=project_id) return {pv['id']: pv['value'] for pv in project_vars} def download(tables, configuration=None, retries=5, conn=None, clean=False, **kwargs): """This replaces the old get_tables() that was client-specific. It opens a connection to Analyze and then accepts a set of tables and saves them off to a local location. For now, tables are understood to be typed psv's, but that can expand to suit the need of the application (for instance, Excel.) Args: tables (set or list): table paths to retrieve (for backwards compatibility, you can leave off the initial '/') token (str): token to pass into uri (str): Typically https://ci.plaidcloud.com/json-rpc/, https://plaidcloud.com/json-rpc/ or local dev machine equiv. Would typically originate from a local config. local_storage_path (str): local path where files should be saved. Would typically originate from a local config. **kwargs: config (dict) contains a dict of config settings token (str) simpleRFC authorization token uri (str): uri e.g. 'https://ci.plaidcloud.com/json-rpc/' local_storage_path (str) Target for files being saved Returns: The return value of function. If retries are exhausted, raises the final Exception. Examples: """ # TODO: if configuration is None, revert to **kwargs for the params we need. if not conn: try: rpc = Connect() except: logger.exception('Could not connect via RPC') return False conn = Connection(project=rpc.project_id) try: return_df = configuration['return_df'] except: return_df = True try: project_id = configuration['project_id'] except: project_id = conn.project_id dfs = [] for table in tables: table_path = table.get('table_name') query = table.get('query') table_obj = table.get('table_object') df = None # Initial value # wipe this out each time through clean_df = pd.DataFrame() logger.debug("Attempting to download {0}...".format(table_path)) tries = 1 if table_obj is not None: # RPC table object exists; proceed to use it to fetch data while tries <= retries: if query is None: # no query passed. fetch whole table df = conn.get_dataframe(table_obj, clean=clean) if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break elif isinstance(query, six.string_types): # query object passed in. execute it try: df = conn.get_dataframe_by_querystring(query) except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) else: if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break else: # query object passed in. execute it try: df = conn.get_dataframe_by_query(query) except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) else: if isinstance(df, pd.core.frame.DataFrame): logger.debug("Downloaded {0}...".format(table_path)) break tries += 1 columns = table_obj.cols() if columns: if isinstance(df, pd.core.frame.DataFrame): cols = [c['id'] for c in columns if c['id'] in df.columns.tolist()] df = df[cols] # this ensures that the column order is as expected else: cols = [c['id'] for c in columns] df = pd.DataFrame(columns=cols) # create empty dataframe with expected metadata/shape else: if not table_path.startswith('/'): table_path = '/{}'.format(table_path) table_result = None while not table_result and tries <= retries: tries += 1 try: table_result = conn.analyze.table.table(project_id=project_id, table_path=table_path) logger.debug("Downloaded {0}...".format(table_path)) break except Exception as e: logger.exception("Attempt {0}: Failed to download {1}: {2}".format(tries, table_path, e)) df = table_result_to_df(table_result or pd.DataFrame()) if not isinstance(df, pd.core.frame.DataFrame): logger.exception('Table {0} failed to download!'.format(table_path)) elif len(df.columns) == 0: logger.exception('Table {0} downloaded 0 records!'.format(table_path)) else: if clean and query: # Use the old cleaning process for things other than the full query. clean_df = dh.clean_frame(df) else: clean_df = df dfs.append({'df': clean_df, 'name': table_path}) return dfs def load(source_tables, fetch=True, cache_locally=False, configuration=None, conn=None, clean=False): """Load frame(s) from requested source, returning a list of dicts If local, will load from the typed_psv. If Analyze, then will load the analyze table. """ return_type = None if type(source_tables) == list: return_type = 'list' elif type(source_tables) == str: # single table (as string) passed... expecting to return full table source_tables = [source_tables] return_type = 'dataframe' elif type(source_tables) == dict: # single table (as dict) passed... likely with subsetting query, but not req'd source_tables = [source_tables] return_type = 'dataframe' source_tables_proper = [] reassign = False for s in source_tables: if type(s) == str: # convert list of strings into a list of dicts reassign = True d = {} d['table_name'] = s source_tables_proper.append(d) if reassign: # replace source_tables with reformatted version source_tables = source_tables_proper dfs = [] if fetch is True: if not conn: # create connection object try: rpc = Connect() except: logger.exception('Could not connect via RPC') return False conn = Connection(project=rpc.project_id) for s in source_tables: # create table objects if they don't exist if s.get('table_object') == None: s['table_object'] = Table(conn, s.get('table_name')) downloads = download(source_tables, configuration=configuration, conn=conn, clean=clean) for d in downloads: df = d.get('df') name_of_df = '{0}.psv'.format(d.get('name')) if name_of_df.startswith('/'): name_of_df = name_of_df[1:] if cache_locally is True: with open(os.path.join(configuration['LOCAL_STORAGE'], name_of_df), 'w') as f: save_typed_psv(df, f) dfs.append(df) else: for s in source_tables: source_table = '{0}.psv'.format(s.get('table_name')) source_path = os.path.join(configuration['LOCAL_STORAGE'], source_table) df = load_typed_psv(source_path) dfs.append(df) if return_type == 'dataframe': return dfs[0] else: return dfs def load_new(source_tables, sep='|', fetch=True, cache_locally=False, configuration=None, connection=None): """Load frame(s) from requested source If local, will load from the typed_psv. If Analyze, then will load the analyze table. TODO: Make it fetch from analyze table....really this should be assimilated with dwim once dwim works again. TODO: Make it go to analyze and cache locally, if requested to do so. """ if connection: configuration['project_id'] = connection.project_id if fetch is True: download(source_tables, configuration) dfs = [] for source_table in source_tables: _, table_name = posixpath.split(source_table) source_path = '{}/{}.psv'.format(configuration['LOCAL_STORAGE'], source_table) df = load_typed_psv(source_path) dfs.append(df) return dfs def dtype_from_sql(sql): """Gets a pandas dtype from a SQL data type Args: sql (str): The SQL data type Returns: str: the pandas dtype equivalent of `sql` """ mapping = { 'boolean': 'bool', 'text': 'object', 'smallint': 'int16', 'integer': 'int32', 'bigint': 'int64', 'numeric': 'float64', 'timestamp': 'datetime64[s]', 'interval': 'timedelta64[s]', 'date': 'datetime64[s]', 'time': 'datetime64[s]', } return mapping.get(str(sql).lower(), None) def sturdy_cast_as_float(input_val): """ Force a value to be of type 'float'. Sturdy and unbreakeable. Works like data_helpers.cast_as_float except it returns NaN and None in cases where such seems appropriate, whereas the former forces to 0.0. """ if input_val is None: return 0.0 try: if np.isnan(input_val): float('nan') else: try: return float(input_val) except ValueError: return None except: try: return float(input_val) except ValueError: return None def converter_from_sql(sql): """Gets a pandas converter from a SQL data type Args: sql (str): The SQL data type Returns: str: the pandas converter """ mapping = { 'boolean': bool, 'text': str, 'smallint': int, 'integer': int, 'bigint': int, #'numeric': float, #dh.cast_as_float, #'numeric': dh.cast_as_float, 'numeric': sturdy_cast_as_float, 'timestamp': pd.datetime, 'interval': pd.datetime, 'date': pd.datetime, 'time': pd.datetime, } return mapping.get(str(sql).lower(), str(sql).lower()) def load_typed_psv(infile, sep='|', **kwargs): """ Loads a typed psv into a pandas dataframe. If the psv isn't typed, loads it anyway. Args: infile (str): The path to the input file sep (str, optional): The separator used in the input file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. if isinstance(infile, six.string_types): if os.path.exists(infile): buf = open(infile, 'rb') else: logger.exception('File does not exist: {0}'.format(infile)) return False else: buf = infile try: headerIO = six.BytesIO(buf.readline()) # The first line needs to be in a separate iterator, so that we don't mix read and iter. header = next(csv.reader(headerIO, delimiter=sep)) # Just parse that first line as a csv row names_and_types = [h.split(CSV_TYPE_DELIMITER) for h in header] column_names = [n[0] for n in names_and_types] try: dtypes = { name: dtype_from_sql(sqltype) for name, sqltype in names_and_types } except ValueError: # Missing sqltype - looks like this is a regular, untyped csv. # Let's hope that first line was its header. dtypes = None converters={} #for name, sqltype in names_and_types: #converter = converter_from_sql(sqltype) #if converter: #converters[name] = converter try: converters = { name: converter_from_sql(sqltype) for name, sqltype in names_and_types } except ValueError: # Missing sqltype - looks like this is a regular, untyped csv. # Let's hope that first line was its header. converters = None # This will start on the second line, since we already read the first line. #return pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep) na_values = [ #'', # This was here, and then commented out, and I'm putting it back in 20180824. *** # # If it isn't here, we fail when attempting to import a delimited file of type 'numeric' # # it is coming in as null/empty (e.g. the last record in the following set:) # # LE::text|PERIOD::text|RC::text|MGCOA::text|VT::text|TP::text|FRB::text|FUNCTION::text|DCOV::numeric|LOCAL_CURRENCY::text|CURRENCY_RATE::numeric|DCOV_LC::numeric # # LE_0585|2018_01|6019999|6120_NA|VT_0585|TP_NA|FRB_AP74358|OM|0.00031|EUR|0.8198|0.000254138 # # LE_0003|2018_07|CA10991|5380_EBITX|VT_9988|TP_NA|FRB_APKRA15|OM|-0.00115|INR|68.7297|-0.079039155 # # LE_2380|2017_08|AP92099|Q_5010_EBITX|VT_0585|TP_NA|FRB_AP92099|RE|99||| '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null' ] parse_dates = [] if dtypes is not None: for k, v in six.iteritems(dtypes): dtypes[k] = v.lower() #Handle inbound dates #https://stackoverflow.com/questions/21269399/datetime-dtypes-in-pandas-read-csv if 'datetime' in dtypes[k]: dtypes[k] = 'object' parse_dates.append(k) try: df = pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep, na_values=na_values, keep_default_na=False, parse_dates=parse_dates, encoding='utf-8') except ValueError: #remove dtypes if we have converters instead: for k in six.iterkeys(converters): if k in list(dtypes.keys()): dtypes.pop(k, None) na_values.append('') buf = open(infile, 'rb') headerIO = six.BytesIO(buf.readline()) # The first line needs to be in a separate iterator, so that we don't mix read and iter. header = next(csv.reader(headerIO, delimiter=sep)) # Just parse that first line as a csv row df = pd.read_csv(buf, header=None, names=column_names, dtype=dtypes, sep=sep, na_values=na_values, keep_default_na=False, parse_dates=parse_dates, converters=converters, encoding='utf-8') finally: # A final note: # SURELY there's a more efficient and native pandas way of doing this, but I'll be damnded if I could figure it out. # Pandas used to have an error='coerce' method to force data type. It's no longer an option, it seems. # Forcing data type is NOT easy, when incoming text data is sequential delimiters with no values or whitespace. # What We're doing now is still not w/o risk. There are use cases for setting empty to zero, which is what we're doing, and use cases to set # empty to null, which is probably what we SHOULD do, but for now, we do it this way because we already have a battle hardened dh.cast_as_float that # works this way. We should probably just call a different homegrown float that returns a NaN or None (None being preferred) rather than 0.0 on exception. # Mercy. This has been a pain. # I guess if it was easy, Pandas wouldn't support the ability to send in your own converters. pass return df finally: if isinstance(infile, six.string_types): buf.close() #Otherwise leave it open, since this function didn't open it. def table_result_to_df(result): """Converts a SQL result to a pandas dataframe Args: result (dict): The result of a database query Returns: `pandas.DataFrame`: A dataframe representation of `result` """ meta = result['meta'] data = result['data'] columns = [m['id'] for m in meta] dtypes = { m['id']: dtype_from_sql(m['dtype'].lower()) for m in meta } df = pd.DataFrame.from_records(data, columns=columns) try: typed_df = df.astype(dtype=dtypes) except: """ This is heavy-handed, but it had to be. Something was tripping up the standard behavior, presumably relating to handling of nulls in floats. We're forcing them to 0.0 for now, which is possibly sketchy, depending on the use case, but usually preferred behavior. Buyer beware. """ typed_df = df for col in typed_df.columns: if dtypes[col] == u'object': typed_df[col] = list(map(dh.cast_as_str, typed_df[col])) elif dtypes[col].startswith(u'float'): typed_df[col] = list(map(dh.cast_as_float, typed_df[col])) elif dtypes[col].startswith(u'int'): #detect any flavor of int and cast it as int. typed_df[col] = list(map(dh.cast_as_int, typed_df[col])) return typed_df def dwim_save(df, name, localdir='/tmp', lvl='model', extension='txt', sep='|', **kwargs): """If we're on an app server, saves a dataframe as an analyze table. Otherwise saves it as a typed psv in localdir. Args: df (`pandas.DataFrame`): The dataframe to save name (str): The name to save this dataframe as localdir (str, optional): The local path to save the typed psv lvl (str, optional): What level (project/model) the table should be extension (str, optional): What file extension to give the output file sep (str, optional): The separator to use in the output file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. try: from plaid.app.analyze.sandboxed_code.user.iplaid.frame import save, save_project # We must be on the app server. # TODO: change this when we change how iplaid works save_fn = { 'model': save, 'project': save_project, }[lvl] save_fn(df, name) except ImportError: # We must not be on an app server, so save as typed_psv fname = '.'.join((name, extension)) if lvl == 'model': path = os.path.join(localdir, fname) else: path = os.path.join(localdir, lvl, fname) dirname = os.path.dirname(path) if not os.path.exists(dirname): os.makedirs(dirname) save_typed_psv(df, path, sep) def dwim_load(name, localdir='/tmp', lvl='model', extension='txt', sep='|', **kwargs): """If we're on an app server, loads an analyze table. Otherwise loads a typed psv from localdir. Args: name (str): The name of the table or file to load localdir (str, optional): The path to the directory where the local file is stored lvl (str, optional): The level (model/project) of the table to load extension (str, optional): The flie extension of the local file sep (str, optional): The separator used in the local file """ #TODO: for now we just ignore extra kwargs - we accept them to make it a #little easier to convert old to_csvs and read_csvs. In the future, we #should probably pass as many of them as possible on to to_csv/read_ccsv - #the only issue is we have to make sure the header stays consistent. try: from plaid.app.analyze.sandboxed_code.user.iplaid.frame import load, load_project # We must be on the app server. # TODO: change this when we change how iplaid works load_fn = { 'model': load, 'project': load_project, }[lvl] return load_fn(name) except ImportError: # We must not be on an app server, so load from typed_psv fname = '.'.join((name, extension)) if lvl == 'model': path = os.path.join(localdir, fname) else: path = os.path.join(localdir, lvl, fname) return load_typed_psv(path, sep) def clean_uuid(id): """Removes any invalid characters from a UUID and ensures it is 32 or 36 characters Args: id (str): The ID to clean Returns: str: `id` with any invalid characters removed """ # !! WARNING: If you're calling this in new code, make sure it's really what you # !! want. It used to remove dashes. That turned out to be a bad idea. Now # !! it leaves dashes in. # # !! If you've found a bug related to dashes being left in, and this is # !! being called on lookup, you should probably just remove the call to # !! clean_uuid. Going forward, we don't remove dashes. if id is None: return None name = six.text_type(id).lower() valid_chars = '0123456789abcdef-' cleaned_id = u''.join(n for n in name if n in valid_chars) if '-' in cleaned_id: if len(cleaned_id) != 36: raise Exception("Could not clean id {}. Not 36 characters long.".format(id)) else: if len(cleaned_id) != 32: raise Exception("Could not clean id {}. Not 32 characters long.".format(id)) return cleaned_id def clean_name(name): """ DEPRECATED: does nothing Removes any invalid characters from a name and limits it to 63 characters Args: name (str): The name to clean Returns: str: The cleaned version of `name` """ return name def clean_filename(name): """Remove '/' from a name Args: name (str): the filename to clean Returns: str: the cleaned version of `name` """ if name is None: return None # everything's fine except / return six.text_type(name).translate({'/': None}) def describe(df): """Shorthand for df.describe() Args: df (`pandas.DataFrame`): The dataframe to describe Returns: summary: Series/DataFrame of summary statistics """ return df.describe() def unique_values(df, column): """Returns unique values in the provided column Args: df (`pandas.DataFrame`): The DataFrame containing data column (str): The column to find unique values in Returns: list: The unique values in the column """ return df[column].unique() def count_unique(group_by, count_column, df): """Returns a count of unique items in a dataframe Args: group_by (str): The group by statement to apply to the dataframe count_column (str): The column to count unique records in df (`pandas.DataFrame`): The DataFrame containing the data Returns: int: The count of unique items in the specified column after grouping """ return df.groupby(group_by)[count_column].apply(lambda x: len(x.unique())) def sum(group_by, df): return df.groupby(group_by).sum() def std(group_by, df): return df.groupby(group_by).std() def mean(group_by, df): return df.groupby(group_by).mean() def count(group_by, df): return df.groupby(group_by).count() def inner_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps only matches Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='inner') def outer_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps data from both frames and matches up using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='outer') def left_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps all data from left frame and any matches in right using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='left') def right_join(left_frame, right_frame, left_on, right_on=None, keep_columns=None): """Keeps all data from right frame and any matches in left using the on_columns Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` keep_columns (:type:`list` of :type:`str`, optional): A list of columns to keep in the result Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] right_cols = right_frame.columns # optional arg to specify which columns in right table to keep if keep_columns is not None: drop_columns = set() for col in right_cols: if (col in keep_columns) or (col in right_on): pass else: # column not being kept drop_columns.add(col) # exclude columns from right table right_cols = right_cols.difference(drop_columns) return pd.merge(left_frame, right_frame[right_cols], left_on=left_on, right_on=right_on, how='right') def anti_join(left_frame, right_frame, left_on, right_on=None): """Keeps all data from left frame that is not found in right frame Args: left_frame (`pandas.DataFrame`): The first frame to join right_frame (`pandas.DataFrame`): The second frame to join on left_on (str): Which column in the left frame to join on right_on (str, optional): Which column to join on in the right frame, if different from `left_on` Returns: `pandas.DataFrame`: A frame containing the results of the join """ if right_on is None: right_on = left_on if type(left_on) == str: left_on = [left_on] if type(right_on) == str: right_on = [right_on] indicator_status = False indicator_name = '_merge' left_cols = left_frame.columns # avoid collision with pd generated indicator name while not indicator_status: if indicator_name in left_cols: indicator_name = '_' + indicator_name else: indicator_status = True df = pd.merge(left_frame, right_frame[right_on], how='left', left_on=left_on, right_on=right_on, indicator=indicator_name) df = df[df[indicator_name] == 'left_only'] del df[indicator_name] return df def compare(left_frame, right_frame, left_on, right_on=None): """Keeps all data from right frame and any matches in left using the on_columns""" #20180420 PBB Is "compare" a good name for this, it's basically a right-join in SQL terms? #20180420 MWR It's quite old legacy. Not sure this one has ever been used for anything. Perhaps # we can just do away with it. if right_on is None: right_on = left_on return pd.merge(left_frame, right_frame, left_on=left_on, right_on=right_on, how='outer') def apply_rule(df, rules, target_columns=None, include_once=True, show_rules=False): """ If include_once is True, then condition n+1 only applied to records left after condition n. Adding target column(s), plural, because we'd want to only run this operation once, even if we needed to set multiple columns. Args: df (pandas.DataFrame): The DataFrame to apply rules on rules (list): A list of rules to apply target_columns (list of str, optional): The target columns to apply rules on. include_once (bool, optional): Should records that match multiple rules be included ONLY once? Defaults to `True` show_rules (bool, optional): Display the rules in the result data? Defaults to `False` Returns: pandas.DataFrame: The results of applying rules to the input `df` """ target_columns = target_columns or ['value'] df_final = pd.DataFrame() df['temp_index'] = df.index df['include'] = True df['log'] = '' if show_rules is True: df['rule_number'] = '' df['rule'] = '' # Establish new column(s) as blank columns. for column in target_columns: df[column] = '' def exclude_matched(include, match): """ Exclude if matched, or if previously excluded Please do not change the 'if match is True:' line to 'if match:'. It matters here. """ return False if match is True else include rule_num = 0 for rule in rules: rule_num = rule_num + 1 rule_condition = rule.get('condition') # Find subset based on condition if rule_condition is not None and rule_condition != '' and str(rule_condition) != 'nan': try: df_subset = df[df['include'] == True].query(rule_condition, engine='python') print('subset length: {}'.format(len(df[df['include'] == True]))) if show_rules: df_subset['rule_number'] = str(rule_num) df_subset['rule'] = str(rule_condition) except Exception as e: # TODO update this. We should capture all exceptions in an exception table. df_subset = pd.DataFrame() def add_message(log): return '<{} ::: {}>'.format(e, log) # removed redundant rule_condition format param from here if show_rules: df['log'] = list(map(add_message, df['log'])) error_msg = ' (rule_num {0}) {1} error: {2}'.format(rule_num, rule_condition, e) logger.exception('EXCEPTION {}'.format(error_msg)) else: df_subset = df[df['include'] == True] # Populate target columns as specified in split for column in target_columns: df_subset[column] = rule[column] # need to find a way to flip the flag once data has been selected if include_once: # Exclude the records of the current split from exposure to # subsequent filters. #if statement handles edge case where df is empty and has no columns. if 'temp_index' in df_subset.columns: #refactor to be m*1 not m*n. df_subset['match'] = True df = lookup( df, df_subset, left_on=['temp_index'], right_on=['temp_index'], keep_columns=['match'] ) df['include'] = list(map(exclude_matched, df['include'], df['match'])) del df['match'] # The way we're doing this allows multiple matches # if include_once is false. # Future: MAY be a reason to allow first-in wins or last-in wins, or ALL win. df_final = pd.concat([df_final, df_subset]) print('length:{}'.format(len(df_subset))) df_final.drop(columns=['temp_index', 'include'], inplace=True, errors='ignore') return df_final def apply_rules(df, df_rules, target_columns=None, include_once=True, show_rules=False, verbose=True, unmatched_rule='UNMATCHED', condition_column='condition', iteration_column='iteration', rule_id_column=None, logger=logger): """ If include_once is True, then condition n+1 only applied to records left after condition n. Adding target column(s), plural, because we'd want to only run this operation once, even if we needed to set multiple columns. Args: df (pandas.DataFrame): The DataFrame to apply rules on df_rules (pandas.DataFrame): A list of rules to apply target_columns (list of str, optional): The target columns to apply rules on. include_once (bool, optional): Should records that match multiple rules be included ONLY once? Defaults to `True` show_rules (bool, optional): Display the rules in the result data? Defaults to `False` verbose (bool, optional): Display the rules in the log messages? Defaults to `True`. This is not overly heavier than leaving it off, so we probably should always leave it on unless logging is off altogether. unmatched_rule (str, optional): Default rule to write in cases of records not matching any rule condition_column (str, optional): Column name containing the rule condition, defaults to 'condition' rule_id_column (str, optional): Column name containing the rule id, just set to index if not provided logger (object, optional): Logger to record any output Returns: list of pandas.DataFrame: The results of applying rules to the input `df` """ target_columns = target_columns or ['value'] df_rules = df_rules.reset_index(drop=True) if iteration_column not in df_rules.columns: df_rules[iteration_column] = 1 df['include'] = True df['log'] = '' if show_rules is True: df['rule_number'] = '' df['rule'] = '' df['rule_id'] = '' if rule_id_column else df.index # Establish new column(s) as blank columns <i>if they do not already exist.</i> for column in target_columns: if column not in df.columns: df[column] = '' summary = [] iterations = list(set(df_rules[iteration_column])) iterations.sort() for iteration in iterations: df['include'] = True def write_rule_numbers(rule_num): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if rule_num == '': return str(index) else: return '{}, {}'.format(rule_num, str(index)) def write_rule_conditions(condition): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if condition == '': return str(rule[condition_column]) else: return '{}, {}'.format(condition, str(rule[condition_column])) def write_rule_id(rule_id): """Need to allow for fact that there will be > 1 sometimes if we have > iteration.""" if rule_id == '': return str(rule[rule_id_column]) else: return '{}, {}'.format(rule_id, str(rule[rule_id_column])) matches = [] # for use when include_once is False index = 0 for index, rule in df_rules[df_rules[iteration_column] == iteration].iterrows(): # Find subset based on condition df_subset = df[df['include'] == True] input_length = len(df_subset) if include_once is True and input_length == 0: break if verbose: logger.debug('') logger.debug('iteration:{} - rule:{} - {}'.format(iteration, index, rule[condition_column])) if rule[condition_column] is not None and rule[condition_column] != '' and str(rule[condition_column]) != 'nan': try: df_subset = df_subset.query(rule[condition_column])#, engine='python') if verbose: logger.debug('{} - input length'.format(input_length)) if show_rules is True: if include_once is True: df.loc[list(df_subset.index), 'rule_number'] = list(map(write_rule_numbers, df.loc[list(df_subset.index), 'rule_number'])) df.loc[list(df_subset.index), 'rule'] = list(map(write_rule_conditions, df.loc[list(df_subset.index), 'rule'])) if rule_id_column: df.loc[list(df_subset.index), 'rule_id'] = list(map(write_rule_id, df.loc[list(df_subset.index), 'rule_id'])) else: df_subset['rule_number'] = df_subset.index df_subset['rule'] = rule[condition_column] if rule_id_column: df_subset['rule_id'] = rule[rule_id_column] except Exception as e: df_subset = pd.DataFrame() def add_message(log): return '<{} ::: {}>'.format(e, log) # removed redundant rule[condition_column] param from format string if show_rules is True: df['log'] = list(map(add_message, df['log'])) error_msg = ' (rule_num {0}) {1} error: {2}'.format(index, rule[condition_column], e) logger.exception('EXCEPTION {}'.format(error_msg)) # Populate target columns as specified in split for column in target_columns: if rule[column] not in ['nan', '', 'None', None]: if include_once is True: df.loc[list(df_subset.index), column] = rule[column] else: df_subset[column] = rule[column] # The way we're doing this allows multiple matches if include_once is False. # Future: MAY be a reason to allow first-in wins or last-in wins, or ALL win. # MIKE look here. # df_final = pd.concat([df_final, df_subset]) matched_length = len(df_subset) if verbose: logger.debug('{} - matched length'.format(matched_length)) if include_once: # Exclude the records of the current split from exposure to subsequent filters. df.loc[list(df_subset.index), 'include'] = False else: if matched_length > 0: matches.append(df_subset) summary_record = { 'row_num': index, iteration_column: iteration, 'input_records': input_length, 'matched_records': matched_length, } summary_record.update(rule) summary.append(summary_record) if include_once is False: if len(matches) > 0: df = pd.concat(matches) else: df = pd.DataFrame().reindex(columns=df.columns) # unmatched record: unmatched_length = len(df[df['include'] == True]) summary.append({ 'row_num': index+1, iteration_column: iteration, 'input_records': unmatched_length, 'matched_records': unmatched_length, 'rule': unmatched_rule }) df_summary = pd.DataFrame.from_records(summary) if show_rules is True: df.drop(columns=['include'], inplace=True, errors='ignore') else: df.drop(columns=['include', 'rule_number', 'rule', 'rule_id'], inplace=True, errors='ignore') return [df, df_summary] def memoize(fn): cache = fn.cache = {} @wraps(fn) def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = fn(*args, **kwargs) return cache[key] return memoizer def trailing_negative(value, default=0): """Attempts to handle the trailing negative issue in a more performant way Args: value (str, int, or float): The value to clean default (float or int, optional): A default value to return if `value` cannot be cleaned Returns: float: The cleaned version of `value`, or `default` """ try: return float(value) except: try: return -float(value[:-1]) except: return default def now(offset=0): """Returns the current date/time, with an optional offset Args: offset (int, optional): The offset to apply to the current time Returns: `utc.timestamp`: The current date/time, with `offset` applied """ dt = utc.timestamp() if offset != 0: off = datetime.timedelta(hours=offset) dt = dt + off return dt def concat(left_frame, right_frame): """Concatenate two DataFrames Args: left_frame (`pandas.DataFrame`): The first frome to concat right_frame (`pandas.DataFrame`): The second frame to concat Returns: `pandas.DataFrame`: The concatenation of `left_frame` and `right_frame` """ return pd.concat(left_frame, right_frame) def covariance(df, columns, min_observations=0): """Compute pairwise covariances among the series in the DataFrame, also excluding NA/null values Args: df (`pandas.DataFrame`): The dataframe to compute on columns (None): DEPRICATED - Columns are now determined from `df` min_observations (int, optional): Minimum observations, defaults to `0` """ df = df.columns if min_observations is not None and min_observations > 0: return df.cov(min_periods=min_observations) else: return df.cov() def correlation(first_series, second_series, method='pearson'): return first_series.corr(second_series, method=method) def apply_agg(df, group_by, column_operations): """Pass in a dict of key values for columns and operations {'A': 'sum', 'B': 'std', 'C': 'mean'} Args: df (`pandas.DataFrame`): The dataframe to apply aggregation to group_by (str): The group by operation to apply to `df` column_operations (dict): The operations to apply and on which columns Returns: `pandas.DataFrame`: `df` with aggregation applied """ # Taken from operations that can be performed on columns as described here: # http://pandas.pydata.org/pandas-docs/dev/generated/pandas.DataFrame.html valid_operations = ( 'mean', 'median', 'mode', 'sum', 'std', 'var', 'size', 'first', 'last', 'prod', 'product', 'min', 'max', 'abs', 'quantile', 'skew', # Return unbiased skew over requested axis 'kurtosis', # Return unbiased kurtosis over requested axis 'mad', # Return the mean absolute deviation of the values for the requested axis 'cumsum', # Return cumulative sum over requested axis 'cummin', # Return cumulative min over requested axis. 'cummax', # Return cumulative max over requested axis. 'cumprod' # Return cumulative prod over requested axis. ) final = {} for co in column_operations.keys(): if column_operations[co] in valid_operations: final[co] = column_operations[co] return df.groupby(group_by).agg(final).reset_index() def distinct(df, columns=None, keep='first', inplace=False): """Removes duplicate items from columns Args: df (`pandas.DataFrame`): The DataFrame to operate on columns (list, optional): Specific columns to operate on keep (str, optional): Which row containing duplicate values to keep. defaults to `'first'` inplace (bool, optional): Should duplicate values be removed from the source `df`? Defaults to `False` Returns: `pandas.DataFrame`: The `df` with duplicate values removed """ return df.drop_duplicates(subset=columns, keep=keep, inplace=inplace) def find_duplicates(df, columns=None, take_last=False): """Locates duplicate values in a dataframe Args: df (`pandas.DataFrame`): The DataFrame to find duplicates in columns (`list`, optional): Spesific columns to find duplicates in take_last (bool, optional): Should the last duplicate not be marked as a duplicate? Defaults to `False` Returns: `pandas.DataFrame`: A frame containing duplicates """ mask = df.duplicated(cols=columns, take_last=take_last) return df.loc[mask] def sort(df, sort_columns, sort_directions=True): """Sorts a dataframe wraps `pandas.DataFrame.sort_values()` Args: df (`pandas.DataFrame`): The dataframe to sort sort_columns (list): A list of the columns to sort on sort_directions (bool, optional): `True` to sort ascending, `False` to sort descending Returns: `pandas.DataFrame`: `df` sorted by the provided columns """ return df.sort_values(sort_columns, ascending=sort_directions) def replace_column(df, column, replace_dict): """cdystonia2.treat.replace({'a':{'Placebo': 0, '5000U': 1, '10000U': 2}}) Args: df (`pandas.DataFrame`): The dataframe to replace in column (str): Which column to replace values in replace_dict (dict): What values to replace, and what to replace them with Returns: `pandas.dataframe`: `df` with the values replaced """ return df.replace({column: replace_dict}) def replace(df, replace_dict): """Replaces values in columns based on a dict Args: df (`pandas.DataFrame`): The dataframe to replace values in replacement_dict (dict): A dict containing columns, the values to replace, and what to replace them with. Should be formatted like: { 'column_a': {'$': '', ',':''}, 'column_b': {'bought': 1, 'sold': -1} } """ return df.replace(replace_dict) def reindex(df, columns): """Reindexes a dataframe wraps `pandas.DataFrame.reindex()` Args: df (`pandas.DataFrame`): The dataframe to reindex columns (:type:`list`): A list of the columns to reindex Returns: `pandas.DataFrame`: A reindexed version of `df` """ return df.reindex(columns) def rename_columns(df, rename_dict): """Renames columns based on `rename_dict` Args: df (`pandas.DataFrame`): The dataframe to rename columns in rename_dict (:type:`dict`): A dict in the format `{'old_name': 'new_name'}` to use to rename the columns Returns: `pandas.DataFrame`: `df` with renamed columns """ return df.rename(columns=rename_dict) def column_info(df): """Returns a list of columns and their datatypes Args: df (`pandas.DataFrame`): The dataframe to get info for Returns: :type:`list` of :type:`dict`: A list of dicts containing column ids and their Dtypes """ column_info = [] for column_name, data_type in six.iteritems(df.dtypes): temp = {'id': column_name, 'dtype': str(data_type)} column_info.append(temp) return column_info def set_column_types(df, type_dict): """Sets the datatypes of columns in a DataFrame df3.astype('float32').dtypes Here are the date units: Code Meaning Time span (relative) Time span (absolute) Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD] M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD] W week +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD] D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD] And here are the time units: Code Meaning Time span (relative) Time span (absolute) h hour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD] m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD] s second +/- 2.9e12 years [ 2.9e9 BC, 2.9e9 AD] ms millisecond +/- 2.9e9 years [ 2.9e6 BC, 2.9e6 AD] us microsecond +/- 2.9e6 years [290301 BC, 294241 AD] ns nanosecond +/- 292 years [ 1678 AD, 2262 AD] ps picosecond +/- 106 days [ 1969 AD, 1970 AD] fs femtosecond +/- 2.6 hours [ 1969 AD, 1970 AD] as attosecond +/- 9.2 seconds [ 1969 AD, 1970 AD] Args: df (`pandas.DataFrame`): The dataframe to set column types on type_dict (dict): A dict to set columns based on. In the format {'column': 'dtype'} Returns: `pandas.DataFrame`: `df` with the column types set """ float_column_types = ( 'float16', 'float32', 'float64', 'numeric', ) #Can't call this int_column_types, because there's a few other possibilities things listed #that we'll just send through to get the default Pandas.to_numeric() treatment for now. numeric_non_float_column_types = ( 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'complex64', 'complex128', 'bigint', 'smallint', ) date_column_types = ( 'datetime64[as]', 'datetime64[fs]', 'datetime64[ps]', 'datetime64[ns]', 'datetime64[us]', 'datetime64[ms]', 'datetime64[s]', 'datetime64[m]', 'datetime64[h]', 'datetime64[D]', 'datetime64[W]', 'datetime64[M]', 'datetime64[Y]', 'timestamp', 'date', 'time' ) timedelta_column_types = ( 'timedelta64[as]', 'timedelta64[fs]', 'timedelta64[ps]', 'timedelta64[ns]', 'timedelta64[us]', 'timedelta64[ms]', 'timedelta64[s]', 'timedelta64[m]', 'timedelta64[h]', 'timedelta64[D]', 'timedelta64[W]', 'timedelta64[M]', 'timedelta64[Y]' 'interval', ) bool_column_types = ( 'bool', 'Boolean', ) string_column_types = { 'object': 256, 's8': 8, 's16': 16, 's32': 32, 's64': 64, 's128': 128, 's256': 256, 's512': 512, 's1024': 1024, 'text': 256, } category_column_types = ( 'category', ) for td in type_dict.keys(): dtype = dtype_from_sql(type_dict[td]) try: if dtype in float_column_types: df[td] = pd.to_numeric(df[td], downcast='float') elif dtype in numeric_non_float_column_types: df[td] = pd.to_numeric(df[td]) elif dtype in date_column_types: df[td] = pd.to_datetime(df[td]) elif dtype in timedelta_column_types: df[td] = pd.to_timedelta(df[td]) elif dtype in list(string_column_types.keys()): # Keep whatever text is there pass elif dtype in bool_column_types: df[td] = df[td].astype('bool') elif dtype in category_column_types: df[td] = df[td].astype('category') else: raise Exception('Unknown dtype specified') except: logger.exception('EXCEPTION') err_msg = 'dtype conversion of {0} to {1} FAILED'.format(td, dtype) raise Exception(err_msg) return df def drop_column(df, columns_to_drop): """ Removes columns from a DataFrame del df[name] Args: df (`pandas.DataFrame`): The dataframe to drop columns on columns_to_drop (:type:`list` of :type:`str`): A list of the columns to remove Returns: `pandas.DataFrame`: `df` with the provided columns removed """ for ctd in columns_to_drop: del df[ctd] return df def has_data(df): """Determines if a DataFrame has any data Args: df (`pandas.DataFrame`): A DataFrame to test Returns: bool: If `df` has any data """ row_max = 0 try: for k, v in six.iteritems(df.count()): row_max = max(row_max, int(v)) except: pass if row_max > 0: return True else: return False def convert_currency( df_data, df_rates, source_amount_column=None, target_amount_column=None, rate_field='RATE', source_frame_source_currency='CURRENCY_SOURCE', source_frame_target_currency='CURRENCY_TARGET', rates_frame_source_currency='CURRENCY_SOURCE', rates_frame_target_currency='CURRENCY_TARGET', intermediate_currency='USD', ): """ Convert currency from unconverted amount to amount of target currency This function requires 4 parameters: rates_frame, source_amount_column, and target_amount_column. source_frame and rates_frame are pandas.df. Remaining parameters are all strings representing required or optional column names We are going to try to do a point-to-point lookup first. If that fails, we will attempt to lookup from source to USD and then from USD to target, applying correct math along the way. TODO 1: We should optionally consider period, but for now we'll assume records of both tables pertain to the same period. TODO 2: Build test cases TODO 3: Build appropriate warnings for things like: Sending in source tables with columns that do not line up with expected source columns Args: df_data (`pandas.DataFrame`): The frame containing source data df_rates (`pandas.DataFrame`): A frame containing currency rates source_amount_column (str): Column of the `source_frame` containing pre-converted amount target_amount_column (str): Column name of the final converted amount rate_field (str, optional): Column name of column of the `rates_frame` containing the amount to convert source_frame_source_currency (str, optional): Column of source frame indicating currency of pre-converted amount source_frame_target_currency (str, optional): Column of source frame indicating currency of intended post-converted amount rates_frame_source_currency (str, optional): Column of source frame indicating currency of pre-converted amount rates_frame_target_currency (str, optional): Column of source frame indicating currency of intended post-converted amount intermediate_currency (str, optional): Returns: `pandas.DataFrame`: The results of the lookup """ periods_in_use = set(df_data['PERIOD']) # Set intermediate currency for 2-step currency conversion df_data['CURRENCY_INTERMEDIATE'] = intermediate_currency if source_frame_source_currency != 'CURRENCY_SOURCE': df_data['CURRENCY_SOURCE'] = df_data[source_frame_source_currency] delete_curr_src_col = True #Clean up after ourselves so we don't send extra columns back that wouldn't be expected. else: delete_curr_src_col = False if source_frame_target_currency != 'CURRENCY_TARGET': df_data['CURRENCY_TARGET'] = df_data[source_frame_target_currency] delete_curr_tgt_col = True #Clean up after ourselves so we don't send extra columns back that wouldn't be expected. else: delete_curr_tgt_col = False df_rates = df_rates[df_rates['PERIOD'].isin(periods_in_use)] df_rates['CURRENCY_SOURCE'] = df_rates[rates_frame_source_currency] df_rates['CURRENCY_TARGET'] = df_rates[rates_frame_target_currency] df_rates[rate_field] = df_rates[rate_field] df_rates['RATE_TYPE'] = '1' #Loaded rates are preferred df_rates = df_rates[[ 'PERIOD', #object rate_field, #float64 'CURRENCY_SOURCE', #object 'CURRENCY_TARGET', #object ]] df_rates_flipped = df_rates.copy(deep=True) df_rates_flipped['CURRENCY_SOURCE_old'] = df_rates_flipped['CURRENCY_SOURCE'] df_rates_flipped['CURRENCY_TARGET_old'] = df_rates_flipped['CURRENCY_TARGET'] df_rates_flipped['CURRENCY_SOURCE'] = df_rates_flipped['CURRENCY_TARGET_old'] df_rates_flipped['CURRENCY_TARGET'] = df_rates_flipped['CURRENCY_SOURCE_old'] df_rates_flipped[rate_field] = 1.0 / df_rates_flipped[rate_field] del df_rates_flipped['CURRENCY_SOURCE_old'] del df_rates_flipped['CURRENCY_TARGET_old'] df_rates_flipped['RATE_TYPE'] = '2' #Flipped rates are to be used only if loaded rates do not exist currencies_in_use = list(set(list(set(df_rates['CURRENCY_SOURCE'])) + list(set(df_rates['CURRENCY_TARGET'])))) currencies_in_use.sort() df_rates_passthrough_wip = pd.DataFrame({'CURRENCY_SOURCE' : currencies_in_use}) df_rates_passthrough_wip['CURRENCY_TARGET'] = df_rates_passthrough_wip['CURRENCY_SOURCE'] df_rates_passthrough_wip[rate_field]=1.0 df_rates_passthrough_wip['RATE_TYPE'] = '3' df_rates_passthrough = pd.DataFrame() #Create passthrough rates for each period. for period in periods_in_use: df_rates_passthrough_chunk = df_rates_passthrough_wip.copy(deep=True) df_rates_passthrough_chunk['PERIOD'] = period df_rates_passthrough = pd.concat([df_rates_passthrough, df_rates_passthrough_chunk]) df_rates =
pd.concat([df_rates, df_rates_flipped, df_rates_passthrough])
pandas.concat
# Kør herfra ved start for at få fat i de nødvendige funktioner og dataframes import Functions import pandas as pd from datetime import datetime import matplotlib.pyplot as plt coin_list_NA = ['BTC', 'BCHNA', 'CardonaNA', 'dogecoinNA', 'EOS_RNA', 'ETHNA', 'LTCNA', 'XRP_RNA', 'MoneroNA', 'BNB_RNA', 'IOTANA', 'TEZOSNA', ] coin_list = ['BTC', 'BCH', 'Cardona', 'dogecoin', 'EOS', 'ETH', 'LTC', 'XRP', 'Monero', 'BNB', 'IOTA', 'TEZOS', ] dfAllCoins = pd.DataFrame() dfWMR = pd.read_csv('Data/' + coin_list[0] + '_marketdata.csv', sep=';', thousands=',', decimal='.') dfWMR['Date'] = pd.to_datetime(dfWMR['Date'], format='%b %d, %Y') dfWMR['Date'] = pd.DatetimeIndex(dfWMR['Date']).date dfWMR.index = dfWMR['Date'] dfWMR = dfWMR.sort_index() for column in dfWMR.columns: dfWMR = dfWMR.drop(columns=column) dfPrices = dfWMR dfReturns = dfWMR dfMarketCap = dfWMR dfPositive = dfWMR dfNeutral = dfWMR dfNegative = dfWMR dfMOM3 = dfWMR dfMOM5 = dfWMR dfMOM7 = dfWMR dfMOM14 = dfWMR for i in range(0, len(coin_list)): dfMarket = pd.read_csv('Data/' + coin_list[i] + '_marketdata.csv', sep=';', thousands=',', decimal='.') dfMarket['Date'] = pd.to_datetime(dfMarket['Date'], format='%b %d, %Y') dfMarket['Date'] = pd.DatetimeIndex(dfMarket['Date']).date dfMarket.index = dfMarket['Date'] dfMarket = dfMarket.sort_index() dfMarket['Return'] = dfMarket['Close**'].pct_change() dfMarket = dfMarket[1:] dfMarket['Mom3'] = dfMarket.Return.rolling(3).sum() dfMarket['Mom5'] = dfMarket.Return.rolling(5).sum() dfMarket['Mom7'] = dfMarket.Return.rolling(7).sum() dfMarket['Mom14'] = dfMarket.Return.rolling(14).sum() dfTemp = pd.DataFrame() dfTemp[coin_list[i]] = dfMarket['Return'] dfReturns = dfReturns.merge(dfTemp, how='left', left_index=True, right_index=True) dfTemp =
pd.DataFrame()
pandas.DataFrame
from tradester.feeds.static import SecuritiesTS from matplotlib.gridspec import GridSpec from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd import numpy as np import calendar class Metrics(): def __init__( self, portfolio, oms, start_date, end_date, ): self.portfolio = portfolio self.oms = oms self.start_date = start_date self.end_date = end_date self.holdings = None self.values = None self.trading_log = None self.statistics = None self.monthly_returns_pct = None self.monthly_returns_usd = None self.yearly_returns = None self.ts_yearly_returns_usd = None self.ts_yearly_returns_pct = None def _calculate(self): self.holdings = self.portfolio.holdings_df self.values = self.portfolio.values_df.set_index('date').sort_index() self.trading_log = self.portfolio.trading_log_df #if not self.start_date is None: # self.holdings = self.holdings.loc[self.holdings.date >= pd.to_datetime(self.trade_start_date)] # self.values = self.values.loc[self.values.index >= pd.to_datetime(self.trade_start_date)] # self.trading_log = self.trading_log.loc[self.trading_log.date >= pd.to_datetime(self.trade_start_date)] self.values['expanding_max'] = self.values['value'].expanding().max() self.values['dd_%'] = (self.values['value'] / self.values['expanding_max'] - 1).apply(lambda x: 0 if x > 0 else x) self.values['dd_$'] = (self.values['value'] - self.values['expanding_max']).apply(lambda x: 0 if x > 0 else x) self.values['Long Market Value'] = self.values['long_equity'] / self.values['value'] self.values['Short Market Value'] = self.values['short_equity'] / self.values['value'] self.values['Net Market Value'] = self.values['Long Market Value'] + self.values['Short Market Value'] self.values['Gross Market Value'] = self.values['Long Market Value'] - self.values['Short Market Value'] self.values['cash%'] = self.values['cash']/self.values['value'] - 1 self.values['%'] = self.values['value'].pct_change().fillna(0) self.values['$'] = self.values['value'].diff().fillna(0) self.values['cumulative'] = (1+self.values['%']).cumprod().fillna(1) self.values['date'] = self.values.index self.values['date'] = self.values['date'].apply(lambda x: x.strftime('%Y-%m-%d')) self.values['year-month'] = self.values['date'].apply(lambda x: pd.to_datetime(f'{x.split("-")[0]}' +'-'+ f'{x.split("-")[1]}'+'-01')) self.values['year'] = self.values['date'].apply(lambda x: pd.to_datetime(f'{x.split("-")[0]}'+'-01-01')) self.values['day_of_year'] = self.values['date'].apply(lambda x:
pd.to_datetime(x)
pandas.to_datetime
import logging import requests import json import pandas as pd import timeago from datetime import datetime def get_data(): """ :return: tuple of 2 dataframes :info: actuals: Dataset containing the most recent measurements from the weather stations. forecast: Dataset contaning the 5-day forecast """ data = request_data() actuals = get_actuals(data) logging.info(f"dataset updated {timeago.format(actuals.timestamp[0], datetime.now() )}") logging.info(f"pulled measurements from {len(actuals)} weather stations") forecast = get_forecast(data) logging.info(f"pulled {len(forecast)} records for 5-day forecast") return actuals, forecast def request_data(): """ :return: json object. dataset containing information of weatherstation measurements of Buienradar. """ r = requests.get("https://data.buienradar.nl/2.0/feed/json") data = json.loads(r.text) return data def get_actuals(data): """ :param data: json object retrieved from the buienradar API. :return: dataframe object containing the current station measurements. """ data = data["actual"] stations = data["stationmeasurements"] df =
pd.DataFrame(stations)
pandas.DataFrame
# Import standard python libraries. import pandas as pd import numpy as np import pathlib import warnings import sys # Import the functions used throughout this project from the function dictionary library file fileDir = pathlib.Path(__file__).parents[2] code_library_folder = fileDir / 'Code' / 'function_dictionary_library' sys.path.append(str(code_library_folder)) from coal_data_processing_functions import state_abbreviations, generic_coal_rank, lower_case_data_keys from statistical_functions import ecdf, weighted_ecdf from statistics import mean def weighted_coal_ecdf(coal): warnings # Read in (1) COALQUAL Data (2) and the amount of coal mining done in each county. We use skipfooter to not read in the # search criteria rows. coalqual_filename = fileDir / 'Data' / 'COALQUAL Data' / 'CQ_upper_level.csv' COALQUAL = pd.read_csv(coalqual_filename, header=0, names=['Sample_ID', 'State', 'County', 'Province', 'Region', 'Field', 'Formation', 'Bed', 'Apparent_Rank', 'Sulfur', 'Heat', 'Arsenic', 'Boron', 'Bromine', 'Chlorides', 'Mercury', 'Lead', 'Selenium'], usecols=[0, 1, 2, 5, 6, 7, 9, 11, 28, 84, 87, 147, 151, 159, 165, 191, 219, 239]) mining_volume_filename = fileDir / 'Intermediate' / 'Coal Mining By Counties.csv' Mining_Volume = pd.read_csv(mining_volume_filename, header=0, names=['Coal_Sales', 'FIPS_Code_State', 'County_Name_State_Normal_Capitalization'], usecols=[1, 2, 8]) # Drop COALQUAL anthracite and samples with blank apparent rank. COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Anthracite'] COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Semianthracite'] COALQUAL = COALQUAL[COALQUAL.Apparent_Rank != 'Rock'] COALQUAL = COALQUAL.dropna(subset=['Apparent_Rank']) # Classify apparent ranks into broad categories. COALQUAL['Rank'] = generic_coal_rank(COALQUAL.Apparent_Rank) # Process the columns that will serve as keys for the data merging. COALQUAL['State_Abbreviation'] = state_abbreviations(COALQUAL.State) County_Name_State_Normal_Capitalization = COALQUAL['County'] + ' County, ' + COALQUAL['State_Abbreviation'] COALQUAL['County_Name_State'] = lower_case_data_keys(County_Name_State_Normal_Capitalization) Mining_Volume['County_Name_State'] = lower_case_data_keys(Mining_Volume['County_Name_State_Normal_Capitalization']) # mask = pd.Series(np.isfinite(COALQUAL['Chlorides'])) COALQUAL_all_samples_Cl = COALQUAL.loc[pd.Series(np.isfinite(COALQUAL['Chlorides']))] COALQUAL_all_samples_Br = COALQUAL.loc[pd.Series(np.isfinite(COALQUAL['Bromine']))] COALQUAL_all_samples_Cl = COALQUAL_all_samples_Cl.groupby(['County_Name_State']).mean() COALQUAL_all_samples_Cl['County_Name_State'] = COALQUAL_all_samples_Cl.index COALQUAL_all_samples_Cl =
pd.merge(COALQUAL_all_samples_Cl, Mining_Volume, on='County_Name_State')
pandas.merge
import dash import dash_html_components as html import dash_core_components as dcc import plotly.graph_objects as go import pandas as pd from dash.dependencies import Input, Output from fbprophet import Prophet from datetime import datetime, timedelta # gobals step_num = 100 # Load data df = pd.read_csv('data/stockdata2.csv', index_col=0, parse_dates=True) df.index = pd.to_datetime(df['Date']) # Initialize the app app = dash.Dash(__name__, assets_folder = 'assets') app.config.suppress_callback_exceptions = True # Do hard coded data prep - #TODO move to seperate file df_sub = df.copy() stock = "AAPL" x=df_sub[df_sub['stock'] == stock].index, y=df_sub[df_sub['stock'] == stock][['Date','value']] y.columns = ["ds","y"] y["ds"] = pd.to_datetime(y["ds"]) def simulate_outlier_detection( data = None, delta_test = 3, delta_train = 28, curr_date = pd.to_datetime("2010-01-01") ): y = data.copy() # generate dates maxcut_date = curr_date - timedelta(days=delta_test) mincut_date = curr_date - timedelta(days=delta_train) # generate train data ys = y[(y.ds <= maxcut_date) & (y.ds >= mincut_date)] # generate pred dates future_dates = pd.DataFrame({"ds":[curr_date - timedelta(days=i) for i in range(delta_test)]}) future_dates.sort_values("ds",inplace=True) future_dates.index = future_dates.ds pred_dates =
pd.concat([ys[["ds"]],future_dates],axis=0)
pandas.concat
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandCategory['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandCategory['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=False, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,True,False,'ignore') def test_to_pandas_collection_expandFull(self,dictList_collection,expect_collection_expandFull): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandFull['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandFull['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= True, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) def test_to_pandas_collection_noExpand(self,dictList_collection,expect_collection_noExpand): data = dictList_collection expandTime_ignore = pd.DataFrame(expect_collection_noExpand['ignore']) expandTime_pad = pd.DataFrame(expect_collection_noExpand['pad']) expandTime_remove =
pd.DataFrame(expect_collection_noExpand['remove'])
pandas.DataFrame
import pendulum as pdl import sys sys.path.append(".") # the memoization-related library import loguru import itertools import portion import klepto.keymaps import CacheIntervals as ci from CacheIntervals.utils import flatten from CacheIntervals.utils import pdl2pd, pd2pdl from CacheIntervals.utils import Timer from CacheIntervals.Intervals import pd2po, po2pd from CacheIntervals.RecordInterval import RecordIntervals, RecordIntervalsPandas class QueryRecorder: ''' A helper class ''' pass class MemoizationWithIntervals(object): ''' The purpose of this class is to optimise the number of call to a function retrieving possibly disjoint intervals: - do standard caching for a given function - additively call for a date posterior to one already cached is supposed to yield a pandas Frame which can be obtained by concatenating the cached result and a -- hopefully much -- smaller query Maintains a list of intervals that have been called. With a new interval: - ''' keymapper = klepto.keymaps.stringmap(typed=False, flat=False) def __init__(self, pos_args=None, names_kwarg=None, classrecorder=RecordIntervalsPandas, aggregation=lambda listdfs: pd.concat(listdfs, axis=0), debug=False, # memoization=klepto.lru_cache( # cache=klepto.archives.hdf_archive( # f'{pdl.today().to_date_string()}_memoization.hdf5'), # keymap=keymapper), memoization=klepto.lru_cache( cache=klepto.archives.dict_archive(), keymap=keymapper), **kwargs): ''' :param pos_args: the indices of the positional arguments that will be handled as intervals :param names_kwarg: the name of the named parameters that will be handled as intervals :param classrecorder: the interval recorder type we want to use :param memoization: a memoization algorithm ''' # A dictionary of positional arguments indices # that are intervals self.argsi = {} self.kwargsi = {} # if pos_args is not None: # for posarg in pos_args: # self.argsi[posarg] = classrecorder(**kwargs) self.pos_args_itvl = pos_args if pos_args is not None else [] #print(self.args) # if names_kwarg is not None: # for namedarg in names_kwarg: # self.kwargsi[namedarg] = classrecorder(**kwargs) self.names_kwargs_itvl = names_kwarg if names_kwarg is not None else {} #print(self.kwargs) self.memoization = memoization self.aggregation = aggregation self.debugQ = debug self.argsdflt = None self.kwargsdflt = None self.time_last_call = pdl.today() self.classrecorder = classrecorder self.kwargsrecorder = kwargs self.argssolver = None self.query_recorder = QueryRecorder() def __call__(self, f): ''' The interval memoization leads to several calls to the standard memoised function and generates a list of return values. The aggregation is needed for the doubly lazy function to have the same signature as the To access, the underlying memoized function pass get_function_cachedQ=True to the kwargs of the overloaded call (not of this function :param f: the function to memoize :return: the wrapper to the memoized function ''' if self.argssolver is None: self.argssolver = ci.Functions.ArgsSolver(f, split_args_kwargsQ=True) @self.memoization def f_cached(*args, **kwargs): ''' The cached function is used for a double purpose: 1. for standard calls, will act as the memoised function in a traditional way 2. Additively when pass parameters of type QueryRecorder, it will create or retrieve the interval recorders associated with the values of non-interval parameters. In this context, we use the cached function as we would a dictionary. ''' QueryRecorderQ = False args_new = [] kwargs_new = {} ''' check whether this is a standard call to the user function or a request for the interval recorders ''' for i,arg in enumerate(args): if isinstance(arg, QueryRecorder): args_new.append(self.classrecorder(**self.kwargsrecorder)) QueryRecorderQ = True else: args_new.append(args[i]) for name in kwargs: if isinstance(kwargs[name], QueryRecorder): kwargs_new[name] = self.classrecorder(**self.kwargsrecorder) QueryRecorderQ = True else: kwargs_new[name] = kwargs[name] if QueryRecorderQ: return args_new, kwargs_new return f(*args, **kwargs) def wrapper(*args, **kwargs): if kwargs.get('get_function_cachedQ', False): return f_cached #loguru.logger.debug(f'function passed: {f_cached}') loguru.logger.debug(f'args passed: {args}') loguru.logger.debug(f'kwargs passed: {kwargs}') # First pass: resolve the recorders dargs_exp, kwargs_exp = self.argssolver(*args, **kwargs) # Intervals are identified by position and keyword name # 1. First get the interval recorders args_exp = list(dargs_exp.values()) args_exp_copy = args_exp.copy() kwargs_exp_copy = kwargs_exp.copy() for i in self.pos_args_itvl: args_exp_copy[i] = self.query_recorder for name in self.names_kwargs_itvl: kwargs_exp_copy[name] = self.query_recorder args_with_ri, kwargs_with_ri = f_cached(*args_exp_copy, **kwargs_exp_copy) # 2. Now get the the actual list of intervals for i in self.pos_args_itvl: # reuse args_exp_copy to store the list args_exp_copy[i] = args_with_ri[i](args_exp[i]) for name in self.names_kwargs_itvl: # reuse kwargs_exp_copy to store the list kwargs_exp_copy[name] = kwargs_with_ri[name](kwargs_exp[name]) '''3. Then generate all combination of parameters 3.a - args''' ns_args = range(len(args_exp)) lists_possible_args = [[args_exp[i]] if i not in self.pos_args_itvl else args_exp_copy[i] for i in ns_args] # Take the cartesian product of these calls_args = list( map(list,itertools.product(*lists_possible_args))) '''3.b kwargs''' #kwargs_exp_vals = kwargs_exp_copy.values() names_kwargs = list(kwargs_exp_copy.keys()) lists_possible_kwargs = [[kwargs_exp[name]] if name not in self.names_kwargs_itvl else kwargs_exp_copy[name] for name in names_kwargs] calls_kwargs = list(map(lambda l: dict(zip(names_kwargs,l)), itertools.product(*lists_possible_kwargs))) calls = list(itertools.product(calls_args, calls_kwargs)) if self.debugQ: results = [] for call in calls: with Timer() as timer: results.append(f_cached(*call[0], **call[1]) ) print('Timer to demonstrate caching:') timer.display(printQ=True) else: results = [f_cached(*call[0], **call[1]) for call in calls] result = self.aggregation(results) return result return wrapper if __name__ == "__main__": import logging import daiquiri import pandas as pd import time daiquiri.setup(logging.DEBUG) logging.getLogger('OneTick64').setLevel(logging.WARNING) logging.getLogger('databnpp.ODCB').setLevel(logging.WARNING) logging.getLogger('requests_kerberos').setLevel(logging.WARNING) pd.set_option('display.max_rows', 200)
pd.set_option('display.width', 600)
pandas.set_option
from robust_rcf import robust_rcf import numpy as np import pandas as pd from evaluate import evaluate, anomaly_classification_percentile from sklearn.metrics import accuracy_score import time import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler def test_rrcf_simon(data, sample = 0.1): # load / prepare data df = pd.DataFrame(data, columns = ['Timestamp','Year', 'Month', 'Day of Month', 'Day of Week', 'Hour', 'Minute', 'Seconds', 'Simon Features', 'file']) # shuffle values for SIMON training / testing df_shuffle = df.sample(frac = 1) simon_features = np.array(df_shuffle['Simon Features'].values.tolist()) labels = (df_shuffle['file'] != 'enron.jsonl').astype(int) # break into train / test by oldest / newest train_split = int(0.6 * df.shape[0]) val_split = int(0.3 * df.shape[0] * sample) simon_train, y_train = simon_features[:train_split], labels[:train_split] simon_val, y_val = simon_features[train_split:train_split + val_split], labels[train_split:train_split + val_split] simon_test, y_test = simon_features[train_split + val_split:], labels[train_split + val_split:] # print anomalous percentage in train / val / test print('There are {} ({} %) anomalous examples in the train set'.format(sum(y_train), 100 * sum(y_train) / len(y_train))) print('There are {} ({} %) anomalous examples in the sampled validation set'.format(sum(y_val), 100 * sum(y_val) / len(y_val))) print('There are {} ({} %) anomalous examples in the test set'.format(sum(y_test), 100 * sum(y_test) / len(y_test))) # test batch anomaly detection on SIMON features # initially set num_samples_per_tree based on ratio of anomalies tree_size = int((df.shape[0] - sum(labels)) / sum(labels) * 2) num_trees = 200 start_time = time.time() print('Fitting batch anomaly detection on training set...') clf = robust_rcf(num_trees, tree_size) clf.fit_batch(simon_train) print('Fitting batch anomaly detection took {} seconds'.format(time.time() - start_time)) ''' print('Scoring training set') start_time = time.time() anom_score = clf.batch_anomaly_scores() print('Scoring batch anomaly detection took {} seconds'.format(time.time() - start_time)) # set threshold as % of anomalies in sample # TODO = add function that can do percentile or z-score anom_thresh = (len(labels) - sum(labels)) / len(labels) * 100 anom_pred = anomaly_classification_percentile(anom_score, anom_thresh) print("Training Set Evaluation") print(evaluate(y_train, anom_pred)) ''' # eval on validation set print('Scoring validation set') start_time = time.time() val_anom_score = clf.anomaly_score(simon_val) print('Scoring batch anomaly detection took {} seconds on ({} %) of the validation set'.format(time.time() - start_time, 100 * sample)) val_anom_pred = anomaly_classification_percentile(val_anom_score, anom_thresh) print("Validation Set Evaluation") print(evaluate(y_val, val_anom_pred)) # test streaming anomaly detection on SIMON features (just validation set) print('Fitting / scoring streaming anomaly detection on validation set...') start_time = time.time() stream_anom_scores = clf.stream_anomaly_scores(simon_val, window_size = 1, new_forest=True) print('Fitting / Scoring streaming anomaly detection took {} seconds on ({}%) of the validation set'.format(time.time() - start_time, 100 * sample)) val_anom_pred = anomaly_classification_percentile(stream_anom_scores, anom_thresh) print("Validation Set Evaluation") print(evaluate(y_val, val_anom_pred)) def test_rrcf_enron_times(data, sample = 0.1, anom_thresh = 95): ''' Test batch and streaming anomaly detection on just Enron email time features ''' # sort Enron emails by timestamp df = pd.DataFrame(data, columns = ['Timestamp','Year', 'Month', 'Day of Month', 'Day of Week', 'Hour', 'Minute', 'Seconds', 'Simon Features', 'file']) df = df.loc[df['file'] == 'enron.jsonl'].sort_values(by = 'Timestamp') # convert timestamp column to timestamp difference df['Timestamp Difference'] = df['Timestamp'].diff() # drop non-time columns df.drop(['Timestamp', 'Simon Features', 'file'], axis=1, inplace=True) #df = df[['Timestamp Difference']] # cast to np array of float values and remove initial timestamp (nan time difference) df = df.values.astype(float)[1:] # test on sample of training / validation data train_split = int(0.6 * df.shape[0] * sample) val_split = int(0.3 * df.shape[0] * sample) enron_train = df[:train_split] enron_val = df[train_split:train_split + val_split] plt.hist(enron_train) plt.show() plt.hist(enron_val) plt.show() # test batch anomaly detection tree_size = 100 num_trees = 100 start_time = time.time() print('Fitting batch anomaly detection on training set...') clf = robust_rcf(num_trees, tree_size) clf.fit_batch(enron_train) print('Fitting batch anomaly detection took {} seconds'.format(time.time() - start_time)) print('Scoring training set') start_time = time.time() anom_score = clf.anomaly_score(enron_train) print('Scoring batch anomaly detection took {} seconds'.format(time.time() - start_time)) # set "true" anomalies just based on frequency anom_pred = anomaly_classification_percentile(anom_score, anom_thresh) anom_true = (enron_train[:,-1] < np.percentile(enron_train[:,-1], 100 - anom_thresh)).astype(int) print("Training Set Evaluation") print(evaluate(anom_true, anom_pred)) # eval on validation set print('Scoring validation set') start_time = time.time() val_anom_score = clf.anomaly_score(enron_val) print('Scoring batch anomaly detection took {} seconds on ({} %) of the validation set'.format(time.time() - start_time, 100 * sample)) val_anom_pred = anomaly_classification_percentile(val_anom_score, anom_thresh) anom_true = (enron_val[:,-1] < np.percentile(enron_val[:,-1],100 - anom_thresh)).astype(int) print("Validation Set Evaluation") print(evaluate(anom_true, val_anom_pred)) # graph results colors = ('blue', 'red') targets = ('non-anomalous', 'anomalous') enron_scaled = MinMaxScaler().fit_transform(enron_train[:,-1].reshape(-1,1)).reshape(-1,) pred_indices = (np.where(val_anom_pred == 0), np.where(val_anom_pred == 1)) pred_data = (enron_scaled[np.where(val_anom_pred == 0)[0]], enron_scaled[np.where(val_anom_pred == 1)[0]]) plt.subplot(2,1,1) for index, dat, color, target in zip(pred_indices, pred_data, colors, targets): plt.scatter(index[0], dat, c = color, label = target, s=10) plt.legend() plt.title('Batch Anomaly Detection on Enron Time Series Data') plt.show() # test streaming anomaly detection on Enron time features (just validation set) print('Fitting / scoring streaming anomaly detection on validation set...') start_time = time.time() stream_anom_scores = clf.stream_anomaly_scores(enron_val, window_size = 1, new_forest=True) print('Fitting / Scoring streaming anomaly detection took {} seconds on ({} %) of the validation set'.format(time.time() - start_time, 100 * sample)) val_anom_pred = anomaly_classification_percentile(stream_anom_scores, anom_thresh) print("Validation Set Evaluation") print(evaluate(anom_true, val_anom_pred)) # graph results colors = ('blue', 'red') targets = ('non-anomalous', 'anomalous') enron_scaled = MinMaxScaler().fit_transform(enron_train[:,-1].reshape(-1,1)).reshape(-1,) pred_indices = (np.where(val_anom_pred == 0), np.where(val_anom_pred == 1)) pred_data = (enron_scaled[np.where(val_anom_pred == 0)[0]], enron_scaled[np.where(val_anom_pred == 1)[0]]) plt.subplot(2,1,1) for index, dat, color, target in zip(pred_indices, pred_data, colors, targets): plt.scatter(index[0], dat, c = color, label = target, s=10) plt.legend() plt.title('Batch Anomaly Detection on Enron Time Series Data') plt.show() # test streaming anomaly detection on Enron time features (just validation set) print('Fitting / scoring streaming anomaly detection on validation set...') start_time = time.time() stream_anom_scores = clf.stream_anomaly_scores(enron_val, window_size = 1, new_forest=True) print('Fitting / Scoring streaming anomaly detection took {} seconds on ({} %) of the validation set'.format(time.time() - start_time, 100 * sample)) val_anom_pred = anomaly_classification_percentile(stream_anom_scores, anom_thresh) print("Validation Set Evaluation") print(evaluate(anom_true, val_anom_pred)) # graph results colors = ('blue', 'red') targets = ('non-anomalous', 'anomalous') pred_indices = (np.where(val_anom_pred == 0), np.where(val_anom_pred == 1)) pred_data = (enron_scaled[np.where(val_anom_pred == 0)[0]], enron_scaled[np.where(val_anom_pred == 1)[0]]) plt.subplot(2,1,2) for index, dat, color, target in zip(pred_indices, pred_data, colors, targets): plt.scatter(index[0], dat, c = color, label = target, s=10) plt.legend() plt.title('Streaming Anomaly Detection on Enron Time Series Data') plt.show() def test_rrcf_enron_jpl_times(data, sample = 0.1): ''' Test batch and streaming anomaly detection on JPL Abuse emails superimposed on Enron email distribution over time ''' # graph JPL / Nigerian timestamps vs Enron timestamps df =
pd.DataFrame(data, columns = ['Timestamp','Year', 'Month', 'Day of Month', 'Day of Week', 'Hour', 'Minute', 'Seconds', 'Simon Features', 'file'])
pandas.DataFrame
import time from functools import wraps import pandas as pd def timer(f): @wraps(f) def wrap(*args, **kwargs): start = time.time() x = f(*args, **kwargs) print(f"time for {f.__name__}: {time.time() - start}") return x return wrap def show_shape(f): @wraps(f) def wrap(*args, **kwargs): print(f"\nfunction: {f.__name__}") for key, val in kwargs.items(): if isinstance(val, pd.DataFrame): print(f"{key}.shape: {val.shape}") x = f(*args, **kwargs) return x return wrap @timer @show_shape def process_data(df1, df2): time.sleep(0.3) return pd.concat([df1, df2]) @timer @show_shape def model_train(training_df): time.sleep(0.3) return training_df @timer @show_shape def evaluate(evaluate_df, df1, df2): time.sleep(0.3) @timer def pipeline(df1, df2): df = process_data(df1=df1, df2=df2) df = model_train(training_df=df) evaluate(evaluate_df=df, df1=df1, df2=df2) if __name__ == "__main__": d1 = {"col1": [1, 2], "col2": [3, 4]} df1 = pd.DataFrame(data=d1) d2 = {"col1": [1, 2, 3], "col2": [3, 4, 5]} df2 =
pd.DataFrame(data=d2)
pandas.DataFrame
# USDA_ERS_MLU.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 """ USDA Economic Research Service (ERS) Major Land Uses (MLU) https://www.ers.usda.gov/data-products/major-land-uses/ Last updated: Thursday, April 16, 2020 """ import io import pandas as pd import numpy as np from flowsa.location import get_all_state_FIPS_2, US_FIPS from flowsa.settings import vLogDetailed from flowsa.flowbyfunctions import assign_fips_location_system, aggregator from flowsa.common import load_crosswalk from flowsa.literature_values import \ get_area_of_rural_land_occupied_by_houses_2013, \ get_area_of_urban_land_occupied_by_houses_2013, \ get_transportation_sectors_based_on_FHA_fees, \ get_urban_land_use_for_airports, \ get_urban_land_use_for_railroads, get_open_space_fraction_of_urban_area from flowsa.validation import compare_df_units def mlu_call(*, resp, **_): """ Convert response for calling url to pandas dataframe, begin parsing df into FBA format :param resp: df, response from url call :return: pandas dataframe of original source data """ with io.StringIO(resp.text) as fp: df =
pd.read_csv(fp, encoding="ISO-8859-1")
pandas.read_csv
# Copyright 2021 NREL # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # See https://floris.readthedocs.io for documentation import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import floris.tools as wfct import floris.tools.cut_plane as cp import floris.tools.wind_rose as rose import floris.tools.power_rose as pr import floris.tools.visualization as vis # Instantiate the FLORIS object file_dir = os.path.dirname(os.path.abspath(__file__)) fi = wfct.floris_interface.FlorisInterface( os.path.join(file_dir, "../example_input.json") ) # Define wind farm coordinates and layout wf_coordinate = [39.8283, -98.5795] # Below minimum wind speed, assumes power is zero. minimum_ws = 3.0 # Set wind farm to N_row x N_row grid with constant spacing # (2 x 2 grid, 5 D spacing) D = fi.floris.farm.turbines[0].rotor_diameter N_row = 2 spc = 5 layout_x = [] layout_y = [] for i in range(N_row): for k in range(N_row): layout_x.append(i * spc * D) layout_y.append(k * spc * D) N_turb = len(layout_x) fi.reinitialize_flow_field( layout_array=(layout_x, layout_y), wind_direction=[270.0], wind_speed=[8.0] ) fi.calculate_wake() # ================================================================================ print("Plotting the FLORIS flowfield...") # ================================================================================ # Initialize the horizontal cut hor_plane = fi.get_hor_plane(height=fi.floris.farm.turbines[0].hub_height) # Plot and show fig, ax = plt.subplots() wfct.visualization.visualize_cut_plane(hor_plane, ax=ax) ax.set_title("Baseline flow for U = 8 m/s, Wind Direction = 270$^\\circ$") # ================================================================================ print("Importing wind rose data...") # ================================================================================ # Create wind rose object and import wind rose dataframe using WIND Toolkit # HSDS API. Alternatively, load existing file with wind rose information. calculate_new_wind_rose = False wind_rose = rose.WindRose() if calculate_new_wind_rose: wd_list = np.arange(0, 360, 5) ws_list = np.arange(0, 26, 1) df = wind_rose.import_from_wind_toolkit_hsds( wf_coordinate[0], wf_coordinate[1], ht=100, wd=wd_list, ws=ws_list, limit_month=None, st_date=None, en_date=None, ) else: df = wind_rose.load( os.path.join(file_dir, "../optimization/scipy/windtoolkit_geo_center_us.p") ) # plot wind rose wind_rose.plot_wind_rose() # ============================================================================= print("Finding power with and without wakes in FLORIS...") # ============================================================================= # Determine baseline power with and without wakes # Put results in dict for speed power_dict = dict() for i in range(len(df.wd)): print( "Computing wind speed, wind direction pair " + str(i) + " out of " + str(len(df.wd)) + ": wind speed = " + str(df.ws[i]) + " m/s, wind direction = " + str(df.wd[i]) + " deg." ) if df.ws[i] >= minimum_ws: fi.reinitialize_flow_field(wind_direction=[df.wd[i]], wind_speed=[df.ws[i]]) # calculate baseline power fi.calculate_wake() power_base = fi.get_turbine_power() # calculate power for no wake case fi.calculate_wake(no_wake=True) power_no_wake = fi.get_turbine_power(no_wake=True) else: power_base = N_turb * [0.0] power_no_wake = N_turb * [0.0] power_dict[i] = { "ws": df.ws[i], "wd": df.wd[i], "power_baseline": np.sum(power_base), "turbine_power_baseline": power_base, "power_no_wake": np.sum(power_no_wake), "turbine_power_no_wake": power_no_wake, } df_base =
pd.DataFrame.from_dict(power_dict, "index")
pandas.DataFrame.from_dict
import pandas as pd import numpy as np import dask import scipy import time from functools import partial from abc import ABCMeta, abstractmethod from sklearn.decomposition import PCA from sklearn.preprocessing import scale import point_in_polygon from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel, RBF, DotProduct, WhiteKernel import factorialModel import loadData import matplotlib.pyplot as plt from scipy.interpolate import interp2d, griddata import SSVI import bootstrapping ####################################################################################################### class InterpolationModel(factorialModel.FactorialModel): def __init__(self, learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName = "./bestInterpolationModel"): super().__init__(learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName) #Build the learner def buildModel(self): #raise NotImplementedError() return def trainWithSession(self, session, inputTrain, nbEpoch, inputTest = None): raise NotImplementedError("Not a tensorflow model") return super().trainWithSession(session, inputTrain, nbEpoch, inputTest = inputTest) def train(self, inputTrain, nbEpoch, inputTest = None): #Do nothing return np.array([0.0]) def evalModelWithSession(self, sess, inputTest): raise NotImplementedError("Not a tensorflow model") return super().evalModelWithSession(sess, inputTest) def evalModel(self, inputTestList): #No loss since we interpolate exactly inputTest = inputTestList[0] coordinates = inputTestList[1] loss = pd.Series(np.zeros(inputTest.shape[0]), index = inputTest.index) #Return the inputs as compressed values inputs = inputTest.apply(lambda x : self.interpolate(x, coordinates.loc[x.name]), axis=1) #We do not have any factors so we assign a dummy value of 1 factors = pd.DataFrame(np.ones((inputTest.shape[0],self.nbFactors)), index=inputTest.index) return loss, inputs, factors def getWeightAndBiasFromLayer(self, layer): raise NotImplementedError("Not a tensorflow model") return super().getWeightAndBiasFromLayer(layer) #Interpolate or extrapolate certain values given the knowledge of other ones def interpolate(self, incompleteSurface, coordinates): raise NotImplementedError() return pd.Series() def completeDataTensor(self, sparseSurfaceList, initialValueForFactors, nbCalibrationStep): # knownValues = sparseSurface.dropna() # locationToInterpolate = sparseSurface[sparseSurface.isna()].index sparseSurface = sparseSurfaceList[0] coordinates = sparseSurfaceList[1] interpolatedValues = self.interpolate(sparseSurface, coordinates) #Not a factorial model, we assign a dummy value bestFactors = np.ones(self.nbFactors) #Exact inteprolation calibrationLoss = 0.0 calibrationSerie = pd.Series([calibrationLoss]) #Complete surface with inteporlated values bestSurface = interpolatedValues return calibrationLoss, bestFactors, bestSurface, calibrationSerie #Interpolation does not assume any factors but relies on some known values def evalSingleDayWithoutCalibrationWithSensi(self, initialValueForFactors, dataSetList): raise NotImplementedError("Not a factorial model") return super().evalSingleDayWithoutCalibrationWithSensi(initialValueForFactors, dataSetList) def plotInterpolatedSurface(self,valueToInterpolate, calibratedFactors, colorMapSystem=None, plotType=None): raise NotImplementedError("Not a factorial model") return def evalInterdependancy(self, fullSurfaceList): raise NotImplementedError("Not a Factorial model") return def evalSingleDayWithoutCalibration(self, initialValueForFactors, dataSetList): raise NotImplementedError("Not a Factorial model") return #ToolBox ####################################################################################################### def getMaskedPoints(incompleteSurface, coordinates): return coordinates.loc[incompleteSurface.isna()] def getMaskMatrix(incompleteSurface): maskMatrix = incompleteSurface.copy().fillna(True) maskMatrix.loc[~incompleteSurface.isna()] = False return maskMatrix #maskedGrid : surface precising missing value with a NaN #Assuming indexes and columns are sorted #Select swaption coordinates (expiry, tenor) whose value is known and are on the boundary #This defined a polygon whose vertices are known values def selectPolygonOuterPoints(coordinates): outerPoints = [] #Group coordinates by first coordinate splittedCoordinates = {} for tple in coordinates.values : if tple[0] not in splittedCoordinates : splittedCoordinates[tple[0]] = [] splittedCoordinates[tple[0]].append(tple[1]) #Get maximum and minimum for the second dimension for key in splittedCoordinates.keys(): yMin = np.nanmin(splittedCoordinates[key]) yMax = np.nanmax(splittedCoordinates[key]) outerPoints.append((key,yMin)) outerPoints.append((key,yMax)) return outerPoints def removeNaNcooridnates(coordinatesList): isNotNaN = [False if (np.isnan(x[0]) or np.isnan(x[1])) else True for x in coordinatesList] return coordinatesList[isNotNaN] #Order a list of vertices to form a polygon def orderPolygonVertices(outerPointList): sortedPointList = np.sort(outerPointList) #np sort supports array of tuples #Points are built as a pair of two points for value in the first dimension #Hence the polygon starts with points having the first value for the second dimension #(and order them along the first dimension) orderedListOfVertices = sortedPointList[::2] #We then browse the remaining points but in the reverse order for the second dimension orderedListOfVertices = sortedPointList[1::2][::-1] return orderedListOfVertices #Select swaption coordinates (expiry, tenor) whose value is known and are on the boundary #This defined a polygon whose vertices are known values def buildInnerDomainCompletion(incompleteSurface, coordinates): coordinatesWithValues = coordinates.loc[~incompleteSurface.isna()] outerPointsList = selectPolygonOuterPoints(coordinatesWithValues) verticesList = orderPolygonVertices(outerPointsList) expiryVertices, tenorVectices = zip(*verticesList) return expiryVertices, tenorVectices #Select swaption coordinates (expiry, tenor) whose value is known #and their coordinate corresponds to maximum/minimum value for x axis and y axis #This defines a quadrilateral def buildOuterDomainCompletion(incompleteSurface, coordinates): coordinatesWithValues = coordinates.loc[~incompleteSurface.isna()].values firstDimValues = list(map(lambda x : x[0], coordinatesWithValues)) secondDimValues = list(map(lambda x : x[1], coordinatesWithValues)) maxExpiry = np.amax(firstDimValues) minExpiry = np.nanmin(firstDimValues) maxTenor = np.amax(secondDimValues) minTenor = np.nanmin(secondDimValues) expiryVertices = [maxExpiry, maxExpiry, minExpiry, minExpiry, maxExpiry] tenorVectices = [maxTenor, minTenor, minTenor, maxTenor, maxTenor] return expiryVertices, tenorVectices #verticesList : list of vertices defining the polygon #Points : multiIndex serie for which we want to check the coordinates belongs to the domain defined by the polygon #Use Winding number algorithm def areInPolygon(verticesList, points): return pd.Series(points.map(lambda p : point_in_polygon.wn_PnPoly(p, verticesList) != 0).values, index = points.index) #Return the list (pandas Dataframe) of points which are located in the domain (as a closed set) #The closure ( i.e. edge of the domain ) is also returned #defined by points which are not masked def areInInnerPolygon(incompleteSurface, coordinates, showDomain = False): #Add the frontier gridPoints = coordinates.loc[~incompleteSurface.isna()] #Build polygon from the frontier expiriesPolygon, tenorsPolygon = buildInnerDomainCompletion(incompleteSurface, coordinates) polygon = list(zip(expiriesPolygon,tenorsPolygon)) #Search among masked points which ones lie inside the polygon maskedPoints = getMaskedPoints(incompleteSurface, coordinates) interiorPoints = areInPolygon(polygon, maskedPoints) if not interiorPoints.empty : gridPoints = gridPoints.append(maskedPoints[interiorPoints]).drop_duplicates() if showDomain : plt.plot(expiriesPolygon,tenorsPolygon) plt.xlabel("First dimension") plt.xlabel("Second dimension") plt.plot(gridPoints.map(lambda x : x[0]).values, gridPoints.map(lambda x : x[1]).values, 'ro') plt.show() return gridPoints #Return the list (pandas Dataframe) of points which are located in the outer domain (as a closed set) #Outer domain is delimited by the maximum and minimum coordinates of the known values #inner domain is delimited by the polygon whose vertices are the known points #showDomain plots the boundary ( i.e. edge of the domain ) and the points which are inside the quadrilateral def areInOuterPolygon(incompleteSurface, coordinates, showDomain = False): #Add the frontier gridPoints = coordinates.loc[~incompleteSurface.isna()] #Build polygon from the frontier expiriesPolygon, tenorsPolygon = buildOuterDomainCompletion(incompleteSurface, coordinates) polygon = list(zip(expiriesPolygon,tenorsPolygon)) #Search among masked points which ones lie inside the polygon maskedPoints = getMaskedPoints(incompleteSurface, coordinates) interiorPoints = areInPolygon(polygon, maskedPoints) if not interiorPoints.empty : gridPoints = gridPoints.append(maskedPoints[interiorPoints]).drop_duplicates() if showDomain : plt.plot(expiriesPolygon,tenorsPolygon) plt.xlabel("First dimension") plt.xlabel("Second dimension") plt.plot(gridPoints.map(lambda x : x[0]).values, gridPoints.map(lambda x : x[1]).values, 'ro') plt.show() return gridPoints ####################################################################################################### #Linear interpolation with flat extrapolation #Assume row are non empty def interpolateRow(row, coordinates): definedValues = row.dropna() if definedValues.size == 1 : return pd.Series(definedValues.iloc[0] * np.ones_like(row), index = row.index) else : #Flat extrapolation and linear interpolation based on index (Tenor) value filledRow = row.interpolate(method='index', limit_direction = 'both') return filledRow def formatCoordinatesAsArray(coordinateList): x = np.ravel(list(map(lambda x : x[0], coordinateList))) y = np.ravel(list(map(lambda x : x[1], coordinateList))) return np.vstack((x, y)).T #Linear interpolation combined with Nearest neighbor extrapolation # drawn from https://github.com/mChataign/DupireNN def customInterpolator(interpolatedData, formerCoordinates, NewCoordinates): knownPositions = formatCoordinatesAsArray(formerCoordinates) xNew = np.ravel(list(map(lambda x : x[0], NewCoordinates))) yNew = np.ravel(list(map(lambda x : x[1], NewCoordinates))) # print(type(xNew)) # print(type(yNew)) # print(np.array((xNew, yNew)).T.shape) # print(type(interpolatedData)) # print(type(knownPositions)) # print() fInterpolation = griddata(knownPositions, np.ravel(interpolatedData), np.array((xNew, yNew)).T, method = 'linear', rescale=True) fExtrapolation = griddata(knownPositions, np.ravel(interpolatedData), np.array((xNew, yNew)).T, method = 'nearest', rescale=True) return np.where(np.isnan(fInterpolation), fExtrapolation, fInterpolation) def interpolate(incompleteSurface, coordinates): knownValues = incompleteSurface.dropna() knownLocation = coordinates.loc[knownValues.index] locationToInterpolate = coordinates.drop(knownValues.index) interpolatedValues = customInterpolator(knownValues.values, knownLocation.values, locationToInterpolate.values) completeSurface = pd.Series(interpolatedValues, index = locationToInterpolate.index).append(knownValues) return completeSurface.loc[incompleteSurface.index].rename(incompleteSurface.name) def extrapolationFlat(incompleteSurface, coordinates): filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(incompleteSurface, coordinates) correctedSurface = interpolate(filteredSurface, filteredCoordinates) correctedSurface = correctedSurface.append(pd.Series(incompleteSurface.drop(filteredCoordinates.index), index = coordinates.drop(filteredCoordinates.index).index)) return correctedSurface.sort_index() ####################################################################################################### class LinearInterpolation(InterpolationModel): def __init__(self, learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName = "./bestLinearInterpolationModel"): super().__init__(learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName) #Extrapolation is flat and interpolation is linear def interpolate(self, incompleteSurface, coordinates): filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(incompleteSurface, coordinates) interpolatedSurface = interpolate(filteredSurface, filteredCoordinates) nanSurface = incompleteSurface.drop(interpolatedSurface.index) return interpolatedSurface.append(nanSurface)[coordinates.index].rename(incompleteSurface.name) # #Build the learner # def buildModel(self): # raise NotImplementedError() # return ####################################################################################################### class SplineInterpolation(LinearInterpolation): def __init__(self, learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName = "./bestSplineInterpolationModel"): super().__init__(learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName) def customInterpolator(self, interpolatedData, formerCoordinates, NewCoordinates): knownPositions = formatCoordinatesAsArray(formerCoordinates) xNew = np.ravel(list(map(lambda x : x[0], NewCoordinates))) yNew = np.ravel(list(map(lambda x : x[1], NewCoordinates))) fInterpolation = griddata(knownPositions, np.ravel(interpolatedData), (xNew, yNew), method = 'cubic', rescale=True) fExtrapolation = griddata(knownPositions, np.ravel(interpolatedData), (xNew, yNew), method = 'nearest', rescale=True) return np.where(np.isnan(fInterpolation), fExtrapolation, fInterpolation) #Extrapolation is flat and interpolation is linear def interpolate(self, incompleteSurface, coordinates): filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(incompleteSurface, coordinates) knownValues = filteredSurface.dropna() knownLocation = filteredCoordinates.loc[knownValues.index] locationToInterpolate = filteredCoordinates.drop(knownValues.index) interpolatedValues = self.customInterpolator(knownValues.values, knownLocation.values, locationToInterpolate.values) completeSurface = pd.Series(interpolatedValues, index = locationToInterpolate.index).append(knownValues) interpolatedSurface = completeSurface.loc[filteredSurface.index].rename(filteredSurface.name) nanSurface = incompleteSurface.drop(interpolatedSurface.index) return interpolatedSurface.append(nanSurface)[coordinates.index].rename(incompleteSurface.name) ####################################################################################################### class GaussianProcess(InterpolationModel): def __init__(self, learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName = "./bestGaussianModel"): super().__init__(learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName) self.TrainGaussianHyperparameters = (self.hyperParameters["Train Interpolation"] if ("Train Interpolation" in self.hyperParameters) else False) self.sigmaF = self.hyperParameters["sigmaF"] if ("sigmaF" in self.hyperParameters) else 50.0 self.bandwidth = self.hyperParameters["bandwidth"] if ("bandwidth" in self.hyperParameters) else 0.5 self.sigmaBounds = self.hyperParameters["sigmaBounds"] if ("sigmaBounds" in self.hyperParameters) else (1.0, 200.0) self.bandwidthBounds = self.hyperParameters["bandwidthBounds"] if ("bandwidthBounds" in self.hyperParameters) else (0.01, 10.0) self.kernel = (ConstantKernel(constant_value=self.sigmaF, constant_value_bounds=self.sigmaBounds) * RBF(length_scale=self.bandwidth, length_scale_bounds=self.bandwidthBounds)) def kernelRBF(self, X1, X2, sigma_f=1.0, l=1.0): ''' Isotropic squared exponential kernel. Computes a covariance matrix from points in X1 and X2. Args: X1: Array of m points (m x d). X2: Array of n points (n x d). Returns: Covariance matrix (m x n). ''' #print("sigma_f : ",sigma_f," l : ",l) sqdist = np.sum(X1**2, 1).reshape(-1, 1) + np.sum(X2**2, 1) - 2 * np.dot(X1, X2.T) return sigma_f**2 * np.exp(-0.5 / l**2 * sqdist) def predictGaussianModel(self, X, XStar, Y, sigma_f, l): KStar = self.kernelRBF(X, XStar, sigma_f, l) KStarT = KStar.T K = self.kernelRBF(X, X, sigma_f, l) #Add noise to avoid singular matrix problem noise = (1e-9) * np.eye(K.shape[0]) KInv = np.linalg.inv(K + noise) KStarStar = self.kernelRBF(XStar, XStar, sigma_f, l) YStar = np.dot(np.dot(KStarT,KInv),Y) YStarUncertainty = KStarStar - np.dot(np.dot(KStarT,KInv),KStar) return YStar, YStarUncertainty def predictGaussianModelFormatted(self, knownValues, locationToInterpolate, coordinates): knownLocation = coordinates.loc[knownValues.index] #Optimize on log parameters interpolatedValues, _ = self.predictGaussianModel(formatCoordinatesAsArray(knownLocation.values), formatCoordinatesAsArray(locationToInterpolate.values), knownValues.values, np.exp(self.kernel.theta[0]), np.exp(self.kernel.theta[1])) return pd.Series(interpolatedValues, index = locationToInterpolate.index) #Interpolate or extrapolate certain values given the knowledge of other ones def interpolate(self, incompleteSurface, coordinates): filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(incompleteSurface, coordinates) nanSurface = incompleteSurface.drop(filteredSurface.index) extrapolationMode = self.hyperParameters["extrapolationMode"] if "extrapolationMode" in self.hyperParameters else None #NoExtrapolation : NoExtrapolation | InnerDomain | OuterDomain #LocationToInterpolate : Index of missing values #knownValues : Serie of values which are known knownValues = filteredSurface.dropna() if knownValues.size == filteredSurface.size : #No value to interpolate return incompleteSurface resSurface = filteredSurface.copy() interpolatedPoint = None if extrapolationMode == 'InnerDomain' : interpolatedPoint = areInInnerPolygon(filteredSurface, filteredCoordinates) elif extrapolationMode == 'OuterDomain' : interpolatedPoint = areInOuterPolygon(filteredSurface, filteredCoordinates) else : #NoExtrapolation interpolatedPoint = filteredCoordinates.drop(knownValues.index) if self.TrainGaussianHyperparameters : interpolatedValues = self.predictGaussianModelFormatted(knownValues, interpolatedPoint, filteredCoordinates) else : knownLocation = filteredCoordinates.loc[knownValues.index] interpolator = GaussianProcessRegressor(kernel=self.kernel, random_state=0, normalize_y=True).fit(formatCoordinatesAsArray(knownLocation.values), knownValues.values) interpolatedValues = pd.Series(interpolator.predict(formatCoordinatesAsArray(interpolatedPoint.values), return_std=False), index = interpolatedPoint.index) resSurface.loc[interpolatedValues.index] = interpolatedValues return extrapolationFlat(resSurface.append(nanSurface)[incompleteSurface.index].rename(incompleteSurface.name), coordinates) def nll_fn(self, X_trainSerie, Y_trainSerie, theta, noise=1e-3): ''' Computes the negative log marginal likelihood for training data X_train and Y_train and given noise level. Args: X_train: training locations (m x d). Y_train: training targets (m x 1). noise: known noise level of Y_train. theta: gaussian hyperparameters [sigma_f, l] ''' filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(Y_trainSerie, X_trainSerie) Y_Train = filteredSurface.dropna().values X_train = formatCoordinatesAsArray(filteredCoordinates.loc[filteredSurface.dropna().index].values) # Numerically more stable implementation of Eq. (7) as described # in http://www.gaussianprocess.org/gpml/chapters/RW2.pdf, Section # 2.2, Algorithm 2.1. K = (self.kernelRBF(X_train, X_train, sigma_f=theta[0], l=theta[1]) + noise**2 * np.eye(len(X_train))) L = np.linalg.cholesky(K) return (np.sum(np.log(np.diagonal(L))) + 0.5 * Y_train.T.dot(np.linalg.lstsq(L.T, np.linalg.lstsq(L, Y_train)[0])[0]) + 0.5 * len(X_train) * np.log(2*np.pi)) #Apply nll_fn for each day of YSerie and sum results def computeTrainHistoryLogLikelyhood(self, kernelParams, dataSetList): error = 0 locations = dataSetList[1] #YSerie.iloc[0].index.to_frame().values func = lambda x : self.nll_fn(locations.loc[x.name], x, np.exp(kernelParams)) marginalLogLikelyhood = dataSetList[0].apply(func, axis = 1) return marginalLogLikelyhood.sum() def train(self, inputTrain, nbEpoch, inputTest = None): if self.TrainGaussianHyperparameters : #Calibrate globally gaussian process hyperparameters l and sigma on the training set objectiveFuntion = lambda x : self.computeTrainHistoryLogLikelyhood(x,inputTrain) nbRestart = 5#15 bestValue = None bestParam = None #As loglikelyhood function is nonconvex we try l-bfgs algorithms several times def randomStart(bounds, nbStart): return np.random.uniform(low=bounds[0], high=bounds[1], size=nbStart) optimStarts = np.apply_along_axis(lambda x : randomStart(x,nbRestart), 1, self.kernel.bounds).T start = time.time() for i in range(nbRestart): print("bounds", np.exp(self.kernel.bounds)) print("random Starts", np.exp(optimStarts[i])) resOptim = scipy.optimize.fmin_l_bfgs_b(objectiveFuntion, optimStarts[i], approx_grad = True, maxiter = 20, bounds = self.kernel.bounds) if self.verbose : print(resOptim) if (bestParam is None) or (resOptim[1] < bestValue) : bestValue = resOptim[1] bestParam = resOptim[0] print("Attempt : ", i, " nnLogLikelyHood : ", bestValue, " bestParam : ", np.exp(bestParam)) optimalValues = {'k1__constant_value' : np.exp(bestParam)[0], 'k2__length_scale' : np.exp(bestParam)[1]} self.kernel.set_params(**optimalValues) print("Time spent during optimization : ", time.time() - start) #Else return super().train(inputTrain, nbEpoch, inputTest = None) def getTTMFromCoordinates(dfList): return dfList[1].applymap(lambda x : x[0]) def getMoneynessFromCoordinates(dfList): return dfList[1].applymap(lambda x : x[1]) ####################################################################################################### class NelsonSiegelCalibrator: ####################################################################################################### #Construction functions ####################################################################################################### def __init__(self, order, hyperparameters): self.hyperParameters = hyperparameters self.order = order self.beta = [] self.alpha = [] self.verbose = False def objectiveFunction(self, ttm, beta, alpha): slopeTime = (1 - np.exp(-alpha[0] * ttm))/(alpha[0] * ttm) nelsonSiegel = beta[0] + slopeTime * beta[1] + (slopeTime - np.exp(-alpha[0] * ttm)) * beta[2] if self.order == 4 : nelsonSiegelSvensson = nelsonSiegel + ((1 - np.exp(-alpha[1] * ttm))/(alpha[1] * ttm) - np.exp(-alpha[1] * ttm)) * beta[3] return nelsonSiegelSvensson return nelsonSiegel def drawnStartingPoints(self, bounds): randPos = np.random.rand(len(bounds)) return [x[0][0] + (x[0][1] - x[0][0]) * x[1] for x in zip(bounds, randPos)] def calibrate(self, curvesVol, ttms): if self.order == 4 : #Bounds taken from "Calibrating the Nelson–Siegel–Svensson model", <NAME>, <NAME>, <NAME> #See https://comisef.eu/files/wps031.pdf bounds = [(-10000,10000), (-10000,10000), (-10000,10000), (-10000,10000), (0,100), (0,200)] startBounds = [(-1,1), (-1,1), (-1,1), (-1,1), (0,30), (0,30)] func = lambda x : np.sqrt(np.nanmean(np.square(self.objectiveFunction(ttms/250, x[:4], x[4:]) - curvesVol))) else : bounds = [(-10000,10000), (-10000,10000), (-10000,10000), (0,200)] startBounds = [(-1,1), (-1,1), (-1,1), (0,30)] func = lambda x : np.sqrt(np.nanmean(np.square(self.objectiveFunction(ttms/250, x[:3], x[3:]) - curvesVol))) bestFit = None nbInit = 10 for k in range(nbInit) : startingPoints = self.drawnStartingPoints(startBounds) resOptim = scipy.optimize.minimize(func, startingPoints, bounds=bounds, method='L-BFGS-B') if bestFit is None or resOptim.fun < bestFit : bestFit = resOptim.fun self.beta = resOptim.x[:4] if self.order == 4 else resOptim.x[:3] self.alpha = resOptim.x[4:] if self.order == 4 else resOptim.x[3:] if self.verbose : print(resOptim.fun, " ; ", bestFit) if self.verbose : print("best error : ", bestFit) return def interpolate(self, ttm): return self.objectiveFunction(ttm/250, self.beta, self.alpha) #Post-treatments for calibrateModelMoneynessWiseDaily def mergeResults(xCoordinates, xAvgCoordinates, xVol, interpList, refList, nelsonList, dfList): interpVolDf = pd.concat(interpList,axis=1) refVolDf = pd.concat(refList,axis=1) moneynesses = np.unique(getMoneynessFromCoordinates(dfList)) nelsonIndex = pd.MultiIndex.from_product( [moneynesses, nelsonList[0].columns], names=["Moneyness", "Nelson-Siegel Parameters"]) nelsonDf = pd.DataFrame(pd.concat(nelsonList,axis=1).values, index = nelsonList[0].index, columns = nelsonIndex) coordinatesIndex = pd.MultiIndex.from_product([moneynesses, xCoordinates[0].columns], names=["Moneyness", "Rank"]) coordinatesDf = pd.DataFrame(pd.concat(xCoordinates,axis=1).values, index=nelsonList[0].index, columns = coordinatesIndex) volDf = pd.DataFrame(pd.concat(xVol,axis=1).values, index=nelsonList[0].index, columns = coordinatesIndex) return interpVolDf, refVolDf, nelsonDf, coordinatesDf, volDf #Interpolate Volatility along maturity for predefined nelson-seigel parameters def getVolFromNelsonParameters(nelsonDf, coordinatesDf): def getVolFromNelsonParametersApply(nelsonRow, coordinatesRow): #iterate on moneyness interpolatedValues = [] for m in coordinatesRow.index.get_level_values("Moneyness").unique(): coordinatesForM = coordinatesRow[coordinatesRow.index.get_level_values("Moneyness") == m] parametersForM = nelsonRow[nelsonRow.index.get_level_values("Moneyness") == m] interpolatorNelsonSiegel = NelsonSiegelCalibrator(3, {}) interpolatorNelsonSiegel.beta = parametersForM.head(3).values interpolatorNelsonSiegel.alpha = parametersForM.tail(1).values interpolatedValues.append(interpolatorNelsonSiegel.interpolate(coordinatesForM.values)) return pd.Series(np.ravel(interpolatedValues), coordinatesRow.index) #Format with same format as ttms nelsonList = list(map(lambda x : x[1], nelsonDf.iterrows())) coordinatesList = list(map(lambda x : x[1], coordinatesDf.iterrows())) interpolatedVol = list(map(lambda x : getVolFromNelsonParametersApply(x[0],x[1]), zip(nelsonList, coordinatesList))) return pd.DataFrame(np.reshape(interpolatedVol, coordinatesDf.shape), index = coordinatesDf.index, columns = coordinatesDf.columns ) #Calibrate nelson siegel interpolation for each day and each moneyness def calibrateModelMoneynessWiseDaily(dataSet): dfList = dataSet.getDataForModel()#(dataSet.trainVol.head(20).index) moneynesses = np.unique(getMoneynessFromCoordinates(dfList)) moneynessDf = getMoneynessFromCoordinates(dfList) ttmDf = getTTMFromCoordinates(dataSet.formatModelDataAsDataSet(dfList)) volDf = dataSet.formatModelDataAsDataSet(dfList)[0] rankForMList = [] TTMForMList = [] AvgTTMForMList = [] volForMList = [] interpolationCurvesList = [] interpolatedCurveList = [] refCurveList = [] nelsonList = [] def treatCurve(curveVol, curveTTM): ttmToInterpolate = curveTTM.dropna() volToInteporlate = curveVol.dropna() interpolatorNelsonSiegel = NelsonSiegelCalibrator(3, {}) interpolatorNelsonSiegel.calibrate(volToInteporlate.values, ttmToInterpolate[volToInteporlate.index].values) interpolationCurve = interpolatorNelsonSiegel.interpolate(ttmToInterpolate.values) calibratedCurve = pd.Series(volToInteporlate.values, index = volToInteporlate.index).rename(curveVol.name) nonCalibratedTTM = curveVol.index.difference(calibratedCurve.index) calibratedCurve = calibratedCurve.append(pd.Series([np.NaN]*nonCalibratedTTM.size, index = nonCalibratedTTM)).sort_index() interpolatedCurve = pd.Series(interpolationCurve, index = ttmToInterpolate.index).rename(curveVol.name) nonInterpolatedTTM = curveVol.index.difference(interpolatedCurve.index) interpolatedCurve = interpolatedCurve.append(pd.Series([np.NaN]*nonInterpolatedTTM.size, index = nonInterpolatedTTM)).sort_index() return (calibratedCurve, interpolatedCurve, np.append(interpolatorNelsonSiegel.beta , interpolatorNelsonSiegel.alpha)) for m in moneynesses:#For a fixed moneyness #Gather values for corresponding moneyness rankForM = moneynessDf[moneynessDf == m].dropna(how="all", axis=1).columns rankForMList.append(rankForM) TTMForM = ttmDf[rankForM] #.dropna(how="any", axis=0) TTMForMList.append(TTMForM) AvgTTMForMList.append(TTMForM.mean(axis=0).round()) volForMList.append(volDf[rankForM]) #.dropna(how="any", axis=0)) #Turn dataframe as a list of series for applying operation jointly on two dataframe volSeriesListForM = list(map(lambda x : x[1], volForMList[-1].iterrows())) coordinatesSeriesListForM = list(map(lambda x : x[1], TTMForMList[-1].iterrows())) #Estimate Nelson siegel paramters for every day interpolationCurvesList.append(list(map(lambda x : treatCurve( x[0], x[1]) , zip(volSeriesListForM, coordinatesSeriesListForM)))) #Data used for nelson siegle calibration, should be equal to volForMList refCurveList.append(pd.DataFrame(list(map(lambda x : x[0], interpolationCurvesList[-1])), index = volForMList[-1].index, columns = volForMList[-1].columns)) #Interpolated volatility interpolatedCurveList.append(pd.DataFrame(list(map(lambda x : x[1], interpolationCurvesList[-1])), index = volForMList[-1].index, columns = volForMList[-1].columns)) #Parameters estimated every day nelsonList.append(pd.DataFrame(list(map(lambda x : x[2], interpolationCurvesList[-1])), index = volForMList[-1].index)) print(m) return mergeResults(TTMForMList, AvgTTMForMList, volForMList, interpolatedCurveList, refCurveList, nelsonList, dfList) #Calibrate a model that interpolates a whole surface (not a single smile) with single parameters def calibrateModelDayWise(dfList): moneynesses = np.unique(getMoneynessFromCoordinates(dfList)) moneynessDf = getMoneynessFromCoordinates(dfList) ttmDf = getTTMFromCoordinates(dataSet.formatModelDataAsDataSet(dfList)) volDf = dataSet.formatModelDataAsDataSet(dfList)[0] rankForMList = [] TTMForMList = [] AvgTTMForMList = [] volForMList = [] interpolationCurvesList = [] interpolatedCurveList = [] refCurveList = [] nelsonList = [] def treatSurface(surfaceVol, surfaceTTM, surfaceMoneyness): ttmToInterpolate = surfaceTTM.dropna() moneynessToInterpolate = surfaceMoneyness.dropna() ttmToInterpolate = ttmToInterpolate[ttmToInterpolate.index.intersection(moneynessToInterpolate.index)] moneynessToInterpolate = moneynessToInterpolate[ttmToInterpolate.index] volToInterpolate = surfaceVol.dropna() interpolatorSpline = gaussianProcess.Spline(3, {}) interpolatorSpline.calibrate(volToInterpolate.values, ttmToInterpolate[volToInterpolate.index].values, moneynessToInterpolate[volToInterpolate.index].values) interpolationCurve = interpolatorSpline.interpolate(ttmToInterpolate.values, moneynessToInterpolate.values) calibratedCurve = pd.Series(volToInterpolate.values, index = volToInterpolate.index).rename(surfaceVol.name) nonCalibratedTTM = surfaceVol.index.difference(calibratedCurve.index) calibratedCurve = calibratedCurve.append(pd.Series([np.NaN]*nonCalibratedTTM.size, index = nonCalibratedTTM)).sort_index() interpolatedCurve = pd.Series(interpolationCurve, index = ttmToInterpolate.index).rename(surfaceVol.name) nonInterpolatedTTM = surfaceVol.index.difference(interpolatedCurve.index) interpolatedCurve = interpolatedCurve.append(pd.Series([np.NaN]*nonInterpolatedTTM.size, index = nonInterpolatedTTM)).sort_index() return (calibratedCurve, interpolatedCurve, interpolatorSpline.beta) volSeriesList = list(map(lambda x : x[1], volDf.iterrows())) moneynessSeriesList = list(map(lambda x : x[1], moneynessDf.iterrows())) ttmSeriesList = list(map(lambda x : x[1], ttmDf.iterrows())) dailyData = list(map(lambda x : treatSurface( x[0], x[1], x[2]) , zip(volSeriesList, ttmSeriesList, moneynessSeriesList))) interpolatedDf = pd.DataFrame(pd.concat(list(map(lambda x : x[1], dailyData))), index = volDf.index, columns = volDf.columns) refDf = pd.DataFrame(pd.concat(list(map(lambda x : x[0], dailyData))), index = volDf.index, columns = volDf.columns) paramDf = pd.DataFrame(pd.concat(list(map(lambda x : x[2], dailyData))), index = volDf.index) #paramIndex = pd.MultiIndex.from_product([moneynesses, paramDf.columns], # names=["Moneyness", "Spline Parameters"]) volIndex = pd.MultiIndex.from_product([moneynesses, np.arange(1, int(interpolatedDf.shape[1] / moneynesses.size) + 1, 1)], names=["Moneyness", "Rank"]) reindexedVolDf = pd.DataFrame(volDf.values, index = volDf.index, columns = volIndex) reindexedCoordinatesDf = pd.DataFrame(coordinatesDf.values, index = coordinatesDf.index, columns = volIndex) return interpolatedDf, refDf, paramDf, reindexedCoordinatesDf, reindexedVolDf def calibrateDataSetWithNelsonSiegel(pathTestFile, dataSet, restoreResults = True): if restoreResults : nelsonDf, interpVolDf = loadData.readInterpolationResult(pathTestFile) else : interpVolDf, refVolDf, nelsonDf, coordinatesDf, volDf = calibrateModelMoneynessWiseDaily(dataSet) loadData.saveInterpolationResult(pathTestFile, nelsonDf, interpVolDf) moneynesses = np.unique(getMoneynessFromCoordinates(dataSet.getDataForModel())) volDf = dataSet.formatModelDataAsDataSet(dataSet.getDataForModel())[0] volIndex = pd.MultiIndex.from_product([moneynesses, np.arange(1, int(volDf.shape[1] / moneynesses.size) + 1, 1)], names=["Moneyness", "Rank"]) volDf = pd.DataFrame(volDf.values, index = volDf.index, columns = volIndex) coordinatesDf = getTTMFromCoordinates(dataSet.formatModelDataAsDataSet(dataSet.getDataForModel())) coordinatesDf = pd.DataFrame(coordinatesDf.values, index = coordinatesDf.index, columns = volIndex) ######################## Plot parameters plt.plot(nelsonDf.iloc[:,0], label = "Beta1") plt.show() plt.plot(nelsonDf.iloc[:,1], label = "Beta2") plt.show() plt.plot(nelsonDf.iloc[:,2], label = "Beta3") plt.show() plt.plot(nelsonDf.iloc[:,3], label = "alpha1") plt.show() print(nelsonDf.head()) ######################## Plot error maeInterp = np.abs(np.nanmean(np.abs(interpVolDf.values - volDf.values)/volDf.values, axis=1)) plt.plot(interpVolDf.index, maeInterp) plt.show() rmseInterp = np.sqrt(np.nanmean(np.square(interpVolDf.values - volDf.values), axis=1)) plt.plot(interpVolDf.index, rmseInterp) plt.show() ############################## Analyse worst estimation moneynessPlot = 1.0 rowVol = volDf.transpose()[volDf.columns.get_level_values("Moneyness") == moneynessPlot].transpose() rowInterpVol = interpVolDf.transpose()[volDf.columns.get_level_values("Moneyness") == moneynessPlot].transpose() rowTTM = coordinatesDf[rowVol.columns] rowImpliedTotalVariance = np.square(rowVol * rowTTM / 250) rowInterpImpliedTotalVariance = np.square(pd.DataFrame(rowInterpVol.values, index = rowVol.index, columns = rowVol.columns) * rowTTM / 250) dayPlot = np.argmax(rmseInterp) plt.plot(rowTTM.dropna(how="all",axis=1).iloc[dayPlot].values, rowInterpVol.dropna(how="all",axis=1).iloc[dayPlot].values, "-", label = "Nelson-Siegel") plt.plot(rowTTM.dropna(how="all",axis=1).iloc[dayPlot].values, rowVol.dropna(how="all",axis=1).iloc[dayPlot].values, "+", label = "Ref") plt.legend() plt.show() plt.plot(rowTTM.dropna(how="all",axis=1).iloc[dayPlot].values, rowInterpImpliedTotalVariance.dropna(how="all",axis=1).iloc[dayPlot].values, "-", label = "Nelson-Siegel") plt.title("Implied vol") plt.plot(rowTTM.dropna(how="all",axis=1).iloc[dayPlot].values, rowImpliedTotalVariance.dropna(how="all",axis=1).iloc[dayPlot].values, "+", label = "Ref") plt.title("Implied total variance") plt.legend() plt.show() plt.plot(rowTTM.dropna(how="all",axis=1).iloc[-2].values, (rowVol.dropna(how="all",axis=1).iloc[-2].values - rowInterpVol.dropna(how="all",axis=1).iloc[-1].values)/rowVol.dropna(how="all",axis=1).iloc[-1].values, "+", label = "Ref") plt.title("Implied vol relative mae") plt.show() #absolute error #interp2Df = getVolFromNelsonParameters(nelsonDf, coordinatesDf) #interp2Df.head() #plt.plot(interpVolDf.index, np.sqrt(np.nanmean(np.square(interpVolDf.values - volDf.values), axis=1))) #relative error #plt.plot(interpVolDf.index, np.abs(np.nanmean(np.abs(interpVolDf.values - interp2Df.values)/interp2Df.values, axis=1))) #plt.show() return class NelsonSiegel(LinearInterpolation): def __init__(self, learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName = "./bestNelsonSiegelInterpolationModel"): super().__init__(learningRate, hyperParameters, nbUnitsPerLayer, nbFactors, modelName) def interpolate(self, incompleteSurface, coordinates): filteredSurface, filteredCoordinates = loadData.removePointsWithInvalidCoordinates(incompleteSurface, coordinates) nanSurface = incompleteSurface.drop(filteredSurface.index) knownValues = filteredSurface.dropna() #No value is interpolated if knownValues.size == filteredSurface.size : #No value to interpolate return incompleteSurface knownLocation = filteredCoordinates.loc[knownValues.index] locationToInterpolate = filteredCoordinates.drop(knownValues.index) interpolatedValues = self.customInterpolator(knownValues, knownLocation, locationToInterpolate) completeSurface = pd.Series(interpolatedValues, index = locationToInterpolate.index).append(knownValues) interpolatedSurface = completeSurface.loc[filteredSurface.index].rename(filteredSurface.name) return interpolatedSurface.append(nanSurface)[incompleteSurface.index].rename(incompleteSurface.name) def customInterpolator(self, interpolatedData, formerCoordinates, NewCoordinates): knownPositions = formatCoordinatesAsArray(formerCoordinates) xNew = np.ravel(list(map(lambda x : x[0], NewCoordinates))) #Maturity yNew = np.ravel(list(map(lambda x : x[1], NewCoordinates))) #Moneyness #Group coordinates by moneyness curveNewDict = {} for idx in NewCoordinates.index : m = NewCoordinates[idx][1] ttm = NewCoordinates[idx][0] if m not in curveNewDict : curveNewDict[m] = [[ttm], [idx]] else : curveNewDict[m][0].append(ttm) curveNewDict[m][1].append(idx) #Group coordinates by moneyness curveOldDict = {} for idx in formerCoordinates.index : m = formerCoordinates[idx][1] ttm = formerCoordinates[idx][0] v = interpolatedData[idx] if m not in curveOldDict : curveOldDict[m] = [[ttm], [v]] else : curveOldDict[m][0].append(ttm) curveOldDict[m][1].append(v) fInterpolation =
pd.Series()
pandas.Series
# -*- coding: utf-8 -*- # Copyright 2017 <NAME> <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Python modules import glob import os # Third party modules import gpxpy from gpxpy.gpx import GPXBounds import pandas as pd from pandas import DataFrame from tqdm import tqdm import geopy # Own modules from trackanimation import utils as trk_utils from trackanimation.utils import TrackException class DFTrack: def __init__(self, df_points=None, columns=None): if df_points is None: self.df = DataFrame() if isinstance(df_points, pd.DataFrame): self.df = df_points else: if columns is None: columns = ['CodeRoute', 'Latitude', 'Longitude', 'Altitude', 'Date', 'Speed', 'TimeDifference', 'Distance', 'FileName'] self.df = DataFrame(df_points, columns=columns) def export(self, filename='exported_file', export_format='csv'): """ Export a data frame of DFTrack to JSON or CSV. Parameters ---------- export_format: string Format to export: JSON or CSV filename: string Name of the exported file """ if export_format.lower() == 'json': self.df.reset_index().to_json(orient='records', path_or_buf=filename+'.json') elif export_format.lower() == 'csv': self.df.to_csv(path_or_buf=filename+'.csv') else: raise TrackException('Must specify a valid format to export', "'%s'" % export_format) def getTracks(self): """ Makes a copy of the DFTrack. Explanation: http://stackoverflow.com/questions/27673231/why-should-i-make-a-copy-of-a-data-frame-in-pandas Returns ------- copy: DFTrack The copy of DFTrack. """ return self.__class__(self.df.copy(), list(self.df)) def sort(self, column_name): """ Sorts the data frame by the specified column. Parameters ---------- column_name: string Column name to sort Returns ------- sort: DFTrack DFTrack sorted """ if isinstance(column_name, list): for column in column_name: if column not in self.df: raise TrackException('Column name not found', "'%s'" % column) else: if column_name not in self.df: raise TrackException('Column name not found', "'%s'" % column_name) return self.__class__(self.df.sort_values(column_name), list(self.df)) def getTracksByPlace(self, place, timeout=10, only_points=True): """ Gets the points of the specified place searching in Google's API and, if it does not get anything, it tries with OpenStreetMap's API. Parameters ---------- place: string Place to get the points timeout: int Time, in seconds, to wait for the geocoding service to respond before returning a None value. only_points: boolean True to retrieve only the points that cross a place. False to retrive all the points of the tracks that cross a place. Returns ------- place: DFTrack A DFTrack with the points of the specified place or None if anything is found. """ track_place = self.getTracksByPlaceGoogle(place, timeout=timeout, only_points=only_points) if track_place is not None: return track_place track_place = self.getTracksByPlaceOSM(place, timeout=timeout, only_points=only_points) if track_place is not None: return track_place return None def getTracksByPlaceGoogle(self, place, timeout=10, only_points=True): """ Gets the points of the specified place searching in Google's API. Parameters ---------- place: string Place to get the points timeout: int Time, in seconds, to wait for the geocoding service to respond before returning a None value. only_points: boolean True to retrieve only the points that cross a place. False to retrive all the points of the tracks that cross a place. Returns ------- place: DFTrack A DFTrack with the points of the specified place or None if anything is found. """ try: geolocator = geopy.GoogleV3() location = geolocator.geocode(place, timeout=timeout) except geopy.exc.GeopyError as geo_error: return None southwest_lat = float(location.raw['geometry']['bounds']['southwest']['lat']) northeast_lat = float(location.raw['geometry']['bounds']['northeast']['lat']) southwest_lng = float(location.raw['geometry']['bounds']['southwest']['lng']) northeast_lng = float(location.raw['geometry']['bounds']['northeast']['lng']) df_place = self.df[(self.df['Latitude'] < northeast_lat) & (self.df['Longitude'] < northeast_lng) & (self.df['Latitude'] > southwest_lat) & (self.df['Longitude'] > southwest_lng)] if only_points: return self.__class__(df_place) track_list = df_place['CodeRoute'].unique().tolist() return self.__class__(self.df[self.df['CodeRoute'].isin(track_list)]) def getTracksByPlaceOSM(self, place, timeout=10, only_points=True): """ Gets the points of the specified place searching in OpenStreetMap's API. Parameters ---------- place: string Place to get the points timeout: int Time, in seconds, to wait for the geocoding service to respond before returning a None value. only_points: boolean True to retrieve only the points that cross a place. False to retrive all the points of the tracks that cross a place. Returns ------- place: DFTrack A DFTrack with the points of the specified place or None if anything is found. """ try: geolocator = geopy.Nominatim() location = geolocator.geocode(place, timeout=timeout) except geopy.exc.GeopyError as geo_error: return None southwest_lat = float(location.raw['boundingbox'][0]) northeast_lat = float(location.raw['boundingbox'][1]) southwest_lng = float(location.raw['boundingbox'][2]) northeast_lng = float(location.raw['boundingbox'][3]) df_place = self.df[(self.df['Latitude'] < northeast_lat) & (self.df['Longitude'] < northeast_lng) & (self.df['Latitude'] > southwest_lat) & (self.df['Longitude'] > southwest_lng)] if only_points: return self.__class__(df_place) track_list = df_place['CodeRoute'].unique().tolist() return self.__class__(self.df[self.df['CodeRoute'].isin(track_list)]) def getTracksByDate(self, start=None, end=None, periods=None, freq='D'): """ Gets the points of the specified date range using various combinations of parameters. 2 of 'start', 'end', or 'periods' must be specified. Date format recommended: 'yyyy-mm-dd' Parameters ---------- start: date Date start period end: date Date end period periods: int Number of periods. If None, must specify 'start' and 'end' freq: string Frequency of the date range Returns ------- df_date: DFTrack A DFTrack with the points of the specified date range. """ if trk_utils.isTimeFormat(start) or trk_utils.isTimeFormat(end): raise TrackException('Must specify an appropiate date format', 'Time format found') rng = pd.date_range(start=start, end=end, periods=periods, freq=freq) df_date = self.df.copy() df_date['Date'] = pd.to_datetime(df_date['Date']) df_date['ShortDate'] = df_date['Date'].apply(lambda date: date.date().strftime('%Y-%m-%d')) df_date = df_date[df_date['ShortDate'].apply(lambda date: date in rng)] del df_date['ShortDate'] df_date = df_date.reset_index(drop=True) return self.__class__(df_date, list(df_date)) def getTracksByTime(self, start, end, include_start=True, include_end=True): """ Gets the points between the specified time range. Parameters ---------- start: datetime.time Time start period end: datetime.time Time end period include_start: boolean include_end: boolean Returns ------- df_time: DFTrack A DFTrack with the points of the specified date and time periods. """ if not trk_utils.isTimeFormat(start) or not trk_utils.isTimeFormat(end): raise TrackException('Must specify an appropiate time format', trk_utils.TIME_FORMATS) df_time = self.df.copy() index = pd.DatetimeIndex(df_time['Date']) df_time = df_time.iloc[index.indexer_between_time(start_time=start, end_time=end, include_start=include_start, include_end=include_end)] df_time = df_time.reset_index(drop=True) return self.__class__(df_time, list(df_time)) def pointVideoNormalize(self): df = self.df.copy() df_norm =
pd.DataFrame()
pandas.DataFrame
# Copyright 2014 Open Data Science Initiative and other authors. See AUTHORS.txt # Licensed under the BSD 3-clause license (see LICENSE.txt) from __future__ import print_function from __future__ import absolute_import import os import sys import csv import copy import numpy as np import scipy.io import datetime import json import yaml import re import tarfile import logging logging.basicConfig( level=logging.DEBUG, format="%(asctime)s %(levelname)s %(message)s", filename="/tmp/sods.log", filemode="w", ) from functools import reduce import pandas as pd from .config import * from . import access from . import util DATAPATH = os.path.expanduser(os.path.expandvars(config.get("datasets", "dir"))) PYTRENDS_AVAILABLE = True try: from pytrends.request import TrendReq except ImportError: PYTRENDS_AVAILABLE = False GPY_AVAILABLE = True try: import GPy except ImportError: GPY_AVAILABLE = False NETPBMFILE_AVAILABLE = True try: import netpbmfile except ImportError: NETPBMFILE_AVAILABLE = False GEOPANDAS_AVAILABLE = True try: import geopandas except ImportError: GEOPANDAS_AVAILABLE = False if sys.version_info >= (3, 0): from urllib.parse import quote from urllib.request import urlopen else: from urllib2 import quote from urllib2 import urlopen # Global variables default_seed = 10000 def bmi_steps(data_set="bmi_steps"): if not access.data_available(data_set): access.download_data(data_set) data = pd.read_csv(os.path.join(access.DATAPATH, data_set, "steps-bmi-data.csv")) X = np.hstack( (data["steps"].values[:, np.newaxis], data["bmi"].values[:, np.newaxis]) ) Y = data["gender"].values[:, None] return access.data_details_return( {"X": X, "Y": Y, "covariates": ["steps", "bmi"], "response": ["gender"]}, data_set, ) # The data sets def boston_housing(data_set="boston_housing"): if not access.data_available(data_set): access.download_data(data_set) all_data = np.genfromtxt(os.path.join(access.DATAPATH, data_set, "housing.data")) X = all_data[:, 0:13] Y = all_data[:, 13:14] return access.data_details_return({"X": X, "Y": Y}, data_set) def boxjenkins_airline(data_set="boxjenkins_airline", num_train=96): path = os.path.join(access.DATAPATH, data_set) if not access.data_available(data_set): access.download_data(data_set) data = np.loadtxt( os.path.join(access.DATAPATH, data_set, "boxjenkins_airline.csv"), delimiter="," ) Y = data[:num_train, 1:2] X = data[:num_train, 0:1] Xtest = data[num_train:, 0:1] Ytest = data[num_train:, 1:2] return access.data_details_return( { "X": X, "Y": Y, "Xtest": Xtest, "Ytest": Ytest, "covariates": [util.decimalyear("year")], "response": ["AirPassengers"], "info": "Monthly airline passenger data from Box & Jenkins 1976.", }, data_set, ) def brendan_faces(data_set="brendan_faces"): if not access.data_available(data_set): access.download_data(data_set) mat_data = scipy.io.loadmat(os.path.join(access.DATAPATH, data_set, "frey_rawface.mat")) Y = mat_data["ff"].T return access.data_details_return({"Y": Y}, data_set) def della_gatta_TRP63_gene_expression(data_set="della_gatta", gene_number=None): if not access.data_available(data_set): access.download_data(data_set) mat_data = scipy.io.loadmat(os.path.join(access.DATAPATH, data_set, "DellaGattadata.mat")) X = np.double(mat_data["timepoints"]) if gene_number == None: Y = mat_data["exprs_tp53_RMA"] else: Y = mat_data["exprs_tp53_RMA"][:, gene_number] if len(Y.shape) == 1: Y = Y[:, None] return access.data_details_return({"X": X, "Y": Y, "gene_number": gene_number}, data_set) def epomeo_gpx(data_set="epomeo_gpx", sample_every=4): """Data set of three GPS traces of the same movement on Mt Epomeo in Ischia. Requires gpxpy to run.""" try: import gpxpy import gpxpy.gpx except ImportError: print("Need to install gpxpy to process the empomeo_gpx dataset.") return if not access.data_available(data_set): access.download_data(data_set) files = [ "endomondo_1", "endomondo_2", "garmin_watch_via_endomondo", "viewranger_phone", "viewranger_tablet", ] X = [] for file in files: gpx_file = open(os.path.join(access.DATAPATH, "epomeo_gpx", file + ".gpx"), "r") gpx = gpxpy.parse(gpx_file) segment = gpx.tracks[0].segments[0] points = [ point for track in gpx.tracks for segment in track.segments for point in segment.points ] data = [ [ ( point.time - datetime.datetime(2013, 8, 21, tzinfo=datetime.timezone.utc) ).total_seconds(), point.latitude, point.longitude, point.elevation, ] for point in points ] X.append(np.asarray(data)[::sample_every, :]) gpx_file.close() X = pd.DataFrame( X[0], columns=["seconds", "latitude", "longitude", "elevation"] ) X.set_index(keys="seconds", inplace=True) return access.data_details_return( { "X": X, "info": "Data is an array containing time in seconds, latitude, longitude and elevation in that order.", }, data_set, ) if GEOPANDAS_AVAILABLE: def nigerian_administrative_zones( data_set="nigerian_administrative_zones", refresh_data=False ): if not access.data_available(data_set) and not refresh_data: access.download_data(data_set) from zipfile import ZipFile with ZipFile( os.path.join(access.DATAPATH, data_set, "nga_admbnda_osgof_eha_itos.gdb.zip"), "r" ) as zip_ref: zip_ref.extractall( os.path.join(access.DATAPATH, data_set, "nga_admbnda_osgof_eha_itos.gdb") ) states_file = "nga_admbnda_osgof_eha_itos.gdb/nga_admbnda_osgof_eha_itos.gdb/nga_admbnda_osgof_eha_itos.gdb/nga_admbnda_osgof_eha_itos.gdb/" from geopandas import read_file Y = read_file(os.path.join(access.DATAPATH, data_set, states_file), layer=1) Y.crs = "EPSG:4326" Y.set_index("admin1Name_en") return access.data_details_return({"Y": Y}, data_set) def nigerian_covid(data_set="nigerian_covid", refresh_data=False): if not access.data_available(data_set) and not refresh_data: access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "line-list-nigeria.csv") Y = pd.read_csv( filename, parse_dates=[ "date", "date_confirmation", "date_onset_symptoms", "date_admission_hospital", "death_date", ], ) return access.data_details_return({"Y": Y}, data_set) def nigeria_nmis(data_set="nigeria_nmis", refresh_data=False): if not access.data_available(data_set) and not refresh_data: access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "healthmopupandbaselinenmisfacility.csv") Y = pd.read_csv(filename) return access.data_details_return({"Y": Y}, data_set) def nigerian_population(data_set="nigerian_population", refresh_data=False): if not access.data_available(data_set) and not refresh_data: access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "nga_admpop_adm1_2020.csv") Y = pd.read_csv(filename) Y.dropna(axis=1, how='all', inplace=True) Y.dropna(axis=0, how='any', inplace=True) Y.rename(columns = {"ADM0_NAME":"admin0Name_en", "ADM0_PCODE" : "admin0Pcode", "ADM1_NAME" : "admin1Name_en", "ADM1_PCODE" : "admin1Pcode", "T_TL" :"population"}, inplace=True) Y["admin0Name_en"] = Y["admin0Name_en"].str.capitalize() Y["admin1Name_en"] = Y["admin1Name_en"].str.capitalize() Y = Y.set_index("admin1Name_en") return access.data_details_return({"Y": Y}, data_set) def pmlr(volumes="all", data_set="pmlr", refresh_data=False): """Abstracts from the Proceedings of Machine Learning Research""" if not access.data_available(data_set) and not refresh_data: access.download_data(data_set) proceedings = access.pmlr_proceedings_list(data_set) # Create a new resources entry for downloading contents of proceedings. data_name_full = "pmlr" access.data_resources[data_set]["dirs"] = [['.']] for entry in proceedings: if volumes == "all" or entry["volume"] in volumes: file = entry["yaml"].split("/")[-1] proto, url = entry["yaml"].split("//") file = os.path.basename(url) dirname = os.path.dirname("/".join(url.split("/")[1:])) urln = proto + "//" + url.split("/")[0] access.data_resources[data_name_full]["files"].append([file]) access.data_resources[data_name_full]["dirs"].append([dirname]) access.data_resources[data_name_full]["urls"].append(urln) Y = [] # Download the volume data if not access.data_available(data_name_full): access.download_data(data_name_full) for entry in reversed(proceedings): volume = entry["volume"] # data_name_full = data_name_full_stub + "v" + str(volume) if volumes == "all" or volume in volumes: file = entry["yaml"].split("/")[-1] proto, url = entry["yaml"].split("//") file = os.path.basename(url) dirname = os.path.dirname("/".join(url.split("/")[1:])) urln = proto + "//" + url.split("/")[0] volume_file = open( os.path.join(access.DATAPATH, data_name_full, dirname, file), "r" ) Y += yaml.load(volume_file, Loader=yaml.FullLoader) Y = pd.DataFrame(Y) Y["published"] = pd.to_datetime(Y["published"]) # Y.columns.values[4] = util.json_object('authors') # Y.columns.values[7] = util.json_object('editors') try: Y["issued"] = Y["issued"].apply( lambda x: np.datetime64(datetime.datetime(*x["date-parts"])) ) except TypeError: raise TypeError("Type error for entry\n" + Y["issued"]) from e def full_name(person): order = ["given", "prefix", "family", "suffix"] names = [str(person[key]) for key in order if key in person and person[key] is not None] return " ".join(names) Y["author"] = Y["author"].apply( lambda x: ', '.join([full_name(author) for author in x]) ) Y["editor"] = Y["editor"].apply( lambda x: ', '.join([full_name(editor) for editor in x]) ) columns = list(Y.columns) columns[14] = util.datetime64_("published") columns[11] = util.datetime64_("issued") Y.columns = columns return access.data_details_return( { "Y": Y, "info": "Data is a pandas data frame containing each paper, its abstract, authors, volumes and venue.", }, data_set, ) def football_data(season="1617", data_set="football_data"): """Football data from English games since 1993. This downloads data from football-data.co.uk for the given season. """ league_dict = {"E0": 0, "E1": 1, "E2": 2, "E3": 3, "EC": 4} def league2num(string): if isinstance(string, bytes): string = string.decode("utf-8") return league_dict[string] def football2num(string): if isinstance(string, bytes): string = string.decode("utf-8") if string in access.football_dict: return access.football_dict[string] else: access.football_dict[string] = len(access.football_dict) + 1 return len(access.football_dict) + 1 def datestr2num(s): return util.date2num(datetime.datetime.strptime(s.decode("utf-8"), "%d/%m/%y")) data_set_season = data_set + "_" + season access.data_resources[data_set_season] = copy.deepcopy(access.data_resources[data_set]) access.data_resources[data_set_season]["urls"][0] += season + "/" start_year = int(season[0:2]) end_year = int(season[2:4]) files = ["E0.csv", "E1.csv", "E2.csv", "E3.csv"] if start_year > 4 and start_year < 93: files += ["EC.csv"] access.data_resources[data_set_season]["files"] = [files] if not access.data_available(data_set_season): access.download_data(data_set_season) start = True for file in reversed(files): filename = os.path.join(access.DATAPATH, data_set_season, file) # rewrite files removing blank rows. writename = os.path.join(access.DATAPATH, data_set_season, "temp.csv") input = open(filename, encoding="ISO-8859-1") output = open(writename, "w") writer = csv.writer(output) for row in csv.reader(input): if any(field.strip() for field in row): writer.writerow(row) input.close() output.close() table = np.loadtxt( writename, skiprows=1, usecols=(0, 1, 2, 3, 4, 5), converters={ 0: league2num, 1: datestr2num, 2: football2num, 3: football2num, }, delimiter=",", ) if start: X = table[:, :4] Y = table[:, 4:] start = False else: X = np.append(X, table[:, :4], axis=0) Y = np.append(Y, table[:, 4:], axis=0) return access.data_details_return( { "X": X, "Y": Y, "covariates": [ util.discrete(league_dict, "league"), util.datenum("match_day"), util.discrete(access.football_dict, "home team"), util.discrete(access.football_dict, "away team"), ], "response": [util.integer("home score"), util.integer("away score")], }, data_set, ) def sod1_mouse(data_set="sod1_mouse"): if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "sod1_C57_129_exprs.csv") Y = pd.read_csv(filename, header=0, index_col=0) num_repeats = 4 num_time = 4 num_cond = 4 return access.data_details_return({"Y": Y}, data_set) def spellman_yeast(data_set="spellman_yeast"): """This is the classic Spellman et al 1998 Yeast Cell Cycle gene expression data that is widely used as a benchmark.""" if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "combined.txt") Y = pd.read_csv(filename, header=0, index_col=0, sep="\t") return access.data_details_return({"Y": Y}, data_set) def spellman_yeast_cdc15(data_set="spellman_yeast"): """These are the gene expression levels from the CDC-15 experiment of Spellman et al (1998).""" if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "combined.txt") Y = pd.read_csv(filename, header=0, index_col=0, sep="\t") t = np.asarray( [ 10, 30, 50, 70, 80, 90, 100, 110, 120, 130, 140, 150, 170, 180, 190, 200, 210, 220, 230, 240, 250, 270, 290, ] ) times = ["cdc15_" + str(time) for time in t] Y = Y[times].T t = t[:, None] return access.data_details_return( { "Y": Y, "t": t, "info": "Time series of synchronized yeast cells from the CDC-15 experiment of Spellman et al (1998).", }, data_set, ) def lee_yeast_ChIP(data_set="lee_yeast_ChIP"): """Yeast ChIP data from Lee et al.""" if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "binding_by_gene.tsv") S = pd.read_csv(filename, header=1, index_col=0, sep="\t") transcription_factors = [col for col in S.columns if col[:7] != "Unnamed"] annotations = S[["Unnamed: 1", "Unnamed: 2", "Unnamed: 3"]] S = S[transcription_factors] return access.data_details_return( { "annotations": annotations, "Y": S, "transcription_factors": transcription_factors, }, data_set, ) def fruitfly_tomancak(data_set="fruitfly_tomancak", gene_number=None): """Fruitfly gene expression data from Tomancak et al.""" if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "tomancak_exprs.csv") Y = pd.read_csv(filename, header=0, index_col=0).T num_repeats = 3 num_time = 12 xt = np.linspace(0, num_time - 1, num_time) xr = np.linspace(0, num_repeats - 1, num_repeats) xtime, xrepeat = np.meshgrid(xt, xr) X = np.vstack((xtime.flatten(), xrepeat.flatten())).T return access.data_details_return({"X": X, "Y": Y, "gene_number": gene_number}, data_set) def drosophila_protein(data_set="drosophila_protein"): if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "becker_et_al.csv") Y = pd.read_csv(filename, header=0) return access.data_details_return({"Y": Y}, data_set) def drosophila_knirps(data_set="drosophila_protein"): if not access.data_available(data_set): access.download_data(data_set) dir_path = os.path.join(access.DATAPATH, data_set) filename = os.path.join(dir_path, "becker_et_al.csv") # in the csv file we have facts_kni and ext_kni. We treat facts_kni as protein and ext_kni as mRNA df =
pd.read_csv(filename, header=0)
pandas.read_csv
import time from collections import defaultdict from datetime import timedelta import cvxpy as cp import empiricalutilities as eu import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from transfer_entropy import TransferEntropy plt.style.use('fivethirtyeight') # %% eqs = 'SPY DIA XLK XLV XLF IYZ XLY XLP XLI XLE XLU XME IYR XLB XPH IWM PHO ' \ 'SOXX WOOD FDN GNR IBB ILF ITA IYT KIE PBW ' \ 'AFK EZA ECH EWW EWC EWZ EEM EIDO EPOL EPP EWA EWD EWG EWH EWJ EWI EWK ' \ 'EWL EWM EWP EWQ EWS EWT EWU EWY GXC HAO EZU RSX TUR'.split() fi = 'AGG SHY IEI IEF TLT TIP LQD HYG MBB'.split() cmdtys = 'GLD SLV DBA DBC USO UNG'.split() fx = 'FXA FXB FXC FXE FXF FXY'.split() assets = eqs + fi + cmdtys + fx def cum_rets(rets): cum_rets = [] cum_rets.append(1) for i, ret in enumerate(rets): cum_rets.append(cum_rets[i]*(1+ret)) return cum_rets # %% ete_mats = {} mod = TransferEntropy(assets=assets) period = 'Q' months = mod.prices.index.to_period(period).unique().to_timestamp() iters = len(months)-24 with tqdm(total=iters) as pbar: for start, end in zip(months[:-1], months[1:]): end -= timedelta(1) mod.set_timeperiod(start, end) mod.compute_effective_transfer_entropy(sims=30, bins=6, std_threshold=1) ete = mod.ete.copy() ete_mats[start] = ete pbar.update(1) ete_df = pd.concat(ete_mats) ete_df.to_csv(f'../ete_{period}.csv') # %% q = 4 res = defaultdict(dict) mod = TransferEntropy(assets=assets) iters = len(months)-1 for start, end in zip(months[:-1], months[1:]): ete = ete_mats[start] ete_out = ete.sum(axis=0) ete_in = ete.sum(axis=1) end -= timedelta(1) mod.set_timeperiod(start, end) returns = mod.prices.iloc[-1]/mod.prices.iloc[0]-1 vols = mod.data.std() names = 'eteout etein etenetout etetotal'.split() for name, ETE in zip(names, [ete_out, ete_in, ete_out-ete_in, ete_in+ete_out]): df = pd.DataFrame({'returns': returns, 'vol': vols, name: ETE}) df['q'] =
pd.qcut(ETE, q=q, labels=False)
pandas.qcut
from datetime import datetime, date, time, timezone from passlib.apps import custom_app_context as pwd_context import shelve import pandas as pd import pickle import uuid import streamlit as st import time class Survey_Instance(): version = .02 config_file = 'config' survey_db = 'survey_db.pkl' comment_db = 'comment_db.pkl' pass_db = 'pass.pkl' def __init__(self, session): self.session = session def authenticate(self): self.open_shelf() if self.session.user_class == 'Student': drop_down = 'student_list' elif self.session.user_class == 'Teacher': drop_down = 'teacher_list' self.selected_teacher = st.selectbox('Please choose your name below', self.shelf[drop_down]) self.password = st.text_input('Please enter your password below') self.check_password() def check_password(self): self.open_pass_db() password_check = pwd_context.verify(self.password, self.loaded_passwords.get(self.selected_teacher)) if password_check == True: st.success('You are now authenticated. Please pick from an action in the main menu to the left.') self.session.auth_status=True self.session.user=self.selected_teacher else: st.error('Your password is not correct') self.session.auth_status=False self.session.user='Not logged in' def open_pass_db(self): try: with open(self.pass_db, 'rb') as handle: self.loaded_passwords = pickle.load(handle) except: st.error('There was an error opening password db') finally: return self.loaded_passwords def add_user(self): user_id = uuid.uuid4().int user = st.text_input('Type the name of the user. E.g., <NAME>') password = st.text_input('Type the password for this user.') user_class = st.selectbox('Choose the role for the user', ['Student', 'Teacher', 'Admin']) password_hash = pwd_context.hash(password) user_list = () ##left off def open_user_directory(self): try: with open(self.user_directory.pkl, 'rb') as handle: self.user_directory = pickle.load(handle) except: st.error('There was an error opening user directory') def add_user_to_directory(self, user_list): directory_columns = self.user_directory.columns new_data_frame = pd.DataFrame(user_list, columns=directory_columns) self.user_directory = self.user_directory.append(new_data_frame) def open_shelf(self): self.shelf = shelve.open(self.config_file) def close_shelf(self): self.shelf.close() def create_grade_list(self, start=0, end=12): self.grade_list = ['Grade ' + str(n) for n in range(start+1, end+1)] def create_survey(self): st.write('In create_survey session ID: ', self.session.session_id) st.write('In create_survey survey ID:', self.session.survey_id) st.write('In create_survey user class:', self.session.user_class) self.reset_button = st.empty() self.open_shelf() self.create_grade_list() self.survey_answers = pd.DataFrame(self.shelf['question_list']) self.survey_answers['Answer'] = "" self.survey_answers['Date Administered'] = "" self.survey_answers['Teacher'] = st.selectbox('Teacher', self.shelf['teacher_list'], key=self.session.session_id) self.survey_answers['Student'] = st.selectbox('Student', self.shelf['student_list'], key=self.session.session_id) self.survey_answers['Subject'] = st.selectbox('Subject', self.shelf['subject_list'], key=self.session.session_id) self.survey_answers['Grade'] = st.selectbox('Grade', self.grade_list, key=self.session.session_id) self.survey_answers['User'] = self.session.user for question in self.survey_answers['Question'].items(): print(question[1]) self.survey_answers.at[question[0], 'Answer'] = st.slider(question[1], 1, 5, key=self.session.session_id) self.survey_answers.at[question[0], 'Date Administered'] = datetime.now() self.survey_comment = st.text_area('Please enter any comments for this survey below', key=self.session.session_id) self.comment = {self.session.survey_id:self.survey_comment} self.survey_answers['Survey ID'] = self.session.survey_id self.close_shelf() def save_survey(self): try: self.survey_db = pd.read_pickle(self.survey_db) except: pass else: self.survey_answers = self.survey_db.append(self.survey_answers, ignore_index=True) self.session.saved_status=True finally: self.survey_answers.to_pickle(self.survey_db) self.save_comment() st.balloons() def saved_status(self): if self.session.saved_status == True: self.saved_verb = 'has' else: self.saved_verb = 'has not' def save_comment(self): try: with open(self.comment_db, 'rb') as handle: self.comment_dictionary = pickle.load(handle) except: self.comment_dictionary = self.comment else: self.comment_dictionary[self.session.survey_id] = self.survey_comment finally: with open(self.comment_db, 'wb') as handle: pickle.dump(self.comment_dictionary, handle, protocol=pickle.HIGHEST_PROTOCOL) def show_survey(self): st.write(self.survey_answers) def new_survey(self): self.session.session_id +=1 self.session.saved_status=False self.session.survey_id = str(uuid.uuid4()) def provide_status(self, mode='base'): st.sidebar.subheader('Status') st.sidebar.markdown('User Class: *' + self.session.user_class + '*') st.sidebar.markdown('User: ' + self.session.user) st.sidebar.markdown('Authenticated: ' + str(self.session.auth_status)) self.saved_status() if mode=='edit': st.sidebar.markdown('* You are **editing** the survey for '+self.survey_answers['Student'][0]) st.sidebar.markdown('* The survey **'+self.saved_verb+'** been saved.') st.sidebar.markdown('* You may save the survey for *'+self.survey_answers['Student'][0]+ \ '* as many times as you would like. However, please remember to click the \ **Reset / New Survey** button above if you want to begin creating a new survey for another student.') def open_survey_db(self): try: self.survey_db =
pd.read_pickle(self.survey_db)
pandas.read_pickle
import numpy as np import matplotlib.pyplot as plt import pandas as pd import math import scipy.stats as stats from matplotlib import gridspec from matplotlib.lines import Line2D from .util import * import seaborn as sns from matplotlib.ticker import FormatStrFormatter import matplotlib.pylab as pl import matplotlib.dates as mdates from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.patheffects as pe from .sanker import Sanker import imageio class Visualizer(): def __init__(self, district_list, private_list, city_list, contract_list, bank_list, leiu_list): self.district_list = district_list.copy() self.private_list = private_list.copy() for x in city_list: self.private_list.append(x) self.contract_list = contract_list self.bank_list = bank_list self.leiu_list = leiu_list self.private_districts = {} for x in self.private_list: self.private_districts[x.name] = [] for xx in x.district_list: self.private_districts[x.name].append(xx) inflow_inputs = pd.read_csv('calfews_src/data/input/calfews_src-data.csv', index_col=0, parse_dates=True) x2_results = pd.read_csv('calfews_src/data/input/x2DAYFLOW.csv', index_col=0, parse_dates=True) self.observations = inflow_inputs.join(x2_results) self.observations['delta_outflow'] = self.observations['delta_inflow'] + self.observations['delta_depletions'] - self.observations['HRO_pump'] - self.observations['TRP_pump'] self.index_o = self.observations.index self.T_o = len(self.observations) self.day_month_o = self.index_o.day self.month_o = self.index_o.month self.year_o = self.index_o.year kern_bank_observations = pd.read_csv('calfews_src/data/input/kern_water_bank_historical.csv') kern_bank_observations = kern_bank_observations.set_index('Year') semitropic_bank_observations = pd.read_csv('calfews_src/data/input/semitropic_bank_historical.csv') semitropic_bank_observations = semitropic_bank_observations.set_index('Year') total_bank_kwb = np.zeros(self.T_o) total_bank_smi = np.zeros(self.T_o) for x in range(0, self.T_o): if self.month_o[x] > 9: year_str = self.year_o[x] else: year_str = self.year_o[x] - 1 if self.month_o[x] == 9 and self.day_month_o[x] == 30: year_str = self.year_o[x] total_bank_kwb[x] = kern_bank_observations.loc[year_str, 'Ag'] + kern_bank_observations.loc[year_str, 'Mixed Purpose'] deposit_history = semitropic_bank_observations[semitropic_bank_observations.index <= year_str] total_bank_smi[x] = deposit_history['Metropolitan'].sum() + deposit_history['South Bay'].sum() self.observations['kwb_accounts'] = pd.Series(total_bank_kwb, index=self.observations.index) self.observations['smi_accounts'] = pd.Series(total_bank_smi, index=self.observations.index) def get_results_sensitivity_number(self, results_file, sensitivity_number, start_month, start_year, start_day): self.values = {} numdays_index = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] with h5py.File(results_file, 'r') as f: data = f['s' + sensitivity_number] names = data.attrs['columns'] names = list(map(lambda x: str(x).split("'")[1], names)) df_data = pd.DataFrame(data[:], columns=names) for x in df_data: self.values[x] = df_data[x] datetime_index = [] monthcount = start_month yearcount = start_year daycount = start_day leapcount = np.remainder(start_year, 4) for t in range(0, len(self.values[x])): datetime_index.append(str(yearcount) + '-' + str(monthcount) + '-' + str(daycount)) daycount += 1 if leapcount == 0 and monthcount == 2: numdays_month = numdays_index[monthcount - 1] + 1 else: numdays_month = numdays_index[monthcount - 1] if daycount > numdays_month: daycount = 1 monthcount += 1 if monthcount == 13: monthcount = 1 yearcount += 1 leapcount += 1 if leapcount == 4: leapcount = 0 self.values['Datetime'] = pd.to_datetime(datetime_index) self.values = pd.DataFrame(self.values) self.values = self.values.set_index('Datetime') self.index = self.values.index self.T = len(self.values.index) self.day_year = self.index.dayofyear self.day_month = self.index.day self.month = self.index.month self.year = self.index.year self.starting_year = self.index.year[0] self.ending_year = self.index.year[-1] self.number_years = self.ending_year - self.starting_year total_kwb_sim = np.zeros(len(self.values)) total_smi_sim = np.zeros(len(self.values)) for district_partner in ['DLR', 'KCWA', 'ID4', 'SMI', 'TJC', 'WON', 'WRM']: total_kwb_sim += self.values['kwb_' + district_partner] self.values['kwb_total'] = pd.Series(total_kwb_sim, index = self.values.index) for district_partner in ['SOB', 'MET']: total_smi_sim += self.values['semitropic_' + district_partner] self.values['smi_total'] = pd.Series(total_smi_sim, index = self.values.index) def set_figure_params(self): self.figure_params = {} self.figure_params['delta_pumping'] = {} self.figure_params['delta_pumping']['extended_simulation'] = {} self.figure_params['delta_pumping']['extended_simulation']['outflow_list'] = ['delta_outflow', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['pump1_list'] = ['delta_HRO_pump', 'HRO_pump'] self.figure_params['delta_pumping']['extended_simulation']['pump2_list'] = ['delta_TRP_pump', 'TRP_pump'] self.figure_params['delta_pumping']['extended_simulation']['scenario_labels'] = ['Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['simulation_labels'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['observation_labels'] = ['HRO_pump', 'TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['agg_list'] = ['AS-OCT', 'AS-OCT', 'D'] self.figure_params['delta_pumping']['extended_simulation']['unit_mult'] = [1.0, 1.0, cfs_tafd] self.figure_params['delta_pumping']['extended_simulation']['max_value_list'] = [5000, 5000, 15] self.figure_params['delta_pumping']['extended_simulation']['use_log_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['use_cdf_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['scenario_type_list'] = ['observation', 'validation', 'scenario'] self.figure_params['delta_pumping']['extended_simulation']['x_label_list'] = ['Total Pumping, SWP Delta Pumps (tAF/year)', 'Total Pumping, CVP Delta Pumps (tAF/year)', 'Daily Exceedence Probability', ''] self.figure_params['delta_pumping']['extended_simulation']['y_label_list'] = ['Probability Density', 'Probability Density', 'Daily Delta Outflow (tAF)', 'Relative Frequency of Water-year Types within Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names1'] = ['Historical (1996-2016) Observations', 'Historical (1996-2016) Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names2'] = ['Critical', 'Dry', 'Below Normal', 'Above Normal', 'Wet'] self.figure_params['state_estimation'] = {} for x in ['publication', 'sacramento', 'sanjoaquin', 'tulare']: self.figure_params['state_estimation'][x] = {} self.figure_params['state_estimation'][x]['non_log'] = ['Snowpack (SWE)',] self.figure_params['state_estimation'][x]['predictor values'] = ['Mean Inflow, Prior 30 Days (tAF/day)','Snowpack (SWE)'] self.figure_params['state_estimation'][x]['colorbar_label_index'] = [0, 30, 60, 90, 120, 150, 180] self.figure_params['state_estimation'][x]['colorbar_label_list'] = ['Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr'] self.figure_params['state_estimation'][x]['subplot_annotations'] = ['A', 'B', 'C', 'D'] self.figure_params['state_estimation'][x]['forecast_periods'] = [30,'SNOWMELT'] self.figure_params['state_estimation'][x]['all_cols'] = ['DOWY', 'Snowpack', '30MA'] self.figure_params['state_estimation'][x]['forecast_values'] = [] for forecast_days in self.figure_params['state_estimation'][x]['forecast_periods']: if forecast_days == 'SNOWMELT': self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Snowmelt Season (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append('Snowmelt Flow') else: self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Next ' + str(forecast_days) + ' Days (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append(str(forecast_days) + ' Day Flow') self.figure_params['state_estimation']['publication']['watershed_keys'] = ['SHA', 'ORO', 'MIL', 'ISB'] self.figure_params['state_estimation']['publication']['watershed_labels'] = ['Shasta', 'Oroville', 'Millerton', 'Isabella'] self.figure_params['state_estimation']['sacramento']['watershed_keys'] = ['SHA', 'ORO', 'FOL', 'YRS'] self.figure_params['state_estimation']['sacramento']['watershed_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar'] self.figure_params['state_estimation']['sanjoaquin']['watershed_keys'] = ['NML', 'DNP', 'EXC', 'MIL'] self.figure_params['state_estimation']['sanjoaquin']['watershed_labels'] = ['New Melones', '<NAME>', 'Exchequer', 'Millerton'] self.figure_params['state_estimation']['tulare']['watershed_keys'] = ['PFT', 'KWH', 'SUC', 'ISB'] self.figure_params['state_estimation']['tulare']['watershed_labels'] = ['Pine Flat', 'Kaweah', 'Success', 'Isabella'] self.figure_params['model_validation'] = {} for x in ['delta', 'sierra', 'sanluis', 'bank']: self.figure_params['model_validation'][x] = {} self.figure_params['model_validation']['delta']['title_labels'] = ['State Water Project Pumping', 'Central Valley Project Pumping', 'Delta X2 Location'] num_subplots = len(self.figure_params['model_validation']['delta']['title_labels']) self.figure_params['model_validation']['delta']['label_name_1'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_x2'] self.figure_params['model_validation']['delta']['label_name_2'] = ['HRO_pump', 'TRP_pump', 'DAY_X2'] self.figure_params['model_validation']['delta']['unit_converstion_1'] = [1.0, 1.0, 1.0] self.figure_params['model_validation']['delta']['unit_converstion_2'] = [cfs_tafd, cfs_tafd, 1.0] self.figure_params['model_validation']['delta']['y_label_timeseries'] = ['Pumping (tAF/week)', 'Pumping (tAF/week)', 'X2 inland distance (km)'] self.figure_params['model_validation']['delta']['y_label_scatter'] = ['(tAF/yr)', '(tAF/yr)', '(km)'] self.figure_params['model_validation']['delta']['timeseries_timestep'] = ['W', 'W', 'W'] self.figure_params['model_validation']['delta']['scatter_timestep'] = ['AS-OCT', 'AS-OCT', 'M'] self.figure_params['model_validation']['delta']['aggregation_methods'] = ['sum', 'sum', 'mean'] self.figure_params['model_validation']['delta']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['delta']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['sierra']['title_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar', 'New Melones', '<NAME>', 'Exchequer', 'Millerton', 'Pine Flat', 'Kaweah', 'Success', 'Isabella'] num_subplots = len(self.figure_params['model_validation']['sierra']['title_labels']) self.figure_params['model_validation']['sierra']['label_name_1'] = ['shasta_S', 'oroville_S', 'folsom_S', 'yuba_S', 'newmelones_S', 'donpedro_S', 'exchequer_S', 'millerton_S', 'pineflat_S', 'kaweah_S', 'success_S', 'isabella_S'] self.figure_params['model_validation']['sierra']['label_name_2'] = ['SHA_storage', 'ORO_storage', 'FOL_storage', 'YRS_storage', 'NML_storage', 'DNP_storage', 'EXC_storage', 'MIL_storage', 'PFT_storage', 'KWH_storage', 'SUC_storage', 'ISB_storage'] self.figure_params['model_validation']['sierra']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sierra']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sierra']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sierra']['y_label_scatter'] = [] self.figure_params['model_validation']['sierra']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sierra']['scatter_timestep'] = [] self.figure_params['model_validation']['sierra']['aggregation_methods'] = ['mean'] * num_subplots self.figure_params['model_validation']['sierra']['notation_location'] = ['bottom'] * num_subplots self.figure_params['model_validation']['sierra']['show_legend'] = [False] * num_subplots counter_kaweah = self.figure_params['model_validation']['sierra']['title_labels'].index('Kaweah') counter_success = self.figure_params['model_validation']['sierra']['title_labels'].index('Success') counter_isabella = self.figure_params['model_validation']['sierra']['title_labels'].index('Isabella') self.figure_params['model_validation']['sierra']['notation_location'][counter_kaweah] = 'top' self.figure_params['model_validation']['sierra']['notation_location'][counter_success] = 'topright' self.figure_params['model_validation']['sierra']['show_legend'][counter_isabella] = True self.figure_params['model_validation']['sanluis']['title_labels'] = ['State (SWP) Portion, San Luis Reservoir', 'Federal (CVP) Portion, San Luis Reservoir'] num_subplots = len(self.figure_params['model_validation']['sanluis']['title_labels']) self.figure_params['model_validation']['sanluis']['label_name_1'] = ['sanluisstate_S', 'sanluisfederal_S'] self.figure_params['model_validation']['sanluis']['label_name_2'] = ['SLS_storage', 'SLF_storage'] self.figure_params['model_validation']['sanluis']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sanluis']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sanluis']['scatter_timestep'] = ['M'] * num_subplots self.figure_params['model_validation']['sanluis']['aggregation_methods'] = ['point'] * num_subplots self.figure_params['model_validation']['sanluis']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['sanluis']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['bank']['title_labels'] = ['Kern Water Bank Accounts', 'Semitropic Water Bank Accounts'] num_subplots = len(self.figure_params['model_validation']['bank']['title_labels']) self.figure_params['model_validation']['bank']['label_name_1'] = ['kwb_total', 'smi_total'] self.figure_params['model_validation']['bank']['label_name_2'] = ['kwb_accounts', 'smi_accounts'] self.figure_params['model_validation']['bank']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['bank']['unit_converstion_2'] = [1.0/1000000.0, 1.0/1000.0] self.figure_params['model_validation']['bank']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['bank']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['bank']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['bank']['scatter_timestep'] = ['AS-OCT'] * num_subplots self.figure_params['model_validation']['bank']['aggregation_methods'] = ['change'] * num_subplots self.figure_params['model_validation']['bank']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['bank']['show_legend'] = [False] * num_subplots self.figure_params['model_validation']['bank']['show_legend'][0] = True self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_losthills'] = {} self.figure_params['state_response']['sanluisstate_losthills']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_losthills']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_losthills']['groundwater_account_names'] = ['LHL','WON'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'steelblue'] self.figure_params['state_response']['sanluisstate_losthills']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_losthills']['subplot_titles'] = ['State Water Project Delta Operations', 'Lost Hills Drought Management', 'San Luis Reservoir Operations', 'Lost Hills Flood Management'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharged from Contract Allocation' 'Recharge of Uncontrolled Flood Spills'] self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_wheeler'] = {} self.figure_params['state_response']['sanluisstate_wheeler']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_wheeler']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_wheeler']['groundwater_account_names'] = ['WRM'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'lightsteelblue'] self.figure_params['state_response']['sanluisstate_wheeler']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_wheeler']['subplot_titles'] = ['State Water Project Delta Operations', 'Wheeler Ridge Drought Management', 'San Luis Reservoir Operations', 'Wheeler Ridge Flood Management'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharge of Uncontrolled Flood Spills', 'Recharged from Contract Allocation'] self.figure_params['district_water_use'] = {} self.figure_params['district_water_use']['physical'] = {} self.figure_params['district_water_use']['physical']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors', 'Groundwater Banks'] self.figure_params['district_water_use']['physical']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['physical']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler', 'northkern', 'kerntulare'] self.figure_params['district_water_use']['physical']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['physical']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['physical']['Groundwater Banks'] = ['stockdale', 'kernriverbed', 'poso', 'pioneer', 'kwb', 'b2800', 'irvineranch', 'northkernwb'] self.figure_params['district_water_use']['physical']['subplot columns'] = 2 self.figure_params['district_water_use']['physical']['color map'] = 'YlGbBu_r' self.figure_params['district_water_use']['physical']['write file'] = True self.figure_params['district_water_use']['annual'] = {} self.figure_params['district_water_use']['annual']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors'] self.figure_params['district_water_use']['annual']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['annual']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler'] self.figure_params['district_water_use']['annual']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['annual']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['annual']['subplot columns'] = 2 self.figure_params['district_water_use']['annual']['color map'] = 'BrBG_r' self.figure_params['district_water_use']['annual']['write file'] = True self.figure_params['flow_diagram'] = {} self.figure_params['flow_diagram']['tulare'] = {} self.figure_params['flow_diagram']['tulare']['column1'] = ['Shasta', 'Folsom', 'Oroville', 'New Bullards', 'Uncontrolled'] self.figure_params['flow_diagram']['tulare']['row1'] = ['Delta Outflow', 'Carryover',] self.figure_params['flow_diagram']['tulare']['column2'] = ['San Luis (Fed)', 'San Luis (State)', 'Millerton', 'Isabella', 'Pine Flat', 'Kaweah', 'Success'] self.figure_params['flow_diagram']['tulare']['row2'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column3'] = ['Exchange', 'CVP-Delta', 'Cross Valley', 'State Water Project', 'Friant Class 1','Friant Class 2', 'Kern River', 'Kings River', 'Kaweah River', 'Tule River', 'Flood'] self.figure_params['flow_diagram']['tulare']['row3'] = ['Private Pumping', 'GW Banks'] self.figure_params['flow_diagram']['tulare']['column4'] = ['Exchange', 'CVP-Delta', 'Urban', 'KCWA', 'CVP-Friant','Other'] self.figure_params['flow_diagram']['tulare']['row4'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column5'] = ['Irrigation', 'Urban', 'In-Lieu Recharge', 'Direct Recharge'] self.figure_params['flow_diagram']['tulare']['titles'] = ['Sacramento Basin\nSupplies', 'Tulare Basin\nSupplies', 'Surface Water\nContract Allocations', 'Contractor Groups', 'Water Use Type'] def scenario_compare(self, folder_name, figure_name, plot_name, validation_values, show_plot): outflow_list = self.figure_params[figure_name][plot_name]['outflow_list'] pump1_list = self.figure_params[figure_name][plot_name]['pump1_list'] pump2_list = self.figure_params[figure_name][plot_name]['pump2_list'] scenario_labels = self.figure_params[figure_name][plot_name]['scenario_labels'] simulation_labels = self.figure_params[figure_name][plot_name]['simulation_labels'] observation_labels = self.figure_params[figure_name][plot_name]['observation_labels'] agg_list = self.figure_params[figure_name][plot_name]['agg_list'] unit_mult = self.figure_params[figure_name][plot_name]['unit_mult'] max_value_list = self.figure_params[figure_name][plot_name]['max_value_list'] use_log_list = self.figure_params[figure_name][plot_name]['use_log_list'] use_cdf_list = self.figure_params[figure_name][plot_name]['use_cdf_list'] scenario_type_list = self.figure_params[figure_name][plot_name]['scenario_type_list'] x_label_list = self.figure_params[figure_name][plot_name]['x_label_list'] y_label_list = self.figure_params[figure_name][plot_name]['y_label_list'] legend_label_names1 = self.figure_params[figure_name][plot_name]['legend_label_names1'] legend_label_names2 = self.figure_params[figure_name][plot_name]['legend_label_names2'] color1 = sns.color_palette('spring', n_colors = 3) color2 = sns.color_palette('summer', n_colors = 3) color_list = np.array([color1[0], color1[2], color2[0]]) max_y_val = np.zeros(len(simulation_labels)) fig = plt.figure(figsize = (20, 16)) gs = gridspec.GridSpec(3,2, width_ratios=[3,1], figure = fig) ax1 = plt.subplot(gs[0, 0]) ax2 = plt.subplot(gs[1, 0]) ax3 = plt.subplot(gs[2, 0]) ax4 = plt.subplot(gs[:, 1]) axes_list = [ax1, ax2, ax3] counter = 0 for sim_label, obs_label, agg, max_value, use_log, use_cdf, ax_loop in zip(simulation_labels, observation_labels, agg_list, max_value_list, use_log_list, use_cdf_list, axes_list): data_type_dict = {} data_type_dict['scenario'] = self.values[sim_label].resample(agg).sum() * unit_mult[0] data_type_dict['validation'] = validation_values[sim_label].resample(agg).sum() * unit_mult[1] data_type_dict['observation'] = self.observations[obs_label].resample(agg).sum() * unit_mult[2] if use_log: for scen_type in scenario_type_list: values_int = data_type_dict[scen_type] data_type_dict[scen_type] = np.log(values_int[values_int > 0]) for scen_type in scenario_type_list: max_y_val[counter] = max([max(data_type_dict[scen_type]), max_y_val[counter]]) counter += 1 if use_cdf: for scen_type, color_loop in zip(scenario_type_list, color_list): cdf_values = np.zeros(100) values_int = data_type_dict[scen_type] for x in range(0, 100): x_val = int(np.ceil(max_value)) * (x/100) cdf_values[x] = len(values_int[values_int > x_val])/len(values_int) ax_loop.plot(cdf_values, np.arange(0, int(np.ceil(max_value)), int(np.ceil(max_value))/100), linewidth = 3, color = color_loop) else: pos = np.linspace(0, max_value, 101) for scen_type, color_loop in zip(scenario_type_list, color_list): kde_est = stats.gaussian_kde(data_type_dict[scen_type]) ax_loop.fill_between(pos, kde_est(pos), edgecolor = 'black', alpha = 0.6, facecolor = color_loop) sri_dict = {} sri_dict['validation'] = validation_values['delta_forecastSRI'] sri_dict['scenario'] = self.values['delta_forecastSRI'] sri_cutoffs = {} sri_cutoffs['W'] = [9.2, 100] sri_cutoffs['AN'] = [7.8, 9.2] sri_cutoffs['BN'] = [6.6, 7.8] sri_cutoffs['D'] = [5.4, 6.6] sri_cutoffs['C'] = [0.0, 5.4] wyt_list = ['W', 'AN', 'BN', 'D', 'C'] scenario_type_list = ['validation', 'scenario'] colors = sns.color_palette('RdBu_r', n_colors = 5) percent_years = {} for wyt in wyt_list: percent_years[wyt] = np.zeros(len(scenario_type_list)) for scen_cnt, scen_type in enumerate(scenario_type_list): ann_sri = [] for x_cnt, x in enumerate(sri_dict[scen_type]): if sri_dict[scen_type].index.month[x_cnt] == 9 and sri_dict[scen_type].index.day[x_cnt] == 30: ann_sri.append(x) ann_sri = np.array(ann_sri) for x_cnt, wyt in enumerate(wyt_list): mask_value = (ann_sri >= sri_cutoffs[wyt][0]) & (ann_sri < sri_cutoffs[wyt][1]) percent_years[wyt][scen_cnt] = len(ann_sri[mask_value])/len(ann_sri) colors = sns.color_palette('RdBu_r', n_colors = 5) last_type = np.zeros(len(scenario_type_list)) for cnt, x in enumerate(wyt_list): ax4.bar(['Validated Period\n(1997-2016)', 'Extended Simulation\n(1906-2016)'], percent_years[x], alpha = 1.0, label = wyt, facecolor = colors[cnt], edgecolor = 'black', bottom = last_type) last_type += percent_years[x] ax1.set_xlim([0.0, 500.0* np.ceil(max_y_val[0]/500.0)]) ax2.set_xlim([0.0, 500.0* np.ceil(max_y_val[1]/500.0)]) ax3.set_xlim([0.0, 1.0]) ax4.set_ylim([0, 1.15]) ax1.set_yticklabels('') ax2.set_yticklabels('') label_list = [] loc_list = [] for value_x in range(0, 120, 20): label_list.append(str(value_x) + ' %') loc_list.append(value_x/100.0) ax4.set_yticklabels(label_list) ax4.set_yticks(loc_list) ax3.set_xticklabels(label_list) ax3.set_xticks(loc_list) ax3.set_yticklabels(['4', '8', '16', '32', '64', '125', '250', '500', '1000', '2000', '4000']) ax3.set_yticks([np.log(4), np.log(8), np.log(16), np.log(32), np.log(64), np.log(125), np.log(250), np.log(500), np.log(1000), np.log(2000), np.log(4000)]) ax3.set_ylim([np.log(4), np.log(4000)]) for ax, x_lab, y_lab in zip([ax1, ax2, ax3, ax4], x_label_list, y_label_list): ax.set_xlabel(x_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.set_ylabel(y_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.grid(False) for tick in ax.get_xticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) for tick in ax.get_yticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) legend_elements = [] for x_cnt, x in enumerate(legend_label_names1): legend_elements.append(Patch(facecolor = color_list[x_cnt], edgecolor = 'black', label = x)) ax1.legend(handles = legend_elements, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) legend_elements_2 = [] for x_cnt, x in enumerate(legend_label_names2): legend_elements_2.append(Patch(facecolor = colors[x_cnt], edgecolor = 'black', label = x)) ax4.legend(handles = legend_elements_2, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) plt.savefig(folder_name + figure_name + '_' + plot_name + '.png', dpi = 150, bbox_inches = 'tight', pad_inches = 0.0) if show_plot: plt.show() plt.close() def make_deliveries_by_district(self, folder_name, figure_name, plot_name, scenario_name, show_plot): if plot_name == 'annual': name_bridge = {} name_bridge['semitropic'] = 'KER01' name_bridge['westkern'] = 'KER02' name_bridge['wheeler'] = 'KER03' name_bridge['kerndelta'] = 'KER04' name_bridge['arvin'] = 'KER05' name_bridge['belridge'] = 'KER06' name_bridge['losthills'] = 'KER07' name_bridge['northkern'] = 'KER08' name_bridge['northkernwb'] = 'KER08' name_bridge['ID4'] = 'KER09' name_bridge['sosanjoaquin'] = 'KER10' name_bridge['berrenda'] = 'KER11' name_bridge['buenavista'] = 'KER12' name_bridge['cawelo'] = 'KER13' name_bridge['rosedale'] = 'KER14' name_bridge['shaffer'] = 'KER15' name_bridge['henrymiller'] = 'KER16' name_bridge['kwb'] = 'KER17' name_bridge['b2800'] = 'KER17' name_bridge['pioneer'] = 'KER17' name_bridge['irvineranch'] = 'KER17' name_bridge['kernriverbed'] = 'KER17' name_bridge['poso'] = 'KER17' name_bridge['stockdale'] = 'KER17' name_bridge['delano'] = 'KeT01' name_bridge['kerntulare'] = 'KeT02' name_bridge['lowertule'] = 'TUL01' name_bridge['tulare'] = 'TUL02' name_bridge['lindmore'] = 'TUL03' name_bridge['saucelito'] = 'TUL04' name_bridge['porterville'] = 'TUL05' name_bridge['lindsay'] = 'TUL06' name_bridge['exeter'] = 'TUL07' name_bridge['terra'] = 'TUL08' name_bridge['teapot'] = 'TUL09' name_bridge['bakersfield'] = 'BAK' name_bridge['fresno'] = 'FRE' name_bridge['southbay'] = 'SOB' name_bridge['socal'] = 'SOC' name_bridge['tehachapi'] = 'TEH' name_bridge['tejon'] = 'TEJ' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'PIX' name_bridge['chowchilla'] = 'CHW' name_bridge['maderairr'] = 'MAD' name_bridge['fresnoid'] = 'FSI' name_bridge['westlands'] = 'WTL' name_bridge['panoche'] = 'PAN' name_bridge['sanluiswater'] = 'SLW' name_bridge['delpuerto'] = 'DEL' elif plot_name == 'monthly': name_bridge = {} name_bridge['semitropic'] = 'Semitropic Water Storage District' name_bridge['westkern'] = 'West Kern Water District' name_bridge['wheeler'] = 'Wheeler Ridge-Maricopa Water Storage District' name_bridge['kerndelta'] = 'Kern Delta Water District' name_bridge['arvin'] = 'Arvin-Edison Water Storage District' name_bridge['belridge'] = 'Belridge Water Storage District' name_bridge['losthills'] = 'Lost Hills Water District' name_bridge['northkern'] = 'North Kern Water Storage District' name_bridge['northkernwb'] = 'North Kern Water Storage District' name_bridge['ID4'] = 'Urban' name_bridge['sosanjoaquin'] = 'Southern San Joaquin Municipal Utility District' name_bridge['berrenda'] = 'Berrenda Mesa Water District' name_bridge['buenavista'] = 'Buena Vista Water Storage District' name_bridge['cawelo'] = 'Cawelo Water District' name_bridge['rosedale'] = 'Rosedale-Rio Bravo Water Storage District' name_bridge['shaffer'] = 'Shafter-Wasco Irrigation District' name_bridge['henrymiller'] = 'Henry Miller Water District' name_bridge['kwb'] = 'Kern Water Bank Authority' name_bridge['b2800'] = 'Kern Water Bank Authority' name_bridge['pioneer'] = 'Kern Water Bank Authority' name_bridge['irvineranch'] = 'Kern Water Bank Authority' name_bridge['kernriverbed'] = 'Kern Water Bank Authority' name_bridge['poso'] = 'Kern Water Bank Authority' name_bridge['stockdale'] = 'Kern Water Bank Authority' name_bridge['delano'] = 'Delano-Earlimart Irrigation District' name_bridge['kerntulare'] = 'Kern-Tulare Water District' name_bridge['lowertule'] = 'Lower Tule River Irrigation District' name_bridge['tulare'] = 'Tulare Irrigation District' name_bridge['lindmore'] = 'Lindmore Irrigation District' name_bridge['saucelito'] = 'Saucelito Irrigation District' name_bridge['porterville'] = 'Porterville Irrigation District' name_bridge['lindsay'] = 'Lindsay-Strathmore Irrigation District' name_bridge['exeter'] = 'Exeter Irrigation District' name_bridge['terra'] = 'Terra Bella Irrigation District' name_bridge['teapot'] = 'Tea Pot Dome Water District' name_bridge['bakersfield'] = 'Urban' name_bridge['fresno'] = 'Urban' name_bridge['southbay'] = 'Urban' name_bridge['socal'] = 'Urban' name_bridge['tehachapi'] = 'Tehachapi - Cummings County Water District' name_bridge['tejon'] = 'Tejon-Castac Water District' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'Pixley Irrigation District' name_bridge['chowchilla'] = 'Chowchilla Water District' name_bridge['maderairr'] = 'Madera Irrigation District' name_bridge['fresnoid'] = 'Fresno Irrigation District' name_bridge['westlands'] = 'Westlands Water District' name_bridge['panoche'] = 'Panoche Water District' name_bridge['sanluiswater'] = 'San Luis Water District' name_bridge['delpuerto'] = 'Del Puerto Water District' name_bridge['alta'] = 'Alta Irrigation District' name_bridge['consolidated'] = 'Consolidated Irrigation District' location_type = plot_name self.total_irrigation = {} self.total_recharge = {} self.total_pumping = {} self.total_flood_purchases = {} self.total_recovery_rebate = {} self.total_recharge_sales = {} self.total_recharge_purchases = {} self.total_recovery_sales = {} self.total_recovery_purchases = {} for bank in self.bank_list: self.total_irrigation[bank.name] = np.zeros(self.number_years*12) self.total_recharge[bank.name] = np.zeros(self.number_years*12) self.total_pumping[bank.name] = np.zeros(self.number_years*12) self.total_flood_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[bank.name] = np.zeros(self.number_years*12) self.total_recharge_sales[bank.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_sales[bank.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[bank.name] = np.zeros(self.number_years*12) for district in self.district_list: self.total_irrigation[district.name] = np.zeros(self.number_years*12) self.total_recharge[district.name] = np.zeros(self.number_years*12) self.total_pumping[district.name] = np.zeros(self.number_years*12) self.total_flood_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[district.name] = np.zeros(self.number_years*12) self.total_recharge_sales[district.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_sales[district.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[district.name] = np.zeros(self.number_years*12) date_list_labels = [] for year_num in range(self.starting_year, 2017): start_month = 1 end_month = 13 if year_num == self.starting_year: start_month = 10 if year_num == 2016: end_month = 10 for month_num in range(start_month, end_month): date_string_start = str(year_num) + '-' + str(month_num) + '-01' date_list_labels.append(date_string_start) for district in self.district_list: inleiu_name = district.name + '_inleiu_irrigation' inleiu_recharge_name = district.name + '_inleiu_recharge' direct_recover_name = district.name + '_recover_banked' indirect_surface_name = district.name + '_exchanged_SW' indirect_ground_name = district.name + '_exchanged_GW' inleiu_pumping_name = district.name + '_leiupumping' pumping_name = district.name + '_pumping' recharge_name = district.name + '_' + district.key + '_recharged' numdays_month = [31, 28, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31] for year_num in range(0, self.number_years+1): year_str = str(year_num + self.starting_year) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year - 1) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_delivery if inleiu_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_recharge_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_recharge #GW recovery if direct_recover_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), direct_recover_name].values[0] #if classifying by physical location, attribute to district recieving water (as irrigation) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumnping for inleiu recovery if inleiu_pumping_name in self.values: if month_num == 10: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] else: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_pumping_name].values[0] #if classifying by physical location, to district operating the bank self.total_pumping[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_sales[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_rebate[district.name][year_num*12 + month_num - 10] += total_leiupumping #Recharge, in- and out- of district if recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_name].values[0] self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.bank_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge[bank_name.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.leiu_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge #Contract deliveries for contract in self.contract_list: delivery_name = district.name + '_' + contract.name + '_delivery' recharge_contract_name = district.name + '_' + contract.name + '_recharged' flood_irr_name = district.name + '_' + contract.name + '_flood_irrigation' flood_name = district.name + '_' + contract.name + '_flood' ###All deliveries made from a district's contract if delivery_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), delivery_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ##Deliveries made for recharge are subtracted from the overall contract deliveries if recharge_contract_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_contract_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] -= total_recharge #flood water used for irrigation - always attribute as irrigation if flood_irr_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_irr_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery if flood_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_name].values[0] self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumping (daily values aggregated by year) if pumping_name in self.values: annual_pumping = 0.0 for x in range(0, len(self.index)): monthly_index = (self.year[x] - self.starting_year)*12 + self.month[x] - 10 if self.day_month[x] == 1: self.total_pumping[district.name][monthly_index] += annual_pumping annual_pumping = 0.0 else: annual_pumping += self.values.loc[self.index[x], pumping_name] self.total_pumping[district.name][-1] += annual_pumping #Get values for any private entities within the district for private_name in self.private_list: private = private_name.name if district.key in self.private_districts[private]: inleiu_name = private + '_' + district.key + '_inleiu_irrigation' inleiu_recharge_name = private + '_' + district.key + '_inleiu_irrigation' direct_recover_name = private + '_' + district.key + '_recover_banked' indirect_surface_name = private + '_' + district.key + '_exchanged_SW' indirect_ground_name = private + '_' + district.key + '_exchanged_GW' inleiu_pumping_name = private + '_' + district.key + '_leiupumping' pumping_name = private + '_' + district.key + '_pumping' recharge_name = private + '_' + district.key + '_' + district.key + '_recharged' for year_num in range(0, self.number_years - 1): year_str = str(year_num + self.starting_year + 1) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years - 1: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year + 1) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[
pd.DatetimeIndex([date_string_current])
pandas.DatetimeIndex
import pandas pibs = pandas.read_csv('pibs_ibge.csv', sep=',', encoding='utf-8') tse = pandas.read_csv('codigos_tse.csv', sep=',', encoding='utf-8') pibs['BUSCA'] = pibs['UF'].map(str) + "_" + pibs['CIDADE'].map(str) tse['BUSCA'] = tse['UF_TSE'].map(str) + "_" + tse['NOME_TSE'].map(str) saida =
pandas.merge(pibs, tse, on='BUSCA', how='left')
pandas.merge
import json import matplotlib.pyplot as plt import numpy as np import pandas as pd from datetime import date from joblib import load from tkinter import * from tkinter import ttk import tkinter.font as tkFont import os from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.pyplot import ginput from matplotlib.patches import Arc from matplotlib.widgets import Cursor from functools import partial from Shot import Player, Shot from mplsoccer.pitch import Pitch model = load('xG_model/lgbm_model.joblib') ### Can't figure out how to add a cursor to the plot ### # class BlittedCursor(): # """ # A cross hair cursor using blitting for faster redraw. # """ # def __init__(self, ax): # self.ax = ax # self.background = None # self.horizontal_line = ax.axhline(color='k', lw=0.8, ls='--') # self.vertical_line = ax.axvline(color='k', lw=0.8, ls='--') # # text location in axes coordinates # self.text = ax.text(0.72, 0.9, '', transform=ax.transAxes) # self._creating_background = False # ax.figure.canvas.mpl_connect('draw_event', self.on_draw) # def on_draw(self, event): # self.create_new_background() # def set_cross_hair_visible(self, visible): # need_redraw = self.horizontal_line.get_visible() != visible # self.horizontal_line.set_visible(visible) # self.vertical_line.set_visible(visible) # self.text.set_visible(visible) # return need_redraw # def create_new_background(self): # if self._creating_background: # # discard calls triggered from within this function # return # self._creating_background = True # self.set_cross_hair_visible(False) # self.ax.figure.canvas.draw() # plt.draw() # self.background = self.ax.figure.canvas.copy_from_bbox(self.ax.bbox) # self.set_cross_hair_visible(True) # self._creating_background = False # def on_mouse_move(self, event): # if self.background is None: # self.create_new_background() # if not event.inaxes: # need_redraw = self.set_cross_hair_visible(False) # if need_redraw: # self.ax.figure.canvas.restore_region(self.background) # self.ax.figure.canvas.blit(self.ax.bbox) # else: # self.set_cross_hair_visible(True) # # update the line positions # x, y = event.xdata, event.ydata # self.horizontal_line.set_ydata(y) # self.vertical_line.set_xdata(x) # self.text.set_text('x=%1.2f, y=%1.2f' % (x, y)) # self.ax.figure.canvas.restore_region(self.background) # self.ax.draw_artist(self.horizontal_line) # self.ax.draw_artist(self.vertical_line) # self.ax.draw_artist(self.text) # self.ax.figure.canvas.blit(self.ax.bbox) def draw_pitch(): global fig, ax pitch = Pitch(pitch_type='uefa', pitch_color='grass', goal_type='box', line_color='white', stripe=True) fig, ax = pitch.draw() #Hide axis plt.axis('off') fig.canvas.mpl_connect('button_press_event', onclick) plt.ion() plt.show() def onclick(event): global fig, ax, circle global home_goals, away_goals, home_shots, away_shots, home_SOT, away_SOT, shot_index x_loc = round(event.xdata,2) y_loc = round(event.ydata,2) if team_button1.pressed: team = "Home" team_name = home_team if(home_dropdown.get() == ''): shot_output.config(text='Please Choose a Player for the Shot', foreground="red") return split = home_dropdown.get().split("--") player_name = split[1] player_number = int(split[0]) else: team = "Away" team_name = away_team if(away_dropdown.get() == ''): shot_output.config(text='Please Choose a Player for the Shot', foreground="red") return split = away_dropdown.get().split("--") player_name = split[1] player_number = int(split[0]) if body_part_button1.pressed: body_part = 0 else: body_part = 1 if assist_type_button1.pressed: assist_type = 3 elif assist_type_button2.pressed: assist_type = 0 elif assist_type_button3.pressed: assist_type = 1 elif assist_type_button4.pressed: assist_type = 2 else: assist_type = 4 if shot_type_button1.pressed: shot_type = 4 elif shot_type_button2.pressed: shot_type = 0 elif shot_type_button3.pressed: shot_type = 1 elif shot_type_button4.pressed: shot_type = 2 else: shot_type = 3 # Goal if str(event.key) == "shift" and str(event.button) == "MouseButton.LEFT": on_target = 1 goal = 1 new_shot = Shot(shot_index, team_name, player_name, player_number, on_target, goal, x_loc, y_loc, body_part, assist_type, shot_type) circle = plt.Circle((x_loc, y_loc), 1.0, color='red') ax.add_artist(circle) # +1 shots, SOT, and goal if team == "Home": home_goals += 1 home_shots += 1 home_SOT += 1 score_home_label.configure(text=str(home_goals)) shots_home_label.configure(text=str(home_shots)) SOT_home_label.configure(text=str(home_SOT)) else: away_goals += 1 away_shots += 1 away_SOT += 1 score_away_label.configure(text=str(away_goals)) shots_away_label.configure(text=str(away_shots)) SOT_away_label.configure(text=str(away_SOT)) shot_index += 1 # Shot Off Target elif str(event.button) == "MouseButton.RIGHT": on_target = 0 goal = 0 new_shot = Shot(shot_index, team_name, player_name, player_number, on_target, goal, x_loc, y_loc, body_part, assist_type, shot_type) circle = plt.Circle((x_loc, y_loc), 1.0, color='blue') ax.add_artist(circle) # +1 shots if team == "Home": home_shots += 1 shots_home_label.configure(text=str(home_shots)) else: away_shots += 1 shots_away_label.configure(text=str(away_shots)) shot_index += 1 # Shot On Target elif str(event.button) == "MouseButton.LEFT": on_target = 1 goal = 0 new_shot = Shot(shot_index, team_name, player_name, player_number, on_target, goal, x_loc, y_loc, body_part, assist_type, shot_type) circle = plt.Circle((x_loc, y_loc), 1.0, color='orange') ax.add_artist(circle) # +1 shots, SOT if team == "Home": home_shots+=1 home_SOT += 1 shots_home_label.configure(text=str(home_shots)) SOT_home_label.configure(text=str(home_SOT)) else: away_shots += 1 away_SOT += 1 shots_away_label.configure(text=str(away_shots)) SOT_away_label.configure(text=str(away_SOT)) shot_index += 1 xG_output = calcXG(new_shot) display_location(x_loc, y_loc, new_shot, xG_output) createDict(new_shot, xG_output) plt.draw() def calcXG(shot_obj): data = pd.DataFrame.from_dict([{'shot_type_name': shot_obj.getShotType(), 'x': shot_obj.getX(), 'y': shot_obj.getY(), 'body_part_name': shot_obj.getBodyPart(), 'assist_type': shot_obj.getAssistType()}]) return round(model.predict_proba(data)[:,1][0], 5) def display_location(x, y, shot, xG): string_x = str(round(x,1)) string_y = str(round(y,1)) shot_output.configure(text=f"xG: {xG}") def createDict(shot_obj, xG): new_dict = dict({'shot_id': shot_obj.getIndex(), 'Team': shot_obj.getTeam(), 'player_name': shot_obj.getPlayerName(), 'player_number': shot_obj.getPlayerNumber(), 'onTarget': shot_obj.getOnTarget(), 'isGoal': shot_obj.getGoal(), 'x': shot_obj.getX(), 'y': shot_obj.getY(), 'body_part_name': shot_obj.getBodyPart(), 'assist_type': shot_obj.getAssistType(), 'shot_type_name': shot_obj.getShotType(), 'xG': xG}) List.append(new_dict) class TeamButton(): def __init__(self, input_text, text_font, data_entry): self.input_text = input_text self.text_font = text_font self.data_entry = data_entry if self.input_text == "Home": self.pressed = True self.button = Button(self.data_entry, text=input_text, command=self.updateHome, relief=SUNKEN, font=self.text_font) else: self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateAway, relief=RAISED, font=self.text_font) def updateHome(self): if self.pressed == False: self.button.configure(relief=SUNKEN) team_button2.button.configure(relief=RAISED) self.pressed = True team_button2.pressed = False def updateAway(self): if self.pressed == False: self.button.configure(relief=SUNKEN) team_button1.button.configure(relief=RAISED) self.pressed = True team_button1.pressed = False class BodyPartButton(): def __init__(self, input_text, text_font, data_entry): self.input_text = input_text self.text_font = text_font self.data_entry = data_entry if self.input_text == "Foot": self.pressed = True self.button = Button(self.data_entry, text=input_text, command=self.updateFoot, relief=SUNKEN, font=self.text_font) else: self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateOther, relief=RAISED, font=self.text_font) def updateFoot(self): if self.pressed == False: self.button.configure(relief=SUNKEN) body_part_button2.button.configure(relief=RAISED) self.pressed = True body_part_button2.pressed = False def updateOther(self): if self.pressed == False: self.button.configure(relief=SUNKEN) body_part_button1.button.configure(relief=RAISED) self.pressed = True body_part_button1.pressed = False class AssistTypeButton(): def __init__(self, input_text, text_font, data_entry): self.input_text = input_text self.text_font = text_font self.data_entry = data_entry if self.input_text == "Direct": self.pressed = True self.button = Button(self.data_entry, text=input_text, command=self.updateDirect, relief=SUNKEN, font=self.text_font) elif self.input_text == "Pass": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updatePass, relief=RAISED, font=self.text_font) elif self.input_text == "Recovery": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateRecovery, relief=RAISED, font=self.text_font) elif self.input_text == "Clearance": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateClearance, relief=RAISED, font=self.text_font) else: # Rebound Button self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateRebound, relief=RAISED, font=self.text_font) def updateDirect(self): if self.pressed == False: self.button.configure(relief=SUNKEN) assist_type_button2.button.configure(relief=RAISED) assist_type_button3.button.configure(relief=RAISED) assist_type_button4.button.configure(relief=RAISED) assist_type_button5.button.configure(relief=RAISED) self.pressed = True assist_type_button2.pressed = False assist_type_button3.pressed = False assist_type_button4.pressed = False assist_type_button5.pressed = False def updatePass(self): if self.pressed == False: self.button.configure(relief=SUNKEN) assist_type_button1.button.configure(relief=RAISED) assist_type_button3.button.configure(relief=RAISED) assist_type_button4.button.configure(relief=RAISED) assist_type_button5.button.configure(relief=RAISED) self.pressed = True assist_type_button1.pressed = False assist_type_button3.pressed = False assist_type_button4.pressed = False assist_type_button5.pressed = False def updateRecovery(self): if self.pressed == False: self.button.configure(relief=SUNKEN) assist_type_button1.button.configure(relief=RAISED) assist_type_button2.button.configure(relief=RAISED) assist_type_button4.button.configure(relief=RAISED) assist_type_button5.button.configure(relief=RAISED) self.pressed = True assist_type_button1.pressed = False assist_type_button2.pressed = False assist_type_button4.pressed = False assist_type_button5.pressed = False def updateClearance(self): if self.pressed == False: self.button.configure(relief=SUNKEN) assist_type_button1.button.configure(relief=RAISED) assist_type_button2.button.configure(relief=RAISED) assist_type_button3.button.configure(relief=RAISED) assist_type_button5.button.configure(relief=RAISED) self.pressed = True assist_type_button1.pressed = False assist_type_button2.pressed = False assist_type_button3.pressed = False assist_type_button5.pressed = False def updateRebound(self): if self.pressed == False: self.button.configure(relief=SUNKEN) assist_type_button1.button.configure(relief=RAISED) assist_type_button2.button.configure(relief=RAISED) assist_type_button3.button.configure(relief=RAISED) assist_type_button4.button.configure(relief=RAISED) self.pressed = True assist_type_button1.pressed = False assist_type_button2.pressed = False assist_type_button3.pressed = False assist_type_button4.pressed = False class ShotTypeButton(): def __init__(self, input_text, text_font, data_entry): self.input_text = input_text self.text_font = text_font self.data_entry = data_entry if self.input_text == "Open Play": self.pressed = True self.button = Button(self.data_entry, text=input_text, command=self.updateOpenPlay, relief=SUNKEN, font=self.text_font) elif self.input_text == "Free Kick": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateFreeKick, relief=RAISED, font=self.text_font) elif self.input_text == "Corner": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateCorner, relief=RAISED, font=self.text_font) elif self.input_text == "Throw In": self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateThrowIn, relief=RAISED, font=self.text_font) else: # Direct Set Piece self.pressed = False self.button = Button(self.data_entry, text=input_text, command=self.updateDirectSetPiece, relief=RAISED, font=self.text_font) def updateOpenPlay(self): if self.pressed == False: self.button.configure(relief=SUNKEN) shot_type_button2.button.configure(relief=RAISED) shot_type_button3.button.configure(relief=RAISED) shot_type_button4.button.configure(relief=RAISED) shot_type_button5.button.configure(relief=RAISED) self.pressed = True shot_type_button2.pressed = False shot_type_button3.pressed = False shot_type_button4.pressed = False shot_type_button5.pressed = False def updateFreeKick(self): if self.pressed == False: self.button.configure(relief=SUNKEN) shot_type_button1.button.configure(relief=RAISED) shot_type_button3.button.configure(relief=RAISED) shot_type_button4.button.configure(relief=RAISED) shot_type_button5.button.configure(relief=RAISED) self.pressed = True shot_type_button1.pressed = False shot_type_button3.pressed = False shot_type_button4.pressed = False shot_type_button5.pressed = False def updateCorner(self): if self.pressed == False: self.button.configure(relief=SUNKEN) shot_type_button1.button.configure(relief=RAISED) shot_type_button2.button.configure(relief=RAISED) shot_type_button4.button.configure(relief=RAISED) shot_type_button5.button.configure(relief=RAISED) self.pressed = True shot_type_button1.pressed = False shot_type_button2.pressed = False shot_type_button4.pressed = False shot_type_button5.pressed = False def updateThrowIn(self): if self.pressed == False: self.button.configure(relief=SUNKEN) shot_type_button1.button.configure(relief=RAISED) shot_type_button2.button.configure(relief=RAISED) shot_type_button3.button.configure(relief=RAISED) shot_type_button5.button.configure(relief=RAISED) self.pressed = True shot_type_button1.pressed = False shot_type_button2.pressed = False shot_type_button3.pressed = False shot_type_button5.pressed = False def updateDirectSetPiece(self): if self.pressed == False: self.button.configure(relief=SUNKEN) shot_type_button1.button.configure(relief=RAISED) shot_type_button2.button.configure(relief=RAISED) shot_type_button3.button.configure(relief=RAISED) shot_type_button4.button.configure(relief=RAISED) self.pressed = True shot_type_button1.pressed = False shot_type_button2.pressed = False shot_type_button3.pressed = False shot_type_button4.pressed = False def saveCSV(): # save all the data in placeholders to a csv/excel file today = date.today() today = today.strftime("%b-%d-%Y") df =
pd.DataFrame(List)
pandas.DataFrame
import scipy.io import numpy as np import pandas as pd from io import StringIO from datetime import datetime def ezsleep(filepath): F = open(filepath).read() data = pd.read_csv(StringIO(F),header=None) data = data.values.ravel().astype(np.float64) return data def MKmat(matfilepath): data = scipy.io.loadmat(matfilepath) df =
pd.DataFrame.from_dict(data, orient='index', columns=['A'])
pandas.DataFrame.from_dict
import csv import mne import pandas as pd import matplotlib.pyplot as plt import torch import math import numpy as np import json import re import ast def make_file_list(edf_list: str, csv_list: str, data_dir: str) -> list: file_list = [] file1 = open(edf_list) file2 = open(csv_list) reader1 = csv.reader(file1) # reader for the edf file locations reader2 = csv.reader(file2) # reader for the rec file location for i in zip(reader1, reader2): first = data_dir + i[0][0][2:] second = data_dir + i[1][0][2:-3] + 'lbl' file_list.append([first, second]) file1.close() file2.close() return file_list # returns list of file locations # https://stackoverflow.com/questions/20910213/loop-over-two-generator-together def read_and_export_files(file_list: list, montage: dict, save_loc: str): global nr for direct in file_list: edf_dir = direct[0] csv_dir = direct[1] data = mne.io.read_raw_edf(edf_dir, preload=True) # read edf file if data.__len__() < 82500: # if the file has less than 5,5 mins of continue # recorded data then it's discarded data = data.filter(0.1, 100) # use filter on data data = data.notch_filter(60) # use filter on data sfreq = int(data.info['sfreq']) # get the sampling freqency df = data.to_data_frame() # make pandas dataframe inv_map = {v[0]: k for k, v in montage1.items()} # to make sure, that the correct targets are given to the right # channels, the index order is used. which_montages = set() target = [] with open(csv_dir, "r") as file: # read rec file ls = csv.reader(file, delimiter='å') for rows in ls: l = 0 try: l = rows[0] except: continue if l: if l[:7] == "symbols": m = re.match(r".+(\{.+\})", l) string = m.group(1).replace("'", '"') string = re.sub(r'(\d+)', r'"\1"', string) sym_dict = json.loads(string) # make dict with the keys to the artifacts elif l[:5] == "label": m = re.match(r".+\{(.+)(\[.+\])\}", l) first = m.group(1).split(", ") second = m.group(2).strip('][').split(", ") ind = second.index('1.0') obs = sym_dict[str(ind)] # get the encoding of the data if (obs in ['eyem', 'artf', 'chew', 'shiv', 'musc', 'elpp', 'bckg']): target.append([int(first[4]), float(first[2]), float(first[3])]) which_montages.add(int(first[4])) sorted_index = sorted(list(which_montages)) # sort the montage index first = True for i in sorted_index: # using the montage information we make the new col_names = montage.get(i) # data-frame using only the channels # that has been labeled if (col_names[0] == "EKG"): # & first # special case that is removed continue # df_new = df[col_names[1]] # df_new = df_new.rename(col_names[0]) # first = False # elif (col_names[0] == "EKG"): # special case for montage 2 # list1 = df[col_names[1]] # list1 = list1.rename(col_names[0]) # df_new = pd.concat([df_new, diff], axis=1, join='inner') if first: list1 = df[col_names[1]] # get the first series list2 = df[col_names[2]] # get the second series df_new = list1 - list2 df_new = pd.DataFrame(df_new.rename(col_names[0])) # Rename first = False else: list1 = df[col_names[1]] list2 = df[col_names[2]] diff = list1 - list2 diff = diff.rename(col_names[0]) # Rename df_new =
pd.concat([df_new, diff], axis=1, join='inner')
pandas.concat
import os import datetime import numpy as np import pandas as pd import seaborn as sns import matplotlib import matplotlib.pyplot as plt ########### Data Constants ########### DATA_DIR = '../data/' if not os.access('/tmp/figures', os.F_OK): os.mkdir('/tmp/figures') if not os.access('/tmp/figures', os.W_OK): print('Cannot write to /tmp/figures, please fix it.') exit() else: print('figures saved to /tmp/figures') ########### Prepare Functions ########### def filter_df(rule_df, keyword): df_ant = pd.DataFrame(columns=rule_df.columns) df_con = pd.DataFrame(columns=rule_df.columns) ind_ant = 0 ind_con = 0 for df_iter in rule_df.iterrows(): df_row = df_iter[1] if keyword in df_row['antecedents']: df_ant.loc[ind_ant] = df_row ind_ant +=1 if keyword in df_row['consequents']: df_con.loc[ind_con] = df_row ind_con += 1 return df_ant, df_con def get_usr_thr(column, mode='top'): pareto = len(column) * 0.2 total_cnt = 0 if mode == 'top': ascend = False elif mode == 'bot': ascend = True for count in column.value_counts(ascending=ascend).to_list(): total_cnt += count if total_cnt >= pareto: return count def get_df(file, header=None): df =
pd.read_csv(file, header=None)
pandas.read_csv
import numpy as np import logging as logging import pandas as pd import parmed as pmd from networkx.algorithms import isomorphism from openforcefield.typing.engines.smirnoff import ( ForceField, generateTopologyFromOEMol, generateGraphFromTopology, ) from openeye.oechem import ( oemolistream, oemolostream, OEIFlavor_MOL2_Forcefield, OEIFlavor_Generic_Default, OEIFlavor_PDB_Default, OEIFlavor_PDB_ALL, OEFormat_MOL2, OEFormat_MOL2H, OEWriteMolecule, OETriposAtomNames, OEMol, OEFormat_PDB, OESmilesToMol, OEAddExplicitHydrogens, OEHasAtomIdx, OEAtomGetResidue, ) def compare_parameters(reference_prmtop, target_prmtop): """Compare force field parameters between a reference and target parameter file. Parameters ---------- reference_prmtop : str File name of reference parameter file target_prmtop : str File name of target parameter file """ print("Establishing mapping between structures...") reference_to_target_mapping = create_atom_map(reference_prmtop, target_prmtop) reference = pmd.load_file(reference_prmtop, structure=True) target = pmd.load_file(target_prmtop, structure=True) print("Comparing LJ parameters...") lj = compare_lj_parameters(reference, target, reference_to_target_mapping) print("Comparing bond parameters...") bonds = compare_bonds(reference, target, reference_to_target_mapping) print("Comparing angle parameters...") angles = compare_angles(reference, target, reference_to_target_mapping) print("Comparing dihedral parameters...") dihedrals = compare_dihedrals(reference, target, reference_to_target_mapping) print("Comparing improper parameters...") impropers = compare_impropers(reference, target, reference_to_target_mapping) def create_atom_map(reference_prmtop, target_prmtop): """Create a mapping between the atoms in the first and second structure using `networkx.algorithms.isomorphism`. I am not sure how well this performs in general. Parameters ---------- reference_prmtop : str File name of reference parameter file target_prmtop : str File name of target parameter file Returns ------- """ reference = pmd.load_file(reference_prmtop, structure=True) target = pmd.load_file(target_prmtop, structure=True) reference_graph = generateGraphFromTopology(reference.topology) target_graph = generateGraphFromTopology(target.topology) graph_matcher = isomorphism.GraphMatcher(reference_graph, target_graph) reference_to_target_mapping = dict() if graph_matcher.is_isomorphic(): logging.debug("Reference → Target (AMBER 1-based indexing)") for (reference_atom, target_atom) in graph_matcher.mapping.items(): reference_to_target_mapping[reference_atom] = target_atom reference_name = reference[reference_atom].name target_name = target[target_atom].name reference_type = reference[reference_atom].type target_type = target[target_atom].type # ParmEd is 0-indexed. # Add 1 to match AMBER-style indexing. logging.debug( f"{reference_name:4} {reference_type:4} {reference_atom + 1:3d} → " f"{target_atom + 1:3d} {target_type:4} {target_name:4}" ) return reference_to_target_mapping def find_bonds(structure): df = pd.DataFrame() for atom in structure.atoms: for bond in atom.bonds: df = df.append( pd.DataFrame( { "atom1": bond.atom1.name, "atom2": bond.atom2.name, "atom1_idx": bond.atom1.idx, "atom2_idx": bond.atom2.idx, "atom1_type": bond.atom1.type, "atom2_type": bond.atom2.type, "req": bond.type.req, "k": bond.type.k, }, index=[0], ), ignore_index=True, ) return df.drop_duplicates() def find_angles(structure): df = pd.DataFrame() for atom in structure.atoms: for angle in atom.angles: df = df.append( pd.DataFrame( { "atom1": angle.atom1.name, "atom2": angle.atom2.name, "atom3": angle.atom3.name, "atom1_idx": angle.atom1.idx, "atom2_idx": angle.atom2.idx, "atom3_idx": angle.atom3.idx, "atom1_type": angle.atom1.type, "atom2_type": angle.atom2.type, "atom3_type": angle.atom3.type, "thetaeq": angle.type.theteq, "k": angle.type.k, }, index=[0], ), ignore_index=True, ) return df.drop_duplicates() def find_dihedrals(structure): df = pd.DataFrame() for atom in structure.atoms: for dihedral in atom.dihedrals: df = df.append( pd.DataFrame( { "atom1": dihedral.atom1.name, "atom2": dihedral.atom2.name, "atom3": dihedral.atom3.name, "atom4": dihedral.atom4.name, "atom1_idx": dihedral.atom1.idx, "atom2_idx": dihedral.atom2.idx, "atom3_idx": dihedral.atom3.idx, "atom4_idx": dihedral.atom4.idx, "atom1_type": dihedral.atom1.type, "atom2_type": dihedral.atom2.type, "atom3_type": dihedral.atom3.type, "atom4_type": dihedral.atom4.type, "improper": dihedral.improper, "per": dihedral.type.per, "phi_k": dihedral.type.phi_k, "phase": dihedral.type.phase, }, index=[0], ), ignore_index=True, ) return df.drop_duplicates() def find_impropers(structure): df = pd.DataFrame() for atom in structure.atoms: for improper in atom.dihedrals: df = df.append( pd.DataFrame( { "atom1": improper.atom1.name, "atom2": improper.atom2.name, "atom3": improper.atom3.name, "atom4": improper.atom4.name, "atom1_idx": improper.atom1.idx, "atom2_idx": improper.atom2.idx, "atom3_idx": improper.atom3.idx, "atom4_idx": improper.atom4.idx, "atom1_type": improper.atom1.type, "atom2_type": improper.atom2.type, "atom3_type": improper.atom3.type, "atom4_type": improper.atom4.type, "per": improper.type.per, "phi_k": improper.type.phi_k, "phase": improper.type.phase, }, index=[0], ), ignore_index=True, ) return df.drop_duplicates() def label_smirks(structure_mol2, verbose=True, structure=None): ifs = oemolistream() flavor = OEIFlavor_MOL2_Forcefield ifs.SetFlavor(OEFormat_MOL2, flavor) molecules = [] # Read in molecules for mol in ifs.GetOEMols(): OETriposAtomNames(mol) # Add all the molecules in this file to a list, but only return the first one. molecules.append(OEMol(mol)) # This should now handle single-residue and multi-residue hosts. ff = ForceField("forcefield/smirnoff99Frosst.offxml") labels = ff.labelMolecules(molecules, verbose=False) if not verbose: return labels else: # Labels should be a list of length 1 if we pass it a single molecule... for force in labels[0].keys(): print(force, end="\n") for index in range(len(labels[0][force])): atom_indices = labels[0][force][index][0] atom_names = [] atom_types = [] for atom_index in atom_indices: atom_name = structure[atom_index].name atom_type = structure[atom_index].type atom_names.append(atom_name) atom_types.append(atom_type) atom_name_string = "-".join(atom_names) atom_type_string = "-".join(atom_types) smirks_string = labels[0][force][index][2] pid = labels[0][force][index][1] parameter = ff.getParameter(paramID=pid) # Sometimes two a SMIRKS pattern for *two* atoms is printed in the nonbonded generator. # I'm not sure why that is. print(f"{atom_name_string:<14} {atom_type_string:<14}" f"{parameter}") return def compare_lj_parameters(reference, target, reference_to_target_mapping, verbose=True): lennard_jones = pd.DataFrame() logging.debug("Reference → Target") logging.debug( f"{'Name':4} {'Eps':5} {'Sigma':5} → " f"{'Name':4} {'Eps':5} {'Sigma':5}" ) for reference_atom, target_atom in reference_to_target_mapping.items(): reference_name = reference[reference_atom].name reference_type = reference[reference_atom].type reference_sigma = reference[reference_atom].sigma reference_epsilon = reference[reference_atom].epsilon target_name = target[target_atom].name target_type = target[target_atom].type target_sigma = target[target_atom].sigma target_epsilon = target[target_atom].epsilon lennard_jones = lennard_jones.append( pd.DataFrame( { "target_name": target_name, "target_type": target_type, "target_e": np.round(target_epsilon, decimals=5), "target_s": np.round(target_sigma, decimals=5), "reference_name": reference_name, "reference_type": reference_type, "reference_e": np.round(reference_epsilon, decimals=5), "reference_s": np.round(reference_sigma, decimals=5), }, index=[0], ), ignore_index=True, ) if verbose: if (np.round(reference_epsilon, 4) != np.round(target_epsilon, 4)) or ( np.round(reference_sigma, 4) != np.round(target_sigma, 4) ): print( f"\x1b[31m{reference_name:>4} {reference_sigma:4.3f} {reference_epsilon:4.3f} → " f"{target_name:>4} {target_sigma:4.3f} {target_epsilon:4.3f}\x1b[0m" ) else: print( f"{reference_name:>4} {reference_sigma:4.3f} {reference_epsilon:4.3f} → " f"{target_name:>4} {target_sigma:4.3f} {target_epsilon:4.3f}" ) return lennard_jones def compare_bonds(reference, target, reference_to_target_mapping, verbose=True): reference_bonds = find_bonds(reference) target_bonds = find_bonds(target) assert len(reference.bonds) == len(reference_bonds) assert len(target.bonds) == len(target_bonds) bonds = pd.DataFrame() for reference_atom, target_atom in reference_to_target_mapping.items(): reference_atom_bonds = reference_bonds[ (reference_bonds["atom1_idx"] == reference_atom) | (reference_bonds["atom2_idx"] == reference_atom) ] target_atom_bonds = target_bonds[ (target_bonds["atom1_idx"] == target_atom) | (target_bonds["atom2_idx"] == target_atom) ] df = reference_atom_bonds.join(target_atom_bonds, lsuffix="_r", rsuffix="_t") for index, bond in df.iterrows(): reference_atom1 = bond["atom1_r"] reference_atom2 = bond["atom2_r"] reference_k = bond["k_r"] reference_req = bond["req_r"] target_atom1 = bond["atom1_t"] target_atom2 = bond["atom2_t"] target_k = bond["k_t"] target_req = bond["req_t"] if verbose: if (np.round(reference_k, 4) != np.round(target_k, 4)) or ( np.round(reference_req, 4) != np.round(target_req, 4) ): print( f"\x1b[31m{reference_atom1:>4}--{reference_atom2:<4} {reference_k:4.3f} {reference_req:4.3f} → " f"{target_atom1:>4}--{target_atom2:<4} {target_k:4.3f} {target_req:4.3f}\x1b[0m" ) else: print( f"{reference_atom1:>4}--{reference_atom2:<4} {reference_k:4.3f} {reference_req:4.3f} → " f"{target_atom1:>4}--{target_atom2:<4} {target_k:4.3f} {target_req:4.3f}" ) bonds = bonds.append(df, ignore_index=True) return bonds def compare_angles(reference, target, reference_to_target_mapping, verbose=True): reference_angles = find_angles(reference) target_angles = find_angles(target) assert len(reference.angles) == len(reference_angles) assert len(target.angles) == len(target_angles) angles = pd.DataFrame() for reference_atom, target_atom in reference_to_target_mapping.items(): reference_atom_angles = reference_angles[ (reference_angles["atom1_idx"] == reference_atom) | (reference_angles["atom2_idx"] == reference_atom) | (reference_angles["atom3_idx"] == reference_atom) ] target_atom_angles = target_angles[ (target_angles["atom1_idx"] == target_atom) | (target_angles["atom2_idx"] == target_atom) | (target_angles["atom3_idx"] == target_atom) ] df = reference_atom_angles.join(target_atom_angles, lsuffix="_r", rsuffix="_t") for index, angle in df.iterrows(): reference_atom1 = angle["atom1_r"] reference_atom2 = angle["atom2_r"] reference_atom3 = angle["atom3_r"] reference_k = angle["k_r"] reference_thetaeq = angle["thetaeq_r"] target_atom1 = angle["atom1_t"] target_atom2 = angle["atom2_t"] target_atom3 = angle["atom3_t"] target_k = angle["k_t"] target_thetaeq = angle["thetaeq_t"] if verbose: if (np.round(reference_k, 4) != np.round(target_k, 4)) or ( np.round(target_thetaeq, 4) != np.round(target_thetaeq, 4) ): print( f"\x1b[31m{reference_atom1:>4}--{reference_atom2:^4}--{reference_atom3:<4} {reference_k:4.3f} {reference_thetaeq:4.3f} → " f"{target_atom1:>4}--{target_atom2:^4}--{target_atom3:<4} {target_k:4.3f} {target_thetaeq:4.3f}\x1b[0m" ) else: print( f"{reference_atom1:>4}--{reference_atom2:<4}--{reference_atom3:<4} {reference_k:4.3f} {reference_thetaeq:4.3f} → " f"{target_atom1:>4}--{target_atom2:<4}--{target_atom3:<4} {target_k:4.3f} {target_thetaeq:4.3f}" ) angles = angles.append(df, ignore_index=True) return angles def compare_dihedrals(reference, target, reference_to_target_mapping, verbose=True): reference_dihedrals = find_dihedrals(reference) target_dihedrals = find_dihedrals(target) assert len(reference.dihedrals) == len(reference_dihedrals) assert len(target.dihedrals) == len(target_dihedrals) dihedrals =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python from glob import glob import os import numpy as np import pandas as pd from natsort import natsorted def prepare_forex(asset, path): if not os.path.exists(path + asset + "/h5"): os.makedirs(path + asset + "/h5") def dateparse(date, time): return pd.to_datetime(date + time, format='%Y%m%d%H%M%S%f') def process_data(file): data = pd.read_csv(file, header=None, names=["Date", "Time", "Bid", "Ask"], index_col="datetime", parse_dates={'datetime': ['Date', 'Time']}, date_parser=dateparse) # Add the midquote data["Midquote"] = (data["Bid"] + data["Ask"]) / 2 data.drop(["Bid", "Ask"], axis=1, inplace=True) data = data.iloc[:, 0] # Shift the index such that trading time is from 0-24h idx_1 = data[:'2014-08-02'].index + pd.Timedelta('8h') idx_2 = data['2014-08-03':].index + pd.Timedelta('6h') data.index = idx_1.union(idx_2) # Change the first and the last timestamp def change_timestamp(x): if len(x) > 0: x[0] = x[0].replace(hour=0, minute=0, second=0, microsecond=0) x[-1] = x[-1].replace(hour=23, minute=59, second=59, microsecond=999999) return x new_idx = data.index.to_series().groupby(pd.TimeGrouper("1d")).apply(change_timestamp) data.index = new_idx # Save the data to the disk for day, data_day in data.groupby(
pd.TimeGrouper("1d")
pandas.TimeGrouper
#!/usr/bin/env python # coding: utf-8 # # Global Utility Functions # **Description** # # This notebook contains shared functions used in other notebook. # # - *Plotting* and *Reporting/printing* related functions are mostly cosmetical to generate nice plots for the thesis and provide easy readable output. # - The function that are *Scoring* related are important, as they are used to calculate the evaluation metrics. # - The *Data Preparation* related functions are also very important, as they include the sliding window logic, and the (quite complex) normalization & cv scenario creation logic. # # The functions are followed by a *Check function* cell, which is used to demonstrated the different functions for transparency and sanity check their logic. This transparency, by demonstrating the results right next to the code is also the reason, why I implemented these functions as a Jupyter Notebook instead as a Python Module (where it would be better placed for more productive scenarios) # # **Usage** # # 1. To make the functions in this notebook available in another notebook, run the following line in the consuming notebook: # ``` # %run utils.ipynb # ``` # # # 2. To investigate the functions inside this notebook, enable the testing output by setting in the configuration section ([1. Preparations](#1)): # ``` # TEST_MODE = True # ``` # # **Table of Contents** # # **1 - [Preparations](#1)** # **2 - [Plotting related](#2)** # **3 - [Reporting/printing related](#3)** # **4 - [Scoring related](#4)** # **5 - [Data Preparation related](#5)** # ## 1. Preparations <a id='1'>&nbsp;</a> # ### Imports # In[18]: # Standard import warnings import random from pathlib import Path # Extra import pandas as pd import numpy as np from dataclasses import asdict from sklearn.metrics import confusion_matrix, roc_curve, accuracy_score, make_scorer, auc from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler from sklearn.utils import resample as sk_resample from scipy.optimize import brentq from scipy.interpolate import interp1d import seaborn as sns import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from matplotlib import animation, rc from tqdm.auto import tqdm from IPython.display import HTML import math #mychanges # ### Configuration # Only relevant for sanity checking function in this notebook. # In[2]: TEST_MODE = False # Set to "True" to perform sanity checks, set to "False" before importing this notebook into others MAGENTA = (202/255, 18/255, 125/255) # ## 2. Plotting related <a id='2'>&nbsp;</a> # ### utils_save_plot() # In[3]: def utils_save_plot(fig, filepath): """Save plot to file using certain layout and dpi.""" fig.savefig(filepath, bbox_inches="tight", pad_inches=0.01, dpi=600) # **Check Function:** # In[4]: if TEST_MODE: plt.plot([1, 3, 2, 4]) TEST_OUTPUT_PATH = Path.cwd() / "output" / "utils" TEST_OUTPUT_PATH.mkdir(parents=True, exist_ok=True) utils_save_plot(plt, TEST_OUTPUT_PATH / "utils_save_plot.png") # ### utils_set_output_style() # In[5]: def utils_set_output_style(): """Set styles for matplotlib charts and pandas tables.""" # Charts # for seaborn: sns.set_style("darkgrid") sns.set_context("paper") sns.set(font="sans") sns.set_palette("tab10") # for plain matplotlib: plt.style.use(["seaborn-darkgrid", "seaborn-paper"]) plt.rc("font", family="sans", size=8) plt.rc("axes", titlesize=6) plt.rc("axes", labelsize=6) plt.rc("xtick", labelsize=6) plt.rc("ytick", labelsize=6) plt.rc("xtick.major", pad=1) plt.rc("ytick.major", pad=3) plt.rc("legend", fontsize=6) plt.rc("figure", titlesize=6) # Tables pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.set_option("display.width", 1000) pd.plotting.register_matplotlib_converters() # **Check Function:** # In[6]: if TEST_MODE: utils_set_output_style() plt.plot([1, 3, 2, 4]) # ### utils_boxplot_style &lt;dict&gt;, utils_lineplot_style &lt;dict&gt; # In[7]: # Define a style I use a lot for boxplots: utils_boxplot_style = dict( color="tab:blue", linewidth=0.5, saturation=1, width=0.7, flierprops=dict( marker="o", markersize=2, markerfacecolor="none", markeredgewidth=0.5 ), ) # Define a style I use a lot for lineplots: utils_lineplot_style = dict( color="tab:blue", linewidth=0.5, marker="o", markersize=3, markeredgewidth=0.5 ) # **Check Function:** # In[8]: if TEST_MODE: utils_set_output_style() fig = plt.figure(dpi=180, figsize=(5.473, 2)) sns.boxplot( x=["Dist 1", "Dist 2"], y=[[2, 4, 3, 4, 15, 8, 3, 0, 2, 21], [12, 14, 13, 17, 15, 8, 11, 0, 2, 21]], **utils_boxplot_style ) # ### utils_plot_randomsearch_results() # In[9]: def utils_plot_randomsearch_results(df_results, n_top=1): # Prepare data for plotting df_plot = df_results[df_results["rank_test_eer"] <= n_top].rename( columns={ "param_nu": r"$\nu$", "param_gamma": r"$\gamma$", "mean_test_accuracy": "Mean Test Acc.", "mean_test_eer": "Mean Test EER", } ) df_plot["Mean Test EER"] = df_plot["Mean Test EER"] * -1 # Because fewer is more median_nu = df_plot[r"$\nu$"].median() median_gamma = df_plot[r"$\gamma$"].median() # Plot fig = plt.figure(figsize=(5.473 / 1.3, 2), dpi=180) g = sns.scatterplot( x=r"$\nu$", y=r"$\gamma$", data=df_plot, size="Mean Test EER", sizes=(7, 60), hue="Mean Test EER", alpha=1, # palette="Blues", linewidth=0, ) # Format Legend labels leg = g.get_legend() new_handles = [h for h in leg.legendHandles] new_labels = [] for i, handle in enumerate(leg.legendHandles): label = handle.get_label() try: new_labels.append(f"{abs(float(label)):.3f}") except ValueError: new_labels.append("") # Plot mean values plt.plot( [-0.01, 0.31], [median_gamma, median_gamma], linestyle="dashed", linewidth=0.8, alpha=0.7, color="black", ) plt.text( 0.23, median_gamma * 1.7 ** 2, r"median($\gamma$)", fontsize=6, color="black", alpha=0.9, ) plt.text( 0.23, median_gamma * 1.2 ** 2, f"{median_gamma:.3f}", fontsize=5, color="black", alpha=0.9, ) plt.plot( [median_nu, median_nu], [0.0001, 1000], linestyle="dashed", linewidth=0.8, alpha=0.7, color="black", ) plt.text( median_nu + 0.005, 400, r"median($\nu$)", fontsize=6, color="black", alpha=0.9 ) plt.text( median_nu + 0.005, 200, f"{median_nu:.3f}", fontsize=5, color="black", alpha=0.9 ) # Adjust axes & legend plt.yscale("log") plt.ylim(0.0001, 1000) plt.xlim(0, 0.305) plt.legend( new_handles, new_labels, bbox_to_anchor=(1.02, 1), loc=2, borderaxespad=0.0, title="Mean EER per Owner\n(Validation Results)", title_fontsize=5, ) fig.tight_layout() return fig # ### utils_plot_session_probability() # In[12]: def utils_plot_session_probability(y_impostor, subject, session): """Plot the owner probability for every sample of session.""" df_y =
pd.DataFrame(y_impostor)
pandas.DataFrame
# Adapted, non-cluster, version of script for finding optimal ML hyper-parameters # for a give ML algorithm, feature set, and optimization metric. All combinations tested # script requires following parameters: # 1. 0-13 which index corresponding ML algorithms # 2. feature set name (complete list of options can be found in publications supplement) # 3. optimization metric (Prec, Acc, MCC, Multi) # This script was tested using: # > python MLwGrid.py 0 AllSumSph MCC # All inputs in MLCombosAll.txt were used for publication #general requirements import pandas as pd import numpy as np import sys import warnings warnings.filterwarnings(action="ignore") #preprocessing stuff from sklearn.model_selection import train_test_split, GridSearchCV, GroupShuffleSplit, StratifiedShuffleSplit, cross_validate, StratifiedKFold from sklearn import preprocessing from sklearn import impute #classifiers from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier, DistanceMetric from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression, RidgeClassifier, PassiveAggressiveClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis, LinearDiscriminantAnalysis #process results from sklearn.metrics import roc_curve, auc, recall_score, accuracy_score, precision_score, confusion_matrix, make_scorer, matthews_corrcoef, jaccard_score # custom script import GetFeatureSet as GetFeatureSet # correspinding ML algorithm for a given index names = ["LogRegr", "Ridge", "PassAggr", "QDA", "LDA", "NaiveBayes", "NearNeigh", "LinSVM", "RBFSVM", "SigSVM", "RandomForest", "ExtraTrees", "GradBoost", "NeurNet"] classifiers = [ LogisticRegression(solver="liblinear", tol = 1e-4), RidgeClassifier(solver="auto", tol = 1e-4), PassiveAggressiveClassifier(tol = 1e-4), QuadraticDiscriminantAnalysis(priors=None), #also almost no real parameters to adjust LinearDiscriminantAnalysis(solver = "lsqr"), GaussianNB(priors=None), #only one real parameter to adjust! KNeighborsClassifier(algorithm = "ball_tree", weights = 'distance'), SVC(kernel="linear", max_iter=10000, tol = 1e-4), SVC(kernel="rbf", class_weight = "balanced", tol = 1e-4), SVC(kernel="sigmoid", class_weight = "balanced", tol = 1e-4), RandomForestClassifier(class_weight = "balanced", bootstrap = True, n_estimators=500, max_features='sqrt', criterion='entropy'), ExtraTreesClassifier(n_estimators=500, min_samples_split=3, max_depth=None, criterion="gini"), GradientBoostingClassifier(criterion = 'friedman_mse', min_samples_split = 3, n_estimators=1000, loss='deviance'), MLPClassifier(learning_rate_init = 0.01, activation='relu'), ] parameter_space = [ { "penalty": ["l2", 'l1'], "C":[1.0, 0.01, 0.001], "class_weight":['balanced', None]}, #LogRegr { "alpha": np.logspace(-4, 1, 6), "class_weight":['balanced', None]}, #Ridge { "C": np.logspace(-1, 3, 5), "class_weight":['balanced', None] }, #PassAggr { "reg_param": np.linspace(0.5, 1, 7) }, #QDA { "shrinkage": ["auto", 0, 0.1, 0.25, 0.5, 0.75, 1] }, #LDA { "var_smoothing": np.logspace(-9, 0, 10) }, #Gauss [ {"metric": ["minkowski"], "p":[2, 3], "n_neighbors": [5, 8, 10, 15]}, {"metric": ["chebyshev"], "n_neighbors": [5, 8, 10, 15]} ], #kNN { "C": np.logspace(-3, 1, 5), "class_weight":['balanced', None] }, #SVC lin { "C": np.logspace(-3, 1, 5), "gamma": ["scale", "auto"] }, #SVC rbf { "C": np.logspace(-3, 1, 5),"gamma": ["scale", "auto"] }, #SVC sig { "max_depth": [6, 10, 20, None], 'min_samples_split': [5, 25, 50] }, #RF { "class_weight": ["balanced", None], "max_features": ['log2', None], "bootstrap" : [True, False] }, #ExtraTrees { "learning_rate": [0.1, 0.01], "max_features" : ['log2', None], "subsample":[0.5, 0.65, 0.8]},#GBClassifier { "hidden_layer_sizes": [(50,), (100,), (200,)], "alpha": [0.1, 0.01, 0.001] } #MLPClass ] name_index = int(sys.argv[1]) # number for given ML algorithm feature_set = str(sys.argv[2]) #All_Sph, All_Shell, Gen, etc opt_type = str(sys.argv[3]) #Prec Acc MCC Multi name = names[name_index] ## read ion all sites/features sites = pd.read_csv("../publication_sites/sites_calculated_features_scaled.txt", sep=',') sites = sites.set_index('SITE_ID',drop=True) ## get training/kfold sites, random under sample, and split out target value ("Catalytic") X = sites.loc[sites.Set == "data"].copy() X_Cat = X[X['Catalytic']==True] X_nonCat = X[X['Catalytic']==False] # the following line controls under sampling X_nonCat = X_nonCat.sample(n=len(X_Cat)*3, axis=0, random_state=1) X = X_Cat.append(X_nonCat) y = X['Catalytic']; del X['Catalytic'] ## get test sites and split out target value ("Catalytic") testX = sites.loc[sites.Set == "test"].copy() testY = testX['Catalytic']; del testX['Catalytic'] #split into features and classification X = GetFeatureSet.feature_subset(X, feature_set, noBSA=True) print("DataSet entries: %s \t features: %s"%(X.shape[0], X.shape[1])) testX = GetFeatureSet.feature_subset(testX, feature_set, noBSA=True) print("TestSet entries: %s \t features: %s"%(testX.shape[0], testX.shape[1])) def setDisplay(X, x, Y, y): print("\nTRAIN entries: %s \t features: %s"%(X.shape[0], X.shape[1])) print("\tNum catalytic: %s \n\tNum non-catalytic: %s"%(len(Y[Y==1]),len(Y[Y==0]))) print("CV entries: %s \t features: %s"%(x.shape[0], x.shape[1])) print("\tNum catalytic: %s \n\tNum non-catalytic: %s"%(len(y[y==1]),len(y[y==0]))) this_clf = classifiers[name_index] num_jobs = 15 inner_cv_type = StratifiedShuffleSplit(n_splits=7) these_params = parameter_space[name_index] def prec_score_custom(y_true, y_pred, this_label = True): return( precision_score(y_true, y_pred, pos_label= this_label) ) def mcc_score(y_true, y_pred): return( matthews_corrcoef(y_true, y_pred)) def jac_score(y_true, y_pred, this_label = True): return( jaccard_score(y_true, y_pred, pos_label=this_label)) if opt_type == "Prec": this_scoring = make_scorer(prec_score_custom, greater_is_better = True) elif opt_type == "Acc": this_scoring = "accuracy" elif opt_type == "MCC": this_scoring = make_scorer(mcc_score, greater_is_better = True) elif opt_type == "Multi": this_scoring = {"Acc":'accuracy', "MCC": make_scorer(mcc_score, greater_is_better = True), "Jaccard": make_scorer(jac_score, greater_is_better = True) } else: print("Invalid scoring term") sys.exit() outer_cv_type=StratifiedKFold(n_splits=7) outer_cv_results = [] outer_coeffs = [] outer_params = [] outer_feat_imp = [] for i, (train_idx, test_idx) in enumerate(outer_cv_type.split(X,y)): print("OUTER LOOP NUMBER:", i) X_train, X_outerCV = X.iloc[train_idx].copy(), X.iloc[test_idx].copy() y_train, y_outerCV = y.iloc[train_idx].copy(), y.iloc[test_idx].copy() print("outer CV display:") setDisplay(X_train, X_outerCV, y_train, y_outerCV) print("post add_oversampling display:") setDisplay(X_train, X_outerCV, y_train, y_outerCV) #run feature selection and CV clf = GridSearchCV(estimator = this_clf, cv=inner_cv_type, param_grid = these_params, scoring = this_scoring, iid = True, refit = False, verbose=100, n_jobs = num_jobs) clf.fit(X_train.reset_index(drop=True), y_train.reset_index(drop=True)) results = clf.cv_results_ #somehow get best combination of multiple scoring terms print(results) ranks = [] for key in results: if "rank_test_" in key: ranks.append(results[key]) #best params will have to be identified for full data set for final model building after best model is selected best_params = results['params'][np.argmin(np.sum(np.asarray(ranks), axis = 0))] print(best_params) outer_params.append(best_params) ## set the new classifier to these parameters outer_clf = this_clf.set_params(**best_params) ## fit on all training data - this is what GridSearchCV(refit = True) will do anyways, ## but its selection of params is not necessary Meghans outer_clf.fit(X_train.reset_index(drop=True), y_train.reset_index(drop=True)) outerCV = pd.DataFrame(y_outerCV, columns=['Catalytic']) #predict based on fitted outer CV model outerCV_preds = pd.DataFrame(outer_clf.predict(X_outerCV.reset_index(drop=True)), columns=['Prediction']) outerCV_preds['SITE_ID']=X_outerCV.index outerCV_preds = outerCV_preds.set_index('SITE_ID', drop=True) outerCV =
pd.merge(outerCV, outerCV_preds, left_index=True, right_index=True)
pandas.merge
import sklearn.neighbors._base import sys sys.modules['sklearn.neighbors.base'] = sklearn.neighbors._base import pandas as pd from sklearn.base import TransformerMixin import numpy as np from sklearn.impute import SimpleImputer, KNNImputer from missingpy import MissForest class prepross(TransformerMixin): def __init__(self, **kwargs): super().__init__(**kwargs) def fit(self, X, y=None): self.fill = pd.Series([X[c].value_counts().index[0] if X[c].dtype == np.dtype('O') else X[c].mean() for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.fill) def rm_rows_cols(df, row_thresh=0.8, col_thresh=0.8): if "Index" in df.columns: df.drop("Index", axis=1, inplace=True) df.columns = [col.strip() for col in df.columns] df = df.drop_duplicates() df = df.dropna(axis=0,how='all').dropna(axis=1,how='all').dropna(axis=1,how='all').dropna(axis=0,thresh= int(len(df.columns)*0.8)).dropna(axis=1,thresh=int(len(df)*0.8)) df = df.infer_objects() return df def replace_special_character(df,usr_char=None,do=None, ignore_col=None): spec_chars = ["!", '"', "#", "%", "&", "'", "(", ")", "*", "+", ",", "-", ".", "/", ":", ";", "<", "=", ">", "?", "@", "[", "\\", "]", "^", "_", "`", "{", "|", "}", "~", "–", "//", "%*", ":/", ".;", "Ø", "§",'$',"£"] if do== 'remove': for chactr in usr_char: spec_chars.remove(chactr) elif do=='add': for chactr in usr_char: spec_chars.append(chactr) if len(ignore_col)>0: df_to_concat = df[ignore_col] df = df[list(set(df.columns)-set(ignore_col))] else: df_to_concat = pd.DataFrame() for c in spec_chars: df = df.replace("\\"+c, '', regex=True) df = pd.concat([df,df_to_concat], axis=1) return df def custom_imputation(df, imputation_type="RDF"): categorical_columns = [] numeric_columns = [] for c in df.columns: if df[c].map(type).eq(str).any(): # check if there are any strings in column categorical_columns.append(c) else: numeric_columns.append(c) # create two DataFrames, one for each data type data_numeric = df[numeric_columns] # Numerical List. data_categorical = df[categorical_columns] # Categorical List. # Imputation of Categorical Values by Mean data_categorical = pd.DataFrame(prepross().fit_transform(data_categorical), columns=data_categorical.columns) data_numeric.reset_index(drop=True, inplace=True) data_categorical.reset_index(drop=True, inplace=True) if imputation_type=="KNN": if len(data_numeric.columns) >= 1: imp = KNNImputer(n_neighbors=5, weights="uniform") data_numeric_final = pd.DataFrame(imp.fit_transform(data_numeric), columns=data_numeric.columns) data_numeric_final.reset_index(drop=True, inplace=True) final_df = pd.concat([data_numeric_final, data_categorical], axis=1) else: final_df = data_categorical if imputation_type=="RDF": if len(data_numeric.columns) >= 1: imp = MissForest(max_iter=10, decreasing=False, missing_values=np.nan, copy=True, n_estimators=100, criterion=('mse', 'gini'), max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=-1, random_state=None, verbose=0, warm_start=False, class_weight=None) data_numeric_final = pd.DataFrame(imp.fit_transform(data_numeric), columns=data_numeric.columns) data_numeric_final.reset_index(drop=True, inplace=True) final_df = pd.concat([data_numeric_final, data_categorical], axis=1) else: final_df = data_categorical if imputation_type == "mean" or \ imputation_type == "median" or \ imputation_type == "most_frequent" or \ imputation_type == "constant": if len(data_numeric.columns) >= 1: imp = SimpleImputer(missing_values=np.nan, strategy=imputation_type) data_numeric_final = pd.DataFrame(imp.fit_transform(data_numeric), columns=data_numeric.columns) data_numeric_final.reset_index(drop=True, inplace=True) final_df =
pd.concat([data_numeric_final, data_categorical], axis=1)
pandas.concat
# coding: utf-8 from geopy import distance from multiprocessing import Pool, cpu_count import numpy as np import pandas as pd def select_date(df, start, end): """Return rows which are in the closed range between start and end.""" return df[(start <= df.Date) & (df.Date <= end)] def dist_in_km(a, b): return distance.distance((a.Latitude, a.Longitude), (b.Latitude, b.Longitude)).km def find_min_dist(row, spray, offset_days, fill_na_by=np.nan): return spray.pipe( select_date, row.Date - offset_days, row.Date ).apply( dist_in_km, args=(row,), axis=1 ).pipe( # at this point, df should not be empty, just in case lambda df: fill_na_by if df.empty else df.min() ) def select_sprayed(df, spray, offset_days): spray_date_index = df.Date != df.Date # all False for spray_date in spray.Date.unique(): # Select dates between unique spray date and the day offset_days after spray_date_index |= (spray_date <= df.Date) & (df.Date <= offset_days.apply(spray_date)) return df[spray_date_index] def parallel_apply(df, func, args, n=cpu_count() + 1): p = Pool(n) splitted = [{'df': spl_df, 'args': args} for spl_df in np.array_split(df, n * 20)] result = p.map(func, splitted) p.close() p.join() return pd.concat(result) def create_min_dist_series(args_dict): result_series = args_dict['df'].apply(find_min_dist, args=args_dict['args'], axis=1) # if no results, return empty series if result_series.shape[0] == 0: return
pd.Series()
pandas.Series
# import os import time import pandas import itertools import numpy import json import sqlalchemy from tinkoff_api.quotes_loader import call_them_all from m_utils.transform import lag_it, percent_it, fill_it def sql_formatting(x): return str(x).replace('[', '').replace(']', '').replace("'", '') class SparseLoader: def __init__(self, api_key, target_quotes, news_horizon, effect_horizon, db_config, reload_quotes=False, news_titles_source=None, verbose=False, timeit=False, base_option='for_merge', add_time_features=False, nlp_treator=None, nlp_treator_signature=None, nlp_treator_config=None, nlp_ductor='post', export_chunk=100_000): self.verbose = verbose self.timeit = timeit self.run_time = None self.base_option = base_option self.add_time_features = add_time_features self.export_chunk = export_chunk self.where_to_save = './result.csv' self.nlp_treator = nlp_treator self.nlp_treator_signature = nlp_treator_signature self.nlp_treator_config = nlp_treator_config self.nlp_ductor = nlp_ductor self.api_key = api_key self.target_quotes = target_quotes self.news_horizon = news_horizon self.effect_horizon = effect_horizon self.db_config = db_config self.reload_quotes = reload_quotes self.news_titles_source = news_titles_source self.connection = None self.news_titles_frame = None self.quotes_frame = None self.news_titles_alias = 'news_titles' self.quotes_alias = 'quotes' self.result_alias = 'result_table' def fix_time(self): self.run_time = time.time() def do_time(self): self.run_time = time.time() - self.run_time print(self.run_time) def establish_connection(self): if self.timeit: self.fix_time() if self.base_option == 'for_merge': if self.verbose: print('Establishing Connection') with open(self.db_config) as f: db_config = json.load(f) user, password, host, port, dbname = db_config['user'], db_config['password'], db_config['host'], db_config[ 'port'], db_config['dbname'] connection_string = "postgresql+psycopg2://{}:{}@{}:{}/{}".format(user, password, host, port, dbname) engine = sqlalchemy.create_engine(connection_string) self.connection = engine.connect() if self.timeit: self.do_time() else: if self.verbose: print('Skipped Connection') def prepare_news_titles_frame(self): if self.timeit: self.fix_time() if self.verbose: print('Preparing News Titles Frame') if self.news_titles_source is None: raise Exception("You should specify news titles source") if self.news_titles_source is not None: self.news_titles_frame = pandas.read_excel(self.news_titles_source) self.news_titles_frame['time'] = pandas.to_datetime(self.news_titles_frame['time']) def fix_tz(x): return x.tz_localize(tz='UTC') self.news_titles_frame['time'] = self.news_titles_frame['time'].apply(func=fix_tz) def fixit(x): return x.ceil(freq='T') self.news_titles_frame['time'] = self.news_titles_frame['time'].apply(func=fixit) if self.nlp_treator is not None and self.nlp_ductor == 'pre': old_name = 'title' new_name = 'Text' self.news_titles_frame = self.news_titles_frame.rename(columns={old_name: new_name}) self.news_titles_frame = self.nlp_treator(self.news_titles_frame, self.nlp_treator_signature, self.nlp_treator_config) self.news_titles_frame = self.nlp_treator(self.news_titles_frame, self.nlp_treator_signature, self.nlp_treator_config) self.news_titles_frame = self.news_titles_frame.rename(columns={new_name: old_name}) # self.news_titles_frame = self.news_titles_frame[['id', 'time', 'title']] self.news_titles_frame = self.news_titles_frame.drop(columns=['source', 'category']) lag_markers = list( itertools.product(self.news_titles_frame['id'].values, numpy.array(numpy.arange(self.news_horizon - 1)) + 1)) lag_markers = pandas.DataFrame(data=lag_markers, columns=['id', 'lag']) self.news_titles_frame = self.news_titles_frame.merge(right=lag_markers, left_on=['id'], right_on=['id']) def minute_offset(x): return pandas.DateOffset(minutes=x) self.news_titles_frame['time'] = pandas.to_datetime(self.news_titles_frame['time']) self.news_titles_frame['news_time'] = self.news_titles_frame['time'].copy() self.news_titles_frame['time'] = self.news_titles_frame['lag'].apply(func=minute_offset) self.news_titles_frame['time'] = self.news_titles_frame['news_time'] + self.news_titles_frame['time'] if self.base_option == 'for_merge': self.news_titles_frame.to_sql(name=self.news_titles_alias, con=self.connection, if_exists='replace', index=False) if self.timeit: self.do_time() def get_dates(self): if self.verbose: print('Getting Dates') if self.base_option == 'without': beginning_date, ending_date = self.news_titles_frame['time'].min() - pandas.DateOffset( minutes=self.effect_horizon), self.news_titles_frame['time'].max() else: beginning_date_query = """ SELECT (MIN(time) - ({1} * INTERVAL '1 minute')) AS mn FROM {0} """.format(self.news_titles_alias, self.effect_horizon) ending_date_query = """ SELECT MAX(time) as mx FROM {0} """.format(self.news_titles_alias) beginning_date = pandas.read_sql(sql=beginning_date_query, con=self.connection).values[0, 0] ending_date = pandas.read_sql(sql=ending_date_query, con=self.connection).values[0, 0] return beginning_date, ending_date async def call_quotes(self): beginning_date, ending_date = self.get_dates() self.quotes_frame = await call_them_all(tickers=self.target_quotes, start_date=beginning_date, end_date=ending_date, token=self.api_key) async def prepare_quotes(self): if self.timeit: self.fix_time() if self.verbose: print('Preparing Quotes') if self.reload_quotes: await self.call_quotes() if self.timeit: self.do_time() def quotes_fill(self): if self.timeit: self.fix_time() if self.verbose: print('Filling Quotes') beginning_date, ending_date = self.get_dates() self.quotes_frame = self.quotes_frame.set_index(keys=['ticker', 'time']) self.quotes_frame = self.quotes_frame.sort_index(ascending=True) self.quotes_frame = fill_it(frame=self.quotes_frame, freq='T', zero_index_name='ticker', first_index_name='time') self.quotes_frame = self.quotes_frame.reset_index() if self.timeit: self.do_time() def quotes_lag(self): if self.timeit: self.fix_time() if self.verbose: print('Lagging Quotes') self.quotes_frame = self.quotes_frame.set_index(keys=['ticker', 'time']) self.quotes_frame = self.quotes_frame.sort_index(ascending=True) self.quotes_frame = lag_it(frame=self.quotes_frame, n_lags=self.effect_horizon, suffix='_LAG', exactly=False) self.quotes_frame = self.quotes_frame.reset_index() if self.timeit: self.do_time() def quotes_percent(self): if self.timeit: self.fix_time() if self.verbose: print('Evaluating Quotes Percents') self.quotes_frame = self.quotes_frame.set_index(keys=['ticker', 'time']) self.quotes_frame = self.quotes_frame.sort_index(ascending=True) self.quotes_frame = percent_it(frame=self.quotes_frame, horizon=1) self.quotes_frame = self.quotes_frame.reset_index() if self.timeit: self.do_time() def time_features(self, the_data): if self.add_time_features: from busy_exchange.utils import BusyDayExchange, BusyTimeExchange """ the_data['time'] = the_data['time'].dt.tz_convert('EST') the_data['is_holi'] = the_data['time'].apply(func=BusyDayExchange.is_holi).astype(dtype=float) the_data['is_full'] = the_data['time'].apply(func=BusyDayExchange.is_full).astype(dtype=float) the_data['is_cut'] = the_data['time'].apply(func=BusyDayExchange.is_cut).astype(dtype=float) the_data['to_holi'] = the_data['time'].apply(func=BusyDayExchange.to_holiday, args=(True,)) the_data['to_full'] = the_data['time'].apply(func=BusyDayExchange.to_fullday, args=(True,)) the_data['to_cut'] = the_data['time'].apply(func=BusyDayExchange.to_cutday, args=(True,)) the_data['af_holi'] = the_data['time'].apply(func=BusyDayExchange.to_holiday, args=(False,)) the_data['af_full'] = the_data['time'].apply(func=BusyDayExchange.to_fullday, args=(False,)) the_data['af_cut'] = the_data['time'].apply(func=BusyDayExchange.to_cutday, args=(False,)) """ the_data['mday'] = the_data['time'].dt.day the_data['wday'] = the_data['time'].dt.dayofweek the_data['hour'] = the_data['time'].dt.hour the_data['minute'] = the_data['time'].dt.minute # the_data['to_open'] = the_data['time'].apply(func=BusyTimeExchange.to_open) # the_data['to_close'] = the_data['time'].apply(func=BusyTimeExchange.to_close) return the_data async def read(self): if self.verbose: print('Reading') self.establish_connection() self.prepare_news_titles_frame() await self.prepare_quotes() self.quotes_fill() self.quotes_lag() # self.quotes_percent() if self.base_option == 'for_merge': self.quotes_frame.to_sql(name=self.quotes_alias, con=self.connection, if_exists='replace', index=False) query = """ CREATE TEMPORARY TABLE {0} AS SELECT RS.* FROM (SELECT NF."id" , NF.title , NF."lag" , NF.news_time , QD.* FROM public.newstitle_frame AS NF FULL OUTER JOIN public.{1} AS QD ON NF."time" = QD."time") AS RS WHERE 37 = 37 ; """.format(self.result_alias, self.quotes_alias) self.connection.execute(query) if self.export_chunk is None: reader_query = """ SELECT * FROM {0} ; """.format(self.result_alias) the_data = pandas.read_sql(sql=reader_query, con=self.connection) the_data = self.time_features(the_data) if self.nlp_treator is not None and self.nlp_ductor == 'post': old_name = 'title' new_name = 'Text' the_data['title'] = the_data['title'].fillna('NoData') print('HUGO BOSS: to memory') the_data = the_data.rename(columns={old_name: new_name}) the_data = self.nlp_treator(the_data, self.nlp_treator_signature, self.nlp_treator_config) the_data = the_data.rename(columns={new_name: old_name}) return the_data else: size_query = """ SELECT COUNT(*) FROM {0} ; """.format(self.result_alias) final_table_d0_size = pandas.read_sql(sql=size_query, con=self.connection).values[0, 0] n_chunks = (final_table_d0_size // self.export_chunk) + 1 chunks = [(j * self.export_chunk, (j + 1) * self.export_chunk - 1) for j in range(n_chunks)] chunks[-1] = (chunks[-1][0], final_table_d0_size) if self.verbose: print("Final table's D0:\t {0}\nChunks:\n{1}".format(final_table_d0_size, chunks)) iteration_columns_query = """ ALTER TABLE {0} ADD COLUMN chunker SERIAL; """.format(self.result_alias) self.connection.execute(iteration_columns_query) if os.path.exists(self.where_to_save): os.remove(self.where_to_save) for j in range(n_chunks): reader_query = """ SELECT * FROM {0} WHERE chunker >= {1} and chunker <= {2} ; """.format(self.result_alias, chunks[j][0], chunks[j][1]) data_chunk = pandas.read_sql(sql=reader_query, con=self.connection) data_chunk = self.time_features(data_chunk) if self.nlp_treator is not None and self.nlp_ductor == 'post': old_name = 'title' new_name = 'Text' data_chunk['title'] = data_chunk['title'].fillna('NoData') print('HUGO BOSS: to disk') data_chunk = data_chunk.rename(columns={old_name: new_name}) data_chunk = self.nlp_treator(data_chunk, self.nlp_treator_signature, self.nlp_treator_config) data_chunk = data_chunk.rename(columns={new_name: old_name}) data_chunk.columns = [x.replace('_PCT1', '') for x in data_chunk.columns.values] data_chunk = data_chunk.dropna().sort_values(by=['title', 'lag']) if j == 0: data_chunk.to_csv(self.where_to_save, sep=';', index=False, mode='a', header=True) else: data_chunk.to_csv(self.where_to_save, sep=';', index=False, mode='a', header=False) else: the_data = self.quotes_frame.merge(right=self.news_titles_frame, left_on='time', right_on='time') the_data = self.time_features(the_data) if self.nlp_treator is not None and self.nlp_ductor == 'post': old_name = 'title' new_name = 'Text' the_data['title'] = the_data['title'].fillna('NoData') print('HUGO BOSS: in memory') the_data = the_data.rename(columns={old_name: new_name}) the_data = self.nlp_treator(the_data, self.nlp_treator_signature, self.nlp_treator_config) the_data = the_data.rename(columns={new_name: old_name}) return the_data class KernelLoader: def __init__(self, api_key, target_quotes, news_horizon, effect_horizon, db_config, window_function, window_function_kwargs, reload_quotes=False, news_titles_source=None, verbose=False, timeit=False, base_option='for_merge', add_time_features=False, nlp_treator=None, nlp_treator_signature=None, nlp_treator_config=None, nlp_ductor='post', export_chunk=100_000): self.window_function = window_function self.window_function_kwargs = window_function_kwargs self.verbose = verbose self.timeit = timeit self.run_time = None self.base_option = base_option self.add_time_features = add_time_features self.export_chunk = export_chunk self.where_to_save = './result.csv' self.nlp_treator = nlp_treator self.nlp_treator_signature = nlp_treator_signature self.nlp_treator_config = nlp_treator_config self.nlp_ductor = nlp_ductor self.api_key = api_key self.target_quotes = target_quotes self.news_horizon = news_horizon self.effect_horizon = effect_horizon self.db_config = db_config self.reload_quotes = reload_quotes self.news_titles_source = news_titles_source self.connection = None self.news_titles_frame = None self.quotes_frame = None self.news_titles_alias = 'news_titles' self.quotes_alias = 'quotes' self.result_alias = 'result_table' def fix_time(self): self.run_time = time.time() def do_time(self): self.run_time = time.time() - self.run_time print(self.run_time) def establish_connection(self): if self.timeit: self.fix_time() if self.base_option == 'for_merge': if self.verbose: print('Establishing Connection') with open(self.db_config) as f: db_config = json.load(f) user, password, host, port, dbname = db_config['user'], db_config['password'], db_config['host'], db_config[ 'port'], db_config['dbname'] connection_string = "postgresql+psycopg2://{}:{}@{}:{}/{}".format(user, password, host, port, dbname) engine = sqlalchemy.create_engine(connection_string) self.connection = engine.connect() if self.timeit: self.do_time() else: if self.verbose: print('Skipped Connection') def prepare_news_titles_frame(self): if self.timeit: self.fix_time() if self.verbose: print('Preparing News Titles Frame') if self.news_titles_source is None: raise Exception("You should specify news titles source") if self.news_titles_source is not None: self.news_titles_frame = pandas.read_excel(self.news_titles_source) self.news_titles_frame['time'] = pandas.to_datetime(self.news_titles_frame['time']) def fix_tz(x): return x.tz_localize(tz='UTC') self.news_titles_frame['time'] = self.news_titles_frame['time'].apply(func=fix_tz) def fixit(x): return x.ceil(freq='T') self.news_titles_frame['time'] = self.news_titles_frame['time'].apply(func=fixit) if self.nlp_treator is not None: # and self.nlp_ductor == 'pre': old_name = 'title' new_name = 'Text' self.news_titles_frame = self.news_titles_frame.rename(columns={old_name: new_name}) self.news_titles_frame = self.nlp_treator(self.news_titles_frame, self.nlp_treator_signature, self.nlp_treator_config) self.news_titles_frame = self.news_titles_frame.rename(columns={new_name: old_name}) # self.news_titles_frame = self.news_titles_frame[['id', 'time', 'title']] self.news_titles_frame = self.news_titles_frame.drop(columns=['source', 'category']) """ lag_markers = list( itertools.product(self.news_titles_frame['id'].values, numpy.array(numpy.arange(self.news_horizon - 1)) + 1)) lag_markers = pandas.DataFrame(data=lag_markers, columns=['id', 'lag']) self.news_titles_frame = self.news_titles_frame.merge(right=lag_markers, left_on=['id'], right_on=['id']) """ def minute_offset(x): return pandas.DateOffset(minutes=x) self.news_titles_frame['time'] = pandas.to_datetime(self.news_titles_frame['time']) """ self.news_titles_frame['news_time'] = self.news_titles_frame['time'].copy() self.news_titles_frame['time'] = self.news_titles_frame['lag'].apply(func=minute_offset) self.news_titles_frame['time'] = self.news_titles_frame['news_time'] + self.news_titles_frame['time'] if self.base_option == 'for_merge': self.news_titles_frame.to_sql(name=self.news_titles_alias, con=self.connection, if_exists='replace', index=False) """ if self.timeit: self.do_time() def get_dates(self): if self.verbose: print('Getting Dates') if self.base_option == 'without': beginning_date, ending_date = self.news_titles_frame['time'].min() - pandas.DateOffset( minutes=self.effect_horizon), self.news_titles_frame['time'].max() else: beginning_date_query = """ SELECT (MIN(time) - ({1} * INTERVAL '1 minute')) AS mn FROM {0} """.format(self.news_titles_alias, self.effect_horizon) ending_date_query = """ SELECT MAX(time) as mx FROM {0} """.format(self.news_titles_alias) beginning_date = pandas.read_sql(sql=beginning_date_query, con=self.connection).values[0, 0] ending_date =
pandas.read_sql(sql=ending_date_query, con=self.connection)
pandas.read_sql
import numpy as np import pandas as pd from bs4 import BeautifulSoup import nltk from nltk import wordpunct_tokenize from nltk.stem.snowball import EnglishStemmer from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.pipeline import make_pipeline, make_union from tpot.builtins import StackingEstimator from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import train_test_split vectorizer = TfidfVectorizer(input='content', analyzer='word') svd = TruncatedSVD(n_components=500, n_iter=5, random_state=27) nltk.download('punkt') nltk.download('stopwords') stop_words = set(stopwords.words('english')) #After we use get_text, use nltk's clean_html function. def nltkPipe(soup_text): #Convert to tokens tokens = [x.lower() for x in wordpunct_tokenize(soup_text)] text = nltk.Text(tokens) #Get lowercase words. No single letters, and no stop words words = [w.lower() for w in text if w.isalpha() and len(w) > 1 and w.lower() not in stop_words] #Remove prefix/suffixes to cut down on vocab stemmer = EnglishStemmer() words_nostems = [stemmer.stem(w) for w in words] return words_nostems def getTitleTokens(html): soup = BeautifulSoup(html,'html.parser') soup_title = soup.title if soup_title != None: soup_title_text = soup.title.get_text() text_arr = nltkPipe(soup_title_text) return text_arr else: return [] def getBodyTokens(html): soup = BeautifulSoup(html,'html.parser') #Get the text body soup_para = soup.find_all('p') soup_para_clean = ' '.join([x.get_text() for x in soup_para if x.span==None and x.a==None]) text_arr = nltkPipe(soup_para_clean) return text_arr #Build the model def get_html(in_df): keep_cols = ["Webpage_id","Tag"] use_df = in_df[keep_cols] html_reader_obj = pd.read_csv(data_dir+'html_data.csv',iterator=True, chunksize=10000) frames = [] match_indices = use_df['Webpage_id'].values.tolist() print(len(match_indices),' indices left...') while len(match_indices) > 0: for chunk in html_reader_obj: merge_df =
pd.merge(use_df,chunk,how='inner',on='Webpage_id')
pandas.merge
import pandas as pd import streamlit as st import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import cross_val_score from sklearn import linear_model from sklearn import neighbors from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold import category_encoders as ec from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import plotly.graph_objects as go st.markdown("# DOPP3") st.markdown('## Which characteristics are predictive for countries with large populations living in extreme poverty?') with st.echo(): # READ TRANSFORMED CSV FILE raw = pd.read_csv("../data/transformed.csv") #st.write(raw.head(100)) feature_descriptions =
pd.read_csv("../data/feature_descriptions.csv")
pandas.read_csv
import pandas as pd import numpy as np import os.path as op from glob import glob main_dir = '../behav_data' out_dir = 'data/ratings_complete' sub_dirs = sorted(glob(op.join(main_dir, 'raw', 'sub-*'))) to_drop_all = [ 'regular_or_catch', 'stim_path', 'trial_nr', 'duration', 'rating_coord_deg', ] test_df = pd.read_csv('../stims/stimuli-expressive_selection-test.tsv') for sub_dir in sub_dirs: sub = op.basename(sub_dir).split('-')[1] if sub == '11': continue # not yet complete print(f"\nProcessing sub-{sub}") dfs = [] ### PREPROCESSING NEUTRAL RATINGS ### for run in [1, 2]: tsv = op.join(sub_dir, f'sub-{sub}_task-neutral_run-{run}.tsv') df = pd.read_csv(tsv, sep='\t', index_col=0).drop(to_drop_all + ['filename', 'block', 'trial'], axis=1) df = df.set_index(df.trial_type).drop('rating_type', axis=1) df['run'] = run df['rep'] = run df['session'] = 4 df = df.rename(columns={ 'behav_trial_nr': 'trial', 'behav_run': 'block', 'rating_valence_norm': 'valence', 'rating_arousal_norm': 'arousal', 'rating_dominance': 'dominance', 'rating_trustworthiness': 'trustworthiness', 'rating_attractiveness': 'attractiveness' } ) df['arousal'] = (df['arousal'] + 1) / 2 # normalize to [0, 1] for attr in ['dominance', 'trustworthiness', 'attractiveness']: df[attr] = 2 * ((df[attr] + 4) / 8) - 1 value_vars = ['valence', 'arousal', 'dominance', 'trustworthiness', 'attractiveness'] id_vars = [col for col in df.columns if col not in value_vars] df = pd.melt(df, id_vars=id_vars, value_vars=value_vars, var_name='rating_type', value_name='rating').dropna(how='any', axis=0) dfs.append(df) df = pd.concat(dfs, axis=0) df = df.set_index(df.trial_type) df.index.name = None cols = ['rep', 'session', 'run', 'block', 'trial', 'trial_type', 'rating_type', 'rating', 'rating_RT'] #cols = cols + [col for col in df.columns if col not in cols] df = df.loc[:, cols].sort_values(cols, axis=0) print("Shape neutral df: %s" % (df.shape,)) df.to_csv(f'{out_dir}/sub-{sub}_task-neutral_ratings.tsv', sep='\t') ### DONE PREPROCESSING NEUTRAL RATINGS ### dfs = [] for ses in [1, 2, 3]: if ses == 1: tsvs = sorted(glob(op.join(sub_dir, f'sub-{sub}_ses-?_task-expressive_run-?.tsv'))) tmp = [] for i, tsv in enumerate(tsvs): df = pd.read_csv(tsv, sep='\t', index_col=0) df['rep'] = int(op.basename(tsv).split('ses-')[1][0]) df['run'] = int(op.basename(tsv).split('run-')[1][0]) tmp.append(df) df = pd.concat(tmp, axis=0, sort=True) else: tsvs = sorted(glob(op.join(sub_dir, f'sub-{sub}_ses-{ses}_task-expressive_run-?_redo.tsv'))) tmp = [] for i, tsv in enumerate(tsvs): df = pd.read_csv(tsv, sep='\t', index_col=0) df['run'] = int(op.basename(tsv).split('run-')[1][0]) df['rep'] = 1 print(df) tmp.append(df) df =
pd.concat(tmp, axis=0, sort=True)
pandas.concat
"""muttlib.plotting test suite. `muttlib` uses `pytest-mpl` to plots testing. To use, you simply need to mark the function where you want to compare images using @pytest.mark.mpl_image_compare, and make sure that the function returns a Matplotlib figure (or any figure object that has a savefig method): ```python import pytest import matplotlib.pyplot as plt @pytest.mark.mpl_image_compare def test_succeeds(): fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot([1,2,3]) return fig ``` To generate the baseline images, run the tests with the --mpl-generate-path option with the name of the directory where the generated images should be placed: ```python pytest --mpl-generate-path=baseline ``` More info about `pytest-mpl` library: https://github.com/matplotlib/pytest-mpl#using """ from copy import deepcopy import numpy as np import pandas as pd import pytest from muttlib.plotting import plot from muttlib.plotting.constants import ( DAILY_TIME_GRANULARITY, HOURLY_TIME_GRANULARITY, PLOT_CONFIG, DS_COL, Y_COL, YHAT_COL, ) @pytest.fixture def sample_data_df(): # Taken from https://raw.githubusercontent.com/facebook/prophet/master/examples/example_retail_sales.csv return pd.DataFrame.from_records( np.array( [ ('2013-02-01T00:00:00.000000000', 373938), ('2013-03-01T00:00:00.000000000', 421638), ('2013-04-01T00:00:00.000000000', 408381), ('2013-05-01T00:00:00.000000000', 436985), ('2013-06-01T00:00:00.000000000', 414701), ('2013-07-01T00:00:00.000000000', 422357), ('2013-08-01T00:00:00.000000000', 434950), ('2013-09-01T00:00:00.000000000', 396199), ('2013-10-01T00:00:00.000000000', 415740), ('2013-11-01T00:00:00.000000000', 423611), ('2013-12-01T00:00:00.000000000', 477205), ('2014-01-01T00:00:00.000000000', 383399), ('2014-02-01T00:00:00.000000000', 380315), ('2014-03-01T00:00:00.000000000', 432806), ('2014-04-01T00:00:00.000000000', 431415), ('2014-05-01T00:00:00.000000000', 458822), ('2014-06-01T00:00:00.000000000', 433152), ('2014-07-01T00:00:00.000000000', 443005), ('2014-08-01T00:00:00.000000000', 450913), ('2014-09-01T00:00:00.000000000', 420871), ('2014-10-01T00:00:00.000000000', 437702), ('2014-11-01T00:00:00.000000000', 437910), ('2014-12-01T00:00:00.000000000', 501232), ('2015-01-01T00:00:00.000000000', 397252), ('2015-02-01T00:00:00.000000000', 386935), ('2015-03-01T00:00:00.000000000', 444110), ('2015-04-01T00:00:00.000000000', 438217), ('2015-05-01T00:00:00.000000000', 462615), ('2015-06-01T00:00:00.000000000', 448229), ('2015-07-01T00:00:00.000000000', 457710), ('2015-08-01T00:00:00.000000000', 456340), ('2015-09-01T00:00:00.000000000', 430917), ('2015-10-01T00:00:00.000000000', 444959), ('2015-11-01T00:00:00.000000000', 444507), ('2015-12-01T00:00:00.000000000', 518253), ('2016-01-01T00:00:00.000000000', 400928), ('2016-02-01T00:00:00.000000000', 413554), ('2016-03-01T00:00:00.000000000', 460093), ('2016-04-01T00:00:00.000000000', 450935), ('2016-05-01T00:00:00.000000000', 471421), ], dtype=[('ds', '<M8[ns]'), ('y', '<i8')], ), ) @pytest.fixture def sample_data_yhat_df(): # Taken from `sample_data_df` return pd.DataFrame.from_records( np.array( [ ('2013-02-01T00:00:00.000000000', 3.7394, 0.3739, 7.4788, 1), ('2013-03-01T00:00:00.000000000', 4.2164, 0.4216, 8.4328, 1), ('2013-04-01T00:00:00.000000000', 4.0838, 0.4084, 8.1676, 1), ('2013-05-01T00:00:00.000000000', 4.3699, 0.4370, 8.7397, 1), ('2013-06-01T00:00:00.000000000', 4.1470, 0.4147, 8.2940, 1), ('2013-07-01T00:00:00.000000000', 4.2236, 0.4224, 8.4471, 1), ('2013-08-01T00:00:00.000000000', 4.3495, 0.4350, 8.6990, 1), ('2013-09-01T00:00:00.000000000', 3.9620, 0.3962, 7.9240, 1), ('2013-10-01T00:00:00.000000000', 4.1574, 0.4157, 8.3148, 1), ('2013-11-01T00:00:00.000000000', 4.2361, 0.4236, 8.4722, 1), ('2013-12-01T00:00:00.000000000', 4.7721, 0.4772, 9.5441, 1), ('2014-01-01T00:00:00.000000000', 3.8340, 0.3834, 7.6680, 1), ('2014-02-01T00:00:00.000000000', 3.8032, 0.3803, 7.6063, 1), ('2014-03-01T00:00:00.000000000', 4.3281, 0.4328, 8.6561, 1), ('2014-04-01T00:00:00.000000000', 4.3142, 0.4314, 8.6283, 1), ('2014-05-01T00:00:00.000000000', 4.5882, 0.4588, 9.1764, 1), ('2014-06-01T00:00:00.000000000', 4.3315, 0.4332, 8.6630, 1), ('2014-07-01T00:00:00.000000000', 4.4301, 0.4430, 8.8601, 1), ('2014-08-01T00:00:00.000000000', 4.5091, 0.4509, 9.0183, 1), ('2014-09-01T00:00:00.000000000', 4.2087, 0.4209, 8.4174, 1), ('2014-10-01T00:00:00.000000000', 4.3770, 0.4377, 8.7540, 1), ('2014-11-01T00:00:00.000000000', 4.3791, 0.4379, 8.7582, 1), ('2014-12-01T00:00:00.000000000', 5.0123, 0.5012, 10.0246, 1), ('2015-01-01T00:00:00.000000000', 3.9725, 0.3973, 7.9450, 1), ('2015-02-01T00:00:00.000000000', 3.8694, 0.3869, 7.7387, 1), ('2015-03-01T00:00:00.000000000', 4.4411, 0.4441, 8.8822, 1), ('2015-04-01T00:00:00.000000000', 4.3822, 0.4382, 8.7643, 1), ('2015-05-01T00:00:00.000000000', 4.6262, 0.4626, 9.2523, 1), ('2015-06-01T00:00:00.000000000', 4.4823, 0.4482, 8.9646, 1), ('2015-07-01T00:00:00.000000000', 4.5771, 0.4577, 9.1542, 1), ('2015-08-01T00:00:00.000000000', 4.5634, 0.4563, 9.1268, 1), ('2015-09-01T00:00:00.000000000', 4.3092, 0.4309, 8.6183, 1), ('2015-10-01T00:00:00.000000000', 4.4496, 0.4450, 8.8992, 1), ('2015-11-01T00:00:00.000000000', 4.4451, 0.4445, 8.8901, 1), ('2015-12-01T00:00:00.000000000', 5.1825, 0.5183, 10.3651, 1), ('2016-01-01T00:00:00.000000000', 4.0093, 0.4009, 8.0186, 1), ('2016-02-01T00:00:00.000000000', 4.1355, 0.4136, 8.2711, 1), ('2016-03-01T00:00:00.000000000', 4.6009, 0.4601, 9.2019, 1), ('2016-04-01T00:00:00.000000000', 4.5094, 0.4509, 9.0187, 1), ('2016-05-01T00:00:00.000000000', 4.7142, 0.4714, 9.4284, 1), ], dtype=[ ('ds', '<M8[ns]'), ('y', '<i8'), ('yhat_lower', '<i8'), ('yhat_upper', '<i8'), ('sign', '<i8'), ], ), ) def perturb_ts(df, col, scale=1): """Add noise to ts """ mean = df[col].mean() * scale df[col] += np.random.default_rng(42).uniform( low=-mean / 2, high=mean / 2, size=len(df) ) return df @pytest.mark.mpl_image_compare def test_create_forecast_figure(sample_data_df): time_series = sample_data_df.iloc[:30] predictions = sample_data_df.iloc[30:] predictions = predictions.rename(columns={Y_COL: YHAT_COL}) full_series = pd.concat([predictions, time_series]) full_series[DS_COL] = pd.to_datetime(full_series[DS_COL]) end_date = pd.to_datetime(predictions[DS_COL]).min() forecast_window = (pd.to_datetime(predictions[DS_COL]).max() - end_date).days fig = plot.create_forecast_figure( full_series, 'test', end_date, forecast_window, time_granularity=DAILY_TIME_GRANULARITY, plot_config=deepcopy(PLOT_CONFIG), ) return fig @pytest.mark.mpl_image_compare def test_create_forecast_figure_overlapping(sample_data_yhat_df): time_series = sample_data_yhat_df predictions = sample_data_yhat_df.iloc[30:] predictions = predictions.rename(columns={Y_COL: YHAT_COL}) predictions = perturb_ts(predictions, YHAT_COL, scale=0.1) full_series = pd.concat([predictions, time_series]) full_series[DS_COL] = pd.to_datetime(full_series[DS_COL]) end_date = pd.to_datetime(predictions[DS_COL]).min() forecast_window = (
pd.to_datetime(predictions[DS_COL])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Group 58 <NAME> <NAME> <NAME> <NAME> <NAME> """ import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import plotly.express as px import matplotlib.pyplot as plt from plotly.offline import plot import plotly.graph_objects as go from pandas.plotting import parallel_coordinates from sklearn.metrics import accuracy_score,confusion_matrix import seaborn as sns def lrelu(x,deriv=False): if deriv: der = np.ones(x.shape)*0.01 der[x>0] = 1 return der return (x*(x>0)+0.01*x*(x<=0)) def sigmoid(z,deriv=False): if deriv: return sigmoid(z)*(1-sigmoid(z)) return (1/(1+np.exp(-z))) def relu(x,deriv=False): if deriv: der = np.zeros(x.shape) der[x>0] = 1 return der return x*(x>=0) class MLP(): np.random.seed(1) #use a random seed n_epochs = 0 actf = [] activations = [] cost = [] cost_validation = [] zetas = [] shapes = [] def __init__(self,nn_architecture, mean=0, devStd=1, zeroWeights=False, zeroBiases=True): if len(nn_architecture['layers']) != len(nn_architecture['activations']): raise ValueError('For each layer there must be an activation function') self.shapes = nn_architecture['layers'] self.actf = nn_architecture['activations'] #Kaiming weights normalization if(zeroWeights): self.weights = np.asarray([np.zeros((shape)) for shape in self.shapes]) else: self.weights = np.asarray([np.random.normal(mean, devStd, shape) for shape in self.shapes]) #self.weights = np.asarray([np.random.randn(*shape)*np.sqrt(2/shape[0]) for shape in self.shapes]) if(zeroBiases): self.biases = np.asarray([np.zeros((shape[0],1)) for shape in self.shapes]) #biases are 0 at the beginning else: self.biases = np.asarray([np.random.normal(mean, devStd, (shape[0],1)) for shape in self.shapes]) #self.biases = np.asarray([np.random.randn(shape[0],1) for shape in self.shapes]) def feedforward(self,a): #feedforward self.activations.clear() self.zetas.clear() self.activations.append(a) for i in range(len(self.shapes)): #print(len(self.shapes)) z = self.weights[i] @ a + self.biases[i] self.zetas.append(z) a = self.actf[i](z) self.activations.append(a) return a #return sigmoid(last_layer_value) def backprop(self,o,y): grad_w =np.asarray([np.zeros(weight.shape) for weight in self.weights]) grad_b =np.asarray([np.zeros(bias.shape) for bias in self.biases]) #use binary cross entropy -> d^L = grad_a(Cost)*sig'(z^L) dC_do = mean_squared_error(o,y,deriv=True)* sigmoid(self.zetas[-1],deriv=True) # calculate delta_lastLayer grad_b[-1] = dC_do grad_w[-1] = dC_do @ self.activations[-2].T # #backpropagate error for l in range(2,len(self.shapes)+1): #chain rule -> d^l = w^(l+1).T @ d^l+1 * derivate_actfun(z^l) dC_do = np.multiply((self.weights[-l+1].T @ dC_do), self.actf[-l](self.zetas[-l],deriv=True)) #compute grad bias and grad weights grad_b[-l] = dC_do grad_w[-l] = dC_do @ self.activations[-l-1].T return (grad_b,grad_w) def train(self,df_train,df_test,epochs=100,batch_size=32,lr=0.3,adapt_lr = True, early_stopping = 5): last_cost = np.iinfo('int32').max #max value to compare with no_impr = 0 x_test_norm = MinMaxScaler().fit_transform(df_test.values[:,:-1]) y_test = df_test.values[:,-1].reshape(-1,1) x_train_norm = MinMaxScaler().fit_transform(df_train.values[:,:-1]) #normalize data ( only features)[ even though MinMaxScaler won't affect y vector] y_train = df_train.values[:,-1].reshape(-1,1) df_train_norm = np.concatenate((x_train_norm,df_train.values[:,-1].reshape(-1,1)),axis=1) # rebuild dataframe for e in range(epochs): np.random.shuffle(df_train_norm) #shuffle the dataframe batches = [df_train_norm[bs:bs+batch_size] for bs in range(0,len(df_train_norm),batch_size) ] #generate batches for batch in batches: #for each batch compute #reduce learning rate of a magnitude after 130 epochs (adaptive lr) if adapt_lr and e > 130: lr = lr/10 self.update_wb(batch,lr) # cost = mean_squared_error(self.feedforward(x_train_norm.T),y_train) cost_validation = mean_squared_error(self.feedforward(x_test_norm.T),y_test) #my validation is the test set itself train_pred,y_train = self.predict(df_train) accuracy_train = accuracy_score(train_pred,y_train) #Early stopping: if the cost in the validate sample ( in our case directly on the test set) #does not decrease for more than *early_stopping* epochs I may start overfitting the training set if cost_validation >= last_cost: no_impr+=1 else: no_impr = 0 if early_stopping != None and no_impr>= early_stopping: break last_cost = cost_validation self.cost.append(cost) self.cost_validation.append(cost_validation) self.n_epochs = e+1 #print('epoch {0}--> loss: {1} -----> acc = {2}'.format(e,cost,accuracy_train)) def accuracy_score(pred,y): return ((predictions == y_test).sum() / y_test.shape[0]) def update_wb(self,batch,lr): grad_w_tot = np.asarray([np.zeros(weight.shape) for weight in self.weights]) grad_b_tot = np.asarray([np.zeros(bias.shape) for bias in self.biases]) x_train = np.expand_dims(batch[:,:-1],axis=1) y_train = np.expand_dims(batch[:,-1],axis=1) for x,y in zip(x_train,y_train): #for each sample i use forward and backprop to get gradients of weights/baises output = self.feedforward(x.T) gradb,gradw = self.backprop(output,y) #must sum grad_w/grad_b in the same batch grad_w_tot = [gradw_i+gwt for gradw_i,gwt in zip(gradw,grad_w_tot)] grad_b_tot = [gradb_i+gbt for gradb_i,gbt in zip(gradb,grad_b_tot)] #update weights and biases --> w = w - lr/len(batch)*grad_w self.weights = [weight - (lr/len(batch))*gw_i for weight,gw_i in zip(self.weights,grad_w_tot)] self.biases = [bias - (lr/len(batch))*gb_i for bias,gb_i in zip(self.biases,grad_b_tot )] def predict(self,df_test): x_test = MinMaxScaler().fit_transform(df_test.values[:,:-1]) #normalize test set y_test = df_test.values[:,-1].reshape(-1,1) #(n_observations,1) predictions = [] for x in x_test: x = x.reshape(-1,1) predictions.append( self.feedforward(x)) predictions= np.asarray(predictions) predictions[predictions<0.5] = 0 predictions[predictions>=0.5] =1 predictions = predictions.flatten().reshape(-1,1) return (predictions,y_test) # calculate mean squared error def mean_squared_error(actual, predicted,deriv=False): if deriv==True: return (actual-predicted) sum_square_error = 0.0 for i in range(len(actual.T)): sum_square_error += (actual.T[i] - predicted[i])**2.0 mean_square_error = 1.0 / len(actual) * sum_square_error return mean_square_error def tryWithZero(): n_epochs = 200 b_size = 16 l_rate = 0.3 nn_architecture = { 'layers':[(10,2),(10,10),(1,10)], 'activations':[relu,relu,sigmoid] } mlp = MLP(nn_architecture, zeroWeights=True, zeroBiases=True) mlp.train(df_train,df_test, n_epochs, b_size, l_rate) predictions,y_test = mlp.predict(df_test) accuracy = accuracy_score(predictions,y_test) plt.plot(range(mlp.n_epochs),mlp.cost) plt.plot(range(mlp.n_epochs),mlp.cost_validation,'r') plt.title('MSE error over epochs') plt.xlabel('number of epochs') plt.ylabel('error') plt.legend(['Error on Training','Error on test']) print('accuracy: ',accuracy) confMat = confusion_matrix(predictions.flatten().reshape(-1,1),y_test) confMatDataframe = pd.DataFrame(confMat) confMatDataframe.index.name = 'Actual' confMatDataframe.columns.name = 'Predicted' sns.heatmap(confMatDataframe, cmap="Blues", annot=True) plt.show() def heatmapAccuracy(): n_epochs = 200 b_size = 16 nn_architecture = { 'layers':[(10,2),(10,10),(1,10)], 'activations':[relu,relu,sigmoid] } lrate_array = [0.0001, 0.001, 0.01, 0.1, 1, 10] mean = 0 stdDev_array = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] dataFrame = np.zeros((6, 11)) for i in range (len(lrate_array)): for j in range (len(stdDev_array)): mlp = MLP(nn_architecture, mean, stdDev_array[j]) mlp.train(df_train,df_test, n_epochs, b_size, lrate_array[i]) predictions,y_test = mlp.predict(df_test) dataFrame[i][j] = accuracy_score(predictions,y_test) dataFrame = pd.DataFrame(dataFrame) dataFrame.columns = ["0", "0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9", "1"] dataFrame.columns.name = "Standard deviation" dataFrame.index = ["0.0001", "0.001", "0.01", "0.1", "1", "10"] dataFrame.index.name = "Learning rate" sns.heatmap(dataFrame, cmap="Blues", annot=True) plt.show() def heatmapActivation(mlpToTest, df_test, title_x): x_test = MinMaxScaler().fit_transform(df_test.values[:,:-1]) #normalize test set y_test = df_test.values[:,-1].reshape(-1,1) #(n_observations,1) dataLayer1 = np.zeros((82, 10)) dataLayer2 = np.zeros((82, 10)) item = 0 for x in x_test: x = x.reshape(-1,1) mlpToTest.feedforward(x) dataLayer1[item] = np.reshape(mlpToTest.activations[1], (10)) dataLayer2[item] = np.reshape(mlpToTest.activations[2], (10)) item += 1 fig, (ax1, ax2) = plt.subplots(1,2) fig.suptitle(title_x, fontsize=16) ax1.set_title("First hidden layer") dataLayer1 =
pd.DataFrame(dataLayer1)
pandas.DataFrame
from typing import Any, Callable, Dict, Optional, Tuple import numpy as np from pandas._typing import Scalar from pandas.compat._optional import import_optional_dependency from pandas.core.util.numba_ import ( check_kwargs_and_nopython, get_jit_arguments, jit_user_function, ) def generate_numba_apply_func( args: Tuple, kwargs: Dict[str, Any], func: Callable[..., Scalar], engine_kwargs: Optional[Dict[str, bool]], ): """ Generate a numba jitted apply function specified by values from engine_kwargs. 1. jit the user's function 2. Return a rolling apply function with the jitted function inline Configurations specified in engine_kwargs apply to both the user's function _AND_ the rolling apply function. Parameters ---------- args : tuple *args to be passed into the function kwargs : dict **kwargs to be passed into the function func : function function to be applied to each window and will be JITed engine_kwargs : dict dictionary of arguments to be passed into numba.jit Returns ------- Numba function """ nopython, nogil, parallel =
get_jit_arguments(engine_kwargs)
pandas.core.util.numba_.get_jit_arguments
import socket import logging from os import mkdir, path from sys import exc_info, getsizeof from traceback import extract_tb import json import pandas as pd from datetime import datetime UDP_SERVER_PORT = 4040 UDP_SERVER_IP = "0.0.0.0" LOG_FOLDERNAME = 'log' LOG_FILENAME = 'log.log' LOG_FILEMODE = 'a' LOG_FORMAT = '%(asctime)-15s %(levelname)-8s - %(message)s' LOG_DATEFMT = '%Y-%m-%d %H:%M:%S' LOG_LEVEL = logging.DEBUG # folder to store log file if not path.exists(LOG_FOLDERNAME): mkdir(LOG_FOLDERNAME) # check exists dataframe otherwise create it. if not path.isfile('dataframe.csv'): df = pd.DataFrame(columns=['datetime', 'plant', 'temperature', 'air-humidity', 'soil-humidity']) df.set_index('datetime', inplace=True) df.index = pd.to_datetime(df.index) df.to_csv('dataframe.csv') del df # basicConfig set the root logger logging.basicConfig(filename=LOG_FOLDERNAME+'/'+LOG_FILENAME, filemode=LOG_FILEMODE, format=LOG_FORMAT, datefmt=LOG_DATEFMT, level=LOG_LEVEL) def _extract_exception_function(): # get function that threw the exception trace = exc_info()[-1] stack = extract_tb(trace, 1) function_name = stack[0][2] return function_name def udp_server_set_up(): _s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, 0) _s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) try: _pair = (UDP_SERVER_IP, UDP_SERVER_PORT) _s.bind(_pair) except socket.error as _e: # obsolete -> is similar to OSError logging.error("@" + _extract_exception_function() + " - Socket.error: " + str(_e)) _s.close() _s = None except OSError as _e: # this could happen due to an incorrect ip address logging.error("@" + _extract_exception_function() + " - OSError: " + str(_e)) _s.close() _s = None except OverflowError as _e: # this could happen due to an incorrect port number logging.error("@" + _extract_exception_function() + " - OverflowError: " + str(_e)) _s.close() _s = None return _s def udp_server_run(s): while True: try: _data, _client = s.recvfrom(4*1024) yield _data, _client except Exception as _e: logging.warning("@" + _extract_exception_function() + " - " + str(_e)) def data_handler(data): json_data = json.loads(data) json_data['datetime'] = str(datetime.now()) dfj = pd.DataFrame([json_data], columns=['datetime', 'plant', 'temperature', 'air-humidity', 'soil-humidity']) dfj.set_index('datetime', inplace=True) dfj.index =
pd.to_datetime(dfj.index)
pandas.to_datetime
import pandas as pd import numpy as np import json from flask import Flask from flask import jsonify from flask import request from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route('/get_json') def get_json(): country=request.args['country'] url='google' countries=pd.read_csv('tsv/products_countries.tsv','\t') products=pd.read_csv('tsv/products.tsv','\t',low_memory=False)[['code','name']] additives=pd.read_csv('tsv/products_additives.tsv','\t') d=pd.merge(countries[countries['country']==country],
pd.merge(products,additives,how='inner',left_on='code',right_on='code')
pandas.merge
import __main__ as main import sys import pandas as pd if not hasattr(main, '__file__'): argv = ['a', 'data/processed/census/oa_tile_reference.csv', 'data/raw/census/Eng_Wal_OA_Mid_Pop.csv', 'data/raw/census/OA_to_DZ.csv', 'data/raw/census/simd2020_withinds.csv', 'data/raw/census/NI_Mid_Pop.csv', "data/processed/census/tile_imd.csv"] else: argv = sys.argv tiles = pd.read_csv(argv[1]) england_oa = pd.read_csv(argv[2]) scotland_zone_ref = pd.read_csv(argv[3]) scotland_oa =
pd.read_csv(argv[4])
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sun Nov 26 18:17:16 2017 Useful functions in clusters analysis. Specially kmeans clusters @author: srodriguezl """ import pandas as pd # 1 # Function to automatically generate a summary of the cluster # Before running--> double check: # 1- Remove variables that you dont want to include in the summary # 2- Check variables types (df.dtypes) and correct them (df.variable.astype(....)) # df: dataframe # Target: result of the cluster # pasthSave: path to save the excel with the result # includeCatNan: Add a column to indicate NaNs category def Summary_function(df,Target,pathSave,includeCatNan = False): # Indentify object and bool variables and create dummy variables factorVar = df.select_dtypes(include=["object","bool"]).columns for i in factorVar: df_dummy = pd.get_dummies(df[i], prefix = i , dummy_na = includeCatNan) df =
pd.concat([df,df_dummy],axis = 1)
pandas.concat
from googleapiclient.discovery import build from googleapiclient.errors import HttpError from oauth2client.tools import argparser import pandas as pd import pprint DEVELOPER_KEY = "" YOUTUBE_API_SERVICE_NAME = "youtube" YOUTUBE_API_VERSION = "v3" def youtube_search(q, channelId,token, max_results=50,order="relevance", location=None, location_radius=None): youtube = build(YOUTUBE_API_SERVICE_NAME, YOUTUBE_API_VERSION,developerKey=DEVELOPER_KEY) search_response = youtube.search().list( q=q, type="video", pageToken=token, order = order, part="id,snippet", # Part signifies the different types of data you want maxResults=max_results, location=location, locationRadius=location_radius, channelId=channelId).execute() title = [] channelId = [] channelTitle = [] categoryId = [] videoId = [] viewCount = [] #likeCount = [] #dislikeCount = [] commentCount = [] favoriteCount = [] category = [] tags = [] videos = [] date=[] for search_result in search_response.get("items", []): if search_result["id"]["kind"] == "youtube#video": title.append(search_result['snippet']['title']) videoId.append(search_result['id']['videoId']) response = youtube.videos().list( part='statistics, snippet', id=search_result['id']['videoId']).execute() channelId.append(response['items'][0]['snippet']['channelId']) channelTitle.append(response['items'][0]['snippet']['channelTitle']) categoryId.append(response['items'][0]['snippet']['categoryId']) favoriteCount.append(response['items'][0]['statistics']['favoriteCount']) viewCount.append(response['items'][0]['statistics']['viewCount']) #likeCount.append(response['items'][0]['statistics']['likeCount']) #dislikeCount.append(response['items'][0]['statistics']['dislikeCount']) date.append(response['items'][0]['snippet']['publishedAt']) if 'commentCount' in response['items'][0]['statistics'].keys(): commentCount.append(response['items'][0]['statistics']['commentCount']) else: commentCount.append([]) if 'tags' in response['items'][0]['snippet'].keys(): tags.append(response['items'][0]['snippet']['tags']) else: tags.append([]) youtube_dict = {'tags':tags,'channelId': channelId,'channelTitle': channelTitle,'categoryId':categoryId,'title':title,'videoId':videoId,'viewCount':viewCount,'commentCount':commentCount,'favoriteCount':favoriteCount, 'date':date} youtube_video=pd.DataFrame(dict([ (k,pd.Series(v)) for k,v in youtube_dict.items() ])) try: nexttok = search_response["nextPageToken"] return(youtube_video, nexttok) except Exception as e: nexttok = "last_page" return(youtube_video, nexttok) writer =
pd.ExcelWriter('youtube_video.xlsx', engine='xlsxwriter')
pandas.ExcelWriter
import pandas as pd import numpy as np from datetime import * nw = datetime.now().strftime("%d/%m/%Y %H:%M:%S") def add_col_df(df, colname, colval = False, indx=False): if indx == False: if colval == False: ndf = df.assign(coln = 'NWC') ndf.rename(columns = {'coln': colname}, inplace = True) return ndf else: ndf = df.assign(coln = colval) ndf.rename(columns = {'coln': colname}, inplace = True) return ndf else: if colval == False: df.insert(indx, colname, 'NWC', allow_duplicates=False) return df else: df.insert(indx, colname, colval, allow_duplicates=False) return df def timediff(df,c1,c2,newcol): df[c1] =
pd.to_datetime(df[c1])
pandas.to_datetime
""" Functions to validate the input files prior to database insert / upload. """ import time import numpy as np import pandas as pd import IEDC_paths, IEDC_pass from IEDC_tools import dbio, file_io, __version__ def check_datasets_entry(file_meta, create=True, crash_on_exist=True, update=True, replace=False): """ Creates an entry in the `datasets` table. :param file_meta: data file metadata :param crash_on_exist: if True: function terminates with assertion error if dataset/version already exists :param update: if True: function updates dataset entry if dataset/version already exists :param create: if True: funtion creates dataset entry for dataset/version :param replace: if True: delete existing entry in dataset table and create new one with current data """ db_datasets = dbio.get_sql_table_as_df('datasets') dataset_info = file_meta['dataset_info'] # Check if entry already exists dataset_name_ver = [i[0] for i in dataset_info.loc[['dataset_name', 'dataset_version']] .where((pd.notnull(dataset_info.loc[['dataset_name', 'dataset_version']])), None).values] if dataset_name_ver[1] in ['NULL']: dataset_name_ver[1] = None # If exists already if dataset_name_ver in db_datasets[['dataset_name', 'dataset_version']].values.tolist(): # dataset name + verion already exists in dataset catalog if crash_on_exist: raise AssertionError("Database already contains the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) elif update: update_dataset_entry(file_meta) elif replace: # get id if dataset_name_ver[1] == None: db_id = db_datasets.loc[(db_datasets['dataset_name'] == dataset_name_ver[0]) & pd.isna(db_datasets['dataset_version'])].index[0] else: db_id = db_datasets.loc[(db_datasets['dataset_name'] == dataset_name_ver[0]) & (db_datasets['dataset_version'] == dataset_name_ver[1])].index[0] dbio.run_this_command("DELETE FROM %s.datasets WHERE id = %s;" % (IEDC_pass.IEDC_database, db_id)) # add new one create_dataset_entry(file_meta) else: # do nothing print("Database already contains the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) return True # if it doesn't exist yet else: if create: create_dataset_entry(file_meta) else: # i.e. crash_on_not_exist raise AssertionError("Database does not contain the following dataset (dataset_name, dataset_version):\n %s" % dataset_name_ver) def create_dataset_entry(file_meta): dataset_info = file_meta['dataset_info'] dataset_info = dataset_info.replace([np.nan], [None]) dataset_info = dataset_info.replace({'na': None, 'nan': None, 'none': None, 'NULL': None}) dataset_info = dataset_info.to_dict()['Dataset entries'] assert dataset_info['dataset_id'] == 'auto', \ "Was hoping 'dataset_id' in the file template had the value 'auto'. Not sure what to do now..." # Clean up dict dataset_info.pop('dataset_id') if pd.isna(dataset_info['reserve5']): dataset_info['reserve5'] = 'Created by IEDC_tools v%s' % __version__ # Look up stuff data_types = dbio.get_sql_table_as_df('types') dataset_info['data_type'] = data_types.loc[data_types['name'] == dataset_info['data_type']].index[0] data_layers = dbio.get_sql_table_as_df('layers') dataset_info['data_layer'] = data_layers.loc[data_layers['name'] == dataset_info['data_layer']].index[0] data_provenance = dbio.get_sql_table_as_df('provenance') dataset_info['data_provenance'] = data_provenance.loc[data_provenance['name'] == dataset_info['data_provenance']].index[0] aspects = dbio.get_sql_table_as_df('aspects') class_defs = dbio.get_sql_table_as_df('classification_definition') for aspect in [i for i in dataset_info.keys() if i.startswith('aspect_')]: if dataset_info[aspect] is None or aspect.endswith('classification'): continue if dataset_info[aspect+'_classification'] == 'custom': aspect_class_name = str(dataset_info[aspect]) + '__' + dataset_info['dataset_name'] dataset_info[aspect+'_classification'] = \ class_defs[class_defs['classification_name'] == aspect_class_name].index[0] dataset_info[aspect] = aspects[aspects['aspect'] == dataset_info[aspect]].index[0] source_type = dbio.get_sql_table_as_df('source_type') dataset_info['type_of_source'] = source_type.loc[source_type['name'] == dataset_info['type_of_source']].index[0] licenses = dbio.get_sql_table_as_df('licences') dataset_info['project_license'] = licenses.loc[licenses['name'] == dataset_info['project_license']].index[0] users = dbio.get_sql_table_as_df('users') dataset_info['submitting_user'] = users.loc[users['name'] == dataset_info['submitting_user']].index[0] # fix some more for k in dataset_info: # not sure why but pymysql doesn't like np.int64 if type(dataset_info[k]) == np.int64: dataset_info[k] = int(dataset_info[k]) dbio.dict_sql_insert('datasets', dataset_info) print("Created entry for %s in 'datasets' table." % [dataset_info[k] for k in ['dataset_name', 'dataset_version']]) return None def update_dataset_entry(file_meta): raise NotImplementedError def create_aspects_table(file_meta): """ Pulls the info on classification and attributes together, i.e. make sense of the messy attributes in an actual table... More of a convenience function for tired programmers. See sheet 'Cover' in template file. :param file: Filename, string :return: Dataframe table with name, classification_id, and attribute_no """ # Read the file and put metadata and row_classifications in two variables dataset_info = file_meta['dataset_info'] row_classifications = file_meta['row_classifications'] col_classifications = file_meta['col_classifications'] # Filter relevant rows from the metadata table, i.e. the ones containing 'aspect' custom_aspects = dataset_info[dataset_info.index.str.startswith('aspect_')] custom_aspects = custom_aspects[custom_aspects.index.str.endswith('_classification')] # Get rid of the empty ones custom_aspects = custom_aspects[custom_aspects['Dataset entries'] != 'none'] # Here comes the fun... Let's put everything into a dict, because that is easily converted to a dataframe d = {'classification_id': custom_aspects['Dataset entries'].values, 'index': [i.replace('_classification', '') for i in custom_aspects.index], 'name': dataset_info.loc[[i.replace('_classification', '') for i in custom_aspects.index]]['Dataset entries'].values} if file_meta['data_type'] == 'LIST': d['attribute_no'] = row_classifications.reindex(d['name'])['Aspects_Attribute_No'].values d['position'] = 'row?' elif file_meta['data_type'] == 'TABLE': d['attribute_no'] = row_classifications \ .reindex(d['name'])['Row_Aspects_Attribute_No'] \ .fillna(col_classifications.Col_Aspects_Attribute_No).values # The table format file has no info on the position of aspects. Need to find that. d['position'] = [] for n in d['name']: if n in row_classifications.index: d['position'].append('row' + str(row_classifications.index.get_loc(n))) if n in col_classifications.index: d['position'].append('col' + str(col_classifications.index.get_loc(n))) assert not any([i is None for i in d['attribute_no']]) # 'not any' means 'none' # Convert to df and get rid of the redundant 'index' column aspect_table = pd.DataFrame(d, index=d['index']).drop('index', axis=1) return aspect_table def get_class_names(file_meta, aspect_table): """ Creates and looks up names for classification, i.e. classifications that are not found in the database (custom) will be generated and existing ones (non-custom) looked up in the classification_definitions table. The name is generated as a combination of the dataset name and the classification name, e.g. "1_F_steel_SankeyFlows_2008_Global_origin_process". The function extends the table created in create_aspects_table() and returns it. :param file: Filename, string :return: Dataframe table with name, classification_id, attribute_no, and classification_definition """ dataset_info = file_meta['dataset_info'] db_classdef = dbio.get_sql_table_as_df('classification_definition') r = [] for aspect in aspect_table.index: if aspect_table.loc[aspect, 'classification_id'] == 'custom': r.append(aspect_table.loc[aspect, 'name'] + '__' + dataset_info.loc['dataset_name', 'Dataset entries']) else: r.append(db_classdef.loc[aspect_table.loc[aspect, 'classification_id'], 'classification_name']) aspect_table['custom_name'] = r return aspect_table def check_classification_definition(class_names, crash=True, warn=True, custom_only=False, exclude_custom=False): """ Checks if classifications exists in the database, i.e. classification_definition. :param class_names: List of classification names :param crash: Strongly recommended -- will cause the script to stop if the classification already exists. Otherwise there could be ambiguous classifications with multiple IDs. :param warn: Allows to suppress the warning message :param custom_only: Check only custom classifications :param exclude_custom: Exclude custom classifications :return: True or False """ db_classdef = dbio.get_sql_table_as_df('classification_definition') exists = [] for aspect in class_names.index: attrib_no = class_names.loc[aspect, 'attribute_no'] if attrib_no != 'custom' and custom_only: continue # skip already existing classifications if attrib_no == 'custom' and exclude_custom: continue # skip custom classifications if class_names.loc[aspect, 'custom_name'] in db_classdef['classification_name'].values: exists.append(True) if crash: raise AssertionError("""Classification '%s' already exists in the DB classification table (ID: %s). Aspect '%s' cannot be processed.""" % (class_names.loc[aspect, 'custom_name'], db_classdef[db_classdef['classification_name'] == 'general_product_categories'].index[0], aspect)) elif warn: print("WARNING: '%s' already exists in the DB classification table. " "Adding it again may fail or create ambiguous values." % class_names.loc[aspect, 'custom_name']) else: exists.append(False) return exists def check_classification_items(class_names, file_meta, file_data, crash=True, warn=True, custom_only=False, exclude_custom=False): """ Checks in classification_items if a. all classification_ids exists and b. all attributes exist :param class_names: List of classification names :param file_data: Dataframe of Excel file, sheet `Data` :param crash: Strongly recommended -- will cause the script to stop if the classification_id already exists in classification_items. Otherwise there could be ambiguous values with multiple IDs. :param custom_only: Check only custom classifications :param exclude_custom: Exclude custom classifications :param warn: Allows to suppress the warning message :return: """ db_classdef = dbio.get_sql_table_as_df('classification_definition') db_classitems = dbio.get_sql_table_as_df('classification_items') exists = [] # True / False switch for aspect in class_names.index: attrib_no = class_names.loc[aspect, 'attribute_no'] # remove garbage from string try: attrib_no = attrib_no.strip(' ') except: pass if attrib_no != 'custom' and custom_only: continue # skip already existing classifications if attrib_no == 'custom' and exclude_custom: continue # skip custom classifications # make sure classification id exists -- must pass, otherwise the next command will fail assert class_names.loc[aspect, 'custom_name'] in db_classdef['classification_name'].values, \ "Classification '%s' does not exist in table 'classification_definiton'" % \ class_names.loc[aspect, 'custom_name'] # get classification_id class_id = db_classdef.loc[db_classdef['classification_name'] == class_names.loc[aspect, 'custom_name']].index[0] # Check if the classification_id already exists in classification_items if class_id in db_classitems['classification_id'].unique(): exists.append(True) if crash: raise AssertionError("classification_id '%s' already exists in the table classification_items." % class_id) elif warn: print("WARNING: classification_id '%s' already exists in the table classification_items. " "Adding its attributes again may fail or create ambiguous values." % class_id) else: exists.append(False) print(aspect, class_id, 'not in classification_items') # Next check if all attributes exist if attrib_no == 'custom': attrib_no = 'attribute1_oto' else: attrib_no = 'attribute' + str(int(attrib_no)) + '_oto' checkme = db_classitems.loc[db_classitems['classification_id'] == class_id][attrib_no].values if file_meta['data_type'] == 'LIST': attributes = file_data[class_names.loc[aspect, 'name']].unique() elif file_meta['data_type'] == 'TABLE': if class_names.loc[aspect, 'position'][:3] == 'row': if len(file_meta['row_classifications'].values) == 1: attributes = file_data.index.values else: attributes = file_data.index.levels[int(class_names.loc[aspect, 'position'][-1])] elif class_names.loc[aspect, 'position'][:3] == 'col': if len(file_meta['col_classifications'].values) == 1: # That means there is only one column level defined, i.e. no MultiIndex attributes = file_data.columns.values else: attributes = file_data.columns.levels[int(class_names.loc[aspect, 'position'][-1])] for attribute in attributes: if str(attribute) in checkme: exists.append(True) if crash: raise AssertionError("'%s' already in %s" % (attribute, checkme)) elif warn: print("WARNING: '%s' already in classification_items" % attribute) else: exists.append(False) print(aspect, attribute, class_id, 'not in classification_items') return exists def create_db_class_defs(file_meta, aspect_table): """ Writes the custom classification to the table classification_definition. :param file: The data file to read. """ class_names = get_class_names(file_meta, aspect_table) db_aspects = dbio.get_sql_table_as_df('aspects', index='aspect') check_classification_definition(class_names, custom_only=True) for aspect in class_names.index: if class_names.loc[aspect, 'classification_id'] != 'custom': continue # skip already existing classifications d = {'classification_name': str(class_names.loc[aspect, 'custom_name']), 'dimension': str(db_aspects.loc[class_names.loc[aspect, 'name'], 'dimension']), 'description': 'Custom classification, generated by IEDC_tools v%s' % __version__, 'mutually_exclusive': True, 'collectively_exhaustive': False, 'created_from_dataset': True, # signifies that this is a custom classification 'general': False, 'meaning_attribute1': "'%s' aspect of dataset" % aspect # cannot be NULL??? } dbio.dict_sql_insert('classification_definition', d) print("Wrote custom classification '%s' to classification_definitions" % class_names.loc[aspect, 'custom_name']) def create_db_class_items(file_meta, aspects_table, file_data): """ Writes the unique database items / attributes of a custom classification to the database. :param file: Data file to read """ class_names = get_class_names(file_meta, aspects_table) db_classdef = dbio.get_sql_table_as_df('classification_definition') check_classification_items(class_names, file_meta, file_data, custom_only=True, crash=True) for aspect in class_names.index: if class_names.loc[aspect, 'classification_id'] != 'custom': continue # skip already existing classifications # get classification_id class_id = db_classdef.loc[db_classdef['classification_name'] == class_names.loc[aspect, 'custom_name']].index[0] d = {'classification_id': class_id, 'description': 'Custom classification, generated by IEDC_tools v%s' % __version__, 'reference': class_names.loc[aspect, 'custom_name'].split('__')[1]} if file_meta['data_type'] == 'LIST': attributes = sorted(file_data[class_names.loc[aspect, 'name']].apply(str).unique()) elif file_meta['data_type'] == 'TABLE': if class_names.loc[aspect, 'position'][:-1] == 'col': if len(file_meta['col_classifications'].values) == 1: # That means there is only one column level defined, i.e. no MultiIndex attributes = [str(i) for i in file_data.columns] else: attributes = sorted( [str(i) for i in file_data.columns.levels[int(class_names.loc[aspect, 'position'][-1])]]) elif class_names.loc[aspect, 'position'][:-1] == 'row': if len(file_meta['row_classifications'].values) == 1: attributes = [str(i) for i in file_data.index] else: attributes = sorted( [str(i) for i in file_data.index.levels[int(class_names.loc[aspect, 'position'][-1])]]) df = pd.DataFrame({'classification_id': [d['classification_id']] * len(attributes), 'description': [d['description']] * len(attributes), 'reference': [d['reference']] * len(attributes), 'attribute1_oto': attributes}) columns = ('classification_id', 'description', 'reference', 'attribute1_oto') dbio.bulk_sql_insert('classification_items', columns, df.values.tolist()) print("Wrote attributes for custom classification '%s' to classification_items: %s" % (class_id, attributes)) def add_user(file_meta, quiet=False): dataset_info = file_meta['dataset_info'] db_user = dbio.get_sql_table_as_df('users') realname = dataset_info.loc['submitting_user'].values[0] if realname in db_user['name'].values: if not quiet: print("User '%s' already exists in db table users" % realname) else: d = {'name': realname, 'username': (realname.split(' ')[0][0] + realname.split(' ')[1]).lower(), 'start_date': time.strftime('%Y-%m-%d %H:%M:%S') } dbio.dict_sql_insert('users', d) print("User '%s' written to db table users" % d['username']) def add_license(file_meta, quiet=False): dataset_info = file_meta['dataset_info'] db_licenses = dbio.get_sql_table_as_df('licences') file_licence = dataset_info.loc['project_license'].values[0] if file_licence in db_licenses['name'].values: if not quiet: print("Licence '%s' already exists in db table 'licences'" % file_licence) else: d = {'name': file_licence, 'description': 'n/a, generated by IEDC_tools v%s' % __version__} dbio.dict_sql_insert('licences', d) print("Licence '%s' written to db table 'licences'" % file_licence) def parse_stats_array_list(stats_array_strings): """ Parses the 'stats_array string' from the Excel template. E.g. "3;10;3.0;none;" should fill the respecitve columns in the data table as follows: stats_array_1 = 3, stats_array_2 = 10, stats_array_3 = 3.0, stats_array_4 = none More info: https://github.com/IndEcol/IE_data_commons/issues/14 :param stats_array_strings: :return: """ temp_list = [] for sa_string in stats_array_strings: if sa_string == 'none': temp_list.append([None] * 4) else: assert len(sa_string.split(';')) == 4, "The 'stats_array string' is not well formatted: %s" % sa_string temp_list.append(sa_string.split(';')) return_df = pd.DataFrame(temp_list) return_df = return_df.replace(['none'], [None]) # return a list of lists return [return_df[i].values for i in range(len(return_df.columns))] def parse_stats_array_table(file, file_meta, row_indices, col_indices): # db_sa = dbio.get_sql_table_as_df('stats_array', index=None) if file_meta['data_sources'].loc['Dataset_Uncertainty', 'a'] == 'GLOBAL': if file_meta['data_sources'].loc['Dataset_Uncertainty', 'b'] in ('none', 'None'): sa_res = [None] * 4 else: sa_res = file_meta['data_sources'].loc['Dataset_Uncertainty', 'b'].split(';') return {'type': 'GLOBAL', 'data': sa_res} elif file_meta['data_sources'].loc['Dataset_Uncertainty', 'a'] == 'TABLE': file_sa = file_io.read_stats_array_table(file, row_indices, col_indices) sa_tmp = file_sa.reset_index().melt(file_sa.index.names) sa_tmp = sa_tmp.set_index(row_indices) # parse the string https://stackoverflow.com/a/21032532/2075003 sa_res = sa_tmp['value'].str.split(';', expand=True) sa_res.columns = ['stats_array_' + str(i+1) for i in range(4)] sa_res = sa_res.replace(['none'], [None]) sa_res = sa_res.astype({'stats_array_1': int, 'stats_array_2': float, 'stats_array_3': float, 'stats_array_4': float}) return {'type': 'TABLE', 'data': sa_res} else: raise AttributeError("Unknown data unit type specified. Must be either 'GLOBAL' or 'TABLE'.") def get_comment_table(file, file_meta, row_indices, col_indices): if file_meta['data_sources'].loc['Dataset_Comment', 'a'] == 'GLOBAL': if file_meta['data_sources'].loc['Dataset_Comment', 'b'] in ('none', 'None'): comment = None else: comment = file_meta['data_sources'].loc['Dataset_Comment', 'b'] return {'type': 'GLOBAL', 'data': comment} elif file_meta['data_sources'].loc['Dataset_Comment', 'a'] == 'TABLE': comment = file_io.read_comment_table(file, row_indices, col_indices) comment = comment.reset_index().melt(comment.index.names) comment = comment.set_index(row_indices) return {'type': 'TABLE', 'data': comment} else: raise AttributeError("Unknown data unit type specified. Must be either 'GLOBAL' or 'TABLE'.") def get_unit_list(file_data): db_units = dbio.get_sql_table_as_df('units', index=None) res =
pd.DataFrame()
pandas.DataFrame
import funcy import matplotlib import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import re from dateutil import parser from tqdm import tqdm from utils.helpers import * from utils.plot import plot_joint_distribution font = { "size": 30 } matplotlib.rc("font", **font) pd.options.mode.chained_assignment = None BASE_DIR = os.path.dirname(os.path.abspath(__file__)) MOST_RECENT_FILE = sorted(os.listdir(os.path.join(BASE_DIR, "data", "REDCap")))[-1] REDCAP_FPATH = os.path.join(BASE_DIR, "data", "REDCap", MOST_RECENT_FILE) SERIES_ID_FPATH = os.path.join(BASE_DIR, "data", "match_redcap_plataforma.csv") SEGMENTATION_FPATH = os.path.join(BASE_DIR, "data", "inference_df.csv") get_date_regex = r"ProjetoCOVIDAI_DATA_(?P<data>.*)_\d+.csv" date_str = re.match(get_date_regex, MOST_RECENT_FILE).group("data") dataset_date = parser.parse(date_str) # Normalize name and CPF df = pd.read_csv(REDCAP_FPATH) df.nome = df.nome.apply(lambda s: to_normalized_string(s) if pd.notna(s) else s) df.cpf = df.cpf.apply(lambda v: str(int(v)) if pd.notna(v) else v) # Fill redcap_repeat_instrument missing data with "dados_pessoais_unico" since these # rows are not filled automatically by the database df.redcap_repeat_instrument = df.redcap_repeat_instrument.fillna("dados_pessoais_unico") # Fill the missing hospitalization date with date of admission to ICU if existent df.data_admissao_hospitalar = df.data_admissao_hospitalar.fillna(df.data_admissao_uti) # Calculate length of stay based on hospitalization date and date of discharge or # date of death fill_length_of_stay = df.apply( lambda row: calculate_length_of_stay( row["data_admissao_hospitalar"], row["data_alta_hospitalar"], row["data_obito"] ), axis=1 ) df.tempo_estadia_hospitalar = df.tempo_estadia_hospitalar.fillna(fill_length_of_stay) # Calculate the date of discharge from ICU based on the date of admission # in the ICU and length of stay in the ICU. df["data_alta_uti"] = df.apply( lambda row: sum_date_with_interval( row["data_admissao_uti"], row["tempo_estadia_uti"] ), axis=1 ) # Calculate the date of removal of the ventilation based on the date of ventilation # and the length of ventilation df["data_remocao_ventilacao"] = df.apply( lambda row: sum_date_with_interval( row["data_ventilacao"], row["tempo_ventilacao_mecanica"] ), axis=1 ) # Calculate age and body mass index df["idade"] = df.apply( lambda row: calculate_age( row["data_nasc"], row["data_admissao_hospitalar"], dataset_date ), axis=1 ) df["imc"] = df.peso / (df.altura ** 2) # Some of the rows have the plaquets number in a different unity and need to be # multiplied by 1000 df.plaquetas = df.plaquetas.apply(lambda v: v * 1000 if v < 1000 else v) ############################## Finished processing the ordinary data ############################## # Here we define variables useful for processing the rest of the data cols_intermediate_outcomes = [ "data_sepse", "sepse", "data_sdra", "sdra", "data_falencia_cardiaca", "falencia_cardiaca", "data_choque_septico", "choque_septico", "data_coagulopatia", "coagulopatia", "data_iam", "iam", "data_ira", "ira" ] cols_personal_data = [ "nome", "cpf", "instituicao", "data_nasc", "idade", "sexo", "altura", "peso", "imc", "alta", "obito", "data_admissao_hospitalar", "data_admissao_uti", "data_obito", "data_alta_hospitalar", "data_alta_uti", "data_ventilacao", "data_remocao_ventilacao", "tempo_estadia_hospitalar", "tempo_estadia_uti", "tempo_ventilacao_mecanica" ] + cols_intermediate_outcomes cols_comorbidities = [ "has", "ieca_bra", "dm", "asma", "tabagista", "dpoc", "cardiopatia", "irc", "neoplasia", "aids", "neutropenia" ] cols_respiratory_comorbidities = [ "asma", "tabagista", "dpoc" ] cols_cardiac_comorbidities = [ "has", "cardiopatia" ] cols_dates = [ col for col in df.columns if "data" in col and col not in cols_personal_data + ["redcap_data_access_group"] ] identity_map = { 0: 0, 1: 1 } irc_map = { 1: "negativo", 2: "nao_dialitico", 3: "dialitico" } neoplasia_map = { 1: "negativo", 2: "primaria_ou_secundaria", 3: "outras" } map_comorbidities = { "irc": irc_map, "neoplasia": neoplasia_map } # Now we build a separate dataframe for saving pesonal data. df_personal_data = df[df.redcap_repeat_instrument == "dados_pessoais_unico"] # Discriminate patients that were admitted to the hospital and to the ICU. Also, discriminate those that # were discharged and those who died. df_personal_data["internacao"] = df_personal_data.data_admissao_hospitalar.notna() df_personal_data["uti"] = df_personal_data.data_admissao_uti.notna() df_personal_data["obito"] = df_personal_data.data_obito.notna() df_personal_data["alta"] = df_personal_data.data_alta_hospitalar.notna() df_personal_data = df_personal_data[ ["record_id"] + cols_personal_data + cols_comorbidities ] for col in cols_comorbidities: df_personal_data[col] = df_personal_data[col].map(map_comorbidities.get(col, identity_map)) # Count the number of previous comorbidities each patient has. df_personal_data["n_comorbidades"] = df_personal_data[cols_comorbidities].apply(count_comorbidities, axis=1) df_personal_data["n_comorbidades_respiratorias"] = df_personal_data[cols_respiratory_comorbidities].apply(count_comorbidities, axis=1) df_personal_data["n_comorbidades_cardiacas"] = df_personal_data[cols_cardiac_comorbidities].apply(count_comorbidities, axis=1) ############################## Finished processing the personal data ############################## # Now we build separate dataframes for saving clinical, treatment, laboratorial, image and confirmatory data. # Clinical dataframe cols_clinical = [ "data_dispneia", "dispneia", "data_sofa", "sofa_score", "data_saturacao_o2", "saturacao_o2", "data_saps_3", "saps_3" ] df_clinical = df[df.redcap_repeat_instrument == "evolucao_clinica_multiplo"] df_clinical = df_clinical[["record_id"] + cols_clinical] # We need separate dataframes for each date. Note that the clinical dataframe has four date. We will separate # the columns accordingly. df_dispneia = df_clinical[[ "record_id", "data_dispneia", "dispneia" ]] df_sofa = df_clinical[[ "record_id", "data_sofa", "sofa_score" ]] df_saturacao_o2 = df_clinical[[ "record_id", "data_saturacao_o2", "saturacao_o2" ]] df_saps_3 = df_clinical[[ "record_id", "data_saps_3", "saps_3" ]] # Treatment dataframe cols_treatment = [ "data_ventilacao", "ventilacao", "pao2_fio2", "data_pronacao", "pronacao", "data_hemodialise", "hemodialise" ] df_treatment = df[df.redcap_repeat_instrument == "evolucao_tratamento_multiplo"] df_treatment = df_treatment[["record_id"] + cols_treatment] # Note that the treatment dataframe has four date. We will separate the columns accordingly # just as we did for the clinical dataframe. df_ventilacao = df_treatment[[ "record_id", "data_ventilacao", "ventilacao", "pao2_fio2" ]] df_pronacao = df_treatment[[ "record_id", "data_pronacao", "pronacao" ]] df_hemodialise = df_treatment[[ "record_id" , "data_hemodialise", "hemodialise" ]] # Laboratory results dataframe cols_laboratory = [ "leucocitos", "linfocitos", "neutrofilos", "tgp", "creatinina", "pcr", "d_dimero", "il_6", "plaquetas", "rni", "troponina", "pro_bnp", "bicarbonato", "lactato" ] df_laboratory = df[df.redcap_repeat_instrument == "evolucao_laboratorial_multiplo"] df_laboratory = df_laboratory[["record_id", "data_resultados_lab"] + cols_laboratory] # Image dataframe cols_image = [ "uid_imagem", "tipo_imagem", "data_imagem", "padrao_imagem_rsna", "score_tc_dir_sup", "score_tc_dir_med", "score_tc_dir_inf", "score_tc_esq_sup", "score_tc_esq_med", "score_tc_esq_inf" ] df_image = df[df.redcap_repeat_instrument == "evolucao_imagem_multiplo"] df_image.uid_imagem = df_image.uid_imagem.apply(lambda s: s.strip() if pd.notna(s) else s) df_image = df_image[["record_id", "redcap_repeat_instance"] + cols_image] df_image = pd.merge( left=df_personal_data[["record_id", "nome", "data_nasc", "data_admissao_hospitalar", "instituicao"]], right=df_image, how="right", on="record_id", validate="one_to_many" ) uids_internados = set(df_image[df_image.data_admissao_hospitalar.notna()].uid_imagem.unique()) # For images, we also have the data retrieved from the deep segmentation model. We need # to enrich our dataframe with the percentage of healthy lungs, affected by ground-glass opacity # and consolidation, and the amount of fat in patient's body. cols_series_id = [ "record_id", "redcap_repeat_instance", "infer_series_id" ] df_series_id = pd.read_csv(SERIES_ID_FPATH, sep=";") df_series_id = df_series_id[cols_series_id] df_series_id = df_series_id.drop_duplicates() cols_segmentation = [ "UID_Plataforma", "series_id", "seg_consolidacao", "seg_normal", "seg_vf1", "seg_vf2", "seg_vf3", "volume_pulmao", "taxa_gordura", "volume_gordura", "mediastino" ] tmp_data = [] df_seg_raw = pd.read_csv(SEGMENTATION_FPATH) df_seg_raw = df_seg_raw[cols_segmentation] df_seg_raw = df_seg_raw[df_seg_raw.volume_pulmao >= 1.] df_seg_raw = pd.merge(left=df_series_id, right=df_seg_raw, left_on="infer_series_id", right_on="series_id", how="right") # Each TC study might have multiple series. We need to select the one with grouped = df_seg_raw.groupby("UID_Plataforma") for uid_imagem, group in grouped: if any(group.mediastino): use_group = group[group.mediastino] else: use_group = group sorted_group = use_group.sort_values("volume_pulmao") tmp_data.append( dict(sorted_group.iloc[-1]) ) df_seg = pd.DataFrame(tmp_data) df_seg = df_seg[df_seg.seg_normal.notna()] df_image = pd.merge( left=df_image, right=df_seg, how="left", on=["record_id", "redcap_repeat_instance"] ) df_image[ ["record_id", "redcap_repeat_instance", "nome", "data_nasc", "data_admissao_hospitalar", "instituicao"] + cols_image ].to_csv(os.path.join(BASE_DIR, "data", "TC_scans.csv"), index=False) df_image = df_image.rename({"redcap_repeat_instance": "redcap_repeat_instance_image"}) df_matches = df_image[ (df_image.seg_normal.notna()) & (df_image.data_admissao_hospitalar.notna()) ] df_matches[ ["record_id", "data_admissao_hospitalar", "instituicao", "data_imagem", "uid_imagem"] ].to_csv(os.path.join(BASE_DIR, "data", "matches.csv"), index=False) n_matches = df_matches.uid_imagem.nunique() print(f"{n_matches} between REDCap and segmentation\n") # COVID-19 confirmation dataframe df_confirmation = df[df.redcap_repeat_instrument == "confirmacao_covid_multiplo"] ############################## Finished processing the results data ############################## # Now we are going to create a dataframe that each row corresponds to a moment in the patient stay at the # hospital. For each date in the patient history, we will update the row with the latest information about # that patient. # First, we need to define some helper functions to work on the processing of the data. def get_group(grouped, key, default_columns): """ Gets a group by key from a Pandas Group By object. If the key does not exist, returns an empty group with the default columns. """ if key in grouped.groups: group = grouped.get_group(key) else: group = pd.DataFrame([], columns=default_columns) return group def last_register_before_date(registers, date_col, date, default_columns): """ Gets the last register before a reference date in a dataframe. If there are no register before the date, returns an empty register with the default columns. """ registers = registers[registers[date_col].notna()] registers_before_date = registers[ registers[date_col].apply(parser.parse) <= date ] if len(registers_before_date) == 0: registers_before_date = pd.DataFrame([(np.nan for col in default_columns)], columns=default_columns) last_register = registers_before_date.iloc[-1] return last_register # Theb, we need to group by patient all the dataframes we built previously. grouped_dispneia = df_dispneia.groupby("record_id") grouped_sofa = df_sofa.groupby("record_id") grouped_saturacao_o2 = df_saturacao_o2.groupby("record_id") grouped_saps_3 = df_saps_3.groupby("record_id") grouped_image = df_image.groupby("record_id") grouped_laboratory = df_laboratory.groupby("record_id") grouped_ventilacao = df_ventilacao.groupby("record_id") grouped_pronacao = df_pronacao.groupby("record_id") grouped_hemodialise = df_hemodialise.groupby("record_id") # Now we iterate over the personal data dataframe, which has one row per patient. after_discharge = [] after_death = [] new_rows = [] for i, row in tqdm(df_personal_data.iterrows(), total=len(df_personal_data)): record_id = row["record_id"] institution = row["instituicao"] hospitalization_date = row["data_admissao_hospitalar"] discharge_date = row["data_alta_hospitalar"] date_of_death = row["data_obito"] if pd.notna(date_of_death): date_of_death = parser.parse(date_of_death) if pd.notna(discharge_date): discharge_date = parser.parse(discharge_date) if pd.notna(hospitalization_date): hospitalization_date = parser.parse(hospitalization_date) # Get each group and sort by the date group_dispneia = get_group( grouped_dispneia, record_id, df_dispneia.columns ).sort_values("data_dispneia") group_sofa = get_group( grouped_sofa, record_id, df_sofa.columns ) group_saturacao_o2 = get_group( grouped_saturacao_o2, record_id, df_saturacao_o2.columns ) group_saps_3 = get_group( grouped_saps_3, record_id, df_saps_3.columns ) group_image = get_group( grouped_image, record_id, df_image.columns ) group_laboratory = get_group( grouped_laboratory, record_id, df_laboratory.columns ) group_ventilacao = get_group( grouped_ventilacao, record_id, df_ventilacao.columns ) group_pronacao = get_group( grouped_pronacao, record_id, df_pronacao.columns ) group_hemodialise = get_group( grouped_hemodialise, record_id, df_hemodialise.columns ) # List the dates available for the patient patient_dates = set(filter( pd.notna, list(group_dispneia.data_dispneia) + list(group_sofa.data_sofa) + list(group_saturacao_o2.data_saturacao_o2) + list(group_saps_3.data_saps_3) + list(group_image.data_imagem) + list(group_laboratory.data_resultados_lab) + list(group_ventilacao.data_ventilacao) + list(group_pronacao.data_pronacao) + list(group_hemodialise.data_hemodialise) )) patient_dates = funcy.lmap(parser.parse, patient_dates) # Now we iterate over the dates of the patient retrieving the last register for # each group. new_patient_rows = [] for date_tmp in patient_dates: # If the date is after the patient's death or the patient's discharge, we want to ignore # the register. if abs(date_tmp.year - dataset_date.year) > 0: continue if pd.notna(date_of_death) and date_tmp > date_of_death: after_death.append(record_id) continue if pd.notna(discharge_date) and date_tmp > discharge_date: after_discharge.append(discharge_date) continue last_register_dispneia = last_register_before_date(group_dispneia, "data_dispneia", date_tmp, df_dispneia.columns) last_register_sofa = last_register_before_date(group_sofa, "data_sofa", date_tmp, df_sofa.columns) last_register_saturacao_o2 = last_register_before_date(group_saturacao_o2, "data_saturacao_o2", date_tmp, df_saturacao_o2.columns) last_register_saps_3 = last_register_before_date(group_saps_3, "data_saps_3", date_tmp, df_saps_3.columns) last_register_image = last_register_before_date(group_image, "data_imagem", date_tmp, df_image.columns) last_register_laboratory = last_register_before_date(group_laboratory, "data_resultados_lab", date_tmp, df_laboratory.columns) last_register_pronacao = last_register_before_date(group_pronacao, "data_pronacao", date_tmp, df_pronacao.columns) last_register_hemodialise = last_register_before_date(group_hemodialise, "data_hemodialise", date_tmp, df_hemodialise.columns) # Need for mechanical ventilation is one of our target variables. Thus, we do not want to get the last register before the # current date. We want to know if the patient ever needed mechanical ventilation at any point in time. ventilacao = group_ventilacao[group_ventilacao.ventilacao == group_ventilacao.ventilacao.max()].sort_values("data_ventilacao", ascending=False) if len(ventilacao) == 0: ventilacao = pd.DataFrame([(np.nan for col in group_ventilacao.columns)], columns=group_ventilacao.columns) ventilacao = ventilacao.iloc[-1] new_row = {} new_row.update(row) new_row.update(dict(last_register_dispneia)) new_row.update(dict(last_register_sofa)) new_row.update(dict(last_register_saturacao_o2)) new_row.update(dict(last_register_saps_3)) new_row.update(dict(last_register_image)) new_row.update(dict(last_register_laboratory)) new_row.update(dict(last_register_pronacao)) new_row.update(dict(last_register_hemodialise)) new_row.update(dict(ventilacao)) new_row["data"] = date_tmp new_row["record_id"] = record_id new_row["instituicao"] = institution new_row["dias_desde_admissao"] = (date_tmp - hospitalization_date).days if pd.notna(hospitalization_date) else np.nan date_of_outcome = date_of_death if pd.notna(date_of_death) else discharge_date new_row["dias_antes_desfecho"] = (date_of_outcome - date_tmp).days if pd.notna(date_of_outcome) else np.nan new_patient_rows.append(new_row) new_rows.extend(new_patient_rows) df_final = pd.DataFrame(new_rows) # We need to calculate some dummy variables for the categorical data. padrao_rsna_dummies = pd.get_dummies(df_final.padrao_imagem_rsna, prefix="padrao_rsna") ventilacao_dummies =
pd.get_dummies(df_final.ventilacao, prefix="ventilacao")
pandas.get_dummies
import sys import os import unittest import numpy as np from torch import nn import pandas as pd import torch from sddr.utils.dataset import SddrDataset from patsy import dmatrix import statsmodels.api as sm from sddr.utils import orthogonalize_spline_wrt_non_splines, get_info_from_design_matrix, df2lambda from sddr.utils.family import Family from sddr.utils.splines import spline, Spline from sddr.utils import checkups from sddr.utils.prepare_data import PrepareData class TestSddrDataset(unittest.TestCase): ''' Test SddrDataset for model with a linear part, splines and deep networks using the iris data set. It is tested - if get_list_of_feature_names() returns the correct list of feature names of the features from the input dataset. - if get_feature(feature_name) returns the correct features (shape and value) - if the structured part and the input to the deep network are in datadict are correct (shape and value) - if the correct target (shape and value) are returned) We do not check network_info_dict and dm_info_dict herem as they are tested by Testparse_formulas. ''' def __init__(self,*args,**kwargs): super(TestSddrDataset, self).__init__(*args,**kwargs) #define distribution self.current_distribution = 'Poisson' self.family = Family(self.current_distribution) #define formulas and network shape formulas = {'rate': '~1 + x1 + x2 + spline(x1, bs="bs",df=9) + spline(x2, bs="bs",df=9)+d1(x1)+d2(x2)'} self.deep_models_dict = { 'd1': { 'model': nn.Sequential(nn.Linear(1,15)), 'output_shape': 15}, 'd2': { 'model': nn.Sequential(nn.Linear(1,3),nn.ReLU(), nn.Linear(3,8)), 'output_shape': 8} } self.train_parameters = { 'batch_size': 1000, 'epochs': 2500, 'degrees_of_freedom': {'rate': 4} } # load data self.data_path = '../data/test_data/x.csv' self.ground_truth_path = '../data/test_data/y.csv' self.data = pd.read_csv(self.data_path ,sep=None,engine='python') self.target = pd.read_csv(self.ground_truth_path) self.true_feature_names = ["x1", "x2", "x3", "x4"] self.true_x2_11 = np.float32(self.data.x2[11]) self.true_target_11 = self.target.values[11] # perform checks on given distribution name, parameter names and number of formulas given self.formulas = checkups(self.family.get_params(), formulas) self.prepare_data = PrepareData(self.formulas, self.deep_models_dict, self.train_parameters['degrees_of_freedom']) def test_pandasinput(self): """ Test if SddrDataset correctly works with a pandas dataframe as input. """ # load data data = pd.concat([self.data, self.target], axis=1, sort=False) dataset = SddrDataset(data, self.prepare_data, "y") feature_names = dataset.get_list_of_feature_names() feature_test_value = dataset.get_feature('x2')[11] linear_input_test_value = dataset[11]["datadict"]["rate"]["structured"].numpy()[2] deep_input_test_value = dataset[11]["datadict"]["rate"]["d2"].numpy()[0] target_test_value = dataset[11]["target"].numpy() #test if outputs are equal to the true values in the iris dataset self.assertEqual(feature_names, self.true_feature_names) self.assertAlmostEqual(feature_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(linear_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(deep_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(target_test_value, self.true_target_11,places=4) # test shapes of outputs self.assertEqual(self.true_target_11.shape,target_test_value.shape) self.assertEqual(self.true_x2_11.shape,linear_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,deep_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,feature_test_value.shape) def test_pandasinputpandastarget(self): """ Test if SddrDataset correctly works with a pandas dataframe as input and target also given as dataframe. """ # load data dataset = SddrDataset(self.data, self.prepare_data, self.target) feature_names = dataset.get_list_of_feature_names() feature_test_value = dataset.get_feature('x2')[11] linear_input_test_value = dataset[11]["datadict"]["rate"]["structured"].numpy()[2] deep_input_test_value = dataset[11]["datadict"]["rate"]["d2"].numpy()[0] target_test_value = dataset[11]["target"].numpy() #test if outputs are equal to the true values in the iris dataset self.assertEqual(feature_names, self.true_feature_names) self.assertAlmostEqual(feature_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(linear_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(deep_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(target_test_value, self.true_target_11,places=4) # test shapes of outputs self.assertEqual(self.true_target_11.shape,target_test_value.shape) self.assertEqual(self.true_x2_11.shape,linear_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,deep_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,feature_test_value.shape) def test_filepathinput(self): """ Test if SddrDataset correctly works with file paths as inputs. """ # create dataset dataset = SddrDataset(self.data_path, self.prepare_data, self.ground_truth_path) feature_names = dataset.get_list_of_feature_names() feature_test_value = dataset.get_feature('x2')[11] linear_input_test_value = dataset[11]["datadict"]["rate"]["structured"].numpy()[2] deep_input_test_value = dataset[11]["datadict"]["rate"]["d2"].numpy()[0] target_test_value = dataset[11]["target"].numpy() #test if outputs are equal to the true values in the iris dataset self.assertEqual(feature_names, self.true_feature_names) self.assertAlmostEqual(feature_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(linear_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(deep_input_test_value, self.true_x2_11,places=4) self.assertAlmostEqual(target_test_value, self.true_target_11,places=4) # test shapes of outputs self.assertEqual(self.true_target_11.shape,target_test_value.shape) self.assertEqual(self.true_x2_11.shape,linear_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,deep_input_test_value.shape) self.assertEqual(self.true_x2_11.shape,feature_test_value.shape) class TestPrepareData(unittest.TestCase): ''' Test parse_formulas function for different formulas with the iris dataset. It is tested (for all parameters of the distribution) - if in datadict + the structured part is correct and has correct shape + the inputs for the neural networks is correct (values and shape) - if in network_info_dict + the penatly matrix is correct + struct_shape is correct + the deep shape is correct - if in dm_info_dict + the correct spline slices are given + the correct spline input features are given - if for smoothing splines: + the correct penaly matrix is computed + the correct regularization parameter lambda is computed ''' def __init__(self,*args,**kwargs): super(TestPrepareData, self).__init__(*args,**kwargs) # load data data_path = '../data/test_data/x.csv' ground_truth_path = '../data/test_data/y.csv' self.x =
pd.read_csv(data_path, sep=None, engine='python')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha =
pd.DataFrame(alpha)
pandas.DataFrame
from datascience import * import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as mpatches plt.style.use("seaborn-muted") def find_x_pos(widths): cumulative_widths = [0] cumulative_widths.extend(np.cumsum(widths)) half_widths = [i/2 for i in widths] x_pos = [] for i in range(0, len(half_widths)): x_pos.append(half_widths[i] + cumulative_widths[i]) return x_pos def plot_group(selection, ESG_sorted): selected_group = ESG_sorted.where("Group", selection) width, height = selected_group.column("Capacity_MW"), selected_group.column("Total_Var_Cost_USDperMWH") x_vals = find_x_pos(width) # Make the plot plt.figure(figsize=(9,6)) plt.bar(x_vals, height, width=width, edgecolor = "black") # Add title and axis names plt.title(selection) plt.xlabel('Capacity_MW') plt.ylabel('Variable Cost') plt.show() def price_calc(demand, sorted_table): price = 0 sum_cap = 0 for i in range(0,len(sorted_table['Capacity_MW'])): if sum_cap + sorted_table['Capacity_MW'][i] > demand: price = sorted_table['Total_Var_Cost_USDperMWH'][i] break else: sum_cap += sorted_table['Capacity_MW'][i] price = sorted_table['Total_Var_Cost_USDperMWH'][i] return price def price_line_plot(price): plt.axhline(y=price, color='r', linewidth = 2) print("Price: " + str(price)) def demand_plot(demand): plt.axvline(x=demand, color='r', linewidth = 2) print("Capacity: " + str(demand)) def all_groups_with_demand(demand, ESG_sorted): width = ESG_sorted.column("Capacity_MW") height = ESG_sorted.column("Total_Var_Cost_USDperMWH") x_vals = find_x_pos(width) energy_colors_dict = {} count = 0 colors = ['#EC5F67', '#F29056', '#F9C863', '#99C794', '#5FB3B3', '#6699CC', '#C594C5'] for i in set(ESG_sorted['Group']): energy_colors_dict[i] = colors[count] count += 1 colors_mapped = list(pd.Series(ESG_sorted['Group']).map(energy_colors_dict)) ESG_sorted = ESG_sorted.with_column('Color', colors_mapped) group_colors = ESG_sorted.group("Group", lambda x: x).select("Group", "Color") group_colors["Color"] = group_colors.apply(lambda x: x[0], "Color") price = price_calc(demand, ESG_sorted) # Make the plot plt.figure(figsize=(9,6)) plt.bar(x_vals, height, width=width, color=ESG_sorted['Color'], edgecolor = "black") patches = [] for row in group_colors.rows: patches += [mpatches.Patch(color=row.item("Color"), label=row.item("Group"))] plt.legend(handles=patches, bbox_to_anchor=(1.1,1)) plt.title('All Energy Sources') plt.xlabel('Capacity_MW') plt.ylabel('Variable Cost') price_line_plot(price) demand_plot(demand) def profit(sorted_table, price): capacity_subset = sum(sorted_table.where("Total_Var_Cost_USDperMWH", are.below(price))["Capacity_MW"]) revenue = capacity_subset * price cost = 0 for i in range(len(sorted_table.where("Total_Var_Cost_USDperMWH", are.below(price))["Total_Var_Cost_USDperMWH"])): cost += sorted_table.where("Total_Var_Cost_USDperMWH", are.below(price))["Total_Var_Cost_USDperMWH"][i]\ * sorted_table.where("Total_Var_Cost_USDperMWH", are.below(price))["Capacity_MW"][i] return revenue - cost def calc_profit(selection, demand, ESG_sorted): price = price_calc(demand, ESG_sorted) selected_group = ESG_sorted.where("Group", selection) print("Your profit is ${:.2f}".format(profit(selected_group, price))) def all_group_bids(demand, hour, sorted_joined_table): def price_calc(demand, sorted_table): price = 0 sum_cap = 0 for i in range(0,len(sorted_table['Capacity_MW'])): if sum_cap + sorted_table['Capacity_MW'][i] > demand: price = sorted_table['PRICE' + str(hour)][i] break else: sum_cap += sorted_table['Capacity_MW'][i] price = sorted_table['PRICE' + str(hour)][i] return price sorted_joined_table = sorted_joined_table.sort("PRICE" + str(hour)) width = sorted_joined_table.column("Capacity_MW") height = sorted_joined_table.column('PRICE' + str(hour)) x_vals = find_x_pos(width) energy_colors_dict = {} count = 0 colors = ['#EC5F67', '#F29056', '#F9C863', '#99C794', '#5FB3B3', '#6699CC', '#C594C5'] for i in set(sorted_joined_table['Group']): energy_colors_dict[i] = colors[count] count += 1 colors_mapped = list(pd.Series(sorted_joined_table['Group']).map(energy_colors_dict)) sorted_joined_table = sorted_joined_table.with_column('Color', colors_mapped) group_colors = sorted_joined_table.group("Group", lambda x: x).select("Group", "Color") group_colors["Color"] = group_colors.apply(lambda x: x[0], "Color") price = price_calc(demand, sorted_joined_table) # Make the plot plt.figure(figsize=(9,6)) plt.bar(x_vals, height, width=width, color=sorted_joined_table['Color'], edgecolor = "black") patches = [] for row in group_colors.rows: patches += [mpatches.Patch(color=row.item("Color"), label=row.item("Group"))] plt.legend(handles=patches, bbox_to_anchor=(1.1,1)) plt.title('All Energy Sources') plt.xlabel('Capacity_MW') plt.ylabel('Price') price_line_plot(price) demand_plot(demand) def your_portfolio_plot(selection, hour, demand, sorted_joined_table): def price_calc(demand, sorted_table): price = 0 sum_cap = 0 for i in range(0,len(sorted_table['Capacity_MW'])): if sum_cap + sorted_table['Capacity_MW'][i] > demand: price = sorted_table['PRICE' + str(hour)][i] break else: sum_cap += sorted_table['Capacity_MW'][i] price = sorted_table['PRICE' + str(hour)][i] return price your_source = sorted_joined_table.where("Group", selection) width_yours = your_source.column("Capacity_MW") height_yours = your_source.column('PRICE' + str(hour)) height_yours_marginal_cost = your_source.column("Total_Var_Cost_USDperMWH") new_x_yours = find_x_pos(width_yours) energy_colors_dict = {} count = 0 colors = ['#EC5F67', '#F29056', '#F9C863', '#99C794', '#5FB3B3', '#6699CC', '#C594C5'] for i in set(sorted_joined_table['Group']): energy_colors_dict[i] = colors[count] count += 1 colors_mapped = list(
pd.Series(sorted_joined_table['Group'])
pandas.Series
#Modules to install via pip pandas,ipynb import os import sys import time from lib import trace_classification sys.path.append('../') import os import pandas as pd import numpy as np import json #Modules to install via pip pandas,ipynb import pandas as pd import numpy as np import matplotlib.pyplot as plt import json from pprint import pprint import os #import import_ipynb import sys sys.path.append('../') from pandas.plotting import scatter_matrix from lib import trace_analysis from node import * import sklearn.metrics as sm import pandas as pd import matplotlib.pyplot as plt import os from node import * from lib import plots_analysis from sklearn.metrics import confusion_matrix from sklearn.cluster import KMeans import sklearn.metrics as sm from sklearn.decomposition import PCA import random #Modules to install via pip pandas,ipynb import sys sys.path.append('../') from lib import plots_analysis from sklearn.cluster import KMeans import pandas as pd # scipy import sklearn.metrics as sm class node(object): ip = "" hop= 0 pkts=pd.DataFrame() # The class "constructor" - It's actually an initializer def __init__(self,ip,hop,pkts): self.ip = ip self.hop=hop self.pkts=pkts def make_node(ip,hop,pkts): node= node(ip,hop,pkts) return node ####### #Plotting Graphs ##### def saveFileFigures(fig,directory,namefile): directory=directory+"figures/" if not os.path.exists(directory): os.makedirs(directory) print(directory) fig.savefig(directory+namefile+".pdf") # save the figure to file #plt.show() #Prints on a file the big matrix (asked by professor) def printBigPlot(directory,data,figsize,namefile,colors,cases): print("Printing Big Plot for "+directory) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): #print(i,j) ax=axs[i][j] d=data[i][j].pkts["rtt"] ax.set_ylabel("Density") ax.set_title("Node "+ str(data[i][j].ip) ) ax.set_xlabel("Time (ms)") if not d.empty | len(d)<2 : d.plot.kde( ax=ax, label="Case " +str(cases[i]), color=colors[i] ) d.hist(density=True,alpha=0.3,color=colors[i], ax=ax) ax.legend() #ax.set_xlim([-500, 8000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Print on a file density by Hop (asked by professor) def printDensityByHop(directory,dataHop,hops,figsize,namefile,colors,cases): print("Printing Density by Hop for "+directory) #dataHop=hopPreparation(data) fig, axs= plt.subplots(len(dataHop[0]),1, figsize=(15,20),sharey=True, ) #print(len(dataHop),len(dataHop[0])) for i in range(len(dataHop)): for j in range(len(dataHop[i])): #print(i,j) d=dataHop[i][j].pkts['rtt'] axs[j].set_xlabel("Time (ms)") axs[j].set_title("Hop "+ str(j+1)) if not d.empty | len(d)<2 : d.plot.kde( ax=axs[j], label=cases[i],color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() #axs[j].set_xlim([-40, 6000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Print on a file density by Case (asked by professor) def printDensityByCase(directory,data,hops,figsize,namefile,colors,cases): print("Printing Density by case for "+directory) #print(len(data),len(data[0])) #data1=hopPreparation(data) dataHopT=[*zip(*hops)] #print(len(data1),len(data1[0])) #print(len(dataHopT),len(dataHopT[0])) fig, axs= plt.subplots(len(dataHopT[0]),1, figsize=(15,20),sharey=True, ) for i in range(len(dataHopT)): for j in range(len(dataHopT[0])): d=dataHopT[i][j] axs[j].set_title(""+ cases[i]) axs[j].set_xlabel("Time (ms)") axs[j].set_ylabel("Density") if not d.empty | len(d)<2 : #print(dataHopT[i][j]) #print(colors[i]) d=d["rtt"] try: d.plot.kde( ax=axs[j], label="Hop "+str(i), color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() except:pass plt.tight_layout() #axs[j].set_xlim([-40, 6000]) saveFileFigures(fig,directory,namefile) #Print Density of delay without outliers in every node by Case def densityOfDelayByCaseNoOutliers(directory,data,figsize,namefile,colors,cases): print("Printing Density of delay without outliers in every node by Case for "+directory) fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): out=getStdValues(data[i][j].pkts) if not out.empty : ax=axs[j] out["rtt"].plot.kde( ax=ax, label=cases[i], color=colors[i] ) ax.set_ylabel("Density") out["rtt"].hist(density=True,alpha=0.3, ax=ax, color=colors[i]) ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Time (ms)") ax.legend() plt.tight_layout() saveFileFigures(fig,directory,namefile) #Density of outliers in every node by Case def densityOutliersByCase(directory,data,figsize,namefile,colors,cases): print("Printing Density of outliers in every node by Case for "+directory) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): out=getOutliers(data[i][j].pkts) ax=axs[i][j] ax.set_ylabel("Density") ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Time (ms)") if not out.empty | len(out)<2 : out["rtt"].plot.kde( ax=ax, label=cases[i], color=colors[i] ) out["rtt"].hist(density=True,alpha=0.3, ax=ax, color=colors[i]) ax.legend() plt.tight_layout() saveFileFigures(fig,directory,namefile) #Distibution of the delay divided by Node in the differents Cases def densityOfDelayByCase(directory,data,figsize,namefile,colors,cases): print("Printing Density of delay in every node by Case for "+directory) fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): d=data[i][j].pkts["rtt"] axs[j].set_title("Node "+ str(data[i][j].ip)) axs[j].set_xlabel("Time (ms)") axs[j].set_ylabel("Density") if not d.empty | len(d)<2 : try: d.plot.kde( ax=axs[j], label=cases[i],color=colors[i] ) d.hist(density=True,alpha=0.3, ax=axs[j],color=colors[i]) axs[j].legend() except: pass plt.tight_layout() saveFileFigures(fig,directory,namefile) #RTT Graph def RTTGraph(directory,data,figsize,namefile,colors,cases): print("Printing RTT Graph for "+directory) # fig, axs= plt.subplots(len(data[0]),1, figsize=figsize,sharey=True, ) # for i in range(len(data)): # for j in range(len(data[i])): # axs[j].plot(data[i][j].pkts["seq"],data[i][j].pkts["rtt"],label=cases[i],color=colors[i] ) # axs[j].set_title("Node "+ str(data[i][j].ip)) # axs[j].set_xlabel("Packet Number") # axs[j].set_ylabel("Time (ms)") # axs[j].legend() # plt.tight_layout() # saveFileFigures(fig,directory,namefile) fig, axs= plt.subplots(len(data),len(data[0]), figsize=figsize,sharey=True, ) for i in range(len(data)): for j in range(len(data[i])): #print(i,j) ax=axs[i][j] d=data[i][j].pkts["rtt"] ax.set_ylabel("Time (ms)") ax.set_title("Node "+ str(data[i][j].ip)) ax.set_xlabel("Packet Number") if not d.empty | len(d)<2 : ax.plot(data[i][j].pkts["seq"],data[i][j].pkts["rtt"],label=cases[i] #,color=colors[i] ) ax.legend() #ax.set_xlim([-500, 8000]) plt.tight_layout() saveFileFigures(fig,directory,namefile) #Not used anymore def coojaJsonImporter(dir): dataList=[] for file in os.listdir(dir): print("Importing "+ file) with open(dir+"/" + file, 'r') as f: dataList.append(json.load(f)) return dataList ###Function to create nodes, create a list of nodes ### def createNodes(dict): nodeList=[] #dfList(pd.DataFrame(dict)) for ip in dict.keys(): pkts=pd.DataFrame(dict[ip]['pkts']) hop=64-(int(pkts[0:1]["ttl"])) pkts = pkts.drop(['ttl'], axis=1) pkts=pkts.rename(columns={"pkt":"seq"}) #print(type(pkts[0:1]["ttl"])) #print(pkts[0:1]["ttl"]) n=node(ip,hop,pkts) nodeList.append(n) return nodeList def findMissingPackets(node): #print(node.pkts["pkt"]) print("Executed") maxP=-1 for el in node.pkts["seq"]: if(el>maxP): maxP=int(el) #print(maxP) pkt=[None]*(maxP+1) for i in range(len(node.pkts["seq"])): index=int(node.pkts["seq"][i]) #print(index) pkt[index]=node.pkts["rtt"][i] #pkt[)]=node.pkts["pkt"][i] return pkt def getIps(list): ips=[] for n in list: ips.append(n.ip) return ips def MLPreparation(data): # Calculate all the statistics statistics = {} # <node_id, statistics of the node> for network in data: for node in network: print(node.pkts["rtt"].describe()) def getOutliers(df): df1=df["rtt"] std=df1.std() mean=df1.mean() a1=df["rtt"]>mean+(2*std) a2=df["rtt"]<mean-(2*std) return(df[a1 | a2]) def get_IQR_Outliers(df): df1 = df["rtt"] lower = df1.quantile(.25) upper = df1.quantile(.75) a1 = df["rtt"]>upper a2 = df["rtt"]<lower return(df[a1 | a2]) def getStdValues(df): df1=df["rtt"] std=df1.std() mean=df1.mean() a1=df["rtt"]<mean+(2*std) a2=df["rtt"]>mean-(2*std) return(df[a1 & a2]) def getPings(data): pings=[] for i in range(len(data)): packetN=-1 for j in range(len(data[i])): if(len(data[i][j].pkts)>packetN): packetN=len(data[i][j].pkts) pings.append(packetN) return pings #Prepare the hop data def hopPreparation(data): hoplist=[] df_a = pd.DataFrame( ) dataHop=[] listoflists = [] #print("Hop Preparation") #print(len(data),len(data[0])) maxHopCase=[] for i in range(len(data)): maxHop=-1 for j in range(len(data[i])): if(data[i][j].hop>maxHop): maxHop=data[i][j].hop maxHopCase.append(maxHop) #print(maxHopCase) for i in range(len(data)): sublist = [] for j in range(maxHopCase[i]): sublist.append((df_a)) dataHop.append(sublist) #print (listoflists) for i in range(len(data)): col=[] for j in range(len(data[i])): hop=data[i][j].hop-1 dataHop[i][hop]= pd.concat([dataHop[i][hop],data[i][j].pkts],sort=True) #print(len(dataHop),len(dataHop[0])) return dataHop def getPercentageMissingPackets(node,lenght): missing=0 #print(len(node.pkts)) missing=lenght-len(node) #print(lenght,missing) if(missing!=0): result=missing/lenght else: result=0 #print(maxS/missing) return result*100 def accuracy_score_corrected(correction,labels): #print(np.array(correction)) labels_alt=[] sum_labels=0 sum_labels_alt=0 for el in labels: if (el==0): labels_alt.append(1) sum_labels_alt+=1 elif el==1: labels_alt.append(0) sum_labels+=1 accuracy=sm.accuracy_score(correction, labels) accuracy_alt=sm.accuracy_score(correction, labels_alt) #print(correction) if (sum_labels>sum_labels_alt): #print(accuracy) None else: #print(accuracy_alt) labels=labels_alt #print(np.array(labels)) confusionMatrix=sm.confusion_matrix(correction, labels) #pprint(confusionMatrix) return labels def ReplaceMissingPackets(node): #print(node.pkts["pkt"]) print("Executed") maxP=-1 for el in node.pkts["seq"]: if(el>maxP): maxP=int(el) #print(maxP) pkt=[None]*(maxP+1) for i in range(len(node.pkts["seq"])): index=int(node.pkts["seq"][i]) #print(index) pkt[index]=node.pkts["rtt"][i] #pkt[)]=node.pkts["pkt"][i] return pkt #Import from pings files to a dataframe def import_nodes_Cooja_2(directory,tracemask,node_defaults): #print(directory) #print(tracemask) files = [] # load all files and extract IPs of nodes for file in os.listdir(directory): try: if file.startswith(tracemask) and file.index("routes"): continue except: files.append(file) nodes =
pd.DataFrame(columns=['node_id', 'rank'])
pandas.DataFrame
# -*- coding: utf-8 -*- """Script which can be used to compare the features obtained of two different influenza models Usage: compare_models.py <baseline> <other_method>... [--country=<country_name>] [--no-future] [--basedir=<directory>] [--start-year=<start_year>] [--end-year=<end_year>] [--save] [--no-graph] [--top-k=<top_features>] <baseline> Data file of the first model <other_method> Data file of the second model -h, --help Print this help message """ import os import glob from docopt import docopt import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error import matplotlib import matplotlib.pyplot as plt import seaborn as sns sns.set() sns.set_context("paper") from models.models_utils import generate, stz_zero, get_important_pages def correct_name(value): if value == "new_data" or value == "old_data": return "Categories (Pageviews+Pagecounts)" elif value == "cyclerank": return "CycleRank (Pageviews+Pagecounts)" elif value == "pageviews": return "Categories (Pageviews)" elif value == "cyclerank_pageviews": return "CycleRank (Pageviews)" elif value == "pagerank": return "PageRank (Pageviews+Pagecounts)" else: return "PageRank (Pageviews)" def get_results_filename(basepath, country): files = [f for f in glob.glob(basepath + "/*_information_{}.csv".format(country), recursive=True)] season_years = os.path.basename(files[0]).split("_")[0] return season_years def generate_dictionary(f, model): result = dict() unique_years = results.season.unique() for y in unique_years: f_tmp = f[f.season == y] for index, row in f_tmp.iterrows(): page_name = str(row["page_name_"+model]) weigth = float(row["value_"+model]) if page_name in result: result[page_name].append(weigth) else: result[page_name] = [weigth] return result if __name__ == "__main__": # Read the command line arguments args = docopt(__doc__) # Read some config variables base_dir = args["--basedir"] if args["--basedir"] else "../complete_results" country = args["--country"] if args["--country"] else "italy" future = "no-future" if args["--no-future"] else "future" top_features = int(args["--top-k"]) if args["--top-k"] else 5 # Get keywords coming from the various methods print("") keywords_standard = pd.read_csv(os.path.join("../data/keywords", "keywords_{}.txt".format(country)), header=None, names=["page_name"]) print("Standard keywords Size: {}".format(len(keywords_standard))) # Get keywords coming from the various methods keywords_cyclerank = pd.read_csv(os.path.join("../data/keywords", "keywords_cyclerank_{}.txt".format(country)), header=None, names=["page_name"]) print("Cyclerank keywords Size: {}".format(len(keywords_cyclerank))) common_keywords = set.intersection(set(keywords_standard.page_name), set(keywords_cyclerank.page_name)) print("Common keywords Size: {}, {}, {}".format(len(common_keywords), len(common_keywords)/len(keywords_standard), len(common_keywords)/len(keywords_cyclerank))) print("") # Read the baseline results and merge them baseline_results_path= os.path.join(base_dir, args["<baseline>"], future, country) season_years = get_results_filename(baseline_results_path, country) season_years_baseline = season_years baseline_result_file = os.path.join(baseline_results_path, "{}_features_{}.csv".format(season_years, country)) baseline_results_df = pd.read_csv(baseline_result_file)[["season", "page_name", "value"]].rename(columns={"page_name": "page_name_{}".format(args["<baseline>"]), "value":"value_{}".format(args["<baseline>"])}) # Concat all the other results other_results_df = None for other_results in args["<other_method>"]: other_results_path = os.path.join(base_dir, other_results, future, country) season_years = get_results_filename(other_results_path, country) other_result_file = os.path.join(other_results_path, "{}_features_{}.csv".format(season_years, country)) if other_results_df is None: other_results_df = pd.read_csv(other_result_file)[["season", "page_name", "value"]] other_results_df = other_results_df.rename(columns={"page_name": "page_name_{}".format(other_results), "value":"value_{}".format(other_results)}) else: current_other_results_df =
pd.read_csv(other_result_file)
pandas.read_csv
import warnings warnings.filterwarnings("ignore") import pickle import json import pandas as pd import numpy as np from pathlib import Path from process_functions import adjust_names, aggregate_countries, moving_average, write_log from pickle_functions import picklify, unpicklify ###################################### # Retrieve data ###################################### # Paths path_UN = Path.cwd() / 'input' / 'world_population_2020.csv' path_confirmed = Path.cwd() / 'input' / 'df_confirmed.csv' path_deaths = Path.cwd() / 'input' / 'df_deaths.csv' path_policy = Path.cwd() / 'input' / 'df_policy.csv' #path_geo = Path.cwd() / 'input'/ 'countries.geojson' # get data directly from github. The data source provided by Johns Hopkins University. url_confirmed = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv' url_deaths = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv' url_policy = 'https://raw.githubusercontent.com/OxCGRT/covid-policy-tracker/master/data/OxCGRT_latest.csv' #df.to_csv(r'C:/Users/John\Desktop/export_dataframe.csv', index = None) pop = pd.read_csv(path_UN) #load old data df_confirmed_backup = pd.read_csv(path_confirmed) old_df_confirmed = df_confirmed_backup[['Province/State','Country/Region']] df_deaths_backup = pd.read_csv(path_deaths) old_df_deaths = df_deaths_backup[['Province/State','Country/Region']] df_policy_backup = pd.read_csv(path_policy) old_names_df_policy = set(df_policy_backup['CountryName']) old_dates_df_policy = set(df_policy_backup['Date']) #load new data df_confirmed = pd.read_csv(url_confirmed, error_bad_lines=False) new_df_confirmed = df_confirmed[['Province/State','Country/Region']] df_deaths = pd.read_csv(url_deaths, error_bad_lines=False) new_df_deaths = df_confirmed[['Province/State','Country/Region']] df_policy = pd.read_csv(url_policy, error_bad_lines=False) new_names_df_policy = set(df_policy['CountryName']) new_dates_df_policy = set(df_policy['Date']) #compute difference of rows and columns confirmed_country_diff = new_df_confirmed[~new_df_confirmed.apply(tuple,1).isin(old_df_confirmed.apply(tuple,1))] confirmed_date_diff = set(df_confirmed.columns).symmetric_difference(set(df_confirmed_backup.columns)) deaths_country_diff = new_df_deaths[~new_df_deaths.apply(tuple,1).isin(old_df_deaths.apply(tuple,1))] deaths_date_diff = set(df_deaths.columns).symmetric_difference(set(df_deaths_backup.columns)) policy_country_diff = new_names_df_policy.symmetric_difference(old_names_df_policy) policy_date_diff = new_dates_df_policy.symmetric_difference(old_dates_df_policy) #write log and load the backup df if there are new countries until the next update #for confirmed write_log('--- confirmed cases file check'.upper()) if confirmed_country_diff.empty: write_log('no new countries added') else: write_log('new countries added:\n' + str(confirmed_country_diff)) #df_confirmed = df_confirmed_backup if len(confirmed_date_diff) > 1: write_log('multiple new dates added: ' + str(confirmed_date_diff)) elif len(confirmed_date_diff) == 1: write_log('new date added: ' + str(confirmed_date_diff)) else: write_log('no new date added') #for deaths write_log('--- deaths file check'.upper()) if deaths_country_diff.empty: write_log('no new countries added') else: write_log('new countries added:\n' + str(deaths_country_diff)) #df_deaths = df_deaths_backup if len(deaths_date_diff) > 1: write_log('multiple new dates added: ' + str(deaths_date_diff)) elif len(deaths_date_diff) == 1: write_log('new date added: ' + str(deaths_date_diff)) else: write_log('no new date added') #for policy write_log('--- policy file check'.upper()) if not bool(policy_country_diff): write_log('no new countries added') else: write_log('new countries added:\n' + str(policy_country_diff)) #df_policy = df_policy_backup if len(policy_date_diff) > 1: write_log('multiple new dates added: ' + str(policy_date_diff)) elif len(policy_date_diff) == 1: write_log('new date added: ' + str(policy_date_diff)) else: write_log('no new date added') df_confirmed.to_csv(path_confirmed, index = None) df_deaths.to_csv(path_deaths, index = None) df_policy.to_csv(path_policy, index = None) ######################################################################################### # Data preprocessing for getting useful data and shaping data compatible to plotly plot ######################################################################################### # List of EU28 countries eu28 = ['Austria', 'Italy', 'Belgium', 'Latvia', 'Bulgaria', 'Lithuania', 'Croatia', 'Luxembourg', 'Cyprus', 'Czech Republic', 'Malta', 'Netherlands', 'Denmark', 'Poland', 'Estonia', 'Portugal', 'Finland', 'Romania', 'France', 'Slovakia', 'Germany', 'Slovenia', 'Greece', 'Spain', 'Hungary', 'Sweden', 'Ireland', 'United Kingdom'] #filter the countries' names to fit our list of names df_confirmed = adjust_names(df_confirmed.copy()) df_deaths = adjust_names(df_deaths.copy()) df_confirmed = aggregate_countries(df_confirmed.copy(), graph = 'scatter') df_deaths = aggregate_countries(df_deaths.copy(), graph = 'scatter') # Create a dataframe for the world with the date as columns, keep the Province/State column to rename it below df_world = df_confirmed[0:0].drop(columns = ['Country/Region', 'Lat', 'Long']).copy() # Create dataframes for EU28 for each variable df_EU28_confirmed = df_confirmed.set_index('Country/Region').loc[eu28].copy() df_EU28_confirmed = df_EU28_confirmed.drop(columns = ['Lat', 'Long']) df_EU28_deaths = df_deaths.set_index('Country/Region').loc[eu28].copy() df_EU28_deaths = df_EU28_deaths.drop(columns = ['Lat', 'Long']) # Sum variables to get aggregate EU28 values df_confirmed_EU28 = df_EU28_confirmed.reset_index().drop(columns = ['Country/Region']).iloc[:, :].sum(axis=0) df_deaths_EU28 = df_EU28_deaths.reset_index().drop(columns = ['Country/Region']).iloc[:, :].sum(axis=0) # Drop columns df_EU28 = df_EU28_confirmed[0:0].reset_index().drop(columns = ['Country/Region']).copy() # Total cases df_confirmed_total = df_confirmed.drop(columns = ['Country/Region', 'Lat', 'Long']).iloc[:, :].sum(axis=0) df_deaths_total = df_deaths.drop(columns = ['Country/Region', 'Lat', 'Long']).iloc[:, :].sum(axis=0) # Add the rows to the world dataframe by date df_world = df_world.append([df_confirmed_total, df_deaths_total] , ignore_index=True) df_EU28 = df_EU28.append([df_confirmed_EU28, df_deaths_EU28] , ignore_index=True) #add a column to explicitly define the the row for confirmed cases and for deaths df_EU28.insert(loc=0, column='cases', value=['confirmed', 'deaths']) df_world.insert(loc=0, column='cases', value=['confirmed', 'deaths']) # Compute the increment from the previous day for the latest available data daily_confirmed_world = df_world.iloc[0, -1] - df_world.iloc[0, -2] daily_deaths_world = df_world.iloc[1, -1] - df_world.iloc[1, -2] daily_confirmed_EU28 = df_EU28.iloc[0, -1] - df_EU28.iloc[0, -2] daily_deaths_EU28 = df_EU28.iloc[1, -1] - df_EU28.iloc[1, -2] # Recreate required columns for map data map_data = df_confirmed[["Country/Region", "Lat", "Long"]] map_data['Confirmed'] = df_confirmed.loc[:, df_confirmed.columns[-1]] map_data['Deaths'] = df_deaths.loc[:, df_deaths.columns[-1]] #aggregate the data of countries divided in provinces map_data = aggregate_countries(map_data , graph = 'map') #adjust some names of countries in the population dataframe pop = pop[['name', 'pop2019']] pop['pop2019'] = pop['pop2019'] * 1000 pop.at[pop['name'] == 'United States','name'] = 'United States of America' pop.at[pop['name'] == 'Ivory Coast','name'] = "Cote d'Ivoire" pop.at[pop['name'] == 'Republic of the Congo','name'] = "Republic of Congo" pop.at[pop['name'] == 'DR Congo','name'] = "Democratic Republic of the Congo" pop.at[pop['name'] == 'Timor-Leste','name'] = "East Timor" pop.at[pop['name'] == 'Vatican City','name'] = "Holy See" pop.at[pop['name'] == 'Macedonia','name'] = "North Macedonia" pop.at[pop['name'] == '<NAME>','name'] = "<NAME>" pop.at[pop['name'] == '<NAME>','name'] = "<NAME>" temp_pop_names = list(pop['name']) #create a list with the names of countries in the cases df not present in the population df not_matched_countries = [] for i in list(df_confirmed['Country/Region'].unique()): if i not in temp_pop_names: not_matched_countries.append(i) #add the total world and eu28 population to the population df world_population = pop.drop(columns = ['name']).iloc[:, :].sum(axis=0) pop_EU28 = pop.set_index('name').loc[eu28].copy() EU28_population = pop_EU28.reset_index().drop(columns = ['name']).iloc[:, :].sum(axis=0) pop = pop.set_index('name') pop_t = pop.T.astype(int) pop_t['World'] = int(world_population) pop_t['EU28'] = int(EU28_population) #last 24 hours increase #map_data['Deaths_24hr']=df_deaths.iloc[:,-1] - df_deaths.iloc[:,-2] #map_data['Confirmed_24hr']=df_confirmed.iloc[:,-1] - df_confirmed.iloc[:,-2] #map_data.sort_values(by='Confirmed', ascending=False, inplace=True) #create utility df transposed without lat and lon df_confirmed_t=df_confirmed.drop(['Lat','Long'],axis=1).T df_deaths_t=df_deaths.drop(['Lat','Long'],axis=1).T df_confirmed_t.columns = df_confirmed_t.iloc[0] df_confirmed_t = df_confirmed_t.iloc[1:] df_deaths_t.columns = df_deaths_t.iloc[0] df_deaths_t = df_deaths_t.iloc[1:] df_world_t = df_world.T df_world_t.columns = df_world_t.iloc[0] df_world_t = df_world_t.iloc[1:] df_EU28_t = df_EU28.T df_EU28_t.columns = df_EU28_t.iloc[0] df_EU28_t = df_EU28_t.iloc[1:] # Remove countries for which we lack population data from the UN df_confirmed_t = df_confirmed_t.drop(not_matched_countries, axis = 1) df_deaths_t = df_deaths_t.drop(not_matched_countries, axis = 1) # Set the countries available as choices in the dropdown menu available_indicators = ['World', 'EU28'] for i in list(df_confirmed_t): available_indicators.append(i) df_confirmed_t.index=pd.to_datetime(df_confirmed_t.index) df_deaths_t.index=pd.to_datetime(df_confirmed_t.index) df_world_t.index =
pd.to_datetime(df_world_t.index)
pandas.to_datetime
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201,
pd.Timestamp("2015-02-10")
pandas.Timestamp
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas.compat as compat from pandas.compat import range import pandas as pd from pandas import ( Categorical, DataFrame, Index, NaT, Series, bdate_range, date_range, isna) from pandas.core import ops import pandas.core.nanops as nanops import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) from .common import TestData class TestSeriesLogicalOps(object): @pytest.mark.parametrize('bool_op', [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_operators_bitwise(self): # GH#9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) with pytest.raises(TypeError): s_1111 & 'a' with pytest.raises(TypeError): s_1111 & ['a', 'b', 'c', 'd'] with pytest.raises(TypeError): s_0123 & np.NaN with pytest.raises(TypeError): s_0123 & 3.14 with pytest.raises(TypeError): s_0123 & [0.1, 4, 3.14, 2] # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) with pytest.raises(TypeError): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) assert_series_equal(result, expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented # this is an alignment issue; these are equivalent # https://github.com/pandas-dev/pandas/issues/5284 with pytest.raises(TypeError): d.__and__(s, axis='columns') with pytest.raises(TypeError): s & d # this is wrong as its not a boolean result # result = d.__and__(s,axis='index') @pytest.mark.parametrize('op', [ operator.and_, operator.or_, operator.xor, ]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) assert_series_equal(result, expected) @pytest.mark.parametrize("op, expected", [ (ops.rand_, pd.Index([False, True])), (ops.ror_, pd.Index([False, True])), (ops.rxor, pd.Index([])), ]) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index), Series(np.nan, a.index)]: result = a[a | e] assert_series_equal(result, a[a]) for e in [Series(['z'])]: if compat.PY3: with tm.assert_produces_warning(RuntimeWarning): result = a[a | e] else: result = a[a | e] assert_series_equal(result, a[a]) # vs scalars index = list('bca') t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) assert_series_equal(result, expected) for v in [np.nan, 'foo']: with pytest.raises(TypeError): t | v for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) assert_series_equal(result, expected) for v in [np.nan]: with pytest.raises(TypeError): t & v def test_logical_ops_df_compat(self): # GH#1134 s1 = pd.Series([True, False, True], index=list('ABC'), name='x') s2 = pd.Series([True, True, False], index=list('ABD'), name='x') exp = pd.Series([True, False, False, False], index=list('ABCD'), name='x') assert_series_equal(s1 & s2, exp) assert_series_equal(s2 & s1, exp) # True | np.nan => True exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') assert_series_equal(s1 | s2, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, False, False], index=list('ABCD'), name='x') assert_series_equal(s2 | s1, exp) # DataFrame doesn't fill nan with False exp = pd.DataFrame({'x': [True, False, np.nan, np.nan]}, index=list('ABCD')) assert_frame_equal(s1.to_frame() & s2.to_frame(), exp) assert_frame_equal(s2.to_frame() & s1.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, np.nan, np.nan]}, index=list('ABCD')) assert_frame_equal(s1.to_frame() | s2.to_frame(), exp) assert_frame_equal(s2.to_frame() | s1.to_frame(), exp) # different length s3 = pd.Series([True, False, True], index=list('ABC'), name='x') s4 = pd.Series([True, True, True, True], index=list('ABCD'), name='x') exp = pd.Series([True, False, True, False], index=list('ABCD'), name='x') assert_series_equal(s3 & s4, exp) assert_series_equal(s4 & s3, exp) # np.nan | True => np.nan, filled with False exp = pd.Series([True, True, True, False], index=list('ABCD'), name='x') assert_series_equal(s3 | s4, exp) # True | np.nan => True exp = pd.Series([True, True, True, True], index=list('ABCD'), name='x') assert_series_equal(s4 | s3, exp) exp = pd.DataFrame({'x': [True, False, True, np.nan]}, index=list('ABCD')) assert_frame_equal(s3.to_frame() & s4.to_frame(), exp) assert_frame_equal(s4.to_frame() & s3.to_frame(), exp) exp = pd.DataFrame({'x': [True, True, True, np.nan]}, index=list('ABCD')) assert_frame_equal(s3.to_frame() | s4.to_frame(), exp) assert_frame_equal(s4.to_frame() | s3.to_frame(), exp) class TestSeriesComparisons(object): def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) assert_series_equal(s == s2, exp) assert_series_equal(s2 == s, exp) def test_categorical_comparisons(self): # GH 8938 # allow equality comparisons a = Series(list('abc'), dtype="category") b = Series(list('abc'), dtype="object") c = Series(['a', 'b', 'cc'], dtype="object") d = Series(list('acb'), dtype="object") e = Categorical(list('abc')) f = Categorical(list('acb')) # vs scalar assert not (a == 'a').all() assert ((a != 'a') == ~(a == 'a')).all() assert not ('a' == a).all() assert (a == 'a')[0] assert ('a' == a)[0] assert not ('a' != a)[0] # vs list-like assert (a == a).all() assert not (a != a).all() assert (a == list(a)).all() assert (a == b).all() assert (b == a).all() assert ((~(a == b)) == (a != b)).all() assert ((~(b == a)) == (b != a)).all() assert not (a == c).all() assert not (c == a).all() assert not (a == d).all() assert not (d == a).all() # vs a cat-like assert (a == e).all() assert (e == a).all() assert not (a == f).all() assert not (f == a).all() assert ((~(a == e) == (a != e)).all()) assert ((~(e == a) == (e != a)).all()) assert ((~(a == f) == (a != f)).all()) assert ((~(f == a) == (f != a)).all()) # non-equality is not comparable with pytest.raises(TypeError): a < b with pytest.raises(TypeError): b < a with pytest.raises(TypeError): a > b with pytest.raises(TypeError): b > a def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = ser[5] f = getattr(operator, op) result = f(ser, val) expected = f(ser.dropna(), val).reindex(ser.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) def test_unequal_categorical_comparison_raises_type_error(self): # unequal comparison should raise for unordered cats cat = Series(Categorical(list("abc"))) with pytest.raises(TypeError): cat > "b" cat = Series(Categorical(list("abc"), ordered=False)) with pytest.raises(TypeError): cat > "b" # https://github.com/pandas-dev/pandas/issues/9836#issuecomment-92123057 # and following comparisons with scalars not in categories should raise # for unequal comps, but not for equal/not equal cat = Series(Categorical(list("abc"), ordered=True)) with pytest.raises(TypeError): cat < "d" with pytest.raises(TypeError): cat > "d" with pytest.raises(TypeError): "d" < cat with pytest.raises(TypeError): "d" > cat tm.assert_series_equal(cat == "d", Series([False, False, False])) tm.assert_series_equal(cat != "d", Series([True, True, True])) @pytest.mark.parametrize('pair', [ ([pd.Timestamp('2011-01-01'), NaT, pd.Timestamp('2011-01-03')], [NaT, NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), NaT, pd.Timedelta('3 days')], [NaT, NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), NaT, pd.Period('2011-03', freq='M')], [NaT, NaT, pd.Period('2011-03', freq='M')]), ]) @pytest.mark.parametrize('reverse', [True, False]) @pytest.mark.parametrize('box', [Series, Index]) @pytest.mark.parametrize('dtype', [None, object]) def test_nat_comparisons(self, dtype, box, reverse, pair): l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) # Series, Index expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True]) assert_series_equal(left <= right, expected) def test_ne(self): ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) expected = [True, True, False, True, True] assert tm.equalContents(ts.index != 5, expected) assert tm.equalContents(~(ts.index == 5), expected) def test_comp_ops_df_compat(self): # GH 1134 s1 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s2 = pd.Series([2, 2, 2], index=list('ABD'), name='x') s3 = pd.Series([1, 2, 3], index=list('ABC'), name='x') s4 = pd.Series([2, 2, 2, 2], index=list('ABCD'), name='x') for left, right in [(s1, s2), (s2, s1), (s3, s4), (s4, s3)]: msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): left == right with pytest.raises(ValueError, match=msg): left != right with pytest.raises(ValueError, match=msg): left < right msg = "Can only compare identically-labeled DataFrame objects" with pytest.raises(ValueError, match=msg): left.to_frame() == right.to_frame() with pytest.raises(ValueError, match=msg): left.to_frame() != right.to_frame() with pytest.raises(ValueError, match=msg): left.to_frame() < right.to_frame() class TestSeriesFlexComparisonOps(object): def test_comparison_flex_alignment(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, False], index=list('abcd')) assert_series_equal(left.eq(right), exp) exp = pd.Series([True, True, False, True], index=list('abcd')) assert_series_equal(left.ne(right), exp) exp = pd.Series([False, False, True, False], index=list('abcd')) assert_series_equal(left.le(right), exp) exp = pd.Series([False, False, False, False], index=list('abcd')) assert_series_equal(left.lt(right), exp) exp = pd.Series([False, True, True, False], index=list('abcd')) assert_series_equal(left.ge(right), exp) exp = pd.Series([False, True, False, False], index=list('abcd')) assert_series_equal(left.gt(right), exp) def test_comparison_flex_alignment_fill(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, True], index=list('abcd')) assert_series_equal(left.eq(right, fill_value=2), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) assert_series_equal(left.ne(right, fill_value=2), exp) exp = pd.Series([False, False, True, True], index=list('abcd')) assert_series_equal(left.le(right, fill_value=0), exp) exp = pd.Series([False, False, False, True], index=list('abcd')) assert_series_equal(left.lt(right, fill_value=0), exp) exp = pd.Series([True, True, True, False], index=list('abcd')) assert_series_equal(left.ge(right, fill_value=0), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) assert_series_equal(left.gt(right, fill_value=0), exp) class TestSeriesOperators(TestData): def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty assert np.isnan(result).all() result = empty + Series([], index=Index([])) assert len(result) == 0 # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = Series(self.ts.values[:-5] + int_ts.values, index=self.ts.index[:-5], name='ts') tm.assert_series_equal(added[:-5], expected) pairings = [] for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, 'r' + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) if compat.PY3: pairings.append((Series.div, operator.truediv, 1)) pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1)) else: pairings.append((Series.div, operator.div, 1)) pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1)) @pytest.mark.parametrize('op, equiv_op, fv', pairings) def test_operators_combine(self, op, equiv_op, fv): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask =
isna(a)
pandas.isna
""" Author: <NAME> (<EMAIL>) Date: 2020-02-10 -----Description----- This script provides a class and set of functions for bringing CSPP science variables into Python memory. This is set up for recovered_cspp streams, but should also work for telemetered data. Note that CTD, DOSTA, SPKIR, PAR, and VELPT are the only data sets that are telemetered. OPTAA and NUTNR data packets are too large to transfer in a short surface window. There are three general functions and one function for each CSPP data stream. To make multiple data requests, submit each request before checking to see if the data is available. -----Required Libraries----- requests: For issuing and checking request status. re: For parsing returned json for URLs that contain instrument data. time: For pausing the script while checking a data request status. pandas: For organizing data. xarray: For opening remote NetCDFs. -----Class----- OOIM2M() <<< This is the overall class. This must prepend a function. Example 1: url = OOIM2M.create_url(url,start_date,start_time,stop_date,stop_time) request = OOIM2M.make_request(url,user,token) nc = OOIM2M.get_location(request) Example 2: THIS_EXAMPLE_IS_TOO_LONG = OOIM2M() url = THIS_EXAMPLE_IS_TOO_LONG.create_url(url) request = THIS_EXAMPLE_IS_TOO_LONG.make_request(url,user,token) nc = THIS_EXAMPLE_IS_TOO_LONG.get_location(request) -----General Functions----- url = OOIM2M.create_url(url,start_date,start_time,stop_date,stop_time) <<< Function for generating a request URL for data between two datetimes. Returns a complete request URL. URL is the base request url for the data you want. Dates in YYYY-MM-DD. Times in HH:MM:SS. request = OOIM2M.make_request(url,user,token) <<< Function for making the request from the URL created from create_url. User and token are found in your account information on OOINet. Returns a requests object. nc = OOIM2M.get_location(request) <<< Function that gathers the remote locations of the requested data. Returns a list of URLs where the data is stored as netCDFs. This list includes data that is used in the creation of data products. Example: CTD data accompanies DOSTA data. -----Instrument Functions----- ctd = cspp_ctd(nc) <<< Returns a pandas dataframe that contains datetime, pressure, temperature, salinity, and density. dosta = cspp_dosta(nc) <<< Returns a pandas dataframe that contains datetime, pressure, temperature, concentration, and estimated saturation. CTD data is also made available. flort = cspp_flort(nc) <<< Returns pandas dataframe that contains datetime, pressure, chlorophyll-a, cdom, and optical backscatter. nutnr = cspp_nutnr(nc) <<< Interpolates pressure for nitrate data using time and CTD pressure. Returns a pandas dataframe that contains datetime, pressure, and nitrate. par = cspp_parad(nc) <<< Returns a pandas dataframe that contains datetime, pressure, bulk photosynthetically active radiation. velpt = cspp_velpt(nc) <<< Returns a pandas dataframe that contains datetime, pressure, northward velocity, eastward velocity, upward velocity, heading, pitch, roll, soundspeed, and temperature measured by the aquadopp. batt1, batt2 = cspp_batts(nc) <<< Returns two pandas dataframes that contain datetime and voltage for each CSPP battery. compass = cspp_cpass(nc) <<< Returns a pandas dataframe that contains datetime, pressure, heading, pitch, and roll from the control can. sbe50 = cspp_sbe50(nc) <<< Returns a pandas dataframe that contains datetime, pressure, and profiler velocity calculated from the SBE50 in the control can. winch = cspp_winch(nc) <<< Returns a pandas dataframe that contains datetime, pressure, internal temperature of the winch, current seen by the winch, voltage seen by the winch, and the rope on the winch drum. cspp_spkir(nc) <<< Under development. cspp_optaa(nc) <<< Under development. -----Extra Functions----- find_site(nc) <<< Function that identifies the requested CSPP site and standard depth of that site. Used in removing bad pressure data. Called by data functions. Not generally called by the user. -----Notes/Issues----- Flort_sample is the stream name for CSPP fluorometer data. However, when requests are made for this stream, only deployments 5 and greater are returned. For deployments 1-4, the current stream is flort_dj_cspp_instrument_recovered. OOI personnel are working to make flort_sample the stream that contains all data from all deployments. NUTNR data does not have pressure data associated with it in the raw files produces by the CSPP. The function provided in this script interpolates based on time. Alternatively, the user can call the int_ctd_pressure variable. The cspp_optaa function is in the works. OOI ion-function for VELPT-J assumes data from the instrument is output in mm/s, when it is actually output in m/s. https://github.com/oceanobservatories/ion-functions/blob/master/ion_functions/data/vel_functions.py The simple fix now is to multiply returned velocity values by 1000 to get it back into to m/s. """ import requests, re, time, pandas as pd, numpy as np, xarray as xr #CE01ISSP URLs CE01ISSP_OPTAA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' CE01ISSP_CTDPF = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' CE01ISSP_NUTNR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' CE01ISSP_SPKIR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' CE01ISSP_FLORT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' CE01ISSP_PARAD = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' CE01ISSP_VELPT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' CE01ISSP_DOSTA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' CE01ISSP_BATTS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_dbg_pdbg_batt_eng_recovered' CE01ISSP_CPASS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_hmr_eng_recovered' CE01ISSP_SBE50 = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_sbe_eng_recovered' CE01ISSP_WINCH = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE01ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_wm_eng_recovered' #CE02SHSP URLs CE02SHSP_OPTAA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' CE02SHSP_CTDPF = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' CE02SHSP_NUTNR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' CE02SHSP_SPKIR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' CE02SHSP_FLORT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' CE02SHSP_PARAD = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' CE02SHSP_VELPT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' CE02SHSP_DOSTA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' CE02SHSP_BATTS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_dbg_pdbg_batt_eng_recovered' CE02SHSP_CPASS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_hmr_eng_recovered' CE02SHSP_SBE50 = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_sbe_eng_recovered' CE02SHSP_WINCH = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE02SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_wm_eng_recovered' #CE06ISSP URLs CE06ISSP_OPTAA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' CE06ISSP_CTDPF = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' CE06ISSP_NUTNR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' CE06ISSP_SPKIR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' CE06ISSP_FLORT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' CE06ISSP_PARAD = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' CE06ISSP_VELPT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' CE06ISSP_DOSTA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' CE06ISSP_BATTS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_dbg_pdbg_batt_eng_recovered' CE06ISSP_CPASS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_hmr_eng_recovered' CE06ISSP_SBE50 = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_sbe_eng_recovered' CE06ISSP_WINCH = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE06ISSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_wm_eng_recovered' #CE07SHSP URLs CE07SHSP_OPTAA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' CE07SHSP_CTDPF = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' CE07SHSP_NUTNR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' CE07SHSP_SPKIR = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' CE07SHSP_FLORT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' CE07SHSP_PARAD = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' CE07SHSP_VELPT = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' CE07SHSP_DOSTA = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' CE07SHSP_BATTS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_dbg_pdbg_batt_eng_recovered' CE07SHSP_CPASS = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_hmr_eng_recovered' CE07SHSP_SBE50 = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_sbe_eng_recovered' CE07SHSP_WINCH = 'https://ooinet.oceanobservatories.org/api/m2m/12576/sensor/inv/CE07SHSP/SP001/00-SPPENG000/recovered_cspp/cspp_eng_cspp_wc_wm_eng_recovered' class OOIM2M(): def __init__(self): return def create_url(url,start_date = '2014-04-04',start_time = '00:00:00',stop_date = '2035-12-31',stop_time = '23:59:59'): #Create a request URL. timestring = "?beginDT=" + start_date + 'T' + start_time + ".000Z&endDT=" + stop_date + 'T' + stop_time + '.999Z' #Get the timespan into an OOI M2M format. m2m_url = url + timestring #Combine the partial URL with the timespan to get a full url. return m2m_url def make_request(m2m_url, user ='OOIAPI-BCJPAYP2KUVXFX', token = '<KEY>O'): #Request data from UFRAME using the generated request URL. request = requests.get(m2m_url,auth = (user,token)) if request.status_code == requests.codes.ok: #If the response is 200, then continue. print('Request successful.') return request elif request.status_code == requests.codes.bad: #If the response is 400, then issue a warning to force the user to find an issue. print(request) print('Bad request. Check request URL, user, and token.') return elif request.status_code == requests.codes.not_found: #If the response is 404, there might not be data during the prescribed time period. print(request) print('Not found. There may be no data available during the requested time period.') return else: #If an error that is unusual is thrown, show this message. print(request) print('Unanticipated error code. Look up error code here: https://github.com/psf/requests/blob/master/requests/status_codes.py') return def get_location(request): #Check the status of the data request and return the remote location when complete. data = request.json() #Return the request information as a json. check = data['allURLs'][1] + '/status.txt' #Make a checker. for i in range(60*30): #Given roughly half an hour... r = requests.get(check) #check the request. if r.status_code == requests.codes.ok: #If everything is okay. print('Request complete.') #Print this message. break else: print('Checking request...',end = " ") print(i) time.sleep(1) #If the request isn't complete, wait 1 second before checking again. print("") data_url = data['allURLs'][0] #This webpage provides all URLs for the request. data_urls= requests.get(data_url).text #Convert the page to text. data_nc = re.findall(r'(ooi/.*?.nc)',data_urls) #Find netCDF urls in the text. for j in data_nc: if j.endswith('.nc') == False: #If the URL does not end in .nc, toss it. data_nc.remove(j) for j in data_nc: try: float(j[-4]) == True #If the 4th to last value isn't a number, then toss it. except: data_nc.remove(j) thredds_url = 'https://opendap.oceanobservatories.org/thredds/dodsC/' #This is the base url for remote data access. fill = '#fillmismatch' #Applying fill mismatch prevents issues. data_nc = np.char.add(thredds_url,data_nc) #Combine the thredds_url and the netCDF urls. nc = np.char.add(data_nc,fill) #Append the fill. return nc def find_site(nc): #Function for finding the requested site and setting the standard depth. df = pd.DataFrame(data = {'location':nc}) #Put the remote location in a dataframe. url = df['location'].iloc[0] #Take the first URL... banana = url.split("-") #Split it by the dashes. site = banana[1] #The value in the second location is the site. if site == 'CE01ISSP': #If the site is.. depth = 25 #This is the standard deployment depth. elif site == 'CE02SHSP': depth = 80 elif site == 'CE06ISSP': depth = 29 elif site == 'CE07SHSP': depth = 87 else: depth = 87 return site,depth #Return the site and depth for use later. def cspp_ctd(nc): site,depth = OOIM2M.find_site(nc) data = pd.DataFrame() #Create a placeholder dataframe. for remote in nc: #For each remote netcdf location dataset = xr.open_dataset(remote) #Open the dataset. d = ({'datetime':dataset['profiler_timestamp'], #Pull the following variables. 'pressure':dataset['pressure'], 'temperature':dataset['temperature'], 'salinity':dataset['salinity'], 'density':dataset['density'], 'conductivity':dataset['conductivity']}) d = pd.DataFrame(data = d) #Put the variables in a dataframe. data = pd.concat([data,d]) #Concatenate the new dataframe with the old dataframe. data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data = data[data.temperature > 0] data = data[data.salinity > 2] data = data[data.salinity < 42] data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. data = data.reset_index(drop=True) #Reset the index. print('CTD data for ' + site + ' available.') print('CTD datetime in UTC.') print('CTD pressure in dbars.') print('CTD temperature in degC.') print('CTD salinity in PSU.') print('CTD density in kg m^-3.') print('CTD conductivity in S m^-1.') return data def cspp_dosta(nc): site,depth = OOIM2M.find_site(nc) #Determine the CSPP site and standard depth. dfnc = pd.DataFrame(data = {'location':nc}) #The returned NetCDFs contain both DOSTA and CTDPF files. dosta = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] #Identify the DOSTA files. (Files that do not (~) contain "cspp-ctdpf_j_cspp_instrument".) # ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] #Identify the CTD file. CTD data accompanies DOSTA data because it is used in the computation of data products. data = pd.DataFrame() for remote in dosta['location']: #For each DOSTA remote location. dataset = xr.open_dataset(remote) #Open the dataset. d = ({'datetime':dataset['profiler_timestamp'], #Pull out these variables. 'pressure':dataset['pressure_depth'], 'temperature':dataset['optode_temperature'], 'concentration':dataset['dissolved_oxygen'], 'estimated_saturation':dataset['estimated_oxygen_saturation']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) #Concatenate it with the previous loop. data = data[data.pressure < depth] #Remove bad values. data = data[data.pressure > 0] data = data[data.estimated_saturation > 0] data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. data = data.reset_index(drop=True) #Reset the index. print('DOSTA data for ' + site + ' available.') print('DOSTA datetime in UTC.') print('DOSTA pressure in dbars.') print('DOSTA temperature in degC.') print('DOSTA concentration in umol kg^-1.') print('DOSTA estimated_saturation in %.') return data def cspp_flort(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) flort = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] # ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in flort['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['time'], 'pressure':dataset['pressure_depth'], 'chla':dataset['fluorometric_chlorophyll_a'], 'cdom':dataset['fluorometric_cdom'], 'obs':dataset['optical_backscatter']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data = data[data.chla > 0] data = data[data.cdom > 0] data = data[data.obs > 0] data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. data = data.reset_index(drop=True) #Reset the index. print('FLORT data for ' + site + ' available.') print('FLORT datetime in UTC.') print('FLORT pressure in dbars.') print('FLORT chl in ug L^-1.') print('FLORT cdom in ppb.') print('FLORT obs in m^-1.') return data def cspp_par(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) par = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] # ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in par['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['profiler_timestamp'], 'pressure':dataset['pressure_depth'], 'par':dataset['parad_j_par_counts_output']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad pressures. data = data[data.pressure > 0] data = data[data.par > 0] #Remove obviously bad values. data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. data = data.reset_index(drop=True) #Reset the index. print('PAR data for ' + site + ' available.') print('PAR datetime in UTC.') print('PAR pressure in dbars.') print('PAR par in umol photons m^-2 s^-1.') return data def cspp_velpt(nc): # OOI ion-function for VELPT-J assumes data from the instrument is output in mm/s, when it is actually output in m/s. # https://github.com/oceanobservatories/ion-functions/blob/master/ion_functions/data/vel_functions.py # The simple fix now is to multiply returned velocity values by 1000 to get it back into to m/s. site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) velpt = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] # ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in velpt['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['profiler_timestamp'], 'pressure':dataset['pressure_depth'], 'northward':dataset['velpt_j_northward_velocity'], 'eastward':dataset['velpt_j_eastward_velocity'], 'upward':dataset['velpt_j_upward_velocity'], 'heading':dataset['heading'], 'pitch':dataset['pitch'], 'roll':dataset['roll'], 'soundspeed':dataset['speed_of_sound'], 'temperature':dataset['temperature']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data.northward = data.northward * 1000 data.eastward = data.eastward * 1000 data.upward = data.upward *1000 data = data[data.roll < 90] data = data[data.roll > -90] data = data[data.pitch < 90] data = data[data.pitch > -90] data = data[data.heading < 360] data = data[data.heading > 0] data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. data = data.reset_index(drop=True) #Reset the index. print('VELPT data for ' + site + ' available.') print('VELPT datetime in UTC.') print('VELPT pressure in dbars.') print('VELPT northward, eastward, and upward in m s^-1.') print('VELPT heading, pitch, roll in degrees.') print('VELPT sounds speed in m s^-1.') print('VELPT temperature in degC.') return data def cspp_batts(nc): #Returns two dataframes, one for each battery. site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) batt = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in batt['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['profiler_timestamp'], 'voltage':dataset['battery_voltage_flt32'], 'battery_position':dataset['battery_number_uint8']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data.dropna() #Remove rows with any NaNs. data = data.sort_values('datetime') #Sort the data chronologically. batt1 = data.loc[data['battery_position'].astype('str').str.contains('1.0')] batt2 = data.loc[data['battery_position'].astype('str').str.contains('2.0')] batt1 = batt1.reset_index(drop=True) batt2 = batt2.reset_index(drop=True) print('Battery data for ' + site + ' available.') print('Battery datetime in UTC.') print('Battery voltage in volts.') return batt1,batt2 def cspp_cpass(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) hmr = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in hmr['location']: dataset = xr.open_dataset(remote) d =({'datetime':dataset['profiler_timestamp'], 'pressure':dataset['pressure_depth'], 'heading':dataset['heading'], 'pitch':dataset['pitch'], 'roll':dataset['roll']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data = data.dropna() data = data.sort_values('datetime') data = data.reset_index(drop = True) print('Compass data for ' + site + ' available.') print('Compass datetime in UTC.') print('Compass pressure in dbars.') print('Compass heading, pitch, and roll in degrees.') return data def cspp_sbe50(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) sbe50 = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in sbe50['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['profiler_timestamp'], 'pressure':dataset['pressure_depth'], 'velocity':dataset['velocity_flt32']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data = data.dropna() data = data.sort_values('datetime') data = data.reset_index(drop = True) print('SBE50 data for ' + site + ' available.') print('SBE50 datetime in UTC.') print('SBE50 pressure in dbars.') print('SBE50 velocity in m s^-1.') return data def cspp_winch(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) winch = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() for remote in winch['location']: dataset = xr.open_dataset(remote) d = ({'datetime':dataset['profiler_timestamp'], 'pressure':dataset['pressure_depth'], 'wm_temp':dataset['temperature'], 'wm_current':dataset['current_flt32'], 'wm_voltage':dataset['voltage_flt32'], 'rope_on_drum':dataset['rope_on_drum']}) d = pd.DataFrame(data = d) data = pd.concat([data,d]) data = data[data.pressure < depth] #Remove obviously bad values. data = data[data.pressure > 0] data = data.dropna() data = data.sort_values('datetime') data = data.reset_index(drop = True) print('Winch data for ' + site + ' available.') print('WM datetime in UTC.') print('WM pressure in dbars.') print('WM wm_temp in degC.') print('WM wm_current in amps.') print('WM wm_voltage in volts.') print('WM rope_on_drum in meters.') return data def cspp_nutnr(nc): site,depth = OOIM2M.find_site(nc) dfnc = pd.DataFrame(data = {'location':nc}) nit = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] #CTD data accompanies NUTNR data. Parse out the relevant URLs. ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] nit_data = pd.DataFrame() for nit_remote in nit['location']: #Pull nitrate data. nit_dataset = xr.open_dataset(nit_remote) n = ({'timestamp':nit_dataset['profiler_timestamp'], 'nitrate':nit_dataset['salinity_corrected_nitrate']}) n = pd.DataFrame(data = n) nit_data = pd.concat([nit_data,n],sort = False) nit_data = nit_data.sort_values('timestamp') nit_data = nit_data[nit_data.nitrate > 0] ctd_data = pd.DataFrame() for ctd_remote in ctd['location']: #Pull CTD data. ctd_dataset = xr.open_dataset(ctd_remote) c = ({'timestamp':ctd_dataset['profiler_timestamp'], #Pull the following variables. 'ctdpressure':ctd_dataset['pressure']}) c = pd.DataFrame(data = c) ctd_data = pd.concat([ctd_data,c],sort = False) ctd_data = ctd_data[ctd_data.ctdpressure < depth] #Remove obviously bad values. ctd_data = ctd_data[ctd_data.ctdpressure > 0] ctd_data = ctd_data.sort_values('timestamp') combo = pd.concat([nit_data,ctd_data],sort = True) #Combine nitrate and ctd data. combo.index = combo['timestamp'] combo = combo[['timestamp','ctdpressure','nitrate']] combo = combo.sort_index() combo['pressure'] = combo['ctdpressure'].interpolate(method = 'time') #Interpolate pressure by time. combo['datetime'] = combo.index data = combo[['datetime','pressure','nitrate']] data = data.sort_values('datetime') #Sort the data chronologically. data = data.dropna() data = data.reset_index(drop = True) #Reset the index. print('NUTNR data for ' + site + ' available.') print('NUTNR datetime in UTC.') print('NUTNR pressure is interpolated from CTD pressure and is in dbars.') print('NUTNR nitrate in uMol L^-1') return data def cspp_spkir(nc): site,depth = OOIM2M.find_site(nc) #Get the deployment site and standard depth. dfnc = pd.DataFrame(data = {'location':nc}) spkir = dfnc.loc[~dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] #Identify remote locations of spkir data. # ctd = dfnc.loc[dfnc['location'].str.contains('ctdpf_j_cspp_instrument')] data = pd.DataFrame() #Create an empty dataframe for holding. for remote in spkir['location']: #For each remote location. dataset = xr.open_dataset(remote) #Open the dataset. datetime = dataset['profiler_timestamp'].values #Pull datetime data and put it into a pandas array. datetime = pd.DataFrame(data={'datetime':datetime}) pressure = dataset['pressure_depth'].values #Pull pressure data and put it into a pandas array. pressure = pd.DataFrame(data = {'pressure':pressure}) vector = dataset['spkir_abj_cspp_downwelling_vector'].values #Pull vector data. channels = pd.DataFrame(data = vector) channels = channels.rename(columns={0:"412nm",1:"443nm",2:"490nm",3:"510nm",4:"555nm",5:"620nm",6:"683nm"}) #Assign values as shown by the dataset['spkir_abj_cspp_downwelling_vector'].attrs comment. d =
pd.concat([datetime,pressure,channels],axis=1,sort=False)
pandas.concat
# # Source: https://github.com/ijmbarr/notes-on-causal-inference/blob/master/datagenerators.py # # import numpy as np import pandas as pd from sklearn.preprocessing import PolynomialFeatures def generate_dataset_0(n_samples=500, set_X=None, show_z=False): """ Generate samples from the CSM: Nodes: (X,Y,Z) Edges: (Z -> X, Z-> Y, X -> Y) All variables are binary. Designed to generate simpson's paradox. Args ---- n_samples: int, the number of samples to generate set_X: array, values to set x Returns ------- samples: pandas.DateFrame """ p_z = 0.5 p_x_z = [0.9, 0.1] p_y_xz = [0.2, 0.4, 0.6, 0.8] z = np.random.binomial(n=1, p=p_z, size=n_samples) if set_X is not None: assert (len(set_X) == n_samples) x = set_X else: p_x = np.choose(z, p_x_z) x = np.random.binomial(n=1, p=p_x, size=n_samples) p_y = np.choose(x + 2 * z, p_y_xz) y = np.random.binomial(n=1, p=p_y, size=n_samples) if show_z: return pd.DataFrame({"x": x, "y": y, "z": z}) return pd.DataFrame({"x": x, "y": y}) def generate_dataset_1(n_samples=500, set_X=None): """ Generate samples from the CSM: Nodes: (X,Y,Z) Edges: (Z -> X, Z-> Y, X -> Y) X is binary, Z and Y are continuous. Args ---- n_samples: int, the number of samples to generate set_X: array, values to set x Returns ------- samples: pandas.DateFrame """ z = np.random.uniform(size=n_samples) if set_X is not None: assert (len(set_X) == n_samples) x = set_X else: p_x = np.minimum(np.maximum(z, 0.1), 0.9) x = np.random.binomial(n=1, p=p_x, size=n_samples) y0 = 2 * z y1 = y0 - 0.5 y = np.where(x == 0, y0, y1) + 0.3 * np.random.normal(size=n_samples) return pd.DataFrame({"x": x, "y": y, "z": z}) def generate_dataset_2(n_samples=500, set_X=None): """ Generate samples from the CSM: Nodes: (X,Y,Z) Edges: (Z -> X, Z-> Y, X -> Y) X is binary, Z and Y are continuous. Args ---- n_samples: int, the number of samples to generate set_X: array, values to set x Returns ------- samples: pandas.DateFrame """ z = np.random.uniform(size=n_samples) if set_X is not None: assert (len(set_X) == n_samples) x = set_X else: p_x = np.minimum(np.maximum(z, 0.1), 0.8) x = np.random.binomial(n=1, p=p_x, size=n_samples) y0 = 2 * z y1 = np.where(z < 0.2, 3, y0) y = np.where(x == 0, y0, y1) + 0.3 * np.random.normal(size=n_samples) return
pd.DataFrame({"x": x, "y": y, "z": z})
pandas.DataFrame
import pandas as pd import geopandas as gpd def _areal_weighting( sources, targets, extensive, intensive, weights, sid, tid, geoms=True, all_geoms=False, ): """ A method for interpolating areal data based soley on the geometric overlap between sources and targets. For an 'extensive' variable, either the 'sum' or 'total' weight can be specified. For an 'intensive' variable, only the 'sum' weight can be specified. For mixed interpolations, this will only impact the calculation of the extensive variables. Based on : https://cran.r-project.org/web/packages/areal/vignettes/areal-weighted-interpolation.html Parameters ---------- sources : gpd.GeoDataFrame GeoDataFrame containing variable(s) to be interpolated targets : gpd.GeoDataFrame GeoDataFrame where variables will be assigned extensive : str or list str or list of extensive variables e.g population counts intensive : str or list str list of intensive variables e.g. population density sid : str Column containing unique values tid : str Column containing unique values weights : str type of weights to be computed geoms : bool (default False) whether to return target geometries all_geoms : bool (default False) whether to return all target geoms or only those that intersect sources Return ------ type: pd.DataFrame or gpd.GeoDataFrame targets containing interpolated values """ if extensive is not None and intensive is None: if extensive is type(list): raise ValueError( "Multiple variables for areal weighting is not supported yet" ) else: return _areal_weighting_single( sources, targets, extensive, intensive, weights, sid, tid, geoms, all_geoms, ) elif extensive is None and intensive is not None: if intensive is type(list): raise ValueError( "Multiple variables for areal weighting is not supported yet" ) else: return _areal_weighting_single( sources, targets, extensive, intensive, weights, sid, tid, geoms, all_geoms, ) else: if extensive is not None and intensive is not None: raise ValueError("Mixed areal interpolation is not yet supported") def _areal_weighting_single( sources, targets, extensive, intensive, weights, sid, tid, geoms=False, all_geoms=False, ): """ A method for interpolating areal data based soley on the geometric overlap between sources and targets. This function only accepts single variables. For an 'extensive' variable, either the 'sum' or 'total' weight can be specified. For an 'intensive' variable, only the 'sum' weight can be specified. For mixed interpolations, this will only impact the calculation of the extensive variables. Based on : https://cran.r-project.org/web/packages/areal/vignettes/areal-weighted-interpolation.html Parameters ---------- sources : gpd.GeoDataFrame GeoDataFrame containing variable(s) to be interpolated targets : gpd.GeoDataFrame GeoDataFrame where variables will be assigned extensive : str or list str or list of extensive variables e.g population counts intensive : str or list str list of intensive variables e.g. population density sid : str Column containing unique values tid : str Column containing unique values weights : str type of weights to be computed geoms : bool (default False) whether to return target geometries all_geoms : bool (default False) whether to return all target geoms or only those that intersect sources Return ------ type: pd.DataFrame or gpd.GeoDataFrame targets containing interpolated values """ if extensive is not None and intensive is not None: raise ValueError( "Use _areal_weighting_multi for mixed types - not yet supported" ) if intensive is not None and weights != "sum": raise ValueError( "Areal weighting only supports 'sum' weights \ with use of intensive variables" ) area = "Aj" if extensive is not None: var = extensive if var in targets: raise ValueError(f"{var} already in target GeoDataFrame") sources[area] = sources.area else: var = intensive if var in targets: raise ValueError(f"{var} already in target GeoDataFrame") targets[area] = targets.area intersect = gpd.overlay(targets, sources, how="intersection") intersect = intersect.sort_values(by=tid) # TO DO: remove afterwards # Calculate weights based on area overlap Ai = intersect.area Aj = intersect[area] Wij = Ai / Aj # Estimate values by weighted intersected values Vj = intersect[var].values Ei = Vj * Wij intersect[var] = Ei # Summarize data for each target Gk = intersect[[tid, var]].groupby(by=tid).sum() if weights == "total": w = sum(sources[var]) / sum(Gk[var]) Gk[var] = Gk[var] * w if geoms is True: if all_geoms is True: return
pd.merge(targets, Gk, on=tid, how="outer")
pandas.merge
from peloton import PelotonWorkout import numpy as np import pandas as pd def get_all_workout_data(): variables = ['timestamp', 'fitness_discipline', 'title', 'duration', 'instructor', 'calories', 'distance'] workouts = PelotonWorkout.list() df =
pd.DataFrame(columns=variables)
pandas.DataFrame
import io import os import json import gc import pandas as pd import numpy as np from datetime import date, timedelta from fastapi import FastAPI, File, HTTPException import lightgbm as lgb from lightgbm import LGBMClassifier import matplotlib.pyplot as plt import joblib app = FastAPI( title="Home Credit Default Risk", description="""Obtain information related to probability of a client defaulting on loan.""", version="0.1.0", ) def calculate_years(days): """ Method used to calculate years based on date (today - quantity of days). Parameters: ----------------- days (int): Numbers of day to rest of today Returns: ----------------- years (int): Numbers of years """ today = date.today() initial_date = today - timedelta(abs(days)) years = today.year - initial_date.year - ((today.month, today.day) < (initial_date.month, initial_date.day)) return years ######################################################## # Columns to read on CSVs ######################################################## COLUMNS = [ "SK_ID_CURR", "AMT_INCOME_TOTAL", "CODE_GENDER", "DAYS_BIRTH", "DAYS_REGISTRATION", "DAYS_EMPLOYED", "AMT_CREDIT", "AMT_GOODS_PRICE", "EXT_SOURCE_2", "EXT_SOURCE_3", ] ######################################################## # Reading the csv ######################################################## df_clients_to_predict = pd.read_csv("datasets/df_clients_to_predict_20220221.csv") df_current_clients = pd.read_csv("datasets/df_current_clients_20220221.csv") df_current_clients["AGE"] = df_current_clients["DAYS_BIRTH"].apply(lambda x: calculate_years(x)) df_current_clients["YEARS_EMPLOYED"] = df_current_clients["DAYS_EMPLOYED"].apply(lambda x: calculate_years(x)) df_current_clients["EXT_SOURCE_2"] = df_current_clients["EXT_SOURCE_2"].round(3) df_current_clients["EXT_SOURCE_3"] = df_current_clients["EXT_SOURCE_3"].round(3) df_current_clients_by_target_repaid = df_current_clients[df_current_clients["TARGET"] == 0] df_current_clients_by_target_not_repaid = df_current_clients[df_current_clients["TARGET"] == 1] @app.get("/api/clients") async def clients_id(): """ EndPoint to get all clients id """ clients_id = df_clients_to_predict["SK_ID_CURR"].tolist() return {"clientsId": clients_id} @app.get("/api/clients/{id}") async def client_details(id: int): """ EndPoint to get client's detail """ clients_id = df_clients_to_predict["SK_ID_CURR"].tolist() if id not in clients_id: raise HTTPException(status_code=404, detail="client's id not found") else: # Filtering by client's id df_by_id = df_clients_to_predict[COLUMNS][df_clients_to_predict["SK_ID_CURR"] == id] idx = df_clients_to_predict[df_clients_to_predict["SK_ID_CURR"]==id].index[0] for col in df_by_id.columns: globals()[col] = df_by_id.iloc[0, df_by_id.columns.get_loc(col)] client = { "clientId" : int(SK_ID_CURR), "gender" : "Man" if int(CODE_GENDER) == 0 else "Woman", "age" : calculate_years(int(DAYS_BIRTH)), "antiquity" : calculate_years(int(DAYS_REGISTRATION)), "yearsEmployed" : calculate_years(int(DAYS_EMPLOYED)), "goodsPrice" : float(AMT_GOODS_PRICE), "credit" : float(AMT_CREDIT), "anualIncome" : float(AMT_INCOME_TOTAL), "source2" : float(EXT_SOURCE_2), "source3" : float(EXT_SOURCE_3), "shapPosition" : int(idx) } return client @app.get("/api/predictions/clients/{id}") async def predict(id: int): """ EndPoint to get the probability honor/compliance of a client """ clients_id = df_clients_to_predict["SK_ID_CURR"].tolist() if id not in clients_id: raise HTTPException(status_code=404, detail="client's id not found") else: # Loading the model model = joblib.load("models/model_20220220.pkl") threshold = 0.135 # Filtering by client's id df_prediction_by_id = df_clients_to_predict[df_clients_to_predict["SK_ID_CURR"] == id] df_prediction_by_id = df_prediction_by_id.drop(df_prediction_by_id.columns[[0, 1]], axis=1) # Predicting result_proba = model.predict_proba(df_prediction_by_id) y_prob = result_proba[:, 1] result = (y_prob >= threshold).astype(int) if (int(result[0]) == 0): result = "Yes" else: result = "No" return { "repay" : result, "probability0" : result_proba[0][0], "probability1" : result_proba[0][1], "threshold" : threshold } @app.get("/api/predictions/clients/shap/{id}") async def client_shap_df(id: int): """ EndPoint to return a df with all client's data """ clients_id = df_clients_to_predict["SK_ID_CURR"].tolist() if id not in clients_id: raise HTTPException(status_code=404, detail="client's id not found") else: # Filtering by client's id idx = df_clients_to_predict[df_clients_to_predict["SK_ID_CURR"]==id].index[0] client = df_clients_to_predict[df_clients_to_predict["SK_ID_CURR"] == id].drop(columns=["SK_ID_CURR", "AMT_INCOME_TOTAL"]) client = client.to_json(orient="records") return client @app.get("/api/statistics/ages") async def statistical_age(): """ EndPoint to get some statistics - ages """ ages_data_repaid = df_current_clients_by_target_repaid.groupby("AGE").size() ages_data_repaid = pd.DataFrame(ages_data_repaid).reset_index() ages_data_repaid.columns = ["AGE", "AMOUNT"] ages_data_repaid = ages_data_repaid.set_index("AGE").to_dict()["AMOUNT"] ages_data_not_repaid = df_current_clients_by_target_not_repaid.groupby("AGE").size() ages_data_not_repaid = pd.DataFrame(ages_data_not_repaid).reset_index() ages_data_not_repaid.columns = ["AGE", "AMOUNT"] ages_data_not_repaid = ages_data_not_repaid.set_index("AGE").to_dict()["AMOUNT"] return {"ages_repaid" : ages_data_repaid, "ages_not_repaid" : ages_data_not_repaid} @app.get("/api/statistics/yearsEmployed") async def statistical_years_employed(): """ EndPoint to get some statistics - years employed """ years_employed_data_repaid = df_current_clients_by_target_repaid.groupby("YEARS_EMPLOYED").size() years_employed_data_repaid = pd.DataFrame(years_employed_data_repaid).reset_index() years_employed_data_repaid.columns = ["YEARS_EMPLOYED", "AMOUNT"] years_employed_data_repaid = years_employed_data_repaid.set_index("YEARS_EMPLOYED").to_dict()["AMOUNT"] years_employed_data_not_repaid = df_current_clients_by_target_not_repaid.groupby("YEARS_EMPLOYED").size() years_employed_data_not_repaid = pd.DataFrame(years_employed_data_not_repaid).reset_index() years_employed_data_not_repaid.columns = ["YEARS_EMPLOYED", "AMOUNT"] years_employed_data_not_repaid = years_employed_data_not_repaid.set_index("YEARS_EMPLOYED").to_dict()["AMOUNT"] return { "years_employed_repaid" : years_employed_data_repaid, "years_employed_not_repaid" : years_employed_data_not_repaid } @app.get("/api/statistics/amtCredits") async def statistical_amt_credit(): """ EndPoint to get some statistics - AMT Credit """ amt_credit_data_repaid = df_current_clients_by_target_repaid.groupby("AMT_CREDIT").size() amt_credit_data_repaid =
pd.DataFrame(amt_credit_data_repaid)
pandas.DataFrame
''' Author: <NAME> Date: 2021-06-16 07:51:48 LastEditTime: 2021-06-18 06:57:23 LastEditors: Please set LastEditors Description: In User Settings Edit FilePath: /Binance_Futures_python/history/download_id.py ''' import hmac import hashlib from urllib import parse import time from datetime import datetime, timedelta import requests import pandas as pd import numpy as np import os id_path = "https://api2.binance.com/sapi/v1/futuresHistDataId" link_path = "https://api2.binance.com/sapi/v1/downloadLink" query_symbols = ['BTCUSDT','ETHUSDT','LTCUSDT','EOSUSDT'] from binance_f import RequestClient from binance_f.constant.test import * from binance_f.base.printobject import * from binance_f.model.constant import * g_api_key = '<KEY>' g_secret_key = '<KEY>' request_client = RequestClient(api_key=g_api_key, secret_key=g_secret_key) def geterate_periods(start='2020-01-01 00:00:00', end='2021-04-05 00:00:00', days=15): if end: endArray = time.strptime(end, "%Y-%m-%d %H:%M:%S") end = int(time.mktime(endArray)) * 1000 else: end = int(time.time()) * 1000 startArray = time.strptime(start, "%Y-%m-%d %H:%M:%S") start = int(time.mktime(startArray)) * 1000 return range(start, end, days*24*60*60*1000) def get_symbol_start(csv_file,symbol,data_type,days): if not os.path.exists(csv_file): time_start = int(time.mktime(datetime.strptime('2020-01-01','%Y-%m-%d').timetuple())) * 1000 else: df =
pd.read_csv(csv_file)
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp =
bdate_range('2000-1-1', periods=10, tz='UTC')
pandas.bdate_range
import os from tkinter import filedialog from tkinter import * import pandas as pd import datetime # define year of measurements for naming year = 2014 # Please navigate to folder containing measurement subfolders for specified year root = Tk() root.withdraw() folder = filedialog.askdirectory() # quick check to see all stations included in that year #folder = "//igswztwwgszona/Gravity Data Archive/Relative Data/All American Canal/2019-05" for folders in sorted(os.listdir(folder)): print(folders) name_array, time_array, corr_g = [], [], [] user_array, meter_array, date_array = [], [], [] for file in sorted(os.listdir(folder)): abs_path = os.path.join(folder + '/' + file) if abs_path[-3:] == 'xls' or abs_path[-3:] == 'XLS': data_xls =
pd.read_excel(abs_path, 'results', index_col=None, usecols=7, dtype='object')
pandas.read_excel
# -*- coding:utf-8 -*- import sys import time import datetime import pandas as pd import numpy as np import logging # 显示小数位数 pd.set_option('display.float_format', lambda x: '%.3f' % x) # 显示所有列 pd.set_option('display.max_columns', 1000) # 显示所有行 pd.set_option('display.max_rows', 1000) # 设置value的显示长度为100,默认为50 pd.set_option('max_colwidth', 100) # 当console中输出的列数超过1000的时候才会换行 pd.set_option('display.width', 1000) def quiet_logs(sc): # 控制台不打印警告信息 logger = sc._jvm.org.apache.log4j logger.LogManager.getLogger("org").setLevel(logger.Level.ERROR) logger.LogManager.getLogger("akka").setLevel(logger.Level.ERROR) logger_py4j = logging.getLogger('py4j') logger_py4j.setLevel(logging.ERROR) def df_head(hc_df, lines=5): if hc_df: df = hc_df.toPandas() return df.head(lines) else: return None class Py4jHdfs: """ python操作HDFS """ def __init__(self, sc): self.sc = sc self.filesystem = self.get_file_system() def path(self, file_path): """ 创建hadoop path对象 :param sc sparkContext对象 :param file_path 文件绝对路径 :return org.apache.hadoop.fs.Path对象 """ path_class = self.sc._gateway.jvm.org.apache.hadoop.fs.Path return path_class(file_path) def get_file_system(self): """ 创建FileSystem :param sc SparkContext :return FileSystem对象 """ filesystem_class = self.sc._gateway.jvm.org.apache.hadoop.fs.FileSystem hadoop_configuration = self.sc._jsc.hadoopConfiguration() return filesystem_class.get(hadoop_configuration) def ls(self, path, is_return=False): """ 读取文件列表,相当于hadoop fs -ls命令 :param path hdfs绝对路径 :return file_list 文件列表 """ def file_or_dir(is_file, is_dir): if is_file: return 'is_file:True' elif is_dir: return 'is_directory:True' else: return 'unknow' filesystem = self.get_file_system() status = filesystem.listStatus(self.path(path)) try: file_index = str(status[0].getPath()).index(path) + len(path) except: print([]) file_list = [(str(m.getPath())[file_index:], str(round(m.getLen() / 1024.0 / 1024.0, 2)) + ' MB', str(datetime.datetime.fromtimestamp(m.getModificationTime() / 1000)), str(file_or_dir(m.isFile(), m.isDirectory()))) for m in status] if file_list and not is_return: for f in file_list: print(f) if not file_list: print([]) if is_return: return file_list def exists(self, path): return self.filesystem.exists(self.path(path)) def mkdir(self, path): return self.filesystem.mkdirs(self.path(path)) def mkdirs(self, path, mode="755"): return self.filesystem.mkdirs(self.path(path)) def set_replication(self, path, replication): return self.filesystem.setReplication(self.path(path), replication) def mv(self, path1, path2): return self.filesystem.rename(self.path(path1), self.path(path2)) def rm(self, path, recursive=True, print_info=True): """ 直接删除文件,不可恢复! :param path 文件或文件夹 :param recursive 是否递归删除,默认为True """ try: result = self.filesystem.delete(self.path(path), recursive) if result: if print_info: print('[Info]: Remove File Successful!') return True else: if print_info: print('[Error]: Remove File Failed!') return result except Exception as e: if print_info: print('[Error]: %s' % e) def safe_rm(self, path, trash_path='.Trash/Current'): """ 删除文件,可恢复 可删除文件/文件夹 :path 需删除的文件的绝对路径 """ try: self.filesystem.rename(self.path(path), self.path(trash_path + path)) print('[Info]: Safe Remove File Successful!') except: try: self.rm(self.path(trash_path + path)) self.filesystem.rename(self.path(path), self.path(trash_path + path)) print('[Info]: Safe Remove File Successful!') except Exception as e: print('[Error]: %s' % e) print('[Error]: Remove File Failed!') return True def exists(self, path): return self.filesystem.exists(self.path(path)) def chmod(self, path, mode): self.filesystem.setPermission(self.path(path), mode) def chown(self, path, owner, group): self.filesystem.setOwner(self.path(path), owner, group) # def get(self, src, dst, del_src=False,use_raw_local_file_system=True): # self.filesystem.copyToLocalFile(del_src, self.path(src), dst, use_raw_local_file_system) # def put(self, src, dst, del_src=False, overwrite=True): # self.filesystem.copyFromLocalFile(del_src, src, dst, overwrite) def run_time_count(func): """ 计算函数运行时间 装饰器:@run_time_count """ def run(*args, **kwargs): start = time.time() result = func(*args, **kwargs) print("Function [{0}] run time is {1} second(s).".format(func.__name__, round(time.time() - start, 4))) return result return run @run_time_count def write(self, path, contents, encode='utf-8', overwrite_or_append='overwrite'): """ 写内容到hdfs文件 :param sc SparkContext :param path 绝对路径 :param contents 文件内容 字符串或字符串列表 例如:rdd.collect() 形如:['str0,str1,str2','str3,str4,str5'] :param encode 输出编码格式 :param overwrite_or_append 写模式:覆盖或追加 """ try: filesystem = self.get_file_system() if overwrite_or_append == 'overwrite': out = filesystem.create(self.path(path), True) elif overwrite_or_append == 'append': out = filesystem.append(self.path(path)) if isinstance(contents, list): for content in contents: out.write(bytearray(content + '\r\n', encode)) elif sys.version_info.major == 3 and isinstance(contents, str): out.write(bytearray(contents, encode)) elif sys.version_info.major == 2 and (isinstance(contents, str) or isinstance(contents, unicode)): out.write(bytearray(contents, encode)) else: print('[Error]: Input data format is not right!') return False out.flush() out.close() print('[Path]: %s' % path) print('[Info]: File Saved!') return True except Exception as e: print('[Error]: %s' % e) return False @run_time_count def read(self, path, sep=',', header=None, nrows=None): """ 读取hdfs上存储的utf-8编码的单个csv,txt文件,输出为pandas.DataFrame :param path 文件所在hdfs路径 :param sep 文本分隔符 :param header 设为0时表示第一行作为列名 :param nrows 读取行数 """ filesystem = self.get_file_system() file = filesystem.open(self.path(path)) # print(file) data = [] line = True nrow = 0 if not nrows: nrows_ = np.inf else: nrows_ = nrows while line and nrow <= nrows_: try: nrow = nrow + 1 line = file.readLine() data.append(line.encode('raw_unicode_escape').decode('utf-8').split(sep)) except Exception as e: print('[Info]: %s' % str(e)) break file.close() if header == 0: data = pd.DataFrame(data[1:], columns=data[0]) elif header: data = pd.DataFrame(data, columns=header) else: data = pd.DataFrame(data) return data @run_time_count def read_hdfs(self, path, sep=',', header=None, nrows=None): """ 读取hdfs上存储的文件,输出为pandas.DataFrame :param path 文件所在hdfs路径 :param sep 文本分隔符 :param header 设为0时表示第一行作为列名 :param nrows 读取行数 """ filesystem = self.get_file_system() files = self.ls(path, is_return=True) files = list(map(lambda x: x[0], files)) file_flag = '/_SUCCESS' files = list(filter(lambda x: x != file_flag, files)) files = list(map(lambda x: path + x, files)) print('[Info]: Num of need to read files is %s' % len(files)) # if file_flag in files: # files = list(filter(lambda x: x != file_flag, files)) # files = list(map(lambda x: path + x, files)) # print('[Info]: Num of need to read files is %s' % len(files)) # else: # print("[Error]: File format is incorrect! Try to use 'read()' replace 'read_hdfs()'.") # return False data = [] for file_path in files: file = filesystem.open(self.path(file_path)) print('[Info]: Reading file %s' % file_path) line = True nrow = 0 if not nrows: nrows_ = np.inf else: nrows_ = nrows while line and nrow <= nrows_: try: nrow = nrow + 1 line = file.readLine() if line is not None: data.append(line.encode('raw_unicode_escape').decode('utf-8').split(sep)) except Exception as e: print('[Error]: %s' % str(e)) break file.close() if header == 0: data =
pd.DataFrame(data[1:], columns=data[0])
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from xgboost.sklearn import XGBClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB from sklearn.dummy import DummyClassifier from sklearn import model_selection from sklearn.preprocessing import MinMaxScaler from sklearn import metrics from sklearn.utils import resample from imblearn.over_sampling import SMOTE from imblearn.under_sampling import TomekLinks from imblearn.combine import SMOTETomek from imblearn.under_sampling import NearMiss from iso3166 import countries import matplotlib.pyplot as plt import pycountry_convert as pc import pycountry def my_confusion_matrix(y_actual, y_predicted): """ This method finds the number of True Negatives, False Positives, True Positives and False Negative between the hidden movies and those predicted by the recommendation algorithm """ cm = metrics.confusion_matrix(y_actual, y_predicted) return cm[0][0], cm[0][1], cm[1][1], cm[1][0] def get_metrics(y_test, y_predicted): tn, fp, tp, fn = my_confusion_matrix(y_test, y_predicted) print(tn, fp, tp, fn) G_mean = np.sqrt((tp/(tp+fp)) * (tn/(tn+fp))) print('G-mean: %.4f' % G_mean) print('Balanced_Accuracy: %.4f' % metrics.balanced_accuracy_score(y_test, y_predicted)) print('F1: %.4f' % metrics.f1_score(y_test, y_predicted, average="micro")) def split_train_test(data, sampling=None): # Implement UnderSampling if sampling == 'undersample': dfs = [] for i in range(0, 2): curr_df = data[data['top_k'] == i] dfs.append(resample(curr_df, replace=False, n_samples=1000, random_state=0)) data =
pd.concat(dfs)
pandas.concat
import logging from typing import Optional, Tuple import click import numpy as np import pandas as pd from tqdm import tqdm from food_ke.entailment.custom_typing import PathLike logging.basicConfig(level=logging.INFO) def _link_entities_lexmapr(entity_queries: list) -> pd.Series: logging.info("Linking entities with LexMapr") pass def _link_entities_ols(entity_queries: list) -> Tuple[pd.Series, pd.Series]: logging.info("Linking entities with OLS") entity_queries_unique = np.unique(entity_queries) from ebi.ols.api.client import OlsClient client = OlsClient() out_ids = {} out_names = {} for query in tqdm(entity_queries_unique): query_results = client.search(query=query, ontology="foodon") if len(query_results) > 0: logging.debug(query) logging.debug(query_results[0]) out_ids[query] = query_results[0].obo_id out_names[query] = query_results[0].name else: logging.warn("No results for query: {}".format(query)) out_ids[query] = None out_names[query] = None out_ids =
pd.Series(entity_queries)
pandas.Series
import math from lxml import etree from scipy.spatial import distance import scipy import re import fnmatch import numpy as np import pandas as pd import os from numpy import dot from numpy.linalg import norm import sparse_coding as sc import evaluation as eval from evaluation import Level DOCS = dict() DATA_PATH = "data/Single/Source/DUC/" SUMMARY_PATH = "data/Single/Summ/Extractive/" def __content_processing(content): content = content.replace("\n", " ").replace("(", " ").replace(")", " "). \ replace(" ", " ").replace(" ", " ") sentences = re.split("\.|\?|\!", content) while sentences.__contains__(''): sentences.remove('') while sentences.__contains__(' \n'): sentences.remove(' \n') for sentence in sentences: words = sentence.split(" ") while words.__contains__(''): words.remove('') if len(words) < 2: sentences.remove(sentence) words = list(set(map(lambda x: x.strip(), content.replace("?", " ").replace("!", " ").replace(".", " "). replace("؟", " ").replace("!", " ").replace("،", " ").split(" ")))) if words.__contains__(''): words.remove('') return sentences, words def read_document(doc_name): file_path = DATA_PATH + doc_name with open(file_path) as fp: doc = fp.readlines() content = "" for line in doc: content += line fp.close() return __content_processing(content) def read_documents(directory_path): # directory_path = "data/Multi/Track1/Source/D91A01/" directory = os.fsencode(directory_path) contents = "" for file in os.listdir(directory): filename = os.fsdecode(file) content = etree.parse(directory_path + filename) memoryElem = content.find('TEXT') DOCS[filename] = memoryElem.text contents += memoryElem.text return __content_processing(contents) def make_term_frequency(sentences, words): term_frequency = dict() for sentence in sentences: vector = list() for i in range(0, len(words)): word = words[i] vector.append(sentence.count(word)) if norm(vector) != 0: term_frequency[sentence] = vector # term_frequency[sentence] = vector / norm(vector, ord=1) return term_frequency def __avg_sent_2_vec(words, model): M = [] for w in words: try: M.append(model[w]) except: continue M = np.array(M) v = M.mean(axis=0) return v / np.sqrt((v ** 2).sum()) def read_word2vec_model(): w2v = dict() print("waiting to load word2vec model...") with open('twitt_wiki_ham_blog.fa.text.100.vec', 'r', encoding='utf-8') as infile: first_line = True for line in infile: if first_line: first_line = False continue tokens = line.split() w2v[tokens[0]] = [float(el) for el in tokens[1:]] if len(w2v[tokens[0]]) != 100: print('Bad line!') print("model loaded") return w2v def make_word_2_vec(data, model): word2vec = dict() # final dictionary containing sentence as the key and its representation as value DocMatix = np.zeros((len(data), 100)) for i in range(len(data)): words = list(map(lambda x: x.strip(), data[i].replace("?", " ").replace("!", " ").replace(".", " "). replace("؟", " ").replace("!", " ").replace("،", " ").split(" "))) if words.__contains__(''): words.remove('') result = __avg_sent_2_vec(words, model) if not (np.isnan(result).any()): DocMatix[i] = result word2vec[data[i]] = DocMatix[i] print("features calculated") # print(word2vec) train_df =
pd.DataFrame(DocMatix)
pandas.DataFrame
from onecodex.exceptions import OneCodexException class VizMetadataMixin(object): def plot_metadata( self, rank="auto", haxis="Label", vaxis="simpson", title=None, xlabel=None, ylabel=None, return_chart=False, plot_type="auto", label=None, sort_x=None, ): """Plot an arbitrary metadata field versus an arbitrary quantity as a boxplot or scatter plot. Parameters ---------- rank : {'auto', 'kingdom', 'phylum', 'class', 'order', 'family', 'genus', 'species'}, optional Analysis will be restricted to abundances of taxa at the specified level. haxis : `string`, optional The metadata field (or tuple containing multiple categorical fields) to be plotted on the horizontal axis. vaxis : `string`, optional Data to be plotted on the vertical axis. Can be any one of the following: - A metadata field: the name of a metadata field containing numerical data - {'simpson', 'chao1', 'shannon'}: an alpha diversity statistic to calculate for each sample - A taxon name: the name of a taxon in the analysis - A taxon ID: the ID of a taxon in the analysis title : `string`, optional Text label at the top of the plot. xlabel : `string`, optional Text label along the horizontal axis. ylabel : `string`, optional Text label along the vertical axis. plot_type : {'auto', 'boxplot', 'scatter'} By default, will determine plot type automatically based on the data. Otherwise, specify one of 'boxplot' or 'scatter' to set the type of plot manually. label : `string` or `callable`, optional A metadata field (or function) used to label each analysis. If passing a function, a dict containing the metadata for each analysis is passed as the first and only positional argument. The callable function must return a string. sort_x : `callable`, optional Function will be called with a list of x-axis labels as the only argument, and must return the same list in a user-specified order. Examples -------- Generate a boxplot of the abundance of Bacteroides (genus) of samples grouped by whether the individuals are allergy to dogs, cats, both, or neither. >>> plot_metadata(haxis=('allergy_dogs', 'allergy_cats'), vaxis='Bacteroides') """ # Deferred imports import altair as alt import pandas as pd from onecodex.viz import boxplot if rank is None: raise OneCodexException("Please specify a rank or 'auto' to choose automatically") if plot_type not in ("auto", "boxplot", "scatter"): raise OneCodexException("Plot type must be one of: auto, boxplot, scatter") # alpha diversity is only allowed on vertical axis--horizontal can be magically mapped df, magic_fields = self._metadata_fetch([haxis, "Label"], label=label) if vaxis in ("simpson", "chao1", "shannon"): df.loc[:, vaxis] = self.alpha_diversity(vaxis, rank=rank) magic_fields[vaxis] = vaxis else: # if it's not alpha diversity, vertical axis can also be magically mapped vert_df, vert_magic_fields = self._metadata_fetch([vaxis]) # we require the vertical axis to be numerical otherwise plots get weird if ( pd.api.types.is_bool_dtype(vert_df[vert_magic_fields[vaxis]]) or pd.api.types.is_categorical_dtype(vert_df[vert_magic_fields[vaxis]]) or pd.api.types.is_object_dtype(vert_df[vert_magic_fields[vaxis]]) or not pd.api.types.is_numeric_dtype(vert_df[vert_magic_fields[vaxis]]) ): # noqa raise OneCodexException("Metadata field on vertical axis must be numerical") df = pd.concat([df, vert_df], axis=1).dropna(subset=[vert_magic_fields[vaxis]]) magic_fields.update(vert_magic_fields) # plots can look different depending on what the horizontal axis contains if pd.api.types.is_datetime64_any_dtype(df[magic_fields[haxis]]): category_type = "T" if plot_type == "auto": plot_type = "boxplot" elif "date" in magic_fields[haxis].split("_"): df.loc[:, magic_fields[haxis]] = df.loc[:, magic_fields[haxis]].apply( pd.to_datetime, utc=True ) category_type = "T" if plot_type == "auto": plot_type = "boxplot" elif (
pd.api.types.is_bool_dtype(df[magic_fields[haxis]])
pandas.api.types.is_bool_dtype
""" module of functions that allow you to create per-cell / per-sample summary tables """ import numpy as np import math import pandas as pd def mutations_df_fill_in(GOI, GOI_df, mutationsDF_): """ creates a cell-wise dataframe with mutations to each GOI """ mutName = GOI + '_mut' for i in range(0,len(mutationsDF_.index)): currCell = mutationsDF_['cell'][i] rightIndex = GOI_df['cell'] == currCell rightRow = GOI_df[rightIndex] rightCell = rightRow['cell'] rightCell = str(rightCell).split()[1] rightMut = rightRow['mutations'] rightMut = str(rightMut).split()[1] mutationsDF_[mutName][i] = rightMut def remove_extra_characters_mutations_df(GOI, mutationsDF_): """ converting df cols from lists to strings """ mutName = GOI + '_mut' mutationsDF_[mutName] = mutationsDF_[mutName].str.replace("'", "") # remove quotes mutationsDF_[mutName] = mutationsDF_[mutName].str.replace("[", "") # remove brackets mutationsDF_[mutName] = mutationsDF_[mutName].str.replace("]", "") # remove brackets mutationsDF_[mutName] = mutationsDF_[mutName].str.replace(" ", "") # remove whitespace? def generic_summary_table_fill_in(metaField, summaryField, summaryTable_, patientMetadata_): """ fills in a given metadata field in summaryTable_ """ for i in range(0,len(summaryTable_.index)): currCell = summaryTable_['cell'].iloc[i] currPlate = currCell.split('_')[1] index_to_keep = patientMetadata_['plate'] == currPlate keepRow = patientMetadata_[index_to_keep] try: currField = list(keepRow[metaField])[0] summaryTable_[summaryField][i] = currField except IndexError: continue #print('ERROR: plate not found') # these are just the plates were NOT # including in the analysis def fusions_fill_in(fusionsDF_, summaryTable_): """ takes the existing fusionsDF and populates summaryTable_ with this shit """ for i in range(0, len(summaryTable_.index)): currCell = summaryTable_['cell'].iloc[i] for col in fusionsDF_.columns: if currCell in list(fusionsDF_[col]): summaryTable_['fusions_found'][i] = col def translated_muts_fill_in(GOI, summaryTable_): """ converts 'raw' mutation calls to something that more resembles those reported in our clinical cols. general """ colName = 'mutations_found_' + GOI for i in range(0,len(summaryTable_.index)): translatedList = [] currCell = summaryTable_['cell'].iloc[i] currMuts = summaryTable_[colName].iloc[i] currMuts_split = currMuts.split(',') for item in currMuts_split: if item != '' and '?' not in item: translatedList.append(GOI + ' ' + item) summaryTable_['mutations_found_translated'][i] = summaryTable_['mutations_found_translated'][i] + translatedList def translated_muts_fill_in_egfr(summaryTable_): """ converts 'raw' mutation calls to something that more resembles those reported in our clinical cols. egfr, specificially """ for i in range(0,len(summaryTable_.index)): translatedList = [] currCell = summaryTable_['cell'].iloc[i] currMuts_egfr = summaryTable_['mutations_found_EGFR'].iloc[i] currMuts_egfr_split = currMuts_egfr.split(',') for item in currMuts_egfr_split: if 'delELR' in item: translatedList.append('EGFR del19') elif '745_' in item: translatedList.append('EGFR del19') elif '746_' in item: translatedList.append('EGFR del19') elif 'ins' in item: translatedList.append('EGFR ins20') elif item != '': translatedList.append('EGFR ' + item) summaryTable_['mutations_found_translated'][i] = translatedList def translated_muts_fill_in_fusions(summaryTable_): """ converts 'raw' mutation calls to something that more resembles those reported in our clinical cols. for fusions """ for i in range(0,len(summaryTable_.index)): currCell = summaryTable_['cell'].iloc[i] currFus = summaryTable_['fusions_found'].iloc[i] if not
pd.isnull(currFus)
pandas.isnull
import json import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error import pandas as pd import pathlib as pl from utils import read_data_cfg def count_people(json_path): #output_path = 'K:/dataset/flir_output dataset/' #category_dict_path = 'K:/dataset/flir dataset/train/thermal_annotations.json' with open(json_path) as json_file: data = json.load(json_file) categories = ['person','car','bicycle','dog'] cat = pd.DataFrame(data['categories']).rename(columns={'id':'category_id','name':'category'}) #for c in categories: annotations = pd.DataFrame(data['annotations']) images = pd.DataFrame(data['images']).rename(columns={'id':'image_id'}) df = annotations.merge(cat,how='left',on=['category_id']) #df['category'] = df['category'].fillna('empty') #g = df.groupby(['image_id','category']).size().reset_index(name='count').groupby(['count','category']).size().reset_index(name='count_c') #g['count_c'] = g[['count_c']].apply(lambda x: x/x.sum()*100) return(df) def count_kaist_people(data_path): options = read_data_cfg(data_path) train_file = options['train'] #output_path = 'K:/dataset/flir_output dataset/' #category_dict_path = 'K:/dataset/flir dataset/train/thermal_annotations.json' data = [] with open(train_file) as tf: images = tf.readlines() for i in images: labpath = i.replace('images', 'labels').replace('.jpg', '.txt').replace('.jpeg', '.txt').replace('.png','.txt').replace('.tif', '.txt') txt = pl.Path(labpath.rstrip()) if txt.exists(): with txt.open('r') as t: size = len(t.readlines()) data.append({'file_name':i.rstrip(),'size':size}) df = pd.DataFrame(data).groupby('size').count() df.plot(grid=True,marker='o',markevery=2,ylabel='number of annotations',xlabel='annotations per image') plt.xlabel('annotations per image') plt.ylabel('number of annotations') plt.legend(['person']) plt.show() # # Close file # rd.close() # data = json.load(json_file) # categories = ['person','car','bicycle','dog'] # cat = pd.DataFrame(data['categories']).rename(columns={'id':'category_id','name':'category'}) # #for c in categories: # annotations = pd.DataFrame(data['annotations']) # images = pd.DataFrame(data['images']).rename(columns={'id':'image_id'}) # df = annotations.merge(cat,how='left',on=['category_id']) # #df['category'] = df['category'].fillna('empty') # #g = df.groupby(['image_id','category']).size().reset_index(name='count').groupby(['count','category']).size().reset_index(name='count_c') # #g['count_c'] = g[['count_c']].apply(lambda x: x/x.sum()*100) # return(df) def square_mean_loss(annotation_json,detection_json): with open(annotation_json) as ann_file: ann_data = json.load(ann_file) with open(detection_json) as det_file: det_data = json.load(det_file) category_dict = { 1:"person", 2:"bicycle", 3:"car", 17:"dog" } # cat = pd.DataFrame(ann_data['categories']).rename(columns={'id':'category_id','name':'category'}) images = pd.DataFrame(ann_data['images']).rename(columns={'id':'image_id'}) ann_df =
pd.DataFrame(ann_data['annotations'])
pandas.DataFrame
# import os # os.chdir('C:/Users/ali_m/AnacondaProjects/PhD/Semiology-Visualisation-Tool/') from .Bayes_rule import Bayes_All from pandas.testing import assert_series_equal, assert_frame_equal import pandas as pd from pathlib import Path from collections import defaultdict from mega_analysis.Bayesian.Bayes_rule import Bayes_rule, renormalised_probabilities # --------------Load---------------------------- directory = Path(__file__).parent.parent.parent/'resources' / 'Bayesian_resources' marginal_folder = 'SemioMarginals_fromSS_GIFmarginals_from_TS' prob_S_given_GIFs_norm = pd.read_csv(directory / 'prob_S_given_GIFs_norm.csv', index_col=0) p_S_norm = pd.read_csv(directory / marginal_folder / 'p_S_norm_SS.csv', index_col=0) p_GIF_norm = pd.read_csv(directory / marginal_folder / 'p_GIF_norm_TS_granular.csv', index_col=0) prob_S_given_GIFs_notnorm = pd.read_csv(directory / 'prob_S_given_GIFs_notnorm.csv', index_col=0) p_S_notnorm = pd.read_csv(directory / marginal_folder / 'p_S_notnorm_SS.csv', index_col=0) p_GIF_notnorm =
pd.read_csv(directory / marginal_folder / 'p_GIF_notnorm_TS_granular.csv', index_col=0)
pandas.read_csv
import os import pandas as pd import camelot from tkinter import Tk from tkinter import filedialog from glob import glob root = Tk().withdraw() def select_file(): folder = filedialog.askdirectory(title="Select Folder with pdf Files") files=sorted([f for f in glob(f'{folder}/*.pdf')]) #<-----pdf folder path return folder, files def data(dfs): dfs_list=[] for i in dfs: tables = camelot.read_pdf(i, flavor='stream', row_tol=8, table_areas=['12,563,577,115'], split_text=True) data=tables[0].df df=pd.DataFrame(data) df.columns=df.loc[0] df.columns=[' '.join(x.split('\n')) for x in df.columns] df=df.drop([0]) df=df.drop(columns=['FECHA VALOR','ORIG','REFERENCIA']) last_saldo=(df.loc[df['CONCEPTO'].str.contains('Saldo'),'CONCEPTO']==True).index[-1] df=df.drop(df.index[last_saldo:],axis=0) df.columns=['FECHA OPER', 'CONCEPTO', 'DESCRIPCION', 'CARGO', 'ABONO', 'SALDO'] df=df.append(
pd.Series(dtype='object')
pandas.Series
import glob import json import multiprocessing import ntpath import traceback from datetime import date, datetime from multiprocessing import Pool import numpy as np import pandas as pd from dateutil import rrule from requests import Session from requests.exceptions import ConnectionError, Timeout, TooManyRedirects from tqdm.auto import tqdm from config import * # Default headers for Coinmarketcap headers = { "accept": "application/json, text/plain, */*", "accept-language": "en-US,en;q=0.9,vi-VN;q=0.8,vi;q=0.7", "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 11_0_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36", } class HODL: def __init__(self, alpha, n_coins, cap): self.alpha = alpha self.n_coins = n_coins self.cap = cap def list_binance(self): """ Get all the trading pairs with quote asset as USDT and match with CoinMarketCap """ session = Session() session.headers.update(headers) try: pairs = session.get("https://api.binance.com/api/v3/exchangeInfo").json() pairs = [ p["symbol"] for p in pairs["symbols"] if ((p["quoteAsset"] == "USDT") & (p["status"] == "TRADING")) ] bnb_coins = [c.replace("USDT", "").lower() for c in pairs] cmc_coins_ = session.get( "https://web-api.coinmarketcap.com/v1/cryptocurrency/listings/latest", params={ "aux": "circulating_supply,max_supply,total_supply", "convert": "USD", "cryptocurrency_type": "coins", "limit": "100", "sort": "market_cap", "sort_dir": "desc", "start": "1", }, ).json() cmc_coins = [c["symbol"].lower() for c in cmc_coins_["data"]] coins = [c for c in cmc_coins if c in bnb_coins] tmp = dict() for c in cmc_coins_["data"]: if c["symbol"].lower() in coins: tmp[c["slug"]] = c["symbol"].lower() return tmp except (ConnectionError, Timeout, TooManyRedirects) as e: print(e) return None def weighted_market_cap(self): """ Calculate exponential weighted moving average market cap """ all_data = sorted(glob.glob("./data/processed/*.csv")) for path in tqdm(all_data): df =
pd.read_csv(path)
pandas.read_csv
def getMetroStatus(): import http.client, urllib.request, urllib.parse, urllib.error, base64, time headers = { # Request headers 'api_key': '6b700f7ea9db408e9745c207da7ca827',} params = urllib.parse.urlencode({}) try: conn = http.client.HTTPSConnection('api.wmata.com') conn.request("GET", "/StationPrediction.svc/json/GetPrediction/All?%s" % params, "{body}", headers) response = conn.getresponse() data = response.read() return str(data) #returns the data as a string rather than raw bytes conn.close() except Exception as e: print("[Errno {0}] {1}".format(e.errno, e.strerror)) def JSONfromMetro(trainString): #converts the string into a dictionary file import json, re fixSlash=re.compile(r'\\') #this line and the next remove triple-slashes, which screw up the json module fixedTrainString=fixSlash.sub('',trainString) trainJSON=json.loads(fixedTrainString[2:-2]+"}") #slightly adjusts the string to put it in json form if isinstance(trainJSON,dict) and 'Trains' in trainJSON.keys(): return trainJSON['Trains'] else: return None def saveWMATASQL(trainData, engine): #saves the current WMATA data to open engine import datetime, pandas as pd #the line below creates a table name starting with WMATA and then containing the date and time information, with each day/hour/minute/second taking two characters if not isinstance(trainData, list): return None DTstring=str(datetime.datetime.now().month)+str(datetime.datetime.now().day).rjust(2,'0')+str(datetime.datetime.now().hour).rjust(2,'0')+str(datetime.datetime.now().minute).rjust(2,'0')+str(datetime.datetime.now().second).rjust(2,'0') trainFrame=pd.DataFrame('-', index=range(len(trainData)), columns=['DT','Car','Loc','Lin','Des','Min','Gro']) #creates trainFrame, the DataFrame to send to the SQL server for iter in range(len(trainData)): #for all the trains in trainData trainFrame.loc[iter]['DT']=DTstring for colName in ['Car','LocationCode','Line','DestinationCode','Min','Group']: #select the six relevant fields trainFrame.loc[iter][colName[:3]]=trainData[iter][colName] #and fill in the relevant data trainFrame.to_sql('WMATAFull', engine, if_exists='append') #send trainFrame to the SQL server return trainFrame def lineNextDF(line, destList, arrData): import pandas as pd timeString=arrData.DT.iloc[0] rowName=pd.to_datetime('2016-'+timeString[0]+'-'+timeString[1:3]+' '+timeString[3:5]+':'+timeString[5:7]+':'+timeString[7:]) # names the row as a timestamp with the month day hour minute second lineStat=pd.DataFrame('-',index=[rowName],columns=line) for station in line: #repeat the below process for every station on the line trains2consider=arrData.loc[lambda df: df.Loc==station].loc[lambda df: df.Des.isin(destList)] #pull out the trains at that station heading toward the destinations if len(trains2consider.index)>0: #If you found a train if trains2consider.Des.iloc[0] in ['A11','B08','E01','K04']: #the next few lines set the station status to the color and ETA of the first arriving train lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0].lower()+':'+trains2consider.Min.iloc[0] #if the train is terminating early (at Grovesnor, Silver Spring or Mt Vernon), use lowercase elif trains2consider.Des.iloc[0]=='E06': lineStat.loc[rowName,station]='Yl:'+trains2consider.Min.iloc[0] elif trains2consider.Des.iloc[0]=='A13': lineStat.loc[rowName,station]='Rd:'+trains2consider.Min.iloc[0] else: lineStat.loc[rowName,station]=trains2consider.Lin.iloc[0]+':'+trains2consider.Min.iloc[0] #otherwise use upper return lineStat def allLNtoNE(arrData, surgeNum): #all of the lines to the North and East during Surge 4 import pandas as pd LNlist=[] for num in range(len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][num], NEdestList[surgeNum][num], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def allLNtoSW(arrData, surgeNum): #all of the lines to the South and West during Surge 4 import pandas as pd LNlist=[] for num in range(1,1+len(lineList[surgeNum])): LNlist.append(lineNextDF(lineList[surgeNum][-num][::-1], SWdestList[surgeNum][-num][::-1], arrData)) #run for each line and destination return pd.concat(LNlist, axis=1, join='outer') #then join them all together def WMATAtableSQL(timeMin,intervalSec, surgeNum): #records for timeMin minutes, about ever intervalSec seconds import time, pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@team<EMAIL>:5432/WmataData') #opens the engine to WmataData #creates a list of the table we're creating to add to the index isStart=True startTime=time.time() while time.time()<(startTime+60*timeMin): #runs for timeMin minutes stepStart=time.time() WMATAdf=saveWMATASQL(JSONfromMetro(getMetroStatus()),engine) #save the current train data and appends the name to tableList if isinstance(WMATAdf,pd.DataFrame) and len(WMATAdf.index)>0: #if you got data back if isStart: #and it's the first row allLN2NE=allLNtoNE(WMATAdf,surgeNum) #set allLNtoNE equal to the all LineNext to NE data allLN2SW=allLNtoSW(WMATAdf,surgeNum) #set allLNtoSW equal to the all LineNext to SW data isStart=False #and the next row will not be the first row else: #for other rows allLN2NE=allLN2NE.append(allLNtoNE(WMATAdf,surgeNum)) #append the data allLN2SW=allLN2SW.append(allLNtoSW(WMATAdf,surgeNum)) stepTime=time.time()-stepStart #calculates the time this step took if stepTime<intervalSec: #if intervalSec seconds have not passed, time.sleep(intervalSec-stepTime) #wait until a total of intervalSec have passed engine.connect().close() return [allLN2NE, allLN2SW] def lineNextSQL(line, timeString,destList, engine): #reads the next train to arrive at the stations in line heading toward destList and returns it as a Data Frame import pandas as pd from sqlalchemy import create_engine isEngineNone=(engine is None) if isEngineNone: #if there's not an engine, make one engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT"='+"'"+timeString+"';" arrData=pd.read_sql(query,engine) if isEngineNone: engine.connect().close() return lineNextDF(line, destList, arrData) def lineNextTableSQL(line, firstTime, lastTime, destList): #saves the next train arrivals for a line and destList over time import time, pandas as pd from sqlalchemy import create_engine print(time.strftime("%a, %d %b %Y %H:%M:%S")) engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!<EMAIL>:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) print(time.strftime("%a, %d %b %Y %H:%M:%S")) if len(arrData.index)==0: return None timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=lineNextDF(line, destList, arrData.loc[lambda df: df.DT==timesPD[0]]) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(lineNextDF(line, destList, arrData.loc[lambda df: df.DT==timesPD[num]])) #add the data for that time engine.connect().close() print(time.strftime("%a, %d %b %Y %H:%M:%S")) return lineStats def allLNtoNEtable(firstTime, lastTime, surgeNum): #saves the next train arrivals for a line and destList over time import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@<EMAIL>:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) if len(arrData.index)==0: #if you didn't get any data, return None #return nothing timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=allLNtoNE(arrData.loc[lambda df: df.DT==timesPD[0]],surgeNum) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(allLNtoNE(arrData.loc[lambda df: df.DT==timesPD[num]],surgeNum)) #add the data for that time engine.connect().close() return lineStats def allLNtoSWtable(firstTime, lastTime, surgeNum): #saves the next train arrivals for a line and destList over time import pandas as pd from sqlalchemy import create_engine engine = create_engine('postgresql+psycopg2://Original:tolistbtGU!@teamoriginal.ccc95gjlnnnc.us-east-1.rds.amazonaws.com:5432/WmataData') query='SELECT * FROM "WMATAFull" WHERE "DT">='+"'"+firstTime+"' AND "+'"DT"<='+"'"+lastTime+"';" arrData=pd.read_sql(query,engine) if len(arrData.index)==0: #if you didn't get any data, return None #return nothing timesPD=arrData.DT.value_counts().sort_index().index #pull out each time and call it timesPD lineStats=allLNtoSW(arrData.loc[lambda df: df.DT==timesPD[0]],surgeNum) #save the first status for num in range(1,len(timesPD)): #for each time lineStats=lineStats.append(allLNtoSW(arrData.loc[lambda df: df.DT==timesPD[num]],surgeNum)) #add the data for that time engine.connect().close() return lineStats def trainBuild(lineStat,startTime): #determines how long it took the train arriving after startTime to reach every station and returns it as one row data frame import pandas as pd timeRow=list(lineStat.index).index(startTime) #finds the row number from lineStat labeled startTime and calls it timeRow specTrain=pd.concat([pd.DataFrame('-',index=[startTime],columns=['Col']),pd.DataFrame(0,index=[startTime],columns=list(lineStat.columns))], axis=1, join='outer') while timeRow<len(lineStat.index)-1 and (not isinstance(lineStat.iloc[timeRow][0], str) or len(lineStat.iloc[timeRow][0])<6 or lineStat.iloc[timeRow][0][-3:]!='BRD'): #while timeRow is in bounds and no train is boarding, timeRow+=1 #go to the next line skipRows=timeRow-list(lineStat.index).index(startTime) #skipRows is the number of rows to skip the next time it looks for a train if timeRow>=len(lineStat.index): #if you get to the end, return [specTrain, skipRows] #just return what you have specTrain.loc[startTime,'Col']=lineStat.iloc[timeRow][0][:2] #fills in the color, which is stored as the first two letters in the status timeDif=lineStat.index[timeRow]-startTime #set timeDif to the diffence between arrival at this station and startTime specTrain.loc[startTime,lineStat.columns[0]]=timeDif.seconds #store timeDif as seconds for stationNum in range(1,len(lineStat.columns)): #this fills in the difference arrival time for every station isTrainBoarding=False while timeRow<(len(lineStat.index)-1) and not isTrainBoarding: #while timeRow is in bounds and the train is not boarding #The line below says that a train is boarding if either it has status "BRD" or it has status "ARR" and 20 seconds later the station is waiting for a different train isTrainBoarding=lineStat.iloc[timeRow][stationNum]==(specTrain.loc[startTime,'Col']+":BRD") or (lineStat.iloc[timeRow][stationNum]==(specTrain.loc[startTime,'Col']+":ARR") and (lineStat.iloc[timeRow+1][stationNum][:2]!=specTrain.loc[startTime,'Col'])) timeRow+=1 #go to the next line if timeRow>=len(lineStat.index)-1: #if you get to the end, return [specTrain, skipRows] #just return what you have timeDif=lineStat.index[timeRow]-startTime #set timeDif to the diffence between arrival at this station and startTime specTrain.loc[startTime,lineStat.columns[stationNum]]=timeDif.seconds #store timeDif as seconds (converted into a string) if stationNum<len(lineStat.columns)-1: #if you found a trains, go down a certain number of rows before checking the next station if lineStat.columns[stationNum] in minDist.keys() and lineStat.columns[stationNum+1] in minDist.keys(): #if both stations are in minDist timeRow+=minDist[lineStat.columns[stationNum]][lineStat.columns[stationNum+1]]['weight'] #go down the number of rows recorded in minDist else: timeRow+=2 #if the connection isn't in minDist, go down two rows if (specTrain.loc[startTime,'Col'].islower() and lineStat.columns[stationNum] in ['A11','B08','E01','K04']) or (specTrain.loc[startTime,'Col']=='Yl' and lineStat.columns[stationNum]=='E05') or (specTrain.loc[startTime,'Col']=='Rd' and lineStat.columns[stationNum]=='A13'): break return [specTrain, skipRows] def trainTable(lineStat): #returns a table listing the trains by start time, color and the time they took to reach a given station import pandas as pd [masterTable,rowNum]=trainBuild(lineStat,lineStat.index[0]) #builds the first row and lets it now how many rows to go forward to get to the next train arrival currentColor=masterTable.iloc[0][0] #record the color of the first train as currentColor newTrain=masterTable #newTrain just needs to be something for when it's referenced in the if statement while rowNum<len(lineStat.index):# and newTrain.iloc[0][-1]!=0: #keep going as long as there's data to analyze and each train gets to the end while rowNum<len(lineStat.index)-1 and lineStat.iloc[rowNum][0]==currentColor+':BRD': #while the train (with currentColor) is boarding, rowNum+=1 #go to the next row [newTrain, skipRows]=trainBuild(lineStat,lineStat.index[rowNum]) #once you've gotten to a new train arrival, record it as newTrain and note the rows to skip masterTable=masterTable.append(newTrain) #append newTrain to the masterTable currentColor=masterTable.iloc[-1][0] #xchange currentColor to the color of the train that just boarded rowNum+=skipRows+1 #skip ahead to the next train return masterTable def lastBRDtime(newTrainBRDtime, lineStat, stationNum): #finds the last time a train boarded at a given station before newTrainBRDtime import pandas as pd timeRow=list(lineStat.index).index(newTrainBRDtime)-2 #start with a time two rows before the train reaches the station isTrainBoarding=False # the next few lines just say keep moving backwards in time until you get to a train board while timeRow>0 and not isTrainBoarding: #if you haven't hit the beginning and a train isn't boarding isTrainBoarding=isinstance(lineStat.iloc[timeRow,stationNum], str) and len(lineStat.iloc[timeRow, stationNum])==6 and lineStat.iloc[timeRow,stationNum][-3:]=='BRD' #a train is boarding if it's a string of length 6 with BRD as the last three letters timeRow-=1 return lineStat.index[timeRow] #return that time def trainTableIntermediate(lineStat, stationList): #returns a table listing the trains by start time, color and the time they took to reach a given station, with the possibility that a train started at an intermediary station import pandas as pd staNumList=[] for station in stationList: #turn the list of stations into a list of numbers corresponding to the stations' location in lineStat's columns staNumList.append(list(lineStat.columns).index(station)) [masterTable,rowNum]=trainBuild(lineStat,lineStat.index[0]) #builds the first row and lets it now how many rows to go forward to get to the next train arrival currentColor=masterTable.iloc[0][0] #record the color of the first train as currentColor newTrain=masterTable #newTrain just needs to be something for when it's referenced in the if statement while rowNum<len(lineStat.index):# and newTrain.iloc[0][-1]!=0: #keep going as long as there's data to analyze and each train gets to the end while rowNum<len(lineStat.index)-1 and lineStat.iloc[rowNum,0]==currentColor+':BRD': #while the train (with currentColor) is boarding, rowNum+=1 #go to the next row [newTrain, skipRows]=trainBuild(lineStat,lineStat.index[rowNum]) #once you've gotten to a new train arrival, record it as newTrain and note the rows to skip for staNum in staNumList: #for all the intermediary stations in stationList mostRecentBRDtime=lastBRDtime(newTrain.index[0]+pd.to_timedelta(newTrain.iloc[0,staNum],unit='s'), lineStat, staNum) #find the last train to board at this station if mostRecentBRDtime>=masterTable.index[-1]+
pd.to_timedelta(masterTable.iloc[-1,staNum]+42,unit='s')
pandas.to_timedelta