code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
from cs1media import * import math def dist(c1, c2): r1, g1, b1 = c1 r2, g2, b2 = c2 return math.sqrt((r1-r2)**2 + (g1-g2)**2 + (b1-b2)**2) def chroma(img, key, threshold): w, h = img.size() for y in range(h): for x in range(w): p = img.get(x, y) if dist(p, key) < threshold: img.set(x, y, Color.yellow) statue = load_picture("photos/statue1.jpg") chroma(statue, (41, 75, 146), 70) statue.show()
[ "math.sqrt" ]
[((100, 159), 'math.sqrt', 'math.sqrt', (['((r1 - r2) ** 2 + (g1 - g2) ** 2 + (b1 - b2) ** 2)'], {}), '((r1 - r2) ** 2 + (g1 - g2) ** 2 + (b1 - b2) ** 2)\n', (109, 159), False, 'import math\n')]
import numpy as np import scipy import scipy.io import pylab import numpy import glob import pyfits def mklc(t, nspot=200, incl=(scipy.pi)*5./12., amp=1., tau=30.5, p=10.0): diffrot = 0. ''' This is a simplified version of the class-based routines in spot_model.py. It generates a light curves for dark, point like spots with no limb-darkening. Parameters: nspot = desired number of spots present on star at any one time amp = desired light curve amplitude tau = characteristic spot life-time diffrot = fractional difference between equatorial and polar rotation period (unit of time is equatorial rotation period)''' # print('Period = ', p) dur = (max(t) - min(t)) # (crude estimate of) total number of spots needed during entire # time-series nspot_tot = int(nspot * dur / 2 / tau) # uniform distribution of spot longitudes lon = scipy.rand(nspot_tot) * 2 * scipy.pi # distribution of spot latitudes uniform in sin(latitude) lat = scipy.arcsin(scipy.rand(nspot_tot)) # spot rotation rate optionally depends on latitude period = ((scipy.sin(lat) - 0.5) * diffrot + 1.0 ) * p period0 = scipy.ones(nspot_tot) * p # all spots have the same maximum area # (crude estimate of) filling factor needed per spot ff = amp / scipy.sqrt(nspot) scale_fac = 1 amax = scipy.ones(nspot_tot) * ff * scale_fac # all spots have the evolution timescale decay = scipy.ones(nspot_tot) * tau # uniform distribution of spot peak times # start well before and end well after time-series limits (to # avoid edge effects) extra = 3 * decay.max() pk = scipy.rand(nspot_tot) * (dur + 2 * extra) - extra # COMPUTE THE LIGHT CURVE # print("Computing light curve...") time = numpy.array(t - min(t)) area_tot = scipy.zeros_like(time) dF_tot = scipy.zeros_like(time) dF_tot0 = scipy.zeros_like(time) # add up the contributions of individual spots for i in range(nspot_tot): # Spot area if (pk[i] == 0) + (decay[i] == 0): area = scipy.ones_like(time) * amax[i] else: area = amax[i] * \ scipy.exp(-(time - pk[i])**2 / 2. / decay[i]**2) area_tot += area # Fore-shortening phase = 2 * scipy.pi * time / period[i] + lon[i] phase0 = 2 * scipy.pi * time / period0[i] + lon[i] mu = scipy.cos(incl) * scipy.sin(lat[i]) + \ scipy.sin(incl) * scipy.cos(lat[i]) * scipy.cos(phase) mu0 = scipy.cos(incl) * scipy.sin(lat[i]) + \ scipy.sin(incl) * scipy.cos(lat[i]) * scipy.cos(phase0) mu[mu < 0] = 0.0 mu0[mu0 < 0] = 0.0 # Flux dF_tot -= area * mu dF_tot0 -= area * mu0 amp_eff = dF_tot.max()-dF_tot.min() nspot_eff = area_tot / scale_fac / ff res0 = scipy.array([nspot_eff.mean(), ff, amp_eff]) res1 = scipy.zeros((4, len(time))) res1[0,:] = time res1[1,:] = area_tot res1[2,:] = dF_tot res1[3,:] = dF_tot0 # print('Used %d spots in total over %d rotation periods.' % (nspot_tot, dur)) # print('Mean filling factor of individual spots was %.4f.' % ff) # print('Desired amplitude was %.4f, actual amplitude was %.4f.' \ # % (amp, amp_eff)) # print('Desired number of spots at any one time was %d.' % nspot) return res0, res1
[ "scipy.ones", "scipy.zeros_like", "scipy.sqrt", "scipy.exp", "scipy.ones_like", "scipy.sin", "scipy.cos", "scipy.rand" ]
[((1870, 1892), 'scipy.zeros_like', 'scipy.zeros_like', (['time'], {}), '(time)\n', (1886, 1892), False, 'import scipy\n'), ((1906, 1928), 'scipy.zeros_like', 'scipy.zeros_like', (['time'], {}), '(time)\n', (1922, 1928), False, 'import scipy\n'), ((1943, 1965), 'scipy.zeros_like', 'scipy.zeros_like', (['time'], {}), '(time)\n', (1959, 1965), False, 'import scipy\n'), ((1055, 1076), 'scipy.rand', 'scipy.rand', (['nspot_tot'], {}), '(nspot_tot)\n', (1065, 1076), False, 'import scipy\n'), ((1208, 1229), 'scipy.ones', 'scipy.ones', (['nspot_tot'], {}), '(nspot_tot)\n', (1218, 1229), False, 'import scipy\n'), ((1350, 1367), 'scipy.sqrt', 'scipy.sqrt', (['nspot'], {}), '(nspot)\n', (1360, 1367), False, 'import scipy\n'), ((1494, 1515), 'scipy.ones', 'scipy.ones', (['nspot_tot'], {}), '(nspot_tot)\n', (1504, 1515), False, 'import scipy\n'), ((933, 954), 'scipy.rand', 'scipy.rand', (['nspot_tot'], {}), '(nspot_tot)\n', (943, 954), False, 'import scipy\n'), ((1397, 1418), 'scipy.ones', 'scipy.ones', (['nspot_tot'], {}), '(nspot_tot)\n', (1407, 1418), False, 'import scipy\n'), ((1698, 1719), 'scipy.rand', 'scipy.rand', (['nspot_tot'], {}), '(nspot_tot)\n', (1708, 1719), False, 'import scipy\n'), ((2132, 2153), 'scipy.ones_like', 'scipy.ones_like', (['time'], {}), '(time)\n', (2147, 2153), False, 'import scipy\n'), ((2225, 2278), 'scipy.exp', 'scipy.exp', (['(-(time - pk[i]) ** 2 / 2.0 / decay[i] ** 2)'], {}), '(-(time - pk[i]) ** 2 / 2.0 / decay[i] ** 2)\n', (2234, 2278), False, 'import scipy\n'), ((2455, 2470), 'scipy.cos', 'scipy.cos', (['incl'], {}), '(incl)\n', (2464, 2470), False, 'import scipy\n'), ((2473, 2490), 'scipy.sin', 'scipy.sin', (['lat[i]'], {}), '(lat[i])\n', (2482, 2490), False, 'import scipy\n'), ((2545, 2561), 'scipy.cos', 'scipy.cos', (['phase'], {}), '(phase)\n', (2554, 2561), False, 'import scipy\n'), ((2576, 2591), 'scipy.cos', 'scipy.cos', (['incl'], {}), '(incl)\n', (2585, 2591), False, 'import scipy\n'), ((2594, 2611), 'scipy.sin', 'scipy.sin', (['lat[i]'], {}), '(lat[i])\n', (2603, 2611), False, 'import scipy\n'), ((2666, 2683), 'scipy.cos', 'scipy.cos', (['phase0'], {}), '(phase0)\n', (2675, 2683), False, 'import scipy\n'), ((1150, 1164), 'scipy.sin', 'scipy.sin', (['lat'], {}), '(lat)\n', (1159, 1164), False, 'import scipy\n'), ((2507, 2522), 'scipy.sin', 'scipy.sin', (['incl'], {}), '(incl)\n', (2516, 2522), False, 'import scipy\n'), ((2525, 2542), 'scipy.cos', 'scipy.cos', (['lat[i]'], {}), '(lat[i])\n', (2534, 2542), False, 'import scipy\n'), ((2628, 2643), 'scipy.sin', 'scipy.sin', (['incl'], {}), '(incl)\n', (2637, 2643), False, 'import scipy\n'), ((2646, 2663), 'scipy.cos', 'scipy.cos', (['lat[i]'], {}), '(lat[i])\n', (2655, 2663), False, 'import scipy\n')]
from collections import defaultdict import json import re import time from urllib.parse import urlparse import uuid import boto3 import boto3.exceptions import botocore.exceptions import markus import redis.exceptions import requests import requests.exceptions from sqlalchemy import select import sqlalchemy.exc from ichnaea.data import _map_content_enabled from ichnaea.models import ( ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard, ) from ichnaea.models.content import encode_datamap_grid from ichnaea import util WHITESPACE = re.compile(r"\s", flags=re.UNICODE) METRICS = markus.get_metrics() class IncomingQueue(object): """ The incoming queue contains the data collected in the web application. It is the single entrypoint from which all other data pipelines get their data. It distributes the data into the configured export queues, checks those queues and if they contain enough or old enough data schedules an async export task to process the data in each queue. """ def __init__(self, task): self.task = task def __call__(self, export_task): redis_client = self.task.redis_client data_queue = self.task.app.data_queues["update_incoming"] data = data_queue.dequeue() grouped = defaultdict(list) for item in data: grouped[(item["api_key"], item.get("source", "gnss"))].append( {"api_key": item["api_key"], "report": item["report"]} ) with self.task.db_session(commit=False) as session: export_configs = ExportConfig.all(session) with self.task.redis_pipeline() as pipe: for (api_key, source), items in grouped.items(): for config in export_configs: if config.allowed(api_key, source): queue_key = config.queue_key(api_key, source) queue = config.queue(queue_key, redis_client) queue.enqueue(items, pipe=pipe) for config in export_configs: # Check all queues if they now contain enough data or # old enough data to be ready for processing. for queue_key in config.partitions(redis_client): queue = config.queue(queue_key, redis_client) if queue.ready(): export_task.delay(config.name, queue_key) if data_queue.ready(): self.task.apply_countdown() class ReportExporter(object): _retriable = (IOError,) _retries = 3 _retry_wait = 1.0 def __init__(self, task, config, queue_key): self.task = task self.config = config self.queue_key = queue_key self.queue = config.queue(queue_key, task.redis_client) self.stats_tags = ["key:" + self.config.name] @staticmethod def export(task, name, queue_key): with task.db_session(commit=False) as session: config = ExportConfig.get(session, name) exporter_types = { "dummy": DummyExporter, "geosubmit": GeosubmitExporter, "internal": InternalExporter, "s3": S3Exporter, } exporter_type = exporter_types.get(config.schema) if exporter_type is not None: exporter_type(task, config, queue_key)() def __call__(self): queue_items = self.queue.dequeue() if not queue_items: return success = False for i in range(self._retries): try: with METRICS.timer("data.export.upload.timing", tags=self.stats_tags): self.send(queue_items) success = True except self._retriable: success = False time.sleep(self._retry_wait * (i ** 2 + 1)) if success: METRICS.incr("data.export.batch", tags=self.stats_tags) break if success and self.queue.ready(): self.task.apply_countdown(args=[self.config.name, self.queue_key]) def send(self, queue_items): raise NotImplementedError() class DummyExporter(ReportExporter): def send(self, queue_items): pass class GeosubmitExporter(ReportExporter): _retriable = (IOError, requests.exceptions.RequestException) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] headers = { "Content-Encoding": "gzip", "Content-Type": "application/json", "User-Agent": "ichnaea", } response = requests.post( self.config.url, data=util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=5 ), headers=headers, timeout=60.0, ) # log upload_status and trigger exception for bad responses # this causes the task to be re-tried METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:%s" % response.status_code], ) response.raise_for_status() class S3Exporter(ReportExporter): _retriable = ( IOError, boto3.exceptions.Boto3Error, botocore.exceptions.BotoCoreError, ) def send(self, queue_items): # ignore metadata reports = [item["report"] for item in queue_items] _, bucketname, path = urlparse(self.config.url)[:3] # s3 key names start without a leading slash path = path.lstrip("/") if not path.endswith("/"): path += "/" year, month, day = util.utcnow().timetuple()[:3] # strip away queue prefix again parts = self.queue_key.split(":") source = parts[1] api_key = parts[2] obj_name = path.format( source=source, api_key=api_key, year=year, month=month, day=day ) obj_name += uuid.uuid1().hex + ".json.gz" try: data = util.encode_gzip( json.dumps({"items": reports}).encode(), compresslevel=7 ) s3 = boto3.resource("s3") bucket = s3.Bucket(bucketname) obj = bucket.Object(obj_name) obj.put(Body=data, ContentEncoding="gzip", ContentType="application/json") METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:success"] ) except Exception: METRICS.incr( "data.export.upload", tags=self.stats_tags + ["status:failure"] ) raise class InternalTransform(object): """ This maps the geosubmit v2 schema used in view code and external transfers (backup, forward to partners) to the internal submit v1 schema used in our own database models. """ # *_id maps a source section id to a target section id # *_map maps fields inside the section from source to target id # if the names are equal, a simple string can be specified instead # of a two-tuple position_id = ("position", None) position_map = [ ("latitude", "lat"), ("longitude", "lon"), "accuracy", "altitude", ("altitudeAccuracy", "altitude_accuracy"), "heading", "pressure", "speed", "source", ] blue_id = ("bluetoothBeacons", "blue") blue_map = [("macAddress", "mac"), "age", ("signalStrength", "signal")] cell_id = ("cellTowers", "cell") cell_map = [ ("radioType", "radio"), ("mobileCountryCode", "mcc"), ("mobileNetworkCode", "mnc"), ("locationAreaCode", "lac"), ("cellId", "cid"), "age", "asu", ("primaryScramblingCode", "psc"), "serving", ("signalStrength", "signal"), ("timingAdvance", "ta"), ] wifi_id = ("wifiAccessPoints", "wifi") wifi_map = [ ("macAddress", "mac"), "age", "channel", "frequency", ("radioType", "radio"), ("signalToNoiseRatio", "snr"), ("signalStrength", "signal"), ] def _map_dict(self, item_source, field_map): value = {} for spec in field_map: if isinstance(spec, tuple): source, target = spec else: source = spec target = spec source_value = item_source.get(source) if source_value is not None: value[target] = source_value return value def _parse_dict(self, item, report, key_map, field_map): value = {} item_source = item.get(key_map[0]) if item_source: value = self._map_dict(item_source, field_map) if value: if key_map[1] is None: report.update(value) else: report[key_map[1]] = value return value def _parse_list(self, item, report, key_map, field_map): values = [] for value_item in item.get(key_map[0], ()): value = self._map_dict(value_item, field_map) if value: values.append(value) if values: report[key_map[1]] = values return values def __call__(self, item): report = {} self._parse_dict(item, report, self.position_id, self.position_map) blues = self._parse_list(item, report, self.blue_id, self.blue_map) cells = self._parse_list(item, report, self.cell_id, self.cell_map) wifis = self._parse_list(item, report, self.wifi_id, self.wifi_map) position = item.get("position") or {} gps_age = position.get("age", 0) timestamp = item.get("timestamp") if timestamp: # turn timestamp into GPS timestamp report["timestamp"] = timestamp - gps_age if gps_age: # Normalize age fields to be relative to GPS time for type_ in ("blue", "cell", "wifi"): for record in report.get(type_, ()): record["age"] = record.get("age", 0) - gps_age if blues or cells or wifis: return report return {} class InternalExporter(ReportExporter): _retriable = (IOError, redis.exceptions.RedisError, sqlalchemy.exc.InternalError) transform = InternalTransform() def send(self, queue_items): api_keys = set() api_keys_known = set() metrics = {} items = [] for item in queue_items: # preprocess items and extract set of API keys item["report"] = self.transform(item["report"]) if item["report"]: items.append(item) api_keys.add(item["api_key"]) for api_key in api_keys: metrics[api_key] = {} for type_ in ("report", "blue", "cell", "wifi"): for action in ("drop", "upload"): metrics[api_key]["%s_%s" % (type_, action)] = 0 with self.task.db_session(commit=False) as session: # limit database session to get API keys keys = [key for key in api_keys if key] if keys: columns = ApiKey.__table__.c rows = session.execute( select([columns.valid_key]).where(columns.valid_key.in_(keys)) ).fetchall() for row in rows: api_keys_known.add(row.valid_key) positions = [] observations = {"blue": [], "cell": [], "wifi": []} for item in items: api_key = item["api_key"] report = item["report"] obs, malformed_obs = self.process_report(report) any_data = False for name in ("blue", "cell", "wifi"): if obs.get(name): observations[name].extend(obs[name]) metrics[api_key][name + "_upload"] += len(obs[name]) any_data = True metrics[api_key][name + "_drop"] += malformed_obs.get(name, 0) metrics[api_key]["report_upload"] += 1 if any_data: positions.append((report["lat"], report["lon"])) else: metrics[api_key]["report_drop"] += 1 with self.task.redis_pipeline() as pipe: self.queue_observations(pipe, observations) if _map_content_enabled and positions: self.process_datamap(pipe, positions) self.emit_metrics(api_keys_known, metrics) def queue_observations(self, pipe, observations): for datatype, shard_model, shard_key, queue_prefix in ( ("blue", BlueShard, "mac", "update_blue_"), ("cell", CellShard, "cellid", "update_cell_"), ("wifi", WifiShard, "mac", "update_wifi_"), ): queued_obs = defaultdict(list) for obs in observations[datatype]: # group by sharded queue shard_id = shard_model.shard_id(getattr(obs, shard_key)) queue_id = queue_prefix + shard_id queued_obs[queue_id].append(obs.to_json()) for queue_id, values in queued_obs.items(): # enqueue values for each queue queue = self.task.app.data_queues[queue_id] queue.enqueue(values, pipe=pipe) def emit_metrics(self, api_keys_known, metrics): for api_key, key_metrics in metrics.items(): api_tag = [] if api_key and api_key in api_keys_known: api_tag = ["key:%s" % api_key] for name, count in key_metrics.items(): if not count: continue type_, action = name.split("_") if type_ == "report": suffix = "report" tags = api_tag else: suffix = "observation" tags = ["type:%s" % type_] + api_tag METRICS.incr("data.%s.%s" % (suffix, action), count, tags=tags) def process_report(self, data): report = Report.create(**data) if report is None: return ({}, {}) malformed = {} observations = {} for name, report_cls, obs_cls in ( ("blue", BlueReport, BlueObservation), ("cell", CellReport, CellObservation), ("wifi", WifiReport, WifiObservation), ): malformed[name] = 0 observations[name] = {} if data.get(name): for item in data[name]: # validate the blue/cell/wifi specific fields item_report = report_cls.create(**item) if item_report is None: malformed[name] += 1 continue # combine general and specific report data into one item_obs = obs_cls.combine(report, item_report) item_key = item_obs.unique_key # if we have better data for the same key, ignore existing = observations[name].get(item_key) if existing is not None and existing.better(item_obs): continue observations[name][item_key] = item_obs obs = { "blue": observations["blue"].values(), "cell": observations["cell"].values(), "wifi": observations["wifi"].values(), } return (obs, malformed) def process_datamap(self, pipe, positions): grids = set() for lat, lon in positions: if lat is not None and lon is not None: grids.add(DataMap.scale(lat, lon)) shards = defaultdict(set) for lat, lon in grids: shards[DataMap.shard_id(lat, lon)].add(encode_datamap_grid(lat, lon)) for shard_id, values in shards.items(): queue = self.task.app.data_queues["update_datamap_" + shard_id] queue.enqueue(list(values), pipe=pipe)
[ "ichnaea.models.ExportConfig.get", "ichnaea.models.DataMap.scale", "ichnaea.models.ExportConfig.all", "urllib.parse.urlparse", "ichnaea.models.content.encode_datamap_grid", "re.compile", "ichnaea.models.DataMap.shard_id", "ichnaea.models.Report.create", "json.dumps", "time.sleep", "ichnaea.util.utcnow", "uuid.uuid1", "boto3.resource", "collections.defaultdict", "sqlalchemy.select", "markus.get_metrics" ]
[((698, 733), 're.compile', 're.compile', (['"""\\\\s"""'], {'flags': 're.UNICODE'}), "('\\\\s', flags=re.UNICODE)\n", (708, 733), False, 'import re\n'), ((745, 765), 'markus.get_metrics', 'markus.get_metrics', ([], {}), '()\n', (763, 765), False, 'import markus\n'), ((1442, 1459), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1453, 1459), False, 'from collections import defaultdict\n'), ((14322, 14343), 'ichnaea.models.Report.create', 'Report.create', ([], {}), '(**data)\n', (14335, 14343), False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((15980, 15996), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (15991, 15996), False, 'from collections import defaultdict\n'), ((1736, 1761), 'ichnaea.models.ExportConfig.all', 'ExportConfig.all', (['session'], {}), '(session)\n', (1752, 1761), False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((3117, 3148), 'ichnaea.models.ExportConfig.get', 'ExportConfig.get', (['session', 'name'], {}), '(session, name)\n', (3133, 3148), False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((5606, 5631), 'urllib.parse.urlparse', 'urlparse', (['self.config.url'], {}), '(self.config.url)\n', (5614, 5631), False, 'from urllib.parse import urlparse\n'), ((6299, 6319), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (6313, 6319), False, 'import boto3\n'), ((13057, 13074), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (13068, 13074), False, 'from collections import defaultdict\n'), ((6113, 6125), 'uuid.uuid1', 'uuid.uuid1', ([], {}), '()\n', (6123, 6125), False, 'import uuid\n'), ((16079, 16108), 'ichnaea.models.content.encode_datamap_grid', 'encode_datamap_grid', (['lat', 'lon'], {}), '(lat, lon)\n', (16098, 16108), False, 'from ichnaea.models.content import encode_datamap_grid\n'), ((3930, 3973), 'time.sleep', 'time.sleep', (['(self._retry_wait * (i ** 2 + 1))'], {}), '(self._retry_wait * (i ** 2 + 1))\n', (3940, 3973), False, 'import time\n'), ((5808, 5821), 'ichnaea.util.utcnow', 'util.utcnow', ([], {}), '()\n', (5819, 5821), False, 'from ichnaea import util\n'), ((15937, 15960), 'ichnaea.models.DataMap.scale', 'DataMap.scale', (['lat', 'lon'], {}), '(lat, lon)\n', (15950, 15960), False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((6210, 6240), 'json.dumps', 'json.dumps', (["{'items': reports}"], {}), "({'items': reports})\n", (6220, 6240), False, 'import json\n'), ((16047, 16073), 'ichnaea.models.DataMap.shard_id', 'DataMap.shard_id', (['lat', 'lon'], {}), '(lat, lon)\n', (16063, 16073), False, 'from ichnaea.models import ApiKey, BlueObservation, BlueReport, BlueShard, CellObservation, CellReport, CellShard, DataMap, ExportConfig, Report, WifiObservation, WifiReport, WifiShard\n'), ((4870, 4900), 'json.dumps', 'json.dumps', (["{'items': reports}"], {}), "({'items': reports})\n", (4880, 4900), False, 'import json\n'), ((11467, 11494), 'sqlalchemy.select', 'select', (['[columns.valid_key]'], {}), '([columns.valid_key])\n', (11473, 11494), False, 'from sqlalchemy import select\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the fseventsd record event formatter.""" from __future__ import unicode_literals import unittest from plaso.formatters import fseventsd from tests.formatters import test_lib class FseventsdFormatterTest(test_lib.EventFormatterTestCase): """Tests for the fseventsd record event formatter.""" def testInitialization(self): """Tests the initialization.""" event_formatter = fseventsd.FSEventsdEventFormatter() self.assertIsNotNone(event_formatter) def testGetFormatStringAttributeNames(self): """Tests the GetFormatStringAttributeNames function.""" event_formatter = fseventsd.FSEventsdEventFormatter() expected_attribute_names = [ u'event_identifier', u'flag_values', u'hex_flags', u'path'] self._TestGetFormatStringAttributeNames( event_formatter, expected_attribute_names) # TODO: add test for GetSources. if __name__ == '__main__': unittest.main()
[ "unittest.main", "plaso.formatters.fseventsd.FSEventsdEventFormatter" ]
[((959, 974), 'unittest.main', 'unittest.main', ([], {}), '()\n', (972, 974), False, 'import unittest\n'), ((449, 484), 'plaso.formatters.fseventsd.FSEventsdEventFormatter', 'fseventsd.FSEventsdEventFormatter', ([], {}), '()\n', (482, 484), False, 'from plaso.formatters import fseventsd\n'), ((657, 692), 'plaso.formatters.fseventsd.FSEventsdEventFormatter', 'fseventsd.FSEventsdEventFormatter', ([], {}), '()\n', (690, 692), False, 'from plaso.formatters import fseventsd\n')]
from keras.callbacks import ModelCheckpoint,Callback,LearningRateScheduler,TensorBoard from keras.models import load_model import random import numpy as np from scipy import misc import gc from keras.optimizers import Adam from imageio import imread from datetime import datetime import os import json import models from utils import DataLoader, LrPolicy from config import Config import argparse def get_parser(): parser = argparse.ArgumentParser('train') parser.add_argument('--configPath', '-c', required=True) return parser def train(args=None): parser = get_parser() args = parser.parse_args(args) conf=Config() conf.load(args.configPath) time=datetime.now().strftime('%Y-%m-%d_%H-%M-%S') trainString="%s_%s_%s_%s" % (conf.model,conf.optimizer,str(conf.lr),time) os.makedirs(conf.logPath+"/"+trainString) conf.save(conf.logPath+"/"+trainString+'/config.json') print('Compiling model...') model_checkpoint = ModelCheckpoint(conf.logPath+"/"+trainString+'/Checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', save_best_only=False, save_weights_only=True) change_lr = LearningRateScheduler(LrPolicy(conf.lr).stepDecay) tbCallBack=TensorBoard(log_dir=conf.logPath+"/"+trainString+'/logs', histogram_freq=0, write_graph=True, write_images=True) model=models.modelCreator(conf.model,conf.inputShape,conf.classes,conf.pretrainedModel) model.compile(optimizer = conf.optimizer, loss = conf.loss) data = [conf.trainDataPath+"/"+f for f in os.listdir(conf.trainDataPath) if '.jpg' in f] random.shuffle(data) thr=int(len(data)*conf.validationSplit) trainData=data[thr:] valData=data[:thr] trainDataLoader=DataLoader(conf.batchSize,conf.inputShape,trainData,conf.guaMaxValue) validationDataLoader=DataLoader(conf.batchSize,conf.inputShape,valData,conf.guaMaxValue) print('Fitting model...') model.fit_generator(generator=trainDataLoader.generator(), validation_data=validationDataLoader.generator(), steps_per_epoch=len(trainData)//conf.batchSize, validation_steps=len(valData)//conf.batchSize, epochs=conf.epoches, verbose=1, initial_epoch=0, callbacks = [model_checkpoint, change_lr,tbCallBack] ) if __name__ == "__main__": train()
[ "os.listdir", "random.shuffle", "os.makedirs", "keras.callbacks.ModelCheckpoint", "argparse.ArgumentParser", "config.Config", "keras.callbacks.TensorBoard", "models.modelCreator", "datetime.datetime.now", "utils.LrPolicy", "utils.DataLoader" ]
[((434, 466), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""train"""'], {}), "('train')\n", (457, 466), False, 'import argparse\n'), ((639, 647), 'config.Config', 'Config', ([], {}), '()\n', (645, 647), False, 'from config import Config\n'), ((815, 860), 'os.makedirs', 'os.makedirs', (["(conf.logPath + '/' + trainString)"], {}), "(conf.logPath + '/' + trainString)\n", (826, 860), False, 'import os\n'), ((971, 1142), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (["(conf.logPath + '/' + trainString +\n '/Checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5')"], {'monitor': '"""val_loss"""', 'save_best_only': '(False)', 'save_weights_only': '(True)'}), "(conf.logPath + '/' + trainString +\n '/Checkpoint-{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss',\n save_best_only=False, save_weights_only=True)\n", (986, 1142), False, 'from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler, TensorBoard\n'), ((1211, 1333), 'keras.callbacks.TensorBoard', 'TensorBoard', ([], {'log_dir': "(conf.logPath + '/' + trainString + '/logs')", 'histogram_freq': '(0)', 'write_graph': '(True)', 'write_images': '(True)'}), "(log_dir=conf.logPath + '/' + trainString + '/logs',\n histogram_freq=0, write_graph=True, write_images=True)\n", (1222, 1333), False, 'from keras.callbacks import ModelCheckpoint, Callback, LearningRateScheduler, TensorBoard\n'), ((1335, 1424), 'models.modelCreator', 'models.modelCreator', (['conf.model', 'conf.inputShape', 'conf.classes', 'conf.pretrainedModel'], {}), '(conf.model, conf.inputShape, conf.classes, conf.\n pretrainedModel)\n', (1354, 1424), False, 'import models\n'), ((1578, 1598), 'random.shuffle', 'random.shuffle', (['data'], {}), '(data)\n', (1592, 1598), False, 'import random\n'), ((1711, 1783), 'utils.DataLoader', 'DataLoader', (['conf.batchSize', 'conf.inputShape', 'trainData', 'conf.guaMaxValue'], {}), '(conf.batchSize, conf.inputShape, trainData, conf.guaMaxValue)\n', (1721, 1783), False, 'from utils import DataLoader, LrPolicy\n'), ((1806, 1876), 'utils.DataLoader', 'DataLoader', (['conf.batchSize', 'conf.inputShape', 'valData', 'conf.guaMaxValue'], {}), '(conf.batchSize, conf.inputShape, valData, conf.guaMaxValue)\n', (1816, 1876), False, 'from utils import DataLoader, LrPolicy\n'), ((688, 702), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (700, 702), False, 'from datetime import datetime\n'), ((1167, 1184), 'utils.LrPolicy', 'LrPolicy', (['conf.lr'], {}), '(conf.lr)\n', (1175, 1184), False, 'from utils import DataLoader, LrPolicy\n'), ((1527, 1557), 'os.listdir', 'os.listdir', (['conf.trainDataPath'], {}), '(conf.trainDataPath)\n', (1537, 1557), False, 'import os\n')]
import unittest import numpy import chainer from chainer import cuda from chainer import functions from chainer import gradient_check from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) class TestFlatten(unittest.TestCase): dtype = numpy.float32 def setUp(self): self.x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) self.g_shape = (numpy.prod((1,) + self.shape),) self.g = numpy.random.uniform(-1, 1, self.g_shape).astype(self.dtype) def check_forward(self, x_data): x = chainer.Variable(x_data) y = functions.flatten(x) self.assertEqual(y.shape, self.g_shape) self.assertEqual(y.dtype, self.dtype) testing.assert_allclose(self.x.flatten(), y.data) def test_forward_cpu(self): self.check_forward(self.x) @attr.gpu def test_forward_gpu(self): self.check_forward(cuda.to_gpu(self.x)) def check_backward(self, x_data, g_data): gradient_check.check_backward( functions.Flatten(), x_data, g_data, dtype=numpy.float64) def test_backward_cpu(self): self.check_backward(self.x, self.g) @attr.gpu def test_backward_gpu(self): self.check_backward(cuda.to_gpu(self.x), cuda.to_gpu(self.g)) testing.run_module(__name__, __file__)
[ "numpy.prod", "chainer.Variable", "chainer.testing.run_module", "chainer.testing.product", "chainer.functions.Flatten", "chainer.functions.flatten", "numpy.random.uniform", "chainer.cuda.to_gpu" ]
[((1406, 1444), 'chainer.testing.run_module', 'testing.run_module', (['__name__', '__file__'], {}), '(__name__, __file__)\n', (1424, 1444), False, 'from chainer import testing\n'), ((678, 702), 'chainer.Variable', 'chainer.Variable', (['x_data'], {}), '(x_data)\n', (694, 702), False, 'import chainer\n'), ((715, 735), 'chainer.functions.flatten', 'functions.flatten', (['x'], {}), '(x)\n', (732, 735), False, 'from chainer import functions\n'), ((222, 323), 'chainer.testing.product', 'testing.product', (["{'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.float32, numpy.float64]}"], {}), "({'shape': [(3, 4), ()], 'dtype': [numpy.float16, numpy.\n float32, numpy.float64]})\n", (237, 323), False, 'from chainer import testing\n'), ((518, 547), 'numpy.prod', 'numpy.prod', (['((1,) + self.shape)'], {}), '((1,) + self.shape)\n', (528, 547), False, 'import numpy\n'), ((1031, 1050), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.x'], {}), '(self.x)\n', (1042, 1050), False, 'from chainer import cuda\n'), ((1150, 1169), 'chainer.functions.Flatten', 'functions.Flatten', ([], {}), '()\n', (1167, 1169), False, 'from chainer import functions\n'), ((1362, 1381), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.x'], {}), '(self.x)\n', (1373, 1381), False, 'from chainer import cuda\n'), ((1383, 1402), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['self.g'], {}), '(self.g)\n', (1394, 1402), False, 'from chainer import cuda\n'), ((435, 474), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1)', '(1)', 'self.shape'], {}), '(-1, 1, self.shape)\n', (455, 474), False, 'import numpy\n'), ((567, 608), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1)', '(1)', 'self.g_shape'], {}), '(-1, 1, self.g_shape)\n', (587, 608), False, 'import numpy\n')]
# Generated by Django 3.0.3 on 2020-03-24 09:59 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('exercises', '0018_photo_file'), ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=80)), ('description', models.TextField(blank=True)), ('exercises', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='categories', to='exercises.Exercise')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Photo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('image_url', models.URLField()), ('image_caption', models.CharField(blank=True, max_length=80)), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='photos', to='categories.Category')), ], options={ 'abstract': False, }, ), ]
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.DateTimeField", "django.db.models.URLField", "django.db.models.CharField" ]
[((379, 472), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (395, 472), False, 'from django.db import migrations, models\n'), ((499, 538), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (519, 538), False, 'from django.db import migrations, models\n'), ((569, 604), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (589, 604), False, 'from django.db import migrations, models\n'), ((632, 663), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(80)'}), '(max_length=80)\n', (648, 663), False, 'from django.db import migrations, models\n'), ((698, 726), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (714, 726), False, 'from django.db import migrations, models\n'), ((759, 889), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""categories"""', 'to': '"""exercises.Exercise"""'}), "(blank=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='categories', to='exercises.Exercise')\n", (776, 889), False, 'from django.db import migrations, models\n'), ((1088, 1181), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1104, 1181), False, 'from django.db import migrations, models\n'), ((1208, 1247), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1228, 1247), False, 'from django.db import migrations, models\n'), ((1278, 1313), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1298, 1313), False, 'from django.db import migrations, models\n'), ((1346, 1363), 'django.db.models.URLField', 'models.URLField', ([], {}), '()\n', (1361, 1363), False, 'from django.db import migrations, models\n'), ((1400, 1443), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(80)'}), '(blank=True, max_length=80)\n', (1416, 1443), False, 'from django.db import migrations, models\n'), ((1475, 1591), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""photos"""', 'to': '"""categories.Category"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='photos', to='categories.Category')\n", (1492, 1591), False, 'from django.db import migrations, models\n')]
from dagster import check from .house import Lakehouse from .table import create_lakehouse_table_def class SnowflakeLakehouse(Lakehouse): def __init__(self): pass def hydrate(self, _context, _table_type, _table_metadata, table_handle, _dest_metadata): return None def materialize(self, context, table_type, table_metadata, value): return None, None def snowflake_table( name=None, input_tables=None, other_input_defs=None, tags=None, required_resource_keys=None, description=None, ): tags = check.opt_dict_param(tags, 'tags') tags['lakehouse_type'] = 'snowflake_table' tags['kind'] = 'snowflake' required_resource_keys = check.opt_set_param(required_resource_keys, 'required_resource_keys') required_resource_keys.add('snowflake') if callable(name): fn = name return create_lakehouse_table_def( name=fn.__name__, lakehouse_fn=fn, input_tables=[], required_resource_keys=required_resource_keys, ) def _wrap(fn): return create_lakehouse_table_def( name=name if name is not None else fn.__name__, lakehouse_fn=fn, input_tables=input_tables, other_input_defs=other_input_defs, tags=tags, description=description, required_resource_keys=required_resource_keys, ) return _wrap
[ "dagster.check.opt_dict_param", "dagster.check.opt_set_param" ]
[((562, 596), 'dagster.check.opt_dict_param', 'check.opt_dict_param', (['tags', '"""tags"""'], {}), "(tags, 'tags')\n", (582, 596), False, 'from dagster import check\n'), ((705, 774), 'dagster.check.opt_set_param', 'check.opt_set_param', (['required_resource_keys', '"""required_resource_keys"""'], {}), "(required_resource_keys, 'required_resource_keys')\n", (724, 774), False, 'from dagster import check\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2018 Brno University of Technology FIT # Author: <NAME> <<EMAIL>> # All Rights Reserved import os import logging import pickle import multiprocessing import numpy as np from sklearn.metrics.pairwise import cosine_similarity from vbdiar.features.segments import get_frames_from_time from vbdiar.embeddings.embedding import extract_embeddings from vbdiar.utils import mkdir_p from vbdiar.utils.utils import Utils logger = logging.getLogger(__name__) def process_files(fns, speakers_dict, features_extractor, embedding_extractor, audio_dir, wav_suffix, in_rttm_dir, rttm_suffix, min_length, n_jobs=1): """ Args: fns: speakers_dict: features_extractor: embedding_extractor: audio_dir: wav_suffix: in_rttm_dir: rttm_suffix: min_length: n_jobs: Returns: """ kwargs = dict(speakers_dict=speakers_dict, features_extractor=features_extractor, embedding_extractor=embedding_extractor, audio_dir=audio_dir, wav_suffix=wav_suffix, in_rttm_dir=in_rttm_dir, rttm_suffix=rttm_suffix, min_length=min_length) if n_jobs == 1: ret = _process_files((fns, kwargs)) else: pool = multiprocessing.Pool(n_jobs) ret = pool.map(_process_files, ((part, kwargs) for part in Utils.partition(fns, n_jobs))) return ret def _process_files(dargs): """ Args: dargs: Returns: """ fns, kwargs = dargs ret = [] for fn in fns: ret.append(process_file(file_name=fn, **kwargs)) return ret def process_file(file_name, speakers_dict, features_extractor, embedding_extractor, audio_dir, wav_suffix, in_rttm_dir, rttm_suffix, min_length): """ Extract embeddings for all defined speakers. Args: file_name (string_types): path to input audio file speakers_dict (dict): dictionary containing all embedding across speakers features_extractor (Any): embedding_extractor (Any): audio_dir (string_types): wav_suffix (string_types): in_rttm_dir (string_types): rttm_suffix (string_types): min_length (float): Returns: dict: updated dictionary with speakers """ logger.info('Processing file `{}`.'.format(file_name.split()[0])) # extract features from whole audio features = features_extractor.audio2features(os.path.join(audio_dir, '{}{}'.format(file_name, wav_suffix))) # process utterances of the speakers features_dict = {} with open(f'{os.path.join(in_rttm_dir, file_name)}{rttm_suffix}') as f: for line in f: start_time, dur = int(float(line.split()[3]) * 1000), int(float(line.split()[4]) * 1000) speaker = line.split()[7] if dur > min_length: end_time = start_time + dur start, end = get_frames_from_time(int(start_time)), get_frames_from_time(int(end_time)) if speaker not in features_dict: features_dict[speaker] = {} assert 0 <= start < end, \ f'Incorrect timing for extracting features, start: {start}, size: {features.shape[0]}, end: {end}.' if end >= features.shape[0]: end = features.shape[0] - 1 features_dict[speaker][(start_time, end_time)] = features[start:end] for speaker in features_dict: embedding_set = extract_embeddings(features_dict[speaker], embedding_extractor) embeddings_long = embedding_set.get_all_embeddings() if speaker not in speakers_dict.keys(): speakers_dict[speaker] = embeddings_long else: speakers_dict[speaker] = np.concatenate((speakers_dict[speaker], embeddings_long), axis=0) return speakers_dict class Normalization(object): """ Speaker normalization S-Norm. """ embeddings = None in_emb_dir = None def __init__(self, norm_list, audio_dir=None, in_rttm_dir=None, in_emb_dir=None, out_emb_dir=None, min_length=None, features_extractor=None, embedding_extractor=None, plda=None, wav_suffix='.wav', rttm_suffix='.rttm', n_jobs=1): """ Initialize normalization object. Args: norm_list (string_types): path to normalization list audio_dir (string_types|None): path to audio directory in_rttm_dir (string_types|None): path to directory with rttm files in_emb_dir (str|None): path to directory with i-vectors out_emb_dir (str|None): path to directory for storing embeddings min_length (int): minimal length for extracting embeddings features_extractor (Any): object for feature extraction embedding_extractor (Any): object for extracting embedding plda (PLDA|None): plda model object wav_suffix (string_types): suffix of wav files rttm_suffix (string_types): suffix of rttm files """ if audio_dir: self.audio_dir = os.path.abspath(audio_dir) self.norm_list = norm_list if in_rttm_dir: self.in_rttm_dir = os.path.abspath(in_rttm_dir) else: raise ValueError('It is required to have input rttm files for normalization.') self.features_extractor = features_extractor self.embedding_extractor = embedding_extractor self.plda = plda self.wav_suffix = wav_suffix self.rttm_suffix = rttm_suffix if in_emb_dir: self.in_emb_dir = os.path.abspath(in_emb_dir) if out_emb_dir: self.out_emb_dir = os.path.abspath(out_emb_dir) self.min_length = min_length self.n_jobs = n_jobs if self.in_emb_dir is None: self.embeddings = self.extract_embeddings() else: self.embeddings = self.load_embeddings() self.mean = np.mean(self.embeddings, axis=0) def __iter__(self): current = 0 while current < len(self.embeddings): yield self.embeddings[current] current += 1 def __getitem__(self, key): return self.embeddings[key] def __setitem__(self, key, value): self.embeddings[key] = value def __len__(self): return len(self.embeddings) def extract_embeddings(self): """ Extract normalization embeddings using averaging. Returns: Tuple[np.array, np.array]: vectors for individual speakers, global mean over all speakers """ speakers_dict, fns = {}, [] with open(self.norm_list) as f: for line in f: if len(line.split()) > 1: # number of speakers is defined line = line.split()[0] else: line = line.replace(os.linesep, '') fns.append(line) speakers_dict = process_files(fns, speakers_dict=speakers_dict, features_extractor=self.features_extractor, embedding_extractor=self.embedding_extractor, audio_dir=self.audio_dir, wav_suffix=self.wav_suffix, in_rttm_dir=self.in_rttm_dir, rttm_suffix=self.rttm_suffix, min_length=self.min_length, n_jobs=self.n_jobs) assert len(speakers_dict) == len(fns) # all are the same merged_speakers_dict = speakers_dict[0] if self.out_emb_dir: for speaker in merged_speakers_dict: out_path = os.path.join(self.out_emb_dir, f'{speaker}.pkl') mkdir_p(os.path.dirname(out_path)) with open(out_path, 'wb') as f: pickle.dump(merged_speakers_dict[speaker], f, pickle.HIGHEST_PROTOCOL) for speaker in merged_speakers_dict: merged_speakers_dict[speaker] = np.mean(merged_speakers_dict[speaker], axis=0) return np.array(list(merged_speakers_dict.values())) def load_embeddings(self): """ Load normalization embeddings from pickle files. Returns: np.array: embeddings per speaker """ embeddings, speakers = [], set() with open(self.norm_list) as f: for file_name in f: if len(file_name.split()) > 1: # number of speakers is defined file_name = file_name.split()[0] else: file_name = file_name.replace(os.linesep, '') with open('{}{}'.format(os.path.join(self.in_rttm_dir, file_name), self.rttm_suffix)) as fp: for line in fp: speakers.add(line.split()[7]) logger.info('Loading pickled normalization embeddings from `{}`.'.format(self.in_emb_dir)) for speaker in speakers: embedding_path = os.path.join(self.in_emb_dir, '{}.pkl'.format(speaker)) if os.path.isfile(embedding_path): logger.info('Loading normalization pickle file `{}`.'.format(speaker)) with open(embedding_path, 'rb') as f: # append mean from speaker's embeddings speaker_embeddings = pickle.load(f) embeddings.append(np.mean(speaker_embeddings, axis=0)) else: logger.warning('No pickle file found for `{}` in `{}`.'.format(speaker, self.in_emb_dir)) return np.array(embeddings) def s_norm(self, test, enroll): """ Run speaker normalization (S-Norm) on cached embeddings. Args: test (np.array): test embedding enroll (np.array): enroll embedding Returns: float: hypothesis """ if self.plda: a = self.plda.score(test, self.embeddings).T b = self.plda.score(enroll, self.embeddings).T c = self.plda.score(enroll, test).T else: a = cosine_similarity(test, self.embeddings).T b = cosine_similarity(enroll, self.embeddings).T c = cosine_similarity(enroll, test).T scores = [] for ii in range(test.shape[0]): test_scores = [] for jj in range(enroll.shape[0]): test_mean, test_std = np.mean(a.T[ii]), np.std(a.T[ii]) enroll_mean, enroll_std = np.mean(b.T[jj]), np.std(b.T[jj]) s = c[ii][jj] test_scores.append((((s - test_mean) / test_std + (s - enroll_mean) / enroll_std) / 2)) scores.append(test_scores) return np.array(scores)
[ "logging.getLogger", "numpy.mean", "pickle.dump", "sklearn.metrics.pairwise.cosine_similarity", "vbdiar.embeddings.embedding.extract_embeddings", "numpy.std", "os.path.join", "pickle.load", "os.path.isfile", "numpy.array", "os.path.dirname", "multiprocessing.Pool", "numpy.concatenate", "vbdiar.utils.utils.Utils.partition", "os.path.abspath" ]
[((488, 515), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (505, 515), False, 'import logging\n'), ((1308, 1336), 'multiprocessing.Pool', 'multiprocessing.Pool', (['n_jobs'], {}), '(n_jobs)\n', (1328, 1336), False, 'import multiprocessing\n'), ((3560, 3623), 'vbdiar.embeddings.embedding.extract_embeddings', 'extract_embeddings', (['features_dict[speaker]', 'embedding_extractor'], {}), '(features_dict[speaker], embedding_extractor)\n', (3578, 3623), False, 'from vbdiar.embeddings.embedding import extract_embeddings\n'), ((6040, 6072), 'numpy.mean', 'np.mean', (['self.embeddings'], {'axis': '(0)'}), '(self.embeddings, axis=0)\n', (6047, 6072), True, 'import numpy as np\n'), ((9540, 9560), 'numpy.array', 'np.array', (['embeddings'], {}), '(embeddings)\n', (9548, 9560), True, 'import numpy as np\n'), ((10675, 10691), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (10683, 10691), True, 'import numpy as np\n'), ((3837, 3902), 'numpy.concatenate', 'np.concatenate', (['(speakers_dict[speaker], embeddings_long)'], {'axis': '(0)'}), '((speakers_dict[speaker], embeddings_long), axis=0)\n', (3851, 3902), True, 'import numpy as np\n'), ((5170, 5196), 'os.path.abspath', 'os.path.abspath', (['audio_dir'], {}), '(audio_dir)\n', (5185, 5196), False, 'import os\n'), ((5287, 5315), 'os.path.abspath', 'os.path.abspath', (['in_rttm_dir'], {}), '(in_rttm_dir)\n', (5302, 5315), False, 'import os\n'), ((5683, 5710), 'os.path.abspath', 'os.path.abspath', (['in_emb_dir'], {}), '(in_emb_dir)\n', (5698, 5710), False, 'import os\n'), ((5766, 5794), 'os.path.abspath', 'os.path.abspath', (['out_emb_dir'], {}), '(out_emb_dir)\n', (5781, 5794), False, 'import os\n'), ((7994, 8040), 'numpy.mean', 'np.mean', (['merged_speakers_dict[speaker]'], {'axis': '(0)'}), '(merged_speakers_dict[speaker], axis=0)\n', (8001, 8040), True, 'import numpy as np\n'), ((9037, 9067), 'os.path.isfile', 'os.path.isfile', (['embedding_path'], {}), '(embedding_path)\n', (9051, 9067), False, 'import os\n'), ((7665, 7713), 'os.path.join', 'os.path.join', (['self.out_emb_dir', 'f"""{speaker}.pkl"""'], {}), "(self.out_emb_dir, f'{speaker}.pkl')\n", (7677, 7713), False, 'import os\n'), ((10050, 10090), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['test', 'self.embeddings'], {}), '(test, self.embeddings)\n', (10067, 10090), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((10109, 10151), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['enroll', 'self.embeddings'], {}), '(enroll, self.embeddings)\n', (10126, 10151), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((10170, 10201), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['enroll', 'test'], {}), '(enroll, test)\n', (10187, 10201), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((1404, 1432), 'vbdiar.utils.utils.Utils.partition', 'Utils.partition', (['fns', 'n_jobs'], {}), '(fns, n_jobs)\n', (1419, 1432), False, 'from vbdiar.utils.utils import Utils\n'), ((2645, 2681), 'os.path.join', 'os.path.join', (['in_rttm_dir', 'file_name'], {}), '(in_rttm_dir, file_name)\n', (2657, 2681), False, 'import os\n'), ((7738, 7763), 'os.path.dirname', 'os.path.dirname', (['out_path'], {}), '(out_path)\n', (7753, 7763), False, 'import os\n'), ((7833, 7903), 'pickle.dump', 'pickle.dump', (['merged_speakers_dict[speaker]', 'f', 'pickle.HIGHEST_PROTOCOL'], {}), '(merged_speakers_dict[speaker], f, pickle.HIGHEST_PROTOCOL)\n', (7844, 7903), False, 'import pickle\n'), ((9311, 9325), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (9322, 9325), False, 'import pickle\n'), ((10377, 10393), 'numpy.mean', 'np.mean', (['a.T[ii]'], {}), '(a.T[ii])\n', (10384, 10393), True, 'import numpy as np\n'), ((10395, 10410), 'numpy.std', 'np.std', (['a.T[ii]'], {}), '(a.T[ii])\n', (10401, 10410), True, 'import numpy as np\n'), ((10453, 10469), 'numpy.mean', 'np.mean', (['b.T[jj]'], {}), '(b.T[jj])\n', (10460, 10469), True, 'import numpy as np\n'), ((10471, 10486), 'numpy.std', 'np.std', (['b.T[jj]'], {}), '(b.T[jj])\n', (10477, 10486), True, 'import numpy as np\n'), ((9364, 9399), 'numpy.mean', 'np.mean', (['speaker_embeddings'], {'axis': '(0)'}), '(speaker_embeddings, axis=0)\n', (9371, 9399), True, 'import numpy as np\n'), ((8645, 8686), 'os.path.join', 'os.path.join', (['self.in_rttm_dir', 'file_name'], {}), '(self.in_rttm_dir, file_name)\n', (8657, 8686), False, 'import os\n')]
import datetime import re from .exceptions import ObjectIsNotADate def format_date(value, format="%d %M %Y"): regex = re.match(r"(?P<year>\d{4})-(?P<month>\d{2})-(?P<day>\d{2})", value) if regex is not None: date = datetime.date( int(regex.group("year")), int(regex.group("month")), int(regex.group("day"))) else: raise ObjectIsNotADate return date.strftime(format)
[ "re.match" ]
[((125, 194), 're.match', 're.match', (['"""(?P<year>\\\\d{4})-(?P<month>\\\\d{2})-(?P<day>\\\\d{2})"""', 'value'], {}), "('(?P<year>\\\\d{4})-(?P<month>\\\\d{2})-(?P<day>\\\\d{2})', value)\n", (133, 194), False, 'import re\n')]
import numpy as np import os import logging from sklearn.model_selection import train_test_split DATASET_ROOT_FOLDER = os.path.abspath('datasets') class DataLoader: train = None validation = None test = None mode = None partial_dataset = None @staticmethod def load(train_path=None, validation_path=None, test_path=None, height=28, length=28, train_validation_split_point=10000): if train_path is not None: DataLoader.train = DataLoader.load_image_data_with_label_at_end( os.path.join(DATASET_ROOT_FOLDER, train_path), height=height, length=length) if validation_path is not None: DataLoader.validation = DataLoader.load_image_data_with_label_at_end( os.path.join(DATASET_ROOT_FOLDER, validation_path), height=height, length=length) elif train_validation_split_point is not None and train_validation_split_point > 0: if DataLoader.mode is None or DataLoader.partial_dataset is not None: train_validation_split_point = int(DataLoader.train['images'].shape[0] * 0.8) splited_train = { 'images': DataLoader.train['images'][0:train_validation_split_point, :, :, :], 'labels': DataLoader.train['labels'][0:train_validation_split_point] } splited_validation = { 'images': DataLoader.train['images'][train_validation_split_point:, :, :, :], 'labels': DataLoader.train['labels'][train_validation_split_point:] } DataLoader.train = splited_train DataLoader.validation = splited_validation if test_path is not None: DataLoader.test = DataLoader.load_image_data_with_label_at_end(os.path.join(DATASET_ROOT_FOLDER, test_path), height=height, length=length) logging.debug('Training data shape:{}'.format(str(DataLoader.train['images'].shape))) logging.debug('Validation data shape:{}'.format(str(DataLoader.validation['images'].shape))) logging.debug('Test data shape:{}'.format(str(DataLoader.test['images'].shape))) return DataLoader @staticmethod def get_training_data(): """ get training data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.train.images labels = DataLoader.train.labels return { 'images': images, 'labels': labels } @staticmethod def get_validation_data(): """ get validation data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.validation.images labels = DataLoader.validation.labels return { 'images': images, 'labels': labels } @staticmethod def get_test_data(): """ get test data :return: dict of (images, labels) :rtype: dict """ images = DataLoader.test.images labels = DataLoader.test.labels return { 'images': images, 'labels': labels } @staticmethod def load_image_data_with_label_at_end(path, height, length): data = np.loadtxt(path) if DataLoader.mode is None: data = data[0:1000, :] elif DataLoader.partial_dataset is not None and DataLoader.partial_dataset > 0 and DataLoader.partial_dataset <1: # randomly pick partial dataset cut_point = int(data.shape[0] * DataLoader.partial_dataset) indices = np.random.permutation(data.shape[0]) training_idx= indices[:cut_point] data = data[training_idx, :] images = data[:, 0:-1] labels = data[:, -1] images = np.reshape(images, [images.shape[0], height, length, 1], order='F') return { 'images': images, 'labels': labels }
[ "numpy.reshape", "os.path.join", "os.path.abspath", "numpy.loadtxt", "numpy.random.permutation" ]
[((120, 147), 'os.path.abspath', 'os.path.abspath', (['"""datasets"""'], {}), "('datasets')\n", (135, 147), False, 'import os\n'), ((3261, 3277), 'numpy.loadtxt', 'np.loadtxt', (['path'], {}), '(path)\n', (3271, 3277), True, 'import numpy as np\n'), ((3810, 3877), 'numpy.reshape', 'np.reshape', (['images', '[images.shape[0], height, length, 1]'], {'order': '"""F"""'}), "(images, [images.shape[0], height, length, 1], order='F')\n", (3820, 3877), True, 'import numpy as np\n'), ((540, 585), 'os.path.join', 'os.path.join', (['DATASET_ROOT_FOLDER', 'train_path'], {}), '(DATASET_ROOT_FOLDER, train_path)\n', (552, 585), False, 'import os\n'), ((755, 805), 'os.path.join', 'os.path.join', (['DATASET_ROOT_FOLDER', 'validation_path'], {}), '(DATASET_ROOT_FOLDER, validation_path)\n', (767, 805), False, 'import os\n'), ((1765, 1809), 'os.path.join', 'os.path.join', (['DATASET_ROOT_FOLDER', 'test_path'], {}), '(DATASET_ROOT_FOLDER, test_path)\n', (1777, 1809), False, 'import os\n'), ((3609, 3645), 'numpy.random.permutation', 'np.random.permutation', (['data.shape[0]'], {}), '(data.shape[0])\n', (3630, 3645), True, 'import numpy as np\n')]
from os.path import join FAAS_ROOT="/lhome/trulsas/faas-profiler" WORKLOAD_SPECS=join(FAAS_ROOT, "specs", "workloads") #FAAS_ROOT="/home/truls/uni/phd/faas-profiler" WSK_PATH = "wsk" OPENWHISK_PATH = "/lhome/trulsas/openwhisk" #: Location of output data DATA_DIR = join(FAAS_ROOT, "..", "profiler_results") SYSTEM_CPU_SET = "0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30"
[ "os.path.join" ]
[((82, 119), 'os.path.join', 'join', (['FAAS_ROOT', '"""specs"""', '"""workloads"""'], {}), "(FAAS_ROOT, 'specs', 'workloads')\n", (86, 119), False, 'from os.path import join\n'), ((267, 308), 'os.path.join', 'join', (['FAAS_ROOT', '""".."""', '"""profiler_results"""'], {}), "(FAAS_ROOT, '..', 'profiler_results')\n", (271, 308), False, 'from os.path import join\n')]
''' pymmh3 was written by <NAME> and enhanced by <NAME>, and is placed in the public domain. The authors hereby disclaim copyright to this source code. pure python implementation of the murmur3 hash algorithm https://code.google.com/p/smhasher/wiki/MurmurHash3 This was written for the times when you do not want to compile c-code and install modules, and you only want a drop-in murmur3 implementation. As this is purely python it is FAR from performant and if performance is anything that is needed a proper c-module is suggested! This module is written to have the same format as mmh3 python package found here for simple conversions: https://pypi.python.org/pypi/mmh3/2.3.1 ''' import sys as _sys if (_sys.version_info > (3, 0)): def xrange( a, b, c ): return list(range( a, b, c)) def xencode(x): if isinstance(x, bytes) or isinstance(x, bytearray): return x else: return x.encode() else: def xencode(x): return x del _sys def hash( key, seed = 0x0 ): ''' Implements 32bit murmur3 hash. ''' key = bytearray( xencode(key) ) def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 4 ) h1 = seed c1 = 0xcc9e2d51 c2 = 0x1b873593 # body for block_start in range( 0, nblocks * 4, 4 ): # ??? big endian? k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 13 | h1 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 * 5 + 0xe6546b64 ) & 0xFFFFFFFF # tail tail_index = nblocks * 4 k1 = 0 tail_size = length & 3 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization unsigned_val = fmix( h1 ^ length ) if unsigned_val & 0x80000000 == 0: return unsigned_val else: return -( (unsigned_val ^ 0xFFFFFFFF) + 1 ) def hash128( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. ''' def hash128_x64( key, seed ): ''' Implements 128bit murmur3 hash for x64. ''' def fmix( k ): k ^= k >> 33 k = ( k * 0xff51afd7ed558ccd ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 k = ( k * 0xc4ceb9fe1a85ec53 ) & 0xFFFFFFFFFFFFFFFF k ^= k >> 33 return k length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed c1 = 0x87c37b91114253d5 c2 = 0x4cf5ad432745937f #body for block_start in range( 0, nblocks * 8, 8 ): # ??? big endian? k1 = key[ 2 * block_start + 7 ] << 56 | \ key[ 2 * block_start + 6 ] << 48 | \ key[ 2 * block_start + 5 ] << 40 | \ key[ 2 * block_start + 4 ] << 32 | \ key[ 2 * block_start + 3 ] << 24 | \ key[ 2 * block_start + 2 ] << 16 | \ key[ 2 * block_start + 1 ] << 8 | \ key[ 2 * block_start + 0 ] k2 = key[ 2 * block_start + 15 ] << 56 | \ key[ 2 * block_start + 14 ] << 48 | \ key[ 2 * block_start + 13 ] << 40 | \ key[ 2 * block_start + 12 ] << 32 | \ key[ 2 * block_start + 11 ] << 24 | \ key[ 2 * block_start + 10 ] << 16 | \ key[ 2 * block_start + 9 ] << 8 | \ key[ 2 * block_start + 8 ] k1 = ( c1 * k1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( c2 * k1 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 h1 = ( h1 << 27 | h1 >> 37 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = ( h1 * 5 + 0x52dce729 ) & 0xFFFFFFFFFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( c1 * k2 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 h2 = ( h2 << 31 | h2 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h2 * 5 + 0x38495ab5 ) & 0xFFFFFFFFFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 tail_size = length & 15 if tail_size >= 15: k2 ^= key[ tail_index + 14 ] << 48 if tail_size >= 14: k2 ^= key[ tail_index + 13 ] << 40 if tail_size >= 13: k2 ^= key[ tail_index + 12 ] << 32 if tail_size >= 12: k2 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k2 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k2 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k2 ^= key[ tail_index + 8 ] if tail_size > 8: k2 = ( k2 * c2 ) & 0xFFFFFFFFFFFFFFFF k2 = ( k2 << 33 | k2 >> 31 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k2 = ( k2 * c1 ) & 0xFFFFFFFFFFFFFFFF h2 ^= k2 if tail_size >= 8: k1 ^= key[ tail_index + 7 ] << 56 if tail_size >= 7: k1 ^= key[ tail_index + 6 ] << 48 if tail_size >= 6: k1 ^= key[ tail_index + 5 ] << 40 if tail_size >= 5: k1 ^= key[ tail_index + 4 ] << 32 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFFFFFFFFFF k1 = ( k1 << 31 | k1 >> 33 ) & 0xFFFFFFFFFFFFFFFF # inlined ROTL64 k1 = ( k1 * c2 ) & 0xFFFFFFFFFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h1 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFFFFFFFFFF return ( h2 << 64 | h1 ) def hash128_x86( key, seed ): ''' Implements 128bit murmur3 hash for x86. ''' def fmix( h ): h ^= h >> 16 h = ( h * 0x85ebca6b ) & 0xFFFFFFFF h ^= h >> 13 h = ( h * 0xc2b2ae35 ) & 0xFFFFFFFF h ^= h >> 16 return h length = len( key ) nblocks = int( length / 16 ) h1 = seed h2 = seed h3 = seed h4 = seed c1 = 0x239b961b c2 = 0xab0e9789 c3 = 0x38b34ae5 c4 = 0xa1e38b93 #body for block_start in range( 0, nblocks * 16, 16 ): k1 = key[ block_start + 3 ] << 24 | \ key[ block_start + 2 ] << 16 | \ key[ block_start + 1 ] << 8 | \ key[ block_start + 0 ] k2 = key[ block_start + 7 ] << 24 | \ key[ block_start + 6 ] << 16 | \ key[ block_start + 5 ] << 8 | \ key[ block_start + 4 ] k3 = key[ block_start + 11 ] << 24 | \ key[ block_start + 10 ] << 16 | \ key[ block_start + 9 ] << 8 | \ key[ block_start + 8 ] k4 = key[ block_start + 15 ] << 24 | \ key[ block_start + 14 ] << 16 | \ key[ block_start + 13 ] << 8 | \ key[ block_start + 12 ] k1 = ( c1 * k1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( c2 * k1 ) & 0xFFFFFFFF h1 ^= k1 h1 = ( h1 << 19 | h1 >> 13 ) & 0xFFFFFFFF # inlined ROTL32 h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 * 5 + 0x561ccd1b ) & 0xFFFFFFFF k2 = ( c2 * k2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( c3 * k2 ) & 0xFFFFFFFF h2 ^= k2 h2 = ( h2 << 17 | h2 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 h2 = ( h2 + h3 ) & 0xFFFFFFFF h2 = ( h2 * 5 + 0x0bcaa747 ) & 0xFFFFFFFF k3 = ( c3 * k3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( c4 * k3 ) & 0xFFFFFFFF h3 ^= k3 h3 = ( h3 << 15 | h3 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 h3 = ( h3 + h4 ) & 0xFFFFFFFF h3 = ( h3 * 5 + 0x96cd1c35 ) & 0xFFFFFFFF k4 = ( c4 * k4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( c1 * k4 ) & 0xFFFFFFFF h4 ^= k4 h4 = ( h4 << 13 | h4 >> 19 ) & 0xFFFFFFFF # inlined ROTL32 h4 = ( h1 + h4 ) & 0xFFFFFFFF h4 = ( h4 * 5 + 0x32ac3b17 ) & 0xFFFFFFFF #tail tail_index = nblocks * 16 k1 = 0 k2 = 0 k3 = 0 k4 = 0 tail_size = length & 15 if tail_size >= 15: k4 ^= key[ tail_index + 14 ] << 16 if tail_size >= 14: k4 ^= key[ tail_index + 13 ] << 8 if tail_size >= 13: k4 ^= key[ tail_index + 12 ] if tail_size > 12: k4 = ( k4 * c4 ) & 0xFFFFFFFF k4 = ( k4 << 18 | k4 >> 14 ) & 0xFFFFFFFF # inlined ROTL32 k4 = ( k4 * c1 ) & 0xFFFFFFFF h4 ^= k4 if tail_size >= 12: k3 ^= key[ tail_index + 11 ] << 24 if tail_size >= 11: k3 ^= key[ tail_index + 10 ] << 16 if tail_size >= 10: k3 ^= key[ tail_index + 9 ] << 8 if tail_size >= 9: k3 ^= key[ tail_index + 8 ] if tail_size > 8: k3 = ( k3 * c3 ) & 0xFFFFFFFF k3 = ( k3 << 17 | k3 >> 15 ) & 0xFFFFFFFF # inlined ROTL32 k3 = ( k3 * c4 ) & 0xFFFFFFFF h3 ^= k3 if tail_size >= 8: k2 ^= key[ tail_index + 7 ] << 24 if tail_size >= 7: k2 ^= key[ tail_index + 6 ] << 16 if tail_size >= 6: k2 ^= key[ tail_index + 5 ] << 8 if tail_size >= 5: k2 ^= key[ tail_index + 4 ] if tail_size > 4: k2 = ( k2 * c2 ) & 0xFFFFFFFF k2 = ( k2 << 16 | k2 >> 16 ) & 0xFFFFFFFF # inlined ROTL32 k2 = ( k2 * c3 ) & 0xFFFFFFFF h2 ^= k2 if tail_size >= 4: k1 ^= key[ tail_index + 3 ] << 24 if tail_size >= 3: k1 ^= key[ tail_index + 2 ] << 16 if tail_size >= 2: k1 ^= key[ tail_index + 1 ] << 8 if tail_size >= 1: k1 ^= key[ tail_index + 0 ] if tail_size > 0: k1 = ( k1 * c1 ) & 0xFFFFFFFF k1 = ( k1 << 15 | k1 >> 17 ) & 0xFFFFFFFF # inlined ROTL32 k1 = ( k1 * c2 ) & 0xFFFFFFFF h1 ^= k1 #finalization h1 ^= length h2 ^= length h3 ^= length h4 ^= length h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF h1 = fmix( h1 ) h2 = fmix( h2 ) h3 = fmix( h3 ) h4 = fmix( h4 ) h1 = ( h1 + h2 ) & 0xFFFFFFFF h1 = ( h1 + h3 ) & 0xFFFFFFFF h1 = ( h1 + h4 ) & 0xFFFFFFFF h2 = ( h1 + h2 ) & 0xFFFFFFFF h3 = ( h1 + h3 ) & 0xFFFFFFFF h4 = ( h1 + h4 ) & 0xFFFFFFFF return ( h4 << 96 | h3 << 64 | h2 << 32 | h1 ) key = bytearray( xencode(key) ) if x64arch: return hash128_x64( key, seed ) else: return hash128_x86( key, seed ) def hash64( key, seed = 0x0, x64arch = True ): ''' Implements 64bit murmur3 hash. Returns a tuple. ''' hash_128 = hash128( key, seed, x64arch ) unsigned_val1 = hash_128 & 0xFFFFFFFFFFFFFFFF if unsigned_val1 & 0x8000000000000000 == 0: signed_val1 = unsigned_val1 else: signed_val1 = -( (unsigned_val1 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) unsigned_val2 = ( hash_128 >> 64 ) & 0xFFFFFFFFFFFFFFFF if unsigned_val2 & 0x8000000000000000 == 0: signed_val2 = unsigned_val2 else: signed_val2 = -( (unsigned_val2 ^ 0xFFFFFFFFFFFFFFFF) + 1 ) return ( int( signed_val1 ), int( signed_val2 ) ) def hash_bytes( key, seed = 0x0, x64arch = True ): ''' Implements 128bit murmur3 hash. Returns a byte string. ''' hash_128 = hash128( key, seed, x64arch ) bytestring = '' for i in range(0, 16, 1): lsbyte = hash_128 & 0xFF bytestring = bytestring + str( chr( lsbyte ) ) hash_128 = hash_128 >> 8 return bytestring if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( 'pymurmur3', 'pymurmur [options] "string to hash"' ) parser.add_argument( '--seed', type = int, default = 0 ) parser.add_argument( 'strings', default = [], nargs='+') opts = parser.parse_args() for str_to_hash in opts.strings: sys.stdout.write( '"%s" = 0x%08X\n' % ( str_to_hash, hash( str_to_hash ) ) )
[ "argparse.ArgumentParser" ]
[((13771, 13846), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""pymurmur3"""', '"""pymurmur [options] "string to hash\\""""'], {}), '(\'pymurmur3\', \'pymurmur [options] "string to hash"\')\n', (13794, 13846), False, 'import argparse\n')]
import asyncio import discord from datetime import datetime from operator import itemgetter from discord.ext import commands from Cogs import Nullify from Cogs import DisplayName from Cogs import UserTime from Cogs import Message def setup(bot): # Add the bot and deps settings = bot.get_cog("Settings") bot.add_cog(ServerStats(bot, settings)) class ServerStats: def __init__(self, bot, settings): self.bot = bot self.settings = settings async def message(self, message): # Check the message and see if we should allow it - always yes. # This module doesn't need to cancel messages. # Don't count your own, Pooter if not message.author.id == self.bot.user.id: server = message.guild messages = int(self.settings.getServerStat(server, "TotalMessages")) if messages == None: messages = 0 messages += 1 self.settings.setServerStat(server, "TotalMessages", messages) return { 'Ignore' : False, 'Delete' : False} @commands.command(pass_context=True) async def serverinfo(self, ctx, *, guild_name = None): """Lists some info about the current or passed server.""" # Check if we passed another guild guild = None if guild_name == None: guild = ctx.guild else: for g in self.bot.guilds: if g.name.lower() == guild_name.lower(): guild = g break if str(g.id) == str(guild_name): guild = g break if guild == None: # We didn't find it await ctx.send("I couldn't find that guild...") return server_embed = discord.Embed(color=ctx.author.color) server_embed.title = guild.name # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, guild.created_at) time_str = "{} {}".format(local_time['time'], local_time['zone']) server_embed.description = "Created at {}".format(time_str) online_members = 0 bot_member = 0 bot_online = 0 for member in guild.members: if member.bot: bot_member += 1 if not member.status == discord.Status.offline: bot_online += 1 continue if not member.status == discord.Status.offline: online_members += 1 # bot_percent = "{:,g}%".format((bot_member/len(guild.members))*100) user_string = "{:,}/{:,} online ({:,g}%)".format( online_members, len(guild.members) - bot_member, round((online_members/(len(guild.members) - bot_member) * 100), 2) ) b_string = "bot" if bot_member == 1 else "bots" user_string += "\n{:,}/{:,} {} online ({:,g}%)".format( bot_online, bot_member, b_string, round((bot_online/bot_member)*100, 2) ) #server_embed.add_field(name="Members", value="{:,}/{:,} online ({:.2f}%)\n{:,} {} ({}%)".format(online_members, len(guild.members), bot_percent), inline=True) server_embed.add_field(name="Members ({:,} total)".format(len(guild.members)), value=user_string, inline=True) server_embed.add_field(name="Roles", value=str(len(guild.roles)), inline=True) chandesc = "{:,} text, {:,} voice".format(len(guild.text_channels), len(guild.voice_channels)) server_embed.add_field(name="Channels", value=chandesc, inline=True) server_embed.add_field(name="Default Role", value=guild.default_role, inline=True) server_embed.add_field(name="Owner", value=guild.owner.name + "#" + guild.owner.discriminator, inline=True) server_embed.add_field(name="AFK Channel", value=guild.afk_channel, inline=True) server_embed.add_field(name="Verification", value=guild.verification_level, inline=True) server_embed.add_field(name="Voice Region", value=guild.region, inline=True) server_embed.add_field(name="Considered Large", value=guild.large, inline=True) # Find out where in our join position this server is joinedList = [] popList = [] for g in self.bot.guilds: joinedList.append({ 'ID' : g.id, 'Joined' : g.me.joined_at }) popList.append({ 'ID' : g.id, 'Population' : len(g.members) }) # sort the guilds by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) popList = sorted(popList, key=lambda x:x['Population'], reverse=True) check_item = { "ID" : guild.id, "Joined" : guild.me.joined_at } total = len(joinedList) position = joinedList.index(check_item) + 1 server_embed.add_field(name="Join Position", value="{:,} of {:,}".format(position, total), inline=True) # Get our population position check_item = { "ID" : guild.id, "Population" : len(guild.members) } total = len(popList) position = popList.index(check_item) + 1 server_embed.add_field(name="Population Rank", value="{:,} of {:,}".format(position, total), inline=True) emojitext = "" emojicount = 0 for emoji in guild.emojis: if emoji.animated: emojiMention = "<a:"+emoji.name+":"+str(emoji.id)+">" else: emojiMention = "<:"+emoji.name+":"+str(emoji.id)+">" test = emojitext + emojiMention if len(test) > 1024: # TOOO BIIIIIIIIG emojicount += 1 if emojicount == 1: ename = "Emojis ({:,} total)".format(len(guild.emojis)) else: ename = "Emojis (Continued)" server_embed.add_field(name=ename, value=emojitext, inline=True) emojitext=emojiMention else: emojitext = emojitext + emojiMention if len(emojitext): if emojicount == 0: emojiname = "Emojis ({} total)".format(len(guild.emojis)) else: emojiname = "Emojis (Continued)" server_embed.add_field(name=emojiname, value=emojitext, inline=True) if len(guild.icon_url): server_embed.set_thumbnail(url=guild.icon_url) else: # No Icon server_embed.set_thumbnail(url=ctx.author.default_avatar_url) server_embed.set_footer(text="Server ID: {}".format(guild.id)) await ctx.channel.send(embed=server_embed) @commands.command(pass_context=True) async def sharedservers(self, ctx, *, member = None): """Lists how many servers you share with the bot.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if member == None: member = ctx.author if type(member) is str: member_check = DisplayName.memberForName(member, ctx.guild) if not member_check: msg = "I couldn't find *{}* on this server...".format(member) if suppress: msg = Nullify.clean(msg) await ctx.send(msg) return member = member_check if member.id == self.bot.user.id: count = len(self.bot.guilds) if count == 1: await ctx.send("I'm on *1* server. :blush:") else: await ctx.send("I'm on *{}* servers. :blush:".format(count)) return count = 0 for guild in self.bot.guilds: for mem in guild.members: if mem.id == member.id: count += 1 if ctx.author.id == member.id: targ = "You share" else: targ = "*{}* shares".format(DisplayName.name(member)) if count == 1: await ctx.send("{} *1* server with me. :blush:".format(targ)) else: await ctx.send("{} *{}* servers with me. :blush:".format(targ, count)) @commands.command(pass_context=True) async def listservers(self, ctx, number : int = 10): """Lists the servers I'm connected to - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return i = 1 msg = '__**Servers I\'m On:**__\n\n' for server in self.bot.guilds: if i > number: break msg += '{}. *{}*\n'.format(i, server.name) i += 1 # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def topservers(self, ctx, number : int = 10): """Lists the top servers I'm connected to ordered by population - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return serverList = [] for server in self.bot.guilds: memberCount = 0 for member in server.members: memberCount += 1 serverList.append({ 'Name' : server.name, 'Users' : memberCount }) # sort the servers by population serverList = sorted(serverList, key=lambda x:int(x['Users']), reverse=True) if number > len(serverList): number = len(serverList) i = 1 msg = '' for server in serverList: if i > number: break msg += '{}. *{}* - *{:,}* members\n'.format(i, server['Name'], server['Users']) i += 1 if number < len(serverList): msg = '__**Top {} of {} Servers:**__\n\n'.format(number, len(serverList))+msg else: msg = '__**Top {} Servers:**__\n\n'.format(len(serverList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def bottomservers(self, ctx, number : int = 10): """Lists the bottom servers I'm connected to ordered by population - default is 10, max is 50.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 50: number = 50 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return serverList = [] for server in self.bot.guilds: serverList.append({ 'Name' : server.name, 'Users' : len(server.members) }) # sort the servers by population serverList = sorted(serverList, key=lambda x:int(x['Users'])) if number > len(serverList): number = len(serverList) i = 1 msg = '' for server in serverList: if i > number: break msg += '{}. *{}* - *{:,}* members\n'.format(i, server['Name'], server['Users']) i += 1 if number < len(serverList): msg = '__**Bottom {} of {} Servers:**__\n\n'.format(number, len(serverList))+msg else: msg = '__**Bottom {} Servers:**__\n\n'.format(len(serverList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def users(self, ctx): """Lists the total number of users on all servers I'm connected to.""" message = await Message.EmbedText(title="Counting users...", color=ctx.message.author).send(ctx) servers = members = membersOnline = bots = botsOnline = 0 counted_users = [] counted_bots = [] for server in self.bot.guilds: servers += 1 for member in server.members: if member.bot: bots += 1 if not member.id in counted_bots: counted_bots.append(member.id) if not member.status == discord.Status.offline: botsOnline += 1 else: members += 1 if not member.id in counted_users: counted_users.append(member.id) if not member.status == discord.Status.offline: membersOnline += 1 await Message.Embed( title="Member Stats", description="Current User Information".format(server.name), fields=[ { "name" : "Servers", "value" : "โ””โ”€ {:,}".format(servers), "inline" : False }, { "name" : "Users", "value" : "โ””โ”€ {:,}/{:,} online ({:,g}%) - {:,} unique ({:,g}%)".format(membersOnline, members, round((membersOnline/members)*100, 2), len(counted_users), round((len(counted_users)/members)*100, 2)), "inline" : False}, { "name" : "Bots", "value" : "โ””โ”€ {:,}/{:,} online ({:,g}%) - {:,} unique ({:,g}%)".format(botsOnline, bots, round((botsOnline/bots)*100, 2), len(counted_bots), round(len(counted_bots)/bots*100, 2)), "inline" : False}, { "name" : "Total", "value" : "โ””โ”€ {:,}/{:,} online ({:,g}%)".format(membersOnline + botsOnline, members+bots, round(((membersOnline + botsOnline)/(members+bots))*100, 2)), "inline" : False} ], color=ctx.message.author).edit(ctx, message) '''userCount = 0 serverCount = 0 counted_users = [] message = await ctx.send("Counting users...") for server in self.bot.guilds: serverCount += 1 userCount += len(server.members) for member in server.members: if not member.id in counted_users: counted_users.append(member.id) await message.edit(content='There are *{:,} users* (*{:,}* unique) on the *{:,} servers* I am currently a part of!'.format(userCount, len(counted_users), serverCount))''' @commands.command(pass_context=True) async def joinpos(self, ctx, *, member = None): """Tells when a user joined compared to other users.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if member == None: member = ctx.author if type(member) is str: member_check = DisplayName.memberForName(member, ctx.guild) if not member_check: msg = "I couldn't find *{}* on this server...".format(member) if suppress: msg = Nullify.clean(msg) await ctx.send(msg) return member = member_check joinedList = [] for mem in ctx.message.guild.members: joinedList.append({ 'ID' : mem.id, 'Joined' : mem.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) check_item = { "ID" : member.id, "Joined" : member.joined_at } total = len(joinedList) position = joinedList.index(check_item) + 1 before = "" after = "" msg = "*{}'s* join position is **{:,}**.".format(DisplayName.name(member), position, total) if position-1 == 1: # We have previous members before = "**1** user" elif position-1 > 1: before = "**{:,}** users".format(position-1) if total-position == 1: # There were users after as well after = "**1** user" elif total-position > 1: after = "**{:,}** users".format(total-position) # Build the string! if len(before) and len(after): # Got both msg += "\n\n{} joined before, and {} after.".format(before, after) elif len(before): # Just got before msg += "\n\n{} joined before.".format(before) elif len(after): # Just after msg += "\n\n{} joined after.".format(after) await ctx.send(msg) @commands.command(pass_context=True) async def firstjoins(self, ctx, number : int = 10): """Lists the first users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No users! Just like you wanted!') return joinedList = [] for member in ctx.message.guild.members: joinedList.append({ 'ID' : member.id, 'Joined' : member.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) msg += '{}. *{}* - *{}*\n'.format(i, DisplayName.name(DisplayName.memberForID(member['ID'], ctx.message.guild)), time_str) i += 1 if number < len(joinedList): msg = '__**First {} of {} Members to Join:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**First {} Members to Join:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def recentjoins(self, ctx, number : int = 10): """Lists the most recent users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No users! Just like you wanted!') return joinedList = [] for member in ctx.message.guild.members: joinedList.append({ 'ID' : member.id, 'Joined' : member.joined_at }) # sort the users by join date joinedList = sorted(joinedList, key=lambda x:x['Joined'], reverse=True) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) msg += '{}. *{}* - *{}*\n'.format(i, DisplayName.name(DisplayName.memberForID(member['ID'], ctx.message.guild)), time_str) i += 1 if number < len(joinedList): msg = '__**Last {} of {} Members to Join:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**Last {} Members to Join:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def firstservers(self, ctx, number : int = 10): """Lists the first servers I've joined - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return joinedList = [] for guild in self.bot.guilds: botmember = DisplayName.memberForID(self.bot.user.id, guild) joinedList.append({ 'Name' : guild.name, 'Joined' : botmember.joined_at, 'Members': len(guild.members) }) # sort the servers by join date joinedList = sorted(joinedList, key=lambda x:x['Joined']) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) if member['Members'] == 1: msg += '{}. *{}* - *{}* - *(1 member)*\n'.format(i, member['Name'], time_str) else: msg += '{}. *{}* - *{}* - *({} members)*\n'.format(i, member['Name'], time_str, member['Members']) i += 1 if number < len(joinedList): msg = '__**First {} of {} Servers I Joined:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**First {} Servers I Joined:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def recentservers(self, ctx, number : int = 10): """Lists the most recent users to join - default is 10, max is 25.""" # Check if we're suppressing @here and @everyone mentions if self.settings.getServerStat(ctx.message.guild, "SuppressMentions"): suppress = True else: suppress = False if number > 25: number = 25 if number < 1: await ctx.channel.send('Oookay - look! No servers! Just like you wanted!') return joinedList = [] for guild in self.bot.guilds: botmember = DisplayName.memberForID(self.bot.user.id, guild) joinedList.append({ 'Name' : guild.name, 'Joined' : botmember.joined_at, 'Members': len(guild.members) }) # sort the servers by join date joinedList = sorted(joinedList, key=lambda x:x['Joined'], reverse=True) i = 1 msg = '' for member in joinedList: if i > number: break # Get localized user time local_time = UserTime.getUserTime(ctx.author, self.settings, member['Joined']) time_str = "{} {}".format(local_time['time'], local_time['zone']) if member['Members'] == 1: msg += '{}. *{}* - *{}* - *(1 member)*\n'.format(i, member['Name'], time_str) else: msg += '{}. *{}* - *{}* - *({} members)*\n'.format(i, member['Name'], time_str, member['Members']) i += 1 if number < len(joinedList): msg = '__**Last {} of {} Servers I Joined:**__\n\n'.format(number, len(joinedList))+msg else: msg = '__**Last {} Servers I Joined:**__\n\n'.format(len(joinedList))+msg # Check for suppress if suppress: msg = Nullify.clean(msg) await ctx.channel.send(msg) @commands.command(pass_context=True) async def messages(self, ctx): """Lists the number of messages I've seen on this sever so far. (only applies after this module's inception, and if I'm online)""" messages = int(self.settings.getServerStat(ctx.message.guild, "TotalMessages")) messages -= 1 self.settings.setServerStat(ctx.message.guild, "TotalMessages", messages) if messages == None: messages = 0 if messages == 1: await ctx.channel.send('So far, I\'ve witnessed *{:,} message!*'.format(messages)) else: await ctx.channel.send('So far, I\'ve witnessed *{:,} messages!*'.format(messages)) @commands.command(pass_context=True) async def allmessages(self, ctx): """Lists the number of messages I've seen on all severs so far. (only applies after this module's inception, and if I'm online)""" messages = 0 for guild in self.bot.guilds: temp = 0 if self.settings.getServerStat(guild, "TotalMessages") is None else self.settings.getServerStat(guild, "TotalMessages") messages += int(temp) messages -= 1 if messages == 1: await ctx.channel.send('So far, I\'ve witnessed *{:,} message across all servers!*'.format(messages)) else: await ctx.channel.send('So far, I\'ve witnessed *{:,} messages across all servers!*'.format(messages)) # Set our message count locally -1 messages = int(self.settings.getServerStat(ctx.message.guild, "TotalMessages")) messages -= 1 self.settings.setServerStat(ctx.message.guild, "TotalMessages", messages)
[ "Cogs.DisplayName.name", "Cogs.UserTime.getUserTime", "Cogs.Nullify.clean", "Cogs.Message.EmbedText", "Cogs.DisplayName.memberForName", "Cogs.DisplayName.memberForID", "discord.Embed", "discord.ext.commands.command" ]
[((1159, 1194), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (1175, 1194), False, 'from discord.ext import commands\n'), ((6950, 6985), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (6966, 6985), False, 'from discord.ext import commands\n'), ((8626, 8661), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (8642, 8661), False, 'from discord.ext import commands\n'), ((9570, 9605), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (9586, 9605), False, 'from discord.ext import commands\n'), ((11224, 11259), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (11240, 11259), False, 'from discord.ext import commands\n'), ((12780, 12815), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (12796, 12815), False, 'from discord.ext import commands\n'), ((15470, 15505), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (15486, 15505), False, 'from discord.ext import commands\n'), ((17730, 17765), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (17746, 17765), False, 'from discord.ext import commands\n'), ((19451, 19486), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (19467, 19486), False, 'from discord.ext import commands\n'), ((21199, 21234), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (21215, 21234), False, 'from discord.ext import commands\n'), ((23168, 23203), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (23184, 23203), False, 'from discord.ext import commands\n'), ((25150, 25185), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (25166, 25185), False, 'from discord.ext import commands\n'), ((25856, 25891), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (25872, 25891), False, 'from discord.ext import commands\n'), ((1914, 1951), 'discord.Embed', 'discord.Embed', ([], {'color': 'ctx.author.color'}), '(color=ctx.author.color)\n', (1927, 1951), False, 'import discord\n'), ((2060, 2125), 'Cogs.UserTime.getUserTime', 'UserTime.getUserTime', (['ctx.author', 'self.settings', 'guild.created_at'], {}), '(ctx.author, self.settings, guild.created_at)\n', (2080, 2125), False, 'from Cogs import UserTime\n'), ((7464, 7508), 'Cogs.DisplayName.memberForName', 'DisplayName.memberForName', (['member', 'ctx.guild'], {}), '(member, ctx.guild)\n', (7489, 7508), False, 'from Cogs import DisplayName\n'), ((9506, 9524), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (9519, 9524), False, 'from Cogs import Nullify\n'), ((11160, 11178), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (11173, 11178), False, 'from Cogs import Nullify\n'), ((12714, 12732), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (12727, 12732), False, 'from Cogs import Nullify\n'), ((15979, 16023), 'Cogs.DisplayName.memberForName', 'DisplayName.memberForName', (['member', 'ctx.guild'], {}), '(member, ctx.guild)\n', (16004, 16023), False, 'from Cogs import DisplayName\n'), ((16849, 16873), 'Cogs.DisplayName.name', 'DisplayName.name', (['member'], {}), '(member)\n', (16865, 16873), False, 'from Cogs import DisplayName\n'), ((18762, 18827), 'Cogs.UserTime.getUserTime', 'UserTime.getUserTime', (['ctx.author', 'self.settings', "member['Joined']"], {}), "(ctx.author, self.settings, member['Joined'])\n", (18782, 18827), False, 'from Cogs import UserTime\n'), ((19387, 19405), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (19400, 19405), False, 'from Cogs import Nullify\n'), ((20504, 20569), 'Cogs.UserTime.getUserTime', 'UserTime.getUserTime', (['ctx.author', 'self.settings', "member['Joined']"], {}), "(ctx.author, self.settings, member['Joined'])\n", (20524, 20569), False, 'from Cogs import UserTime\n'), ((21127, 21145), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (21140, 21145), False, 'from Cogs import Nullify\n'), ((21871, 21919), 'Cogs.DisplayName.memberForID', 'DisplayName.memberForID', (['self.bot.user.id', 'guild'], {}), '(self.bot.user.id, guild)\n', (21894, 21919), False, 'from Cogs import DisplayName\n'), ((22343, 22408), 'Cogs.UserTime.getUserTime', 'UserTime.getUserTime', (['ctx.author', 'self.settings', "member['Joined']"], {}), "(ctx.author, self.settings, member['Joined'])\n", (22363, 22408), False, 'from Cogs import UserTime\n'), ((23104, 23122), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (23117, 23122), False, 'from Cogs import Nullify\n'), ((23841, 23889), 'Cogs.DisplayName.memberForID', 'DisplayName.memberForID', (['self.bot.user.id', 'guild'], {}), '(self.bot.user.id, guild)\n', (23864, 23889), False, 'from Cogs import DisplayName\n'), ((24327, 24392), 'Cogs.UserTime.getUserTime', 'UserTime.getUserTime', (['ctx.author', 'self.settings', "member['Joined']"], {}), "(ctx.author, self.settings, member['Joined'])\n", (24347, 24392), False, 'from Cogs import UserTime\n'), ((25086, 25104), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (25099, 25104), False, 'from Cogs import Nullify\n'), ((8390, 8414), 'Cogs.DisplayName.name', 'DisplayName.name', (['member'], {}), '(member)\n', (8406, 8414), False, 'from Cogs import DisplayName\n'), ((7679, 7697), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (7692, 7697), False, 'from Cogs import Nullify\n'), ((12964, 13034), 'Cogs.Message.EmbedText', 'Message.EmbedText', ([], {'title': '"""Counting users..."""', 'color': 'ctx.message.author'}), "(title='Counting users...', color=ctx.message.author)\n", (12981, 13034), False, 'from Cogs import Message\n'), ((16194, 16212), 'Cogs.Nullify.clean', 'Nullify.clean', (['msg'], {}), '(msg)\n', (16207, 16212), False, 'from Cogs import Nullify\n'), ((18974, 19030), 'Cogs.DisplayName.memberForID', 'DisplayName.memberForID', (["member['ID']", 'ctx.message.guild'], {}), "(member['ID'], ctx.message.guild)\n", (18997, 19030), False, 'from Cogs import DisplayName\n'), ((20716, 20772), 'Cogs.DisplayName.memberForID', 'DisplayName.memberForID', (["member['ID']", 'ctx.message.guild'], {}), "(member['ID'], ctx.message.guild)\n", (20739, 20772), False, 'from Cogs import DisplayName\n')]
import random import torch.utils.data.sampler class BalancedBatchSampler(torch.utils.data.sampler.BatchSampler): def __init__( self, dataset_labels, batch_size=1, steps=None, n_classes=0, n_samples=2 ): """ Create a balanced batch sampler for label based datasets Args dataset_labels : Labels of every entry from a dataset (in the same sequence) batch_size : batch_size no explaination needed step_size : Number of batches to generate (if None, then dataset_size / batch_size will be used) n_classes : Number of classes n_samples : Number of samples per class *** If batch_size > n_classes * n_samples, rest of batch will be randomly filled """ self.batch_size = batch_size self.steps = len(dataset_labels) // batch_size if steps is None else steps self.n_classes = n_classes self.n_samples = n_samples # Create a label_to_entry_ids table self.label_to_entry_ids = {} for entry_id, label in enumerate(dataset_labels): if label in self.label_to_entry_ids: self.label_to_entry_ids[label].append(entry_id) else: self.label_to_entry_ids[label] = [entry_id] # Subset the labels with more than n_samples entries self.labels_subset = [label for (label, entry_ids) in self.label_to_entry_ids.items() if len(entry_ids) >= n_samples] assert len(self.labels_subset) >= n_classes, 'Too little labels have {} entries, choose a smaller n_classes or n_samples'.format(n_samples) def _make_batch_ids(self): batch_ids = [] # Choose classes and entries labels_choosen = random.sample(self.labels_subset, self.n_classes) # Randomly sample n_samples entries from choosen labels for l in labels_choosen: batch_ids += random.sample(self.label_to_entry_ids[l], self.n_samples) if len(batch_ids) < self.batch_size: # Randomly sample remainder labels_choosen = {l: None for l in labels_choosen} remaining_entry_ids = [] for label, entry_ids in self.label_to_entry_ids.items(): if label not in labels_choosen: remaining_entry_ids += entry_ids batch_ids += random.sample(remaining_entry_ids, self.batch_size - len(batch_ids)) # Randomly shuffle batch ids batch_ids = random.sample(batch_ids, self.batch_size) batch_ids = torch.LongTensor(batch_ids) return batch_ids def __iter__(self): self.count = 0 while self.count < self.steps: self.count += 1 yield self._make_batch_ids() def __len__(self): return self.steps
[ "random.sample" ]
[((1796, 1845), 'random.sample', 'random.sample', (['self.labels_subset', 'self.n_classes'], {}), '(self.labels_subset, self.n_classes)\n', (1809, 1845), False, 'import random\n'), ((2535, 2576), 'random.sample', 'random.sample', (['batch_ids', 'self.batch_size'], {}), '(batch_ids, self.batch_size)\n', (2548, 2576), False, 'import random\n'), ((1969, 2026), 'random.sample', 'random.sample', (['self.label_to_entry_ids[l]', 'self.n_samples'], {}), '(self.label_to_entry_ids[l], self.n_samples)\n', (1982, 2026), False, 'import random\n')]
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Ambari Agent """ import re __all__ = ["get_bare_principal"] def get_bare_principal(normalized_principal_name): """ Given a normalized principal name (nimbus/[email protected]) returns just the primary component (nimbus) :param normalized_principal_name: a string containing the principal name to process :return: a string containing the primary component value or None if not valid """ bare_principal = None if normalized_principal_name: match = re.match(r"([^/@]+)(?:/[^@])?(?:@.*)?", normalized_principal_name) if match: bare_principal = match.group(1) return bare_principal
[ "re.match" ]
[((1272, 1337), 're.match', 're.match', (['"""([^/@]+)(?:/[^@])?(?:@.*)?"""', 'normalized_principal_name'], {}), "('([^/@]+)(?:/[^@])?(?:@.*)?', normalized_principal_name)\n", (1280, 1337), False, 'import re\n')]
import pytest from httmock import urlmatch, HTTMock from util.config import URLSchemeAndHostname from util.config.validator import ValidatorContext from util.config.validators import ConfigValidationException from util.config.validators.validate_bitbucket_trigger import BitbucketTriggerValidator from test.fixtures import * @pytest.mark.parametrize( "unvalidated_config", [ (ValidatorContext({})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_KEY": "foo"}})), (ValidatorContext({"BITBUCKET_TRIGGER_CONFIG": {"CONSUMER_SECRET": "foo"}})), ], ) def test_validate_invalid_bitbucket_trigger_config(unvalidated_config, app): validator = BitbucketTriggerValidator() with pytest.raises(ConfigValidationException): validator.validate(unvalidated_config) def test_validate_bitbucket_trigger(app): url_hit = [False] @urlmatch(netloc=r"bitbucket.org") def handler(url, request): url_hit[0] = True return { "status_code": 200, "content": "oauth_token=foo&oauth_token_secret=bar", } with HTTMock(handler): validator = BitbucketTriggerValidator() url_scheme_and_hostname = URLSchemeAndHostname("http", "localhost:5000") unvalidated_config = ValidatorContext( { "BITBUCKET_TRIGGER_CONFIG": { "CONSUMER_KEY": "foo", "CONSUMER_SECRET": "bar", }, }, url_scheme_and_hostname=url_scheme_and_hostname, ) validator.validate(unvalidated_config) assert url_hit[0]
[ "util.config.URLSchemeAndHostname", "httmock.HTTMock", "util.config.validator.ValidatorContext", "pytest.raises", "util.config.validators.validate_bitbucket_trigger.BitbucketTriggerValidator", "httmock.urlmatch" ]
[((753, 780), 'util.config.validators.validate_bitbucket_trigger.BitbucketTriggerValidator', 'BitbucketTriggerValidator', ([], {}), '()\n', (778, 780), False, 'from util.config.validators.validate_bitbucket_trigger import BitbucketTriggerValidator\n'), ((952, 984), 'httmock.urlmatch', 'urlmatch', ([], {'netloc': '"""bitbucket.org"""'}), "(netloc='bitbucket.org')\n", (960, 984), False, 'from httmock import urlmatch, HTTMock\n'), ((791, 831), 'pytest.raises', 'pytest.raises', (['ConfigValidationException'], {}), '(ConfigValidationException)\n', (804, 831), False, 'import pytest\n'), ((397, 417), 'util.config.validator.ValidatorContext', 'ValidatorContext', (['{}'], {}), '({})\n', (413, 417), False, 'from util.config.validator import ValidatorContext\n'), ((429, 479), 'util.config.validator.ValidatorContext', 'ValidatorContext', (["{'BITBUCKET_TRIGGER_CONFIG': {}}"], {}), "({'BITBUCKET_TRIGGER_CONFIG': {}})\n", (445, 479), False, 'from util.config.validator import ValidatorContext\n'), ((491, 562), 'util.config.validator.ValidatorContext', 'ValidatorContext', (["{'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_KEY': 'foo'}}"], {}), "({'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_KEY': 'foo'}})\n", (507, 562), False, 'from util.config.validator import ValidatorContext\n'), ((574, 648), 'util.config.validator.ValidatorContext', 'ValidatorContext', (["{'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_SECRET': 'foo'}}"], {}), "({'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_SECRET': 'foo'}})\n", (590, 648), False, 'from util.config.validator import ValidatorContext\n'), ((1177, 1193), 'httmock.HTTMock', 'HTTMock', (['handler'], {}), '(handler)\n', (1184, 1193), False, 'from httmock import urlmatch, HTTMock\n'), ((1215, 1242), 'util.config.validators.validate_bitbucket_trigger.BitbucketTriggerValidator', 'BitbucketTriggerValidator', ([], {}), '()\n', (1240, 1242), False, 'from util.config.validators.validate_bitbucket_trigger import BitbucketTriggerValidator\n'), ((1278, 1324), 'util.config.URLSchemeAndHostname', 'URLSchemeAndHostname', (['"""http"""', '"""localhost:5000"""'], {}), "('http', 'localhost:5000')\n", (1298, 1324), False, 'from util.config import URLSchemeAndHostname\n'), ((1354, 1509), 'util.config.validator.ValidatorContext', 'ValidatorContext', (["{'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_KEY': 'foo', 'CONSUMER_SECRET': 'bar'}}"], {'url_scheme_and_hostname': 'url_scheme_and_hostname'}), "({'BITBUCKET_TRIGGER_CONFIG': {'CONSUMER_KEY': 'foo',\n 'CONSUMER_SECRET': 'bar'}}, url_scheme_and_hostname=url_scheme_and_hostname\n )\n", (1370, 1509), False, 'from util.config.validator import ValidatorContext\n')]
""" BigGAN: The Authorized Unofficial PyTorch release Code by <NAME> and <NAME> This code is an unofficial reimplementation of "Large-Scale GAN Training for High Fidelity Natural Image Synthesis," by <NAME>, <NAME>, and <NAME> (arXiv 1809.11096). Let's go. """ import datetime import time import torch import dataset import BigGAN import train_fns import utils from common import * # IMG_SIZE = 64 # IMG_SIZE_2 = IMG_SIZE * 2 def run(config): # Update the config dict as necessary # This is for convenience, to add settings derived from the user-specified # configuration into the config-dict (e.g. inferring the number of classes # and size of the images from the dataset, passing in a pytorch object # for the activation specified as a string) config['resolution'] = IMG_SIZE config['n_classes'] = 1 config['G_activation'] = utils.activation_dict[config['G_nl']] config['D_activation'] = utils.activation_dict[config['D_nl']] # By default, skip init if resuming training. if config['resume']: print('Skipping initialization for training resumption...') config['skip_init'] = True config = utils.update_config_roots(config) device = 'cuda' # Seed RNG utils.seed_rng(config['seed']) # Prepare root folders if necessary utils.prepare_root(config) # Setup cudnn.benchmark for free speed torch.backends.cudnn.benchmark = True experiment_name = (config['experiment_name'] if config['experiment_name'] else 'generative_dog_images') print('Experiment name is %s' % experiment_name) G = BigGAN.Generator(**config).to(device) D = BigGAN.Discriminator(**config).to(device) # if config['parallel']: G = nn.DataParallel(G) D = nn.DataParallel(D) # If using EMA, prepare it if config['ema']: print('Preparing EMA for G with decay of {}'.format( config['ema_decay'])) G_ema = BigGAN.Generator(**{**config, 'skip_init': True, 'no_optim': True}).to(device) G_ema = nn.DataParallel(G_ema) ema = utils.ema(G, G_ema, config['ema_decay'], config['ema_start']) else: G_ema, ema = None, None GD = BigGAN.G_D(G, D) print(G) print(D) print('Number of params in G: {} D: {}'.format( *[sum([p.data.nelement() for p in net.parameters()]) for net in [G, D]])) # Prepare state dict, which holds things like epoch # and itr # state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'config': config} # If loading from a pre-trained model, load weights if config['resume']: print('Loading weights...') utils.load_weights(G, D, state_dict, config['weights_root'], experiment_name, config['load_weights'] if config['load_weights'] else None, G_ema if config['ema'] else None) # Prepare data; the Discriminator's batch size is all that needs to be passed # to the dataloader, as G doesn't require dataloading. # Note that at every loader iteration we pass in enough data to complete # a full D iteration (regardless of number of D steps and accumulations) D_batch_size = (config['batch_size'] * config['num_D_steps'] * config['num_D_accumulations']) loaders = dataset.get_data_loaders( data_root=config['data_root'], label_root=config['label_root'], batch_size=D_batch_size, num_workers=config['num_workers'], shuffle=config['shuffle'], pin_memory=config['pin_memory'], drop_last=True, load_in_mem=config['load_in_mem'], mask_out=config['mask_out'] ) # Prepare noise and randomly sampled label arrays # Allow for different batch sizes in G G_batch_size = max(config['G_batch_size'], config['batch_size']) num_samples = config['num_fixed_samples'] z_, y_ = utils.prepare_z_y( num_samples, G.module.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) # Prepare a fixed z & y to see individual sample evolution throghout training fixed_z, fixed_y = utils.prepare_z_y( num_samples, G.module.dim_z, config['n_classes'], device=device, fp16=config['G_fp16']) fixed_z.sample_() fixed_y.sample_() # Loaders are loaded, prepare the training function train = train_fns.create_train_fn( G, D, GD, z_, y_, ema, state_dict, config) print('Beginning training at epoch %d...' % state_dict['epoch']) start_time = time.perf_counter() loader = loaders[0] total_iters = config['num_epochs'] * len(loader) # Train for specified number of epochs, although we mostly track G iterations. pbar = tqdm(total=total_iters) for _ in range(state_dict['itr']): pbar.update() timer = mmcv.Timer() timer.start() start_itr = state_dict['itr'] for epoch in range(state_dict['epoch'], config['num_epochs']): for i, data in enumerate(loader): x, y = data['img'], data['label'] # Increment the iteration counter state_dict['itr'] += 1 # Make sure G and D are in training mode, just in case they got set to eval # For D, which typically doesn't have BN, this shouldn't matter much. G.train() D.train() if config['ema']: G_ema.train() x, y = x.to(device), y.to(device) metrics = train(x, y) if not (state_dict['itr'] % config['log_interval']): curr_time = timer.since_start() curr_time_str = datetime.datetime.fromtimestamp( curr_time).strftime('%H:%M:%S') # quang duong / (quang duong da di / thoi gian da di) eta = ( total_iters - state_dict['itr']) // ((state_dict['itr']-start_itr) / (curr_time+1)) eta_str = datetime.datetime.fromtimestamp( eta).strftime('%H:%M:%S') log = "[{}] [{}] [{} / {}] Ep {}, ".format( curr_time_str, eta_str, state_dict['itr'], total_iters, epoch) log += ', '.join(['%s : %+4.3f' % (key, metrics[key]) for key in metrics]) pbar.set_description(log) # print(log) # Save weights and copies as configured at specified interval if not (state_dict['itr'] % config['sample_every']): if config['G_eval_mode']: # print('Switching G to eval mode...') G.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name, save_weight=False) if not (state_dict['itr'] % config['save_every']): if config['G_eval_mode']: # print('Switching G to eval mode...') G.eval() train_fns.save_and_sample(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict, config, experiment_name, save_weight=True) pbar.update() # Increment epoch counter at end of epoch state_dict['epoch'] += 1 def main(): # parse command line and run parser = utils.prepare_parser() config = vars(parser.parse_args()) print(config) run(config) if __name__ == '__main__': main()
[ "datetime.datetime.fromtimestamp", "utils.prepare_root", "dataset.get_data_loaders", "utils.prepare_z_y", "train_fns.save_and_sample", "BigGAN.Generator", "time.perf_counter", "utils.update_config_roots", "train_fns.create_train_fn", "utils.ema", "BigGAN.G_D", "BigGAN.Discriminator", "utils.prepare_parser", "utils.load_weights", "utils.seed_rng" ]
[((1176, 1209), 'utils.update_config_roots', 'utils.update_config_roots', (['config'], {}), '(config)\n', (1201, 1209), False, 'import utils\n'), ((1249, 1279), 'utils.seed_rng', 'utils.seed_rng', (["config['seed']"], {}), "(config['seed'])\n", (1263, 1279), False, 'import utils\n'), ((1324, 1350), 'utils.prepare_root', 'utils.prepare_root', (['config'], {}), '(config)\n', (1342, 1350), False, 'import utils\n'), ((2253, 2269), 'BigGAN.G_D', 'BigGAN.G_D', (['G', 'D'], {}), '(G, D)\n', (2263, 2269), False, 'import BigGAN\n'), ((3378, 3685), 'dataset.get_data_loaders', 'dataset.get_data_loaders', ([], {'data_root': "config['data_root']", 'label_root': "config['label_root']", 'batch_size': 'D_batch_size', 'num_workers': "config['num_workers']", 'shuffle': "config['shuffle']", 'pin_memory': "config['pin_memory']", 'drop_last': '(True)', 'load_in_mem': "config['load_in_mem']", 'mask_out': "config['mask_out']"}), "(data_root=config['data_root'], label_root=config[\n 'label_root'], batch_size=D_batch_size, num_workers=config[\n 'num_workers'], shuffle=config['shuffle'], pin_memory=config[\n 'pin_memory'], drop_last=True, load_in_mem=config['load_in_mem'],\n mask_out=config['mask_out'])\n", (3402, 3685), False, 'import dataset\n'), ((3971, 4081), 'utils.prepare_z_y', 'utils.prepare_z_y', (['num_samples', 'G.module.dim_z', "config['n_classes']"], {'device': 'device', 'fp16': "config['G_fp16']"}), "(num_samples, G.module.dim_z, config['n_classes'], device=\n device, fp16=config['G_fp16'])\n", (3988, 4081), False, 'import utils\n'), ((4191, 4301), 'utils.prepare_z_y', 'utils.prepare_z_y', (['num_samples', 'G.module.dim_z', "config['n_classes']"], {'device': 'device', 'fp16': "config['G_fp16']"}), "(num_samples, G.module.dim_z, config['n_classes'], device=\n device, fp16=config['G_fp16'])\n", (4208, 4301), False, 'import utils\n'), ((4419, 4487), 'train_fns.create_train_fn', 'train_fns.create_train_fn', (['G', 'D', 'GD', 'z_', 'y_', 'ema', 'state_dict', 'config'], {}), '(G, D, GD, z_, y_, ema, state_dict, config)\n', (4444, 4487), False, 'import train_fns\n'), ((4584, 4603), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (4601, 4603), False, 'import time\n'), ((7420, 7442), 'utils.prepare_parser', 'utils.prepare_parser', ([], {}), '()\n', (7440, 7442), False, 'import utils\n'), ((2139, 2200), 'utils.ema', 'utils.ema', (['G', 'G_ema', "config['ema_decay']", "config['ema_start']"], {}), "(G, G_ema, config['ema_decay'], config['ema_start'])\n", (2148, 2200), False, 'import utils\n'), ((2697, 2876), 'utils.load_weights', 'utils.load_weights', (['G', 'D', 'state_dict', "config['weights_root']", 'experiment_name', "(config['load_weights'] if config['load_weights'] else None)", "(G_ema if config['ema'] else None)"], {}), "(G, D, state_dict, config['weights_root'],\n experiment_name, config['load_weights'] if config['load_weights'] else\n None, G_ema if config['ema'] else None)\n", (2715, 2876), False, 'import utils\n'), ((1630, 1656), 'BigGAN.Generator', 'BigGAN.Generator', ([], {}), '(**config)\n', (1646, 1656), False, 'import BigGAN\n'), ((1681, 1711), 'BigGAN.Discriminator', 'BigGAN.Discriminator', ([], {}), '(**config)\n', (1701, 1711), False, 'import BigGAN\n'), ((1971, 2038), 'BigGAN.Generator', 'BigGAN.Generator', ([], {}), "(**{**config, 'skip_init': True, 'no_optim': True})\n", (1987, 2038), False, 'import BigGAN\n'), ((6714, 6838), 'train_fns.save_and_sample', 'train_fns.save_and_sample', (['G', 'D', 'G_ema', 'z_', 'y_', 'fixed_z', 'fixed_y', 'state_dict', 'config', 'experiment_name'], {'save_weight': '(False)'}), '(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict,\n config, experiment_name, save_weight=False)\n', (6739, 6838), False, 'import train_fns\n'), ((7088, 7211), 'train_fns.save_and_sample', 'train_fns.save_and_sample', (['G', 'D', 'G_ema', 'z_', 'y_', 'fixed_z', 'fixed_y', 'state_dict', 'config', 'experiment_name'], {'save_weight': '(True)'}), '(G, D, G_ema, z_, y_, fixed_z, fixed_y, state_dict,\n config, experiment_name, save_weight=True)\n', (7113, 7211), False, 'import train_fns\n'), ((5673, 5715), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['curr_time'], {}), '(curr_time)\n', (5704, 5715), False, 'import datetime\n'), ((6008, 6044), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['eta'], {}), '(eta)\n', (6039, 6044), False, 'import datetime\n')]
# Ce fichier contient (au moins) cinq erreurs. # Instructions: # - tester jusqu'ร  atteindre 100% de couverture; # - corriger les bugs;" # - envoyer le diff ou le dรฉpรดt git par email.""" import hypothesis from hypothesis import given, settings from hypothesis.strategies import integers, lists class BinHeap: #structure de tas binaires d'entiers def __init__(self): #initialise un tas binaire d'entiers avec un element 0 self.heapList = [0] self.currentSize = 1#taille de la liste heapList (invariant) def percUp(self,i): #upward percolation until 0 reached or father is bigger while i // 2 > 0 and self.heapList[i] < self.heapList[i // 2]: tmp = self.heapList[i // 2] self.heapList[i // 2] = self.heapList[i] self.heapList[i] = tmp i //= 2 def insert(self,k): #inserting a new value into the heap self.heapList.append(k) self.percUp(self.currentSize) self.currentSize = self.currentSize + 1 def percDown(self,i): while (i * 2) < self.currentSize:#while I have a child mc = self.minChild(i)#mc is the index of the smallest if self.heapList[i] > self.heapList[mc]: tmp = self.heapList[i] self.heapList[i] = self.heapList[mc] self.heapList[mc] = tmp i = mc def minChild(self,i): if i * 2 >= self.currentSize or i == 0: print("No Child. None is returned.") return if i * 2 + 1 >= self.currentSize: return i * 2 else: if self.heapList[i*2] < self.heapList[i*2+1]: return i * 2 else: return i * 2 + 1 def delMin(self): try: rval = self.heapList[1] except IndexError: print("Empty heap. Nothing is changed. None is returned.") return self.currentSize = self.currentSize - 1 self.heapList[1] = self.heapList[self.currentSize] self.heapList.pop() self.percDown(1) return rval def buildHeap(self,alist): #creates a whole heap from a list, by percolating all its elements i = 1 self.currentSize = len(alist) + 1# + 1 self.heapList = [0] + alist # enlever le [:] while (i < self.currentSize): self.percUp(i) i += 1 def assert_isheaplist(x,val,lon,HL): assert ((x * 2 + 1 > lon) or (x * 2 + 1 == lon and HL[2*x] >= val) or (HL[2*x] >= val and HL[2*x+1] >= val)) def assert_goodheap(tau,lon): for x in range(1,lon): assert_isheaplist(x,tau.heapList[x],tau.currentSize,tau.heapList) def test_init(): tau = BinHeap() assert tau.heapList == [0] assert tau.currentSize == 1 @given(integers()) @settings(max_examples=100) def test_percup(integer): gamma = [0,1,3,2,9,99,2,3,10,9,103,102,3,2,3,3] tau = BinHeap() tau.currentsize = 16 tau.heapList = gamma[:] tau.percUp(15) assert tau.heapList == gamma[:] tau.heapList[15] = 2 tau.percUp(15) print(tau.heapList) assert tau.heapList == [0,1,3,2,9,99,2,2,10,9,103,102,3,2,3,3] assert tau.currentsize == 16 tau.heapList.append(8) tau.currentsize = 17 tau.percUp(16) assert tau.heapList == [0,1,3,2,8,99,2,2,9,9,103,102,3,2,3,3,10] tau.heapList.append(integer) tau.currentsize = 18 tau.percUp(17) assert tau.heapList[17] >= tau.heapList[8] assert tau.heapList[8] >= tau.heapList[4] @given(lists(elements=integers())) @settings(max_examples=1000) def test_build(L): tau = BinHeap() tau.buildHeap(L) assert tau.currentSize == len(L) + 1 assert sorted(tau.heapList) == sorted(L+[0]) assert_goodheap(tau,len(L)+1) #for x in range(1,len(L) + 1): # assert_isheaplist(x,tau.heapList[x],tau.currentSize,tau.heapList) @given(lists(elements=integers()),integers()) @settings(max_examples=1000) def test_insert(L,i): tau = BinHeap() tau.buildHeap(L) tau.insert(i) assert_goodheap(tau,len(L)+1) @given(lists(elements=integers()),integers()) @settings(max_examples=100) def test_percDown(L,i): tau = BinHeap() L += [10] tau.buildHeap(L) tau.heapList[1] = i tau.percDown(1) for x in range(1,len(L) + 1): for _ in range(len(L)): tau.percDown(x) #then we test that we got a well-ordered heap assert_goodheap(tau,len(L)+1) @given(lists(elements=integers())) @settings(max_examples=400,deadline=None) def test_delmin(L): L += [10] tau = BinHeap() assert tau.delMin() is None tau.buildHeap(L) #print(L) #print("sorted",sorted(L),"\n") #print("TAU ", tau.heapList,"\n") assert tau.delMin() == min(L) @given(lists(elements=integers()),integers()) @settings(max_examples=400) def test_minChild(L,i): tau = BinHeap() assert tau.minChild(abs(i)) is None tau.buildHeap(2*L+[0,1]) assert tau.minChild(len(L)+1) is not None @given(lists(elements=integers()),lists(elements=integers())) @settings(max_examples=400,deadline=None) def test_general(L,K): tau = BinHeap() tau.buildHeap(L)#tas construit avec L for k in K:tau.insert(k)#on rajoute les elements de K assert_goodheap(tau,tau.currentSize) x = [] while tau.currentSize > 1:x.append(tau.delMin())#on retire tous les elements assert x == sorted(L + K)#verifie qu'on a bien le minimum avec delmin assert tau.delMin() is None x = [] tau.buildHeap(K) for l in L:#teste si 1 suite d'insertion/ suppression maintient la structure tau.delMin() tau.insert(l) assert_goodheap(tau,tau.currentSize)
[ "hypothesis.settings", "hypothesis.strategies.integers" ]
[((2854, 2880), 'hypothesis.settings', 'settings', ([], {'max_examples': '(100)'}), '(max_examples=100)\n', (2862, 2880), False, 'from hypothesis import given, settings\n'), ((3612, 3639), 'hypothesis.settings', 'settings', ([], {'max_examples': '(1000)'}), '(max_examples=1000)\n', (3620, 3639), False, 'from hypothesis import given, settings\n'), ((3986, 4013), 'hypothesis.settings', 'settings', ([], {'max_examples': '(1000)'}), '(max_examples=1000)\n', (3994, 4013), False, 'from hypothesis import given, settings\n'), ((4181, 4207), 'hypothesis.settings', 'settings', ([], {'max_examples': '(100)'}), '(max_examples=100)\n', (4189, 4207), False, 'from hypothesis import given, settings\n'), ((4551, 4592), 'hypothesis.settings', 'settings', ([], {'max_examples': '(400)', 'deadline': 'None'}), '(max_examples=400, deadline=None)\n', (4559, 4592), False, 'from hypothesis import given, settings\n'), ((4873, 4899), 'hypothesis.settings', 'settings', ([], {'max_examples': '(400)'}), '(max_examples=400)\n', (4881, 4899), False, 'from hypothesis import given, settings\n'), ((5123, 5164), 'hypothesis.settings', 'settings', ([], {'max_examples': '(400)', 'deadline': 'None'}), '(max_examples=400, deadline=None)\n', (5131, 5164), False, 'from hypothesis import given, settings\n'), ((2841, 2851), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (2849, 2851), False, 'from hypothesis.strategies import integers, lists\n'), ((3973, 3983), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (3981, 3983), False, 'from hypothesis.strategies import integers, lists\n'), ((4168, 4178), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (4176, 4178), False, 'from hypothesis.strategies import integers, lists\n'), ((4860, 4870), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (4868, 4870), False, 'from hypothesis.strategies import integers, lists\n'), ((3598, 3608), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (3606, 3608), False, 'from hypothesis.strategies import integers, lists\n'), ((3961, 3971), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (3969, 3971), False, 'from hypothesis.strategies import integers, lists\n'), ((4156, 4166), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (4164, 4166), False, 'from hypothesis.strategies import integers, lists\n'), ((4537, 4547), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (4545, 4547), False, 'from hypothesis.strategies import integers, lists\n'), ((4848, 4858), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (4856, 4858), False, 'from hypothesis.strategies import integers, lists\n'), ((5082, 5092), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (5090, 5092), False, 'from hypothesis.strategies import integers, lists\n'), ((5109, 5119), 'hypothesis.strategies.integers', 'integers', ([], {}), '()\n', (5117, 5119), False, 'from hypothesis.strategies import integers, lists\n')]
from typing import List, Tuple from omegaconf import DictConfig import torch import torch.nn as nn import torch.nn.functional as F from rlcycle.common.abstract.loss import Loss class DQNLoss(Loss): """Compute double DQN loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data q_value = network.forward(states).gather(1, actions) with torch.no_grad(): next_q = torch.max(target_network.forward(next_states), 1)[0].unsqueeze(1) n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_q = rewards + (1 - dones) * n_step_gamma * next_q element_wise_loss = F.smooth_l1_loss( q_value, target_q.detach(), reduction="none" ) return element_wise_loss class QRLoss(Loss): """Compute quantile regression loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...], ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * next_z distance = target_z - z_dists quantile_huber_loss = ( network.tau - (distance.detach() < 0).float() ).abs() * self.huber_loss(distance) element_wise_loss = torch.mean(quantile_huber_loss, dim=1, keepdim=True) return element_wise_loss @staticmethod def huber_loss(x: List[torch.Tensor], k: float = 1.0): return torch.where(x.abs() <= k, 0.5 * x.pow(2), k * (x.abs() - 0.5 * k)) class CategoricalLoss(Loss): """Compute C51 loss""" def __init__(self, hyper_params: DictConfig, use_cuda: bool): Loss.__init__(self, hyper_params, use_cuda) def __call__( self, networks: Tuple[nn.Module, ...], data: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: network, target_network = networks states, actions, rewards, next_states, dones = data batch_size = states.size(0) offset = ( torch.linspace(0, (batch_size - 1) * network.num_atoms, batch_size) .long() .unsqueeze(1) .expand(batch_size, network.num_atoms) ) if self.use_cuda: offset = offset.cuda() z_dists = network.forward(states) z_dists = z_dists[list(range(states.size(0))), actions.view(-1)] with torch.no_grad(): next_z = target_network.forward(next_states) next_actions = torch.max(next_z.mean(2), dim=1)[1] next_z = next_z[list(range(states.size(0))), next_actions] n_step_gamma = self.hyper_params.gamma ** self.hyper_params.n_step target_z = rewards + (1 - dones) * n_step_gamma * network.support target_z = torch.clamp(target_z, min=network.v_min, max=network.v_max) target_proj = self.dist_projection(network, next_z, target_z, offset) log_dist = torch.log(z_dists) element_wise_loss = -(target_proj * log_dist).sum(1) return element_wise_loss def dist_projection( self, network: nn.Module, next_z: torch.Tensor, target_z: torch.Tensor, offset: torch.Tensor, ) -> torch.Tensor: b = (target_z - network.v_min) / network.delta_z lb = b.floor().long() ub = b.ceil().long() proj_dist = torch.zeros(next_z.size()) if self.use_cuda: proj_dist = proj_dist.cuda() proj_dist.view(-1).index_add_( 0, (lb + offset).view(-1), (next_z * (ub.float() - b)).view(-1) ) proj_dist.view(-1).index_add_( 0, (ub + offset).view(-1), (next_z * (b - lb.float())).view(-1) ) return proj_dist
[ "torch.log", "torch.mean", "torch.linspace", "torch.no_grad", "rlcycle.common.abstract.loss.Loss.__init__", "torch.clamp" ]
[((311, 354), 'rlcycle.common.abstract.loss.Loss.__init__', 'Loss.__init__', (['self', 'hyper_params', 'use_cuda'], {}), '(self, hyper_params, use_cuda)\n', (324, 354), False, 'from rlcycle.common.abstract.loss import Loss\n'), ((1206, 1249), 'rlcycle.common.abstract.loss.Loss.__init__', 'Loss.__init__', (['self', 'hyper_params', 'use_cuda'], {}), '(self, hyper_params, use_cuda)\n', (1219, 1249), False, 'from rlcycle.common.abstract.loss import Loss\n'), ((2173, 2225), 'torch.mean', 'torch.mean', (['quantile_huber_loss'], {'dim': '(1)', 'keepdim': '(True)'}), '(quantile_huber_loss, dim=1, keepdim=True)\n', (2183, 2225), False, 'import torch\n'), ((2553, 2596), 'rlcycle.common.abstract.loss.Loss.__init__', 'Loss.__init__', (['self', 'hyper_params', 'use_cuda'], {}), '(self, hyper_params, use_cuda)\n', (2566, 2596), False, 'from rlcycle.common.abstract.loss import Loss\n'), ((3816, 3834), 'torch.log', 'torch.log', (['z_dists'], {}), '(z_dists)\n', (3825, 3834), False, 'import torch\n'), ((666, 681), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (679, 681), False, 'import torch\n'), ((1616, 1631), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1629, 1631), False, 'import torch\n'), ((3265, 3280), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3278, 3280), False, 'import torch\n'), ((3654, 3713), 'torch.clamp', 'torch.clamp', (['target_z'], {'min': 'network.v_min', 'max': 'network.v_max'}), '(target_z, min=network.v_min, max=network.v_max)\n', (3665, 3713), False, 'import torch\n'), ((2899, 2966), 'torch.linspace', 'torch.linspace', (['(0)', '((batch_size - 1) * network.num_atoms)', 'batch_size'], {}), '(0, (batch_size - 1) * network.num_atoms, batch_size)\n', (2913, 2966), False, 'import torch\n')]
# -*- coding: utf8 -*- # Copyright (C) PyZMQ Developers # Distributed under the terms of the Modified BSD License. import os import platform import time import pytest import zmq from zmq.tests import BaseZMQTestCase, skip_pypy class TestDraftSockets(BaseZMQTestCase): def setUp(self): if not zmq.DRAFT_API: raise pytest.skip("draft api unavailable") super(TestDraftSockets, self).setUp() def test_client_server(self): client, server = self.create_bound_pair(zmq.CLIENT, zmq.SERVER) client.send(b'request') msg = self.recv(server, copy=False) assert msg.routing_id is not None server.send(b'reply', routing_id=msg.routing_id) reply = self.recv(client) assert reply == b'reply' def test_radio_dish(self): dish, radio = self.create_bound_pair(zmq.DISH, zmq.RADIO) dish.rcvtimeo = 250 group = 'mygroup' dish.join(group) received_count = 0 received = set() sent = set() for i in range(10): msg = str(i).encode('ascii') sent.add(msg) radio.send(msg, group=group) try: recvd = dish.recv() except zmq.Again: time.sleep(0.1) else: received.add(recvd) received_count += 1 # assert that we got *something* assert len(received.intersection(sent)) >= 5
[ "pytest.skip", "time.sleep" ]
[((341, 377), 'pytest.skip', 'pytest.skip', (['"""draft api unavailable"""'], {}), "('draft api unavailable')\n", (352, 377), False, 'import pytest\n'), ((1258, 1273), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1268, 1273), False, 'import time\n')]
# -*- coding:utf-8 -*- # Author: RubanSeven # import cv2 import numpy as np # from transform import get_perspective_transform, warp_perspective from warp_mls import WarpMLS def distort(src, segment): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut // 3 # thresh = img_h // segment // 3 # thresh = img_h // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append([img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)]) dst_pts.append([np.random.randint(thresh), img_h - np.random.randint(thresh)]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, np.random.randint(thresh) - half_thresh]) dst_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, img_h + np.random.randint(thresh) - half_thresh]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def stretch(src, segment): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut * 4 // 5 # thresh = img_h // segment // 3 # thresh = img_h // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, 0]) dst_pts.append([img_w, 0]) dst_pts.append([img_w, img_h]) dst_pts.append([0, img_h]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): move = np.random.randint(thresh) - half_thresh src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + move, 0]) dst_pts.append([cut * cut_idx + move, img_h]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def perspective(src): img_h, img_w = src.shape[:2] thresh = img_h // 2 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, np.random.randint(thresh)]) dst_pts.append([img_w, np.random.randint(thresh)]) dst_pts.append([img_w, img_h - np.random.randint(thresh)]) dst_pts.append([0, img_h - np.random.randint(thresh)]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst # def distort(src, segment): # img_h, img_w = src.shape[:2] # dst = np.zeros_like(src, dtype=np.uint8) # # cut = img_w // segment # thresh = img_h // 8 # # src_pts = list() # # dst_pts = list() # # src_pts.append([-np.random.randint(thresh), -np.random.randint(thresh)]) # src_pts.append([-np.random.randint(thresh), img_h + np.random.randint(thresh)]) # # # dst_pts.append([0, 0]) # # dst_pts.append([0, img_h]) # dst_box = np.array([[0, 0], [0, img_h], [cut, 0], [cut, img_h]], dtype=np.float32) # # half_thresh = thresh * 0.5 # # for cut_idx in np.arange(1, segment, 1): # src_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, # np.random.randint(thresh) - half_thresh]) # src_pts.append([cut * cut_idx + np.random.randint(thresh) - half_thresh, # img_h + np.random.randint(thresh) - half_thresh]) # # # dst_pts.append([cut * i, 0]) # # dst_pts.append([cut * i, img_h]) # # src_box = np.array(src_pts[-4:-2] + src_pts[-2:-1] + src_pts[-1:], dtype=np.float32) # # # mat = cv2.getPerspectiveTransform(src_box, dst_box) # # print(mat) # # dst[:, cut * (cut_idx - 1):cut * cut_idx] = cv2.warpPerspective(src, mat, (cut, img_h)) # # mat = get_perspective_transform(dst_box, src_box) # dst[:, cut * (cut_idx - 1):cut * cut_idx] = warp_perspective(src, mat, (cut, img_h)) # # print(mat) # # src_pts.append([img_w + np.random.randint(thresh) - half_thresh, # np.random.randint(thresh) - half_thresh]) # src_pts.append([img_w + np.random.randint(thresh) - half_thresh, # img_h + np.random.randint(thresh) - half_thresh]) # src_box = np.array(src_pts[-4:-2] + src_pts[-2:-1] + src_pts[-1:], dtype=np.float32) # # # mat = cv2.getPerspectiveTransform(src_box, dst_box) # # dst[:, cut * (segment - 1):] = cv2.warpPerspective(src, mat, (img_w - cut * (segment - 1), img_h)) # mat = get_perspective_transform(dst_box, src_box) # dst[:, cut * (segment - 1):] = warp_perspective(src, mat, (img_w - cut * (segment - 1), img_h)) # # return dst
[ "warp_mls.WarpMLS", "numpy.random.randint", "numpy.arange" ]
[((934, 958), 'numpy.arange', 'np.arange', (['(1)', 'segment', '(1)'], {}), '(1, segment, 1)\n', (943, 958), True, 'import numpy as np\n'), ((1373, 1417), 'warp_mls.WarpMLS', 'WarpMLS', (['src', 'src_pts', 'dst_pts', 'img_w', 'img_h'], {}), '(src, src_pts, dst_pts, img_w, img_h)\n', (1380, 1417), False, 'from warp_mls import WarpMLS\n'), ((2014, 2038), 'numpy.arange', 'np.arange', (['(1)', 'segment', '(1)'], {}), '(1, segment, 1)\n', (2023, 2038), True, 'import numpy as np\n'), ((2309, 2353), 'warp_mls.WarpMLS', 'WarpMLS', (['src', 'src_pts', 'dst_pts', 'img_w', 'img_h'], {}), '(src, src_pts, dst_pts, img_w, img_h)\n', (2316, 2353), False, 'from warp_mls import WarpMLS\n'), ((2913, 2957), 'warp_mls.WarpMLS', 'WarpMLS', (['src', 'src_pts', 'dst_pts', 'img_w', 'img_h'], {}), '(src, src_pts, dst_pts, img_w, img_h)\n', (2920, 2957), False, 'from warp_mls import WarpMLS\n'), ((563, 588), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (580, 588), True, 'import numpy as np\n'), ((590, 615), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (607, 615), True, 'import numpy as np\n'), ((674, 699), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (691, 699), True, 'import numpy as np\n'), ((815, 840), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (832, 840), True, 'import numpy as np\n'), ((2056, 2081), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (2073, 2081), True, 'import numpy as np\n'), ((2690, 2715), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (2707, 2715), True, 'import numpy as np\n'), ((2746, 2771), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (2763, 2771), True, 'import numpy as np\n'), ((647, 672), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (664, 672), True, 'import numpy as np\n'), ((731, 756), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (748, 756), True, 'import numpy as np\n'), ((766, 791), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (783, 791), True, 'import numpy as np\n'), ((850, 875), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (867, 875), True, 'import numpy as np\n'), ((2810, 2835), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (2827, 2835), True, 'import numpy as np\n'), ((2870, 2895), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (2887, 2895), True, 'import numpy as np\n'), ((1159, 1184), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (1176, 1184), True, 'import numpy as np\n'), ((1093, 1118), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (1110, 1118), True, 'import numpy as np\n'), ((1242, 1267), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (1259, 1267), True, 'import numpy as np\n'), ((1316, 1341), 'numpy.random.randint', 'np.random.randint', (['thresh'], {}), '(thresh)\n', (1333, 1341), True, 'import numpy as np\n')]
from collections import defaultdict class Graph: def __init__(self): self.graph = defaultdict(list) def addEdge(self, starting_vertex, end_vertex): self.graph[starting_vertex].append(end_vertex) def printAllPaths(self, starting_vertex, target_vertex): visitedVertices = defaultdict(bool) self.resultPaths = [] self.dfsUtil(starting_vertex, visitedVertices, target_vertex, "") return self.resultPaths def dfsUtil(self, current_vertex, visitedVertices, target_vertex, output_string): visitedVertices[current_vertex] = True if output_string == "": output_string = current_vertex else: output_string = output_string + "->" + current_vertex if current_vertex == target_vertex: self.resultPaths.append(output_string) return for vertex in self.graph[current_vertex]: if visitedVertices[vertex] == False: self.dfsUtil(vertex, visitedVertices, target_vertex, output_string) visitedVertices[vertex] = False if __name__ == "__main__": g = Graph() g.addEdge("A", "B") g.addEdge("B", "D") g.addEdge("A", "D") g.addEdge("C", "A") g.addEdge("C", "B") g.addEdge("A", "C") paths = g.printAllPaths("A", "B") print(paths)
[ "collections.defaultdict" ]
[((96, 113), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (107, 113), False, 'from collections import defaultdict\n'), ((310, 327), 'collections.defaultdict', 'defaultdict', (['bool'], {}), '(bool)\n', (321, 327), False, 'from collections import defaultdict\n')]
from devito.ir import Call from devito.passes.iet.definitions import DataManager from devito.passes.iet.langbase import LangBB __all__ = ['CBB', 'CDataManager'] class CBB(LangBB): mapper = { 'aligned': lambda i: '__attribute__((aligned(%d)))' % i, 'host-alloc': lambda i, j, k: Call('posix_memalign', (i, j, k)), 'host-free': lambda i: Call('free', (i,)), } class CDataManager(DataManager): lang = CBB
[ "devito.ir.Call" ]
[((326, 359), 'devito.ir.Call', 'Call', (['"""posix_memalign"""', '(i, j, k)'], {}), "('posix_memalign', (i, j, k))\n", (330, 359), False, 'from devito.ir import Call\n'), ((404, 422), 'devito.ir.Call', 'Call', (['"""free"""', '(i,)'], {}), "('free', (i,))\n", (408, 422), False, 'from devito.ir import Call\n')]
# PyTorch import torch from torch.utils.data import IterableDataset, DataLoader from donkeycar.utils import train_test_split from donkeycar.parts.tub_v2 import Tub from torchvision import transforms from typing import List, Any from donkeycar.pipeline.types import TubRecord, TubDataset from donkeycar.pipeline.sequence import TubSequence import pytorch_lightning as pl def get_default_transform(for_video=False, for_inference=False, resize=True): """ Creates a default transform to work with torchvision models Video transform: All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989]. """ mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] input_size = (224, 224) if for_video: mean = [0.43216, 0.394666, 0.37645] std = [0.22803, 0.22145, 0.216989] input_size = (112, 112) transform_items = [ transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ] if resize: transform_items.insert(0, transforms.Resize(input_size)) return transforms.Compose(transform_items) class TorchTubDataset(IterableDataset): ''' Loads the dataset, and creates a train/test split. ''' def __init__(self, config, records: List[TubRecord], transform=None): """Create a PyTorch Tub Dataset Args: config (object): the configuration information records (List[TubRecord]): a list of tub records transform (function, optional): a transform to apply to the data """ self.config = config # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.sequence = TubSequence(records) self.pipeline = self._create_pipeline() self.len = len(records) def _create_pipeline(self): """ This can be overridden if more complicated pipelines are required """ def y_transform(record: TubRecord): angle: float = record.underlying['user/angle'] throttle: float = record.underlying['user/throttle'] predictions = torch.tensor([angle, throttle], dtype=torch.float) # Normalize to be between [0, 1] # angle and throttle are originally between [-1, 1] predictions = (predictions + 1) / 2 return predictions def x_transform(record: TubRecord): # Loads the result of Image.open() img_arr = record.image(cached=True, as_nparray=False) return self.transform(img_arr) # Build pipeline using the transformations pipeline = self.sequence.build_pipeline(x_transform=x_transform, y_transform=y_transform) return pipeline def __len__(self): return len(self.sequence) def __iter__(self): return iter(self.pipeline) class TorchTubDataModule(pl.LightningDataModule): def __init__(self, config: Any, tub_paths: List[str], transform=None): """Create a PyTorch Lightning Data Module to contain all data loading logic Args: config (object): the configuration information tub_paths (List[str]): a list of paths to the tubs to use (minimum size of 1). Each tub path corresponds to another training run. transform (function, optional): a transform to apply to the data """ super().__init__() self.config = config self.tub_paths = tub_paths # Handle the transforms if transform: self.transform = transform else: self.transform = get_default_transform() self.tubs: List[Tub] = [Tub(tub_path, read_only=True) for tub_path in self.tub_paths] self.records: List[TubRecord] = [] def setup(self, stage=None): """Load all the tub data and set up the datasets. Args: stage ([string], optional): setup expects a string arg stage. It is used to separate setup logic for trainer.fit and trainer.test. Defaults to None. """ # Loop through all the different tubs and load all the records for each of them for tub in self.tubs: for underlying in tub: record = TubRecord(self.config, tub.base_path, underlying=underlying) self.records.append(record) train_records, val_records = train_test_split( self.records, test_size=(1. - self.config.TRAIN_TEST_SPLIT)) assert len(val_records) > 0, "Not enough validation data. Add more data" self.train_dataset = TorchTubDataset( self.config, train_records, transform=self.transform) self.val_dataset = TorchTubDataset( self.config, val_records, transform=self.transform) def train_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.train_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0) def val_dataloader(self): # The number of workers are set to 0 to avoid errors on Macs and Windows # See: https://github.com/rusty1s/pytorch_geometric/issues/366#issuecomment-498022534 return DataLoader(self.val_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0)
[ "donkeycar.pipeline.sequence.TubSequence", "donkeycar.utils.train_test_split", "torch.tensor", "donkeycar.parts.tub_v2.Tub", "torchvision.transforms.Normalize", "torch.utils.data.DataLoader", "torchvision.transforms.Resize", "torchvision.transforms.ToTensor", "donkeycar.pipeline.types.TubRecord", "torchvision.transforms.Compose" ]
[((1394, 1429), 'torchvision.transforms.Compose', 'transforms.Compose', (['transform_items'], {}), '(transform_items)\n', (1412, 1429), False, 'from torchvision import transforms\n'), ((1223, 1244), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1242, 1244), False, 'from torchvision import transforms\n'), ((1254, 1294), 'torchvision.transforms.Normalize', 'transforms.Normalize', ([], {'mean': 'mean', 'std': 'std'}), '(mean=mean, std=std)\n', (1274, 1294), False, 'from torchvision import transforms\n'), ((2097, 2117), 'donkeycar.pipeline.sequence.TubSequence', 'TubSequence', (['records'], {}), '(records)\n', (2108, 2117), False, 'from donkeycar.pipeline.sequence import TubSequence\n'), ((4993, 5069), 'donkeycar.utils.train_test_split', 'train_test_split', (['self.records'], {'test_size': '(1.0 - self.config.TRAIN_TEST_SPLIT)'}), '(self.records, test_size=1.0 - self.config.TRAIN_TEST_SPLIT)\n', (5009, 5069), False, 'from donkeycar.utils import train_test_split\n'), ((5610, 5695), 'torch.utils.data.DataLoader', 'DataLoader', (['self.train_dataset'], {'batch_size': 'self.config.BATCH_SIZE', 'num_workers': '(0)'}), '(self.train_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0\n )\n', (5620, 5695), False, 'from torch.utils.data import IterableDataset, DataLoader\n'), ((5912, 5990), 'torch.utils.data.DataLoader', 'DataLoader', (['self.val_dataset'], {'batch_size': 'self.config.BATCH_SIZE', 'num_workers': '(0)'}), '(self.val_dataset, batch_size=self.config.BATCH_SIZE, num_workers=0)\n', (5922, 5990), False, 'from torch.utils.data import IterableDataset, DataLoader\n'), ((1351, 1380), 'torchvision.transforms.Resize', 'transforms.Resize', (['input_size'], {}), '(input_size)\n', (1368, 1380), False, 'from torchvision import transforms\n'), ((2520, 2570), 'torch.tensor', 'torch.tensor', (['[angle, throttle]'], {'dtype': 'torch.float'}), '([angle, throttle], dtype=torch.float)\n', (2532, 2570), False, 'import torch\n'), ((4138, 4167), 'donkeycar.parts.tub_v2.Tub', 'Tub', (['tub_path'], {'read_only': '(True)'}), '(tub_path, read_only=True)\n', (4141, 4167), False, 'from donkeycar.parts.tub_v2 import Tub\n'), ((4815, 4875), 'donkeycar.pipeline.types.TubRecord', 'TubRecord', (['self.config', 'tub.base_path'], {'underlying': 'underlying'}), '(self.config, tub.base_path, underlying=underlying)\n', (4824, 4875), False, 'from donkeycar.pipeline.types import TubRecord, TubDataset\n')]
import os from tornado.template import Template __SNIPPET__ = os.path.join(os.path.dirname(os.path.abspath(__file__)), '_snippet') def T(name, **kw): t = Template(open(os.path.join(__SNIPPET__, name + '.html'), 'rb').read()) return t.generate(**dict([('template_file', name)] + globals().items() + kw.items()))
[ "os.path.abspath", "os.path.join" ]
[((92, 117), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (107, 117), False, 'import os\n'), ((172, 213), 'os.path.join', 'os.path.join', (['__SNIPPET__', "(name + '.html')"], {}), "(__SNIPPET__, name + '.html')\n", (184, 213), False, 'import os\n')]
""" Support for getting the disk temperature of a host. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/sensor.hddtemp/ """ import logging from datetime import timedelta from telnetlib import Telnet import voluptuous as vol import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_NAME, CONF_HOST, CONF_PORT, TEMP_CELSIUS, TEMP_FAHRENHEIT, CONF_DISKS) from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) ATTR_DEVICE = 'device' ATTR_MODEL = 'model' DEFAULT_HOST = 'localhost' DEFAULT_PORT = 7634 DEFAULT_NAME = 'HD Temperature' DEFAULT_TIMEOUT = 5 SCAN_INTERVAL = timedelta(minutes=1) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Optional(CONF_DISKS, default=[]): vol.All(cv.ensure_list, [cv.string]), vol.Optional(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, }) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the HDDTemp sensor.""" name = config.get(CONF_NAME) host = config.get(CONF_HOST) port = config.get(CONF_PORT) disks = config.get(CONF_DISKS) hddtemp = HddTempData(host, port) hddtemp.update() if hddtemp.data is None: return False if not disks: disks = [next(iter(hddtemp.data)).split('|')[0]] dev = [] for disk in disks: if disk in hddtemp.data: dev.append(HddTempSensor(name, disk, hddtemp)) add_devices(dev, True) class HddTempSensor(Entity): """Representation of a HDDTemp sensor.""" def __init__(self, name, disk, hddtemp): """Initialize a HDDTemp sensor.""" self.hddtemp = hddtemp self.disk = disk self._name = '{} {}'.format(name, disk) self._state = None self._details = None @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" if self._details[3] == 'C': return TEMP_CELSIUS return TEMP_FAHRENHEIT @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_DEVICE: self._details[0], ATTR_MODEL: self._details[1], } def update(self): """Get the latest data from HDDTemp daemon and updates the state.""" self.hddtemp.update() if self.hddtemp.data and self.disk in self.hddtemp.data: self._details = self.hddtemp.data[self.disk].split('|') self._state = self._details[2] else: self._state = None class HddTempData(object): """Get the latest data from HDDTemp and update the states.""" def __init__(self, host, port): """Initialize the data object.""" self.host = host self.port = port self.data = None def update(self): """Get the latest data from HDDTemp running as daemon.""" try: connection = Telnet( host=self.host, port=self.port, timeout=DEFAULT_TIMEOUT) data = connection.read_all().decode( 'ascii').lstrip('|').rstrip('|').split('||') self.data = {data[i].split('|')[0]: data[i] for i in range(0, len(data), 1)} except ConnectionRefusedError: _LOGGER.error( "HDDTemp is not available at %s:%s", self.host, self.port) self.data = None
[ "logging.getLogger", "datetime.timedelta", "voluptuous.Optional", "voluptuous.All", "telnetlib.Telnet" ]
[((577, 604), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (594, 604), False, 'import logging\n'), ((767, 787), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (776, 787), False, 'from datetime import timedelta\n'), ((836, 872), 'voluptuous.Optional', 'vol.Optional', (['CONF_DISKS'], {'default': '[]'}), '(CONF_DISKS, default=[])\n', (848, 872), True, 'import voluptuous as vol\n'), ((916, 961), 'voluptuous.Optional', 'vol.Optional', (['CONF_HOST'], {'default': 'DEFAULT_HOST'}), '(CONF_HOST, default=DEFAULT_HOST)\n', (928, 961), True, 'import voluptuous as vol\n'), ((978, 1023), 'voluptuous.Optional', 'vol.Optional', (['CONF_PORT'], {'default': 'DEFAULT_PORT'}), '(CONF_PORT, default=DEFAULT_PORT)\n', (990, 1023), True, 'import voluptuous as vol\n'), ((1038, 1083), 'voluptuous.Optional', 'vol.Optional', (['CONF_NAME'], {'default': 'DEFAULT_NAME'}), '(CONF_NAME, default=DEFAULT_NAME)\n', (1050, 1083), True, 'import voluptuous as vol\n'), ((874, 910), 'voluptuous.All', 'vol.All', (['cv.ensure_list', '[cv.string]'], {}), '(cv.ensure_list, [cv.string])\n', (881, 910), True, 'import voluptuous as vol\n'), ((3382, 3445), 'telnetlib.Telnet', 'Telnet', ([], {'host': 'self.host', 'port': 'self.port', 'timeout': 'DEFAULT_TIMEOUT'}), '(host=self.host, port=self.port, timeout=DEFAULT_TIMEOUT)\n', (3388, 3445), False, 'from telnetlib import Telnet\n')]
import telegram from django.conf import settings from django.shortcuts import redirect from django.utils.decorators import method_decorator from django.views.generic import View from django.views.decorators.csrf import csrf_exempt from braces.views import CsrfExemptMixin from rest_framework.authentication import BasicAuthentication from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.permissions import AllowAny from .bots import TelegramBot from .models import TelegramUser as User @method_decorator(csrf_exempt, name='dispatch') class TelegramBotView(APIView): permission_classes = (AllowAny, ) def post(self, request, *args, **kwargs): context = request.data bot = TelegramBot(context) user, _ = User.objects.get_or_create( id=bot.sender['id'], defaults={ 'first_name': bot.sender['first_name'], 'last_name': bot.sender.get('last_name', ''), 'username': bot.sender.get('username', ''), 'is_bot': bot.sender.get('is_bot', False) } ) user.access_count += 1 user.save() bot.process(user) return Response(status=status.HTTP_200_OK)
[ "rest_framework.response.Response", "django.utils.decorators.method_decorator" ]
[((580, 626), 'django.utils.decorators.method_decorator', 'method_decorator', (['csrf_exempt'], {'name': '"""dispatch"""'}), "(csrf_exempt, name='dispatch')\n", (596, 626), False, 'from django.utils.decorators import method_decorator\n'), ((1264, 1299), 'rest_framework.response.Response', 'Response', ([], {'status': 'status.HTTP_200_OK'}), '(status=status.HTTP_200_OK)\n', (1272, 1299), False, 'from rest_framework.response import Response\n')]
import os from datetime import datetime from os.path import join import pathlib from tqdm import tqdm import argparse import torch from torch import nn, optim from torch.autograd import Variable import torchvision from torchvision.transforms import Pad from torchvision.utils import make_grid import repackage repackage.up() from imagenet.models import CGN from imagenet.config import get_cfg_defaults from shared.losses import * from utils import Optimizers from inception_score import * def save_sample_sheet(cgn, u_fixed, sample_path, ep_str): cgn.eval() dev = u_fixed.to(cgn.get_device()) ys = [15, 251, 330, 382, 385, 483, 559, 751, 938, 947, 999] to_save = [] with torch.no_grad(): for y in ys: # generate y_vec = cgn.get_class_vec(y, sz=1) inp = (u_fixed.to(dev), y_vec.to(dev), cgn.truncation) x_gt, mask, premask, foreground, background, bg_mask = cgn(inp) x_gen = mask * foreground + (1 - mask) * background # build class grid to_plot = [premask, foreground, background, x_gen, x_gt] grid = make_grid(torch.cat(to_plot).detach().cpu(), nrow=len(to_plot), padding=2, normalize=True) # add unnormalized mask mask = Pad(2)(mask[0].repeat(3, 1, 1)).detach().cpu() grid = torch.cat([mask, grid], 2) # save to disk to_save.append(grid) del to_plot, mask, premask, foreground, background, x_gen, x_gt # save the image path = join(sample_path, f'cls_sheet_' + ep_str + '.png') torchvision.utils.save_image(torch.cat(to_save, 1), path) cgn.train() def save_sample_single(cgn, u_fixed, sample_path, ep_str): cgn.eval() dev = u_fixed.to(cgn.get_device()) ys = [15, 251, 330, 382, 385, 483, 559, 751, 938, 947, 999] with torch.no_grad(): for y in ys: # generate y_vec = cgn.get_class_vec(y, sz=1) inp = (u_fixed.to(dev), y_vec.to(dev), cgn.truncation) _, mask, premask, foreground, background, _ = cgn(inp) x_gen = mask * foreground + (1 - mask) * background # save_images path = join(sample_path, f'{y}_1_premask_' + ep_str + '.png') torchvision.utils.save_image(premask, path, normalize=True) path = join(sample_path, f'{y}_2_mask_' + ep_str + '.png') torchvision.utils.save_image(mask, path, normalize=True) path = join(sample_path, f'{y}_3_texture_' + ep_str + '.png') torchvision.utils.save_image(foreground, path, normalize=True) path = join(sample_path, f'{y}_4_bgs_' + ep_str + '.png') torchvision.utils.save_image(background, path, normalize=True) path = join(sample_path, f'{y}_5_gen_ims_' + ep_str + '.png') torchvision.utils.save_image(x_gen, path, normalize=True) cgn.train() def fit(cfg, cgn, opts, losses): inception_score_val = list() # total number of episodes, accounted for batch accumulation episodes = cfg.TRAIN.EPISODES episodes *= cfg.TRAIN.BATCH_ACC # directories for experiments time_str = datetime.now().strftime("%Y_%m_%d_%H_%M") if cfg.WEIGHTS_PATH: weights_path = str(pathlib.Path(cfg.WEIGHTS_PATH).parent) start_ep = int(pathlib.Path(cfg.WEIGHTS_PATH).stem[3:]) sample_path = weights_path.replace('weights', 'samples') ep_range = (start_ep, start_ep + episodes) else: model_path = join('imagenet', 'experiments', f'cgn_{time_str}_{cfg.MODEL_NAME}') weights_path = join(model_path, 'weights') sample_path = join(model_path, 'samples') pathlib.Path(weights_path).mkdir(parents=True, exist_ok=True) pathlib.Path(sample_path).mkdir(parents=True, exist_ok=True) ep_range = (0, episodes) # fixed noise sample u_fixed_path = join('imagenet', 'experiments', 'u_fixed.pt') if not os.path.isfile(u_fixed_path) or cfg.LOG.SAMPLED_FIXED_NOISE: u_fixed = cgn.get_noise_vec() torch.save(u_fixed, u_fixed_path) else: u_fixed = torch.load(u_fixed_path) # Training Loop cgn.train() L_l1, L_perc, L_binary, L_mask, L_text, L_bg = losses save_samples = save_sample_single if cfg.LOG.SAVE_SINGLES else save_sample_sheet pbar = tqdm(range(*ep_range)) for i, ep in enumerate(pbar): x_gt, mask, premask, foreground, background, background_mask = cgn() x_gen = mask * foreground + (1 - mask) * background # Losses losses_g = {} losses_g['l1'] = L_l1(x_gen, x_gt) losses_g['perc'] = L_perc(x_gen, x_gt) losses_g['binary'] = L_binary(mask) losses_g['mask'] = L_mask(mask) losses_g['perc_text'] = L_text(x_gt, mask, foreground) losses_g['bg'] = L_bg(background_mask) # backprop losses_g = {k: v.mean() for k, v in losses_g.items()} g_loss = sum(losses_g.values()) g_loss.backward() if (i+1) % cfg.TRAIN.BATCH_ACC == 0: opts.step(['shape', 'bg', 'texture']) # Saving if not i % cfg.LOG.SAVE_ITER: ep_str = f'ep_{ep:07}' save_samples(cgn, u_fixed, sample_path, ep_str) torch.save(cgn.state_dict(), join(weights_path, ep_str + '.pth')) # Logging if cfg.LOG.LOSSES: msg = ''.join([f"[{k}: {v:.3f}]" for k, v in losses_g.items()]) pbar.set_description(msg) # Calculate Inception SCore if cfg.LOG.INCEPTION_SCORE: score, score_std = inception_score(x_gen) inception_score_val.append(score) def main(cfg): # model init cgn = CGN( batch_sz=cfg.TRAIN.BATCH_SZ, truncation=cfg.MODEL.TRUNCATION, pretrained=True, ) print("------CGN-------") print(cgn) if cfg.WEIGHTS_PATH: weights = torch.load(cfg.WEIGHTS_PATH) weights = {k.replace('module.', ''): v for k, v in weights.items()} cgn.load_state_dict(weights) # optimizers opts = Optimizers() opts.set('shape', cgn.f_shape, cfg.LR.SHAPE) opts.set('texture', cgn.f_text, cfg.LR.TEXTURE) opts.set('bg', cgn.f_bg, cfg.LR.BG) # losses L_l1 = ReconstructionLoss(mode='l1', loss_weight=cfg.LAMBDA.L1) L_perc = PerceptualLoss(style_wgts=cfg.LAMBDA.PERC) L_binary = BinaryLoss(loss_weight=cfg.LAMBDA.BINARY) L_mask = MaskLoss(loss_weight=cfg.LAMBDA.MASK) L_text = PercLossText(style_wgts=cfg.LAMBDA.TEXT) L_bg = BackgroundLoss(loss_weight=cfg.LAMBDA.BG) losses = (L_l1, L_perc, L_binary, L_mask, L_text, L_bg) # push to device and train device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') cgn = cgn.to(device) losses = (l.to(device) for l in losses) fit(cfg, cgn, opts, losses) def merge_args_and_cfg(args, cfg): cfg.MODEL_NAME = args.model_name cfg.WEIGHTS_PATH = args.weights_path cfg.LOG.SAMPLED_FIXED_NOISE = args.sampled_fixed_noise cfg.LOG.SAVE_SINGLES = args.save_singles cfg.LOG.SAVE_ITER = args.save_iter cfg.LOG.LOSSES = args.log_losses cfg.LOG.INCEPTION_SCORE = True cfg.TRAIN.EPISODES = args.episodes cfg.TRAIN.BATCH_SZ = args.batch_sz cfg.TRAIN.BATCH_ACC = args.batch_acc cfg.MODEL.TRUNCATION = args.truncation return cfg if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--model_name', default='tmp', help='Weights and samples will be saved under experiments/model_name') parser.add_argument('--weights_path', default='', help='provide path to continue training') parser.add_argument('--sampled_fixed_noise', default=False, action='store_true', help='If you want a different noise vector than provided in the repo') parser.add_argument('--save_singles', default=False, action='store_true', help='Save single images instead of sheets') parser.add_argument('--truncation', type=float, default=1.0, help='Truncation value for noise sampling') parser.add_argument('--episodes', type=int, default=300, help="We don't do dataloading, hence, one episode = one gradient update.") parser.add_argument('--batch_sz', type=int, default=1, help='Batch size, use in conjunciton with batch_acc') parser.add_argument('--batch_acc', type=int, default=4000, help='pseudo_batch_size = batch_acc*batch size') parser.add_argument('--save_iter', type=int, default=4000, help='Save samples/weights every n iter') parser.add_argument('--log_losses', default=False, action='store_true', help='Print out losses') args = parser.parse_args() cfg = get_cfg_defaults() cfg = merge_args_and_cfg(args, cfg) print(cfg) main(cfg)
[ "utils.Optimizers", "argparse.ArgumentParser", "repackage.up", "imagenet.config.get_cfg_defaults", "pathlib.Path", "torch.load", "os.path.join", "imagenet.models.CGN", "os.path.isfile", "datetime.datetime.now", "torch.cuda.is_available", "torch.save", "torch.no_grad", "torchvision.transforms.Pad", "torchvision.utils.save_image", "torch.cat" ]
[((311, 325), 'repackage.up', 'repackage.up', ([], {}), '()\n', (323, 325), False, 'import repackage\n'), ((1569, 1619), 'os.path.join', 'join', (['sample_path', "(f'cls_sheet_' + ep_str + '.png')"], {}), "(sample_path, f'cls_sheet_' + ep_str + '.png')\n", (1573, 1619), False, 'from os.path import join\n'), ((3970, 4015), 'os.path.join', 'join', (['"""imagenet"""', '"""experiments"""', '"""u_fixed.pt"""'], {}), "('imagenet', 'experiments', 'u_fixed.pt')\n", (3974, 4015), False, 'from os.path import join\n'), ((5780, 5866), 'imagenet.models.CGN', 'CGN', ([], {'batch_sz': 'cfg.TRAIN.BATCH_SZ', 'truncation': 'cfg.MODEL.TRUNCATION', 'pretrained': '(True)'}), '(batch_sz=cfg.TRAIN.BATCH_SZ, truncation=cfg.MODEL.TRUNCATION,\n pretrained=True)\n', (5783, 5866), False, 'from imagenet.models import CGN\n'), ((6153, 6165), 'utils.Optimizers', 'Optimizers', ([], {}), '()\n', (6163, 6165), False, 'from utils import Optimizers\n'), ((7479, 7504), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (7502, 7504), False, 'import argparse\n'), ((8964, 8982), 'imagenet.config.get_cfg_defaults', 'get_cfg_defaults', ([], {}), '()\n', (8980, 8982), False, 'from imagenet.config import get_cfg_defaults\n'), ((695, 710), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (708, 710), False, 'import torch\n'), ((1653, 1674), 'torch.cat', 'torch.cat', (['to_save', '(1)'], {}), '(to_save, 1)\n', (1662, 1674), False, 'import torch\n'), ((1887, 1902), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1900, 1902), False, 'import torch\n'), ((3558, 3625), 'os.path.join', 'join', (['"""imagenet"""', '"""experiments"""', 'f"""cgn_{time_str}_{cfg.MODEL_NAME}"""'], {}), "('imagenet', 'experiments', f'cgn_{time_str}_{cfg.MODEL_NAME}')\n", (3562, 3625), False, 'from os.path import join\n'), ((3675, 3702), 'os.path.join', 'join', (['model_path', '"""weights"""'], {}), "(model_path, 'weights')\n", (3679, 3702), False, 'from os.path import join\n'), ((3725, 3752), 'os.path.join', 'join', (['model_path', '"""samples"""'], {}), "(model_path, 'samples')\n", (3729, 3752), False, 'from os.path import join\n'), ((4134, 4167), 'torch.save', 'torch.save', (['u_fixed', 'u_fixed_path'], {}), '(u_fixed, u_fixed_path)\n', (4144, 4167), False, 'import torch\n'), ((4196, 4220), 'torch.load', 'torch.load', (['u_fixed_path'], {}), '(u_fixed_path)\n', (4206, 4220), False, 'import torch\n'), ((5982, 6010), 'torch.load', 'torch.load', (['cfg.WEIGHTS_PATH'], {}), '(cfg.WEIGHTS_PATH)\n', (5992, 6010), False, 'import torch\n'), ((1372, 1398), 'torch.cat', 'torch.cat', (['[mask, grid]', '(2)'], {}), '([mask, grid], 2)\n', (1381, 1398), False, 'import torch\n'), ((2239, 2293), 'os.path.join', 'join', (['sample_path', "(f'{y}_1_premask_' + ep_str + '.png')"], {}), "(sample_path, f'{y}_1_premask_' + ep_str + '.png')\n", (2243, 2293), False, 'from os.path import join\n'), ((2306, 2365), 'torchvision.utils.save_image', 'torchvision.utils.save_image', (['premask', 'path'], {'normalize': '(True)'}), '(premask, path, normalize=True)\n', (2334, 2365), False, 'import torchvision\n'), ((2385, 2436), 'os.path.join', 'join', (['sample_path', "(f'{y}_2_mask_' + ep_str + '.png')"], {}), "(sample_path, f'{y}_2_mask_' + ep_str + '.png')\n", (2389, 2436), False, 'from os.path import join\n'), ((2449, 2505), 'torchvision.utils.save_image', 'torchvision.utils.save_image', (['mask', 'path'], {'normalize': '(True)'}), '(mask, path, normalize=True)\n', (2477, 2505), False, 'import torchvision\n'), ((2525, 2579), 'os.path.join', 'join', (['sample_path', "(f'{y}_3_texture_' + ep_str + '.png')"], {}), "(sample_path, f'{y}_3_texture_' + ep_str + '.png')\n", (2529, 2579), False, 'from os.path import join\n'), ((2592, 2654), 'torchvision.utils.save_image', 'torchvision.utils.save_image', (['foreground', 'path'], {'normalize': '(True)'}), '(foreground, path, normalize=True)\n', (2620, 2654), False, 'import torchvision\n'), ((2674, 2724), 'os.path.join', 'join', (['sample_path', "(f'{y}_4_bgs_' + ep_str + '.png')"], {}), "(sample_path, f'{y}_4_bgs_' + ep_str + '.png')\n", (2678, 2724), False, 'from os.path import join\n'), ((2737, 2799), 'torchvision.utils.save_image', 'torchvision.utils.save_image', (['background', 'path'], {'normalize': '(True)'}), '(background, path, normalize=True)\n', (2765, 2799), False, 'import torchvision\n'), ((2819, 2873), 'os.path.join', 'join', (['sample_path', "(f'{y}_5_gen_ims_' + ep_str + '.png')"], {}), "(sample_path, f'{y}_5_gen_ims_' + ep_str + '.png')\n", (2823, 2873), False, 'from os.path import join\n'), ((2886, 2943), 'torchvision.utils.save_image', 'torchvision.utils.save_image', (['x_gen', 'path'], {'normalize': '(True)'}), '(x_gen, path, normalize=True)\n', (2914, 2943), False, 'import torchvision\n'), ((3214, 3228), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3226, 3228), False, 'from datetime import datetime\n'), ((4027, 4055), 'os.path.isfile', 'os.path.isfile', (['u_fixed_path'], {}), '(u_fixed_path)\n', (4041, 4055), False, 'import os\n'), ((6788, 6813), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (6811, 6813), False, 'import torch\n'), ((3308, 3338), 'pathlib.Path', 'pathlib.Path', (['cfg.WEIGHTS_PATH'], {}), '(cfg.WEIGHTS_PATH)\n', (3320, 3338), False, 'import pathlib\n'), ((3761, 3787), 'pathlib.Path', 'pathlib.Path', (['weights_path'], {}), '(weights_path)\n', (3773, 3787), False, 'import pathlib\n'), ((3831, 3856), 'pathlib.Path', 'pathlib.Path', (['sample_path'], {}), '(sample_path)\n', (3843, 3856), False, 'import pathlib\n'), ((5367, 5402), 'os.path.join', 'join', (['weights_path', "(ep_str + '.pth')"], {}), "(weights_path, ep_str + '.pth')\n", (5371, 5402), False, 'from os.path import join\n'), ((3370, 3400), 'pathlib.Path', 'pathlib.Path', (['cfg.WEIGHTS_PATH'], {}), '(cfg.WEIGHTS_PATH)\n', (3382, 3400), False, 'import pathlib\n'), ((1140, 1158), 'torch.cat', 'torch.cat', (['to_plot'], {}), '(to_plot)\n', (1149, 1158), False, 'import torch\n'), ((1306, 1312), 'torchvision.transforms.Pad', 'Pad', (['(2)'], {}), '(2)\n', (1309, 1312), False, 'from torchvision.transforms import Pad\n')]
import logging from typing import Dict, List, Optional import numpy as np import qiskit from qiskit.circuit import Barrier, Delay, Reset from qiskit.circuit.library import (CRXGate, CRYGate, CRZGate, CZGate, PhaseGate, RXGate, RYGate, RZGate, U1Gate, U2Gate, U3Gate, UGate) from qiskit.circuit.library.standard_gates import (CU1Gate, RZZGate, SdgGate, SGate, TdgGate, TGate, ZGate) from qiskit.circuit.quantumcircuit import QuantumCircuit from qiskit.converters.circuit_to_dag import circuit_to_dag from qiskit.dagcircuit import DAGCircuit from qiskit.transpiler.basepasses import TransformationPass logger = logging.getLogger(__name__) class RemoveSmallRotations(TransformationPass): """Return a circuit with small rotation gates removed.""" def __init__(self, epsilon: float = 0, modulo2pi=False): """Remove all small rotations from a circuit Args: epsilon: Threshold for rotation angle to be removed modulo2pi: If True, then rotations multiples of 2pi are removed as well """ super().__init__() self.epsilon = epsilon self._empty_dag1 = qiskit.converters.circuit_to_dag(QuantumCircuit(1)) self._empty_dag2 = qiskit.converters.circuit_to_dag(QuantumCircuit(2)) self.mod2pi = modulo2pi def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the pass on `dag`. Args: dag: input dag. Returns: Output dag with small rotations removed """ def modulo_2pi(x): x = float(x) return np.mod(x + np.pi, 2 * np.pi) - np.pi for node in dag.op_nodes(): if isinstance(node.op, (PhaseGate, RXGate, RYGate, RZGate)): if node.op.is_parameterized(): # for parameterized gates we do not optimize pass else: phi = float(node.op.params[0]) if self.mod2pi: phi = modulo_2pi(phi) if np.abs(phi) <= self.epsilon: dag.substitute_node_with_dag(node, self._empty_dag1) elif isinstance(node.op, (CRXGate, CRYGate, CRZGate)): if node.op.is_parameterized(): # for parameterized gates we do not optimize pass else: phi = float(node.op.params[0]) if self.mod2pi: phi = modulo_2pi(phi) if np.abs(phi) <= self.epsilon: dag.substitute_node_with_dag(node, self._empty_dag2) return dag class RemoveDiagonalGatesAfterInput(TransformationPass): """Remove diagonal gates (including diagonal 2Q gates) at the start of a circuit. Transpiler pass to remove diagonal gates (like RZ, T, Z, etc) at the start of a circuit. Including diagonal 2Q gates. Nodes after a reset are also included. """ def run(self, dag): """Run the RemoveDiagonalGatesBeforeMeasure pass on `dag`. Args: dag (DAGCircuit): the DAG to be optimized. Returns: DAGCircuit: the optimized DAG. """ diagonal_1q_gates = (RZGate, ZGate, TGate, SGate, TdgGate, SdgGate, U1Gate) diagonal_2q_gates = (CZGate, CRZGate, CU1Gate, RZZGate) nodes_to_remove = set() for input_node in (dag.input_map.values()): try: successor = next(dag.quantum_successors(input_node)) except StopIteration: continue if successor.type == "op" and isinstance(successor.op, diagonal_1q_gates): nodes_to_remove.add(successor) def valid_predecessor(s): """ Return True of node is valid predecessor for removal """ if s.type == 'in': return True if s.type == "op" and isinstance(s.op, Reset): return True return False if successor.type == "op" and isinstance(successor.op, diagonal_2q_gates): predecessors = dag.quantum_predecessors(successor) if all(valid_predecessor(s) for s in predecessors): nodes_to_remove.add(successor) for node_to_remove in nodes_to_remove: dag.remove_op_node(node_to_remove) return dag class DecomposeU(TransformationPass): """ Decompose U gates into elementary rotations Rx, Ry, Rz The U gates are decomposed using McKay decomposition. """ def __init__(self, verbose=0): """ Args: """ super().__init__() self._subdags = [] self.verbose = verbose self.initial_layout = None def ugate_replacement_circuit(self, ugate): qc = QuantumCircuit(1) if isinstance(ugate, (U3Gate, UGate)): theta, phi, lam = ugate.params if theta == np.pi/2: # a u2 gate qc.rz(lam - np.pi / 2, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi / 2, 0) else: # from https://arxiv.org/pdf/1707.03429.pdf qc.rz(lam, 0) qc.rx(np.pi / 2, 0) qc.rz(theta + np.pi, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi, 0) elif isinstance(ugate, U2Gate): phi, lam = ugate.params qc.rz(lam - np.pi / 2, 0) qc.rx(np.pi / 2, 0) qc.rz(phi + np.pi / 2, 0) elif isinstance(ugate, (U1Gate, PhaseGate)): lam, = ugate.params qc.rz(lam, 0) else: raise Exception(f'unknown gate type {ugate}') return qc def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the Decompose pass on `dag`. Args: dag: input DAG. Returns: Output DAG where ``U`` gates have been decomposed. """ # Walk through the DAG and expand each node if required for node in dag.op_nodes(): if isinstance(node.op, (PhaseGate, U1Gate, U2Gate, U3Gate, UGate)): subdag = circuit_to_dag(self.ugate_replacement_circuit(node.op)) dag.substitute_node_with_dag(node, subdag) return dag class DecomposeCX(TransformationPass): """ Decompose CX into CZ and single qubit rotations """ def __init__(self, mode: str = 'ry'): """ Args: """ super().__init__() self._subdags: List = [] self.initial_layout = None self.gate = qiskit.circuit.library.CXGate self.decomposition = QuantumCircuit(2) if mode == 'ry': self.decomposition.ry(-np.pi / 2, 1) self.decomposition.cz(0, 1) self.decomposition.ry(np.pi / 2, 1) else: self.decomposition.h(1) self.decomposition.cz(0, 1) self.decomposition.h(1) self._dag = circuit_to_dag(self.decomposition) def run(self, dag: DAGCircuit) -> DAGCircuit: """Run the Decompose pass on `dag`. Args: dag: input dag. Returns: output dag where ``CX`` was expanded. """ # Walk through the DAG and expand each non-basis node for node in dag.op_nodes(self.gate): dag.substitute_node_with_dag(node, self._dag) return dag class SequentialPass(TransformationPass): """Adds barriers between gates to make the circuit sequential.""" def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for node in dag.op_nodes(): new_dag.apply_operation_back(node.op, node.qargs, node.cargs) logger.info('SequentialPass: adding node {node.name}') if node.name in ['barrier', 'measure']: continue new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) return new_dag class LinearTopologyParallelPass(TransformationPass): """Adds barriers to enforce a linear topology The barrier are placed between gates such that no two qubit gates are executed at the same time and only single qubit gates on non-neighboring qubits can be executed in parallel. It assumes a linear topology.""" def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for ii, layer in enumerate(dag.layers()): gates_1q = [] gates_2q = [] other_gates = [] for node in layer['graph'].op_nodes(): if len(node.qargs) == 2: gates_2q.append(node) elif len(node.qargs) == 1: gates_1q.append(node) else: logging.info(f'layer {ii}: other type of node {node}') other_gates.append(node) even = [] odd = [] for node in gates_1q: if node.qargs[0].index % 2 == 0: even.append(node) else: odd.append(node) logging.info( f'layer {ii}: 2q gates {len(gates_2q)}, even {len(even)} odd {len(odd)}, other {len(other_gates)}') if len(even) > 0: for node in even: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) if len(odd) > 0: for node in odd: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) for node in gates_2q: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) for node in other_gates: new_dag.apply_operation_back(node.op, node.qargs, node.cargs) if not isinstance(node.op, Barrier): new_dag.apply_operation_back(Barrier(new_dag.num_qubits()), list(new_dag.qubits), []) return new_dag class DelayPass(TransformationPass): """Adds delay gates when the qubits are idle. For every layer of the circuit it finds the gate that lasts the longest and applies appropriate delays on the other qubits. """ def __init__(self, gate_durations: Dict[str, float], delay_quantum: Optional[float] = None): """ Args: gate_durations: Gate durations in the units of dt """ super().__init__() self.gate_durations = gate_durations self.delay_quantum = delay_quantum def add_delay_to_dag(self, duration, dag, qargs, cargs): if self.delay_quantum: number_of_delays = int(duration/self.delay_quantum) for ii in range(number_of_delays): dag.apply_operation_back(Delay(self.delay_quantum), qargs, cargs) else: dag.apply_operation_back(Delay(duration), qargs, cargs) @staticmethod def _determine_delay_target_qubits(dag, layer): """ Determine qubits in specified layer which require a delay gate """ partition = layer['partition'] lst = list(dag.qubits) for el in partition: for q in el: if q in lst: lst.remove(q) return lst def run(self, dag): new_dag = DAGCircuit() for qreg in dag.qregs.values(): new_dag.add_qreg(qreg) for creg in dag.cregs.values(): new_dag.add_creg(creg) for layer_idx, layer in enumerate(dag.layers()): max_duration = 0 durations = {} for node in layer['graph'].op_nodes(): if node.name in self.gate_durations: max_duration = max(max_duration, self.gate_durations[node.name]) for q in node.qargs: durations[q] = self.gate_durations[node.name] else: logger.info('layer {layer_idx}, could not find duration for node {node.name}') new_dag.apply_operation_back(node.op, node.qargs, node.cargs) partition = layer['partition'] if len(partition) == 0: continue lst = DelayPass._determine_delay_target_qubits(dag, layer) logger.info(f'layer: {layer_idx}: lst {lst}, durations {durations}') for el in lst: logger.info(f'apply_operation_back: {[el]}') self.add_delay_to_dag(max_duration, new_dag, [el], []) for q in durations: if max_duration - durations[q] > 0: self.add_delay_to_dag(max_duration - durations[q], new_dag, [q], []) return new_dag
[ "logging.getLogger", "qiskit.circuit.quantumcircuit.QuantumCircuit", "qiskit.circuit.Delay", "numpy.abs", "logging.info", "qiskit.dagcircuit.DAGCircuit", "qiskit.converters.circuit_to_dag.circuit_to_dag", "numpy.mod" ]
[((785, 812), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (802, 812), False, 'import logging\n'), ((5004, 5021), 'qiskit.circuit.quantumcircuit.QuantumCircuit', 'QuantumCircuit', (['(1)'], {}), '(1)\n', (5018, 5021), False, 'from qiskit.circuit.quantumcircuit import QuantumCircuit\n'), ((6869, 6886), 'qiskit.circuit.quantumcircuit.QuantumCircuit', 'QuantumCircuit', (['(2)'], {}), '(2)\n', (6883, 6886), False, 'from qiskit.circuit.quantumcircuit import QuantumCircuit\n'), ((7196, 7230), 'qiskit.converters.circuit_to_dag.circuit_to_dag', 'circuit_to_dag', (['self.decomposition'], {}), '(self.decomposition)\n', (7210, 7230), False, 'from qiskit.converters.circuit_to_dag import circuit_to_dag\n'), ((7790, 7802), 'qiskit.dagcircuit.DAGCircuit', 'DAGCircuit', ([], {}), '()\n', (7800, 7802), False, 'from qiskit.dagcircuit import DAGCircuit\n'), ((8704, 8716), 'qiskit.dagcircuit.DAGCircuit', 'DAGCircuit', ([], {}), '()\n', (8714, 8716), False, 'from qiskit.dagcircuit import DAGCircuit\n'), ((12222, 12234), 'qiskit.dagcircuit.DAGCircuit', 'DAGCircuit', ([], {}), '()\n', (12232, 12234), False, 'from qiskit.dagcircuit import DAGCircuit\n'), ((1333, 1350), 'qiskit.circuit.quantumcircuit.QuantumCircuit', 'QuantumCircuit', (['(1)'], {}), '(1)\n', (1347, 1350), False, 'from qiskit.circuit.quantumcircuit import QuantumCircuit\n'), ((1412, 1429), 'qiskit.circuit.quantumcircuit.QuantumCircuit', 'QuantumCircuit', (['(2)'], {}), '(2)\n', (1426, 1429), False, 'from qiskit.circuit.quantumcircuit import QuantumCircuit\n'), ((1742, 1770), 'numpy.mod', 'np.mod', (['(x + np.pi)', '(2 * np.pi)'], {}), '(x + np.pi, 2 * np.pi)\n', (1748, 1770), True, 'import numpy as np\n'), ((11792, 11807), 'qiskit.circuit.Delay', 'Delay', (['duration'], {}), '(duration)\n', (11797, 11807), False, 'from qiskit.circuit import Barrier, Delay, Reset\n'), ((11700, 11725), 'qiskit.circuit.Delay', 'Delay', (['self.delay_quantum'], {}), '(self.delay_quantum)\n', (11705, 11725), False, 'from qiskit.circuit import Barrier, Delay, Reset\n'), ((2203, 2214), 'numpy.abs', 'np.abs', (['phi'], {}), '(phi)\n', (2209, 2214), True, 'import numpy as np\n'), ((9261, 9315), 'logging.info', 'logging.info', (['f"""layer {ii}: other type of node {node}"""'], {}), "(f'layer {ii}: other type of node {node}')\n", (9273, 9315), False, 'import logging\n'), ((2691, 2702), 'numpy.abs', 'np.abs', (['phi'], {}), '(phi)\n', (2697, 2702), True, 'import numpy as np\n')]
def help(): return ''' Isotropic-Anisotropic Filtering Norm Nesterov Algorithm Solves the filtering norm minimization + quadratic term problem Nesterov algorithm, with continuation: argmin_x || iaFN(x) ||_1/2 subjected to ||b - Ax||_2^2 < delta If no filter is provided, solves the L1. Continuation is performed by sequentially applying Nesterov's algorithm with a decreasing sequence of values of mu0 >= mu >= muf The observation matrix A must be a projector (non projector not implemented yet) Inputs: IAFNNESTA(b, #Observed data, a m x 1 array A=identity,At=identity, # measurement matrix and adjoint (either a matrix, function handles) muf=0.0001, #final mu value, smaller leads to higher accuracy delta, #l2 error bound. This enforces how close the variable #must fit the observations b, i.e. || y - Ax ||_2 <= delta #If delta = 0, enforces y = Ax #delta = sqrt(m + 2*sqrt(2*m))*sigma, where sigma=std(noise). L1w=1,L2w=0, #weights of L1 (anisotropic) and L2(isotropic) norms verbose=0, #whether to print internal steps maxit=1000, #maximum iterations at the inner loop x0=[], #initial solution, if not provided, will be At(b) U=identity,Ut=identity, #Analysis/Synthesis operators stopTest=1, #stopTest == 1 : stop when the relative change in the objective function is less than TolVar stopTest == 2 : stop with the l_infinity norm of difference in the xk variable is less than TolVar TolVar = 1e-5, #tolerance for the stopping criteria AAtinv=[], #not implemented normU=1, #if U is provided, this should be norm(U) H=[],Ht=[]): #filter operations in sparse matrix form #also accepts the string 'tv' as input, #in that case, calculates the tv norm Outputs: return xk, #estimated x reconstructed signal niter, #number of iterations residuals #first column is the residual at every step, #second column is the value of f_mu at every step ''' import IAFNNesterov import numpy as np from scipy import sparse import fil2mat def identity(x): return x def IAFNNESTA(b,sig_size=0,A=identity,At=identity,muf=0.0001,delta=0,L1w=1,L2w=0,verbose=0,MaxIntIter=5,maxit=1000,x0=[],U=identity,Ut=identity,stopTest=1,TolVar = 1e-5,AAtinv=[],normU=1,H=[]): if delta<0: raise Exception('Delta must not be negative') if not callable(A): #If not function A=lambda x:np.matmul(A,x) At=lambda x:np.matmul(np.transpose(A),x) b=b.reshape((-1,1)) Atb=At(b) if sig_size==0: sig_size=Atb.shape if callable(AAtinv): AtAAtb = At( AAtinv(b) ) else: if len(AAtinv)>0: AAtinv=lambda x: np.matmul(AAtinv,x) AtAAtb = At( AAtinv(b) ) else: #default AtAAtb = Atb AAtinv=identity if len(x0)==0: x0 = AtAAtb if len(H)==0: Hf=identity Hft=identity else: if not sparse.issparse(H): if isinstance(H, str): if H=='tv': hs=[] hs.append(np.array([[1,-1]])) hs.append(np.array([[1],[-1]])) H,_,_,_=fil2mat.fil2mat(hs,sig_size) else: print('H not recognized. Must be a sparse matrix, a list of filters or the string tv') else: #list of filters: H,_,_,_=fil2mat.fil2mat(H,sig_size) #print(H.shape) #print(H) #print(type(H)) Ht=H.transpose() Hf=lambda x: H@x Hft=lambda x: Ht@x HU=lambda x: Hf(U(x)) UtHt=lambda x: Ut(Hft(x)) typemin='' if L1w>0: typemin+="iso" if L2w>0: typemin+="aniso" typemin+='tropic ' if callable(H): typemin+='filtering norm ' mu0=0 if L1w>0: mu0+=L1w*0.9*np.max(np.linalg.norm(HU(x0),1)) if L2w>0: mu0+=L2w*0.9*np.max(np.linalg.norm(HU(x0),2)) niter = 0 Gamma = np.power(muf/mu0,1/MaxIntIter) mu = mu0 Gammat= np.power(TolVar/0.1,1/MaxIntIter) TolVar = 0.1 for i in range(MaxIntIter): mu = mu*Gamma TolVar=TolVar*Gammat; if verbose>0: #if k%verbose==0: print("\tBeginning %s Minimization; mu = %g\n" %(typemin,mu)) xk,niter_int,res = IAFNNesterov.IAFNNesterov(b,A=A,At=At,mu=mu,delta=delta,L1w=L1w,L2w=L2w,verbose=verbose,maxit=maxit,x0=x0,U=U,Ut=Ut,stopTest=stopTest,TolVar = TolVar,AAtinv=AAtinv,normU=normU,H=Hf,Ht=Hft) xplug = xk niter = niter_int + niter if i==0: residuals=res else: residuals = np.vstack((residuals, res)) return xk.reshape(sig_size) if __name__ == "__main__": print(help())
[ "IAFNNesterov.IAFNNesterov", "fil2mat.fil2mat", "numpy.power", "scipy.sparse.issparse", "numpy.array", "numpy.matmul", "numpy.vstack", "numpy.transpose" ]
[((4800, 4835), 'numpy.power', 'np.power', (['(muf / mu0)', '(1 / MaxIntIter)'], {}), '(muf / mu0, 1 / MaxIntIter)\n', (4808, 4835), True, 'import numpy as np\n'), ((4856, 4894), 'numpy.power', 'np.power', (['(TolVar / 0.1)', '(1 / MaxIntIter)'], {}), '(TolVar / 0.1, 1 / MaxIntIter)\n', (4864, 4894), True, 'import numpy as np\n'), ((5171, 5383), 'IAFNNesterov.IAFNNesterov', 'IAFNNesterov.IAFNNesterov', (['b'], {'A': 'A', 'At': 'At', 'mu': 'mu', 'delta': 'delta', 'L1w': 'L1w', 'L2w': 'L2w', 'verbose': 'verbose', 'maxit': 'maxit', 'x0': 'x0', 'U': 'U', 'Ut': 'Ut', 'stopTest': 'stopTest', 'TolVar': 'TolVar', 'AAtinv': 'AAtinv', 'normU': 'normU', 'H': 'Hf', 'Ht': 'Hft'}), '(b, A=A, At=At, mu=mu, delta=delta, L1w=L1w, L2w=\n L2w, verbose=verbose, maxit=maxit, x0=x0, U=U, Ut=Ut, stopTest=stopTest,\n TolVar=TolVar, AAtinv=AAtinv, normU=normU, H=Hf, Ht=Hft)\n', (5196, 5383), False, 'import IAFNNesterov\n'), ((3145, 3160), 'numpy.matmul', 'np.matmul', (['A', 'x'], {}), '(A, x)\n', (3154, 3160), True, 'import numpy as np\n'), ((3706, 3724), 'scipy.sparse.issparse', 'sparse.issparse', (['H'], {}), '(H)\n', (3721, 3724), False, 'from scipy import sparse\n'), ((5503, 5530), 'numpy.vstack', 'np.vstack', (['(residuals, res)'], {}), '((residuals, res))\n', (5512, 5530), True, 'import numpy as np\n'), ((3190, 3205), 'numpy.transpose', 'np.transpose', (['A'], {}), '(A)\n', (3202, 3205), True, 'import numpy as np\n'), ((3431, 3451), 'numpy.matmul', 'np.matmul', (['AAtinv', 'x'], {}), '(AAtinv, x)\n', (3440, 3451), True, 'import numpy as np\n'), ((4199, 4227), 'fil2mat.fil2mat', 'fil2mat.fil2mat', (['H', 'sig_size'], {}), '(H, sig_size)\n', (4214, 4227), False, 'import fil2mat\n'), ((3945, 3974), 'fil2mat.fil2mat', 'fil2mat.fil2mat', (['hs', 'sig_size'], {}), '(hs, sig_size)\n', (3960, 3974), False, 'import fil2mat\n'), ((3845, 3864), 'numpy.array', 'np.array', (['[[1, -1]]'], {}), '([[1, -1]])\n', (3853, 3864), True, 'import numpy as np\n'), ((3895, 3916), 'numpy.array', 'np.array', (['[[1], [-1]]'], {}), '([[1], [-1]])\n', (3903, 3916), True, 'import numpy as np\n')]
import asyncio import discord # Just with a function to add to the bot. async def on_message(message): if not message.author.bot: await message.channel.send(f"{message.author.mention} a envoyรฉ un message!") # A Listener already created with the function from discordEasy.objects import Listener async def on_message(message): if not message.author.bot: await message.channel.send(f"{message.author.mention} a envoyรฉ un message!") listener_on_message = Listener(on_message)
[ "discordEasy.objects.Listener" ]
[((463, 483), 'discordEasy.objects.Listener', 'Listener', (['on_message'], {}), '(on_message)\n', (471, 483), False, 'from discordEasy.objects import Listener\n')]
import os import random from flask import Flask, request, send_from_directory from werkzeug.utils import secure_filename from pianonet.core.pianoroll import Pianoroll from pianonet.model_inspection.performance_from_pianoroll import get_performance_from_pianoroll app = Flask(__name__) base_path = "/app/" # base_path = "/Users/angsten/PycharmProjects/pianonet" performances_path = os.path.join(base_path, 'data', 'performances') def get_random_midi_file_name(): """ Get a random midi file name that will not ever collide. """ return str(random.randint(0, 10000000000000000000)) + ".midi" def get_performance_path(midi_file_name): """ Returns full path to performaqnce midi file given a file name. """ return os.path.join(performances_path, midi_file_name) @app.route('/') def alive(): return 'OK' @app.route('/performances/', methods=['GET']) def get_performance(): """ Returns the requested performance as midi file. Expected query string is 'midi_file_name', such as 1234.midi """ performance_midi_file_name = request.args.get('midi_file_name') performance_midi_file_name = secure_filename(performance_midi_file_name) print(performance_midi_file_name) if performance_midi_file_name == None: return {"http_code": 400, "code": "BadRequest", "message": "midi_file_name not found in request."} midi_file_path = get_performance_path(performance_midi_file_name) if not os.path.exists(midi_file_path): return { "http_code": 404, "code": "Not Found", "message": "midi_file " + performance_midi_file_name + " not found." } with open(midi_file_path, 'rb') as midi_file: return send_from_directory(performances_path, performance_midi_file_name) @app.route('/create-performance', methods=['POST']) def performance(): """ Expects post form data as follows: seed_midi_file_data: Midi file that forms the seed for a performance as string encoding like "8,2,3,4,5..." seconds_to_generate: Number of seconds of new notes to generate model_complexity: Quality of model to use, one of ['low', 'medium', 'high', 'highest'] """ seed_midi_file_data = request.form.get('seed_midi_file_data') if seed_midi_file_data == None: return {"http_code": 400, "code": "BadRequest", "message": "seed_midi_file_data not found in request."} else: seed_midi_file_int_array = [int(x) for x in seed_midi_file_data.split(',')] frame = bytearray() for i in seed_midi_file_int_array: frame.append(i) saved_seed_midi_file_path = os.path.join(base_path, 'data', 'seeds', get_random_midi_file_name()) with open(saved_seed_midi_file_path, 'wb') as midi_file: midi_file.write(frame) seconds_to_generate = request.form.get('seconds_to_generate') if seconds_to_generate == None: return {"http_code": 400, "code": "BadRequest", "message": "seconds_to_generate not found in request."} else: seconds_to_generate = float(seconds_to_generate) model_complexity = request.form.get('model_complexity', 'low') if model_complexity == 'low': model_name = "micro_1" else: model_name = "r9p0_3500kparams_approx_9_blocks_model" model_path = os.path.join(base_path, 'models', model_name) input_pianoroll = Pianoroll(saved_seed_midi_file_path, use_custom_multitrack=True) input_pianoroll.trim_silence_off_ends() final_pianoroll = get_performance_from_pianoroll( pianoroll_seed=input_pianoroll, num_time_steps=int(48 * seconds_to_generate), model_path=model_path, ) midi_file_name = get_random_midi_file_name() midi_file_path = get_performance_path(midi_file_name) final_pianoroll.save_to_midi_file(midi_file_path) return {"http_code": 200, "code": "Success", "message": "", "midi_file_name": midi_file_name} if __name__ == '__main__': app.run(host='0.0.0.0')
[ "flask.request.args.get", "os.path.exists", "flask.send_from_directory", "flask.Flask", "os.path.join", "flask.request.form.get", "pianonet.core.pianoroll.Pianoroll", "werkzeug.utils.secure_filename", "random.randint" ]
[((272, 287), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (277, 287), False, 'from flask import Flask, request, send_from_directory\n'), ((387, 434), 'os.path.join', 'os.path.join', (['base_path', '"""data"""', '"""performances"""'], {}), "(base_path, 'data', 'performances')\n", (399, 434), False, 'import os\n'), ((752, 799), 'os.path.join', 'os.path.join', (['performances_path', 'midi_file_name'], {}), '(performances_path, midi_file_name)\n', (764, 799), False, 'import os\n'), ((1085, 1119), 'flask.request.args.get', 'request.args.get', (['"""midi_file_name"""'], {}), "('midi_file_name')\n", (1101, 1119), False, 'from flask import Flask, request, send_from_directory\n'), ((1153, 1196), 'werkzeug.utils.secure_filename', 'secure_filename', (['performance_midi_file_name'], {}), '(performance_midi_file_name)\n', (1168, 1196), False, 'from werkzeug.utils import secure_filename\n'), ((2243, 2282), 'flask.request.form.get', 'request.form.get', (['"""seed_midi_file_data"""'], {}), "('seed_midi_file_data')\n", (2259, 2282), False, 'from flask import Flask, request, send_from_directory\n'), ((2861, 2900), 'flask.request.form.get', 'request.form.get', (['"""seconds_to_generate"""'], {}), "('seconds_to_generate')\n", (2877, 2900), False, 'from flask import Flask, request, send_from_directory\n'), ((3141, 3184), 'flask.request.form.get', 'request.form.get', (['"""model_complexity"""', '"""low"""'], {}), "('model_complexity', 'low')\n", (3157, 3184), False, 'from flask import Flask, request, send_from_directory\n'), ((3341, 3386), 'os.path.join', 'os.path.join', (['base_path', '"""models"""', 'model_name'], {}), "(base_path, 'models', model_name)\n", (3353, 3386), False, 'import os\n'), ((3410, 3474), 'pianonet.core.pianoroll.Pianoroll', 'Pianoroll', (['saved_seed_midi_file_path'], {'use_custom_multitrack': '(True)'}), '(saved_seed_midi_file_path, use_custom_multitrack=True)\n', (3419, 3474), False, 'from pianonet.core.pianoroll import Pianoroll\n'), ((1469, 1499), 'os.path.exists', 'os.path.exists', (['midi_file_path'], {}), '(midi_file_path)\n', (1483, 1499), False, 'import os\n'), ((1738, 1804), 'flask.send_from_directory', 'send_from_directory', (['performances_path', 'performance_midi_file_name'], {}), '(performances_path, performance_midi_file_name)\n', (1757, 1804), False, 'from flask import Flask, request, send_from_directory\n'), ((562, 601), 'random.randint', 'random.randint', (['(0)', '(10000000000000000000)'], {}), '(0, 10000000000000000000)\n', (576, 601), False, 'import random\n')]
import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html import plotly.graph_objects as go from plotly.subplots import make_subplots import logging import json import os import pandas as pd from datetime import datetime from datetime import timedelta from urllib import parse import requests logger = logging.getLogger(__name__) external_stylesheets = [dbc.themes.DARKLY] is_cf_instance = os.environ.get('CF_INSTANCE_GUID', '') != '' port = int(os.environ.get('PORT', 8050)) host = os.environ.get('CF_INSTANCE_INTERNAL_IP', '127.0.0.1') wml_api_key = os.environ['WML_API_KEY'] wml_scoring_url = os.environ['WML_SCORING_URL'] url = parse.urlparse(wml_scoring_url) wml_base_url = url._replace(path='').geturl() wml_instance_id = url.path.split('/')[3] logger.setLevel(logging.INFO if is_cf_instance else logging.DEBUG) logger.info('Starting %s server: %s:%d', 'CF' if is_cf_instance else 'local', host, port) logger.info('WML URL: %s', wml_base_url) logger.info('WML instance ID: %s', wml_instance_id) wml_credentials = { "apikey": wml_api_key, "instance_id": wml_instance_id, "url": wml_base_url, } iam_token_endpoint = 'https://iam.cloud.ibm.com/identity/token' def _get_token(): data = { 'grant_type': 'urn:ibm:params:oauth:grant-type:apikey', 'apikey': wml_credentials['apikey'] } headers = {'Content-Type': 'application/x-www-form-urlencoded'} response = requests.post(iam_token_endpoint, data=data, headers=headers) return response.json()['access_token'] def score(token, algorithm, start_date, country, predict_range, s, i, r): headers = {'Authorization': 'Bearer ' + token} payload = { "fields": ["algorithm", "start_date", "country", "predict_range", "S0", "I0", "R0"], "values": [[algorithm, start_date.strftime('%-m/%-d/%y'), country, predict_range, s, i, r]] } logger.info('Scoring with payload: %s', json.dumps(payload)) response = requests.post(wml_scoring_url, json=payload, headers=headers) if response.status_code == 200: result = response.json() else: raise Exception('Scoring error [{}]: {}'.format(response.status_code, response.text)) n_days = len(result['values']) index = [(start_date + timedelta(days=i)).strftime('%d/%m/%y') for i in range(n_days)] return pd.DataFrame(result['values'], columns=result['fields'], index=index) def serve_layout(): token = _get_token() # predict_range = 14 # sir_result = score(token, 'SIR', datetime(2020, 3, 3), 'Poland', predict_range, 10_000, 20, 10) # logistic_result = score(token, 'LOGISTIC', datetime(2020, 3, 3), 'Poland', predict_range, 10_000, 20, 10) calibration_result = score(token, 'CALIBRATION', datetime(2020, 1, 22), 'Poland', 40, 10_000, 20, 10) # days = list(sir_result.index) days = list(calibration_result.index) calibration_result['ActualChange'] = calibration_result['Actual'] - calibration_result['Actual'].shift(1, fill_value=0) calibration_result['PredictedChange'] = calibration_result['Predicted'] - calibration_result['Predicted'].shift(1, fill_value=0) fig = make_subplots(specs=[[{"secondary_y": True}]]) fig.add_trace( go.Bar(x=days, y=calibration_result['PredictedChange'], name='Predicted Change', opacity=0.5), secondary_y=True, ) fig.add_trace( go.Bar(x=days, y=calibration_result['ActualChange'], name='Actual Change', opacity=0.5), secondary_y=True, ) fig.add_trace( go.Scatter(x=days, y=calibration_result['Predicted'], name='Calibration'), secondary_y=False, ) fig.add_trace( go.Scatter(x=days, y=calibration_result['Actual'], name='Actual', mode="markers", marker=dict(size=8)), secondary_y=False, ) fig.update_layout( title="Prediction of confirmed cases for Poland", template="plotly_dark", height=900 ) fig.update_xaxes(title_text="Date") fig.update_yaxes(title_text="Total confirmed cases", secondary_y=False, range=[0, 6000]) fig.update_yaxes(title_text="New cases per day", secondary_y=True, range=[0, 1000]) # fig = go.Figure( # data=[ # go.Scatter(x=days, y=sir_result['I'], name='SIR'), # go.Scatter(x=days, y=logistic_result['I'], name='Logistic'), # ], # layout=go.Layout( # title="COVID19 infected prediction in Poland", # template="plotly_dark", # height=600 # ) # ) return html.Div(children=[ html.H1(children='COVID-19 Predictions with Watson Machine Learning'), dcc.Graph( id='example-graph', figure=fig ) ]) app = dash.Dash(__name__, external_stylesheets=external_stylesheets) app.layout = serve_layout if __name__ == '__main__': app.run_server(debug=(not is_cf_instance), port=port, host=host)
[ "logging.getLogger", "datetime.datetime", "plotly.graph_objects.Bar", "requests.post", "plotly.subplots.make_subplots", "urllib.parse.urlparse", "json.dumps", "os.environ.get", "plotly.graph_objects.Scatter", "dash_html_components.H1", "pandas.DataFrame", "datetime.timedelta", "dash.Dash", "dash_core_components.Graph" ]
[((369, 396), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (386, 396), False, 'import logging\n'), ((552, 606), 'os.environ.get', 'os.environ.get', (['"""CF_INSTANCE_INTERNAL_IP"""', '"""127.0.0.1"""'], {}), "('CF_INSTANCE_INTERNAL_IP', '127.0.0.1')\n", (566, 606), False, 'import os\n'), ((702, 733), 'urllib.parse.urlparse', 'parse.urlparse', (['wml_scoring_url'], {}), '(wml_scoring_url)\n', (716, 733), False, 'from urllib import parse\n'), ((4778, 4840), 'dash.Dash', 'dash.Dash', (['__name__'], {'external_stylesheets': 'external_stylesheets'}), '(__name__, external_stylesheets=external_stylesheets)\n', (4787, 4840), False, 'import dash\n'), ((459, 497), 'os.environ.get', 'os.environ.get', (['"""CF_INSTANCE_GUID"""', '""""""'], {}), "('CF_INSTANCE_GUID', '')\n", (473, 497), False, 'import os\n'), ((515, 543), 'os.environ.get', 'os.environ.get', (['"""PORT"""', '(8050)'], {}), "('PORT', 8050)\n", (529, 543), False, 'import os\n'), ((1480, 1541), 'requests.post', 'requests.post', (['iam_token_endpoint'], {'data': 'data', 'headers': 'headers'}), '(iam_token_endpoint, data=data, headers=headers)\n', (1493, 1541), False, 'import requests\n'), ((2007, 2068), 'requests.post', 'requests.post', (['wml_scoring_url'], {'json': 'payload', 'headers': 'headers'}), '(wml_scoring_url, json=payload, headers=headers)\n', (2020, 2068), False, 'import requests\n'), ((2379, 2448), 'pandas.DataFrame', 'pd.DataFrame', (["result['values']"], {'columns': "result['fields']", 'index': 'index'}), "(result['values'], columns=result['fields'], index=index)\n", (2391, 2448), True, 'import pandas as pd\n'), ((3189, 3235), 'plotly.subplots.make_subplots', 'make_subplots', ([], {'specs': "[[{'secondary_y': True}]]"}), "(specs=[[{'secondary_y': True}]])\n", (3202, 3235), False, 'from plotly.subplots import make_subplots\n'), ((1971, 1990), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1981, 1990), False, 'import json\n'), ((2788, 2809), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(22)'], {}), '(2020, 1, 22)\n', (2796, 2809), False, 'from datetime import datetime\n'), ((3264, 3362), 'plotly.graph_objects.Bar', 'go.Bar', ([], {'x': 'days', 'y': "calibration_result['PredictedChange']", 'name': '"""Predicted Change"""', 'opacity': '(0.5)'}), "(x=days, y=calibration_result['PredictedChange'], name=\n 'Predicted Change', opacity=0.5)\n", (3270, 3362), True, 'import plotly.graph_objects as go\n'), ((3418, 3509), 'plotly.graph_objects.Bar', 'go.Bar', ([], {'x': 'days', 'y': "calibration_result['ActualChange']", 'name': '"""Actual Change"""', 'opacity': '(0.5)'}), "(x=days, y=calibration_result['ActualChange'], name='Actual Change',\n opacity=0.5)\n", (3424, 3509), True, 'import plotly.graph_objects as go\n'), ((3566, 3639), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'days', 'y': "calibration_result['Predicted']", 'name': '"""Calibration"""'}), "(x=days, y=calibration_result['Predicted'], name='Calibration')\n", (3576, 3639), True, 'import plotly.graph_objects as go\n'), ((4606, 4675), 'dash_html_components.H1', 'html.H1', ([], {'children': '"""COVID-19 Predictions with Watson Machine Learning"""'}), "(children='COVID-19 Predictions with Watson Machine Learning')\n", (4613, 4675), True, 'import dash_html_components as html\n'), ((4687, 4728), 'dash_core_components.Graph', 'dcc.Graph', ([], {'id': '"""example-graph"""', 'figure': 'fig'}), "(id='example-graph', figure=fig)\n", (4696, 4728), True, 'import dash_core_components as dcc\n'), ((2304, 2321), 'datetime.timedelta', 'timedelta', ([], {'days': 'i'}), '(days=i)\n', (2313, 2321), False, 'from datetime import timedelta\n')]
from robot import __version__ as ROBOT_VERSION import sys import tempfile import textwrap import unittest import shutil import subprocess class PabotOrderingGroupTest(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdir) def _run_tests_with(self, testfile, orderfile): robot_file = open("{}/test.robot".format(self.tmpdir), "w") robot_file.write(textwrap.dedent(testfile)) robot_file.close() with open("{}/order.dat".format(self.tmpdir), "w") as f: f.write(textwrap.dedent(orderfile)) process = subprocess.Popen( [ sys.executable, "-m" "pabot.pabot", "--testlevelsplit", "--ordering", "{}/order.dat".format(self.tmpdir), "{}/test.robot".format(self.tmpdir), ], cwd=self.tmpdir, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) return process.communicate() def test_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2) def test_two_orders(self): stdout, stderr = self._run_tests_with( """ *** Variables *** ${SCALAR} Hello, globe! *** Test Cases *** First Test Set Suite Variable ${SCALAR} Hello, world! Second Test Should Be Equal ${SCALAR} Hello, world! Second And Quarter Should Be Equal ${SCALAR} Hello, globe! Second And Half Should Be Equal ${SCALAR} Hello, globe! Third Test Should Be Equal ${SCALAR} Hello, globe! """, """ { --test Test.First Test --test Test.Second Test } { --test Test.Second And Quarter --test Test.Second And Half } --test Test.Third Test """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = "5 critical tests, 5 passed, 0 failed" else: expected_write = "5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count("PASSED"), 3) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) if ROBOT_VERSION < "4.0": expected_write = b"5 critical tests, 5 passed, 0 failed" else: expected_write = b"5 tests, 5 passed, 0 failed, 0 skipped." self.assertIn(expected_write, stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 3) def test_too_big_testname(self): stdout, stderr = self._run_tests_with( """ *** Test Cases *** Test Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris eu velit nunc. Duis eget purus eget orci porta blandit sed ut tortor. Nunc vel nulla bibendum, auctor sem ac, molestie risus. Sed eu metus volutpat, hendrerit nibh in, auctor urna. Nunc a sodales. Log Test """, """ --test Invalid """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 1) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 1) def test_longnames_in_tests(self): stdout, stderr = self._run_tests_with( """ *** Settings *** Test Template Test1 *** Test Cases *** The Somewhat Long Name Of The Test S1Test 01 1 The Somewhat Long Name Of The Test S1Test 02 1 The Somewhat Long Name Of The Test S1Test 03 1 The Somewhat Long Name Of The Test S1Test 04 1 The Somewhat Long Name Of The Test S1Test 05 1 The Somewhat Long Name Of The Test S1Test 06 1 The Somewhat Long Name Of The Test S1Test 07 1 The Somewhat Long Name Of The Test S1Test 08 1 The Somewhat Long Name Of The Test S1Test 09 1 The Somewhat Long Name Of The Test S1Test 10 1 The Somewhat Long Name Of The Test S1Test 11 1 The Somewhat Long Name Of The Test S1Test 12 1 *** Keywords *** Test1 [Arguments] ${arg} Log Test """, """ { --test Test.The Somewhat Long Name Of The Test S1Test 01 --test Test.The Somewhat Long Name Of The Test S1Test 02 --test Test.The Somewhat Long Name Of The Test S1Test 03 --test Test.The Somewhat Long Name Of The Test S1Test 04 --test Test.The Somewhat Long Name Of The Test S1Test 05 --test Test.The Somewhat Long Name Of The Test S1Test 06 } { --test Test.The Somewhat Long Name Of The Test S1Test 07 --test Test.The Somewhat Long Name Of The Test S1Test 08 --test Test.The Somewhat Long Name Of The Test S1Test 09 --test Test.The Somewhat Long Name Of The Test S1Test 10 --test Test.The Somewhat Long Name Of The Test S1Test 11 --test Test.The Somewhat Long Name Of The Test S1Test 12 } """, ) if sys.version_info < (3, 0): self.assertIn("PASSED", stdout, stderr) self.assertNotIn("FAILED", stdout, stderr) self.assertEqual(stdout.count("PASSED"), 2) else: self.assertIn(b"PASSED", stdout, stderr) self.assertNotIn(b"FAILED", stdout, stderr) self.assertEqual(stdout.count(b"PASSED"), 2)
[ "textwrap.dedent", "tempfile.mkdtemp", "shutil.rmtree" ]
[((232, 250), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (248, 250), False, 'import tempfile\n'), ((284, 310), 'shutil.rmtree', 'shutil.rmtree', (['self.tmpdir'], {}), '(self.tmpdir)\n', (297, 310), False, 'import shutil\n'), ((457, 482), 'textwrap.dedent', 'textwrap.dedent', (['testfile'], {}), '(testfile)\n', (472, 482), False, 'import textwrap\n'), ((596, 622), 'textwrap.dedent', 'textwrap.dedent', (['orderfile'], {}), '(orderfile)\n', (611, 622), False, 'import textwrap\n')]
import torch ckp_path = './checkpoints/fashion_PATN/latest_net_netG.pth' save_path = './checkpoints/fashion_PATN_v1.0/latest_net_netG.pth' states_dict = torch.load(ckp_path) states_dict_new = states_dict.copy() for key in states_dict.keys(): if "running_var" in key or "running_mean" in key: del states_dict_new[key] torch.save(states_dict_new, save_path)
[ "torch.load", "torch.save" ]
[((154, 174), 'torch.load', 'torch.load', (['ckp_path'], {}), '(ckp_path)\n', (164, 174), False, 'import torch\n'), ((322, 360), 'torch.save', 'torch.save', (['states_dict_new', 'save_path'], {}), '(states_dict_new, save_path)\n', (332, 360), False, 'import torch\n')]
import multiprocessing # ========== #Python3 - concurrent from math import floor, sqrt numbers = [ 112272537195293, 112582718962171, 112272537095293, 115280098190773, 115797840077099, 1099726829285419] # numbers = [33, 44, 55, 275] def lowest_factor(n, _start=3): if n % 2 == 0: return 2 search_max = int(floor(sqrt(n))) + 1 for i in range(_start, search_max, 2): if n % i == 0: return i return n def prime_factors(n, lowest): pf = [] while n > 1: pf.append(lowest) n //= lowest lowest = lowest_factor(n, max(lowest, 3)) return pf # ========== #Python3 - concurrent def prime_factors_of_number_with_lowest_prime_factor(numbers): pool = multiprocessing.Pool(processes=5) factors = pool.map(lowest_factor,numbers) low_factor,number = max((l,f) for l,f in zip(factors,numbers)) all_factors = prime_factors(number,low_factor) return number,all_factors if __name__ == '__main__': print('For these numbers:') print('\n '.join(str(p) for p in numbers)) number, all_factors = prime_factors_of_number_with_lowest_prime_factor(numbers) print(' The one with the largest minimum prime factor is {}:'.format(number)) print(' All its prime factors in order are: {}'.format(all_factors))
[ "math.sqrt", "multiprocessing.Pool" ]
[((749, 782), 'multiprocessing.Pool', 'multiprocessing.Pool', ([], {'processes': '(5)'}), '(processes=5)\n', (769, 782), False, 'import multiprocessing\n'), ((354, 361), 'math.sqrt', 'sqrt', (['n'], {}), '(n)\n', (358, 361), False, 'from math import floor, sqrt\n')]
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Project: Nowcasting the air pollution using online search log', author='<NAME>(IR Lab)', license='MIT', )
[ "setuptools.find_packages" ]
[((81, 96), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (94, 96), False, 'from setuptools import find_packages, setup\n')]
import ast from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name class ObjectGenerator(object): @staticmethod def _get_property_name(node_assign): name = node_assign.targets[0] return name.id @staticmethod def _nesting_class(node_assign): for node in ast.walk(node_assign): if isinstance(node, ast.Call): if node.func.attr == "Nested": return class_name(node.args[0].id) @staticmethod def _non_primitive_nested_list(node_assign): if node_assign.value.func.attr == "List": return ( len(node_assign.value.args) > 0 and node_assign.value.args[0].func.attr == "Nested" ) else: return False @staticmethod def _init_non_primitive_nested_class(node_assign, object_, prop): """ If the nested list is non-primitive, initialise sub-classes in a list comp If the nest is primitive, we can simply get it Marshmallow will do the type marshalling """ return ast.ListComp( elt=ast.Call( func=ast.Name(id=ObjectGenerator._nesting_class(node_assign)), args=[ast.Name(id="el")], keywords=[], ), generators=[ ast.comprehension( target=ast.Name(id="el"), iter=ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop), ast.Dict(keys=[], values=[])], keywords=[], ), ifs=[], is_async=0, ) ], ) @staticmethod def _get_key_from_object(object_, prop): return ast.Call( func=ast.Attribute(value=ast.Name(id=object_), attr="get"), args=[ast.Str(s=prop)], keywords=[], ) @staticmethod def _hint_required_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword): if "required" in node.arg: value = ast.Subscript( value=ast.Name(id=object_), slice=ast.Index(value=ast.Str(s=prop)) ) return value @staticmethod def _get_default_for_property(node_assign, value, object_, prop): for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "required": return value for node in ast.walk(node_assign): if isinstance(node, ast.keyword) and node.arg == "default": default_value = [ keyword.value for keyword in node_assign.value.keywords if keyword.arg == "default" ][0] value.args.append(default_value) return value else: return value @staticmethod def assign_property(node_assign, object_): """ Required property -> self.prop = parent_dict["prop"] Optional property -> self.prop = parent_dict.get("prop") Primative nested list -> self.prop = parent_dict.get("prop") Non-primative nested list -> self.props = [PropertyClass(el) for el in parent_dict.get('props', {})] """ prop = ObjectGenerator._get_property_name(node_assign) if ObjectGenerator._non_primitive_nested_list(node_assign): value = ObjectGenerator._init_non_primitive_nested_class(node_assign, object_, prop) else: # Assign the property as self.prop = table.get("prop") value = ObjectGenerator._get_key_from_object(object_, prop) # If the property is required, assign as self.prop = table["prop"] value = ObjectGenerator._hint_required_property(node_assign, value, object_, prop) value = ObjectGenerator._get_default_for_property(node_assign, value, object_, prop) return ast.AnnAssign( target=ast.Attribute(value=ast.Name(id="self"), attr=prop), value=value, simple=0, annotation=Annotations(node_assign).type, ) @staticmethod def construct_class(schema): name = class_name(schema.name) name_lower = name.lower() # Bundle function arguments and keywords fn_arguments = ast.arguments( args=[ ast.arg(arg="self", annotation=None), ast.arg(arg=name_lower, annotation=ast.Name(id="dict")), ], vararg=None, kwarg=None, kwonlyargs=[], kw_defaults=[], defaults=[], ) fn_body = [ ObjectGenerator.assign_property(node, name_lower) for node in schema.body if isinstance(node, ast.Assign) ] # pass if no Assign nodes if len(fn_body) == 0: fn_body = [ast.Pass()] # Generate class constructor class_body = [ ast.FunctionDef( name="__init__", args=fn_arguments, body=fn_body, decorator_list=[], returns=None ), ObjectGenerator._construct_to_("json")(schema), ObjectGenerator._construct_to_("dict")(schema), ObjectGenerator.construct_from_json(schema), ] return ast.ClassDef(name=name, bases=[], body=class_body, decorator_list=[], keywords=[]) @staticmethod def _construct_to_(output): if output == "json": method = "dumps" elif output == "dict": method = "dump" else: raise NotImplementedError("Only deserialisation to json or dict supported") def _construct_to_helper(schema): fn_args = ast.arguments( args=[ast.arg(arg="self", annotation=None)], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[], ) fn_body = [ ast.Return( value=ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword( arg="strict", value=ast.NameConstant(value=True) ) ], ), attr=method, ), args=[ast.Name(id="self")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name=f"to_{output}", args=fn_args, body=fn_body, decorator_list=[], returns=None ) return _construct_to_helper @staticmethod def construct_from_json(schema): fn_args = ast.arguments( args=[ ast.arg(arg="json", annotation=ast.Name(id="str")), ast.arg(arg="only", annotation=None), ], vararg=None, kwonlyargs=[], kw_defaults=[], kwarg=None, defaults=[ast.NameConstant(value=None)], ) fn_body = [ ast.Return( ast.Attribute( value=ast.Call( func=ast.Attribute( value=ast.Call( func=ast.Name(id=schema.name), args=[], keywords=[ ast.keyword(arg="strict", value=ast.NameConstant(value=True)), ast.keyword(arg="only", value=ast.Name(id="only")), ], ), attr="loads", ), args=[ast.Name(id="json")], keywords=[], ), attr="data", ) ) ] return ast.FunctionDef( name="from_json", args=fn_args, body=fn_body, decorator_list=[ast.Name(id="staticmethod")], returns=None, )
[ "json_codegen.generators.python3_marshmallow.utils.class_name", "ast.walk", "ast.Str", "ast.ClassDef", "ast.arg", "ast.Dict", "ast.Name", "json_codegen.generators.python3_marshmallow.utils.Annotations", "ast.FunctionDef", "ast.NameConstant", "ast.Pass" ]
[((327, 348), 'ast.walk', 'ast.walk', (['node_assign'], {}), '(node_assign)\n', (335, 348), False, 'import ast\n'), ((2112, 2133), 'ast.walk', 'ast.walk', (['node_assign'], {}), '(node_assign)\n', (2120, 2133), False, 'import ast\n'), ((2511, 2532), 'ast.walk', 'ast.walk', (['node_assign'], {}), '(node_assign)\n', (2519, 2532), False, 'import ast\n'), ((2657, 2678), 'ast.walk', 'ast.walk', (['node_assign'], {}), '(node_assign)\n', (2665, 2678), False, 'import ast\n'), ((4421, 4444), 'json_codegen.generators.python3_marshmallow.utils.class_name', 'class_name', (['schema.name'], {}), '(schema.name)\n', (4431, 4444), False, 'from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name\n'), ((5546, 5632), 'ast.ClassDef', 'ast.ClassDef', ([], {'name': 'name', 'bases': '[]', 'body': 'class_body', 'decorator_list': '[]', 'keywords': '[]'}), '(name=name, bases=[], body=class_body, decorator_list=[],\n keywords=[])\n', (5558, 5632), False, 'import ast\n'), ((5213, 5315), 'ast.FunctionDef', 'ast.FunctionDef', ([], {'name': '"""__init__"""', 'args': 'fn_arguments', 'body': 'fn_body', 'decorator_list': '[]', 'returns': 'None'}), "(name='__init__', args=fn_arguments, body=fn_body,\n decorator_list=[], returns=None)\n", (5228, 5315), False, 'import ast\n'), ((7167, 7268), 'ast.FunctionDef', 'ast.FunctionDef', ([], {'name': 'f"""to_{output}"""', 'args': 'fn_args', 'body': 'fn_body', 'decorator_list': '[]', 'returns': 'None'}), "(name=f'to_{output}', args=fn_args, body=fn_body,\n decorator_list=[], returns=None)\n", (7182, 7268), False, 'import ast\n'), ((5128, 5138), 'ast.Pass', 'ast.Pass', ([], {}), '()\n', (5136, 5138), False, 'import ast\n'), ((467, 494), 'json_codegen.generators.python3_marshmallow.utils.class_name', 'class_name', (['node.args[0].id'], {}), '(node.args[0].id)\n', (477, 494), False, 'from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name\n'), ((1952, 1967), 'ast.Str', 'ast.Str', ([], {'s': 'prop'}), '(s=prop)\n', (1959, 1967), False, 'import ast\n'), ((4313, 4337), 'json_codegen.generators.python3_marshmallow.utils.Annotations', 'Annotations', (['node_assign'], {}), '(node_assign)\n', (4324, 4337), False, 'from json_codegen.generators.python3_marshmallow.utils import Annotations, class_name\n'), ((4602, 4638), 'ast.arg', 'ast.arg', ([], {'arg': '"""self"""', 'annotation': 'None'}), "(arg='self', annotation=None)\n", (4609, 4638), False, 'import ast\n'), ((7525, 7561), 'ast.arg', 'ast.arg', ([], {'arg': '"""only"""', 'annotation': 'None'}), "(arg='only', annotation=None)\n", (7532, 7561), False, 'import ast\n'), ((7704, 7732), 'ast.NameConstant', 'ast.NameConstant', ([], {'value': 'None'}), '(value=None)\n', (7720, 7732), False, 'import ast\n'), ((8744, 8771), 'ast.Name', 'ast.Name', ([], {'id': '"""staticmethod"""'}), "(id='staticmethod')\n", (8752, 8771), False, 'import ast\n'), ((1899, 1919), 'ast.Name', 'ast.Name', ([], {'id': 'object_'}), '(id=object_)\n', (1907, 1919), False, 'import ast\n'), ((4210, 4229), 'ast.Name', 'ast.Name', ([], {'id': '"""self"""'}), "(id='self')\n", (4218, 4229), False, 'import ast\n'), ((6003, 6039), 'ast.arg', 'ast.arg', ([], {'arg': '"""self"""', 'annotation': 'None'}), "(arg='self', annotation=None)\n", (6010, 6039), False, 'import ast\n'), ((1243, 1260), 'ast.Name', 'ast.Name', ([], {'id': '"""el"""'}), "(id='el')\n", (1251, 1260), False, 'import ast\n'), ((1394, 1411), 'ast.Name', 'ast.Name', ([], {'id': '"""el"""'}), "(id='el')\n", (1402, 1411), False, 'import ast\n'), ((2297, 2317), 'ast.Name', 'ast.Name', ([], {'id': 'object_'}), '(id=object_)\n', (2305, 2317), False, 'import ast\n'), ((4691, 4710), 'ast.Name', 'ast.Name', ([], {'id': '"""dict"""'}), "(id='dict')\n", (4699, 4710), False, 'import ast\n'), ((7488, 7506), 'ast.Name', 'ast.Name', ([], {'id': '"""str"""'}), "(id='str')\n", (7496, 7506), False, 'import ast\n'), ((2341, 2356), 'ast.Str', 'ast.Str', ([], {'s': 'prop'}), '(s=prop)\n', (2348, 2356), False, 'import ast\n'), ((8444, 8463), 'ast.Name', 'ast.Name', ([], {'id': '"""json"""'}), "(id='json')\n", (8452, 8463), False, 'import ast\n'), ((1562, 1577), 'ast.Str', 'ast.Str', ([], {'s': 'prop'}), '(s=prop)\n', (1569, 1577), False, 'import ast\n'), ((1579, 1607), 'ast.Dict', 'ast.Dict', ([], {'keys': '[]', 'values': '[]'}), '(keys=[], values=[])\n', (1587, 1607), False, 'import ast\n'), ((1497, 1517), 'ast.Name', 'ast.Name', ([], {'id': 'object_'}), '(id=object_)\n', (1505, 1517), False, 'import ast\n'), ((6966, 6985), 'ast.Name', 'ast.Name', ([], {'id': '"""self"""'}), "(id='self')\n", (6974, 6985), False, 'import ast\n'), ((7982, 8006), 'ast.Name', 'ast.Name', ([], {'id': 'schema.name'}), '(id=schema.name)\n', (7990, 8006), False, 'import ast\n'), ((6476, 6500), 'ast.Name', 'ast.Name', ([], {'id': 'schema.name'}), '(id=schema.name)\n', (6484, 6500), False, 'import ast\n'), ((8160, 8188), 'ast.NameConstant', 'ast.NameConstant', ([], {'value': '(True)'}), '(value=True)\n', (8176, 8188), False, 'import ast\n'), ((8257, 8276), 'ast.Name', 'ast.Name', ([], {'id': '"""only"""'}), "(id='only')\n", (8265, 8276), False, 'import ast\n'), ((6711, 6739), 'ast.NameConstant', 'ast.NameConstant', ([], {'value': '(True)'}), '(value=True)\n', (6727, 6739), False, 'import ast\n')]
import BboxToolkit as bt import pickle import copy import numpy as np path1="/home/hnu1/GGM/OBBDetection/work_dir/oriented_obb_contrast_catbalance/dets.pkl" path2="/home/hnu1/GGM/OBBDetection/data/FaIR1M/test/annfiles/ori_annfile.pkl"# with open(path2,'rb') as f: #/home/disk/FAIR1M_1000_split/val/annfiles/ori_annfile.pkl data2 = pickle.load(f) with open(path1,'rb') as f: obbdets = pickle.load(f) polydets=copy.deepcopy(obbdets) for i in range(len(obbdets)): for j in range(len(obbdets[0][1])): data=obbdets[i][1][j] if data.size!= 0: polys=[] for k in range(len(data)): poly = bt.obb2poly(data[k][0:5]) poly=np.append(poly,data[k][5]) polys.append(poly) else: polys=[] polydets[i][1][j]=polys savepath="/home/hnu1/GGM/OBBDetection/work_dir/oriented_obb_contrast_catbalance/result_txt/" for i in range(len(polydets)): txtfile=savepath+polydets[i][0]+".txt" f = open(txtfile, "w") for j in range(len(polydets[0][1])): if polydets[i][1][j]!=[]: for k in range(len(polydets[i][1][j])): f.write(str(polydets[i][1][j][k][0])+" "+ str(polydets[i][1][j][k][1])+" "+ str(polydets[i][1][j][k][2])+" "+ str(polydets[i][1][j][k][3])+" "+ str(polydets[i][1][j][k][4])+" "+ str(polydets[i][1][j][k][5])+" "+ str(polydets[i][1][j][k][6])+" "+ str(polydets[i][1][j][k][7])+" "+ str(data2["cls"][j])+" "+ str(polydets[i][1][j][k][8])+"\n") f.close()
[ "numpy.append", "BboxToolkit.obb2poly", "pickle.load", "copy.deepcopy" ]
[((344, 358), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (355, 358), False, 'import pickle\n'), ((402, 416), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (413, 416), False, 'import pickle\n'), ((430, 452), 'copy.deepcopy', 'copy.deepcopy', (['obbdets'], {}), '(obbdets)\n', (443, 452), False, 'import copy\n'), ((662, 687), 'BboxToolkit.obb2poly', 'bt.obb2poly', (['data[k][0:5]'], {}), '(data[k][0:5])\n', (673, 687), True, 'import BboxToolkit as bt\n'), ((709, 736), 'numpy.append', 'np.append', (['poly', 'data[k][5]'], {}), '(poly, data[k][5])\n', (718, 736), True, 'import numpy as np\n')]
import taichi as ti import utils from apic_extension import * @ti.data_oriented class Initializer3D: # tmp initializer def __init__(self, res, x0, y0, z0, x1, y1, z1): self.res = res self.x0 = int(res * x0) self.y0 = int(res * y0) self.z0 = int(res * z0) self.x1 = int(res * x1) self.y1 = int(res * y1) self.z1 = int(res * z1) @ti.kernel def init_kernel(self, cell_type : ti.template()): for i, j, k in cell_type: if i >= self.x0 and i <= self.x1 and \ j >= self.y0 and j <= self.y1 and \ k >= self.z0 and k <= self.z1: cell_type[i, j, k] = utils.FLUID def init_scene(self, simulator): self.init_kernel(simulator.cell_type) dx = simulator.dx simulator.level_set.initialize_with_aabb((self.x0 * dx, self.y0 * dx, self.z0 * dx), (self.x1 * dx, self.y1 * dx, self.z1 * dx))
[ "taichi.template" ]
[((443, 456), 'taichi.template', 'ti.template', ([], {}), '()\n', (454, 456), True, 'import taichi as ti\n')]
# (C) Copyright 2016-2017 Hewlett Packard Enterprise Development LP # Copyright 2017 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg influxdb_opts = [ cfg.StrOpt('database_name', help='database name where metrics are stored', default='mon'), cfg.HostAddressOpt('ip_address', help='Valid IP address or hostname ' 'to InfluxDB instance'), cfg.PortOpt('port', help='port to influxdb', default=8086), cfg.StrOpt('user', help='influxdb user ', default='mon_persister'), cfg.StrOpt('password', secret=True, help='influxdb password')] influxdb_group = cfg.OptGroup(name='influxdb', title='influxdb') def register_opts(conf): conf.register_group(influxdb_group) conf.register_opts(influxdb_opts, influxdb_group) def list_opts(): return influxdb_group, influxdb_opts
[ "oslo_config.cfg.PortOpt", "oslo_config.cfg.OptGroup", "oslo_config.cfg.StrOpt", "oslo_config.cfg.HostAddressOpt" ]
[((1281, 1328), 'oslo_config.cfg.OptGroup', 'cfg.OptGroup', ([], {'name': '"""influxdb"""', 'title': '"""influxdb"""'}), "(name='influxdb', title='influxdb')\n", (1293, 1328), False, 'from oslo_config import cfg\n'), ((697, 790), 'oslo_config.cfg.StrOpt', 'cfg.StrOpt', (['"""database_name"""'], {'help': '"""database name where metrics are stored"""', 'default': '"""mon"""'}), "('database_name', help='database name where metrics are stored',\n default='mon')\n", (707, 790), False, 'from oslo_config import cfg\n'), ((822, 917), 'oslo_config.cfg.HostAddressOpt', 'cfg.HostAddressOpt', (['"""ip_address"""'], {'help': '"""Valid IP address or hostname to InfluxDB instance"""'}), "('ip_address', help=\n 'Valid IP address or hostname to InfluxDB instance')\n", (840, 917), False, 'from oslo_config import cfg\n'), ((972, 1030), 'oslo_config.cfg.PortOpt', 'cfg.PortOpt', (['"""port"""'], {'help': '"""port to influxdb"""', 'default': '(8086)'}), "('port', help='port to influxdb', default=8086)\n", (983, 1030), False, 'from oslo_config import cfg\n'), ((1068, 1134), 'oslo_config.cfg.StrOpt', 'cfg.StrOpt', (['"""user"""'], {'help': '"""influxdb user """', 'default': '"""mon_persister"""'}), "('user', help='influxdb user ', default='mon_persister')\n", (1078, 1134), False, 'from oslo_config import cfg\n'), ((1170, 1231), 'oslo_config.cfg.StrOpt', 'cfg.StrOpt', (['"""password"""'], {'secret': '(True)', 'help': '"""influxdb password"""'}), "('password', secret=True, help='influxdb password')\n", (1180, 1231), False, 'from oslo_config import cfg\n')]
import json your_json = '["foo", {"bar":["baz", null, 1.0, 2]}]' parsed = json.loads(your_json) print(type(your_json)) print(type(parsed)) #print(json.dumps(parsed, indent=4, sort_keys=True))
[ "json.loads" ]
[((75, 96), 'json.loads', 'json.loads', (['your_json'], {}), '(your_json)\n', (85, 96), False, 'import json\n')]
import matplotlib matplotlib.use('Agg') import numpy as np from astropy.tests.helper import pytest from .. import FITSFigure def test_grid_addremove(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.remove_grid() f.add_grid() f.close() def test_grid_showhide(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.hide() f.grid.show() f.close() def test_grid_spacing(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_xspacing(1.) f.grid.set_xspacing('tick') with pytest.raises(ValueError): f.grid.set_xspacing('auto') f.grid.set_yspacing(2.) f.grid.set_yspacing('tick') with pytest.raises(ValueError): f.grid.set_yspacing('auto') f.close() def test_grid_color(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_color('black') f.grid.set_color('#003344') f.grid.set_color((1.0, 0.4, 0.3)) f.close() def test_grid_alpha(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_alpha(0.0) f.grid.set_alpha(0.3) f.grid.set_alpha(1.0) f.close() def test_grid_linestyle(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_linestyle('solid') f.grid.set_linestyle('dashed') f.grid.set_linestyle('dotted') f.close() def test_grid_linewidth(): data = np.zeros((16, 16)) f = FITSFigure(data) f.add_grid() f.grid.set_linewidth(0) f.grid.set_linewidth(2) f.grid.set_linewidth(5) f.close()
[ "matplotlib.use", "numpy.zeros", "astropy.tests.helper.pytest.raises" ]
[((18, 39), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (32, 39), False, 'import matplotlib\n'), ((167, 185), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (175, 185), True, 'import numpy as np\n'), ((318, 336), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (326, 336), True, 'import numpy as np\n'), ((467, 485), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (475, 485), True, 'import numpy as np\n'), ((842, 860), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (850, 860), True, 'import numpy as np\n'), ((1053, 1071), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (1061, 1071), True, 'import numpy as np\n'), ((1246, 1264), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (1254, 1264), True, 'import numpy as np\n'), ((1465, 1483), 'numpy.zeros', 'np.zeros', (['(16, 16)'], {}), '((16, 16))\n', (1473, 1483), True, 'import numpy as np\n'), ((597, 622), 'astropy.tests.helper.pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (610, 622), False, 'from astropy.tests.helper import pytest\n'), ((729, 754), 'astropy.tests.helper.pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (742, 754), False, 'from astropy.tests.helper import pytest\n')]
import os, sys class Object: ## @name constructor def __init__(self, V): self.value = V self.nest = [] def box(self, that): if isinstance(that, Object): return that if isinstance(that, str): return S(that) raise TypeError(['box', type(that), that]) ## @name dump / string def test(self): return self.dump(test=True) def __repr__(self): return self.dump(test=False) def dump(self, cycle=[], depth=0, prefix='', test=False): # head def pad(depth): return '\n' + '\t' * depth ret = pad(depth) + self.head(prefix, test) # subtree return ret def head(self, prefix='', test=False): gid = '' if test else f' @{id(self):x}' return f'{prefix}<{self.tag()}:{self.val()}>{gid}' def __format__(self, spec=''): if not spec: return self.val() raise TypeError(['__format__', spec]) def tag(self): return self.__class__.__name__.lower() def val(self): return f'{self.value}' ## @name operator def __iter__(self): return iter(self.nest) def __floordiv__(self, that): self.nest.append(self.box(that)); return self class Primitive(Object): pass class S(Primitive): def __init__(self, V=None, end=None, pfx=None, sfx=None): super().__init__(V) self.end = end; self.pfx = pfx; self.sfx = sfx def gen(self, to, depth=0): ret = '' if self.pfx is not None: ret += f'{to.tab*depth}{self.pfx}\n' if self.value is not None: ret += f'{to.tab*depth}{self.value}\n' for i in self: ret += i.gen(to, depth + 1) if self.end is not None: ret += f'{to.tab*depth}{self.end}\n' if self.sfx is not None: ret += f'{to.tab*depth}{self.sfx}\n' return ret class Sec(S): def gen(self, to, depth=0): ret = '' if self.pfx is not None: ret += f'{to.tab*depth}{self.pfx}\n' if self.pfx else '\n' if self.nest and self.value is not None: ret += f'{to.tab*depth}{to.comment} \\ {self}\n' for i in self: ret += i.gen(to, depth + 0) if self.nest and self.value is not None: ret += f'{to.tab*depth}{to.comment} / {self}\n' if self.sfx is not None: ret += f'{to.tab*depth}{self.sfx}\n' if self.pfx else '\n' return ret class IO(Object): def __init__(self, V): super().__init__(V) self.path = V class Dir(IO): def __floordiv__(self, that): assert isinstance(that, IO) that.path = f'{self.path}/{that.path}' return super().__floordiv__(that) def sync(self): try: os.mkdir(self.path) except FileExistsError: pass for i in self: i.sync() class File(IO): def __init__(self, V, ext='', tab=' ' * 4, comment='#'): super().__init__(V + ext) self.top = Sec(); self.bot = Sec() self.tab = tab; self.comment = comment def sync(self): with open(self.path, 'w') as F: F.write(self.top.gen(self)) for i in self: F.write(i.gen(self)) F.write(self.bot.gen(self)) class giti(File): def __init__(self, V='.gitignore'): super().__init__(V) self.bot // f'!{self}' class Makefile(File): def __init__(self, V='Makefile'): super().__init__(V, tab='\t') class pyFile(File): def __init__(self, V, ext='.py'): super().__init__(V, ext) class jsonFile(File): def __init__(self, V, ext='.json', comment='//'): super().__init__(V, ext, comment=comment) class Meta(Object): pass class Class(Meta): def __init__(self, C, sup=[]): assert callable(C) super().__init__(C.__name__) self.clazz = C; self.sup = sup def gen(self, to, depth=0): ret = S(f'class {self}:', pfx='') // 'pass' return ret.gen(to, depth) class Project(Meta): def __init__(self, V=None, title='', about=''): if not V: V = os.getcwd().split('/')[-1] super().__init__(V) # self.TITLE = title if title else f'{self}' self.ABOUT = about self.AUTHOR = '<NAME>' self.EMAIL = '<EMAIL>' self.GITHUB = 'https://github.com/ponyatov' self.YEAR = 2020 self.LICENSE = 'All rights reserved' self.COPYRIGHT = f'(c) {self.AUTHOR} <{self.EMAIL}> {self.YEAR} {self.LICENSE}' # self.dirs() self.mk() self.src() self.vscode() self.apt() def apt(self): self.apt = File('apt', '.txt'); self.d // self.apt self.apt \ // 'git make curl' // 'code meld' \ // 'python3 python3-venv' \ // 'build-essential g++' def vscode(self): self.vscode = Dir('.vscode'); self.d // self.vscode self.settings() self.tasks() def settings(self): self.settings = jsonFile('settings'); self.vscode // self.settings # def multi(key, cmd): return (S('{', '},') // f'"command": "multiCommand.{key}",' // (S('"sequence": [', ']') // '"workbench.action.files.saveAll",' // (S('{"command": "workbench.action.terminal.sendSequence",') // f'"args": {{"text": "\\u000D {cmd} \\u000D"}}}}' ))) self.multi = \ (Sec('multi') // (S('"multiCommand.commands": [', '],') // multi('f11', 'make meta') // multi('f12', 'make all') )) # self.files = (Sec() // f'"{self}/**":true,' ) self.exclude = \ (Sec() // (S('"files.exclude": {', '},') // self.files)) self.watcher = \ (Sec() // (S('"files.watcherExclude": {', '},') // self.files)) self.assoc = \ (Sec() // (S('"files.associations": {', '},'))) self.files = (Sec('files', pfx='') // self.exclude // self.watcher // self.assoc) # self.editor = (Sec('editor', pfx='') // '"editor.tabSize": 4,' // '"editor.rulers": [80],' // '"workbench.tree.indent": 32,' ) # self.settings \ // (S('{', '}') // self.multi // self.files // self.editor) def tasks(self): self.tasks = jsonFile('tasks'); self.vscode // self.tasks def task(clazz, cmd): return (S('{', '},') // f'"label": "{clazz}: {cmd}",' // f'"type": "shell",' // f'"command": "make {cmd}",' // f'"problemMatcher": []' ) self.tasks \ // (S('{', '}') // '"version": "2.0.0",' // (S('"tasks": [', ']') // task('project', 'install') // task('project', 'update') // task('git', 'dev') // task('git', 'shadow') )) def src(self): self.py() self.test() self.config() def config(self): self.config = pyFile('config'); self.d // self.config self.config \ // f"{'SECURE_KEY':<11} = {os.urandom(0x22)}" \ // f"{'HOST':<11} = '127..0.0.1'" \ // f"{'PORT':<11} = 12345" def py(self): self.py = pyFile(f'{self}'); self.d // self.py self.py \ // 'import os, sys' for i in [Object, S, Sec, IO, Dir, File, Meta, Class, Project]: self.py // Class(i) self.py // Class(Primitive, [Object]) self.py \ // S('Project().sync()', pfx='') def test(self): self.test = pyFile(f'test_{self}'); self.d // self.test self.test \ // 'import pytest' \ // f'from {self} import *' \ // 'def test_any(): assert True' def dirs(self): self.d = Dir(f'{self}'); self.giti = giti(); self.d // self.giti self.giti.top // '*~' // '*.swp' // '*.log'; self.giti.top.sfx = '' self.giti // f'/{self}/' // '/__pycache__/' self.giti.bot.pfx = '' # self.bin = Dir('bin'); self.d // self.bin def mk(self): self.mk = Makefile(); self.d // self.mk # self.mk.var = Sec('var', pfx=''); self.mk // self.mk.var self.mk.var \ // f'{"MODULE":<11} = $(notdir $(CURDIR))' \ // f'{"OS":<11} = $(shell uname -s)' \ // f'{"CORES":<11} = $(shell grep processor /proc/cpuinfo | wc -l)' # self.mk.dir = Sec('dir', pfx=''); self.mk // self.mk.dir self.mk.dir \ // f'{"CWD":<11} = $(CURDIR)' \ // f'{"BIN":<11} = $(CWD)/bin' \ // f'{"DOC":<11} = $(CWD)/doc' \ // f'{"LIB":<11} = $(CWD)/lib' \ // f'{"SRC":<11} = $(CWD)/src' \ // f'{"TMP":<11} = $(CWD)/tmp' # self.mk.tool = Sec('tool', pfx=''); self.mk // self.mk.tool self.mk.tool \ // f'CURL = curl -L -o' \ // f'PY = $(shell which python3)' \ // f'PYT = $(shell which pytest)' \ // f'PEP = $(shell which autopep8)' # self.mk.package = Sec('package', pfx=''); self.mk // self.mk.package self.mk.package \ // f'SYSLINUX_VER = 6.0.3' # self.mk.src = Sec('src', pfx=''); self.mk // self.mk.src self.mk.src \ // f'Y += $(MODULE).py test_$(MODULE).py' \ // f'P += config.py' \ // f'S += $(Y)' # self.mk.cfg = Sec('cfg', pfx=''); self.mk // self.mk.cfg self.mk.cfg \ // f'PEPS = E26,E302,E305,E401,E402,E701,E702' # self.mk.all = Sec('all', pfx=''); self.mk // self.mk.all self.mk.all \ // (S('meta: $(Y)', pfx='.PHONY: meta') // '$(MAKE) test' // '$(PY) $(MODULE).py' // '$(PEP) --ignore=$(PEPS) --in-place $?') self.mk.all \ // (S('test: $(Y)', pfx='\n.PHONY: test') // '$(PYT) test_$(MODULE).py') # self.mk.rule = Sec('rule', pfx=''); self.mk // self.mk.rule # self.mk.doc = Sec('doc', pfx=''); self.mk // self.mk.doc self.mk.doc \ // S('doc: doc/pyMorphic.pdf', pfx='.PHONY: doc') self.mk.doc \ // (S('doc/pyMorphic.pdf:') // '$(CURL) $@ http://www.diva-portal.org/smash/get/diva2:22296/FULLTEXT01.pdf') # self.mk.install = Sec('install', pfx=''); self.mk // self.mk.install self.mk.install // '.PHONY: install update' self.mk.install \ // (S('install: $(OS)_install doc') // '$(MAKE) test' ) self.mk.install \ // (S('update: $(OS)_update doc') // '$(MAKE) test' ) self.mk.install \ // (S('Linux_install Linux_update:', pfx='.PHONY: Linux_install Linux_update') // 'sudo apt update' // 'sudo apt install -u `cat apt.txt`') # self.mk.merge = Sec('merge', pfx=''); self.mk // self.mk.merge self.mk.merge \ // 'SHADOW ?= ponymuck' self.mk.merge \ // 'MERGE = Makefile .gitignore README.md apt.txt $(S)' \ // 'MERGE += .vscode bin doc lib src tmp' self.mk.merge \ // (S('dev:', pfx='\n.PHONY: dev') // 'git push -v' // 'git checkout $@' // 'git checkout $(SHADOW) -- $(MERGE)' ) self.mk.merge \ // (S('shadow:', pfx='\n.PHONY: shadow') // 'git push -v' // 'git checkout $(SHADOW)' ) self.mk.merge \ // (S('release:', pfx='\n.PHONY: release') ) self.mk.merge \ // (S('zip:', pfx='\n.PHONY: zip') ) def sync(self): self.readme() self.d.sync() def readme(self): self.readme = File('README', '.md'); self.d // self.readme self.readme \ // f'# ![logo](doc/logo.png) `{self}`' // f'## {self.TITLE}' self.readme \ // '' // self.COPYRIGHT // '' // f'github: {self.GITHUB}/{self}' self.readme // self.ABOUT Project( title='ViZual language environment', about=''' * object (hyper)graph interpreter ''' ).sync()
[ "os.urandom", "os.mkdir", "os.getcwd" ]
[((2736, 2755), 'os.mkdir', 'os.mkdir', (['self.path'], {}), '(self.path)\n', (2744, 2755), False, 'import os, sys\n'), ((4051, 4062), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4060, 4062), False, 'import os, sys\n'), ((7598, 7612), 'os.urandom', 'os.urandom', (['(34)'], {}), '(34)\n', (7608, 7612), False, 'import os, sys\n')]
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, OneCycleLR def step_lr(optimizer, step_size, gamma=0.1, last_epoch=-1): """Create LR step scheduler. Args: optimizer (torch.optim): Model optimizer. step_size (int): Frequency for changing learning rate. gamma (float): Factor for changing learning rate. (default: 0.1) last_epoch (int): The index of last epoch. (default: -1) Returns: StepLR: Learning rate scheduler. """ return StepLR(optimizer, step_size=step_size, gamma=gamma, last_epoch=last_epoch) def reduce_lr_on_plateau(optimizer, factor=0.1, patience=10, verbose=False, min_lr=0): """Create LR plateau reduction scheduler. Args: optimizer (torch.optim): Model optimizer. factor (float, optional): Factor by which the learning rate will be reduced. (default: 0.1) patience (int, optional): Number of epoch with no improvement after which learning rate will be will be reduced. (default: 10) verbose (bool, optional): If True, prints a message to stdout for each update. (default: False) min_lr (float, optional): A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. (default: 0) Returns: ReduceLROnPlateau instance. """ return ReduceLROnPlateau( optimizer, factor=factor, patience=patience, verbose=verbose, min_lr=min_lr ) def one_cycle_lr( optimizer, max_lr, epochs, steps_per_epoch, pct_start=0.5, div_factor=10.0, final_div_factor=10000 ): """Create One Cycle Policy for Learning Rate. Args: optimizer (torch.optim): Model optimizer. max_lr (float): Upper learning rate boundary in the cycle. epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle. steps_per_epoch (int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle. pct_start (float, optional): The percentage of the cycle (in number of steps) spent increasing the learning rate. (default: 0.5) div_factor (float, optional): Determines the initial learning rate via initial_lr = max_lr / div_factor. (default: 10.0) final_div_factor (float, optional): Determines the minimum learning rate via min_lr = initial_lr / final_div_factor. (default: 1e4) Returns: OneCycleLR instance. """ return OneCycleLR( optimizer, max_lr, epochs=epochs, steps_per_epoch=steps_per_epoch, pct_start=pct_start, div_factor=div_factor, final_div_factor=final_div_factor )
[ "torch.optim.lr_scheduler.OneCycleLR", "torch.optim.lr_scheduler.ReduceLROnPlateau", "torch.optim.lr_scheduler.StepLR" ]
[((512, 586), 'torch.optim.lr_scheduler.StepLR', 'StepLR', (['optimizer'], {'step_size': 'step_size', 'gamma': 'gamma', 'last_epoch': 'last_epoch'}), '(optimizer, step_size=step_size, gamma=gamma, last_epoch=last_epoch)\n', (518, 586), False, 'from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, OneCycleLR\n'), ((1405, 1504), 'torch.optim.lr_scheduler.ReduceLROnPlateau', 'ReduceLROnPlateau', (['optimizer'], {'factor': 'factor', 'patience': 'patience', 'verbose': 'verbose', 'min_lr': 'min_lr'}), '(optimizer, factor=factor, patience=patience, verbose=\n verbose, min_lr=min_lr)\n', (1422, 1504), False, 'from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, OneCycleLR\n'), ((2670, 2835), 'torch.optim.lr_scheduler.OneCycleLR', 'OneCycleLR', (['optimizer', 'max_lr'], {'epochs': 'epochs', 'steps_per_epoch': 'steps_per_epoch', 'pct_start': 'pct_start', 'div_factor': 'div_factor', 'final_div_factor': 'final_div_factor'}), '(optimizer, max_lr, epochs=epochs, steps_per_epoch=\n steps_per_epoch, pct_start=pct_start, div_factor=div_factor,\n final_div_factor=final_div_factor)\n', (2680, 2835), False, 'from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, OneCycleLR\n')]
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for Zones""" import copy import unittest import armi from armi import settings from armi.reactor import assemblies from armi.reactor import blueprints from armi.reactor import geometry from armi.reactor import grids from armi.reactor import reactors from armi.reactor import zones from armi.reactor.flags import Flags from armi.reactor.tests import test_reactors from armi.utils import pathTools from armi.settings.fwSettings import globalSettings THIS_DIR = pathTools.armiAbsDirFromName(__name__) class Zone_TestCase(unittest.TestCase): def setUp(self): bp = blueprints.Blueprints() geom = geometry.SystemLayoutInput() geom.symmetry = "third core periodic" r = reactors.Reactor(settings.getMasterCs(), bp) r.add(reactors.Core("Core", settings.getMasterCs(), geom)) r.core.spatialGrid = grids.hexGridFromPitch(1.0) aList = [] for ring in range(10): a = assemblies.HexAssembly("fuel") a.spatialLocator = r.core.spatialGrid[ring, 1, 0] a.parent = r.core aList.append(a) self.aList = aList def test_addAssemblyLocations(self): zone = zones.Zone("TestZone") zone.addAssemblyLocations(self.aList) for a in self.aList: self.assertIn(a.getLocation(), zone) self.assertRaises(RuntimeError, zone.addAssemblyLocations, self.aList) def test_iteration(self): locs = [a.getLocation() for a in self.aList] zone = zones.Zone("TestZone") zone.addAssemblyLocations(self.aList) for aLoc in zone: self.assertIn(aLoc, locs) # loop twice to make sure it iterates nicely. for aLoc in zone: self.assertIn(aLoc, locs) def test_addRing(self): zone = zones.Zone("TestZone") zone.addRing(5) self.assertIn("A5003", zone) self.assertNotIn("A6002", zone) zone.addRing(6, 3, 9) self.assertIn("A6003", zone) self.assertIn("A6009", zone) self.assertNotIn("A6002", zone) self.assertNotIn("A6010", zone) class Zones_InReactor(unittest.TestCase): def setUp(self): self.o, self.r = test_reactors.loadTestReactor() def test_buildRingZones(self): o, r = self.o, self.r cs = o.cs cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 1) self.assertEqual(9, r.core.numRings) cs["ringZones"] = [5, 8] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 2) zone = zonez["ring-1"] self.assertEqual(len(zone), (5 * (5 - 1) + 1)) zone = zonez["ring-2"] # Note that the actual number of rings in the reactor model is 9. Even though we # asked for the last zone to to to 8, the zone engine should bump it out. Not # sure if this is behavior that we want to preserve, but at least it's being # tested properly now. self.assertEqual(len(zone), (9 * (9 - 1) + 1) - (5 * (5 - 1) + 1)) cs["ringZones"] = [5, 7, 8] zonez = zones.buildZones(r.core, cs) self.assertEqual(len(list(zonez)), 3) zone = zonez["ring-3"] self.assertEqual(len(zone), 30) # rings 8 and 9. See above comment def test_removeZone(self): o, r = self.o, self.r cs = o.cs cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [5, 8] # produce 2 zones, with the names ringzone0 and ringzone1 daZones = zones.buildZones(r.core, cs) daZones.removeZone("ring-1") # The names list should only house the only other remaining zone now self.assertEqual(["ring-2"], daZones.names) # if indexed like a dict, the zones object should give a key error from the removed zone with self.assertRaises(KeyError): daZones["ring-1"] # Ensure we can still iterate through our zones object for name in daZones.names: aZone = daZones[name] def test_findZoneAssemblyIsIn(self): cs = self.o.cs cs["ringZones"] = [5, 7, 8] daZones = zones.buildZones(self.r.core, cs) for zone in daZones: a = self.r.core.getAssemblyWithStringLocation(zone.locList[0]) aZone = daZones.findZoneAssemblyIsIn(a) self.assertEqual(aZone, zone) # lets test if we get a none and a warning if the assembly does not exist in a zone a = self.r.core.getAssemblyWithStringLocation( daZones[daZones.names[0]].locList[0] ) # get assem from first zone daZones.removeZone( daZones.names[0] ) # remove a zone to ensure that our assem does not have a zone anymore self.assertEqual(daZones.findZoneAssemblyIsIn(a), None) class Zones_InRZReactor(unittest.TestCase): def test_splitZones(self): # Test to make sure that we can split a zone containing control and fuel assemblies. # Also test that we can separate out assemblies with differing numbers of blocks. o, r = test_reactors.loadTestReactor(inputFileName="partisnTestReactor.yaml") cs = o.cs cs["splitZones"] = False cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [1, 2, 3, 4, 5, 6, 7, 8, 9] diverseZone = "ring-4" r.core.buildZones(cs) daZones = r.core.zones # lets make one of the assemblies have an extra block zoneLocations = daZones.getZoneLocations(diverseZone) originalAssemblies = r.core.getLocationContents( zoneLocations, assemblyLevel=True ) fuel = [a for a in originalAssemblies if a.hasFlags(Flags.FUEL)][0] newBlock = copy.deepcopy(fuel[-1]) fuel.add(newBlock) # should contain a zone for every ring zone # we only want one ring zone for this test, containing assemblies of different types. zoneTup = tuple(daZones.names) for zoneName in zoneTup: if zoneName != diverseZone: daZones.removeZone(zoneName) # this should split diverseZone into multiple zones by nodalization type. cs["splitZones"] = True zones.splitZones(r.core, cs, daZones) # test to make sure that we split the ring zone correctly self.assertEqual(len(daZones["ring-4-primary-control-5"]), 2) self.assertEqual(len(daZones["ring-4-middle-fuel-5"]), 3) self.assertEqual(len(daZones["ring-4-middle-fuel-6"]), 1) def test_createHotZones(self): # Test to make sure createHotZones identifies the highest p/f location in a zone # Test to make sure createHotZones can remove the peak assembly from that zone and place it in a new zone # Test that the power in the old zone and the new zone is conserved. # Test that if a hot zone can not be created from a single assembly zone. o, r = test_reactors.loadTestReactor(inputFileName="partisnTestReactor.yaml") cs = o.cs cs["splitZones"] = False cs[globalSettings.CONF_ZONING_STRATEGY] = "byRingZone" cs["ringZones"] = [9] # build one giant zone r.core.buildZones(cs) daZones = r.core.zones originalassemblies = [] originalPower = 0.0 peakZonePFRatios = [] # Create a single assembly zone to verify that it will not create a hot zone single = zones.Zone("single") daZones.add(single) aLoc = r.core.getFirstAssembly(Flags.FUEL).getLocation() single.append(aLoc) # Set power and flow. # Also gather channel peak P/F ratios, assemblies and power. for zone in daZones: powerToFlow = [] zoneLocations = daZones.getZoneLocations(zone.name) assems = r.core.getLocationContents(zoneLocations, assemblyLevel=True) power = 300.0 flow = 300.0 for a in assems: a.getFirstBlock().p.power = power assemblyPower = a.calcTotalParam("power") a[-1].p.THmassFlowRate = flow powerToFlow.append(assemblyPower / a[-1].p.THmassFlowRate) originalPower += assemblyPower originalassemblies.append(a) power += 1 flow -= 1 peakZonePFRatios.append(max(powerToFlow)) daZones = zones.createHotZones(r.core, daZones) # Test that the hot zones have the peak P/F from the host channels i = 0 for zone in daZones: if zone.hotZone: hotAssemLocation = daZones.getZoneLocations(zone.name) hotAssem = r.core.getLocationContents( hotAssemLocation, assemblyLevel=True )[0] self.assertEqual( peakZonePFRatios[i], hotAssem.calcTotalParam("power") / hotAssem[-1].p.THmassFlowRate, ) i += 1 powerAfterHotZoning = 0.0 assembliesAfterHotZoning = [] # Check that power is conserved and that we did not lose any assemblies for zone in daZones: locs = daZones.getZoneLocations(zone.name) assems = r.core.getLocationContents(locs, assemblyLevel=True) for a in assems: assembliesAfterHotZoning.append(a) powerAfterHotZoning += a.calcTotalParam("power") self.assertEqual(powerAfterHotZoning, originalPower) self.assertEqual(len(assembliesAfterHotZoning), len(originalassemblies)) # check that the original zone with 1 channel has False for hotzone self.assertEqual(single.hotZone, False) # check that we have the correct number of hot and normal zones. hotCount = 0 normalCount = 0 for zone in daZones: if zone.hotZone: hotCount += 1 else: normalCount += 1 self.assertEqual(hotCount, 1) self.assertEqual(normalCount, 2) if __name__ == "__main__": # import sys;sys.argv = ['', 'Zones_InReactor.test_buildRingZones'] unittest.main()
[ "armi.reactor.grids.hexGridFromPitch", "armi.reactor.geometry.SystemLayoutInput", "armi.reactor.blueprints.Blueprints", "armi.reactor.zones.Zone", "armi.reactor.zones.createHotZones", "armi.utils.pathTools.armiAbsDirFromName", "armi.reactor.zones.splitZones", "armi.settings.getMasterCs", "copy.deepcopy", "unittest.main", "armi.reactor.assemblies.HexAssembly", "armi.reactor.tests.test_reactors.loadTestReactor", "armi.reactor.zones.buildZones" ]
[((1049, 1087), 'armi.utils.pathTools.armiAbsDirFromName', 'pathTools.armiAbsDirFromName', (['__name__'], {}), '(__name__)\n', (1077, 1087), False, 'from armi.utils import pathTools\n'), ((10873, 10888), 'unittest.main', 'unittest.main', ([], {}), '()\n', (10886, 10888), False, 'import unittest\n'), ((1164, 1187), 'armi.reactor.blueprints.Blueprints', 'blueprints.Blueprints', ([], {}), '()\n', (1185, 1187), False, 'from armi.reactor import blueprints\n'), ((1203, 1231), 'armi.reactor.geometry.SystemLayoutInput', 'geometry.SystemLayoutInput', ([], {}), '()\n', (1229, 1231), False, 'from armi.reactor import geometry\n'), ((1431, 1458), 'armi.reactor.grids.hexGridFromPitch', 'grids.hexGridFromPitch', (['(1.0)'], {}), '(1.0)\n', (1453, 1458), False, 'from armi.reactor import grids\n'), ((1760, 1782), 'armi.reactor.zones.Zone', 'zones.Zone', (['"""TestZone"""'], {}), "('TestZone')\n", (1770, 1782), False, 'from armi.reactor import zones\n'), ((2086, 2108), 'armi.reactor.zones.Zone', 'zones.Zone', (['"""TestZone"""'], {}), "('TestZone')\n", (2096, 2108), False, 'from armi.reactor import zones\n'), ((2382, 2404), 'armi.reactor.zones.Zone', 'zones.Zone', (['"""TestZone"""'], {}), "('TestZone')\n", (2392, 2404), False, 'from armi.reactor import zones\n'), ((2781, 2812), 'armi.reactor.tests.test_reactors.loadTestReactor', 'test_reactors.loadTestReactor', ([], {}), '()\n', (2810, 2812), False, 'from armi.reactor.tests import test_reactors\n'), ((3005, 3033), 'armi.reactor.zones.buildZones', 'zones.buildZones', (['r.core', 'cs'], {}), '(r.core, cs)\n', (3021, 3033), False, 'from armi.reactor import zones\n'), ((3175, 3203), 'armi.reactor.zones.buildZones', 'zones.buildZones', (['r.core', 'cs'], {}), '(r.core, cs)\n', (3191, 3203), False, 'from armi.reactor import zones\n'), ((3786, 3814), 'armi.reactor.zones.buildZones', 'zones.buildZones', (['r.core', 'cs'], {}), '(r.core, cs)\n', (3802, 3814), False, 'from armi.reactor import zones\n'), ((4228, 4256), 'armi.reactor.zones.buildZones', 'zones.buildZones', (['r.core', 'cs'], {}), '(r.core, cs)\n', (4244, 4256), False, 'from armi.reactor import zones\n'), ((4845, 4878), 'armi.reactor.zones.buildZones', 'zones.buildZones', (['self.r.core', 'cs'], {}), '(self.r.core, cs)\n', (4861, 4878), False, 'from armi.reactor import zones\n'), ((5790, 5860), 'armi.reactor.tests.test_reactors.loadTestReactor', 'test_reactors.loadTestReactor', ([], {'inputFileName': '"""partisnTestReactor.yaml"""'}), "(inputFileName='partisnTestReactor.yaml')\n", (5819, 5860), False, 'from armi.reactor.tests import test_reactors\n'), ((6453, 6476), 'copy.deepcopy', 'copy.deepcopy', (['fuel[-1]'], {}), '(fuel[-1])\n', (6466, 6476), False, 'import copy\n'), ((6930, 6967), 'armi.reactor.zones.splitZones', 'zones.splitZones', (['r.core', 'cs', 'daZones'], {}), '(r.core, cs, daZones)\n', (6946, 6967), False, 'from armi.reactor import zones\n'), ((7649, 7719), 'armi.reactor.tests.test_reactors.loadTestReactor', 'test_reactors.loadTestReactor', ([], {'inputFileName': '"""partisnTestReactor.yaml"""'}), "(inputFileName='partisnTestReactor.yaml')\n", (7678, 7719), False, 'from armi.reactor.tests import test_reactors\n'), ((8143, 8163), 'armi.reactor.zones.Zone', 'zones.Zone', (['"""single"""'], {}), "('single')\n", (8153, 8163), False, 'from armi.reactor import zones\n'), ((9117, 9154), 'armi.reactor.zones.createHotZones', 'zones.createHotZones', (['r.core', 'daZones'], {}), '(r.core, daZones)\n', (9137, 9154), False, 'from armi.reactor import zones\n'), ((1307, 1329), 'armi.settings.getMasterCs', 'settings.getMasterCs', ([], {}), '()\n', (1327, 1329), False, 'from armi import settings\n'), ((1525, 1555), 'armi.reactor.assemblies.HexAssembly', 'assemblies.HexAssembly', (['"""fuel"""'], {}), "('fuel')\n", (1547, 1555), False, 'from armi.reactor import assemblies\n'), ((1371, 1393), 'armi.settings.getMasterCs', 'settings.getMasterCs', ([], {}), '()\n', (1391, 1393), False, 'from armi import settings\n')]
"""empty message Revision ID: 2018_04_20_data_src_refactor Revises: 2018_04_11_add_sandbox_topic Create Date: 2018-04-20 13:03:32.478880 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. from sqlalchemy.dialects.postgresql import ARRAY revision = '2018_04_20_data_src_refactor' down_revision = '2018_04_11_add_sandbox_topic' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### type_of_data_types = sa.Enum('ADMINISTRATIVE', 'SURVEY', name='type_of_data_types') op.add_column('page', sa.Column('secondary_source_1_type_of_data', ARRAY(type_of_data_types), nullable=True)) op.add_column('page', sa.Column('suppression_and_disclosure', sa.TEXT(), nullable=True)) op.add_column('page', sa.Column('note_on_corrections_or_updates', sa.TEXT(), nullable=True)) op.add_column('page', sa.Column('secondary_source_1_note_on_corrections_or_updates', sa.TEXT(), nullable=True)) op.add_column('page', sa.Column('secondary_source_1_data_source_purpose', sa.TEXT(), nullable=True)) op.get_bind() op.execute(''' UPDATE page SET suppression_and_disclosure = suppression_rules WHERE disclosure_control is null; ''') op.execute(''' UPDATE page SET suppression_and_disclosure = disclosure_control WHERE suppression_rules is null; ''') op.execute(''' UPDATE page SET suppression_and_disclosure = trim(suppression_rules || ' ' || disclosure_control) WHERE suppression_rules is not null AND disclosure_control is not null; ''') op.drop_constraint('organisation_secondary_source_2_fkey', 'page', type_='foreignkey') op.drop_constraint('frequency_secondary_source_2_fkey', 'page', type_='foreignkey') op.drop_constraint('secondary_source_2_type_of_statistic_fkey', 'page', type_='foreignkey') op.drop_column('page', 'secondary_source_1_date_next_update') op.drop_column('page', 'secondary_source_1_date_updated') op.drop_column('page', 'secondary_source_1_suppression_rules') op.drop_column('page', 'secondary_source_1_disclosure_control') op.drop_column('page', 'secondary_source_2_frequency') op.drop_column('page', 'secondary_source_2_contact_2_name') op.drop_column('page', 'secondary_source_2_contact_2_phone') op.drop_column('page', 'secondary_source_2_url') op.drop_column('page', 'secondary_source_2_date_next_update') op.drop_column('page', 'secondary_source_2_contact_1_name') op.drop_column('page', 'last_update_date') op.drop_column('page', 'secondary_source_2_contact_1_phone') op.drop_column('page', 'secondary_source_2_publisher_text') op.drop_column('page', 'secondary_source_2_disclosure_control') op.drop_column('page', 'secondary_source_2_type_of_statistic_id') op.drop_column('page', 'secondary_source_2_suppression_rules') op.drop_column('page', 'secondary_source_2_frequency_other') op.drop_column('page', 'secondary_source_2_publisher_id') op.drop_column('page', 'secondary_source_2_title') op.drop_column('page', 'secondary_source_2_date') op.drop_column('page', 'next_update_date') op.drop_column('page', 'secondary_source_2_date_updated') op.drop_column('page', 'secondary_source_2_statistic_type') op.drop_column('page', 'secondary_source_2_frequency_id') op.drop_column('page', 'secondary_source_2_contact_2_email') op.drop_column('page', 'secondary_source_2_contact_1_email') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('page', sa.Column('secondary_source_2_contact_1_email', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_contact_2_email', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_frequency_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_statistic_type', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_date_updated', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_date', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_title', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_publisher_id', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_frequency_other', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_suppression_rules', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_type_of_statistic_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_disclosure_control', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_publisher_text', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_contact_1_phone', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_contact_1_name', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_date_next_update', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_url', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_contact_2_phone', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_contact_2_name', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_2_frequency', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('last_update_date', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('next_update_date', sa.VARCHAR(length=255), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_1_date_next_update', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_1_date_updated', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_1_disclosure_control', sa.TEXT(), autoincrement=False, nullable=True)) op.add_column('page', sa.Column('secondary_source_1_suppression_rules', sa.TEXT(), autoincrement=False, nullable=True)) op.create_foreign_key('secondary_source_2_type_of_statistic_fkey', 'page', 'type_of_statistic', ['secondary_source_2_type_of_statistic_id'], ['id']) op.create_foreign_key('frequency_secondary_source_2_fkey', 'page', 'frequency_of_release', ['secondary_source_2_frequency_id'], ['id']) op.create_foreign_key('organisation_secondary_source_2_fkey', 'page', 'organisation', ['secondary_source_2_publisher_id'], ['id']) op.drop_column('page', 'secondary_source_1_type_of_data') op.drop_column('page', 'suppression_and_disclosure') op.drop_column('page', 'note_on_corrections_or_updates') op.drop_column('page', 'secondary_source_1_note_on_corrections_or_updates') op.drop_column('page', 'secondary_source_1_data_source_purpose') # ### end Alembic commands ###
[ "alembic.op.get_bind", "alembic.op.create_foreign_key", "alembic.op.drop_constraint", "sqlalchemy.VARCHAR", "alembic.op.drop_column", "sqlalchemy.TEXT", "alembic.op.execute", "sqlalchemy.INTEGER", "sqlalchemy.Enum", "sqlalchemy.dialects.postgresql.ARRAY" ]
[((520, 582), 'sqlalchemy.Enum', 'sa.Enum', (['"""ADMINISTRATIVE"""', '"""SURVEY"""'], {'name': '"""type_of_data_types"""'}), "('ADMINISTRATIVE', 'SURVEY', name='type_of_data_types')\n", (527, 582), True, 'import sqlalchemy as sa\n'), ((1113, 1126), 'alembic.op.get_bind', 'op.get_bind', ([], {}), '()\n', (1124, 1126), False, 'from alembic import op\n'), ((1132, 1279), 'alembic.op.execute', 'op.execute', (['"""\n UPDATE page SET suppression_and_disclosure = suppression_rules \n WHERE disclosure_control is null;\n """'], {}), '(\n """\n UPDATE page SET suppression_and_disclosure = suppression_rules \n WHERE disclosure_control is null;\n """\n )\n', (1142, 1279), False, 'from alembic import op\n'), ((1275, 1431), 'alembic.op.execute', 'op.execute', (['"""\n UPDATE page SET suppression_and_disclosure = disclosure_control \n WHERE suppression_rules is null;\n """'], {}), '(\n """\n UPDATE page SET suppression_and_disclosure = disclosure_control \n WHERE suppression_rules is null;\n """\n )\n', (1285, 1431), False, 'from alembic import op\n'), ((1427, 1658), 'alembic.op.execute', 'op.execute', (['"""\n UPDATE page SET suppression_and_disclosure = trim(suppression_rules || \' \' || disclosure_control)\n WHERE suppression_rules is not null\n AND disclosure_control is not null;\n """'], {}), '(\n """\n UPDATE page SET suppression_and_disclosure = trim(suppression_rules || \' \' || disclosure_control)\n WHERE suppression_rules is not null\n AND disclosure_control is not null;\n """\n )\n', (1437, 1658), False, 'from alembic import op\n'), ((1654, 1745), 'alembic.op.drop_constraint', 'op.drop_constraint', (['"""organisation_secondary_source_2_fkey"""', '"""page"""'], {'type_': '"""foreignkey"""'}), "('organisation_secondary_source_2_fkey', 'page', type_=\n 'foreignkey')\n", (1672, 1745), False, 'from alembic import op\n'), ((1745, 1833), 'alembic.op.drop_constraint', 'op.drop_constraint', (['"""frequency_secondary_source_2_fkey"""', '"""page"""'], {'type_': '"""foreignkey"""'}), "('frequency_secondary_source_2_fkey', 'page', type_=\n 'foreignkey')\n", (1763, 1833), False, 'from alembic import op\n'), ((1833, 1928), 'alembic.op.drop_constraint', 'op.drop_constraint', (['"""secondary_source_2_type_of_statistic_fkey"""', '"""page"""'], {'type_': '"""foreignkey"""'}), "('secondary_source_2_type_of_statistic_fkey', 'page',\n type_='foreignkey')\n", (1851, 1928), False, 'from alembic import op\n'), ((1929, 1990), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_date_next_update"""'], {}), "('page', 'secondary_source_1_date_next_update')\n", (1943, 1990), False, 'from alembic import op\n'), ((1995, 2052), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_date_updated"""'], {}), "('page', 'secondary_source_1_date_updated')\n", (2009, 2052), False, 'from alembic import op\n'), ((2057, 2119), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_suppression_rules"""'], {}), "('page', 'secondary_source_1_suppression_rules')\n", (2071, 2119), False, 'from alembic import op\n'), ((2124, 2187), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_disclosure_control"""'], {}), "('page', 'secondary_source_1_disclosure_control')\n", (2138, 2187), False, 'from alembic import op\n'), ((2192, 2246), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_frequency"""'], {}), "('page', 'secondary_source_2_frequency')\n", (2206, 2246), False, 'from alembic import op\n'), ((2251, 2310), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_2_name"""'], {}), "('page', 'secondary_source_2_contact_2_name')\n", (2265, 2310), False, 'from alembic import op\n'), ((2315, 2375), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_2_phone"""'], {}), "('page', 'secondary_source_2_contact_2_phone')\n", (2329, 2375), False, 'from alembic import op\n'), ((2380, 2428), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_url"""'], {}), "('page', 'secondary_source_2_url')\n", (2394, 2428), False, 'from alembic import op\n'), ((2433, 2494), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_date_next_update"""'], {}), "('page', 'secondary_source_2_date_next_update')\n", (2447, 2494), False, 'from alembic import op\n'), ((2499, 2558), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_1_name"""'], {}), "('page', 'secondary_source_2_contact_1_name')\n", (2513, 2558), False, 'from alembic import op\n'), ((2563, 2605), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""last_update_date"""'], {}), "('page', 'last_update_date')\n", (2577, 2605), False, 'from alembic import op\n'), ((2610, 2670), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_1_phone"""'], {}), "('page', 'secondary_source_2_contact_1_phone')\n", (2624, 2670), False, 'from alembic import op\n'), ((2675, 2734), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_publisher_text"""'], {}), "('page', 'secondary_source_2_publisher_text')\n", (2689, 2734), False, 'from alembic import op\n'), ((2739, 2802), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_disclosure_control"""'], {}), "('page', 'secondary_source_2_disclosure_control')\n", (2753, 2802), False, 'from alembic import op\n'), ((2807, 2872), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_type_of_statistic_id"""'], {}), "('page', 'secondary_source_2_type_of_statistic_id')\n", (2821, 2872), False, 'from alembic import op\n'), ((2877, 2939), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_suppression_rules"""'], {}), "('page', 'secondary_source_2_suppression_rules')\n", (2891, 2939), False, 'from alembic import op\n'), ((2944, 3004), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_frequency_other"""'], {}), "('page', 'secondary_source_2_frequency_other')\n", (2958, 3004), False, 'from alembic import op\n'), ((3009, 3066), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_publisher_id"""'], {}), "('page', 'secondary_source_2_publisher_id')\n", (3023, 3066), False, 'from alembic import op\n'), ((3071, 3121), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_title"""'], {}), "('page', 'secondary_source_2_title')\n", (3085, 3121), False, 'from alembic import op\n'), ((3126, 3175), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_date"""'], {}), "('page', 'secondary_source_2_date')\n", (3140, 3175), False, 'from alembic import op\n'), ((3180, 3222), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""next_update_date"""'], {}), "('page', 'next_update_date')\n", (3194, 3222), False, 'from alembic import op\n'), ((3227, 3284), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_date_updated"""'], {}), "('page', 'secondary_source_2_date_updated')\n", (3241, 3284), False, 'from alembic import op\n'), ((3289, 3348), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_statistic_type"""'], {}), "('page', 'secondary_source_2_statistic_type')\n", (3303, 3348), False, 'from alembic import op\n'), ((3353, 3410), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_frequency_id"""'], {}), "('page', 'secondary_source_2_frequency_id')\n", (3367, 3410), False, 'from alembic import op\n'), ((3415, 3475), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_2_email"""'], {}), "('page', 'secondary_source_2_contact_2_email')\n", (3429, 3475), False, 'from alembic import op\n'), ((3480, 3540), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_2_contact_1_email"""'], {}), "('page', 'secondary_source_2_contact_1_email')\n", (3494, 3540), False, 'from alembic import op\n'), ((6822, 6974), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['"""secondary_source_2_type_of_statistic_fkey"""', '"""page"""', '"""type_of_statistic"""', "['secondary_source_2_type_of_statistic_id']", "['id']"], {}), "('secondary_source_2_type_of_statistic_fkey', 'page',\n 'type_of_statistic', ['secondary_source_2_type_of_statistic_id'], ['id'])\n", (6843, 6974), False, 'from alembic import op\n'), ((6975, 7114), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['"""frequency_secondary_source_2_fkey"""', '"""page"""', '"""frequency_of_release"""', "['secondary_source_2_frequency_id']", "['id']"], {}), "('frequency_secondary_source_2_fkey', 'page',\n 'frequency_of_release', ['secondary_source_2_frequency_id'], ['id'])\n", (6996, 7114), False, 'from alembic import op\n'), ((7115, 7249), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['"""organisation_secondary_source_2_fkey"""', '"""page"""', '"""organisation"""', "['secondary_source_2_publisher_id']", "['id']"], {}), "('organisation_secondary_source_2_fkey', 'page',\n 'organisation', ['secondary_source_2_publisher_id'], ['id'])\n", (7136, 7249), False, 'from alembic import op\n'), ((7251, 7308), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_type_of_data"""'], {}), "('page', 'secondary_source_1_type_of_data')\n", (7265, 7308), False, 'from alembic import op\n'), ((7313, 7365), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""suppression_and_disclosure"""'], {}), "('page', 'suppression_and_disclosure')\n", (7327, 7365), False, 'from alembic import op\n'), ((7370, 7426), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""note_on_corrections_or_updates"""'], {}), "('page', 'note_on_corrections_or_updates')\n", (7384, 7426), False, 'from alembic import op\n'), ((7431, 7506), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_note_on_corrections_or_updates"""'], {}), "('page', 'secondary_source_1_note_on_corrections_or_updates')\n", (7445, 7506), False, 'from alembic import op\n'), ((7511, 7575), 'alembic.op.drop_column', 'op.drop_column', (['"""page"""', '"""secondary_source_1_data_source_purpose"""'], {}), "('page', 'secondary_source_1_data_source_purpose')\n", (7525, 7575), False, 'from alembic import op\n'), ((654, 679), 'sqlalchemy.dialects.postgresql.ARRAY', 'ARRAY', (['type_of_data_types'], {}), '(type_of_data_types)\n', (659, 679), False, 'from sqlalchemy.dialects.postgresql import ARRAY\n'), ((763, 772), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (770, 772), True, 'import sqlalchemy as sa\n'), ((860, 869), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (867, 869), True, 'import sqlalchemy as sa\n'), ((976, 985), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (983, 985), True, 'import sqlalchemy as sa\n'), ((1081, 1090), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (1088, 1090), True, 'import sqlalchemy as sa\n'), ((3735, 3744), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (3742, 3744), True, 'import sqlalchemy as sa\n'), ((3857, 3866), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (3864, 3866), True, 'import sqlalchemy as sa\n'), ((3976, 3988), 'sqlalchemy.INTEGER', 'sa.INTEGER', ([], {}), '()\n', (3986, 3988), True, 'import sqlalchemy as sa\n'), ((4100, 4109), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (4107, 4109), True, 'import sqlalchemy as sa\n'), ((4219, 4228), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (4226, 4228), True, 'import sqlalchemy as sa\n'), ((4330, 4339), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (4337, 4339), True, 'import sqlalchemy as sa\n'), ((4442, 4451), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (4449, 4451), True, 'import sqlalchemy as sa\n'), ((4561, 4583), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(255)'}), '(length=255)\n', (4571, 4583), True, 'import sqlalchemy as sa\n'), ((4696, 4718), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(255)'}), '(length=255)\n', (4706, 4718), True, 'import sqlalchemy as sa\n'), ((4833, 4842), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (4840, 4842), True, 'import sqlalchemy as sa\n'), ((4960, 4972), 'sqlalchemy.INTEGER', 'sa.INTEGER', ([], {}), '()\n', (4970, 4972), True, 'import sqlalchemy as sa\n'), ((5088, 5097), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5095, 5097), True, 'import sqlalchemy as sa\n'), ((5209, 5218), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5216, 5218), True, 'import sqlalchemy as sa\n'), ((5331, 5340), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5338, 5340), True, 'import sqlalchemy as sa\n'), ((5452, 5461), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5459, 5461), True, 'import sqlalchemy as sa\n'), ((5575, 5584), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5582, 5584), True, 'import sqlalchemy as sa\n'), ((5685, 5694), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5692, 5694), True, 'import sqlalchemy as sa\n'), ((5807, 5816), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5814, 5816), True, 'import sqlalchemy as sa\n'), ((5928, 5937), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (5935, 5937), True, 'import sqlalchemy as sa\n'), ((6044, 6053), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (6051, 6053), True, 'import sqlalchemy as sa\n'), ((6148, 6170), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(255)'}), '(length=255)\n', (6158, 6170), True, 'import sqlalchemy as sa\n'), ((6265, 6287), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(255)'}), '(length=255)\n', (6275, 6287), True, 'import sqlalchemy as sa\n'), ((6401, 6410), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (6408, 6410), True, 'import sqlalchemy as sa\n'), ((6520, 6529), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (6527, 6529), True, 'import sqlalchemy as sa\n'), ((6645, 6654), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (6652, 6654), True, 'import sqlalchemy as sa\n'), ((6769, 6778), 'sqlalchemy.TEXT', 'sa.TEXT', ([], {}), '()\n', (6776, 6778), True, 'import sqlalchemy as sa\n')]
# Copyright 2013 - Mirantis, Inc. # Copyright 2015 - StackStorm, Inc. # Copyright 2015 - Huawei Technologies Co. Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from mistral import exceptions as exc from mistral.tests.unit import base from mistral.utils import ssh_utils from mistral_lib import utils class UtilsTest(base.BaseTest): def test_itersubclasses(self): class A(object): pass class B(A): pass class C(A): pass class D(C): pass self.assertEqual([B, C, D], list(utils.iter_subclasses(A))) def test_paramiko_to_private_key(self): self.assertRaises( exc.DataAccessException, ssh_utils._to_paramiko_private_key, "../dir" ) self.assertRaises( exc.DataAccessException, ssh_utils._to_paramiko_private_key, "..\\dir" ) self.assertIsNone( ssh_utils._to_paramiko_private_key(private_key_filename=None, password='<PASSWORD>') )
[ "mistral.utils.ssh_utils._to_paramiko_private_key", "mistral_lib.utils.iter_subclasses" ]
[((1498, 1587), 'mistral.utils.ssh_utils._to_paramiko_private_key', 'ssh_utils._to_paramiko_private_key', ([], {'private_key_filename': 'None', 'password': '"""<PASSWORD>"""'}), "(private_key_filename=None, password=\n '<PASSWORD>')\n", (1532, 1587), False, 'from mistral.utils import ssh_utils\n'), ((1099, 1123), 'mistral_lib.utils.iter_subclasses', 'utils.iter_subclasses', (['A'], {}), '(A)\n', (1120, 1123), False, 'from mistral_lib import utils\n')]
import xmltodict import json from .models import Tunein from .utils import _init_session from .Exceptions import APIException base_url = 'http://api.shoutcast.com' tunein_url = 'http://yp.shoutcast.com/{base}?id={id}' tuneins = [Tunein('/sbin/tunein-station.pls'), Tunein('/sbin/tunein-station.m3u'), Tunein('/sbin/tunein-station.xspf')] def call_api_xml(endpoint, params=None, session=None): session = _init_session(session) request_url = "{}{}".format(base_url, endpoint) response = session.get(request_url, params=params) if response.status_code == 200: response_as_dict = xmltodict.parse(response.content) api_response = response_as_dict.get('response') if api_response: api_status_code = int(api_response.get('statusCode')) message = "statusText:{}, statusDetailText:{}".format( api_response.get('statusText'), api_response.get('statusDetailText') ) raise APIException(message, code=api_status_code) return response_as_dict raise APIException(response.content, code=response.status_code) def call_api_json(endpoint, params=None, session=None): session = _init_session(session) request_url = "{}{}".format(base_url, endpoint) response = session.get(request_url, params=params) if response.status_code == 200: json_response = json.loads(response.content.decode('utf-8')) api_response = json_response.get('response') api_status_code = int(api_response.get('statusCode')) if api_status_code != 200: message = "statusText:{}, statusDetailText:{}".format( api_response.get('statusText'), api_response.get('statusDetailText', '') ) raise APIException(message, code=api_status_code) return json_response.get('response')['data'] raise APIException(response.reason, code=response.status_code) def call_api_tunein(station_id: int, session=None): session = _init_session(session) url = tunein_url.format(base=tuneins[2], id=station_id) response = session.get(url) if response.status_code == 200: api_response = xmltodict.parse(response.content.decode('utf-8')) return api_response raise APIException(response.reason, code=response.status_code) def call_api_tunein_any(base: Tunein, station_id: int, session=None): session = _init_session(session) url = tunein_url.format(base=base, id=station_id) response = session.get(url) if response.status_code == 200: return response.content.decode('utf-8') raise APIException(response.reason, code=response.status_code)
[ "xmltodict.parse" ]
[((604, 637), 'xmltodict.parse', 'xmltodict.parse', (['response.content'], {}), '(response.content)\n', (619, 637), False, 'import xmltodict\n')]
from django.core.management.base import BaseCommand, no_translations from django.contrib.auth.models import Group from django.conf import settings import sys class Command(BaseCommand): def handle(self, *args, **options): sys.stdout.write("\nResolving app groups") app_list = [app_name.lower() for app_name in settings.ACCESS_CONTROLLED_INSTALLED_APPS] for app_name in app_list: created = Group.objects.get_or_create(name=app_name) sys.stdout.write(f"\n{app_name}, new={created}") sys.stdout.write("\n")
[ "django.contrib.auth.models.Group.objects.get_or_create", "sys.stdout.write" ]
[((243, 288), 'sys.stdout.write', 'sys.stdout.write', (['"""\nResolving app groups"""'], {}), '("""\nResolving app groups""")\n', (259, 288), False, 'import sys\n'), ((559, 581), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (575, 581), False, 'import sys\n'), ((438, 480), 'django.contrib.auth.models.Group.objects.get_or_create', 'Group.objects.get_or_create', ([], {'name': 'app_name'}), '(name=app_name)\n', (465, 480), False, 'from django.contrib.auth.models import Group\n'), ((493, 544), 'sys.stdout.write', 'sys.stdout.write', (['f"""\n{app_name}, new={created}"""'], {}), '(f"""\n{app_name}, new={created}""")\n', (509, 544), False, 'import sys\n')]
""" Provides usable args and kwargs from inspect.getcallargs. For Python 3.3 and above, this module is unnecessary and can be achieved using features from PEP 362: http://www.python.org/dev/peps/pep-0362/ For example, to override a parameter of some function: >>> import inspect >>> def func(a, b=1, c=2, d=3): ... return a, b, c, d ... >>> def override_c(*args, **kwargs): ... sig = inspect.signature(override) ... ba = sig.bind(*args, **kwargs) ... ba['c'] = 10 ... return func(*ba.args, *ba.kwargs) ... >>> override_c(0, c=3) (0, 1, 10, 3) Also useful: http://www.python.org/dev/peps/pep-3102/ """ import sys import inspect from inspect import getcallargs try: from inspect import getfullargspec except ImportError: # Python 2.X from collections import namedtuple from inspect import getargspec FullArgSpec = namedtuple('FullArgSpec', 'args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations') def getfullargspec(f): args, varargs, varkw, defaults = getargspec(f) kwonlyargs = [] kwonlydefaults = None annotations = getattr(f, '__annotations__', {}) return FullArgSpec(args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations) def bindcallargs_leq32(_fUnCtIoN_, *args, **kwargs): """Binds arguments and keyword arguments to a function or method. Returns a tuple (bargs, bkwargs) suitable for manipulation and passing to the specified function. `bargs` consists of the bound args, varargs, and kwonlyargs from getfullargspec. `bkwargs` consists of the bound varkw from getfullargspec. Both can be used in a call to the specified function. Any default parameter values are included in the output. Examples -------- >>> def func(a, b=3, *args, **kwargs): ... pass >>> bindcallargs(func, 5) ((5, 3), {}) >>> bindcallargs(func, 5, 4, 3, 2, 1, hello='there') ((5, 4, 3, 2, 1), {'hello': 'there'}) >>> args, kwargs = bindcallargs(func, 5) >>> kwargs['b'] = 5 # overwrite default value for b >>> func(*args, **kwargs) """ # It is necessary to choose an unlikely variable name for the function. # The reason is that any kwarg by the same name will cause a TypeError # due to multiple values being passed for that argument name. func = _fUnCtIoN_ callargs = getcallargs(func, *args, **kwargs) spec = getfullargspec(func) # Construct all args and varargs and use them in bargs bargs = [callargs[arg] for arg in spec.args] if spec.varargs is not None: bargs.extend(callargs[spec.varargs]) bargs = tuple(bargs) # Start with kwonlyargs. bkwargs = {kwonlyarg: callargs[kwonlyarg] for kwonlyarg in spec.kwonlyargs} # Add in kwonlydefaults for unspecified kwonlyargs only. # Since keyword only arguements aren't allowed in python2, and we # don't support python 3.0, 3.1, 3.2, this should never be executed: if spec.kwonlydefaults is not None: # pragma: no cover bkwargs.update({k: v for k, v in spec.kwonlydefaults.items() if k not in bkwargs}) # Add in varkw. if spec.varkw is not None: bkwargs.update(callargs[spec.varkw]) return bargs, bkwargs def bindcallargs_geq33(_fUnCtIoN_, *args, **kwargs): # Should match functionality of bindcallargs_32 for Python > 3.3. sig = inspect.signature(_fUnCtIoN_) ba = sig.bind(*args, **kwargs) # Add in all default values for param in sig.parameters.values(): if param.name not in ba.arguments: ba.arguments[param.name] = param.default return ba.args, ba.kwargs if sys.version_info[0:2] < (3,3): bindcallargs = bindcallargs_leq32 else: bindcallargs = bindcallargs_geq33
[ "collections.namedtuple", "inspect.signature", "inspect.getfullargspec", "inspect.getargspec", "inspect.getcallargs" ]
[((2471, 2505), 'inspect.getcallargs', 'getcallargs', (['func', '*args'], {}), '(func, *args, **kwargs)\n', (2482, 2505), False, 'from inspect import getcallargs\n'), ((2517, 2537), 'inspect.getfullargspec', 'getfullargspec', (['func'], {}), '(func)\n', (2531, 2537), False, 'from inspect import getfullargspec\n'), ((3502, 3531), 'inspect.signature', 'inspect.signature', (['_fUnCtIoN_'], {}), '(_fUnCtIoN_)\n', (3519, 3531), False, 'import inspect\n'), ((915, 1019), 'collections.namedtuple', 'namedtuple', (['"""FullArgSpec"""', '"""args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations"""'], {}), "('FullArgSpec',\n 'args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations')\n", (925, 1019), False, 'from collections import namedtuple\n'), ((1089, 1102), 'inspect.getargspec', 'getargspec', (['f'], {}), '(f)\n', (1099, 1102), False, 'from inspect import getargspec\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-06-10 21:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vendors', '0089_auto_20160602_2123'), ] operations = [ migrations.AlterField( model_name='vendor', name='email', field=models.EmailField(blank=True, max_length=254, verbose_name='Email'), ), ]
[ "django.db.models.EmailField" ]
[((399, 466), 'django.db.models.EmailField', 'models.EmailField', ([], {'blank': '(True)', 'max_length': '(254)', 'verbose_name': '"""Email"""'}), "(blank=True, max_length=254, verbose_name='Email')\n", (416, 466), False, 'from django.db import migrations, models\n')]
import pymongo from conf import Configuracoes class Mongo_Database: """ Singleton com a conexao com o MongoDB """ _instancia = None def __new__(cls, *args, **kwargs): if not(cls._instancia): cls._instancia = super(Mongo_Database, cls).__new__(cls, *args, **kwargs) return cls._instancia def __init__(self,): #pega a string de conexao no arquivo de configuracao string_conexao = Configuracoes().get_config("database", "string_connection") assert (string_conexao != ""), "String de conexao indefinida" try: self.mongo_client = pymongo.MongoClient(string_conexao) self.collection_filmes = self.mongo_client["popcorn_time"]["filmes"] self.collection_tweets = self.mongo_client["twitter_log"]["tweets"] except: raise Exception("Nao foi possivel se conectar ao B.D.") print("Conectado a", string_conexao) def grava_filmes(self, lista_filmes): #verifica se o filme ja existe #se nao existir, grava e adiciona a lista de novos filmes novos = [] try: for filme in lista_filmes: if (self.collection_filmes.count_documents({"_id": filme["_id"]}) == 0): self.collection_filmes.insert_one(filme) novos.append(filme) finally: return novos def grava_tweet(self, tweet_info): #grava o retorno dos tweets self.collection_tweets.insert_one(tweet_info)
[ "pymongo.MongoClient", "conf.Configuracoes" ]
[((615, 650), 'pymongo.MongoClient', 'pymongo.MongoClient', (['string_conexao'], {}), '(string_conexao)\n', (634, 650), False, 'import pymongo\n'), ((440, 455), 'conf.Configuracoes', 'Configuracoes', ([], {}), '()\n', (453, 455), False, 'from conf import Configuracoes\n')]
# Generated by Django 3.1.7 on 2021-03-27 18:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('HackBitApp', '0002_company_photo'), ] operations = [ migrations.CreateModel( name='Roadmap', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('company_name', models.CharField(db_index=True, max_length=200, unique=True)), ('photo1', models.ImageField(upload_to='photos/company/roadmap')), ('photo2', models.ImageField(blank=True, upload_to='photos/company/roadmap')), ('photo3', models.ImageField(blank=True, upload_to='photos/company/roadmap')), ], options={ 'verbose_name': 'roadmap', 'verbose_name_plural': 'roadmaps', 'ordering': ('company_name',), }, ), ]
[ "django.db.models.ImageField", "django.db.models.AutoField", "django.db.models.CharField" ]
[((329, 422), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (345, 422), False, 'from django.db import migrations, models\n'), ((454, 514), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(200)', 'unique': '(True)'}), '(db_index=True, max_length=200, unique=True)\n', (470, 514), False, 'from django.db import migrations, models\n'), ((544, 597), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""photos/company/roadmap"""'}), "(upload_to='photos/company/roadmap')\n", (561, 597), False, 'from django.db import migrations, models\n'), ((627, 692), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'upload_to': '"""photos/company/roadmap"""'}), "(blank=True, upload_to='photos/company/roadmap')\n", (644, 692), False, 'from django.db import migrations, models\n'), ((722, 787), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'upload_to': '"""photos/company/roadmap"""'}), "(blank=True, upload_to='photos/company/roadmap')\n", (739, 787), False, 'from django.db import migrations, models\n')]
import json from wptserve.utils import isomorphic_decode def main(request, response): origin = request.GET.first(b"origin", request.headers.get(b'origin') or b'none') if b"check" in request.GET: token = request.GET.first(b"token") value = request.server.stash.take(token) if value is not None: if request.GET.first(b"check", None) == b"keep": request.server.stash.put(token, value) body = u"1" else: body = u"0" return [(b"Content-Type", b"text/plain")], body if origin != b'none': response.headers.set(b"Access-Control-Allow-Origin", origin) if b'origin2' in request.GET: response.headers.append(b"Access-Control-Allow-Origin", request.GET.first(b'origin2')) #Preflight if b'headers' in request.GET: response.headers.set(b"Access-Control-Allow-Headers", request.GET.first(b'headers')) if b'credentials' in request.GET: response.headers.set(b"Access-Control-Allow-Credentials", request.GET.first(b'credentials')) if b'methods' in request.GET: response.headers.set(b"Access-Control-Allow-Methods", request.GET.first(b'methods')) code_raw = request.GET.first(b'code', None) if code_raw: code = int(code_raw) else: code = None if request.method == u'OPTIONS': #Override the response code if we're in a preflight and it's asked if b'preflight' in request.GET: code = int(request.GET.first(b'preflight')) #Log that the preflight actually happened if we have an ident if b'token' in request.GET: request.server.stash.put(request.GET[b'token'], True) if b'location' in request.GET: if code is None: code = 302 if code >= 300 and code < 400: response.headers.set(b"Location", request.GET.first(b'location')) headers = {} for name, values in request.headers.items(): if len(values) == 1: headers[isomorphic_decode(name)] = isomorphic_decode(values[0]) else: #I have no idea, really headers[name] = values headers[u'get_value'] = isomorphic_decode(request.GET.first(b'get_value', b'')) body = json.dumps(headers) if code: return (code, b"StatusText"), [], body else: return body
[ "json.dumps", "wptserve.utils.isomorphic_decode" ]
[((2260, 2279), 'json.dumps', 'json.dumps', (['headers'], {}), '(headers)\n', (2270, 2279), False, 'import json\n'), ((2049, 2077), 'wptserve.utils.isomorphic_decode', 'isomorphic_decode', (['values[0]'], {}), '(values[0])\n', (2066, 2077), False, 'from wptserve.utils import isomorphic_decode\n'), ((2022, 2045), 'wptserve.utils.isomorphic_decode', 'isomorphic_decode', (['name'], {}), '(name)\n', (2039, 2045), False, 'from wptserve.utils import isomorphic_decode\n')]
#!/usr/bin/env python import argparse DELIMITER = "\t" def merge(genotypes_filename, gq_filename, merged_filename): with open(genotypes_filename, "r") as genotypes, open(gq_filename, "r") as gq, open(merged_filename, "w") as merged: # Integrity check: do the files have same columns? genotypes_header = genotypes.readline().rstrip().split(DELIMITER) gq_header = gq.readline().rstrip().split(DELIMITER) if not genotypes_header == gq_header: raise ValueError("The files do not have same number/order of columns") n_cols = len(gq_header) for genotypes_line, gq_line in zip(genotypes, gq): x = genotypes_line.rstrip().split(DELIMITER) y = gq_line.rstrip().split(DELIMITER) # Check if lines in the files are in the correct order. if not x[0:4] == y[0:4]: raise ValueError(f"The lines in the files are not in the same order; " f"expected the following lines to match.\n{x[0:4]}\n{y[0:4]}") h = DELIMITER.join(x[0:4]) for i in range(4, n_cols): merged.write(DELIMITER.join([h, gq_header[i], x[i], y[i]]) + "\n") if __name__ == '__main__': parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('genotypes') parser.add_argument('GQ') parser.add_argument('fout') args = parser.parse_args() merge(args.genotypes, args.GQ, args.fout)
[ "argparse.ArgumentParser" ]
[((1257, 1360), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (1280, 1360), False, 'import argparse\n')]
import tweepy import traceback import time import pymongo from tweepy import OAuthHandler from pymongo import MongoClient from pymongo.cursor import CursorType twitter_consumer_key = "" twitter_consumer_secret = "" twitter_access_token = "" twitter_access_secret = "" auth = OAuthHandler(twitter_consumer_key, twitter_consumer_secret) auth.set_access_token(twitter_access_token, twitter_access_secret) api = tweepy.API(auth) def crawllTwit(snsname, findtag): account = snsname tweets = api.user_timeline(screen_name=account, count=100, include_rts=False, exclude_replies=True, tweet_mode='extended') snsList = [] snsTime = [] url = [] pic = [] i = 0 for tweet in tweets: flag = tweet.full_text.find(findtag) if flag >= 0: ttp = tweet.full_text.split("https://") gong = "" count = 0 for slist in ttp: if count == (len(ttp) - 1): break gong = gong + slist count += 1 snsList.append(gong) snsTime.append(tweet.created_at) tmp = f"https://twitter.com/{tweet.user.screen_name}/status/{tweet.id}" url.append(tmp) i += 1 media = tweet.entities.get('media', []) if (len(media) > 0): pic.append(media[0]['media_url']) else: pic.append("") j = 0 while j < len(snsList): if j == 10: break snsList[j] = snsList[j].replace('&lt;', '<') snsList[j] = snsList[j].replace('&gt;', '>') snsList[j] = snsList[j].replace('โ–ถ๏ธ', ' โ‡’ ') j += 1 mydb = my_client['TwoRolless'] mycol = mydb['sns'] for k in range(0, len(snsList)): if k == 15: break x = mycol.insert_one( { "tag": findtag, "time": snsTime[k], "text": snsList[k], "img": pic[k], "url": url[k] } ) conn_str = "" my_client = pymongo.MongoClient(conn_str) if __name__ == '__main__': while True: print("cycles start") mydb = my_client['TwoRolless'] mycol = mydb['sns'] mycol.remove({}) crawllTwit("@m_thelastman", "๋”๋ผ์ŠคํŠธ๋งจ") crawllTwit("@Musical_NarGold", "๋‚˜๋ฅด์น˜์Šค์™€_๊ณจ๋“œ๋ฌธํŠธ") crawllTwit("@rndworks", "๋”๋ฐ๋นŒ") crawllTwit("@ninestory9", "์—˜๋ฆฌํŽ€ํŠธ์†ก") crawllTwit("@companyrang", "์ฟ ๋กœ์ด์ €ํƒ์—”๋ˆ„๊ฐ€์‚ด๊ณ ์žˆ์„๊นŒ") crawllTwit("@companyrang", "๋‚œ์Ÿ์ด๋“ค") crawllTwit("@page1company", "๊ณคํˆฌ๋ชจ๋กœ์šฐ") crawllTwit("@HONGcompany", "๋”๋ชจ๋จผํŠธ") crawllTwit("@orchardmusical", "์น ์น ") crawllTwit("@livecorp2011", "ํŒฌ๋ ˆํ„ฐ") crawllTwit("@shownote", "์  ํ‹€๋งจ์Šค๊ฐ€์ด๋“œ") crawllTwit("@od_musical", "์ง€ํ‚ฌ์•คํ•˜์ด๋“œ") crawllTwit("@kontentz", "์—”๋”ฉ๋…ธํŠธ") crawllTwit("@i_seensee", "๋นŒ๋ฆฌ") crawllTwit("@doublek_ent", "์€ํ•˜์ฒ ๋„์˜") crawllTwit("@Insight_Since96", "๋ฑ€ํŒŒ์ด์–ด์•„๋”") print("cycle end") print("sleep 30 seconds") time.sleep(30) print("sleep end")
[ "pymongo.MongoClient", "tweepy.API", "time.sleep", "tweepy.OAuthHandler" ]
[((277, 336), 'tweepy.OAuthHandler', 'OAuthHandler', (['twitter_consumer_key', 'twitter_consumer_secret'], {}), '(twitter_consumer_key, twitter_consumer_secret)\n', (289, 336), False, 'from tweepy import OAuthHandler\n'), ((410, 426), 'tweepy.API', 'tweepy.API', (['auth'], {}), '(auth)\n', (420, 426), False, 'import tweepy\n'), ((2075, 2104), 'pymongo.MongoClient', 'pymongo.MongoClient', (['conn_str'], {}), '(conn_str)\n', (2094, 2104), False, 'import pymongo\n'), ((3049, 3063), 'time.sleep', 'time.sleep', (['(30)'], {}), '(30)\n', (3059, 3063), False, 'import time\n')]
#!/usr/bin/env python """Handles Earth Engine service account configuration.""" import ee # The service account email address authorized by your Google contact. # Set up a service account as described in the README. EE_ACCOUNT = '<EMAIL>' # The private key associated with your service account in Privacy Enhanced # Email format (.pem suffix). To convert a private key from the RSA format # (.p12 suffix) to .pem, run the openssl command like this: # openssl pkcs12 -in downloaded-privatekey.p12 -nodes -nocerts > privatekey.pem EE_PRIVATE_KEY_FILE = 'privatekey.pem' EE_CREDENTIALS = ee.ServiceAccountCredentials(EE_ACCOUNT, EE_PRIVATE_KEY_FILE)
[ "ee.ServiceAccountCredentials" ]
[((590, 651), 'ee.ServiceAccountCredentials', 'ee.ServiceAccountCredentials', (['EE_ACCOUNT', 'EE_PRIVATE_KEY_FILE'], {}), '(EE_ACCOUNT, EE_PRIVATE_KEY_FILE)\n', (618, 651), False, 'import ee\n')]
import os from graphene_sqlalchemy import SQLAlchemyObjectType from sqlalchemy import Column, Integer, String, create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.ext.declarative import declarative_base POSTGRES_CONNECTION_STRING = ( os.environ.get("POSTGRES_CONNECTION_STRING") or "postgres://postgres:password@localhost:6432/postgres" ) engine = create_engine(POSTGRES_CONNECTION_STRING, convert_unicode=True) db_session = scoped_session( sessionmaker(autocommit=False, autoflush=False, bind=engine) ) Base = declarative_base() Base.query = db_session.query_property() class UserModel(Base): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String) balance = Column(Integer) class MinAmountModel(Base): __tablename__ = "min_amount" amount = Column(Integer, primary_key=True) class User(SQLAlchemyObjectType): class Meta: model = UserModel class MinAmount(SQLAlchemyObjectType): class Meta: model = MinAmountModel
[ "sqlalchemy.orm.sessionmaker", "sqlalchemy.create_engine", "os.environ.get", "sqlalchemy.ext.declarative.declarative_base", "sqlalchemy.Column" ]
[((392, 455), 'sqlalchemy.create_engine', 'create_engine', (['POSTGRES_CONNECTION_STRING'], {'convert_unicode': '(True)'}), '(POSTGRES_CONNECTION_STRING, convert_unicode=True)\n', (405, 455), False, 'from sqlalchemy import Column, Integer, String, create_engine\n'), ((559, 577), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {}), '()\n', (575, 577), False, 'from sqlalchemy.ext.declarative import declarative_base\n'), ((273, 317), 'os.environ.get', 'os.environ.get', (['"""POSTGRES_CONNECTION_STRING"""'], {}), "('POSTGRES_CONNECTION_STRING')\n", (287, 317), False, 'import os\n'), ((489, 549), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', ([], {'autocommit': '(False)', 'autoflush': '(False)', 'bind': 'engine'}), '(autocommit=False, autoflush=False, bind=engine)\n', (501, 549), False, 'from sqlalchemy.orm import scoped_session, sessionmaker\n'), ((681, 714), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (687, 714), False, 'from sqlalchemy import Column, Integer, String, create_engine\n'), ((726, 740), 'sqlalchemy.Column', 'Column', (['String'], {}), '(String)\n', (732, 740), False, 'from sqlalchemy import Column, Integer, String, create_engine\n'), ((755, 770), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (761, 770), False, 'from sqlalchemy import Column, Integer, String, create_engine\n'), ((847, 880), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (853, 880), False, 'from sqlalchemy import Column, Integer, String, create_engine\n')]
# microsig """ Author: <NAME> More detail about the MicroSIG can be found at: Website: https://gitlab.com/defocustracking/microsig-python Publication: Rossi M, Synthetic image generator for defocusing and astigmatic PIV/PTV, Meas. Sci. Technol., 31, 017003 (2020) DOI:10.1088/1361-6501/ab42bb. """ import numpy as np import imageio import tkinter as tk import os from os import listdir from os.path import isfile, basename, join, isdir import sys import glob # import time as tm from tkinter import filedialog # ----- code adapted by <NAME> ------ # 2.0 define class class CurlypivMicrosigCollection(object): def __init__(self, testSetup, synCol, use_gui=False, use_internal_setting=False, setting_file=None, use_internal_data=False, data_files=None, to_internal_sequence=False, destination_folder=None, output_dtype='np.uint16'): if not isinstance(testSetup, object): raise ValueError("{} must be a CurlypivTestSetup class object".format(testSetup)) if not isinstance(synCol, object): raise ValueError("{} must be a CurlypivSyntheticCollection class object".format(synCol)) valid_output_dtype = ['np.uint16', 'np.uint8'] if output_dtype not in valid_output_dtype: raise ValueError("{} must be one of {}".format(output_dtype, valid_output_dtype)) self.testSetup = testSetup self.synCol = synCol self.use_gui = use_gui self.output_dtype = output_dtype if self.use_gui: run() else: if use_internal_setting: self.setting_file = self.synCol.microsigSetup else: if not isinstance(setting_file, str): raise ValueError("{} must be a filepath to microsig settings text file".format(setting_file)) self.setting_file = os.path.abspath(setting_file) if use_internal_data: raise ValueError("script to use internal data still in development") else: if not isinstance(data_files, str): raise ValueError("{} must be a filepath to particle location text files".format(data_files)) all_files = glob.glob(data_files + '/*.txt') save_files = [] for ff in [f for f in all_files if f.endswith('.txt')]: save_files.append(ff) save_files.sort() self.data_files = save_files if to_internal_sequence: raise ValueError("script to use internal data still in development") else: if not isinstance(destination_folder, str): raise ValueError("{} must be a filepath to write output images".format(destination_folder)) self.destination_folder = os.path.abspath(destination_folder) self.generate() def generate(self): # %% mic = {} f = open(self.setting_file) for x in f: words = x.split() mic[words[0]] = float(words[2]) mic['pixel_dim_x'] = int(mic['pixel_dim_x']) mic['pixel_dim_y'] = int(mic['pixel_dim_y']) mic['n_rays'] = int(mic['n_rays']) # %% ii = 0; ii_tot = len(self.data_files) for data in self.data_files: ii = ii + 1 print('creating image {0} of {1} ...'.format(ii, ii_tot)) P = np.genfromtxt(data) if len(P.shape) == 1: P = np.array([P]) head, tail = os.path.split(data) I = take_image(mic, P) if self.output_dtype == 'np.uint16': imageio.imwrite(os.path.join(self.destination_folder, (tail[:-3] + 'tif')), np.uint16(I)) elif self.output_dtype == 'np.uint8': imageio.imwrite(os.path.join(self.destination_folder, (tail[:-3] + 'tif')), np.uint8(I)) print('done!') # %% def sorter(f): sorting = int(f[:-4]) return sorting def run(): # %% root = tk.Tk() root.attributes('-topmost', True) root.withdraw() setting_file = filedialog.askopenfilenames( title="Select settings file", parent=root, filetypes=(("txt files", "*.txt"), ("all files", "*.*"))) if not setting_file: sys.exit('input file not valid') data_files = filedialog.askopenfilenames( title="Select data file(s)", parent=root, filetypes=(("txt files", "*.txt"), ("all files", "*.*"))) if not setting_file: sys.exit('input file not valid') destination_folder = filedialog.askdirectory( title="Select destination file", parent=root) if not setting_file: sys.exit('input file not valid') # %% mic = {} f = open(setting_file[0]) for x in f: words = x.split() mic[words[0]] = float(words[2]) mic['pixel_dim_x'] = int(mic['pixel_dim_x']) mic['pixel_dim_y'] = int(mic['pixel_dim_y']) mic['n_rays'] = int(mic['n_rays']) # %% ii = 0; ii_tot = len(data_files) for data in data_files: ii = ii + 1 print('creating image {0} of {1} ...'.format(ii, ii_tot)) P = np.genfromtxt(data) if len(P.shape) == 1: P = np.array([P]) head, tail = os.path.split(data) I = take_image(mic, P) print('done!') # %% def take_image(mic, P): # NOTE: x and xp represent here light fields and should not be confused$ # with particle image coordinates which are represented by P I = np.zeros((mic['pixel_dim_y'], mic['pixel_dim_x'])); dp_s = np.unique(P[:, 3]) if P.shape[1] == 5 or P.shape[1] == 8: k_id = P[:, -1] else: k_id = np.ones(P.shape[0]) if P.shape[1] <= 5 and dp_s.size == 1: n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (dp_s * mic['magnification'] / mic['pixel_size']) ** 2)) xp = create_particle(dp_s, n_points, mic['n_rays']) for ii in range(0, P.shape[0]): Id = image_spherical(mic, xp, P[ii, 0:3]) I = I + Id * k_id[ii] elif P.shape[1] <= 5 and dp_s.size != 1: for ii in range(0, P.shape[0]): n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] / mic['pixel_size']) ** 2)) xp = create_particle(P[ii, 3], n_points, mic['n_rays']) Id = image_spherical(mic, xp, P[ii, 0:3]) I = I + Id * k_id[ii] elif P.shape[1] >= 7: for ii in range(0, P.shape[0]): n_points = int(np.round(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] / mic['pixel_size']) ** 2)) ecc = P[ii, 4] if ecc > 1: # area elipsoid/area sphere fact = 1 / 2 * (1 + ecc / np.sqrt(1 - 1 / ecc ** 2) * np.arcsin(np.sqrt(1 - 1 / ecc ** 2))) n_points = int(np.round(fact * n_points)) elif ecc < 1: # area elipsoid/area sphere fact = 1 / 2 * (1 + ecc ** 2 / np.sqrt(1 - ecc ** 2) * np.arctan(np.sqrt(1 - ecc ** 2))) n_points = int(np.round(fact * n_points)) xp = create_ellipsoid(P[ii, 3:7], n_points, mic['n_rays']) Id = image_spherical(mic, xp, P[ii, 0:3]); I = I + Id * k_id[ii] I = I * mic['gain'] if mic['background_mean'] != 0: I = I + mic['background_mean'] if mic['background_noise'] != 0: Irand = np.random.normal(0, mic['background_noise'], (mic['pixel_dim_y'], mic['pixel_dim_x'])) I = I + np.round(Irand) # I = np.round(I+random('norm',0,mic.background_noise,... # mic.pixel_dim_y,mic.pixel_dim_x)); return I # %% def image_spherical(mic, xp, P1): # take image of a particle with a spherical lens # NOTE: x and xp represent here light fields and should not be confused$ # with particle image coordinates which are represented by P1 lens_radius = (np.tan(np.arcsin(mic['numerical_aperture'])) * (1 + 1 / mic['magnification']) * mic['focal_length']) # distance lens-ccd dCCD = -mic['focal_length'] * (mic['magnification'] + 1); # distance particle-lens dPART = P1[2] + mic['focal_length'] * (1 / mic['magnification'] + 1); # linear transformation from the object plane to the lens plane T2 = np.array([[1, 0, dPART, 0], [0, 1, 0, dPART], [0, 0, 1, 0], [0, 0, 0, 1]]) # light field right before the lens x = np.linalg.inv(T2) @ xp # remove rays outside of the lens aperture ind = x[0, :] ** 2 + x[1, :] ** 2 <= lens_radius ** 2 x = x[:, ind] # transformation of the light field with spherical lens a = x[0, :]; b = x[1, :] c = x[2, :]; d = x[3, :] # radius of curvature of the lens rk = mic['focal_length'] * (mic['ri_lens'] / mic['ri_medium'] - 1) * 2 dum = a * 0 # refraction medium-lens # ray-vector befor lens Vr = np.vstack((1 + dum, c, d)) Vr = (Vr / np.tile(np.sqrt(sum(Vr ** 2)), (3, 1))) # normal-vector to the lens surface Vl = np.vstack((rk + dum, a, b)) Vl = (Vl / np.tile(np.sqrt(sum(Vl ** 2)), (3, 1))) # tangent-vector to the lens surface Vrot = np.cross(Vr, Vl, axisa=0, axisb=0) Vrot = np.cross(Vrot, Vl, axisa=1, axisb=0).transpose() Vrot = Vrot / np.tile(np.sqrt(sum(Vrot ** 2)), (3, 1)) # angle after snell-law correction vx = np.sum(Vr * Vl, axis=0) # dot product! vy = np.sum(Vr * Vrot, axis=0) # dot product! th11 = np.arcsin(mic['ri_medium'] / mic['ri_lens'] * np.sin(np.arctan(vy / vx))) # new ray-vector inside the lens Vr11 = (Vl * np.tile(np.cos(th11), (3, 1)) + Vrot * np.tile(np.sin(th11), (3, 1))) Vr = Vr11 / np.tile(Vr11[0, :], (3, 1)) # refraction lens-medium # normal-vector to the lens surface Vl2 = np.vstack((Vl[0, :], -Vl[1:, :])) # tangent-vector to the lens surface Vrot = np.cross(Vr, Vl2, axisa=0, axisb=0) Vrot = np.cross(Vrot, Vl2, axisa=1, axisb=0).transpose() Vrot = Vrot / np.tile(np.sqrt(sum(Vrot ** 2)), (3, 1)) # angle after snell-law correction vx = np.sum(Vr * Vl2, axis=0) # dot product! vy = np.sum(Vr * Vrot, axis=0) # dot product! th11 = np.arcsin(mic['ri_lens'] / mic['ri_medium'] * np.sin(np.arctan(vy / vx))) # new ray-vector outside the lens Vr11 = (Vl2 * np.tile(np.cos(th11), (3, 1)) + Vrot * np.tile(np.sin(th11), (3, 1))) Vr = Vr11 / np.tile(Vr11[0, :], (3, 1)) # light field after the spherical lens x[2, :] = Vr[1, :] x[3, :] = Vr[2, :] if mic['cyl_focal_length'] == 0: # linear transformation from the lens plane to the ccd plane T1 = np.array([[1, 0, -dCCD, 0], [0, 1, 0, -dCCD], [0, 0, 1, 0], [0, 0, 0, 1]]) # light field at the ccd plane xs = np.linalg.inv(T1) @ x else: # # linear transformation from the lens plane to the cyl_lens plane T1c = np.array([[1, 0, -dCCD * 1 / 3, 0], [0, 1, 0, -dCCD * 1 / 3], [0, 0, 1, 0], [0, 0, 0, 1]]) # # light field at the cylindrical lens plane xc = np.linalg.inv(T1c) @ x # # light field after the cylindrical lens plane Tc = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [-1 / mic['cyl_focal_length'], 0, 1, 0], [0, 0, 0, 1]]) xc_a = np.linalg.inv(Tc) @ xc # # light field at the ccd plane T1 = np.array([[1, 0, -dCCD * 2 / 3, 0], [0, 1, 0, -dCCD * 2 / 3], [0, 0, 1, 0], [0, 0, 0, 1]]); # # light field at the ccd plane xs = np.linalg.inv(T1) @ xc_a # transform the position in pixel units X = np.round(xs[0, :] / mic['pixel_size'] + P1[0]) Y = np.round(xs[1, :] / mic['pixel_size'] + P1[1]) # remove rays outside the CCD ind = np.all([X > 0, X <= mic['pixel_dim_x'], Y > 0, Y <= mic['pixel_dim_y'], X.imag == 0, Y.imag == 0], axis=0) # count number of rays in each pixel countXY = np.sort(Y[ind] + (X[ind] - 1) * mic['pixel_dim_y']) indi, ia = np.unique(countXY, return_index=True) nCounts = np.hstack((ia[1:], countXY.size + 1)) - ia # prepare image I = np.zeros((mic['pixel_dim_y'], mic['pixel_dim_x'])) Ifr = I.flatten('F') Ifr[indi.astype(int) - 1] = nCounts I = Ifr.reshape(mic['pixel_dim_y'], mic['pixel_dim_x'], order='F') return I # %% def create_particle(D, Ns, Nr): R = D / 2 V = spiral_sphere(Ns) V[0:2, V[0, :] > 0] = -V[0:2, V[0, :] > 0] x = R * V[0, :] y = R * V[1, :] z = R * V[2, :] V0 = spiral_sphere(Nr + 2) V0 = V0[:, 1:-1] u = np.tile(x, (Nr, 1)) v = np.tile(y, (Nr, 1)) s = u * 0 t = u * 0 phs = np.random.uniform(-np.pi, np.pi, z.size) cs = np.cos(phs) sn = np.sin(phs) for k in range(0, Ns): Rot = np.array([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]) Vr = Rot @ V0 Vr[0, :] = -abs(Vr[0, :]) s[:, k] = Vr[1, :] / Vr[0, :] t[:, k] = Vr[2, :] / Vr[0, :] u[:, k] = y[k] - s[:, k] * x[k] v[:, k] = z[k] - t[:, k] * x[k] xp = np.vstack((u.flatten('F'), v.flatten('F'), s.flatten('F'), t.flatten('F'))) return xp # %% def create_ellipsoid(Deab, Ns, Nr): D = Deab[0]; ecc = Deab[1] alpha = Deab[2]; beta = Deab[3] R = D / 2 V = spiral_sphere(Ns) V = R * V V[2, :] = V[2, :] * ecc R_beta = np.array([[np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)]]) R_alpha = np.array([[np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]]) Vf = R_alpha @ (R_beta @ V) ii1 = (Vf[1, :] == np.min(Vf[1, :])).nonzero()[0][0] ii2 = (Vf[1, :] == np.max(Vf[1, :])).nonzero()[0][0] ii3 = (Vf[2, :] == np.min(Vf[2, :])).nonzero()[0][0] ii4 = (Vf[2, :] == np.max(Vf[2, :])).nonzero()[0][0] Vdum = Vf[:, [ii1, ii2, ii3, ii4]] A = np.c_[Vdum[1, :], Vdum[2, :], np.ones(Vdum.shape[1])] C, _, _, _ = np.linalg.lstsq(A, Vdum[0, :], rcond=None) V1dum = C[0] * Vf[1, :] + C[1] * Vf[2, :] + C[2] ind = (Vf[0, :] - V1dum) < 0 x = Vf[0, ind] y = Vf[1, ind] z = Vf[2, ind] Ns = z.size V0 = spiral_sphere(Nr + 2) V0 = V0[:, 1:-1] u = np.tile(x, (Nr, 1)) v = np.tile(y, (Nr, 1)) s = u * 0 t = u * 0 phs = np.random.uniform(-np.pi, np.pi, z.size) cs = np.cos(phs) sn = np.sin(phs) for k in range(0, Ns): Rot = np.array([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]) Vr = Rot @ V0 Vr[0, :] = -abs(Vr[0, :]) s[:, k] = Vr[1, :] / Vr[0, :] t[:, k] = Vr[2, :] / Vr[0, :] u[:, k] = y[k] - s[:, k] * x[k] v[:, k] = z[k] - t[:, k] * x[k] xp = np.vstack((u.flatten('F'), v.flatten('F'), s.flatten('F'), t.flatten('F'))) return xp # %% def spiral_sphere(N): gr = (1 + np.sqrt(5)) / 2 # golden ratio ga = 2 * np.pi * (1 - 1 / gr) # golden angle ind_p = np.arange(0, N) # particle (i.e., point sample) index lat = np.arccos(1 - 2 * ind_p / ( N - 1)) # latitude is defined so that particle index is proportional to surface area between 0 and lat lon = ind_p * ga # position particles at even intervals along longitude # Convert from spherical to Cartesian co-ordinates x = np.sin(lat) * np.cos(lon) y = np.sin(lat) * np.sin(lon) z = np.cos(lat) V = np.vstack((x, y, z)) return V # %% if __name__ == '__main__': run()
[ "numpy.uint8", "tkinter.filedialog.askdirectory", "numpy.arccos", "numpy.sqrt", "numpy.hstack", "numpy.array", "sys.exit", "numpy.sin", "numpy.genfromtxt", "numpy.arange", "numpy.cross", "numpy.sort", "os.path.split", "numpy.max", "tkinter.filedialog.askopenfilenames", "numpy.vstack", "numpy.linalg.lstsq", "numpy.min", "numpy.round", "glob.glob", "numpy.random.normal", "numpy.tile", "numpy.arctan", "numpy.uint16", "numpy.ones", "numpy.cos", "numpy.unique", "numpy.arcsin", "os.path.join", "numpy.sum", "numpy.zeros", "tkinter.Tk", "numpy.linalg.inv", "numpy.random.uniform", "os.path.abspath", "numpy.all" ]
[((4177, 4184), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (4182, 4184), True, 'import tkinter as tk\n'), ((4263, 4395), 'tkinter.filedialog.askopenfilenames', 'filedialog.askopenfilenames', ([], {'title': '"""Select settings file"""', 'parent': 'root', 'filetypes': "(('txt files', '*.txt'), ('all files', '*.*'))"}), "(title='Select settings file', parent=root,\n filetypes=(('txt files', '*.txt'), ('all files', '*.*')))\n", (4290, 4395), False, 'from tkinter import filedialog\n'), ((4494, 4625), 'tkinter.filedialog.askopenfilenames', 'filedialog.askopenfilenames', ([], {'title': '"""Select data file(s)"""', 'parent': 'root', 'filetypes': "(('txt files', '*.txt'), ('all files', '*.*'))"}), "(title='Select data file(s)', parent=root,\n filetypes=(('txt files', '*.txt'), ('all files', '*.*')))\n", (4521, 4625), False, 'from tkinter import filedialog\n'), ((4732, 4801), 'tkinter.filedialog.askdirectory', 'filedialog.askdirectory', ([], {'title': '"""Select destination file"""', 'parent': 'root'}), "(title='Select destination file', parent=root)\n", (4755, 4801), False, 'from tkinter import filedialog\n'), ((5683, 5733), 'numpy.zeros', 'np.zeros', (["(mic['pixel_dim_y'], mic['pixel_dim_x'])"], {}), "((mic['pixel_dim_y'], mic['pixel_dim_x']))\n", (5691, 5733), True, 'import numpy as np\n'), ((5747, 5765), 'numpy.unique', 'np.unique', (['P[:, 3]'], {}), '(P[:, 3])\n', (5756, 5765), True, 'import numpy as np\n'), ((8732, 8806), 'numpy.array', 'np.array', (['[[1, 0, dPART, 0], [0, 1, 0, dPART], [0, 0, 1, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, dPART, 0], [0, 1, 0, dPART], [0, 0, 1, 0], [0, 0, 0, 1]])\n', (8740, 8806), True, 'import numpy as np\n'), ((9382, 9408), 'numpy.vstack', 'np.vstack', (['(1 + dum, c, d)'], {}), '((1 + dum, c, d))\n', (9391, 9408), True, 'import numpy as np\n'), ((9513, 9540), 'numpy.vstack', 'np.vstack', (['(rk + dum, a, b)'], {}), '((rk + dum, a, b))\n', (9522, 9540), True, 'import numpy as np\n'), ((9648, 9682), 'numpy.cross', 'np.cross', (['Vr', 'Vl'], {'axisa': '(0)', 'axisb': '(0)'}), '(Vr, Vl, axisa=0, axisb=0)\n', (9656, 9682), True, 'import numpy as np\n'), ((9850, 9873), 'numpy.sum', 'np.sum', (['(Vr * Vl)'], {'axis': '(0)'}), '(Vr * Vl, axis=0)\n', (9856, 9873), True, 'import numpy as np\n'), ((9899, 9924), 'numpy.sum', 'np.sum', (['(Vr * Vrot)'], {'axis': '(0)'}), '(Vr * Vrot, axis=0)\n', (9905, 9924), True, 'import numpy as np\n'), ((10306, 10339), 'numpy.vstack', 'np.vstack', (['(Vl[0, :], -Vl[1:, :])'], {}), '((Vl[0, :], -Vl[1:, :]))\n', (10315, 10339), True, 'import numpy as np\n'), ((10392, 10427), 'numpy.cross', 'np.cross', (['Vr', 'Vl2'], {'axisa': '(0)', 'axisb': '(0)'}), '(Vr, Vl2, axisa=0, axisb=0)\n', (10400, 10427), True, 'import numpy as np\n'), ((10596, 10620), 'numpy.sum', 'np.sum', (['(Vr * Vl2)'], {'axis': '(0)'}), '(Vr * Vl2, axis=0)\n', (10602, 10620), True, 'import numpy as np\n'), ((10646, 10671), 'numpy.sum', 'np.sum', (['(Vr * Vrot)'], {'axis': '(0)'}), '(Vr * Vrot, axis=0)\n', (10652, 10671), True, 'import numpy as np\n'), ((12418, 12464), 'numpy.round', 'np.round', (["(xs[0, :] / mic['pixel_size'] + P1[0])"], {}), "(xs[0, :] / mic['pixel_size'] + P1[0])\n", (12426, 12464), True, 'import numpy as np\n'), ((12473, 12519), 'numpy.round', 'np.round', (["(xs[1, :] / mic['pixel_size'] + P1[1])"], {}), "(xs[1, :] / mic['pixel_size'] + P1[1])\n", (12481, 12519), True, 'import numpy as np\n'), ((12565, 12676), 'numpy.all', 'np.all', (["[X > 0, X <= mic['pixel_dim_x'], Y > 0, Y <= mic['pixel_dim_y'], X.imag == \n 0, Y.imag == 0]"], {'axis': '(0)'}), "([X > 0, X <= mic['pixel_dim_x'], Y > 0, Y <= mic['pixel_dim_y'], X.\n imag == 0, Y.imag == 0], axis=0)\n", (12571, 12676), True, 'import numpy as np\n'), ((12746, 12797), 'numpy.sort', 'np.sort', (["(Y[ind] + (X[ind] - 1) * mic['pixel_dim_y'])"], {}), "(Y[ind] + (X[ind] - 1) * mic['pixel_dim_y'])\n", (12753, 12797), True, 'import numpy as np\n'), ((12813, 12850), 'numpy.unique', 'np.unique', (['countXY'], {'return_index': '(True)'}), '(countXY, return_index=True)\n', (12822, 12850), True, 'import numpy as np\n'), ((12937, 12987), 'numpy.zeros', 'np.zeros', (["(mic['pixel_dim_y'], mic['pixel_dim_x'])"], {}), "((mic['pixel_dim_y'], mic['pixel_dim_x']))\n", (12945, 12987), True, 'import numpy as np\n'), ((13386, 13405), 'numpy.tile', 'np.tile', (['x', '(Nr, 1)'], {}), '(x, (Nr, 1))\n', (13393, 13405), True, 'import numpy as np\n'), ((13414, 13433), 'numpy.tile', 'np.tile', (['y', '(Nr, 1)'], {}), '(y, (Nr, 1))\n', (13421, 13433), True, 'import numpy as np\n'), ((13473, 13513), 'numpy.random.uniform', 'np.random.uniform', (['(-np.pi)', 'np.pi', 'z.size'], {}), '(-np.pi, np.pi, z.size)\n', (13490, 13513), True, 'import numpy as np\n'), ((13523, 13534), 'numpy.cos', 'np.cos', (['phs'], {}), '(phs)\n', (13529, 13534), True, 'import numpy as np\n'), ((13544, 13555), 'numpy.sin', 'np.sin', (['phs'], {}), '(phs)\n', (13550, 13555), True, 'import numpy as np\n'), ((14902, 14944), 'numpy.linalg.lstsq', 'np.linalg.lstsq', (['A', 'Vdum[0, :]'], {'rcond': 'None'}), '(A, Vdum[0, :], rcond=None)\n', (14917, 14944), True, 'import numpy as np\n'), ((15165, 15184), 'numpy.tile', 'np.tile', (['x', '(Nr, 1)'], {}), '(x, (Nr, 1))\n', (15172, 15184), True, 'import numpy as np\n'), ((15193, 15212), 'numpy.tile', 'np.tile', (['y', '(Nr, 1)'], {}), '(y, (Nr, 1))\n', (15200, 15212), True, 'import numpy as np\n'), ((15252, 15292), 'numpy.random.uniform', 'np.random.uniform', (['(-np.pi)', 'np.pi', 'z.size'], {}), '(-np.pi, np.pi, z.size)\n', (15269, 15292), True, 'import numpy as np\n'), ((15302, 15313), 'numpy.cos', 'np.cos', (['phs'], {}), '(phs)\n', (15308, 15313), True, 'import numpy as np\n'), ((15323, 15334), 'numpy.sin', 'np.sin', (['phs'], {}), '(phs)\n', (15329, 15334), True, 'import numpy as np\n'), ((15932, 15947), 'numpy.arange', 'np.arange', (['(0)', 'N'], {}), '(0, N)\n', (15941, 15947), True, 'import numpy as np\n'), ((15997, 16031), 'numpy.arccos', 'np.arccos', (['(1 - 2 * ind_p / (N - 1))'], {}), '(1 - 2 * ind_p / (N - 1))\n', (16006, 16031), True, 'import numpy as np\n'), ((16354, 16365), 'numpy.cos', 'np.cos', (['lat'], {}), '(lat)\n', (16360, 16365), True, 'import numpy as np\n'), ((16374, 16394), 'numpy.vstack', 'np.vstack', (['(x, y, z)'], {}), '((x, y, z))\n', (16383, 16394), True, 'import numpy as np\n'), ((4443, 4475), 'sys.exit', 'sys.exit', (['"""input file not valid"""'], {}), "('input file not valid')\n", (4451, 4475), False, 'import sys\n'), ((4673, 4705), 'sys.exit', 'sys.exit', (['"""input file not valid"""'], {}), "('input file not valid')\n", (4681, 4705), False, 'import sys\n'), ((4845, 4877), 'sys.exit', 'sys.exit', (['"""input file not valid"""'], {}), "('input file not valid')\n", (4853, 4877), False, 'import sys\n'), ((5327, 5346), 'numpy.genfromtxt', 'np.genfromtxt', (['data'], {}), '(data)\n', (5340, 5346), True, 'import numpy as np\n'), ((5429, 5448), 'os.path.split', 'os.path.split', (['data'], {}), '(data)\n', (5442, 5448), False, 'import os\n'), ((5858, 5877), 'numpy.ones', 'np.ones', (['P.shape[0]'], {}), '(P.shape[0])\n', (5865, 5877), True, 'import numpy as np\n'), ((7801, 7892), 'numpy.random.normal', 'np.random.normal', (['(0)', "mic['background_noise']", "(mic['pixel_dim_y'], mic['pixel_dim_x'])"], {}), "(0, mic['background_noise'], (mic['pixel_dim_y'], mic[\n 'pixel_dim_x']))\n", (7817, 7892), True, 'import numpy as np\n'), ((8913, 8930), 'numpy.linalg.inv', 'np.linalg.inv', (['T2'], {}), '(T2)\n', (8926, 8930), True, 'import numpy as np\n'), ((10199, 10226), 'numpy.tile', 'np.tile', (['Vr11[0, :]', '(3, 1)'], {}), '(Vr11[0, :], (3, 1))\n', (10206, 10226), True, 'import numpy as np\n'), ((10949, 10976), 'numpy.tile', 'np.tile', (['Vr11[0, :]', '(3, 1)'], {}), '(Vr11[0, :], (3, 1))\n', (10956, 10976), True, 'import numpy as np\n'), ((11190, 11264), 'numpy.array', 'np.array', (['[[1, 0, -dCCD, 0], [0, 1, 0, -dCCD], [0, 0, 1, 0], [0, 0, 0, 1]]'], {}), '([[1, 0, -dCCD, 0], [0, 1, 0, -dCCD], [0, 0, 1, 0], [0, 0, 0, 1]])\n', (11198, 11264), True, 'import numpy as np\n'), ((11519, 11613), 'numpy.array', 'np.array', (['[[1, 0, -dCCD * 1 / 3, 0], [0, 1, 0, -dCCD * 1 / 3], [0, 0, 1, 0], [0, 0, 0, 1]\n ]'], {}), '([[1, 0, -dCCD * 1 / 3, 0], [0, 1, 0, -dCCD * 1 / 3], [0, 0, 1, 0],\n [0, 0, 0, 1]])\n', (11527, 11613), True, 'import numpy as np\n'), ((11856, 11954), 'numpy.array', 'np.array', (["[[1, 0, 0, 0], [0, 1, 0, 0], [-1 / mic['cyl_focal_length'], 0, 1, 0], [0, 0,\n 0, 1]]"], {}), "([[1, 0, 0, 0], [0, 1, 0, 0], [-1 / mic['cyl_focal_length'], 0, 1, \n 0], [0, 0, 0, 1]])\n", (11864, 11954), True, 'import numpy as np\n'), ((12118, 12212), 'numpy.array', 'np.array', (['[[1, 0, -dCCD * 2 / 3, 0], [0, 1, 0, -dCCD * 2 / 3], [0, 0, 1, 0], [0, 0, 0, 1]\n ]'], {}), '([[1, 0, -dCCD * 2 / 3, 0], [0, 1, 0, -dCCD * 2 / 3], [0, 0, 1, 0],\n [0, 0, 0, 1]])\n', (12126, 12212), True, 'import numpy as np\n'), ((12865, 12902), 'numpy.hstack', 'np.hstack', (['(ia[1:], countXY.size + 1)'], {}), '((ia[1:], countXY.size + 1))\n', (12874, 12902), True, 'import numpy as np\n'), ((13597, 13657), 'numpy.array', 'np.array', (['[[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]'], {}), '([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]])\n', (13605, 13657), True, 'import numpy as np\n'), ((15376, 15436), 'numpy.array', 'np.array', (['[[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]]'], {}), '([[cs[k], -sn[k], 0], [sn[k], cs[k], 0], [0, 0, 1]])\n', (15384, 15436), True, 'import numpy as np\n'), ((16286, 16297), 'numpy.sin', 'np.sin', (['lat'], {}), '(lat)\n', (16292, 16297), True, 'import numpy as np\n'), ((16300, 16311), 'numpy.cos', 'np.cos', (['lon'], {}), '(lon)\n', (16306, 16311), True, 'import numpy as np\n'), ((16320, 16331), 'numpy.sin', 'np.sin', (['lat'], {}), '(lat)\n', (16326, 16331), True, 'import numpy as np\n'), ((16334, 16345), 'numpy.sin', 'np.sin', (['lon'], {}), '(lon)\n', (16340, 16345), True, 'import numpy as np\n'), ((3513, 3532), 'numpy.genfromtxt', 'np.genfromtxt', (['data'], {}), '(data)\n', (3526, 3532), True, 'import numpy as np\n'), ((3627, 3646), 'os.path.split', 'os.path.split', (['data'], {}), '(data)\n', (3640, 3646), False, 'import os\n'), ((5393, 5406), 'numpy.array', 'np.array', (['[P]'], {}), '([P])\n', (5401, 5406), True, 'import numpy as np\n'), ((5946, 6052), 'numpy.round', 'np.round', (["(mic['points_per_pixel'] * 2 * np.pi * (dp_s * mic['magnification'] / mic[\n 'pixel_size']) ** 2)"], {}), "(mic['points_per_pixel'] * 2 * np.pi * (dp_s * mic['magnification'] /\n mic['pixel_size']) ** 2)\n", (5954, 6052), True, 'import numpy as np\n'), ((7937, 7952), 'numpy.round', 'np.round', (['Irand'], {}), '(Irand)\n', (7945, 7952), True, 'import numpy as np\n'), ((9694, 9730), 'numpy.cross', 'np.cross', (['Vrot', 'Vl'], {'axisa': '(1)', 'axisb': '(0)'}), '(Vrot, Vl, axisa=1, axisb=0)\n', (9702, 9730), True, 'import numpy as np\n'), ((10439, 10476), 'numpy.cross', 'np.cross', (['Vrot', 'Vl2'], {'axisa': '(1)', 'axisb': '(0)'}), '(Vrot, Vl2, axisa=1, axisb=0)\n', (10447, 10476), True, 'import numpy as np\n'), ((11390, 11407), 'numpy.linalg.inv', 'np.linalg.inv', (['T1'], {}), '(T1)\n', (11403, 11407), True, 'import numpy as np\n'), ((11756, 11774), 'numpy.linalg.inv', 'np.linalg.inv', (['T1c'], {}), '(T1c)\n', (11769, 11774), True, 'import numpy as np\n'), ((12034, 12051), 'numpy.linalg.inv', 'np.linalg.inv', (['Tc'], {}), '(Tc)\n', (12047, 12051), True, 'import numpy as np\n'), ((12340, 12357), 'numpy.linalg.inv', 'np.linalg.inv', (['T1'], {}), '(T1)\n', (12353, 12357), True, 'import numpy as np\n'), ((14861, 14883), 'numpy.ones', 'np.ones', (['Vdum.shape[1]'], {}), '(Vdum.shape[1])\n', (14868, 14883), True, 'import numpy as np\n'), ((15837, 15847), 'numpy.sqrt', 'np.sqrt', (['(5)'], {}), '(5)\n', (15844, 15847), True, 'import numpy as np\n'), ((1924, 1953), 'os.path.abspath', 'os.path.abspath', (['setting_file'], {}), '(setting_file)\n', (1939, 1953), False, 'import os\n'), ((2286, 2318), 'glob.glob', 'glob.glob', (["(data_files + '/*.txt')"], {}), "(data_files + '/*.txt')\n", (2295, 2318), False, 'import glob\n'), ((2899, 2934), 'os.path.abspath', 'os.path.abspath', (['destination_folder'], {}), '(destination_folder)\n', (2914, 2934), False, 'import os\n'), ((3587, 3600), 'numpy.array', 'np.array', (['[P]'], {}), '([P])\n', (3595, 3600), True, 'import numpy as np\n'), ((8352, 8388), 'numpy.arcsin', 'np.arcsin', (["mic['numerical_aperture']"], {}), "(mic['numerical_aperture'])\n", (8361, 8388), True, 'import numpy as np\n'), ((10026, 10044), 'numpy.arctan', 'np.arctan', (['(vy / vx)'], {}), '(vy / vx)\n', (10035, 10044), True, 'import numpy as np\n'), ((10109, 10121), 'numpy.cos', 'np.cos', (['th11'], {}), '(th11)\n', (10115, 10121), True, 'import numpy as np\n'), ((10160, 10172), 'numpy.sin', 'np.sin', (['th11'], {}), '(th11)\n', (10166, 10172), True, 'import numpy as np\n'), ((10774, 10792), 'numpy.arctan', 'np.arctan', (['(vy / vx)'], {}), '(vy / vx)\n', (10783, 10792), True, 'import numpy as np\n'), ((10859, 10871), 'numpy.cos', 'np.cos', (['th11'], {}), '(th11)\n', (10865, 10871), True, 'import numpy as np\n'), ((10910, 10922), 'numpy.sin', 'np.sin', (['th11'], {}), '(th11)\n', (10916, 10922), True, 'import numpy as np\n'), ((14242, 14254), 'numpy.cos', 'np.cos', (['beta'], {}), '(beta)\n', (14248, 14254), True, 'import numpy as np\n'), ((14259, 14271), 'numpy.sin', 'np.sin', (['beta'], {}), '(beta)\n', (14265, 14271), True, 'import numpy as np\n'), ((14350, 14362), 'numpy.cos', 'np.cos', (['beta'], {}), '(beta)\n', (14356, 14362), True, 'import numpy as np\n'), ((14391, 14404), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (14397, 14404), True, 'import numpy as np\n'), ((14451, 14464), 'numpy.sin', 'np.sin', (['alpha'], {}), '(alpha)\n', (14457, 14464), True, 'import numpy as np\n'), ((14466, 14479), 'numpy.cos', 'np.cos', (['alpha'], {}), '(alpha)\n', (14472, 14479), True, 'import numpy as np\n'), ((3764, 3820), 'os.path.join', 'os.path.join', (['self.destination_folder', "(tail[:-3] + 'tif')"], {}), "(self.destination_folder, tail[:-3] + 'tif')\n", (3776, 3820), False, 'import os\n'), ((3852, 3864), 'numpy.uint16', 'np.uint16', (['I'], {}), '(I)\n', (3861, 3864), True, 'import numpy as np\n'), ((6385, 6496), 'numpy.round', 'np.round', (["(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] /\n mic['pixel_size']) ** 2)"], {}), "(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic[\n 'magnification'] / mic['pixel_size']) ** 2)\n", (6393, 6496), True, 'import numpy as np\n'), ((14333, 14345), 'numpy.sin', 'np.sin', (['beta'], {}), '(beta)\n', (14339, 14345), True, 'import numpy as np\n'), ((14407, 14420), 'numpy.sin', 'np.sin', (['alpha'], {}), '(alpha)\n', (14413, 14420), True, 'import numpy as np\n'), ((3948, 4004), 'os.path.join', 'os.path.join', (['self.destination_folder', "(tail[:-3] + 'tif')"], {}), "(self.destination_folder, tail[:-3] + 'tif')\n", (3960, 4004), False, 'import os\n'), ((4036, 4047), 'numpy.uint8', 'np.uint8', (['I'], {}), '(I)\n', (4044, 4047), True, 'import numpy as np\n'), ((6782, 6893), 'numpy.round', 'np.round', (["(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic['magnification'] /\n mic['pixel_size']) ** 2)"], {}), "(mic['points_per_pixel'] * 2 * np.pi * (P[ii, 3] * mic[\n 'magnification'] / mic['pixel_size']) ** 2)\n", (6790, 6893), True, 'import numpy as np\n'), ((14578, 14594), 'numpy.min', 'np.min', (['Vf[1, :]'], {}), '(Vf[1, :])\n', (14584, 14594), True, 'import numpy as np\n'), ((14635, 14651), 'numpy.max', 'np.max', (['Vf[1, :]'], {}), '(Vf[1, :])\n', (14641, 14651), True, 'import numpy as np\n'), ((14692, 14708), 'numpy.min', 'np.min', (['Vf[2, :]'], {}), '(Vf[2, :])\n', (14698, 14708), True, 'import numpy as np\n'), ((14749, 14765), 'numpy.max', 'np.max', (['Vf[2, :]'], {}), '(Vf[2, :])\n', (14755, 14765), True, 'import numpy as np\n'), ((7193, 7218), 'numpy.round', 'np.round', (['(fact * n_points)'], {}), '(fact * n_points)\n', (7201, 7218), True, 'import numpy as np\n'), ((7458, 7483), 'numpy.round', 'np.round', (['(fact * n_points)'], {}), '(fact * n_points)\n', (7466, 7483), True, 'import numpy as np\n'), ((7064, 7089), 'numpy.sqrt', 'np.sqrt', (['(1 - 1 / ecc ** 2)'], {}), '(1 - 1 / ecc ** 2)\n', (7071, 7089), True, 'import numpy as np\n'), ((7134, 7159), 'numpy.sqrt', 'np.sqrt', (['(1 - 1 / ecc ** 2)'], {}), '(1 - 1 / ecc ** 2)\n', (7141, 7159), True, 'import numpy as np\n'), ((7337, 7358), 'numpy.sqrt', 'np.sqrt', (['(1 - ecc ** 2)'], {}), '(1 - ecc ** 2)\n', (7344, 7358), True, 'import numpy as np\n'), ((7403, 7424), 'numpy.sqrt', 'np.sqrt', (['(1 - ecc ** 2)'], {}), '(1 - ecc ** 2)\n', (7410, 7424), True, 'import numpy as np\n')]
from django.contrib.auth.forms import AuthenticationForm, UserCreationForm from django.contrib.auth.models import User from django import forms class UploadFileForm(forms.Form): title = forms.CharField(max_length=50) file = forms.FileField() # If you don't do this you cannot use Bootstrap CSS class LoginForm(AuthenticationForm): username = forms.CharField(label="Username", max_length=16, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'username'})) password = forms.CharField(label="Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password'})) class SignUpForm(UserCreationForm): full_name = forms.CharField(label="Full Name", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'full_name'})) email = forms.EmailField(label = "Email", max_length =50, widget=forms.EmailInput(attrs={'class': 'form-control', 'name': 'email'})) class Meta: model = User fields = ("email", "full_name", "username", "<PASSWORD>", "<PASSWORD>") def save(self, commit=True): user = super(SignUpForm, self).save(commit=False) user.full_name = self.cleaned_data["full_name"] user.email = self.cleaned_data["email"] if commit: user.save() return user class EmailSignupForm(UserCreationForm): full_name = forms.CharField(label="Full Name", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'full_name'})) class Meta: model = User fields = ("full_name", "username", "<PASSWORD>", "<PASSWORD>") def save(self, commit=True): user = super(EmailSignupForm, self).save(commit=False) user.full_name = self.cleaned_data["full_name"] if commit: user.save() return user class ChangePasswordForm(forms.Form): security_code = forms.CharField(label="Security Code", max_length=50, widget=forms.TextInput(attrs={'class': 'form-control', 'name': 'security_code'})) password1 = forms.CharField(label="New Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password1'})) password2 = forms.CharField(label="Re-enter New Password", max_length=16, widget=forms.PasswordInput(attrs={'class': 'form-control', 'name': 'password2'})) class Meta: fields = ("security_code", "password1", "password2")
[ "django.forms.CharField", "django.forms.PasswordInput", "django.forms.EmailInput", "django.forms.TextInput", "django.forms.FileField" ]
[((192, 222), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (207, 222), False, 'from django import forms\n'), ((234, 251), 'django.forms.FileField', 'forms.FileField', ([], {}), '()\n', (249, 251), False, 'from django import forms\n'), ((445, 513), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'class': 'form-control', 'name': 'username'}"}), "(attrs={'class': 'form-control', 'name': 'username'})\n", (460, 513), False, 'from django import forms\n'), ((617, 689), 'django.forms.PasswordInput', 'forms.PasswordInput', ([], {'attrs': "{'class': 'form-control', 'name': 'password'}"}), "(attrs={'class': 'form-control', 'name': 'password'})\n", (636, 689), False, 'from django import forms\n'), ((835, 904), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'class': 'form-control', 'name': 'full_name'}"}), "(attrs={'class': 'form-control', 'name': 'full_name'})\n", (850, 904), False, 'from django import forms\n'), ((976, 1042), 'django.forms.EmailInput', 'forms.EmailInput', ([], {'attrs': "{'class': 'form-control', 'name': 'email'}"}), "(attrs={'class': 'form-control', 'name': 'email'})\n", (992, 1042), False, 'from django import forms\n'), ((1570, 1639), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'class': 'form-control', 'name': 'full_name'}"}), "(attrs={'class': 'form-control', 'name': 'full_name'})\n", (1585, 1639), False, 'from django import forms\n'), ((2119, 2192), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'class': 'form-control', 'name': 'security_code'}"}), "(attrs={'class': 'form-control', 'name': 'security_code'})\n", (2134, 2192), False, 'from django import forms\n'), ((2302, 2375), 'django.forms.PasswordInput', 'forms.PasswordInput', ([], {'attrs': "{'class': 'form-control', 'name': 'password1'}"}), "(attrs={'class': 'form-control', 'name': 'password1'})\n", (2321, 2375), False, 'from django import forms\n'), ((2493, 2566), 'django.forms.PasswordInput', 'forms.PasswordInput', ([], {'attrs': "{'class': 'form-control', 'name': 'password2'}"}), "(attrs={'class': 'form-control', 'name': 'password2'})\n", (2512, 2566), False, 'from django import forms\n')]
import pandas as pd from pandas import DataFrame df = pd.read_csv('sp500_ohlc.csv', index_col = 'Date', parse_dates=True) df['H-L'] = df.High - df.Low # Giving us count (rows), mean (avg), std (standard deviation for the entire # set), minimum for the set, maximum for the set, and some %s in that range. print( df.describe()) x = input('enter to cont') # gives us correlation data. Remember the 3d chart we plotted? # now you can see if correlation of H-L and Volume also is correlated # with price swings. Correlations for your correlations print( df.corr()) x = input('enter to cont') # covariance... now plenty of people know what correlation is, but what in the # heck is covariance. # Let's defined the two. # covariance is the measure of how two variables change together. # correlation is the measure of how two variables move in relation to eachother. # so covariance is a more direct assessment of the relationship between two variables. # Maybe a better way to put it is that covariance is the measure of the strength of correlation. print( df.cov()) x = input('enter to cont') print( df[['Volume','H-L']].corr()) x = input('enter to cont') # see how it makes a table? # so now, we can actually perform a service that some people actually pay for # I once had a short freelance gig doing this # so a popular form of analysis within especially forex is to compare correlations between # the currencies. The idea here is that you pace one currency with another. # import datetime import pandas.io.data C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) print( C.head()) x = input('enter to cont') del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['AAPL'] = AAPL['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') C = pd.io.data.get_data_yahoo('C', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) AAPL = pd.io.data.get_data_yahoo('AAPL', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) MSFT = pd.io.data.get_data_yahoo('MSFT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TSLA = pd.io.data.get_data_yahoo('TSLA', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BAC = pd.io.data.get_data_yahoo('BAC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) BBRY = pd.io.data.get_data_yahoo('BBRY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) CMG = pd.io.data.get_data_yahoo('CMG', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) EBAY = pd.io.data.get_data_yahoo('EBAY', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) JPM = pd.io.data.get_data_yahoo('JPM', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) SBUX = pd.io.data.get_data_yahoo('SBUX', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) TGT = pd.io.data.get_data_yahoo('TGT', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) WFC = pd.io.data.get_data_yahoo('WFC', start=datetime.datetime(2011, 10, 1), end=datetime.datetime(2014, 1, 1)) x = input('enter to cont') print( C.head()) del C['Open'] # , 'high', 'low', 'close', 'volume' del C['High'] del C['Low'] del C['Close'] del C['Volume'] corComp = C corComp.rename(columns={'Adj Close': 'C'}, inplace=True) corComp['BAC'] = BAC['Adj Close'] corComp['MSFT'] = MSFT['Adj Close'] corComp['TSLA'] = TSLA['Adj Close'] corComp['AAPL'] = AAPL['Adj Close'] corComp['BBRY'] = BBRY['Adj Close'] corComp['CMG'] = CMG['Adj Close'] corComp['EBAY'] = EBAY['Adj Close'] corComp['JPM'] = JPM['Adj Close'] corComp['SBUX'] = SBUX['Adj Close'] corComp['TGT'] = TGT['Adj Close'] corComp['WFC'] = WFC['Adj Close'] print( corComp.head()) x = input('enter to cont') print( corComp.corr()) x = input('enter to cont') fancy = corComp.corr() fancy.to_csv('bigmoney.csv')
[ "datetime.datetime", "pandas.read_csv" ]
[((55, 120), 'pandas.read_csv', 'pd.read_csv', (['"""sp500_ohlc.csv"""'], {'index_col': '"""Date"""', 'parse_dates': '(True)'}), "('sp500_ohlc.csv', index_col='Date', parse_dates=True)\n", (66, 120), True, 'import pandas as pd\n'), ((1602, 1632), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (1619, 1632), False, 'import datetime\n'), ((1672, 1701), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (1689, 1701), False, 'import datetime\n'), ((1784, 1814), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (1801, 1814), False, 'import datetime\n'), ((1854, 1883), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (1871, 1883), False, 'import datetime\n'), ((1966, 1996), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (1983, 1996), False, 'import datetime\n'), ((2036, 2065), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (2053, 2065), False, 'import datetime\n'), ((2148, 2178), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (2165, 2178), False, 'import datetime\n'), ((2218, 2247), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (2235, 2247), False, 'import datetime\n'), ((2768, 2798), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (2785, 2798), False, 'import datetime\n'), ((2838, 2867), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (2855, 2867), False, 'import datetime\n'), ((2950, 2980), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (2967, 2980), False, 'import datetime\n'), ((3020, 3049), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3037, 3049), False, 'import datetime\n'), ((3132, 3162), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (3149, 3162), False, 'import datetime\n'), ((3202, 3231), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3219, 3231), False, 'import datetime\n'), ((3314, 3344), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (3331, 3344), False, 'import datetime\n'), ((3384, 3413), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3401, 3413), False, 'import datetime\n'), ((3494, 3524), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (3511, 3524), False, 'import datetime\n'), ((3564, 3593), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3581, 3593), False, 'import datetime\n'), ((3676, 3706), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (3693, 3706), False, 'import datetime\n'), ((3746, 3775), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3763, 3775), False, 'import datetime\n'), ((3856, 3886), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (3873, 3886), False, 'import datetime\n'), ((3926, 3955), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (3943, 3955), False, 'import datetime\n'), ((4038, 4068), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (4055, 4068), False, 'import datetime\n'), ((4108, 4137), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (4125, 4137), False, 'import datetime\n'), ((4218, 4248), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (4235, 4248), False, 'import datetime\n'), ((4288, 4317), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (4305, 4317), False, 'import datetime\n'), ((4400, 4430), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (4417, 4430), False, 'import datetime\n'), ((4470, 4499), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (4487, 4499), False, 'import datetime\n'), ((4580, 4610), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (4597, 4610), False, 'import datetime\n'), ((4650, 4679), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (4667, 4679), False, 'import datetime\n'), ((4760, 4790), 'datetime.datetime', 'datetime.datetime', (['(2011)', '(10)', '(1)'], {}), '(2011, 10, 1)\n', (4777, 4790), False, 'import datetime\n'), ((4830, 4859), 'datetime.datetime', 'datetime.datetime', (['(2014)', '(1)', '(1)'], {}), '(2014, 1, 1)\n', (4847, 4859), False, 'import datetime\n')]
import cv2 import numpy as np import threading def test(): while 1: img1=cv2.imread('captured car1.jpg') print("{}".format(img1.shape)) print("{}".format(img1)) cv2.imshow('asd',img1) cv2.waitKey(1) t1 = threading.Thread(target=test) t1.start()
[ "threading.Thread", "cv2.waitKey", "cv2.imread", "cv2.imshow" ]
[((250, 279), 'threading.Thread', 'threading.Thread', ([], {'target': 'test'}), '(target=test)\n', (266, 279), False, 'import threading\n'), ((86, 117), 'cv2.imread', 'cv2.imread', (['"""captured car1.jpg"""'], {}), "('captured car1.jpg')\n", (96, 117), False, 'import cv2\n'), ((198, 221), 'cv2.imshow', 'cv2.imshow', (['"""asd"""', 'img1'], {}), "('asd', img1)\n", (208, 221), False, 'import cv2\n'), ((229, 243), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (240, 243), False, 'import cv2\n')]
# Copyright 2013 Cloudbase Solutions Srl # # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Utility class for VM related operations. Based on the "root/virtualization/v2" namespace available starting with Hyper-V Server / Windows Server 2012. """ import sys if sys.platform == 'win32': import wmi from oslo.config import cfg from ceilometer.compute.virt import inspector from ceilometer.openstack.common.gettextutils import _ from ceilometer.openstack.common import log as logging CONF = cfg.CONF LOG = logging.getLogger(__name__) class HyperVException(inspector.InspectorException): pass class UtilsV2(object): _VIRTUAL_SYSTEM_TYPE_REALIZED = 'Microsoft:Hyper-V:System:Realized' _PROC_SETTING = 'Msvm_ProcessorSettingData' _SYNTH_ETH_PORT = 'Msvm_SyntheticEthernetPortSettingData' _ETH_PORT_ALLOC = 'Msvm_EthernetPortAllocationSettingData' _PORT_ACL_SET_DATA = 'Msvm_EthernetSwitchPortAclSettingData' _STORAGE_ALLOC = 'Msvm_StorageAllocationSettingData' _VS_SETTING_DATA = 'Msvm_VirtualSystemSettingData' _METRICS_ME = 'Msvm_MetricForME' _BASE_METRICS_VALUE = 'Msvm_BaseMetricValue' _CPU_METRIC_NAME = 'Aggregated Average CPU Utilization' _NET_IN_METRIC_NAME = 'Filtered Incoming Network Traffic' _NET_OUT_METRIC_NAME = 'Filtered Outgoing Network Traffic' # Disk metrics are supported from Hyper-V 2012 R2 _DISK_RD_METRIC_NAME = 'Disk Data Read' _DISK_WR_METRIC_NAME = 'Disk Data Written' def __init__(self, host='.'): if sys.platform == 'win32': self._init_hyperv_wmi_conn(host) self._init_cimv2_wmi_conn(host) self._host_cpu_info = None def _init_hyperv_wmi_conn(self, host): self._conn = wmi.WMI(moniker='//%s/root/virtualization/v2' % host) def _init_cimv2_wmi_conn(self, host): self._conn_cimv2 = wmi.WMI(moniker='//%s/root/cimv2' % host) def get_host_cpu_info(self): if not self._host_cpu_info: host_cpus = self._conn_cimv2.Win32_Processor() self._host_cpu_info = (host_cpus[0].MaxClockSpeed, len(host_cpus)) return self._host_cpu_info def get_all_vms(self): vms = [(v.ElementName, v.Name) for v in self._conn.Msvm_ComputerSystem(['ElementName', 'Name'], Caption="Virtual Machine")] return vms def get_cpu_metrics(self, vm_name): vm = self._lookup_vm(vm_name) cpu_sd = self._get_vm_resources(vm, self._PROC_SETTING)[0] cpu_metrics_def = self._get_metric_def(self._CPU_METRIC_NAME) cpu_metric_aggr = self._get_metrics(vm, cpu_metrics_def) cpu_used = 0 if cpu_metric_aggr: cpu_used = long(cpu_metric_aggr[0].MetricValue) return (cpu_used, int(cpu_sd.VirtualQuantity), long(vm.OnTimeInMilliseconds)) def get_vnic_metrics(self, vm_name): vm = self._lookup_vm(vm_name) ports = self._get_vm_resources(vm, self._ETH_PORT_ALLOC) vnics = self._get_vm_resources(vm, self._SYNTH_ETH_PORT) metric_def_in = self._get_metric_def(self._NET_IN_METRIC_NAME) metric_def_out = self._get_metric_def(self._NET_OUT_METRIC_NAME) for port in ports: vnic = [v for v in vnics if port.Parent == v.path_()][0] metric_value_instances = self._get_metric_value_instances( port.associators(wmi_result_class=self._PORT_ACL_SET_DATA), self._BASE_METRICS_VALUE) metric_values = self._sum_metric_values_by_defs( metric_value_instances, [metric_def_in, metric_def_out]) yield { 'rx_mb': metric_values[0], 'tx_mb': metric_values[1], 'element_name': vnic.ElementName, 'address': vnic.Address } def get_disk_metrics(self, vm_name): vm = self._lookup_vm(vm_name) metric_def_r = self._get_metric_def(self._DISK_RD_METRIC_NAME) metric_def_w = self._get_metric_def(self._DISK_WR_METRIC_NAME) disks = self._get_vm_resources(vm, self._STORAGE_ALLOC) for disk in disks: metric_values = self._get_metric_values( disk, [metric_def_r, metric_def_w]) # Thi sis e.g. the VHD file location if disk.HostResource: host_resource = disk.HostResource[0] yield { # Values are in megabytes 'read_mb': metric_values[0], 'write_mb': metric_values[1], 'instance_id': disk.InstanceID, 'host_resource': host_resource } def _sum_metric_values(self, metrics): tot_metric_val = 0 for metric in metrics: tot_metric_val += long(metric.MetricValue) return tot_metric_val def _sum_metric_values_by_defs(self, element_metrics, metric_defs): metric_values = [] for metric_def in metric_defs: if metric_def: metrics = self._filter_metrics(element_metrics, metric_def) metric_values.append(self._sum_metric_values(metrics)) else: # In case the metric is not defined on this host metric_values.append(0) return metric_values def _get_metric_value_instances(self, elements, result_class): instances = [] for el in elements: associators = el.associators(wmi_result_class=result_class) if associators: instances.append(associators[0]) return instances def _get_metric_values(self, element, metric_defs): element_metrics = element.associators( wmi_association_class=self._METRICS_ME) return self._sum_metric_values_by_defs(element_metrics, metric_defs) def _lookup_vm(self, vm_name): vms = self._conn.Msvm_ComputerSystem(ElementName=vm_name) n = len(vms) if n == 0: raise inspector.InstanceNotFoundException( _('VM %s not found on Hyper-V') % vm_name) elif n > 1: raise HyperVException(_('Duplicate VM name found: %s') % vm_name) else: return vms[0] def _get_metrics(self, element, metric_def): return self._filter_metrics( element.associators( wmi_association_class=self._METRICS_ME), metric_def) def _filter_metrics(self, all_metrics, metric_def): return [v for v in all_metrics if v.MetricDefinitionId == metric_def.Id] def _get_metric_def(self, metric_def): metric = self._conn.CIM_BaseMetricDefinition(ElementName=metric_def) if metric: return metric[0] def _get_vm_setting_data(self, vm): vm_settings = vm.associators( wmi_result_class=self._VS_SETTING_DATA) # Avoid snapshots return [s for s in vm_settings if s.VirtualSystemType == self._VIRTUAL_SYSTEM_TYPE_REALIZED][0] def _get_vm_resources(self, vm, resource_class): setting_data = self._get_vm_setting_data(vm) return setting_data.associators(wmi_result_class=resource_class)
[ "ceilometer.openstack.common.log.getLogger", "ceilometer.openstack.common.gettextutils._", "wmi.WMI" ]
[((1068, 1095), 'ceilometer.openstack.common.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1085, 1095), True, 'from ceilometer.openstack.common import log as logging\n'), ((2286, 2339), 'wmi.WMI', 'wmi.WMI', ([], {'moniker': "('//%s/root/virtualization/v2' % host)"}), "(moniker='//%s/root/virtualization/v2' % host)\n", (2293, 2339), False, 'import wmi\n'), ((2410, 2451), 'wmi.WMI', 'wmi.WMI', ([], {'moniker': "('//%s/root/cimv2' % host)"}), "(moniker='//%s/root/cimv2' % host)\n", (2417, 2451), False, 'import wmi\n'), ((6643, 6674), 'ceilometer.openstack.common.gettextutils._', '_', (['"""VM %s not found on Hyper-V"""'], {}), "('VM %s not found on Hyper-V')\n", (6644, 6674), False, 'from ceilometer.openstack.common.gettextutils import _\n'), ((6740, 6772), 'ceilometer.openstack.common.gettextutils._', '_', (['"""Duplicate VM name found: %s"""'], {}), "('Duplicate VM name found: %s')\n", (6741, 6772), False, 'from ceilometer.openstack.common.gettextutils import _\n')]
# system from io import IOBase, StringIO import os # 3rd party import click # internal from days import DayFactory # import logging # logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # ch = logging.StreamHandler() # logger.addHandler(ch) @click.group(invoke_without_command=True) @click.option('-d', '--day', required=True, type=click.IntRange(1, 31), metavar="<1..31>", help="Day you want to select.") @click.option('-p', '--puzzle', required=True, type=click.IntRange(1, 2), metavar="<1|2>", help="Puzzle you want to run.") @click.option('-i', '--input', required=True, type=click.Path(exists=True), help="Path to puzzle data.") def cli(day: int, puzzle: int, input: str): filename = os.path.join(input, f"{day:02}_puzzle_{puzzle}.txt") if os.path.exists(filename): input_stream = open(filename, "r") else: input_stream = StringIO('') avocd = DayFactory(day, input_stream) try: print(avocd.run(puzzle)) except NotImplementedError: print(f"Puzzle {puzzle} for day {day} not implemented.") if __name__ == "__main__": # pylint: disable=no-value-for-parameter cli()
[ "os.path.exists", "click.IntRange", "click.group", "os.path.join", "days.DayFactory", "click.Path", "io.StringIO" ]
[((266, 306), 'click.group', 'click.group', ([], {'invoke_without_command': '(True)'}), '(invoke_without_command=True)\n', (277, 306), False, 'import click\n'), ((715, 767), 'os.path.join', 'os.path.join', (['input', 'f"""{day:02}_puzzle_{puzzle}.txt"""'], {}), "(input, f'{day:02}_puzzle_{puzzle}.txt')\n", (727, 767), False, 'import os\n'), ((773, 797), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (787, 797), False, 'import os\n'), ((888, 917), 'days.DayFactory', 'DayFactory', (['day', 'input_stream'], {}), '(day, input_stream)\n', (898, 917), False, 'from days import DayFactory\n'), ((865, 877), 'io.StringIO', 'StringIO', (['""""""'], {}), "('')\n", (873, 877), False, 'from io import IOBase, StringIO\n'), ((356, 377), 'click.IntRange', 'click.IntRange', (['(1)', '(31)'], {}), '(1, 31)\n', (370, 377), False, 'import click\n'), ((482, 502), 'click.IntRange', 'click.IntRange', (['(1)', '(2)'], {}), '(1, 2)\n', (496, 502), False, 'import click\n'), ((604, 627), 'click.Path', 'click.Path', ([], {'exists': '(True)'}), '(exists=True)\n', (614, 627), False, 'import click\n')]
from matplotlib.colors import LinearSegmentedColormap from numpy import nan, inf # Used to reconstruct the colormap in viscm parameters = {'xp': [-5.4895292543686764, 14.790571669586654, 82.5546687431056, 29.15531114139253, -4.1316769886951761, -13.002076438907238], 'yp': [-35.948168839230306, -42.273376159885785, -28.845467523197698, 52.03426124197, 36.832712600868973, 40.792291220556734], 'min_JK': 16.8314150305, 'max_JK': 95} cm_data = [[ 5.03832136e-02, 2.98028976e-02, 5.27974883e-01], [ 6.35363639e-02, 2.84259729e-02, 5.33123681e-01], [ 7.53531234e-02, 2.72063728e-02, 5.38007001e-01], [ 8.62217979e-02, 2.61253206e-02, 5.42657691e-01], [ 9.63786097e-02, 2.51650976e-02, 5.47103487e-01], [ 1.05979704e-01, 2.43092436e-02, 5.51367851e-01], [ 1.15123641e-01, 2.35562500e-02, 5.55467728e-01], [ 1.23902903e-01, 2.28781011e-02, 5.59423480e-01], [ 1.32380720e-01, 2.22583774e-02, 5.63250116e-01], [ 1.40603076e-01, 2.16866674e-02, 5.66959485e-01], [ 1.48606527e-01, 2.11535876e-02, 5.70561711e-01], [ 1.56420649e-01, 2.06507174e-02, 5.74065446e-01], [ 1.64069722e-01, 2.01705326e-02, 5.77478074e-01], [ 1.71573925e-01, 1.97063415e-02, 5.80805890e-01], [ 1.78950212e-01, 1.92522243e-02, 5.84054243e-01], [ 1.86212958e-01, 1.88029767e-02, 5.87227661e-01], [ 1.93374449e-01, 1.83540593e-02, 5.90329954e-01], [ 2.00445260e-01, 1.79015512e-02, 5.93364304e-01], [ 2.07434551e-01, 1.74421086e-02, 5.96333341e-01], [ 2.14350298e-01, 1.69729276e-02, 5.99239207e-01], [ 2.21196750e-01, 1.64970484e-02, 6.02083323e-01], [ 2.27982971e-01, 1.60071509e-02, 6.04867403e-01], [ 2.34714537e-01, 1.55015065e-02, 6.07592438e-01], [ 2.41396253e-01, 1.49791041e-02, 6.10259089e-01], [ 2.48032377e-01, 1.44393586e-02, 6.12867743e-01], [ 2.54626690e-01, 1.38820918e-02, 6.15418537e-01], [ 2.61182562e-01, 1.33075156e-02, 6.17911385e-01], [ 2.67702993e-01, 1.27162163e-02, 6.20345997e-01], [ 2.74190665e-01, 1.21091423e-02, 6.22721903e-01], [ 2.80647969e-01, 1.14875915e-02, 6.25038468e-01], [ 2.87076059e-01, 1.08554862e-02, 6.27294975e-01], [ 2.93477695e-01, 1.02128849e-02, 6.29490490e-01], [ 2.99855122e-01, 9.56079551e-03, 6.31623923e-01], [ 3.06209825e-01, 8.90185346e-03, 6.33694102e-01], [ 3.12543124e-01, 8.23900704e-03, 6.35699759e-01], [ 3.18856183e-01, 7.57551051e-03, 6.37639537e-01], [ 3.25150025e-01, 6.91491734e-03, 6.39512001e-01], [ 3.31425547e-01, 6.26107379e-03, 6.41315649e-01], [ 3.37683446e-01, 5.61830889e-03, 6.43048936e-01], [ 3.43924591e-01, 4.99053080e-03, 6.44710195e-01], [ 3.50149699e-01, 4.38202557e-03, 6.46297711e-01], [ 3.56359209e-01, 3.79781761e-03, 6.47809772e-01], [ 3.62553473e-01, 3.24319591e-03, 6.49244641e-01], [ 3.68732762e-01, 2.72370721e-03, 6.50600561e-01], [ 3.74897270e-01, 2.24514897e-03, 6.51875762e-01], [ 3.81047116e-01, 1.81356205e-03, 6.53068467e-01], [ 3.87182639e-01, 1.43446923e-03, 6.54176761e-01], [ 3.93304010e-01, 1.11388259e-03, 6.55198755e-01], [ 3.99410821e-01, 8.59420809e-04, 6.56132835e-01], [ 4.05502914e-01, 6.78091517e-04, 6.56977276e-01], [ 4.11580082e-01, 5.77101735e-04, 6.57730380e-01], [ 4.17642063e-01, 5.63847476e-04, 6.58390492e-01], [ 4.23688549e-01, 6.45902780e-04, 6.58956004e-01], [ 4.29719186e-01, 8.31008207e-04, 6.59425363e-01], [ 4.35733575e-01, 1.12705875e-03, 6.59797077e-01], [ 4.41732123e-01, 1.53984779e-03, 6.60069009e-01], [ 4.47713600e-01, 2.07954744e-03, 6.60240367e-01], [ 4.53677394e-01, 2.75470302e-03, 6.60309966e-01], [ 4.59622938e-01, 3.57374415e-03, 6.60276655e-01], [ 4.65549631e-01, 4.54518084e-03, 6.60139383e-01], [ 4.71456847e-01, 5.67758762e-03, 6.59897210e-01], [ 4.77343929e-01, 6.97958743e-03, 6.59549311e-01], [ 4.83210198e-01, 8.45983494e-03, 6.59094989e-01], [ 4.89054951e-01, 1.01269996e-02, 6.58533677e-01], [ 4.94877466e-01, 1.19897486e-02, 6.57864946e-01], [ 5.00677687e-01, 1.40550640e-02, 6.57087561e-01], [ 5.06454143e-01, 1.63333443e-02, 6.56202294e-01], [ 5.12206035e-01, 1.88332232e-02, 6.55209222e-01], [ 5.17932580e-01, 2.15631918e-02, 6.54108545e-01], [ 5.23632990e-01, 2.45316468e-02, 6.52900629e-01], [ 5.29306474e-01, 2.77468735e-02, 6.51586010e-01], [ 5.34952244e-01, 3.12170300e-02, 6.50165396e-01], [ 5.40569510e-01, 3.49501310e-02, 6.48639668e-01], [ 5.46157494e-01, 3.89540334e-02, 6.47009884e-01], [ 5.51715423e-01, 4.31364795e-02, 6.45277275e-01], [ 5.57242538e-01, 4.73307585e-02, 6.43443250e-01], [ 5.62738096e-01, 5.15448092e-02, 6.41509389e-01], [ 5.68201372e-01, 5.57776706e-02, 6.39477440e-01], [ 5.73631859e-01, 6.00281369e-02, 6.37348841e-01], [ 5.79028682e-01, 6.42955547e-02, 6.35126108e-01], [ 5.84391137e-01, 6.85790261e-02, 6.32811608e-01], [ 5.89718606e-01, 7.28775875e-02, 6.30407727e-01], [ 5.95010505e-01, 7.71902878e-02, 6.27916992e-01], [ 6.00266283e-01, 8.15161895e-02, 6.25342058e-01], [ 6.05485428e-01, 8.58543713e-02, 6.22685703e-01], [ 6.10667469e-01, 9.02039303e-02, 6.19950811e-01], [ 6.15811974e-01, 9.45639838e-02, 6.17140367e-01], [ 6.20918555e-01, 9.89336721e-02, 6.14257440e-01], [ 6.25986869e-01, 1.03312160e-01, 6.11305174e-01], [ 6.31016615e-01, 1.07698641e-01, 6.08286774e-01], [ 6.36007543e-01, 1.12092335e-01, 6.05205491e-01], [ 6.40959444e-01, 1.16492495e-01, 6.02064611e-01], [ 6.45872158e-01, 1.20898405e-01, 5.98867442e-01], [ 6.50745571e-01, 1.25309384e-01, 5.95617300e-01], [ 6.55579615e-01, 1.29724785e-01, 5.92317494e-01], [ 6.60374266e-01, 1.34143997e-01, 5.88971318e-01], [ 6.65129493e-01, 1.38566428e-01, 5.85582301e-01], [ 6.69845385e-01, 1.42991540e-01, 5.82153572e-01], [ 6.74522060e-01, 1.47418835e-01, 5.78688247e-01], [ 6.79159664e-01, 1.51847851e-01, 5.75189431e-01], [ 6.83758384e-01, 1.56278163e-01, 5.71660158e-01], [ 6.88318440e-01, 1.60709387e-01, 5.68103380e-01], [ 6.92840088e-01, 1.65141174e-01, 5.64521958e-01], [ 6.97323615e-01, 1.69573215e-01, 5.60918659e-01], [ 7.01769334e-01, 1.74005236e-01, 5.57296144e-01], [ 7.06177590e-01, 1.78437000e-01, 5.53656970e-01], [ 7.10548747e-01, 1.82868306e-01, 5.50003579e-01], [ 7.14883195e-01, 1.87298986e-01, 5.46338299e-01], [ 7.19181339e-01, 1.91728906e-01, 5.42663338e-01], [ 7.23443604e-01, 1.96157962e-01, 5.38980786e-01], [ 7.27670428e-01, 2.00586086e-01, 5.35292612e-01], [ 7.31862231e-01, 2.05013174e-01, 5.31600995e-01], [ 7.36019424e-01, 2.09439071e-01, 5.27908434e-01], [ 7.40142557e-01, 2.13863965e-01, 5.24215533e-01], [ 7.44232102e-01, 2.18287899e-01, 5.20523766e-01], [ 7.48288533e-01, 2.22710942e-01, 5.16834495e-01], [ 7.52312321e-01, 2.27133187e-01, 5.13148963e-01], [ 7.56303937e-01, 2.31554749e-01, 5.09468305e-01], [ 7.60263849e-01, 2.35975765e-01, 5.05793543e-01], [ 7.64192516e-01, 2.40396394e-01, 5.02125599e-01], [ 7.68090391e-01, 2.44816813e-01, 4.98465290e-01], [ 7.71957916e-01, 2.49237220e-01, 4.94813338e-01], [ 7.75795522e-01, 2.53657797e-01, 4.91170517e-01], [ 7.79603614e-01, 2.58078397e-01, 4.87539124e-01], [ 7.83382636e-01, 2.62499662e-01, 4.83917732e-01], [ 7.87132978e-01, 2.66921859e-01, 4.80306702e-01], [ 7.90855015e-01, 2.71345267e-01, 4.76706319e-01], [ 7.94549101e-01, 2.75770179e-01, 4.73116798e-01], [ 7.98215577e-01, 2.80196901e-01, 4.69538286e-01], [ 8.01854758e-01, 2.84625750e-01, 4.65970871e-01], [ 8.05466945e-01, 2.89057057e-01, 4.62414580e-01], [ 8.09052419e-01, 2.93491117e-01, 4.58869577e-01], [ 8.12611506e-01, 2.97927865e-01, 4.55337565e-01], [ 8.16144382e-01, 3.02368130e-01, 4.51816385e-01], [ 8.19651255e-01, 3.06812282e-01, 4.48305861e-01], [ 8.23132309e-01, 3.11260703e-01, 4.44805781e-01], [ 8.26587706e-01, 3.15713782e-01, 4.41315901e-01], [ 8.30017584e-01, 3.20171913e-01, 4.37835947e-01], [ 8.33422053e-01, 3.24635499e-01, 4.34365616e-01], [ 8.36801237e-01, 3.29104836e-01, 4.30905052e-01], [ 8.40155276e-01, 3.33580106e-01, 4.27454836e-01], [ 8.43484103e-01, 3.38062109e-01, 4.24013059e-01], [ 8.46787726e-01, 3.42551272e-01, 4.20579333e-01], [ 8.50066132e-01, 3.47048028e-01, 4.17153264e-01], [ 8.53319279e-01, 3.51552815e-01, 4.13734445e-01], [ 8.56547103e-01, 3.56066072e-01, 4.10322469e-01], [ 8.59749520e-01, 3.60588229e-01, 4.06916975e-01], [ 8.62926559e-01, 3.65119408e-01, 4.03518809e-01], [ 8.66077920e-01, 3.69660446e-01, 4.00126027e-01], [ 8.69203436e-01, 3.74211795e-01, 3.96738211e-01], [ 8.72302917e-01, 3.78773910e-01, 3.93354947e-01], [ 8.75376149e-01, 3.83347243e-01, 3.89975832e-01], [ 8.78422895e-01, 3.87932249e-01, 3.86600468e-01], [ 8.81442916e-01, 3.92529339e-01, 3.83228622e-01], [ 8.84435982e-01, 3.97138877e-01, 3.79860246e-01], [ 8.87401682e-01, 4.01761511e-01, 3.76494232e-01], [ 8.90339687e-01, 4.06397694e-01, 3.73130228e-01], [ 8.93249647e-01, 4.11047871e-01, 3.69767893e-01], [ 8.96131191e-01, 4.15712489e-01, 3.66406907e-01], [ 8.98983931e-01, 4.20391986e-01, 3.63046965e-01], [ 9.01807455e-01, 4.25086807e-01, 3.59687758e-01], [ 9.04601295e-01, 4.29797442e-01, 3.56328796e-01], [ 9.07364995e-01, 4.34524335e-01, 3.52969777e-01], [ 9.10098088e-01, 4.39267908e-01, 3.49610469e-01], [ 9.12800095e-01, 4.44028574e-01, 3.46250656e-01], [ 9.15470518e-01, 4.48806744e-01, 3.42890148e-01], [ 9.18108848e-01, 4.53602818e-01, 3.39528771e-01], [ 9.20714383e-01, 4.58417420e-01, 3.36165582e-01], [ 9.23286660e-01, 4.63250828e-01, 3.32800827e-01], [ 9.25825146e-01, 4.68103387e-01, 3.29434512e-01], [ 9.28329275e-01, 4.72975465e-01, 3.26066550e-01], [ 9.30798469e-01, 4.77867420e-01, 3.22696876e-01], [ 9.33232140e-01, 4.82779603e-01, 3.19325444e-01], [ 9.35629684e-01, 4.87712357e-01, 3.15952211e-01], [ 9.37990034e-01, 4.92666544e-01, 3.12575440e-01], [ 9.40312939e-01, 4.97642038e-01, 3.09196628e-01], [ 9.42597771e-01, 5.02639147e-01, 3.05815824e-01], [ 9.44843893e-01, 5.07658169e-01, 3.02433101e-01], [ 9.47050662e-01, 5.12699390e-01, 2.99048555e-01], [ 9.49217427e-01, 5.17763087e-01, 2.95662308e-01], [ 9.51343530e-01, 5.22849522e-01, 2.92274506e-01], [ 9.53427725e-01, 5.27959550e-01, 2.88883445e-01], [ 9.55469640e-01, 5.33093083e-01, 2.85490391e-01], [ 9.57468770e-01, 5.38250172e-01, 2.82096149e-01], [ 9.59424430e-01, 5.43431038e-01, 2.78700990e-01], [ 9.61335930e-01, 5.48635890e-01, 2.75305214e-01], [ 9.63202573e-01, 5.53864931e-01, 2.71909159e-01], [ 9.65023656e-01, 5.59118349e-01, 2.68513200e-01], [ 9.66798470e-01, 5.64396327e-01, 2.65117752e-01], [ 9.68525639e-01, 5.69699633e-01, 2.61721488e-01], [ 9.70204593e-01, 5.75028270e-01, 2.58325424e-01], [ 9.71835007e-01, 5.80382015e-01, 2.54931256e-01], [ 9.73416145e-01, 5.85761012e-01, 2.51539615e-01], [ 9.74947262e-01, 5.91165394e-01, 2.48151200e-01], [ 9.76427606e-01, 5.96595287e-01, 2.44766775e-01], [ 9.77856416e-01, 6.02050811e-01, 2.41387186e-01], [ 9.79232922e-01, 6.07532077e-01, 2.38013359e-01], [ 9.80556344e-01, 6.13039190e-01, 2.34646316e-01], [ 9.81825890e-01, 6.18572250e-01, 2.31287178e-01], [ 9.83040742e-01, 6.24131362e-01, 2.27937141e-01], [ 9.84198924e-01, 6.29717516e-01, 2.24595006e-01], [ 9.85300760e-01, 6.35329876e-01, 2.21264889e-01], [ 9.86345421e-01, 6.40968508e-01, 2.17948456e-01], [ 9.87332067e-01, 6.46633475e-01, 2.14647532e-01], [ 9.88259846e-01, 6.52324832e-01, 2.11364122e-01], [ 9.89127893e-01, 6.58042630e-01, 2.08100426e-01], [ 9.89935328e-01, 6.63786914e-01, 2.04858855e-01], [ 9.90681261e-01, 6.69557720e-01, 2.01642049e-01], [ 9.91364787e-01, 6.75355082e-01, 1.98452900e-01], [ 9.91984990e-01, 6.81179025e-01, 1.95294567e-01], [ 9.92540939e-01, 6.87029567e-01, 1.92170500e-01], [ 9.93031693e-01, 6.92906719e-01, 1.89084459e-01], [ 9.93456302e-01, 6.98810484e-01, 1.86040537e-01], [ 9.93813802e-01, 7.04740854e-01, 1.83043180e-01], [ 9.94103226e-01, 7.10697814e-01, 1.80097207e-01], [ 9.94323596e-01, 7.16681336e-01, 1.77207826e-01], [ 9.94473934e-01, 7.22691379e-01, 1.74380656e-01], [ 9.94553260e-01, 7.28727890e-01, 1.71621733e-01], [ 9.94560594e-01, 7.34790799e-01, 1.68937522e-01], [ 9.94494964e-01, 7.40880020e-01, 1.66334918e-01], [ 9.94355411e-01, 7.46995448e-01, 1.63821243e-01], [ 9.94140989e-01, 7.53136955e-01, 1.61404226e-01], [ 9.93850778e-01, 7.59304390e-01, 1.59091984e-01], [ 9.93482190e-01, 7.65498551e-01, 1.56890625e-01], [ 9.93033251e-01, 7.71719833e-01, 1.54807583e-01], [ 9.92505214e-01, 7.77966775e-01, 1.52854862e-01], [ 9.91897270e-01, 7.84239120e-01, 1.51041581e-01], [ 9.91208680e-01, 7.90536569e-01, 1.49376885e-01], [ 9.90438793e-01, 7.96858775e-01, 1.47869810e-01], [ 9.89587065e-01, 8.03205337e-01, 1.46529128e-01], [ 9.88647741e-01, 8.09578605e-01, 1.45357284e-01], [ 9.87620557e-01, 8.15977942e-01, 1.44362644e-01], [ 9.86509366e-01, 8.22400620e-01, 1.43556679e-01], [ 9.85314198e-01, 8.28845980e-01, 1.42945116e-01], [ 9.84031139e-01, 8.35315360e-01, 1.42528388e-01], [ 9.82652820e-01, 8.41811730e-01, 1.42302653e-01], [ 9.81190389e-01, 8.48328902e-01, 1.42278607e-01], [ 9.79643637e-01, 8.54866468e-01, 1.42453425e-01], [ 9.77994918e-01, 8.61432314e-01, 1.42808191e-01], [ 9.76264977e-01, 8.68015998e-01, 1.43350944e-01], [ 9.74443038e-01, 8.74622194e-01, 1.44061156e-01], [ 9.72530009e-01, 8.81250063e-01, 1.44922913e-01], [ 9.70532932e-01, 8.87896125e-01, 1.45918663e-01], [ 9.68443477e-01, 8.94563989e-01, 1.47014438e-01], [ 9.66271225e-01, 9.01249365e-01, 1.48179639e-01], [ 9.64021057e-01, 9.07950379e-01, 1.49370428e-01], [ 9.61681481e-01, 9.14672479e-01, 1.50520343e-01], [ 9.59275646e-01, 9.21406537e-01, 1.51566019e-01], [ 9.56808068e-01, 9.28152065e-01, 1.52409489e-01], [ 9.54286813e-01, 9.34907730e-01, 1.52921158e-01], [ 9.51726083e-01, 9.41670605e-01, 1.52925363e-01], [ 9.49150533e-01, 9.48434900e-01, 1.52177604e-01], [ 9.46602270e-01, 9.55189860e-01, 1.50327944e-01], [ 9.44151742e-01, 9.61916487e-01, 1.46860789e-01], [ 9.41896120e-01, 9.68589814e-01, 1.40955606e-01], [ 9.40015097e-01, 9.75158357e-01, 1.31325517e-01]] test_cm = LinearSegmentedColormap.from_list(__file__, cm_data) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
[ "viscm.viscm", "numpy.linspace", "matplotlib.colors.LinearSegmentedColormap.from_list", "matplotlib.pyplot.show" ]
[((16621, 16673), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'LinearSegmentedColormap.from_list', (['__file__', 'cm_data'], {}), '(__file__, cm_data)\n', (16654, 16673), False, 'from matplotlib.colors import LinearSegmentedColormap\n'), ((17022, 17032), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (17030, 17032), True, 'import matplotlib.pyplot as plt\n'), ((16812, 16826), 'viscm.viscm', 'viscm', (['test_cm'], {}), '(test_cm)\n', (16817, 16826), False, 'from viscm import viscm\n'), ((16935, 16959), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(256)'], {}), '(0, 100, 256)\n', (16946, 16959), True, 'import numpy as np\n')]
from sqlalchemy import Integer, Text, DateTime, func, Boolean, text from models.database_models import Base, Column class Comment(Base): __tablename__ = "comment" id = Column(Integer, primary_key=True, ) user_id = Column(Integer, nullable=False, comment="่ฏ„่ฎบ็”จๆˆท็š„ ID") post_id = Column(Integer, nullable=False, comment="Post ๆ–‡็ซ ็š„ ID") content = Column(Text, nullable=False, comment="็”จๆˆท็š„่ฏ„่ฎบ") create_time = Column(DateTime, server_default=func.now(), comment="ๅˆ›ๅปบๆ—ถ้—ด") update_time = Column(DateTime, server_default=func.now(), onupdate=func.now(), comment="ๆ›ดๆ–ฐๆ—ถ้—ด") deleted = Column(Boolean, default=False, server_default=text('0'), nullable=False, comment="่ฏฅ้กน็›ฎๆ˜ฏๅฆ่ขซๅˆ ้™ค")
[ "models.database_models.Column", "sqlalchemy.func.now", "sqlalchemy.text" ]
[((180, 213), 'models.database_models.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (186, 213), False, 'from models.database_models import Base, Column\n'), ((230, 281), 'models.database_models.Column', 'Column', (['Integer'], {'nullable': '(False)', 'comment': '"""่ฏ„่ฎบ็”จๆˆท็š„ ID"""'}), "(Integer, nullable=False, comment='่ฏ„่ฎบ็”จๆˆท็š„ ID')\n", (236, 281), False, 'from models.database_models import Base, Column\n'), ((296, 350), 'models.database_models.Column', 'Column', (['Integer'], {'nullable': '(False)', 'comment': '"""Post ๆ–‡็ซ ็š„ ID"""'}), "(Integer, nullable=False, comment='Post ๆ–‡็ซ ็š„ ID')\n", (302, 350), False, 'from models.database_models import Base, Column\n'), ((365, 410), 'models.database_models.Column', 'Column', (['Text'], {'nullable': '(False)', 'comment': '"""็”จๆˆท็š„่ฏ„่ฎบ"""'}), "(Text, nullable=False, comment='็”จๆˆท็š„่ฏ„่ฎบ')\n", (371, 410), False, 'from models.database_models import Base, Column\n'), ((462, 472), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (470, 472), False, 'from sqlalchemy import Integer, Text, DateTime, func, Boolean, text\n'), ((540, 550), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (548, 550), False, 'from sqlalchemy import Integer, Text, DateTime, func, Boolean, text\n'), ((561, 571), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (569, 571), False, 'from sqlalchemy import Integer, Text, DateTime, func, Boolean, text\n'), ((649, 658), 'sqlalchemy.text', 'text', (['"""0"""'], {}), "('0')\n", (653, 658), False, 'from sqlalchemy import Integer, Text, DateTime, func, Boolean, text\n')]
from typing import Callable, Collection, Iterable, List, Union from data.anagram import anagram_iter from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer Transformer = Callable[['bloom_node.BloomNode'], 'bloom_node.BloomNode'] _SPACE_MASK = bloom_mask.for_alpha(' ') def merge_fn( host: 'bloom_node.BloomNode', sources: List['bloom_node.BloomNode'], extra: list, whitelist: Collection = None, blacklist: Collection = None, **kwargs) -> None: del kwargs assert len(sources) == 1 exit_node = sources[0] assert len(extra) == 1 state = _normalize_state(exit_node, extra[0]) children = list(state) # TODO: Need a cleaner way to inject and rerun these nodes. if len(children) == 1: host.op = _op_mixin.Op(_op_mixin.OP_IDENTITY, children) else: host.op = _op_mixin.Op(_op_mixin.OP_ADD, children) # HACK: This duplicates BloomNode._expand, essentially. for key, reduced in bloom_node_reducer.reduce( host, whitelist=whitelist, blacklist=blacklist): host.link(key, reduced) class _AnagramTransformIndex(object): """Singleton object used during anagram traversal.""" def __init__( self, exit_node: 'bloom_node.BloomNode', root: anagram_iter.AnagramIter) -> None: self._exit_node = exit_node reference = bloom_node.BloomNode() reference.distance(0) reference.weight(1, True) reference_choice_paths = {} for choice, _ in root.available(): reference_choice_paths[choice] = choice(reference) self._reference_choice_paths = reference_choice_paths self._child_cache = {} def iter( self, anagrams: anagram_iter.AnagramIter, ) -> Iterable['bloom_node.BloomNode']: for child_choice, child_anagrams in anagrams.items(): key = (child_choice, child_anagrams) if key not in self._child_cache: self._child_cache[key] = self._make_child(child_choice, child_anagrams) yield self._child_cache[key] def _make_child( self, choice: Transformer, anagrams: anagram_iter.AnagramIter) -> 'bloom_node.BloomNode': children = list(anagrams.available()) if not children: return choice(self._exit_node) elif len(children) == 1: child_choice, child_duplicates = children[0] node = self._exit_node while child_duplicates: node = child_choice(node) child_duplicates -= 1 return choice(node) # Compute requirements from exits. node = self._exit_node // _AnagramState(self, anagrams) node.provide_mask = self._exit_node.provide_mask node.require_mask = self._exit_node.require_mask node.lengths_mask = self._exit_node.lengths_mask node.annotate({'anagrams': anagrams}) node.max_weight = self._exit_node.max_weight nodes_with_spaces = [] for child_choice, child_duplicates in children: path = self._reference_choice_paths[child_choice] if path.require_mask and path.require_mask & _SPACE_MASK: nodes_with_spaces.append(path) node.provide_mask |= path.provide_mask node.require_mask |= path.require_mask node.lengths_mask = bloom_mask.lengths_product( node.lengths_mask, path.lengths_mask, duplicates=child_duplicates) if nodes_with_spaces: # Distance and provide masks should be correct. Reset required values. # Any route to any of the spaces is now okay but 1+ must be taken. node.require_mask = bloom_mask.REQUIRE_NOTHING for node_with_spaces in nodes_with_spaces: # Only require what all node_with_spaces require. node.require_mask &= node_with_spaces.require_mask return choice(node) class _AnagramState(object): def __init__( self, index: _AnagramTransformIndex, anagrams: anagram_iter.AnagramIter): self._index = index self._anagrams = anagrams def __iter__(self) -> Iterable['bloom_node.BloomNode']: yield from self._index.iter(self._anagrams) def __repr__(self) -> str: return '_AnagramState(%s)' % self._anagrams __str__ = __repr__ def _normalize_state( exit_node: 'bloom_node.BloomNode', index: Union[Iterable, anagram_iter.AnagramIter]) -> _AnagramState: if isinstance(index, _AnagramState): return index # `index` is an iterable list of ???, one-by-one these will be taken as a # route to the `exit_node`. initial_anagrams = anagram_iter.from_choices(index) index = _AnagramTransformIndex(exit_node, initial_anagrams) return _AnagramState(index, initial_anagrams)
[ "data.graph.bloom_mask.lengths_product", "data.anagram.anagram_iter.from_choices", "data.graph.bloom_mask.for_alpha", "data.graph._op_mixin.Op", "data.graph.bloom_node_reducer.reduce", "data.graph.bloom_node.BloomNode" ]
[((267, 292), 'data.graph.bloom_mask.for_alpha', 'bloom_mask.for_alpha', (['""" """'], {}), "(' ')\n", (287, 292), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n'), ((946, 1019), 'data.graph.bloom_node_reducer.reduce', 'bloom_node_reducer.reduce', (['host'], {'whitelist': 'whitelist', 'blacklist': 'blacklist'}), '(host, whitelist=whitelist, blacklist=blacklist)\n', (971, 1019), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n'), ((4373, 4405), 'data.anagram.anagram_iter.from_choices', 'anagram_iter.from_choices', (['index'], {}), '(index)\n', (4398, 4405), False, 'from data.anagram import anagram_iter\n'), ((757, 802), 'data.graph._op_mixin.Op', '_op_mixin.Op', (['_op_mixin.OP_IDENTITY', 'children'], {}), '(_op_mixin.OP_IDENTITY, children)\n', (769, 802), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n'), ((825, 865), 'data.graph._op_mixin.Op', '_op_mixin.Op', (['_op_mixin.OP_ADD', 'children'], {}), '(_op_mixin.OP_ADD, children)\n', (837, 865), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n'), ((1316, 1338), 'data.graph.bloom_node.BloomNode', 'bloom_node.BloomNode', ([], {}), '()\n', (1336, 1338), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n'), ((3131, 3229), 'data.graph.bloom_mask.lengths_product', 'bloom_mask.lengths_product', (['node.lengths_mask', 'path.lengths_mask'], {'duplicates': 'child_duplicates'}), '(node.lengths_mask, path.lengths_mask, duplicates\n =child_duplicates)\n', (3157, 3229), False, 'from data.graph import _op_mixin, bloom_mask, bloom_node, bloom_node_reducer\n')]
import pathlib import os from setuptools import setup # The directory containing this file HERE = pathlib.Path(__file__).parent # The text of the README file README = (HERE / "README.md").read_text() # specify requirements of your package here REQUIREMENTS = ['biopython', 'numpy', 'pandas'] setup(name='stacksPairwise', version='0.0.0', description='Calculate pairwise divergence (pairwise pi) from Stacks `samples.fa` output fle', long_description=README, long_description_content_type="text/markdown", url='https://github.com/gibsonmatt/stacks-pairwise', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['stacksPairwise'], install_requires=REQUIREMENTS, entry_points={ "console_scripts": [ "stacksPairwise=stacksPairwise.__main__:main" ] }, keywords='genetics genotyping sequencing Stacks' )
[ "setuptools.setup", "pathlib.Path" ]
[((296, 843), 'setuptools.setup', 'setup', ([], {'name': '"""stacksPairwise"""', 'version': '"""0.0.0"""', 'description': '"""Calculate pairwise divergence (pairwise pi) from Stacks `samples.fa` output fle"""', 'long_description': 'README', 'long_description_content_type': '"""text/markdown"""', 'url': '"""https://github.com/gibsonmatt/stacks-pairwise"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'license': '"""MIT"""', 'packages': "['stacksPairwise']", 'install_requires': 'REQUIREMENTS', 'entry_points': "{'console_scripts': ['stacksPairwise=stacksPairwise.__main__:main']}", 'keywords': '"""genetics genotyping sequencing Stacks"""'}), "(name='stacksPairwise', version='0.0.0', description=\n 'Calculate pairwise divergence (pairwise pi) from Stacks `samples.fa` output fle'\n , long_description=README, long_description_content_type=\n 'text/markdown', url='https://github.com/gibsonmatt/stacks-pairwise',\n author='<NAME>', author_email='<EMAIL>', license='MIT', packages=[\n 'stacksPairwise'], install_requires=REQUIREMENTS, entry_points={\n 'console_scripts': ['stacksPairwise=stacksPairwise.__main__:main']},\n keywords='genetics genotyping sequencing Stacks')\n", (301, 843), False, 'from setuptools import setup\n'), ((99, 121), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (111, 121), False, 'import pathlib\n')]
from numpy import array from pickle import load from pandas import read_csv import os from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper # Importing random forest model modelpath = os.path.dirname(os.path.abspath(__file__)) + '/RFC.dump' Rf = load(open(modelpath, 'rb')) # The function generate list of shuflled matrix def make_shuffle_matrix(matrix, cpu, iterat): """ The functuion generate massive of shuffled matrix. Parameters ---------- matrix : pandas DataFrame PSSM profile. cpu : int Number of tred used. iterat : int Number of iterations of shuffling. Returns ------- module_shuffling_matrix : list List of matrix, shuffled by module. substrate_shuffling_matrix : list List of matrix, shuffled by substrate. """ module_shuffling_matrix = multi_thread_shuffling(matrix, ShufflingType='module', iterations=iterat, threads=cpu) substrate_shuffling_matrix = multi_thread_shuffling(matrix, ShufflingType='substrate', iterations=iterat, threads=cpu) return module_shuffling_matrix, substrate_shuffling_matrix # The fujnction finds suquence with maximum possible value, results from alignment def get_MaxSeq(matrix, variant_seq): """ The functuion parallel calculation of scores for shuffled matrix. Parameters ---------- matrix : pandas DataFrame PSSM profile. variant_seq : list Variant of core peptide chain. Returns ------- shuffled_scores : list List of scores for shuffled matrix. """ MaxSeq = [] subs = matrix.keys()[1: ] # Find sequence, wich have maximum alignment score for idx in matrix.index: MAX_value = max(list(matrix.iloc[idx][1:])) for key in subs: if matrix[key][idx] == MAX_value: MaxSeq.append(key) # If two smonomer have same value break # Making two variants of MaxSeq MaxSeq_full = MaxSeq.copy() MaxSeq_nan = MaxSeq.copy() for max_sub_idx in range(len(MaxSeq)): if variant_seq[max_sub_idx] == 'nan': MaxSeq_nan[max_sub_idx] = 'nan' # Adding nan to MaxSeq return MaxSeq_full, MaxSeq_nan # The function gives an information about clusters def get_cluster_info(table, BGC_ID, target_file): """ The functuion return information about cluster. Parameters ---------- table : pandas DataFrame Table with meta inforamtion about NRPS clusters. BGC_ID : str PSSM cluster ID. target_file : pandas DataFrame PSSM profile. Returns ------- Name : str Cluster ID. Coord_cluster : str Coordinate of cluster. strand : str Strand of cluster. """ for ind in table[table['ID'].str.contains(BGC_ID)].index: Name = table[table['ID'].str.contains(target_file.split('.')[0].split('_A_')[1])]['Name'][ind] Coord_cluster = table['Coordinates of cluster'][ind] strand = table['Gen strand'][ind] break return Name, Coord_cluster, strand # Calculate scores def calculate_scores(variant_seq, matrix, substrate_shuffling_matrix, module_shuffling_matrix, cpu, iterat): """ Calculating scores. Parameters ---------- variant_seq : list Variant of core peptide chain. matrix : pandas DataFrame PSSM profile. substrate_shuffling_matrix : list List of matrix, shuffled by substrate. module_shuffling_matrix : list List of matrix, shuffled by module. cpu : int Number of threads used. iterat : int Number of iterations of shuffling. Returns ------- Sln_score : float Mln_score : float Slt_score : float Mlt_score : float Sdn_score : float Mdn_score : float Sdt_score : float Mdt_score : float Scores, which calculated with shuffling matrix by different variants. M - module shuffling S - substrate shuffling l - logarithmic transformation of score d - raw score n - MaxSeq with nan replacement t - MaxSeq without nan replacement Relative_score : float Relative score (Probability of target class) Binary : float Binary score of cluster matching. """ # Finding suquence with maximum possible value, results from alignment MaxSeq_full, MaxSeq_nan = get_MaxSeq(matrix, variant_seq) # Calculating shuffled scores Sln_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, substrate_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Mln_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, module_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Slt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, substrate_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Mlt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, module_shuffling_matrix, type_value='log', iterations=iterat, threads=cpu)) Sdn_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, substrate_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Mdn_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_nan, module_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Sdt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, substrate_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) Mdt_shuffled_score = array(multi_thread_calculating_scores(MaxSeq_full, module_shuffling_matrix, type_value=None, iterations=iterat, threads=cpu)) # Calculating scores for target sequence log_target_score = get_score(variant_seq, matrix, type_value='log') non_log_target_score = get_score(variant_seq, matrix, type_value=None) # Calculating features scores Sln_score = len(Sln_shuffled_score[Sln_shuffled_score < log_target_score])/len(Sln_shuffled_score) Mln_score = len(Mln_shuffled_score[Mln_shuffled_score < log_target_score])/len(Mln_shuffled_score) Slt_score = len(Slt_shuffled_score[Slt_shuffled_score < log_target_score])/len(Slt_shuffled_score) Mlt_score = len(Mlt_shuffled_score[Mlt_shuffled_score < log_target_score])/len(Mlt_shuffled_score) Sdn_score = len(Sdn_shuffled_score[Sdn_shuffled_score < non_log_target_score])/len(Sdn_shuffled_score) Mdn_score = len(Mdn_shuffled_score[Mdn_shuffled_score < non_log_target_score])/len(Mdn_shuffled_score) Sdt_score = len(Sdt_shuffled_score[Sdt_shuffled_score < non_log_target_score])/len(Sdt_shuffled_score) Mdt_score = len(Mdt_shuffled_score[Mdt_shuffled_score < non_log_target_score])/len(Mdt_shuffled_score) # Calculating Relative score Relative_score = round(Rf.predict_proba([[Sln_score, Mln_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Slt_score, Mlt_score ]])[0][1], 3) Binary = Rf.predict([[Sln_score, Mln_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Slt_score, Mlt_score ]])[0] return Sln_score, Mln_score, Slt_score, Mlt_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Relative_score, Binary def give_results(tsv_out, folder, files, table, ID, PeptideSeq, skip, cpu, iterat): """ The functuion return information about cluster. Parameters ---------- tsv_out : dict Empty dictionary for adding results. folder : str Path to PSSMs. files : list List of PSSMs. table : pandas DataFrame Table with meta inforamtion about NRPS clusters. ID : str Name of substance. PeptideSeq : dict Core peptide chains for different biosynthesis types (e.g. A, B, or C). kip : int Number of presumptive skip. cpu : int Number of threads used. iterat : int Number of iterations of shuffling. Returns ------- tsv_out : dict Full dictionary for adding results. """ for target_file in files: try: BGC_ID = target_file.split('.')[0].split('_A_')[1] except: continue if '_A_' not in target_file: continue Name, Coord_cluster, strand = get_cluster_info(table, BGC_ID, target_file) # Getting information about cluster BGC = read_csv(folder + target_file, sep='\t') # Skipping mode if skip == 0: BGC = [BGC] else: BGC == skipper(BGC, skip) for matrix in BGC: # Check quality of matrix if len(matrix) == 1: continue check = 0 values = matrix.drop(matrix.columns[0], axis=1).values for i in values: if all(i) == 0: check += 1 if check == len(values): # If thes condition is True, the matrix of unrecognized monomers continue # Generating shuffling matrix module_shuffling_matrix, substrate_shuffling_matrix = make_shuffle_matrix(matrix, cpu, iterat) for BS_type in PeptideSeq:# For every biosynthesis profile pathways if PeptideSeq[BS_type] == None: # If in sequence only nan monomers continue if len(PeptideSeq[BS_type]) == 0: # If have not the variant continue # Check correctness of PeptideSeq length_max= get_max_aminochain(PeptideSeq[BS_type]) EPs = make_combine(PeptideSeq[BS_type], length_max, matrix, delta=3) if EPs is None: # If length sequnce can't be scaled to cluster size continue for variant_seq in EPs: Sln_score, Mln_score, Slt_score, Mlt_score, Sdn_score, Mdn_score, Sdt_score, Mdt_score, Relative_score, Binary = calculate_scores(variant_seq, matrix, substrate_shuffling_matrix, module_shuffling_matrix, cpu, iterat) #Recordind dictionary tsv_out['Chromosome ID'].append(Name) tsv_out['Coordinates of cluster'].append(Coord_cluster) tsv_out['Strand'].append(strand) tsv_out['Substance'].append(ID) tsv_out['BGC ID'].append(BGC_ID) tsv_out['Putative linearized NRP sequence'].append('--'.join(variant_seq)) tsv_out['Biosynthesis profile'].append('Type {}'.format(BS_type)) tsv_out['Sln score'].append(Sln_score) #shaffling substrates in matrix with log score and nan in maximally possible sequence tsv_out['Mln score'].append(Mln_score) #shaffling modules matrix with log score and nan in maximally possible sequence tsv_out['Sdn score'].append(Sdn_score) #shaffling substrates matrix without log score and nan in maximally possible sequence tsv_out['Mdn score'].append(Mdn_score) #shaffling modules matrix without log score and nan in maximally possible sequence tsv_out['Sdt score'].append(Sdt_score) #shaffling substrates matrix without log score in maximally possible sequence tsv_out['Mdt score'].append(Mdt_score) #shaffling modules matrix without log score in maximally possible sequence tsv_out['Slt score'].append(Slt_score) #shaffling substrates matrix with log score in maximally possible sequence tsv_out['Mlt score'].append(Mlt_score) #shaffling modules matrix with log score in maximally possible sequence tsv_out['Relative score'].append(Relative_score) #Final score tsv_out['Binary'].append(Binary) #Binary value return tsv_out
[ "BioCAT.src.Combinatorics.multi_thread_shuffling", "BioCAT.src.Combinatorics.multi_thread_calculating_scores", "pandas.read_csv", "BioCAT.src.Combinatorics.get_max_aminochain", "BioCAT.src.Combinatorics.skipper", "BioCAT.src.Combinatorics.make_combine", "BioCAT.src.Combinatorics.get_score", "os.path.abspath" ]
[((939, 1029), 'BioCAT.src.Combinatorics.multi_thread_shuffling', 'multi_thread_shuffling', (['matrix'], {'ShufflingType': '"""module"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(matrix, ShufflingType='module', iterations=iterat,\n threads=cpu)\n", (961, 1029), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((1059, 1152), 'BioCAT.src.Combinatorics.multi_thread_shuffling', 'multi_thread_shuffling', (['matrix'], {'ShufflingType': '"""substrate"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(matrix, ShufflingType='substrate', iterations=iterat,\n threads=cpu)\n", (1081, 1152), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5872, 5920), 'BioCAT.src.Combinatorics.get_score', 'get_score', (['variant_seq', 'matrix'], {'type_value': '"""log"""'}), "(variant_seq, matrix, type_value='log')\n", (5881, 5920), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5948, 5995), 'BioCAT.src.Combinatorics.get_score', 'get_score', (['variant_seq', 'matrix'], {'type_value': 'None'}), '(variant_seq, matrix, type_value=None)\n', (5957, 5995), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((295, 320), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (310, 320), False, 'import os\n'), ((4615, 4740), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_nan', 'substrate_shuffling_matrix'], {'type_value': '"""log"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(MaxSeq_nan, substrate_shuffling_matrix,\n type_value='log', iterations=iterat, threads=cpu)\n", (4646, 4740), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((4769, 4891), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_nan', 'module_shuffling_matrix'], {'type_value': '"""log"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(MaxSeq_nan, module_shuffling_matrix,\n type_value='log', iterations=iterat, threads=cpu)\n", (4800, 4891), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((4920, 5046), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_full', 'substrate_shuffling_matrix'], {'type_value': '"""log"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(MaxSeq_full, substrate_shuffling_matrix,\n type_value='log', iterations=iterat, threads=cpu)\n", (4951, 5046), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5075, 5198), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_full', 'module_shuffling_matrix'], {'type_value': '"""log"""', 'iterations': 'iterat', 'threads': 'cpu'}), "(MaxSeq_full, module_shuffling_matrix,\n type_value='log', iterations=iterat, threads=cpu)\n", (5106, 5198), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5227, 5351), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_nan', 'substrate_shuffling_matrix'], {'type_value': 'None', 'iterations': 'iterat', 'threads': 'cpu'}), '(MaxSeq_nan, substrate_shuffling_matrix,\n type_value=None, iterations=iterat, threads=cpu)\n', (5258, 5351), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5380, 5501), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_nan', 'module_shuffling_matrix'], {'type_value': 'None', 'iterations': 'iterat', 'threads': 'cpu'}), '(MaxSeq_nan, module_shuffling_matrix,\n type_value=None, iterations=iterat, threads=cpu)\n', (5411, 5501), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5530, 5655), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_full', 'substrate_shuffling_matrix'], {'type_value': 'None', 'iterations': 'iterat', 'threads': 'cpu'}), '(MaxSeq_full, substrate_shuffling_matrix,\n type_value=None, iterations=iterat, threads=cpu)\n', (5561, 5655), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((5684, 5806), 'BioCAT.src.Combinatorics.multi_thread_calculating_scores', 'multi_thread_calculating_scores', (['MaxSeq_full', 'module_shuffling_matrix'], {'type_value': 'None', 'iterations': 'iterat', 'threads': 'cpu'}), '(MaxSeq_full, module_shuffling_matrix,\n type_value=None, iterations=iterat, threads=cpu)\n', (5715, 5806), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((8769, 8809), 'pandas.read_csv', 'read_csv', (['(folder + target_file)'], {'sep': '"""\t"""'}), "(folder + target_file, sep='\\t')\n", (8777, 8809), False, 'from pandas import read_csv\n'), ((8964, 8982), 'BioCAT.src.Combinatorics.skipper', 'skipper', (['BGC', 'skip'], {}), '(BGC, skip)\n', (8971, 8982), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((9962, 10001), 'BioCAT.src.Combinatorics.get_max_aminochain', 'get_max_aminochain', (['PeptideSeq[BS_type]'], {}), '(PeptideSeq[BS_type])\n', (9980, 10001), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n'), ((10024, 10086), 'BioCAT.src.Combinatorics.make_combine', 'make_combine', (['PeptideSeq[BS_type]', 'length_max', 'matrix'], {'delta': '(3)'}), '(PeptideSeq[BS_type], length_max, matrix, delta=3)\n', (10036, 10086), False, 'from BioCAT.src.Combinatorics import multi_thread_shuffling, multi_thread_calculating_scores, make_combine, get_score, get_max_aminochain, skipper\n')]
import signal import requests import time from math import floor shutdown = False MAIN_TAKER = 0.0065 MAIN_MAKER = 0.002 ALT_TAKER = 0.005 ALT_MAKER = 0.0035 TAKER = (MAIN_TAKER + ALT_TAKER)*2 MAKER = MAIN_MAKER + ALT_MAKER TAKEMAIN = MAIN_TAKER - ALT_MAKER TAKEALT = ALT_TAKER - MAIN_MAKER BUFFER = 0.01 NaN = float('nan') class ApiException(Exception): pass class Book(object): def __init__(self, sym, json): global NaN self.sym = sym self.json = json # could be cached self.bids = self.json['bids'] self.asks = self.json['asks'] self.ask_price = 1 self.asks_quantity_left = 0 self.bid_price = 1 self.bids_quantity_left = 0 if self.bids: self.bid_price = self.bids[0]['price'] if self.asks: self.ask_price = self.asks[0]['price'] def bids_room(self): if self.bids: quantity = sum([b['quantity'] for b in self.bids if b['price'] == self.bid_price]) filled = sum([b['quantity_filled'] for b in self.bids if b['price'] == self.bid_price]) return quantity - filled else: return 0 def asks_room(self): if self.asks: quantity = sum([b['quantity'] for b in self.asks if b['price'] == self.ask_price]) filled = sum([b['quantity_filled'] for b in self.asks if b['price'] == self.ask_price]) return quantity - filled else: return 0 class Limits(dict): def __init__(self, json): self.update(json) self.gross_limit = int(json['gross_limit']) self.net_limit = int(json['net_limit']) self.gross = int(json['gross']) self.net = int(json['net']) class OHLC(dict): def __init__(self, sym, json): self.sym = sym self.update(json) self.tick = json['tick'] self.open = json['open'] self.high = json['high'] self.low = json['low'] self.close = json['close'] class Shock(dict): def __init__(self, news, currtick): self.ticker = news['ticker'] self.elapsed = currtick - news['tick'] headline = news['headline'] try: self.amount = float(headline[-6:].replace('$', '')) except: self.amount = 0 class Session(object): def __init__(self, url, key): self.url = url self.key = key self.tick = -1 def __enter__(self): self.session = requests.Session() self.session.headers.update({'X-API-Key': self.key}) return self def __exit__(self, type, value, traceback): self.session.close() def get_tick(self): while True: resp = self.session.get(self.url + '/v1/case', params=None) if not resp.ok: raise ApiException('could not get tick: ' + str(resp)) json = resp.json() if json['status'] == 'STOPPED' or shutdown: return False if json['tick'] != self.tick: self.tick = json['tick'] print('.', self.tick) return True # this timer is unnecessary, network latency should be enough time.sleep(0.1) def get_book(self, sym): resp = self.session.get( self.url + '/v1/securities/book', params={'ticker': sym}) if not resp.ok: raise ApiException('could not get book: ' + str(resp)) return Book(sym, resp.json()) def send_order(self, sym, side, price, size): resp = self.session.post(self.url + '/v1/orders', params={ 'ticker': sym, 'type': 'LIMIT', 'action': side, 'quantity': size, 'price': price}) if resp.ok: print('sent order', side, sym, size, '@', price) else: print('failed to send order', side, sym, size, '@', price, ':', resp.text) def getLimit(self): resp = self.session.get(self.url+'/v1/limits') if not resp.ok: raise ApiException('could not get limit: '+str(resp)) return Limits(resp.json()[0]) def getSecurities(self, sym=None): if sym is None: resp = self.session.get(self.url+'/v1/securities') else: resp = self.session.get( self.url+'/v1/securities', params={'ticker': sym}) if not resp.ok: raise ApiException('could not get position: '+str(resp)) json = resp.json() return {sec['ticker']: {k: sec[k] for k in [ "position", "vwap", "nlv", "last", "bid", "bid_size", "ask", "ask_size", "unrealized", "realized" ]} for sec in json} def get_OHLC(self, sym, ticks=50): resp = self.session.get( self.url + '/v1/securities/history', params={'ticker': sym,'limit':ticks}) if not resp.ok: raise ApiException('could not get OHLC: ' + str(resp)) return [OHLC(sym, ohlc) for ohlc in resp.json()] def buy(self, sym, price, size): self.send_order(sym, 'BUY', price, size) def sell(self, sym, price, size): self.send_order(sym, 'SELL', price, size) def send_market(self, sym, side, size): resp = self.session.post(self.url + '/v1/orders', params={ 'ticker': sym, 'type': 'MARKET', 'action': side, 'quantity': size}) if resp.ok: json = resp.json() print('market order', side, sym, size, '@', json['vwap']) return json['vwap'] else: print('failed to send order', side, sym, size, '@Market:', resp.text) return 0 def buyM(self, sym, size): return self.send_market(sym, 'BUY', size) def sellM(self, sym, size): return self.send_market(sym, 'SELL', size) def getNews(self): resp = self.session.get(self.url + '/v1/news', params={'limit': 10}) if not resp.ok: raise ApiException('failed to get news', resp.text) else: json = resp.json() # only care about recent news return [Shock(news, self.tick) for news in json if news['tick'] > self.tick-4] def getTrader(self): resp = self.session.get(self.url + '/v1/trader') if not resp.ok: raise ApiException('failed to get trader info', resp.text) else: json = resp.json() return json def main(): # price does change in every tick # check position # plain arbitradge # index arbitrage # shock handling # wave riding # pairTickers = [('WMT-M', 'WMT-A'), ('CAT-M', 'CAT-A'), ('MMM-M', 'MMM-A')] with Session('http://localhost:9998', 'VHK3DEDE') as session: while session.get_tick(): try: shock_runner(session) exchange_arbitrage(session, "WMT-M", "WMT-A") exchange_arbitrage(session, "CAT-M", "CAT-A") exchange_arbitrage(session, "MMM-M", "MMM-A") index_arbitrage(session, ['WMT', 'MMM', 'CAT']) except Exception as ex: print("error", str(ex)) # trader = session.getTrader() # print(trader['nlv']) # TODO: position cleaner: try to reduce gross position loss-free # TODO: implement range runner for the last x ticks def avg(arr): return sum(arr)/float(len(arr)) def window_trend(left,right): leftavg = avg(left) rightavg = avg(right) if rightavg > leftavg: return 1 elif rightavg < leftavg: return -1 else: return 0 def splitarr(arr): n = len(arr) left = arr[:n//2] right = arr[n//2:] return left,right def wwindow_trend(prices): left, right = splitarr(prices) trend = window_trend(left,right) lleft, lright = splitarr(left) rleft, rright = splitarr(right) trendl = window_trend(lleft,lright) trendr = window_trend(rleft,rright) return trend + trendl + trendr def trend_runner(session, ticker): if session.tick<20: return # short term trend prices = session.get_OHLC(ticker, 20) highs = [price.high for price in prices] lows = [price.low for price in prices] highTrend = wwindow_trend(highs) lowTrend = wwindow_trend(lows) if highTrend+lowTrend < -4: # volatile, but no trend session.buyM(ticker,1000) if highTrend+lowTrend > 4: session.sellM(ticker,1000) print(ticker,"short hightrend",highTrend,"lowtrend",lowTrend) if session.tick<100: return prices = session.get_OHLC(ticker, 100) highs = [price.high for price in prices] lows = [price.low for price in prices] highTrend = wwindow_trend(highs) lowTrend = wwindow_trend(lows) # grown too much if highTrend+lowTrend < -4: # volatile, but no trend session.sellM(ticker,1000) # dropped too much if highTrend+lowTrend > 4: session.buyM(ticker,1000) print(ticker,"long hightrend",highTrend,"lowtrend",lowTrend) def shock_runner(session): shocks = session.getNews() quantity = 50000 for shock in sorted(shocks, key=lambda s: s.elapsed): Mticker = shock.ticker+"-M" Aticker = shock.ticker+"-A" if shock.elapsed < 2: if shock.amount > MAIN_TAKER + BUFFER*2: session.buyM(Mticker, quantity) session.buyM(Aticker, quantity) elif - shock.amount > MAIN_TAKER + BUFFER*2: session.sellM(Mticker, quantity) session.sellM(Aticker, quantity) print('shock', shock.ticker, shock.amount) if shock.elapsed == 2: if shock.amount > MAIN_TAKER + BUFFER*2: session.sellM(Mticker, quantity) session.sellM(Aticker, quantity) elif - shock.amount > MAIN_TAKER + BUFFER*2: session.buyM(Mticker, quantity) session.buyM(Aticker, quantity) print('post shock', shock.ticker, shock.amount) TAKER4 = MAIN_TAKER * 5 def index_arbitrage(session, tickers): secs = session.getSecurities() ETF = secs['ETF'] etfBid = ETF['bid'] etfAsk = ETF['ask'] bestBids = {} bestBidsQ = {} bestAsks = {} bestAsksQ = {} for ticker in tickers: tickerM = ticker+"-M" tickerA = ticker+"-A" Mticker = secs[tickerM] Aticker = secs[tickerA] Mbid = Mticker['bid'] Abid = Aticker['bid'] Mask = Mticker['ask'] Aask = Aticker['ask'] if Mbid >= Abid: bestBids[tickerM] = Mbid bestBidsQ[tickerM] = Mticker['bid_size'] else: bestBids[tickerA] = Abid bestBidsQ[tickerA] = Aticker['bid_size'] if Mask <= Aask: bestAsks[tickerM] = Mask bestAsksQ[tickerM] = Mticker['ask_size'] else: bestAsks[tickerA] = Aask bestAsksQ[tickerA] = Aticker['ask_size'] compositBid = sum(bestBids.values()) compositBidQ = min(bestBidsQ.values()) compositAsk = sum(bestAsks.values()) compositAskQ = min(bestAsksQ.values()) boughtprice = 0 soldprice = 0 if etfBid - compositAsk > TAKER4+BUFFER: quantity = ETF['bid_size'] if ETF['bid_size'] < compositAskQ else compositAskQ if quantity == 0: return quantity = min([quantity, 50000]) soldprice = session.sellM('ETF', quantity) for ticker in bestAsks: boughtprice += session.buyM(ticker, quantity) print('Plan ETF', etfBid, 'Stocks', compositAsk) print('Actual ETF', soldprice, 'Stocks', boughtprice) elif compositBid - etfAsk > TAKER4+BUFFER: quantity = ETF['ask_size'] if ETF['ask_size'] < compositBidQ else compositBidQ if quantity == 0: return quantity = min([quantity, 50000]) for ticker in bestBids: soldprice += session.sellM(ticker, quantity) boughtprice = session.buyM('ETF', quantity) print('Plan Stocks', compositBid, 'ETF', etfAsk) print('Actual Stocks', soldprice, 'ETF', boughtprice) # TODO: send limit orders and use market to cover unfilled ones after def exchange_arbitrage(session, mticker, aticker): global NaN mbook = session.get_book(mticker) masks_room = mbook.asks_room() mbids_room = mbook.bids_room() abook = session.get_book(aticker) aasks_room = abook.asks_room() abids_room = abook.bids_room() # a lot of room, make market orders if mbook.bid_price - abook.ask_price > TAKER+BUFFER*2: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sellM(mbook.sym, quantity) session.buyM(abook.sym, quantity) elif abook.bid_price - mbook.ask_price > TAKER+BUFFER*2: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sellM(abook.sym, quantity) session.buyM(mbook.sym, quantity) # only a little room, make limit orders if mbook.bid_price - abook.ask_price > BUFFER: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sell(mbook.sym, mbook.bid_price, quantity) session.buy(abook.sym, abook.ask_price, quantity) elif abook.bid_price - mbook.ask_price > BUFFER: quantity = aasks_room if aasks_room < mbids_room else mbids_room quantity = min([quantity, 50000]) session.sell(abook.sym, abook.bid_price, quantity) session.buy(mbook.sym, mbook.ask_price, quantity) def sigint(signum, frame): global shutdown signal.signal(signal.SIGINT, signal.SIG_DFL) shutdown = True if __name__ == '__main__': signal.signal(signal.SIGINT, sigint) main()
[ "signal.signal", "requests.Session", "time.sleep" ]
[((14446, 14490), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal.SIG_DFL'], {}), '(signal.SIGINT, signal.SIG_DFL)\n', (14459, 14490), False, 'import signal\n'), ((14549, 14585), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'sigint'], {}), '(signal.SIGINT, sigint)\n', (14562, 14585), False, 'import signal\n'), ((2705, 2723), 'requests.Session', 'requests.Session', ([], {}), '()\n', (2721, 2723), False, 'import requests\n'), ((3474, 3489), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3484, 3489), False, 'import time\n')]
""" ========================================== Genrating feedthrough from single instance ========================================== This example demostrates how to generate a feedthrough wire connection for a given scalar or vector wires. **Initial Design** .. hdl-diagram:: ../../../examples/basic/_initial_design.v :type: netlistsvg :align: center :module: top **Output1** ``wire0`` feedthough from ``inst_2_1`` .. hdl-diagram:: ../../../examples/basic/_output_wire.v :type: netlistsvg :align: center :module: top **Output2** ``bus_in`` feedthrough from ``inst_1_0`` .. hdl-diagram:: ../../../examples/basic/_output_bus.v :type: netlistsvg :align: center :module: top """ from os import path import spydrnet as sdn import spydrnet_physical as sdnphy netlist = sdnphy.load_netlist_by_name('basic_hierarchy') top = netlist.top_instance.reference cable0 = next(top.get_cables("wire0")) inst2 = next(top.get_instances("inst_2_0")) sdn.compose(netlist, '_initial_design.v', skip_constraints=True) top.create_feedthrough(inst2, cable0) top.create_unconn_wires() sdn.compose(netlist, '_output_wire.v', skip_constraints=True) netlist = sdnphy.load_netlist_by_name('basic_hierarchy') top = netlist.top_instance.reference bus_in = next(top.get_cables("bus_in")) inst1 = next(top.get_instances("inst_1_0")) cables = top.create_feedthrough(inst1, bus_in) top.create_unconn_wires() sdn.compose(netlist, '_output_bus.v', skip_constraints=True)
[ "spydrnet.compose", "spydrnet_physical.load_netlist_by_name" ]
[((801, 847), 'spydrnet_physical.load_netlist_by_name', 'sdnphy.load_netlist_by_name', (['"""basic_hierarchy"""'], {}), "('basic_hierarchy')\n", (828, 847), True, 'import spydrnet_physical as sdnphy\n'), ((970, 1034), 'spydrnet.compose', 'sdn.compose', (['netlist', '"""_initial_design.v"""'], {'skip_constraints': '(True)'}), "(netlist, '_initial_design.v', skip_constraints=True)\n", (981, 1034), True, 'import spydrnet as sdn\n'), ((1101, 1162), 'spydrnet.compose', 'sdn.compose', (['netlist', '"""_output_wire.v"""'], {'skip_constraints': '(True)'}), "(netlist, '_output_wire.v', skip_constraints=True)\n", (1112, 1162), True, 'import spydrnet as sdn\n'), ((1175, 1221), 'spydrnet_physical.load_netlist_by_name', 'sdnphy.load_netlist_by_name', (['"""basic_hierarchy"""'], {}), "('basic_hierarchy')\n", (1202, 1221), True, 'import spydrnet_physical as sdnphy\n'), ((1418, 1478), 'spydrnet.compose', 'sdn.compose', (['netlist', '"""_output_bus.v"""'], {'skip_constraints': '(True)'}), "(netlist, '_output_bus.v', skip_constraints=True)\n", (1429, 1478), True, 'import spydrnet as sdn\n')]
from __future__ import annotations from typing import Optional, Union from tools import tools from exceptions import workflow_exceptions class Workflow: """A class to represent a workflow. Workflow class provides set of methods to manage state of the workflow. It allows for tool insertions, removals and modifications. When workflow is run data flow is built and each tool linked to the workflow instance is executed in determined order. Tool outputs are then consolidated in a JSON format. """ TOOL_CHOICES = { "generic": tools.GenericTool, "large_generic": tools.LargeGenericTool, "input": tools.InputTool, } def __init__(self) -> None: """Initializes Workflow class with root tool. Workflow class is initialized with root tool with tool ID `0`. `_root` points to root tool directly. """ self._root = tools.RootTool(id=0) self._tools = {0: self._root} self._used_ids = {0} def insert_tool( self, tool_choice: str, input_ids: Optional[Union[list[int], int]] = None, output_ids: Optional[Union[list[int], int]] = None, coordinates: Optional[tuple[int, int]] = None, ) -> tools.Tool: """Inserts a new tool to the current workflow. Args: tool_choice (str): determines what tool is created (based on the available choices defined within the Workflow class). input_ids (list[int], int]): starting input or inputs for the tool identified by their IDs. Defaults to None. output_ids (list[int], int): starting output or outputs for the tool identified by their IDs. Defaults to None. coordinates (tuple[int, int]): coordinates for the tool on canvas. Defaults to None. Raises: workflow_exceptions.ToolNotAvailable: indicates that provided string does not refer to an available tool from the Workflow class. Returns: tools.Tool: instance of a Tool's class. """ try: tool_class = self.TOOL_CHOICES[tool_choice] except KeyError: raise workflow_exceptions.ToolNotAvailable next_id = self._get_next_tool_id() tool = tool_class(id=next_id) self._tools[next_id] = tool self._add_tool_id(next_id) if input_ids is not None: self.add_tool_input(tool_id=tool.id, input_ids=input_ids) if output_ids is not None: output_ids = self._clean_tool_ids(output_ids) for output_id in output_ids: self.add_tool_input(tool_id=output_id, input_ids=tool.id) if coordinates is not None: self.set_tool_coordinates(tool_id=tool.id, coordinates=coordinates) return tool def remove_tool(self, tool_ids: Union[list[int], int]) -> None: """Removes existing tool from the current workflow. Removes the tool from the workflow and updates inputs and outputs of the linked tool instances. Args: tool_ids (list[int], int): tool ID or IDs that ought to be removed. Raises: workflow_exceptions.RootCannotBeDeleted: indicates that selected tool for removal is a root which cannot be deleted. """ tool_ids = self._clean_tool_ids(tool_ids) for tool_id in tool_ids: tool = self._get_tool_by_id(tool_id) if tool.is_root: raise workflow_exceptions.RootCannotBeDeleted # remove tool from linked tools' inputs tool_outputs = tool.outputs for output_id in tool_outputs: self.remove_tool_input(tool_id=output_id, input_ids=tool.id) # remove tool from linked tools' outputs tool_inputs = tool.inputs for input_id in tool_inputs: self.remove_tool_input(tool_id=tool.id, input_ids=input_id) del self._tools[tool_id] def add_tool_input( self, tool_id: int, input_ids: Union[list[int], int] ) -> tools.Tool: """Adds new input(s) for the tool existing in the current workflow. Args: tool_id (int): tool ID to which input(s) should be added. input_ids (list[int], int]): input(s) to be added to the tool identified by their IDs. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) input_ids = self._clean_tool_ids(input_ids) for input_id in input_ids: tool.add_input(input_id) self._tools[input_id].add_output(tool_id) return tool def remove_tool_input( self, tool_id: int, input_ids: Union[list[int], int] ) -> tools.Tool: """Removes input(s) from the tool existing in the current workflow. Args: tool_id (int): tool ID from which input(s) should be removed. input_ids (list[int], int]): input(s) to be removed from the tool identified by their IDs. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) input_ids = self._clean_tool_ids(input_ids) for input_id in input_ids: tool.remove_input(input_id) self._tools[input_id].remove_output(tool_id) return tool def set_tool_config(self, tool_id: int, data: dict) -> tools.Tool: """Sets tool's config to passed data dict. Args: tool_id (int): tool ID for which config should be set. data (dict): dict of parameters for given tool. Returns: tools.Tool: instance of a Tool's class. """ tool = self._get_tool_by_id(tool_id) tool.config = data return tool def set_tool_coordinates( self, tool_id: int, coordinates: Optional[tuple[int, int]] = None ) -> tools.Tool: """Sets (x, y) coordinates for the tool existing in the current workflow. If no coordinates are passed to this method, default coordinates will be calculated using `_get_default_coordinates()` internal method. Args: tool_id (int): tool ID for which coordinates are to be set. coordinates (tuple[int, int]): tuple of (x, y) coordinates. Defaults to None. Returns: tools.Tool: instance of a Tool's class. """ # I need to decide where to put a check if coordinates will fit a canvas tool = self._get_tool_by_id(tool_id) coordinates = ( coordinates if coordinates is not None else self._get_default_coordinates() ) tool.coordinates = coordinates return tool def _get_default_coordinates(self) -> tuple[int, int]: # might require more sophisticated logic in the future return (0, 0) def _get_tool_by_id(self, tool_id: int) -> tools.Tool: """Returns an instance of a Tool class selected by its ID. Args: tool_id (int): tool ID. Raises: workflow_exceptions.ToolDoesNotExist: indicates that for provided ID there is no tool in this workflow. Returns: tools.Tool: instance of a Tool's class. """ try: tool = self._tools[tool_id] except KeyError: raise workflow_exceptions.ToolDoesNotExist return tool def _clean_tool_ids(self, tool_ids: Union[list[int], int]) -> list[int]: """Returns a validated list of tool ID(s). Checks whether passed tool ID(s) exist in the current workflow and returns the list of tool IDs. If at least one of the provided tool IDs is not found, it raises an exception. Args: tool_ids (list[int], int): tool ID(s) to be cleaned. Raises: workflow_exceptions.ToolDoesNotExist: indicates that at least one of the provided tool IDs is not present in the current workflow. Returns: list[int]: list of checked tool IDs. """ cleaned_tool_ids = ( list(set(tool_ids)) if isinstance(tool_ids, list) else [tool_ids] ) if any(tool_id not in self._tools for tool_id in cleaned_tool_ids): raise workflow_exceptions.ToolDoesNotExist return cleaned_tool_ids def _add_tool_id(self, tool_id: int) -> None: """Adds an ID to the used ID pool. Args: tool_id (int): ID to be added to the used ID pool. """ self._used_ids.add(tool_id) def _get_next_tool_id(self) -> int: """Returns a next available ID to be used for a tool instance. Returns: int: next available tool ID. """ return max(self._used_ids) + 1 def _build_flow(self) -> None: NotImplementedError def __len__(self) -> int: return len(self._tools) - 1
[ "tools.tools.RootTool" ]
[((916, 936), 'tools.tools.RootTool', 'tools.RootTool', ([], {'id': '(0)'}), '(id=0)\n', (930, 936), False, 'from tools import tools\n')]
from django.apps import apps from django.test import override_settings from wagtail_live.signals import live_page_update def test_live_page_update_signal_receivers(): assert len(live_page_update.receivers) == 0 @override_settings( WAGTAIL_LIVE_PUBLISHER="tests.testapp.publishers.DummyWebsocketPublisher" ) def test_live_page_update_signal_receivers_websocket(): app_config = apps.get_app_config("wagtail_live") app_config.ready() try: # Receiver should be connected, no IndexError receiver = live_page_update.receivers[0] finally: live_page_update.disconnect(receiver)
[ "django.test.override_settings", "django.apps.apps.get_app_config", "wagtail_live.signals.live_page_update.disconnect" ]
[((221, 318), 'django.test.override_settings', 'override_settings', ([], {'WAGTAIL_LIVE_PUBLISHER': '"""tests.testapp.publishers.DummyWebsocketPublisher"""'}), "(WAGTAIL_LIVE_PUBLISHER=\n 'tests.testapp.publishers.DummyWebsocketPublisher')\n", (238, 318), False, 'from django.test import override_settings\n'), ((393, 428), 'django.apps.apps.get_app_config', 'apps.get_app_config', (['"""wagtail_live"""'], {}), "('wagtail_live')\n", (412, 428), False, 'from django.apps import apps\n'), ((586, 623), 'wagtail_live.signals.live_page_update.disconnect', 'live_page_update.disconnect', (['receiver'], {}), '(receiver)\n', (613, 623), False, 'from wagtail_live.signals import live_page_update\n')]
# -*- coding: utf-8 -*- """ Script Name: Author: <NAME>/Jimmy - 3D artist. Description: """ # ------------------------------------------------------------------------------------------------------------- """ Import """ import os from PySide2.QtWidgets import (QFrame, QStyle, QAbstractItemView, QSizePolicy, QLineEdit, QPlainTextEdit, QGraphicsItem, QGraphicsView, QGraphicsScene, QRubberBand, QCalendarWidget, ) from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor SingleSelection = QCalendarWidget.SingleSelection NoSelection = QCalendarWidget.NoSelection SingleLetterDay = QCalendarWidget.SingleLetterDayNames ShortDay = QCalendarWidget.ShortDayNames LongDay = QCalendarWidget.LongDayNames NoHoriHeader = QCalendarWidget.NoHorizontalHeader NoVertHeader = QCalendarWidget.NoVerticalHeader IsoWeekNum = QCalendarWidget.ISOWeekNumbers SelectMode = QCalendarWidget.SelectionMode HoriHeaderFm = QCalendarWidget.HorizontalHeaderFormat VertHeaderFm = QCalendarWidget.VerticalHeaderFormat DayOfWeek = Qt.DayOfWeek Sunday = Qt.Sunday Monday = Qt.Monday Tuesday = Qt.Tuesday Wednesday = Qt.Wednesday Thursday = Qt.Thursday Friday = Qt.Friday Saturday = Qt.Saturday ICONSIZE = 32 ICONBUFFER = -1 BTNTAGSIZE = QSize(87, 20) TAGBTNSIZE = QSize(87-1, 20-1) BTNICONSIZE = QSize(ICONSIZE, ICONSIZE) ICONBTNSIZE = QSize(ICONSIZE+ICONBUFFER, ICONSIZE+ICONBUFFER) DAMG_LOGO_COLOR = QColor(0, 114, 188, 255) # Basic color GlobalColor = Qt.GlobalColor WHITE = QColor(Qt.white) LIGHTGRAY = QColor(Qt.lightGray) GRAY = QColor(Qt.gray) DARKGRAY = QColor(Qt.darkGray) BLACK = QColor(Qt.black) RED = QColor(Qt.red) GREEN = QColor(Qt.green) BLUE = QColor(Qt.blue) DARKRED = QColor(Qt.darkRed) DARKGREEN = QColor(Qt.darkGreen) DARKBLUE = QColor(Qt.darkBlue) CYAN = QColor(Qt.cyan) MAGENTA = QColor(Qt.magenta) YELLOW = QColor(Qt.yellow) DARKCYAN = QColor(Qt.darkCyan) DARKMAGENTA = QColor(Qt.darkMagenta) DARKYELLOW = QColor(Qt.darkYellow) # Dark Palette color Color_BACKGROUND_LIGHT = QColor('#505F69') COLOR_BACKGROUND_NORMAL = QColor('#32414B') COLOR_BACKGROUND_DARK = QColor('#19232D') COLOR_FOREGROUND_LIGHT = QColor('#F0F0F0') COLOR_FOREGROUND_NORMAL = QColor('#AAAAAA') COLOR_FOREGROUND_DARK = QColor('#787878') COLOR_SELECTION_LIGHT = QColor('#148CD2') COLOR_SELECTION_NORMAL = QColor('#1464A0') COLOR_SELECTION_DARK = QColor('#14506E') # Nice color blush = QColor(246, 202, 203, 255) petal = QColor(247, 170, 189, 255) petunia = QColor(231, 62, 151, 255) deep_pink = QColor(229, 2, 120, 255) melon = QColor(241, 118, 110, 255) pomegranate = QColor(178, 27, 32, 255) poppy_red = QColor(236, 51, 39, 255) orange_red = QColor(240, 101, 53, 255) olive = QColor(174, 188, 43, 255) spring = QColor(227, 229, 121, 255) yellow = QColor(255, 240, 29, 255) mango = QColor(254, 209, 26, 255) cantaloupe = QColor(250, 176, 98, 255) tangelo = QColor(247, 151, 47, 255) burnt_orange = QColor(236, 137, 36, 255) bright_orange = QColor(242, 124, 53, 255) moss = QColor(176, 186, 39, 255) sage = QColor(212, 219, 145, 255) apple = QColor(178, 215, 140, 255) grass = QColor(111, 178, 68, 255) forest = QColor(69, 149, 62, 255) peacock = QColor(21, 140, 167, 255) teal = QColor(24, 157, 193, 255) aqua = QColor(153, 214, 218, 255) violet = QColor(55, 52, 144, 255) deep_blue = QColor(15, 86, 163, 255) hydrangea = QColor(150, 191, 229, 255) sky = QColor(139, 210, 244, 255) dusk = QColor(16, 102, 162, 255) midnight = QColor(14, 90, 131, 255) seaside = QColor(87, 154, 188, 255) poolside = QColor(137, 203, 225, 255) eggplant = QColor(86, 5, 79, 255) lilac = QColor(222, 192, 219, 255) chocolate = QColor(87, 43, 3, 255) blackout = QColor(19, 17, 15, 255) stone = QColor(125, 127, 130, 255) gravel = QColor(181, 182, 185, 255) pebble = QColor(217, 212, 206, 255) sand = QColor(185, 172, 151, 255) ignoreARM = Qt.IgnoreAspectRatio scrollAsNeed = Qt.ScrollBarAsNeeded scrollOff = Qt.ScrollBarAlwaysOff scrollOn = Qt.ScrollBarAlwaysOn SiPoMin = QSizePolicy.Minimum # Size policy SiPoMax = QSizePolicy.Maximum SiPoExp = QSizePolicy.Expanding SiPoPre = QSizePolicy.Preferred SiPoIgn = QSizePolicy.Ignored frameStyle = QFrame.Sunken | QFrame.Panel center = Qt.AlignCenter # Alignment right = Qt.AlignRight left = Qt.AlignLeft top = Qt.AlignTop bottom = Qt.AlignBottom hori = Qt.Horizontal vert = Qt.Vertical dockL = Qt.LeftDockWidgetArea # Docking area dockR = Qt.RightDockWidgetArea dockT = Qt.TopDockWidgetArea dockB = Qt.BottomDockWidgetArea dockAll = Qt.AllDockWidgetAreas datetTimeStamp = QDateTime.currentDateTime().toString("hh:mm - dd MMMM yy") # datestamp PRS = dict(password = QLineEdit.Password, center = center , left = left , right = right, spmax = SiPoMax , sppre = SiPoPre, spexp = SiPoExp, spign = SiPoIgn, expanding = QSizePolicy.Expanding, spmin = SiPoMin,) # ------------------------------------------------------------------------------------------------------------- """ Event """ NO_WRAP = QPlainTextEdit.NoWrap NO_FRAME = QPlainTextEdit.NoFrame ELIDE_RIGHT = Qt.ElideRight ELIDE_NONE = Qt.ElideNone # ------------------------------------------------------------------------------------------------------------- """ Window state """ StateNormal = Qt.WindowNoState StateMax = Qt.WindowMaximized StateMin = Qt.WindowMinimized State_Selected = QStyle.State_Selected # ------------------------------------------------------------------------------------------------------------- """ Nodegraph setting variables """ ASPEC_RATIO = Qt.KeepAspectRatio SMOOTH_TRANS = Qt.SmoothTransformation SCROLLBAROFF = Qt.ScrollBarAlwaysOff # Scrollbar SCROLLBARON = Qt.ScrollBarAlwaysOn SCROLLBARNEED = Qt.ScrollBarAsNeeded WORD_WRAP = Qt.TextWordWrap INTERSECT_ITEM_SHAPE = Qt.IntersectsItemShape CONTAIN_ITEM_SHAPE = Qt.ContainsItemShape MATCH_EXACTLY = Qt.MatchExactly DRAG_ONLY = QAbstractItemView.DragOnly # ------------------------------------------------------------------------------------------------------------- """ UI flags """ ITEMENABLE = Qt.ItemIsEnabled ITEMMOVEABLE = QGraphicsItem.ItemIsMovable ITEMSENDGEOCHANGE = QGraphicsItem.ItemSendsGeometryChanges ITEMSCALECHANGE = QGraphicsItem.ItemScaleChange ITEMPOSCHANGE = QGraphicsItem.ItemPositionChange DEVICECACHE = QGraphicsItem.DeviceCoordinateCache SELECTABLE = QGraphicsItem.ItemIsSelectable MOVEABLE = QGraphicsItem.ItemIsMovable FOCUSABLE = QGraphicsItem.ItemIsFocusable PANEL = QGraphicsItem.ItemIsPanel NOINDEX = QGraphicsScene.NoIndex # Scene RUBBER_DRAG = QGraphicsView.RubberBandDrag # Viewer RUBBER_REC = QRubberBand.Rectangle POS_CHANGE = QGraphicsItem.ItemPositionChange NODRAG = QGraphicsView.NoDrag NOFRAME = QGraphicsView.NoFrame ANCHOR_NO = QGraphicsView.NoAnchor ANCHOR_UNDERMICE = QGraphicsView.AnchorUnderMouse ANCHOR_CENTER = QGraphicsView.AnchorViewCenter CACHE_BG = QGraphicsView.CacheBackground UPDATE_VIEWRECT = QGraphicsView.BoundingRectViewportUpdate UPDATE_FULLVIEW = QGraphicsView.FullViewportUpdate UPDATE_SMARTVIEW = QGraphicsView.SmartViewportUpdate UPDATE_BOUNDINGVIEW = QGraphicsView.BoundingRectViewportUpdate UPDATE_MINIMALVIEW = QGraphicsView.MinimalViewportUpdate STAY_ON_TOP = Qt.WindowStaysOnTopHint STRONG_FOCUS = Qt.StrongFocus SPLASHSCREEN = Qt.SplashScreen FRAMELESS = Qt.FramelessWindowHint CUSTOMIZE = Qt.CustomizeWindowHint CLOSEBTN = Qt.WindowCloseButtonHint MINIMIZEBTN = Qt.WindowMinimizeButtonHint AUTO_COLOR = Qt.AutoColor # ------------------------------------------------------------------------------------------------------------- """ Drawing """ ANTIALIAS = QPainter.Antialiasing # Painter ANTIALIAS_TEXT = QPainter.TextAntialiasing ANTIALIAS_HIGH_QUALITY = QPainter.HighQualityAntialiasing SMOOTH_PIXMAP_TRANSFORM = QPainter.SmoothPixmapTransform NON_COSMETIC_PEN = QPainter.NonCosmeticDefaultPen NO_BRUSH = Qt.NoBrush # Brush NO_PEN = Qt.NoPen # Pen ROUND_CAP = Qt.RoundCap ROUND_JOIN = Qt.RoundJoin PATTERN_SOLID = Qt.SolidPattern # Pattern LINE_SOLID = Qt.SolidLine # Line LINE_DASH = Qt.DashLine LINE_DOT = Qt.DotLine LINE_DASH_DOT = Qt.DashDotDotLine TRANSPARENT = Qt.transparent TRANSPARENT_MODE = Qt.TransparentMode # ------------------------------------------------------------------------------------------------------------- """ Meta Object """ QUEUEDCONNECTION = Qt.QueuedConnection # ------------------------------------------------------------------------------------------------------------- """ Keyboard and cursor """ TEXT_BOLD = QFont.Bold TEXT_NORMAL = QFont.Normal MONO_SPACE = QFont.Monospace TEXT_MENEOMIC = Qt.TextShowMnemonic KEY_PRESS = QEvent.KeyPress KEY_RELEASE = QEvent.KeyRelease KEY_ALT = Qt.Key_Alt KEY_DEL = Qt.Key_Delete KEY_TAB = Qt.Key_Tab KEY_SHIFT = Qt.Key_Shift KEY_CTRL = Qt.Key_Control KEY_BACKSPACE = Qt.Key_Backspace KEY_ENTER = Qt.Key_Enter KEY_RETURN = Qt.Key_Return KEY_F = Qt.Key_F KEY_S = Qt.Key_S ALT_MODIFIER = Qt.AltModifier CTRL_MODIFIER = Qt.ControlModifier SHIFT_MODIFIER = Qt.ShiftModifier NO_MODIFIER = Qt.NoModifier CLOSE_HAND_CUSOR = Qt.ClosedHandCursor SIZEF_CURSOR = Qt.SizeFDiagCursor windows = os.name = 'nt' DMK = Qt.AltModifier if windows else CTRL_MODIFIER MOUSE_LEFT = Qt.LeftButton MOUSE_RIGHT = Qt.RightButton MOUSE_MIDDLE = Qt.MiddleButton NO_BUTTON = Qt.NoButton ARROW_NONE = Qt.NoArrow # Cursor CURSOR_ARROW = Qt.ArrowCursor CURSOR_SIZEALL = Qt.SizeAllCursor MOVE_OPERATION = QTextCursor.MoveOperation MOVE_ANCHOR = QTextCursor.MoveMode.MoveAnchor KEEP_ANCHOR = QTextCursor.MoveMode.KeepAnchor ACTION_MOVE = Qt.MoveAction # Action ignoreARM = Qt.IgnoreAspectRatio # ------------------------------------------------------------------------------------------------------------- """ Set number """ RELATIVE_SIZE = Qt.RelativeSize # Size INI = QSettings.IniFormat NATIVE = QSettings.NativeFormat INVALID = QSettings.InvalidFormat SYS_SCOPE = QSettings.SystemScope USER_SCOPE = QSettings.UserScope # ------------------------------------------------------------------------------------------------------------- # Created by <NAME> on 5/6/2020 - 3:13 AM # ยฉ 2017 - 2020 DAMGteam. All rights reserved
[ "PySide2.QtGui.QColor", "PySide2.QtCore.QDateTime.currentDateTime", "PySide2.QtCore.QSize" ]
[((1731, 1744), 'PySide2.QtCore.QSize', 'QSize', (['(87)', '(20)'], {}), '(87, 20)\n', (1736, 1744), False, 'from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime\n'), ((1775, 1796), 'PySide2.QtCore.QSize', 'QSize', (['(87 - 1)', '(20 - 1)'], {}), '(87 - 1, 20 - 1)\n', (1780, 1796), False, 'from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime\n'), ((1823, 1848), 'PySide2.QtCore.QSize', 'QSize', (['ICONSIZE', 'ICONSIZE'], {}), '(ICONSIZE, ICONSIZE)\n', (1828, 1848), False, 'from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime\n'), ((1879, 1930), 'PySide2.QtCore.QSize', 'QSize', (['(ICONSIZE + ICONBUFFER)', '(ICONSIZE + ICONBUFFER)'], {}), '(ICONSIZE + ICONBUFFER, ICONSIZE + ICONBUFFER)\n', (1884, 1930), False, 'from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime\n'), ((1959, 1983), 'PySide2.QtGui.QColor', 'QColor', (['(0)', '(114)', '(188)', '(255)'], {}), '(0, 114, 188, 255)\n', (1965, 1983), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2076, 2092), 'PySide2.QtGui.QColor', 'QColor', (['Qt.white'], {}), '(Qt.white)\n', (2082, 2092), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2123, 2143), 'PySide2.QtGui.QColor', 'QColor', (['Qt.lightGray'], {}), '(Qt.lightGray)\n', (2129, 2143), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2174, 2189), 'PySide2.QtGui.QColor', 'QColor', (['Qt.gray'], {}), '(Qt.gray)\n', (2180, 2189), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2220, 2239), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkGray'], {}), '(Qt.darkGray)\n', (2226, 2239), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2270, 2286), 'PySide2.QtGui.QColor', 'QColor', (['Qt.black'], {}), '(Qt.black)\n', (2276, 2286), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2317, 2331), 'PySide2.QtGui.QColor', 'QColor', (['Qt.red'], {}), '(Qt.red)\n', (2323, 2331), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2362, 2378), 'PySide2.QtGui.QColor', 'QColor', (['Qt.green'], {}), '(Qt.green)\n', (2368, 2378), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2409, 2424), 'PySide2.QtGui.QColor', 'QColor', (['Qt.blue'], {}), '(Qt.blue)\n', (2415, 2424), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2455, 2473), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkRed'], {}), '(Qt.darkRed)\n', (2461, 2473), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2504, 2524), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkGreen'], {}), '(Qt.darkGreen)\n', (2510, 2524), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2555, 2574), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkBlue'], {}), '(Qt.darkBlue)\n', (2561, 2574), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2605, 2620), 'PySide2.QtGui.QColor', 'QColor', (['Qt.cyan'], {}), '(Qt.cyan)\n', (2611, 2620), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2651, 2669), 'PySide2.QtGui.QColor', 'QColor', (['Qt.magenta'], {}), '(Qt.magenta)\n', (2657, 2669), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2700, 2717), 'PySide2.QtGui.QColor', 'QColor', (['Qt.yellow'], {}), '(Qt.yellow)\n', (2706, 2717), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2748, 2767), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkCyan'], {}), '(Qt.darkCyan)\n', (2754, 2767), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2798, 2820), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkMagenta'], {}), '(Qt.darkMagenta)\n', (2804, 2820), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2851, 2872), 'PySide2.QtGui.QColor', 'QColor', (['Qt.darkYellow'], {}), '(Qt.darkYellow)\n', (2857, 2872), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2925, 2942), 'PySide2.QtGui.QColor', 'QColor', (['"""#505F69"""'], {}), "('#505F69')\n", (2931, 2942), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((2973, 2990), 'PySide2.QtGui.QColor', 'QColor', (['"""#32414B"""'], {}), "('#32414B')\n", (2979, 2990), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3021, 3038), 'PySide2.QtGui.QColor', 'QColor', (['"""#19232D"""'], {}), "('#19232D')\n", (3027, 3038), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3070, 3087), 'PySide2.QtGui.QColor', 'QColor', (['"""#F0F0F0"""'], {}), "('#F0F0F0')\n", (3076, 3087), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3118, 3135), 'PySide2.QtGui.QColor', 'QColor', (['"""#AAAAAA"""'], {}), "('#AAAAAA')\n", (3124, 3135), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3166, 3183), 'PySide2.QtGui.QColor', 'QColor', (['"""#787878"""'], {}), "('#787878')\n", (3172, 3183), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3215, 3232), 'PySide2.QtGui.QColor', 'QColor', (['"""#148CD2"""'], {}), "('#148CD2')\n", (3221, 3232), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3263, 3280), 'PySide2.QtGui.QColor', 'QColor', (['"""#1464A0"""'], {}), "('#1464A0')\n", (3269, 3280), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3311, 3328), 'PySide2.QtGui.QColor', 'QColor', (['"""#14506E"""'], {}), "('#14506E')\n", (3317, 3328), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3373, 3399), 'PySide2.QtGui.QColor', 'QColor', (['(246)', '(202)', '(203)', '(255)'], {}), '(246, 202, 203, 255)\n', (3379, 3399), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3430, 3456), 'PySide2.QtGui.QColor', 'QColor', (['(247)', '(170)', '(189)', '(255)'], {}), '(247, 170, 189, 255)\n', (3436, 3456), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3487, 3512), 'PySide2.QtGui.QColor', 'QColor', (['(231)', '(62)', '(151)', '(255)'], {}), '(231, 62, 151, 255)\n', (3493, 3512), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3543, 3567), 'PySide2.QtGui.QColor', 'QColor', (['(229)', '(2)', '(120)', '(255)'], {}), '(229, 2, 120, 255)\n', (3549, 3567), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3598, 3624), 'PySide2.QtGui.QColor', 'QColor', (['(241)', '(118)', '(110)', '(255)'], {}), '(241, 118, 110, 255)\n', (3604, 3624), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3655, 3679), 'PySide2.QtGui.QColor', 'QColor', (['(178)', '(27)', '(32)', '(255)'], {}), '(178, 27, 32, 255)\n', (3661, 3679), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3710, 3734), 'PySide2.QtGui.QColor', 'QColor', (['(236)', '(51)', '(39)', '(255)'], {}), '(236, 51, 39, 255)\n', (3716, 3734), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3765, 3790), 'PySide2.QtGui.QColor', 'QColor', (['(240)', '(101)', '(53)', '(255)'], {}), '(240, 101, 53, 255)\n', (3771, 3790), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3821, 3846), 'PySide2.QtGui.QColor', 'QColor', (['(174)', '(188)', '(43)', '(255)'], {}), '(174, 188, 43, 255)\n', (3827, 3846), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3877, 3903), 'PySide2.QtGui.QColor', 'QColor', (['(227)', '(229)', '(121)', '(255)'], {}), '(227, 229, 121, 255)\n', (3883, 3903), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3934, 3959), 'PySide2.QtGui.QColor', 'QColor', (['(255)', '(240)', '(29)', '(255)'], {}), '(255, 240, 29, 255)\n', (3940, 3959), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((3990, 4015), 'PySide2.QtGui.QColor', 'QColor', (['(254)', '(209)', '(26)', '(255)'], {}), '(254, 209, 26, 255)\n', (3996, 4015), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4046, 4071), 'PySide2.QtGui.QColor', 'QColor', (['(250)', '(176)', '(98)', '(255)'], {}), '(250, 176, 98, 255)\n', (4052, 4071), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4102, 4127), 'PySide2.QtGui.QColor', 'QColor', (['(247)', '(151)', '(47)', '(255)'], {}), '(247, 151, 47, 255)\n', (4108, 4127), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4158, 4183), 'PySide2.QtGui.QColor', 'QColor', (['(236)', '(137)', '(36)', '(255)'], {}), '(236, 137, 36, 255)\n', (4164, 4183), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4214, 4239), 'PySide2.QtGui.QColor', 'QColor', (['(242)', '(124)', '(53)', '(255)'], {}), '(242, 124, 53, 255)\n', (4220, 4239), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4270, 4295), 'PySide2.QtGui.QColor', 'QColor', (['(176)', '(186)', '(39)', '(255)'], {}), '(176, 186, 39, 255)\n', (4276, 4295), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4326, 4352), 'PySide2.QtGui.QColor', 'QColor', (['(212)', '(219)', '(145)', '(255)'], {}), '(212, 219, 145, 255)\n', (4332, 4352), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4383, 4409), 'PySide2.QtGui.QColor', 'QColor', (['(178)', '(215)', '(140)', '(255)'], {}), '(178, 215, 140, 255)\n', (4389, 4409), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4440, 4465), 'PySide2.QtGui.QColor', 'QColor', (['(111)', '(178)', '(68)', '(255)'], {}), '(111, 178, 68, 255)\n', (4446, 4465), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4496, 4520), 'PySide2.QtGui.QColor', 'QColor', (['(69)', '(149)', '(62)', '(255)'], {}), '(69, 149, 62, 255)\n', (4502, 4520), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4551, 4576), 'PySide2.QtGui.QColor', 'QColor', (['(21)', '(140)', '(167)', '(255)'], {}), '(21, 140, 167, 255)\n', (4557, 4576), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4607, 4632), 'PySide2.QtGui.QColor', 'QColor', (['(24)', '(157)', '(193)', '(255)'], {}), '(24, 157, 193, 255)\n', (4613, 4632), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4663, 4689), 'PySide2.QtGui.QColor', 'QColor', (['(153)', '(214)', '(218)', '(255)'], {}), '(153, 214, 218, 255)\n', (4669, 4689), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4720, 4744), 'PySide2.QtGui.QColor', 'QColor', (['(55)', '(52)', '(144)', '(255)'], {}), '(55, 52, 144, 255)\n', (4726, 4744), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4775, 4799), 'PySide2.QtGui.QColor', 'QColor', (['(15)', '(86)', '(163)', '(255)'], {}), '(15, 86, 163, 255)\n', (4781, 4799), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4830, 4856), 'PySide2.QtGui.QColor', 'QColor', (['(150)', '(191)', '(229)', '(255)'], {}), '(150, 191, 229, 255)\n', (4836, 4856), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4887, 4913), 'PySide2.QtGui.QColor', 'QColor', (['(139)', '(210)', '(244)', '(255)'], {}), '(139, 210, 244, 255)\n', (4893, 4913), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((4944, 4969), 'PySide2.QtGui.QColor', 'QColor', (['(16)', '(102)', '(162)', '(255)'], {}), '(16, 102, 162, 255)\n', (4950, 4969), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5000, 5024), 'PySide2.QtGui.QColor', 'QColor', (['(14)', '(90)', '(131)', '(255)'], {}), '(14, 90, 131, 255)\n', (5006, 5024), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5055, 5080), 'PySide2.QtGui.QColor', 'QColor', (['(87)', '(154)', '(188)', '(255)'], {}), '(87, 154, 188, 255)\n', (5061, 5080), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5111, 5137), 'PySide2.QtGui.QColor', 'QColor', (['(137)', '(203)', '(225)', '(255)'], {}), '(137, 203, 225, 255)\n', (5117, 5137), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5168, 5190), 'PySide2.QtGui.QColor', 'QColor', (['(86)', '(5)', '(79)', '(255)'], {}), '(86, 5, 79, 255)\n', (5174, 5190), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5221, 5247), 'PySide2.QtGui.QColor', 'QColor', (['(222)', '(192)', '(219)', '(255)'], {}), '(222, 192, 219, 255)\n', (5227, 5247), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5278, 5300), 'PySide2.QtGui.QColor', 'QColor', (['(87)', '(43)', '(3)', '(255)'], {}), '(87, 43, 3, 255)\n', (5284, 5300), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5331, 5354), 'PySide2.QtGui.QColor', 'QColor', (['(19)', '(17)', '(15)', '(255)'], {}), '(19, 17, 15, 255)\n', (5337, 5354), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5385, 5411), 'PySide2.QtGui.QColor', 'QColor', (['(125)', '(127)', '(130)', '(255)'], {}), '(125, 127, 130, 255)\n', (5391, 5411), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5442, 5468), 'PySide2.QtGui.QColor', 'QColor', (['(181)', '(182)', '(185)', '(255)'], {}), '(181, 182, 185, 255)\n', (5448, 5468), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5499, 5525), 'PySide2.QtGui.QColor', 'QColor', (['(217)', '(212)', '(206)', '(255)'], {}), '(217, 212, 206, 255)\n', (5505, 5525), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((5556, 5582), 'PySide2.QtGui.QColor', 'QColor', (['(185)', '(172)', '(151)', '(255)'], {}), '(185, 172, 151, 255)\n', (5562, 5582), False, 'from PySide2.QtGui import QColor, QPainter, QFont, QTextCursor\n'), ((6890, 6917), 'PySide2.QtCore.QDateTime.currentDateTime', 'QDateTime.currentDateTime', ([], {}), '()\n', (6915, 6917), False, 'from PySide2.QtCore import QEvent, QSettings, QSize, Qt, QDateTime\n')]
"""Contains tests for finpack/core/cli.py """ __copyright__ = "Copyright (C) 2021 <NAME>" import os import unittest from importlib import metadata from docopt import docopt from finpack.core import cli class TestCli(unittest.TestCase): @classmethod def setUpClass(cls): cls.DATA_DIR = "temp" os.mkdir(cls.DATA_DIR) @classmethod def tearDownClass(cls): os.rmdir(cls.DATA_DIR) def test_version_option(self): argv = ["--version"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["--version"]) def test_init_no_options(self): argv = ["init"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) def test_init_with_filepath_option(self): argv = ["init", "--filepath=temp/data.csv"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertEqual(args["--filepath"], "temp/data.csv") def test_init_with_sample_dataset_option(self): argv = ["init", "--sample-dataset"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertTrue(args["--sample-dataset"]) def test_init_with_overwrite_option(self): argv = ["init", "--overwrite"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["init"]) self.assertTrue(args["--overwrite"]) def test_balsheet_no_option(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) def test_balsheet_with_filepath_option(self): argv = ["balsheet", "--filepath=temp/data2.csv"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--filepath"], "temp/data2.csv") def test_balsheet_with_levels_default(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--levels"], "3") def test_balsheet_with_levels_option(self): argv = ["balsheet", "--levels=2"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--levels"], "2") def test_balsheet_with_date_default(self): argv = ["balsheet"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--date"], "today") def test_balsheet_with_date_option(self): argv = ["balsheet", "--date=2021-12-01"] args = docopt(cli.__doc__, argv=argv) self.assertTrue(args["balsheet"]) self.assertEqual(args["--date"], "2021-12-01")
[ "os.rmdir", "os.mkdir", "docopt.docopt" ]
[((322, 344), 'os.mkdir', 'os.mkdir', (['cls.DATA_DIR'], {}), '(cls.DATA_DIR)\n', (330, 344), False, 'import os\n'), ((399, 421), 'os.rmdir', 'os.rmdir', (['cls.DATA_DIR'], {}), '(cls.DATA_DIR)\n', (407, 421), False, 'import os\n'), ((503, 533), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (509, 533), False, 'from docopt import docopt\n'), ((655, 685), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (661, 685), False, 'from docopt import docopt\n'), ((840, 870), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (846, 870), False, 'from docopt import docopt\n'), ((1085, 1115), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (1091, 1115), False, 'from docopt import docopt\n'), ((1308, 1338), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (1314, 1338), False, 'from docopt import docopt\n'), ((1507, 1537), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (1513, 1537), False, 'from docopt import docopt\n'), ((1705, 1735), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (1711, 1735), False, 'from docopt import docopt\n'), ((1936, 1966), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (1942, 1966), False, 'from docopt import docopt\n'), ((2165, 2195), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (2171, 2195), False, 'from docopt import docopt\n'), ((2379, 2409), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (2385, 2409), False, 'from docopt import docopt\n'), ((2615, 2645), 'docopt.docopt', 'docopt', (['cli.__doc__'], {'argv': 'argv'}), '(cli.__doc__, argv=argv)\n', (2621, 2645), False, 'from docopt import docopt\n')]
""" Author: <NAME> """ import numpy as np import pandas as pd from sklearn.neighbors import NearestNeighbors def affinity_graph(X): ''' This function returns a numpy array. ''' ni, nd = X.shape A = np.zeros((ni, ni)) for i in range(ni): for j in range(i+1, ni): dist = ((X[i] - X[j])**2).sum() # compute L2 distance A[i][j] = dist A[j][i] = dist # by symmetry return A def knn_graph(X, knn=4): ''' This function returns a numpy array. ''' ni, nd = X.shape nbrs = NearestNeighbors(n_neighbors=(knn+1), algorithm='ball_tree').fit(X) distances, indices = nbrs.kneighbors(X) A = np.zeros((ni, ni)) for dist, ind in zip(distances, indices): i0 = ind[0] for i in range(1,knn+1): d = dist[i] A[i0, i] = d A[i, i0] = d # by symmetry return A def sparse_affinity_graph(X): ''' TODO: This function returns a numpy sparse matrix. ''' ni, nd = X.shape A = np.zeros((ni, ni)) for i in range(ni): for j in range(i+1, ni): dist = ((X[i] - X[j])**2).sum() # compute L2 distance A[i][j] = dist A[j][i] = dist # by symmetry return A def laplacian_graph(X, mode='affinity', knn=3, eta=0.01, sigma=2.5): ''' The unnormalized graph Laplacian, L = D โˆ’ W. ''' if mode == 'affinity': W = affinity_graph(X) W[abs(W) > eta] = 0 elif mode == 'nearestneighbor': W = knn_graph(X, knn=knn) elif mode == 'gaussian': W = affinity_graph(X) bandwidth = 2.0*(sigma**2) W = np.exp(W) / bandwidth else: pass D = np.diag(W.sum(axis=1)) L = D - W return L
[ "numpy.exp", "numpy.zeros", "sklearn.neighbors.NearestNeighbors" ]
[((208, 226), 'numpy.zeros', 'np.zeros', (['(ni, ni)'], {}), '((ni, ni))\n', (216, 226), True, 'import numpy as np\n'), ((606, 624), 'numpy.zeros', 'np.zeros', (['(ni, ni)'], {}), '((ni, ni))\n', (614, 624), True, 'import numpy as np\n'), ((896, 914), 'numpy.zeros', 'np.zeros', (['(ni, ni)'], {}), '((ni, ni))\n', (904, 914), True, 'import numpy as np\n'), ((492, 552), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': '(knn + 1)', 'algorithm': '"""ball_tree"""'}), "(n_neighbors=knn + 1, algorithm='ball_tree')\n", (508, 552), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((1422, 1431), 'numpy.exp', 'np.exp', (['W'], {}), '(W)\n', (1428, 1431), True, 'import numpy as np\n')]
import numpy as np import pytest from pytest import approx from pymt.component.grid import GridMixIn class Port: def __init__(self, name, uses=None, provides=None): self._name = name self._uses = uses or [] self._provides = provides or [] def get_component_name(self): return self._name def get_input_item_count(self): return len(self._uses) def get_input_item_list(self): return self._uses def get_output_item_count(self): return len(self._provides) def get_output_item_list(self): return self._provides def test_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.input_items == ["invar"] assert c.output_items == ["outvar"] def test_no_exchange_items(): class Component(GridMixIn): def __init__(self): self._port = Port("test") super().__init__() c = Component() assert c.input_items == [] assert c.output_items == [] def test_raster_1d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (3,) def get_grid_spacing(self, grid_id): return (2.0,) def get_grid_origin(self, grid_id): return (3.0,) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_x("invar") == approx(np.array([3.0, 5.0, 7.0])) def test_raster_2d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_spacing(self, grid_id): return (2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-2d", uses=["invar"], provides=["outvar"]) super().__init__() c = Component() assert c.name == "test-2d" assert c.get_grid_type(0) == "RASTER" assert c.get_x(0) == approx(np.array([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]])) assert c.get_y(0) == approx(np.array([[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]])) assert np.all(c.get_connectivity(0) == np.array([0, 1, 4, 3, 1, 2, 5, 4])) assert np.all(c.get_offset(0) == np.array([4, 8])) def test_raster_3d(): class RasterPort(Port): def get_grid_shape(self, grid_id): return (2, 2, 3) def get_grid_spacing(self, grid_id): return (1.0, 2.0, 1.0) def get_grid_origin(self, grid_id): return (0.0, 0.0, 0.0) class Component(GridMixIn): def __init__(self): self._port = RasterPort("test-3d", uses=["invar"]) super().__init__() c = Component() assert c.get_x(0) == approx( np.array( [[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]] ) ) assert c.get_y(0) == approx( np.array( [[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]]] ) ) assert c.get_z(0) == approx( np.array( [[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]] ) ) def test_rectilinear(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return (0.0, 3.0, 4) def get_grid_y(self, grid_id): return (2.0, 7.0) class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" assert c.get_x(0) == approx(np.array([[0.0, 3.0, 4.0], [0.0, 3.0, 4.0]])) assert c.get_y(0) == approx(np.array([[2.0, 2.0, 2.0], [7.0, 7.0, 7.0]])) def test_structured(): class StructuredPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0]) class Component(GridMixIn): def __init__(self): self._port = StructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "STRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 2.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 1.0, 2.0, 1.0, 2.0, 3.0])) def test_unstructured(): class UnstructuredPort(Port): def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): return np.array([0.0, 0.0, 1.0, 1.0, 0.0]) def get_grid_connectivity(self, grid_id): return np.array([0, 1, 3, 2, 4, 3, 1]) def get_grid_offset(self, grid_id): return np.array([4, 7]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" assert c.get_x(0) == approx(np.array([0.0, 1.0, 0.0, 1.0, 2.0])) assert c.get_y(0) == approx(np.array([0.0, 0.0, 1.0, 1.0, 0.0])) def test_get_grid_shape_is_none(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): return None def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_get_grid_shape_raises(): class UnstructuredPort(Port): def get_grid_shape(self, grid_id): raise NotImplementedError("get_grid_shape") def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) class Component(GridMixIn): def __init__(self): self._port = UnstructuredPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "UNSTRUCTURED" def test_structured_1d(): class RectilinearPort(Port): def get_grid_shape(self, grid_id): return (2, 3) def get_grid_x(self, grid_id): return np.array([0.0, 1.0, 2.0]) def get_grid_y(self, grid_id): raise NotImplementedError("get_grid_y") def get_grid_z(self, grid_id): raise NotImplementedError("get_grid_z") class Component(GridMixIn): def __init__(self): self._port = RectilinearPort("test", uses=["invar"]) super().__init__() c = Component() assert c.get_grid_type(0) == "RECTILINEAR" with pytest.raises(IndexError): c.get_z(0)
[ "numpy.array", "pytest.raises" ]
[((7100, 7125), 'pytest.raises', 'pytest.raises', (['IndexError'], {}), '(IndexError)\n', (7113, 7125), False, 'import pytest\n'), ((1613, 1638), 'numpy.array', 'np.array', (['[3.0, 5.0, 7.0]'], {}), '([3.0, 5.0, 7.0])\n', (1621, 1638), True, 'import numpy as np\n'), ((2214, 2258), 'numpy.array', 'np.array', (['[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]'], {}), '([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]])\n', (2222, 2258), True, 'import numpy as np\n'), ((2292, 2336), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]]'], {}), '([[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]])\n', (2300, 2336), True, 'import numpy as np\n'), ((2381, 2415), 'numpy.array', 'np.array', (['[0, 1, 4, 3, 1, 2, 5, 4]'], {}), '([0, 1, 4, 3, 1, 2, 5, 4])\n', (2389, 2415), True, 'import numpy as np\n'), ((2454, 2470), 'numpy.array', 'np.array', (['[4, 8]'], {}), '([4, 8])\n', (2462, 2470), True, 'import numpy as np\n'), ((2974, 3061), 'numpy.array', 'np.array', (['[[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]]]'], {}), '([[[0.0, 1.0, 2.0], [0.0, 1.0, 2.0]], [[0.0, 1.0, 2.0], [0.0, 1.0, \n 2.0]]])\n', (2982, 3061), True, 'import numpy as np\n'), ((3126, 3213), 'numpy.array', 'np.array', (['[[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]]]'], {}), '([[[0.0, 0.0, 0.0], [2.0, 2.0, 2.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, \n 2.0]]])\n', (3134, 3213), True, 'import numpy as np\n'), ((3278, 3365), 'numpy.array', 'np.array', (['[[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]'], {}), '([[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, \n 1.0]]])\n', (3286, 3365), True, 'import numpy as np\n'), ((3917, 3961), 'numpy.array', 'np.array', (['[[0.0, 3.0, 4.0], [0.0, 3.0, 4.0]]'], {}), '([[0.0, 3.0, 4.0], [0.0, 3.0, 4.0]])\n', (3925, 3961), True, 'import numpy as np\n'), ((3995, 4039), 'numpy.array', 'np.array', (['[[2.0, 2.0, 2.0], [7.0, 7.0, 7.0]]'], {}), '([[2.0, 2.0, 2.0], [7.0, 7.0, 7.0]])\n', (4003, 4039), True, 'import numpy as np\n'), ((4226, 4266), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0, 0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0, 0.0, 1.0, 2.0])\n', (4234, 4266), True, 'import numpy as np\n'), ((4326, 4366), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0, 1.0, 2.0, 3.0]'], {}), '([0.0, 1.0, 2.0, 1.0, 2.0, 3.0])\n', (4334, 4366), True, 'import numpy as np\n'), ((4622, 4662), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0, 0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0, 0.0, 1.0, 2.0])\n', (4630, 4662), True, 'import numpy as np\n'), ((4696, 4736), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0, 1.0, 2.0, 3.0]'], {}), '([0.0, 1.0, 2.0, 1.0, 2.0, 3.0])\n', (4704, 4736), True, 'import numpy as np\n'), ((4857, 4892), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 0.0, 1.0, 2.0])\n', (4865, 4892), True, 'import numpy as np\n'), ((4952, 4987), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0, 1.0, 0.0]'], {}), '([0.0, 0.0, 1.0, 1.0, 0.0])\n', (4960, 4987), True, 'import numpy as np\n'), ((5058, 5089), 'numpy.array', 'np.array', (['[0, 1, 3, 2, 4, 3, 1]'], {}), '([0, 1, 3, 2, 4, 3, 1])\n', (5066, 5089), True, 'import numpy as np\n'), ((5154, 5170), 'numpy.array', 'np.array', (['[4, 7]'], {}), '([4, 7])\n', (5162, 5170), True, 'import numpy as np\n'), ((5430, 5465), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 0.0, 1.0, 2.0])\n', (5438, 5465), True, 'import numpy as np\n'), ((5499, 5534), 'numpy.array', 'np.array', (['[0.0, 0.0, 1.0, 1.0, 0.0]'], {}), '([0.0, 0.0, 1.0, 1.0, 0.0])\n', (5507, 5534), True, 'import numpy as np\n'), ((5733, 5758), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0])\n', (5741, 5758), True, 'import numpy as np\n'), ((6214, 6239), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0])\n', (6222, 6239), True, 'import numpy as np\n'), ((6656, 6681), 'numpy.array', 'np.array', (['[0.0, 1.0, 2.0]'], {}), '([0.0, 1.0, 2.0])\n', (6664, 6681), True, 'import numpy as np\n')]
"""Exercise 1 Usage: $ CUDA_VISIBLE_DEVICES=2 python practico_1_train_petfinder.py --dataset_dir ../ --epochs 30 --dropout 0.1 0.1 --hidden_layer_sizes 200 100 To know which GPU to use, you can check it with the command $ nvidia-smi """ import argparse import os import mlflow import pickle import numpy as np import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split from tensorflow.keras import layers, models import warnings warnings.filterwarnings("ignore") from auxiliary import process_features, load_dataset, build_columns, log_dir_name TARGET_COL = 'AdoptionSpeed' def read_args(): parser = argparse.ArgumentParser( description='Training a MLP on the petfinder dataset') # Here you have some examples of classifier parameters. You can add # more arguments or change these if you need to. parser.add_argument('--experiment_name', type=str, default='Base model', help='Name of the experiment, used in mlflow.') parser.add_argument('--dataset_dir', default='../petfinder_dataset', type=str, help='Directory with the training and test files.') parser.add_argument('--hidden_layer_sizes', nargs='+', default=[100], type=int, help='Number of hidden units of each hidden layer.') parser.add_argument('--epochs', default=50, type=int, help='Number of epochs to train.') parser.add_argument('--dropout', nargs='+', default=[0.5], type=float, help='Dropout ratio for every layer.') parser.add_argument('--batch_size', type=int, default=32, help='Number of instances in each batch.') parser.add_argument('--learning_rate', default=1e-3, type=float, help='Learning rate.') args = parser.parse_args() assert len(args.hidden_layer_sizes) == len(args.dropout) return args def print_args(args): print('-------------------------------------------') print('PARAMS ------------------------------------') print('-------------------------------------------') print('--experiment_name ', args.experiment_name) print('--dataset_dir ', args.dataset_dir) print('--epochs ', args.epochs) print('--hidden_layer_sizes', args.hidden_layer_sizes) print('--dropout ', args.dropout) print('--batch_size ', args.batch_size) print('--learning_rate ', args.learning_rate) print('-------------------------------------------') def main(): args = read_args() print_args(args) experiment_name = args.experiment_name batch_size = args.batch_size learning_rate = args.learning_rate hidden_layer_sizes = args.hidden_layer_sizes dropout = args.dropout epochs = args.epochs ### Output directory dir_name = log_dir_name(args) print() print(dir_name) print() output_dir = os.path.join('experiments', experiment_name, dir_name) if not os.path.exists(output_dir): os.makedirs(output_dir) dataset, dev_dataset, test_dataset = load_dataset(args.dataset_dir) nlabels = dataset[TARGET_COL].unique().shape[0] columns = [ 'Gender', 'Color1', 'Vaccinated', 'Dewormed', 'Breed1', 'Age', 'Fee', 'Quantity'] one_hot_columns, embedded_columns, numeric_columns = build_columns(dataset, columns) # TODO (optional) put these three types of columns in the same dictionary with "column types" X_train, y_train = process_features(dataset, one_hot_columns, numeric_columns, embedded_columns) direct_features_input_shape = (X_train['direct_features'].shape[1],) X_dev, y_dev = process_features(dev_dataset, one_hot_columns, numeric_columns, embedded_columns) ########################################################################################################### ### TODO: Shuffle train dataset - Done ########################################################################################################### shuffle_len = X_train['direct_features'].shape[0] train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(shuffle_len).batch(batch_size) ########################################################################################################### dev_ds = tf.data.Dataset.from_tensor_slices((X_dev, y_dev)).batch(batch_size) test_ds = tf.data.Dataset.from_tensor_slices(process_features( test_dataset, one_hot_columns, numeric_columns, embedded_columns, test=True)[0]).batch(batch_size) ########################################################################################################### ### TODO: Build the Keras model - Done ########################################################################################################### tf.keras.backend.clear_session() # Add one input and one embedding for each embedded column embedding_layers = [] inputs = [] for embedded_col, max_value in embedded_columns.items(): input_layer = layers.Input(shape=(1,), name=embedded_col) inputs.append(input_layer) # Define the embedding layer embedding_size = int(max_value / 4) embedding_layers.append( tf.squeeze(layers.Embedding(input_dim=max_value, output_dim=embedding_size)(input_layer), axis=-2)) print('Adding embedding of size {} for layer {}'.format(embedding_size, embedded_col)) # Add the direct features already calculated direct_features_input = layers.Input(shape=direct_features_input_shape, name='direct_features') inputs.append(direct_features_input) # Concatenate everything together features = layers.concatenate(embedding_layers + [direct_features_input]) denses = [] dense1 = layers.Dense(hidden_layer_sizes[0], activation='relu')(features) denses.append(dense1) if len(hidden_layer_sizes) > 1: for hidden_layer_size in hidden_layer_sizes[1:]: dense = layers.Dense(hidden_layer_size, activation='relu')(denses[-1]) denses.append(dense) output_layer = layers.Dense(nlabels, activation='softmax')(dense1) model = models.Model(inputs=inputs, outputs=output_layer) ########################################################################################################### ########################################################################################################### ### TODO: Fit the model - Done ########################################################################################################### mlflow.set_experiment(experiment_name) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) logdir = "logs/scalars/" + dir_name tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir) with mlflow.start_run(nested=True): # Log model hiperparameters first mlflow.log_param('hidden_layer_size', hidden_layer_sizes) mlflow.log_param('dropout', dropout) mlflow.log_param('embedded_columns', embedded_columns) mlflow.log_param('one_hot_columns', one_hot_columns) mlflow.log_param('numeric_columns', numeric_columns) # Not using these yet mlflow.log_param('epochs', epochs) mlflow.log_param('batch_size', batch_size) mlflow.log_param('learning_rate', learning_rate) # Train history = model.fit(train_ds, epochs=epochs, validation_data=dev_ds, callbacks=[tensorboard_callback]) ####################################################################################################### ### TODO: analyze history to see if model converges/overfits ####################################################################################################### output_csv = os.path.join(output_dir, 'history.pickle') with open(output_csv, 'bw') as f: pickle.dump(history.history, f) ####################################################################################################### ####################################################################################################### ### TODO: Evaluate the model, calculating the metrics. - Done ####################################################################################################### loss, accuracy = model.evaluate(dev_ds) print("*** Dev loss: {} - accuracy: {}".format(loss, accuracy)) mlflow.log_metric('loss', loss) mlflow.log_metric('accuracy', accuracy) predictions = model.predict(test_ds) ####################################################################################################### ####################################################################################################### ### TODO: Convert predictions to classes - Done ####################################################################################################### prediction_classes = np.argmax(predictions, axis=1) ####################################################################################################### ####################################################################################################### ### TODO: Save the results for submission - Done ####################################################################################################### output_csv = os.path.join(output_dir, 'submit.csv') submissions = pd.DataFrame(prediction_classes, columns=[TARGET_COL], index=test_dataset.PID) submissions.to_csv(output_csv) ####################################################################################################### ########################################################################################################### print('All operations completed') if __name__ == '__main__': main()
[ "mlflow.set_experiment", "mlflow.log_param", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Input", "os.path.exists", "argparse.ArgumentParser", "tensorflow.data.Dataset.from_tensor_slices", "mlflow.log_metric", "auxiliary.log_dir_name", "auxiliary.load_dataset", "tensorflow.keras.models.Model", "mlflow.start_run", "pandas.DataFrame", "tensorflow.keras.callbacks.TensorBoard", "numpy.argmax", "tensorflow.keras.layers.Embedding", "warnings.filterwarnings", "pickle.dump", "os.makedirs", "auxiliary.build_columns", "os.path.join", "tensorflow.keras.layers.concatenate", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.backend.clear_session", "auxiliary.process_features" ]
[((475, 508), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (498, 508), False, 'import warnings\n'), ((654, 732), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Training a MLP on the petfinder dataset"""'}), "(description='Training a MLP on the petfinder dataset')\n", (677, 732), False, 'import argparse\n'), ((2879, 2897), 'auxiliary.log_dir_name', 'log_dir_name', (['args'], {}), '(args)\n', (2891, 2897), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((2959, 3013), 'os.path.join', 'os.path.join', (['"""experiments"""', 'experiment_name', 'dir_name'], {}), "('experiments', experiment_name, dir_name)\n", (2971, 3013), False, 'import os\n'), ((3131, 3161), 'auxiliary.load_dataset', 'load_dataset', (['args.dataset_dir'], {}), '(args.dataset_dir)\n', (3143, 3161), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((3395, 3426), 'auxiliary.build_columns', 'build_columns', (['dataset', 'columns'], {}), '(dataset, columns)\n', (3408, 3426), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((3549, 3626), 'auxiliary.process_features', 'process_features', (['dataset', 'one_hot_columns', 'numeric_columns', 'embedded_columns'], {}), '(dataset, one_hot_columns, numeric_columns, embedded_columns)\n', (3565, 3626), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((3719, 3804), 'auxiliary.process_features', 'process_features', (['dev_dataset', 'one_hot_columns', 'numeric_columns', 'embedded_columns'], {}), '(dev_dataset, one_hot_columns, numeric_columns,\n embedded_columns)\n', (3735, 3804), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((4881, 4913), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (4911, 4913), True, 'import tensorflow as tf\n'), ((5581, 5652), 'tensorflow.keras.layers.Input', 'layers.Input', ([], {'shape': 'direct_features_input_shape', 'name': '"""direct_features"""'}), "(shape=direct_features_input_shape, name='direct_features')\n", (5593, 5652), False, 'from tensorflow.keras import layers, models\n'), ((5756, 5818), 'tensorflow.keras.layers.concatenate', 'layers.concatenate', (['(embedding_layers + [direct_features_input])'], {}), '(embedding_layers + [direct_features_input])\n', (5774, 5818), False, 'from tensorflow.keras import layers, models\n'), ((6233, 6282), 'tensorflow.keras.models.Model', 'models.Model', ([], {'inputs': 'inputs', 'outputs': 'output_layer'}), '(inputs=inputs, outputs=output_layer)\n', (6245, 6282), False, 'from tensorflow.keras import layers, models\n'), ((6664, 6702), 'mlflow.set_experiment', 'mlflow.set_experiment', (['experiment_name'], {}), '(experiment_name)\n', (6685, 6702), False, 'import mlflow\n'), ((6720, 6773), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (6744, 6773), True, 'import tensorflow as tf\n'), ((6950, 6996), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'logdir'}), '(log_dir=logdir)\n', (6980, 6996), True, 'import tensorflow as tf\n'), ((3025, 3051), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (3039, 3051), False, 'import os\n'), ((3061, 3084), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (3072, 3084), False, 'import os\n'), ((5103, 5146), 'tensorflow.keras.layers.Input', 'layers.Input', ([], {'shape': '(1,)', 'name': 'embedded_col'}), '(shape=(1,), name=embedded_col)\n', (5115, 5146), False, 'from tensorflow.keras import layers, models\n'), ((5849, 5903), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['hidden_layer_sizes[0]'], {'activation': '"""relu"""'}), "(hidden_layer_sizes[0], activation='relu')\n", (5861, 5903), False, 'from tensorflow.keras import layers, models\n'), ((6168, 6211), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['nlabels'], {'activation': '"""softmax"""'}), "(nlabels, activation='softmax')\n", (6180, 6211), False, 'from tensorflow.keras import layers, models\n'), ((7007, 7036), 'mlflow.start_run', 'mlflow.start_run', ([], {'nested': '(True)'}), '(nested=True)\n', (7023, 7036), False, 'import mlflow\n'), ((7088, 7145), 'mlflow.log_param', 'mlflow.log_param', (['"""hidden_layer_size"""', 'hidden_layer_sizes'], {}), "('hidden_layer_size', hidden_layer_sizes)\n", (7104, 7145), False, 'import mlflow\n'), ((7154, 7190), 'mlflow.log_param', 'mlflow.log_param', (['"""dropout"""', 'dropout'], {}), "('dropout', dropout)\n", (7170, 7190), False, 'import mlflow\n'), ((7199, 7253), 'mlflow.log_param', 'mlflow.log_param', (['"""embedded_columns"""', 'embedded_columns'], {}), "('embedded_columns', embedded_columns)\n", (7215, 7253), False, 'import mlflow\n'), ((7262, 7314), 'mlflow.log_param', 'mlflow.log_param', (['"""one_hot_columns"""', 'one_hot_columns'], {}), "('one_hot_columns', one_hot_columns)\n", (7278, 7314), False, 'import mlflow\n'), ((7323, 7375), 'mlflow.log_param', 'mlflow.log_param', (['"""numeric_columns"""', 'numeric_columns'], {}), "('numeric_columns', numeric_columns)\n", (7339, 7375), False, 'import mlflow\n'), ((7407, 7441), 'mlflow.log_param', 'mlflow.log_param', (['"""epochs"""', 'epochs'], {}), "('epochs', epochs)\n", (7423, 7441), False, 'import mlflow\n'), ((7450, 7492), 'mlflow.log_param', 'mlflow.log_param', (['"""batch_size"""', 'batch_size'], {}), "('batch_size', batch_size)\n", (7466, 7492), False, 'import mlflow\n'), ((7501, 7549), 'mlflow.log_param', 'mlflow.log_param', (['"""learning_rate"""', 'learning_rate'], {}), "('learning_rate', learning_rate)\n", (7517, 7549), False, 'import mlflow\n'), ((8058, 8100), 'os.path.join', 'os.path.join', (['output_dir', '"""history.pickle"""'], {}), "(output_dir, 'history.pickle')\n", (8070, 8100), False, 'import os\n'), ((8723, 8754), 'mlflow.log_metric', 'mlflow.log_metric', (['"""loss"""', 'loss'], {}), "('loss', loss)\n", (8740, 8754), False, 'import mlflow\n'), ((8763, 8802), 'mlflow.log_metric', 'mlflow.log_metric', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (8780, 8802), False, 'import mlflow\n'), ((9278, 9308), 'numpy.argmax', 'np.argmax', (['predictions'], {'axis': '(1)'}), '(predictions, axis=1)\n', (9287, 9308), True, 'import numpy as np\n'), ((9725, 9763), 'os.path.join', 'os.path.join', (['output_dir', '"""submit.csv"""'], {}), "(output_dir, 'submit.csv')\n", (9737, 9763), False, 'import os\n'), ((9786, 9864), 'pandas.DataFrame', 'pd.DataFrame', (['prediction_classes'], {'columns': '[TARGET_COL]', 'index': 'test_dataset.PID'}), '(prediction_classes, columns=[TARGET_COL], index=test_dataset.PID)\n', (9798, 9864), True, 'import pandas as pd\n'), ((4365, 4415), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(X_dev, y_dev)'], {}), '((X_dev, y_dev))\n', (4399, 4415), True, 'import tensorflow as tf\n'), ((8155, 8186), 'pickle.dump', 'pickle.dump', (['history.history', 'f'], {}), '(history.history, f)\n', (8166, 8186), False, 'import pickle\n'), ((6053, 6103), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['hidden_layer_size'], {'activation': '"""relu"""'}), "(hidden_layer_size, activation='relu')\n", (6065, 6103), False, 'from tensorflow.keras import layers, models\n'), ((4145, 4199), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(X_train, y_train)'], {}), '((X_train, y_train))\n', (4179, 4199), True, 'import tensorflow as tf\n'), ((4483, 4580), 'auxiliary.process_features', 'process_features', (['test_dataset', 'one_hot_columns', 'numeric_columns', 'embedded_columns'], {'test': '(True)'}), '(test_dataset, one_hot_columns, numeric_columns,\n embedded_columns, test=True)\n', (4499, 4580), False, 'from auxiliary import process_features, load_dataset, build_columns, log_dir_name\n'), ((5319, 5383), 'tensorflow.keras.layers.Embedding', 'layers.Embedding', ([], {'input_dim': 'max_value', 'output_dim': 'embedding_size'}), '(input_dim=max_value, output_dim=embedding_size)\n', (5335, 5383), False, 'from tensorflow.keras import layers, models\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import from pkg_resources import parse_version from warnings import warn from copy import deepcopy import networkx as nx from networkx.readwrite import json_graph from catpy.applications.base import CatmaidClientApplication NX_VERSION_INFO = parse_version(nx.__version__)._key[1] err_msg = ( "Tried to treat the edge's source/target fields as indices into the list of nodes, but failed. " "See issue #26 [1]. " "Has CATMAID upgraded to networkx 2.x? [2]\n\n" "[1]: https://github.com/catmaid/catpy/issues/26\n" "[2]: https://github.com/catmaid/CATMAID/blob/master/django/requirements.txt" ) def convert_nodelink_data(jso): """NetworkX serialises graphs differently in v1.x and v2.x. This converts v1-style data (as emitted by CATMAID) to v2-style data. See issue #26 https://github.com/catmaid/catpy/issues/26 Parameters ---------- jso : dict Returns ------- dict """ if NX_VERSION_INFO < (2, 0): warn( "You are converting networkx v1-style JSON (emitted by CATMAID) to v2-style JSON," " but you are using networkx v1" ) out = deepcopy(jso) for edge in out["links"]: for label in ["source", "target"]: try: edge[label] = out["nodes"][edge[label]]["id"] except (KeyError, IndexError): raise RuntimeError(err_msg) return out class ExportWidget(CatmaidClientApplication): def get_swc(self, skeleton_id, linearize_ids=False): """ Get a single skeleton in SWC format. Parameters ---------- skeleton_id : int or str linearize_ids : bool Returns ------- str """ return self.get( (self.project_id, "skeleton", skeleton_id, "swc"), {"linearize_ids": "true" if linearize_ids else "false"}, ) def get_connector_archive(self, *args, **kwargs): """Not implemented: requires an async job""" raise NotImplementedError("Requires an async job") def get_treenode_archive(self, *args, **kwargs): """Not implemented: requires an async job""" raise NotImplementedError("Requires an async job") def get_networkx_dict(self, *skeleton_ids): """ Get the data for a networkx graph of the given skeletons in node-link format. In networkx 1.x, as used by CATMAID and therefore returned by this method, "source" and "target" in the dicts in "links" refer to nodes by their indices in the "nodes" array. See ``convert_nodelink_data`` function to convert into networkx 2.x-compatible format. https://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.readwrite.json_graph.node_link_data.html Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- dict """ return self.post( (self.project_id, "graphexport", "json"), data={"skeleton_list": list(skeleton_ids)}, ) def get_networkx(self, *skeleton_ids): """ Get a networkx MultiDiGraph of the given skeletons. Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- networkx.MultiDiGraph """ data = self.get_networkx_dict(*skeleton_ids) if NX_VERSION_INFO >= (2, 0): data = convert_nodelink_data(data) return json_graph.node_link_graph(data, directed=True) def get_neuroml(self, skeleton_ids, skeleton_inputs=tuple()): """ Get NeuroML v1.8.1 (level 3, NetworkML) for the given skeletons, possibly with their input synapses constrained to another set of skeletons. N.B. If len(skeleton_ids) > 1, skeleton_inputs will be ignored and only synapses within the first skeleton set will be used in the model. Parameters ---------- skeleton_ids : array-like Skeletons whose NeuroML to return skeleton_inputs : array-like, optional If specified, only input synapses from these skeletons will be added to the NeuroML Returns ------- str NeuroML output string """ data = {"skids": list(skeleton_ids)} if skeleton_inputs: if len(skeleton_ids) > 1: warn( "More than one skeleton ID was selected: ignoring skeleton input constraints" ) else: data["inputs"] = list(skeleton_inputs) return self.post((self.project_id, "neuroml", "neuroml_level3_v181"), data=data) def get_treenode_and_connector_geometry(self, *skeleton_ids): """ Get the treenode and connector information for the given skeletons. The returned dictionary will be of the form { "skeletons": { skeleton_id1: { "treenodes": { treenode_id1: { "location": [x, y, z], "parent_id": id_of_parent_treenode }, treenode_id2: ... }, "connectors": { connector_id1: { "location": [x, y, z], "presynaptic_to": [list, of, treenode, ids], "postsynaptic_to": [list, of, treenode, ids] }, connector_id2: ... } }, skeleton_id2: ... } } Parameters ---------- skeleton_ids : array-like of (int or str) Returns ------- dict """ # todo: factor API call into MorphologyFetcher skeletons = dict() warnings = set() relation_names = {0: "presnaptic_to", 1: "postsynaptic_to"} for skeleton_id in skeleton_ids: data = self.get( "{}/{}/1/0/compact-skeleton".format(self.project_id, skeleton_id) ) skeleton = {"treenodes": dict(), "connectors": dict()} for treenode in data[0]: skeleton["treenodes"][int(treenode[0])] = { "location": treenode[3:6], "parent_id": None if treenode[1] is None else int(treenode[1]), } for connector in data[1]: # NOT the database relation ID # {pre: 0, post: 1, gj: 2} relation_number = connector[2] if relation_number not in relation_names: continue conn_id = int(connector[1]) if conn_id not in skeleton["connectors"]: skeleton["connectors"][conn_id] = { rn: [] for rn in relation_names.values() } skeleton["connectors"][conn_id]["location"] = connector[3:6] skeleton["connectors"][conn_id][relation_names[relation_number]].append( connector[0] ) skeletons[int(skeleton_id)] = skeleton warn( "Skeleton representations contained some unknown treenode->connector relation IDs:\n\t" "\n\t".join(sorted(warnings)) ) return {"skeletons": skeletons}
[ "warnings.warn", "pkg_resources.parse_version", "networkx.readwrite.json_graph.node_link_graph", "copy.deepcopy" ]
[((1205, 1218), 'copy.deepcopy', 'deepcopy', (['jso'], {}), '(jso)\n', (1213, 1218), False, 'from copy import deepcopy\n'), ((303, 332), 'pkg_resources.parse_version', 'parse_version', (['nx.__version__'], {}), '(nx.__version__)\n', (316, 332), False, 'from pkg_resources import parse_version\n'), ((1038, 1166), 'warnings.warn', 'warn', (['"""You are converting networkx v1-style JSON (emitted by CATMAID) to v2-style JSON, but you are using networkx v1"""'], {}), "(\n 'You are converting networkx v1-style JSON (emitted by CATMAID) to v2-style JSON, but you are using networkx v1'\n )\n", (1042, 1166), False, 'from warnings import warn\n'), ((3582, 3629), 'networkx.readwrite.json_graph.node_link_graph', 'json_graph.node_link_graph', (['data'], {'directed': '(True)'}), '(data, directed=True)\n', (3608, 3629), False, 'from networkx.readwrite import json_graph\n'), ((4504, 4597), 'warnings.warn', 'warn', (['"""More than one skeleton ID was selected: ignoring skeleton input constraints"""'], {}), "(\n 'More than one skeleton ID was selected: ignoring skeleton input constraints'\n )\n", (4508, 4597), False, 'from warnings import warn\n')]
from typing import Optional from watchmen_auth import PrincipalService from watchmen_data_kernel.cache import CacheService from watchmen_data_kernel.common import DataKernelException from watchmen_data_kernel.external_writer import find_external_writer_create, register_external_writer_creator from watchmen_meta.common import ask_meta_storage, ask_snowflake_generator from watchmen_meta.system import ExternalWriterService as ExternalWriterStorageService from watchmen_model.common import ExternalWriterId from watchmen_model.system import ExternalWriter def register_external_writer(external_writer: ExternalWriter) -> None: create = find_external_writer_create(external_writer.type) if create is None: raise DataKernelException(f'Creator not found for external writer[{external_writer.dict()}].') register_external_writer_creator(external_writer.writerCode, create()) class ExternalWriterService: def __init__(self, principal_service: PrincipalService): self.principalService = principal_service def find_by_id(self, writer_id: ExternalWriterId) -> Optional[ExternalWriter]: external_writer = CacheService.external_writer().get(writer_id) if external_writer is not None: if external_writer.tenantId != self.principalService.get_tenant_id(): raise DataKernelException( f'External writer[id={writer_id}] not belongs to ' f'current tenant[id={self.principalService.get_tenant_id()}].') register_external_writer(external_writer) return external_writer storage_service = ExternalWriterStorageService( ask_meta_storage(), ask_snowflake_generator(), self.principalService) storage_service.begin_transaction() try: # noinspection PyTypeChecker external_writer: ExternalWriter = storage_service.find_by_id(writer_id) if external_writer is None: return None CacheService.external_writer().put(external_writer) register_external_writer(external_writer) return external_writer finally: storage_service.close_transaction()
[ "watchmen_data_kernel.cache.CacheService.external_writer", "watchmen_data_kernel.external_writer.find_external_writer_create", "watchmen_meta.common.ask_snowflake_generator", "watchmen_meta.common.ask_meta_storage" ]
[((640, 689), 'watchmen_data_kernel.external_writer.find_external_writer_create', 'find_external_writer_create', (['external_writer.type'], {}), '(external_writer.type)\n', (667, 689), False, 'from watchmen_data_kernel.external_writer import find_external_writer_create, register_external_writer_creator\n'), ((1547, 1565), 'watchmen_meta.common.ask_meta_storage', 'ask_meta_storage', ([], {}), '()\n', (1563, 1565), False, 'from watchmen_meta.common import ask_meta_storage, ask_snowflake_generator\n'), ((1567, 1592), 'watchmen_meta.common.ask_snowflake_generator', 'ask_snowflake_generator', ([], {}), '()\n', (1590, 1592), False, 'from watchmen_meta.common import ask_meta_storage, ask_snowflake_generator\n'), ((1113, 1143), 'watchmen_data_kernel.cache.CacheService.external_writer', 'CacheService.external_writer', ([], {}), '()\n', (1141, 1143), False, 'from watchmen_data_kernel.cache import CacheService\n'), ((1820, 1850), 'watchmen_data_kernel.cache.CacheService.external_writer', 'CacheService.external_writer', ([], {}), '()\n', (1848, 1850), False, 'from watchmen_data_kernel.cache import CacheService\n')]
# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # <pep8 compliant> import enchant import os import pickle import re class SpellChecker: """ A basic spell checker. """ # These must be all lower case for comparisons uimsgs = { # OK words "adaptively", "adaptivity", "aren", # aren't "betweens", # yuck! in-betweens! "boolean", "booleans", "chamfer", "couldn", # couldn't "decrement", "derivate", "deterministically", "doesn", # doesn't "duplications", "effector", "equi", # equi-angular, etc. "fader", "globbing", "hasn", # hasn't "hetero", "hoc", # ad-hoc "incompressible", "indices", "instantiation", "iridas", "isn", # isn't "iterable", "kyrgyz", "latin", "merchantability", "mplayer", "ons", # add-ons "pong", # ping pong "scalable", "shadeless", "shouldn", # shouldn't "smoothen", "spacings", "teleport", "teleporting", "vertices", "wasn", # wasn't # Merged words "antialiasing", "antialias", "arcsine", "arccosine", "arctangent", "autoclip", "autocomplete", "autoexec", "autoexecution", "autogenerated", "autolock", "automasking", "autoname", "autopack", "autosave", "autoscale", "autosmooth", "autosplit", "backface", "backfacing", "backimage", "backscattered", "bandnoise", "bindcode", "bitdepth", "bitflag", "bitflags", "bitrate", "blackbody", "blendfile", "blendin", "bonesize", "boundbox", "boxpack", "buffersize", "builtin", "builtins", "bytecode", "chunksize", "customdata", "dataset", "datasets", "de", "deadzone", "deconstruct", "defocus", "denoise", "denoised", "denoising", "denoiser", "deselect", "deselecting", "deselection", "despill", "despilling", "dirtree", "editcurve", "editmesh", "filebrowser", "filelist", "filename", "filenames", "filepath", "filepaths", "forcefield", "forcefields", "fulldome", "fulldomes", "fullscreen", "gridline", "hardlight", "hemi", "hostname", "inbetween", "inscatter", "inscattering", "libdata", "lightprobe", "lightprobes", "lightless", "lineset", "linestyle", "linestyles", "localview", "lookup", "lookups", "mathutils", "micropolygon", "midlevel", "midground", "mixdown", "multi", "multifractal", "multiframe", "multilayer", "multipaint", "multires", "multiresolution", "multisampling", "multiscatter", "multitexture", "multithreaded", "multiuser", "multiview", "namespace", "nodetree", "nodetrees", "keyconfig", "offscreen", "online", "playhead", "popup", "popups", "pre", "precache", "precaching", "precalculate", "precomputing", "prefetch", "premultiply", "premultiplied", "prepass", "prepend", "preprocess", "preprocessing", "preseek", "promillage", "pushdown", "raytree", "readonly", "realtime", "reinject", "reinjected", "rekey", "remesh", "reprojection", "reproject", "reprojecting", "resize", "restpose", "retarget", "retargets", "retargeting", "retargeted", "retiming", "rigidbody", "ringnoise", "rolloff", "runtime", "scanline", "screenshot", "screenshots", "seekability", "selfcollision", "shadowbuffer", "shadowbuffers", "singletexture", "spellcheck", "spellchecking", "startup", "stateful", "starfield", "studiolight", "subflare", "subflares", "subframe", "subframes", "subclass", "subclasses", "subclassing", "subdirectory", "subdirectories", "subdir", "subdirs", "subitem", "submode", "submodule", "submodules", "subpath", "subsize", "substep", "substeps", "targetless", "textbox", "textboxes", "tilemode", "timestamp", "timestamps", "timestep", "timesteps", "todo", "tradeoff", "un", "unassociate", "unassociated", "unbake", "unclosed", "uncomment", "unculled", "undeformed", "undistort", "undistorted", "undistortion", "ungroup", "ungrouped", "unhide", "unindent", "unkeyed", "unlink", "unlinked", "unmute", "unphysical", "unpremultiply", "unprojected", "unprotect", "unreacted", "unreferenced", "unregister", "unselect", "unselected", "unselectable", "unsets", "unshadowed", "unspill", "unstitchable", "unstitch", "unsubdivided", "unsubdivide", "untrusted", "vectorscope", "whitespace", "whitespaces", "worldspace", "workflow", "workspace", "workspaces", # Neologisms, slangs "affectable", "animatable", "automagic", "automagically", "blobby", "blockiness", "blocky", "collider", "colliders", "deformer", "deformers", "determinator", "editability", "effectors", "expander", "instancer", "keyer", "lacunarity", "linkable", "numerics", "occluder", "occluders", "overridable", "passepartout", "perspectively", "pixelate", "pointiness", "polycount", "polygonization", "polygonalization", # yuck! "scalings", "selectable", "selectability", "shaper", "smoothen", "smoothening", "spherize", "spherized", "stitchable", "symmetrize", "trackability", "transmissivity", "rasterized", "rasterization", "rasterizer", "renderer", "renderers", "renderable", "renderability", # Really bad!!! "convertor", "fullscr", # Abbreviations "aero", "amb", "anim", "aov", "app", "bbox", "bboxes", "bksp", # Backspace "bool", "calc", "cfl", "config", "configs", "const", "coord", "coords", "degr", "diff", "dof", "dupli", "duplis", "eg", "esc", "expr", "fac", "fra", "fract", "frs", "grless", "http", "init", "irr", # Irradiance "kbit", "kb", "lang", "langs", "lclick", "rclick", "lensdist", "loc", "rot", "pos", "lorem", "luma", "mbs", # mouse button 'select'. "mem", "multicam", "num", "ok", "orco", "ortho", "pano", "persp", "pref", "prefs", "prev", "param", "premul", "quad", "quads", "quat", "quats", "recalc", "recalcs", "refl", "sce", "sel", "spec", "struct", "structs", "subdiv", "sys", "tex", "texcoord", "tmr", # timer "tri", "tris", "udim", "udims", "upres", # Upresolution "usd", "uv", "uvs", "uvw", "uw", "uvmap", "ve", "vec", "vel", # velocity! "vert", "verts", "vis", "vram", "xor", "xyz", "xzy", "yxz", "yzx", "zxy", "zyx", "xy", "xz", "yx", "yz", "zx", "zy", # General computer/science terms "affine", "albedo", "anamorphic", "anisotropic", "anisotropy", "bitangent", "boid", "boids", "ceil", "compressibility", "curvilinear", "equiangular", "equisolid", "euler", "eulers", "fribidi", "gettext", "hashable", "hotspot", "interocular", "intrinsics", "irradiance", "isosurface", "jitter", "jittering", "jittered", "keymap", "keymaps", "lambertian", "laplacian", "metadata", "msgfmt", "nand", "xnor", "normals", "numpad", "octahedral", "octree", "omnidirectional", "opengl", "openmp", "parametrization", "photoreceptor", "poly", "polyline", "polylines", "probabilistically", "pulldown", "pulldowns", "quantized", "quartic", "quaternion", "quaternions", "quintic", "samplerate", "sawtooth", "scrollback", "scrollbar", "scroller", "searchable", "spacebar", "subtractive", "superellipse", "tooltip", "tooltips", "trackpad", "tuple", "unicode", "viewport", "viewports", "viscoelastic", "vorticity", "waveform", "waveforms", "wildcard", "wildcards", "wintab", # Some Windows tablet API # General computer graphics terms "anaglyph", "bezier", "beziers", "bicubic", "bilinear", "bindpose", "binormal", "blackpoint", "whitepoint", "blinn", "bokeh", "catadioptric", "centroid", "chroma", "chrominance", "clearcoat", "codec", "codecs", "collada", "compositing", "crossfade", "cubemap", "cubemaps", "cuda", "deinterlace", "dropoff", "duotone", "dv", "eigenvectors", "emissive", "equirectangular", "fisheye", "framerate", "gimbal", "grayscale", "icosphere", "inpaint", "kerning", "lightmap", "linearlight", "lossless", "lossy", "luminance", "mantaflow", "matcap", "midtones", "mipmap", "mipmaps", "mip", "ngon", "ngons", "ntsc", "nurb", "nurbs", "perlin", "phong", "pinlight", "qi", "radiosity", "raycasting", "raytrace", "raytracing", "raytraced", "refractions", "remesher", "remeshing", "remesh", "renderfarm", "scanfill", "shader", "shaders", "shadowmap", "shadowmaps", "softlight", "specular", "specularity", "spillmap", "sobel", "stereoscopy", "texel", "timecode", "tonemap", "toon", "transmissive", "vividlight", "volumetrics", "voronoi", "voxel", "voxels", "vsync", "wireframe", "zmask", "ztransp", # Blender terms "audaspace", "azone", # action zone "backwire", "bbone", "bendy", # bones "bmesh", "breakdowner", "bspline", "bweight", "colorband", "datablock", "datablocks", "despeckle", "depsgraph", "dopesheet", "dupliface", "duplifaces", "dupliframe", "dupliframes", "dupliobject", "dupliob", "dupligroup", "duplivert", "dyntopo", "editbone", "editmode", "eevee", "fcurve", "fcurves", "fedge", "fedges", "filmic", "fluidsim", "freestyle", "enum", "enums", "gizmogroup", "gons", # N-Gons "gpencil", "idcol", "keyframe", "keyframes", "keyframing", "keyframed", "lookdev", "luminocity", "mathvis", "metaball", "metaballs", "mball", "metaelement", "metaelements", "metastrip", "metastrips", "movieclip", "mpoly", "mtex", "nabla", "navmesh", "outliner", "overscan", "paintmap", "paintmaps", "polygroup", "polygroups", "poselib", "pushpull", "pyconstraint", "pyconstraints", "qe", # keys... "shaderfx", "shaderfxs", "shapekey", "shapekeys", "shrinkfatten", "shrinkwrap", "softbody", "stucci", "subdiv", "subtype", "sunsky", "tessface", "tessfaces", "texface", "timeline", "timelines", "tosphere", "uilist", "userpref", "vcol", "vcols", "vgroup", "vgroups", "vinterlace", "vse", "wasd", "wasdqe", # keys... "wetmap", "wetmaps", "wpaint", "uvwarp", # UOC (Ugly Operator Categories) "cachefile", "paintcurve", "ptcache", "dpaint", # Algorithm/library names "ashikhmin", # Ashikhmin-Shirley "arsloe", # Texel-Marsen-Arsloe "beckmann", "blackman", # Blackman-Harris "blosc", "burley", # Christensen-Burley "catmull", "catrom", "chebychev", "courant", "cryptomatte", "crypto", "embree", "hosek", "kutta", "lennard", "marsen", # Texel-Marsen-Arsloe "mikktspace", "minkowski", "minnaert", "moskowitz", # Pierson-Moskowitz "musgrave", "nayar", "netravali", "nishita", "ogawa", "oren", "peucker", # Ramer-Douglas-Peucker "pierson", # Pierson-Moskowitz "preetham", "prewitt", "ramer", # Ramer-Douglas-Peucker "runge", "sobol", "verlet", "wilkie", "worley", # Acronyms "aa", "msaa", "ao", "api", "asc", "cdl", "ascii", "atrac", "avx", "bsdf", "bssrdf", "bw", "ccd", "cmd", "cmos", "cpus", "ctrl", "cw", "ccw", "dev", "djv", "dpi", "dvar", "dx", "eo", "fh", "fk", "fov", "fft", "futura", "fx", "gfx", "ggx", "gl", "glsl", "gpl", "gpu", "gpus", "hc", "hdc", "hdr", "hdri", "hdris", "hh", "mm", "ss", "ff", # hh:mm:ss:ff timecode "hsv", "hsva", "hsl", "id", "ies", "ior", "itu", "jonswap", "lhs", "lmb", "mmb", "rmb", "kb", "mocap", "msgid", "msgids", "mux", "ndof", "ppc", "precisa", "px", "qmc", "rdp", "rgb", "rgba", "rhs", "rv", "sdl", "sl", "smpte", "ssao", "ssr", "svn", "tma", "ui", "unix", "vbo", "vbos", "vr", "wxyz", "xr", "ycc", "ycca", "yrgb", "yuv", "yuva", # Blender acronyms "bli", "bpy", "bvh", "dbvt", "dop", # BLI K-Dop BVH "ik", "nla", "py", "qbvh", "rna", "rvo", "simd", "sph", "svbvh", # Files types/formats "avi", "attrac", "autocad", "autodesk", "bmp", "btx", "cineon", "dpx", "dwaa", "dwab", "dxf", "eps", "exr", "fbx", "fbxnode", "ffmpeg", "flac", "gltf", "gzip", "ico", "jpg", "jpeg", "jpegs", "json", "matroska", "mdd", "mkv", "mpeg", "mjpeg", "mtl", "ogg", "openjpeg", "osl", "oso", "piz", "png", "pngs", "po", "quicktime", "rle", "sgi", "stl", "svg", "targa", "tga", "tiff", "theora", "vorbis", "vp9", "wav", "webm", "xiph", "xml", "xna", "xvid", } _valid_before = "(?<=[\\s*'\"`])|(?<=[a-zA-Z][/-])|(?<=^)" _valid_after = "(?=[\\s'\"`.!?,;:])|(?=[/-]\\s*[a-zA-Z])|(?=$)" _valid_words = "(?:{})(?:(?:[A-Z]+[a-z]*)|[A-Z]*|[a-z]*)(?:{})".format(_valid_before, _valid_after) _split_words = re.compile(_valid_words).findall @classmethod def split_words(cls, text): return [w for w in cls._split_words(text) if w] def __init__(self, settings, lang="en_US"): self.settings = settings self.dict_spelling = enchant.Dict(lang) self.cache = set(self.uimsgs) cache = self.settings.SPELL_CACHE if cache and os.path.exists(cache): with open(cache, 'rb') as f: self.cache |= set(pickle.load(f)) def __del__(self): cache = self.settings.SPELL_CACHE if cache and os.path.exists(cache): with open(cache, 'wb') as f: pickle.dump(self.cache, f) def check(self, txt): ret = [] if txt in self.cache: return ret for w in self.split_words(txt): w_lower = w.lower() if w_lower in self.cache: continue if not self.dict_spelling.check(w): ret.append((w, self.dict_spelling.suggest(w))) else: self.cache.add(w_lower) if not ret: self.cache.add(txt) return ret
[ "os.path.exists", "pickle.dump", "re.compile", "enchant.Dict", "pickle.load" ]
[((17963, 17987), 're.compile', 're.compile', (['_valid_words'], {}), '(_valid_words)\n', (17973, 17987), False, 'import re\n'), ((18213, 18231), 'enchant.Dict', 'enchant.Dict', (['lang'], {}), '(lang)\n', (18225, 18231), False, 'import enchant\n'), ((18334, 18355), 'os.path.exists', 'os.path.exists', (['cache'], {}), '(cache)\n', (18348, 18355), False, 'import os\n'), ((18535, 18556), 'os.path.exists', 'os.path.exists', (['cache'], {}), '(cache)\n', (18549, 18556), False, 'import os\n'), ((18615, 18641), 'pickle.dump', 'pickle.dump', (['self.cache', 'f'], {}), '(self.cache, f)\n', (18626, 18641), False, 'import pickle\n'), ((18432, 18446), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (18443, 18446), False, 'import pickle\n')]
from pythonforandroid.toolchain import Recipe, shprint, current_directory, ArchARM from os.path import exists, join, realpath from os import uname import glob import sh class LibX264Recipe(Recipe): version = 'x264-snapshot-20170608-2245-stable' # using mirror url since can't use ftp url = 'http://mirror.yandex.ru/mirrors/ftp.videolan.org/x264/snapshots/{version}.tar.bz2' md5sum = 'adf3b87f759b5cc9f100f8cf99276f77' def should_build(self, arch): build_dir = self.get_build_dir(arch.arch) return not exists(join(build_dir, 'lib', 'libx264.a')) def build_arch(self, arch): with current_directory(self.get_build_dir(arch.arch)): env = self.get_recipe_env(arch) configure = sh.Command('./configure') shprint(configure, '--cross-prefix=arm-linux-androideabi-', '--host=arm-linux', '--disable-asm', '--disable-cli', '--enable-pic', '--disable-shared', '--enable-static', '--prefix={}'.format(realpath('.')), _env=env) shprint(sh.make, '-j4', _env=env) shprint(sh.make, 'install', _env=env) recipe = LibX264Recipe()
[ "pythonforandroid.toolchain.shprint", "os.path.realpath", "os.path.join", "sh.Command" ]
[((745, 770), 'sh.Command', 'sh.Command', (['"""./configure"""'], {}), "('./configure')\n", (755, 770), False, 'import sh\n'), ((1191, 1224), 'pythonforandroid.toolchain.shprint', 'shprint', (['sh.make', '"""-j4"""'], {'_env': 'env'}), "(sh.make, '-j4', _env=env)\n", (1198, 1224), False, 'from pythonforandroid.toolchain import Recipe, shprint, current_directory, ArchARM\n'), ((1237, 1274), 'pythonforandroid.toolchain.shprint', 'shprint', (['sh.make', '"""install"""'], {'_env': 'env'}), "(sh.make, 'install', _env=env)\n", (1244, 1274), False, 'from pythonforandroid.toolchain import Recipe, shprint, current_directory, ArchARM\n'), ((544, 579), 'os.path.join', 'join', (['build_dir', '"""lib"""', '"""libx264.a"""'], {}), "(build_dir, 'lib', 'libx264.a')\n", (548, 579), False, 'from os.path import exists, join, realpath\n'), ((1133, 1146), 'os.path.realpath', 'realpath', (['"""."""'], {}), "('.')\n", (1141, 1146), False, 'from os.path import exists, join, realpath\n')]
#coding=utf-8 try: if __name__.startswith('qgb.Win'): from .. import py else: import py except Exception as ei: raise ei raise EnvironmentError(__name__) if py.is2(): import _winreg as winreg from _winreg import * else: import winreg from winreg import * def get(skey,name,root=HKEY_CURRENT_USER,returnType=True): ''' from qgb.Win import reg reg.get(r'Software\Microsoft\Windows\CurrentVersion\Internet Settings','ProxyEnable') reg.get(r'HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters\Size' ) There are seven predefined root keys, traditionally named according to their constant handles defined in the Win32 API skeyไธ่ƒฝๅŒ…ๅซ name๏ผŒๅฆๅˆ™ FileNotFoundError: [WinError 2] ็ณป็ปŸๆ‰พไธๅˆฐๆŒ‡ๅฎš็š„ๆ–‡ไปถใ€‚ ''' r = OpenKey(root,skey) r = QueryValueEx(r,name) if returnType:return r[0],'{} : {}'.format(REG_TYPE[r[1]],r[1]) else :return r[0] def set(skey,name,value,root=HKEY_CURRENT_USER,type='auto,or REG_TYPE int',returnType=True): r = OpenKey(root,skey,0,KEY_SET_VALUE) if not py.isint(type): if py.isint(value):type=4 if py.istr(value):type=1 if py.isbyte(value):type=3 #TODO test,and add more rule SetValueEx(r,'ProxyEnable',0,type,value) if get(skey,name,root=root,returnType=False)==value: return 'reg.set [{}] {}={} sucess!'.format(skey[-55:],name,value) else: return 'reg.set [{}] {}={} Failed !'.format(skey,name,value) REG_TYPE={ 0 : 'REG_NONE', 1 : 'REG_SZ', 2 : 'REG_EXPAND_SZ', 3 : 'REG_BINARY', 4 : 'REG_DWORD', 5 : 'REG_DWORD_BIG_ENDIAN', 6 : 'REG_LINK', 7 : 'REG_MULTI_SZ', 8 : 'REG_RESOURCE_LIST', 9 : 'REG_FULL_RESOURCE_DESCRIPTOR', 10: 'REG_RESOURCE_REQUIREMENTS_LIST', 11: 'REG_QWORD'}
[ "py.is2", "py.isint", "py.isbyte", "py.istr" ]
[((167, 175), 'py.is2', 'py.is2', ([], {}), '()\n', (173, 175), False, 'import py\n'), ((1014, 1028), 'py.isint', 'py.isint', (['type'], {}), '(type)\n', (1022, 1028), False, 'import py\n'), ((1035, 1050), 'py.isint', 'py.isint', (['value'], {}), '(value)\n', (1043, 1050), False, 'import py\n'), ((1063, 1077), 'py.istr', 'py.istr', (['value'], {}), '(value)\n', (1070, 1077), False, 'import py\n'), ((1090, 1106), 'py.isbyte', 'py.isbyte', (['value'], {}), '(value)\n', (1099, 1106), False, 'import py\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys import os sys.path.insert(0, os.path.abspath('..')) from clint import resources resources.init('kennethreitz', 'clint') lorem = 'Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.' print('%s created.' % resources.user.path) resources.user.write('lorem.txt', lorem) print('lorem.txt created') assert resources.user.read('lorem.txt') == lorem print('lorem.txt has correct contents') resources.user.delete('lorem.txt') print('lorem.txt deleted') assert resources.user.read('lorem.txt') == None print('lorem.txt deletion confirmed')
[ "clint.resources.user.read", "clint.resources.user.write", "clint.resources.user.delete", "os.path.abspath", "clint.resources.init" ]
[((180, 219), 'clint.resources.init', 'resources.init', (['"""kennethreitz"""', '"""clint"""'], {}), "('kennethreitz', 'clint')\n", (194, 219), False, 'from clint import resources\n'), ((724, 764), 'clint.resources.user.write', 'resources.user.write', (['"""lorem.txt"""', 'lorem'], {}), "('lorem.txt', lorem)\n", (744, 764), False, 'from clint import resources\n'), ((883, 917), 'clint.resources.user.delete', 'resources.user.delete', (['"""lorem.txt"""'], {}), "('lorem.txt')\n", (904, 917), False, 'from clint import resources\n'), ((127, 148), 'os.path.abspath', 'os.path.abspath', (['""".."""'], {}), "('..')\n", (142, 148), False, 'import os\n'), ((800, 832), 'clint.resources.user.read', 'resources.user.read', (['"""lorem.txt"""'], {}), "('lorem.txt')\n", (819, 832), False, 'from clint import resources\n'), ((953, 985), 'clint.resources.user.read', 'resources.user.read', (['"""lorem.txt"""'], {}), "('lorem.txt')\n", (972, 985), False, 'from clint import resources\n')]
from django.conf.urls import url from django.conf import settings from django.conf.urls.static import static from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^image/$', views.add_image, name='upload_image'), url(r'^profile/$', views.profile_info, name='profile'), url(r'^update/$', views.profile_update, name='update'), url(r'^comment/(?P<image_id>\d+)', views.comment, name='comment'), url(r'^search/', views.search_results, name = 'search_results'), url(r'^follow/(?P<user_id>\d+)', views.follow, name = 'follow'), url(r'^unfollow/(?P<user_id>\d+)', views.unfollow, name='unfollow'), url(r'^likes/(\d+)/$', views.like_images,name='likes') ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ "django.conf.urls.static.static", "django.conf.urls.url" ]
[((151, 187), 'django.conf.urls.url', 'url', (['"""^$"""', 'views.index'], {'name': '"""index"""'}), "('^$', views.index, name='index')\n", (154, 187), False, 'from django.conf.urls import url\n'), ((194, 247), 'django.conf.urls.url', 'url', (['"""^image/$"""', 'views.add_image'], {'name': '"""upload_image"""'}), "('^image/$', views.add_image, name='upload_image')\n", (197, 247), False, 'from django.conf.urls import url\n'), ((254, 307), 'django.conf.urls.url', 'url', (['"""^profile/$"""', 'views.profile_info'], {'name': '"""profile"""'}), "('^profile/$', views.profile_info, name='profile')\n", (257, 307), False, 'from django.conf.urls import url\n'), ((314, 367), 'django.conf.urls.url', 'url', (['"""^update/$"""', 'views.profile_update'], {'name': '"""update"""'}), "('^update/$', views.profile_update, name='update')\n", (317, 367), False, 'from django.conf.urls import url\n'), ((374, 439), 'django.conf.urls.url', 'url', (['"""^comment/(?P<image_id>\\\\d+)"""', 'views.comment'], {'name': '"""comment"""'}), "('^comment/(?P<image_id>\\\\d+)', views.comment, name='comment')\n", (377, 439), False, 'from django.conf.urls import url\n'), ((445, 505), 'django.conf.urls.url', 'url', (['"""^search/"""', 'views.search_results'], {'name': '"""search_results"""'}), "('^search/', views.search_results, name='search_results')\n", (448, 505), False, 'from django.conf.urls import url\n'), ((514, 575), 'django.conf.urls.url', 'url', (['"""^follow/(?P<user_id>\\\\d+)"""', 'views.follow'], {'name': '"""follow"""'}), "('^follow/(?P<user_id>\\\\d+)', views.follow, name='follow')\n", (517, 575), False, 'from django.conf.urls import url\n'), ((583, 650), 'django.conf.urls.url', 'url', (['"""^unfollow/(?P<user_id>\\\\d+)"""', 'views.unfollow'], {'name': '"""unfollow"""'}), "('^unfollow/(?P<user_id>\\\\d+)', views.unfollow, name='unfollow')\n", (586, 650), False, 'from django.conf.urls import url\n'), ((656, 711), 'django.conf.urls.url', 'url', (['"""^likes/(\\\\d+)/$"""', 'views.like_images'], {'name': '"""likes"""'}), "('^likes/(\\\\d+)/$', views.like_images, name='likes')\n", (659, 711), False, 'from django.conf.urls import url\n'), ((751, 812), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (757, 812), False, 'from django.conf.urls.static import static\n')]
import datetime from unittest.mock import patch import dns.resolver import dns.rrset import pytest import pytz from django.utils import timezone from freezegun import freeze_time from rest_framework import status from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team from posthog.test.base import APIBaseTest, BaseTest class FakeAnswer(object): def __init__(self, answer): self.answer = answer class FakeDNSResponse(object): def __init__(self, answer): self.response = FakeAnswer(answer) class TestOrganizationDomains(BaseTest): def test_continuous_verification_task(self): """ Tests the task that re-verifies domains to ensure ownership is maintained. """ pass class TestOrganizationDomainsAPI(APIBaseTest): domain: OrganizationDomain = None # type: ignore another_domain: OrganizationDomain = None # type: ignore another_org: Organization = None # type: ignore @classmethod def setUpTestData(cls): super().setUpTestData() cls.domain = OrganizationDomain.objects.create(organization=cls.organization, domain="myposthog.com") cls.another_org = Organization.objects.create(name="Another Org") Team.objects.create(organization=cls.another_org) cls.another_domain = OrganizationDomain.objects.create(organization=cls.another_org, domain="org.posthog.net") # List & retrieve domains def test_can_list_and_retrieve_domains(self): response = self.client.get("/api/organizations/@current/domains") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.assertEqual(response_data["count"], 1) item = response_data["results"][0] self.assertEqual(item["domain"], "myposthog.com") self.assertEqual(item["verified_at"], None) self.assertEqual(item["is_verified"], False) self.assertEqual(item["jit_provisioning_enabled"], False) self.assertEqual(item["sso_enforcement"], "") self.assertRegex(item["verification_challenge"], r"[0-9A-Za-z_-]{32}") retrieve_response = self.client.get(f"/api/organizations/{self.organization.id}/domains/{self.domain.id}") self.assertEqual(retrieve_response.status_code, status.HTTP_200_OK) self.assertEqual(retrieve_response.json(), response_data["results"][0]) def test_cannot_list_or_retrieve_domains_for_other_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.get(f"/api/organizations/@current/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.json(), self.not_found_response()) response = self.client.get(f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) # Create domains def test_create_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() with self.settings(MULTI_TENANCY=True): response = self.client.post( "/api/organizations/@current/domains/", { "domain": "the.posthog.com", "verified_at": "2022-01-01T14:25:25.000Z", # ignore me "verification_challenge": "123", # ignore me "jit_provisioning_enabled": True, # ignore me "sso_enforcement": "saml", # ignore me }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) response_data = response.json() self.assertEqual(response_data["domain"], "the.posthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(response_data["jit_provisioning_enabled"], False) self.assertRegex(response_data["verification_challenge"], r"[0-9A-Za-z_-]{32}") instance = OrganizationDomain.objects.get(id=response_data["id"]) self.assertEqual(instance.domain, "the.posthog.com") self.assertEqual(instance.verified_at, None) self.assertEqual(instance.last_verification_retry, None) self.assertEqual(instance.sso_enforcement, "") @pytest.mark.skip_on_multitenancy def test_creating_domain_on_self_hosted_is_automatically_verified(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() with freeze_time("2021-08-08T20:20:08Z"): response = self.client.post( "/api/organizations/@current/domains/", { "domain": "the.posthog.com", "verified_at": "2022-01-01T14:25:25.000Z", # ignore me "verification_challenge": "123", # ignore me "jit_provisioning_enabled": True, # ignore me "sso_enforcement": "saml", # ignore me }, ) self.assertEqual(response.status_code, status.HTTP_201_CREATED) response_data = response.json() self.assertEqual(response_data["domain"], "the.posthog.com") self.assertEqual( response_data["verified_at"], "2021-08-08T20:20:08Z", ) self.assertEqual(response_data["jit_provisioning_enabled"], False) self.assertRegex(response_data["verification_challenge"], r"[0-9A-Za-z_-]{32}") instance = OrganizationDomain.objects.get(id=response_data["id"]) self.assertEqual(instance.domain, "the.posthog.com") self.assertEqual( instance.verified_at, datetime.datetime(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC), ) self.assertEqual(instance.last_verification_retry, None) self.assertEqual(instance.sso_enforcement, "") def test_cannot_create_duplicate_domain(self): OrganizationDomain.objects.create(domain="i-registered-first.com", organization=self.another_org) count = OrganizationDomain.objects.count() self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.post("/api/organizations/@current/domains/", {"domain": "i-registered-first.com"},) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "unique", "detail": "domain with this domain already exists.", "attr": "domain", }, ) self.assertEqual(OrganizationDomain.objects.count(), count) def test_cannot_create_invalid_domain(self): count = OrganizationDomain.objects.count() self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() invalid_domains = ["<EMAIL>", "๐Ÿฆ”๐Ÿฆ”๐Ÿฆ”.com", "one.two.c", "--alpha.com", "javascript: alert(1)"] for _domain in invalid_domains: response = self.client.post("/api/organizations/@current/domains/", {"domain": _domain,},) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "invalid_input", "detail": "Please enter a valid domain or subdomain name.", "attr": "domain", }, ) self.assertEqual(OrganizationDomain.objects.count(), count) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_can_request_verification_for_unverified_domains(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.return_value = FakeDNSResponse( [ dns.rrset.from_text( "_posthog-challenge.myposthog.com.", 3600, "IN", "TXT", self.domain.verification_challenge, ) ], ) with freeze_time("2021-08-08T20:20:08Z"): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual( response_data["verified_at"], self.domain.verified_at.strftime("%Y-%m-%dT%H:%M:%SZ"), ) self.assertEqual(response_data["is_verified"], True) self.assertEqual( self.domain.verified_at, datetime.datetime(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC), ) self.assertEqual(self.domain.is_verified, True) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_domain_is_not_verified_with_missing_challenge(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.side_effect = dns.resolver.NoAnswer() with freeze_time("2021-10-10T10:10:10Z"): with self.settings(MULTI_TENANCY=True): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(self.domain.verified_at, None) self.assertEqual( self.domain.last_verification_retry, datetime.datetime(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC), ) @patch("posthog.models.organization_domain.dns.resolver.resolve") def test_domain_is_not_verified_with_incorrect_challenge(self, mock_dns_query): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() mock_dns_query.return_value = FakeDNSResponse( [dns.rrset.from_text("_posthog-challenge.myposthog.com.", 3600, "IN", "TXT", "incorrect_challenge",)], ) with freeze_time("2021-10-10T10:10:10Z"): with self.settings(MULTI_TENANCY=True): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.json() self.domain.refresh_from_db() self.assertEqual(response_data["domain"], "myposthog.com") self.assertEqual(response_data["verified_at"], None) self.assertEqual(self.domain.verified_at, None) self.assertEqual( self.domain.last_verification_retry, datetime.datetime(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC), ) def test_cannot_request_verification_for_verified_domains(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.domain.verified_at = timezone.now() self.domain.save() response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "already_verified", "detail": "This domain has already been verified.", "attr": None, }, ) def test_only_admin_can_create_verified_domains(self): count = OrganizationDomain.objects.count() response = self.client.post("/api/organizations/@current/domains/", {"domain": "evil.posthog.com"}) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.assertEqual(OrganizationDomain.objects.count(), count) def test_only_admin_can_request_verification(self): response = self.client.post(f"/api/organizations/@current/domains/{self.domain.id}/verify") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() self.assertEqual(self.domain.verified_at, None) # Update domains def test_can_update_jit_provisioning_and_sso_enforcement(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.domain.verified_at = timezone.now() self.domain.save() response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json()["sso_enforcement"], "google-oauth2") self.assertEqual(response.json()["jit_provisioning_enabled"], True) self.domain.refresh_from_db() self.assertEqual(self.domain.sso_enforcement, "google-oauth2") self.assertEqual(self.domain.jit_provisioning_enabled, True) def test_cannot_enforce_sso_or_enable_jit_provisioning_on_unverified_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() # SSO Enforcement response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2"}, ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "verification_required", "detail": "This attribute cannot be updated until the domain is verified.", "attr": "sso_enforcement", }, ) self.domain.refresh_from_db() self.assertEqual(self.domain.sso_enforcement, "") # JIT Provisioning response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual( response.json(), { "type": "validation_error", "code": "verification_required", "detail": "This attribute cannot be updated until the domain is verified.", "attr": "jit_provisioning_enabled", }, ) self.domain.refresh_from_db() self.assertEqual(self.domain.jit_provisioning_enabled, False) def test_only_allowed_parameters_can_be_updated(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.patch( f"/api/organizations/@current/domains/{self.domain.id}/", {"verified_at": "2020-01-01T12:12:12Z", "verification_challenge": "123"}, ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.json()["verified_at"], None) self.assertRegex(response.json()["verification_challenge"], r"[0-9A-Za-z_-]{32}") def test_only_admin_can_update_domain(self): self.domain.verified_at = timezone.now() self.domain.save() response = self.client.patch( f"/api/organizations/{self.organization.id}/domains/{self.domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() self.assertEqual(self.domain.jit_provisioning_enabled, False) self.assertEqual(self.domain.sso_enforcement, "") def test_cannot_update_domain_for_another_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() self.another_domain.verified_at = timezone.now() self.another_domain.save() response = self.client.patch( f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}/", {"sso_enforcement": "google-oauth2", "jit_provisioning_enabled": True}, ) self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) self.another_domain.refresh_from_db() self.assertEqual(self.another_domain.jit_provisioning_enabled, False) self.assertEqual(self.another_domain.sso_enforcement, "") # Delete domains def test_admin_can_delete_domain(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.delete(f"/api/organizations/@current/domains/{self.domain.id}") self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(response.content, b"") self.assertFalse(OrganizationDomain.objects.filter(id=self.domain.id).exists()) def test_only_admin_can_delete_domain(self): response = self.client.delete(f"/api/organizations/@current/domains/{self.domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual( response.json(), self.permission_denied_response("Your organization access level is insufficient."), ) self.domain.refresh_from_db() def test_cannot_delete_domain_for_another_org(self): self.organization_membership.level = OrganizationMembership.Level.ADMIN self.organization_membership.save() response = self.client.delete(f"/api/organizations/{self.another_org.id}/domains/{self.another_domain.id}") self.assertEqual(response.status_code, status.HTTP_403_FORBIDDEN) self.assertEqual(response.json(), self.permission_denied_response()) self.another_domain.refresh_from_db()
[ "posthog.models.OrganizationDomain.objects.create", "datetime.datetime", "posthog.models.OrganizationDomain.objects.count", "posthog.models.OrganizationDomain.objects.get", "django.utils.timezone.now", "posthog.models.OrganizationDomain.objects.filter", "posthog.models.Team.objects.create", "freezegun.freeze_time", "posthog.models.Organization.objects.create", "unittest.mock.patch" ]
[((7935, 7999), 'unittest.mock.patch', 'patch', (['"""posthog.models.organization_domain.dns.resolver.resolve"""'], {}), "('posthog.models.organization_domain.dns.resolver.resolve')\n", (7940, 7999), False, 'from unittest.mock import patch\n'), ((9227, 9291), 'unittest.mock.patch', 'patch', (['"""posthog.models.organization_domain.dns.resolver.resolve"""'], {}), "('posthog.models.organization_domain.dns.resolver.resolve')\n", (9232, 9291), False, 'from unittest.mock import patch\n'), ((10253, 10317), 'unittest.mock.patch', 'patch', (['"""posthog.models.organization_domain.dns.resolver.resolve"""'], {}), "('posthog.models.organization_domain.dns.resolver.resolve')\n", (10258, 10317), False, 'from unittest.mock import patch\n'), ((1084, 1177), 'posthog.models.OrganizationDomain.objects.create', 'OrganizationDomain.objects.create', ([], {'organization': 'cls.organization', 'domain': '"""myposthog.com"""'}), "(organization=cls.organization, domain=\n 'myposthog.com')\n", (1117, 1177), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((1200, 1247), 'posthog.models.Organization.objects.create', 'Organization.objects.create', ([], {'name': '"""Another Org"""'}), "(name='Another Org')\n", (1227, 1247), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((1256, 1305), 'posthog.models.Team.objects.create', 'Team.objects.create', ([], {'organization': 'cls.another_org'}), '(organization=cls.another_org)\n', (1275, 1305), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((1335, 1429), 'posthog.models.OrganizationDomain.objects.create', 'OrganizationDomain.objects.create', ([], {'organization': 'cls.another_org', 'domain': '"""org.posthog.net"""'}), "(organization=cls.another_org, domain=\n 'org.posthog.net')\n", (1368, 1429), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((4239, 4293), 'posthog.models.OrganizationDomain.objects.get', 'OrganizationDomain.objects.get', ([], {'id': "response_data['id']"}), "(id=response_data['id'])\n", (4269, 4293), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((5751, 5805), 'posthog.models.OrganizationDomain.objects.get', 'OrganizationDomain.objects.get', ([], {'id': "response_data['id']"}), "(id=response_data['id'])\n", (5781, 5805), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((6176, 6277), 'posthog.models.OrganizationDomain.objects.create', 'OrganizationDomain.objects.create', ([], {'domain': '"""i-registered-first.com"""', 'organization': 'self.another_org'}), "(domain='i-registered-first.com',\n organization=self.another_org)\n", (6209, 6277), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((6290, 6324), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (6322, 6324), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((7051, 7085), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (7083, 7085), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((11622, 11636), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (11634, 11636), False, 'from django.utils import timezone\n'), ((12197, 12231), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (12229, 12231), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((13356, 13370), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (13368, 13370), False, 'from django.utils import timezone\n'), ((16280, 16294), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (16292, 16294), False, 'from django.utils import timezone\n'), ((17152, 17166), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (17164, 17166), False, 'from django.utils import timezone\n'), ((4782, 4817), 'freezegun.freeze_time', 'freeze_time', (['"""2021-08-08T20:20:08Z"""'], {}), "('2021-08-08T20:20:08Z')\n", (4793, 4817), False, 'from freezegun import freeze_time\n'), ((5927, 5984), 'datetime.datetime', 'datetime.datetime', (['(2021)', '(8)', '(8)', '(20)', '(20)', '(8)'], {'tzinfo': 'pytz.UTC'}), '(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC)\n', (5944, 5984), False, 'import datetime\n'), ((6942, 6976), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (6974, 6976), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((7886, 7920), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (7918, 7920), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((8484, 8519), 'freezegun.freeze_time', 'freeze_time', (['"""2021-08-08T20:20:08Z"""'], {}), "('2021-08-08T20:20:08Z')\n", (8495, 8519), False, 'from freezegun import freeze_time\n'), ((9096, 9153), 'datetime.datetime', 'datetime.datetime', (['(2021)', '(8)', '(8)', '(20)', '(20)', '(8)'], {'tzinfo': 'pytz.UTC'}), '(2021, 8, 8, 20, 20, 8, tzinfo=pytz.UTC)\n', (9113, 9153), False, 'import datetime\n'), ((9574, 9609), 'freezegun.freeze_time', 'freeze_time', (['"""2021-10-10T10:10:10Z"""'], {}), "('2021-10-10T10:10:10Z')\n", (9585, 9609), False, 'from freezegun import freeze_time\n'), ((10175, 10235), 'datetime.datetime', 'datetime.datetime', (['(2021)', '(10)', '(10)', '(10)', '(10)', '(10)'], {'tzinfo': 'pytz.UTC'}), '(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC)\n', (10192, 10235), False, 'import datetime\n'), ((10721, 10756), 'freezegun.freeze_time', 'freeze_time', (['"""2021-10-10T10:10:10Z"""'], {}), "('2021-10-10T10:10:10Z')\n", (10732, 10756), False, 'from freezegun import freeze_time\n'), ((11322, 11382), 'datetime.datetime', 'datetime.datetime', (['(2021)', '(10)', '(10)', '(10)', '(10)', '(10)'], {'tzinfo': 'pytz.UTC'}), '(2021, 10, 10, 10, 10, 10, tzinfo=pytz.UTC)\n', (11339, 11382), False, 'import datetime\n'), ((12589, 12623), 'posthog.models.OrganizationDomain.objects.count', 'OrganizationDomain.objects.count', ([], {}), '()\n', (12621, 12623), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n'), ((18203, 18255), 'posthog.models.OrganizationDomain.objects.filter', 'OrganizationDomain.objects.filter', ([], {'id': 'self.domain.id'}), '(id=self.domain.id)\n', (18236, 18255), False, 'from posthog.models import Organization, OrganizationDomain, OrganizationMembership, Team\n')]
import numpy as np import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt from os import listdir from tensorflow.keras.callbacks import ModelCheckpoint dataDir = "./data/trainSmallFA/" files = listdir(dataDir) files.sort() totalLength = len(files) inputs = np.empty((len(files), 3, 64, 64)) targets = np.empty((len(files), 3, 64, 64)) for i, file in enumerate(files): npfile = np.load(dataDir + file) d = npfile['a'] inputs[i] = d[0:3] # inx, iny, mask targets[i] = d[3:6] # p, velx, vely # print("inputs shape = ", inputs.shape) print(np.shape(targets[:, 1, :, :].flatten())) maxvel = np.amax(np.sqrt(targets[:, 1, :, :]* targets[:, 1, :, :] + targets[:, 2, :, :]* targets[:, 2, :, :])) print(maxvel) targets[:, 1:3, :, :] /= maxvel targets[:, 0, :, :] /= np.amax(targets[:, 0, :, :]) for input in inputs: plt.figure(num=None, figsize=(20, 10), dpi=80, facecolor='w', edgecolor='k') # predicted data plt.subplot(331) plt.title('x vel') plt.imshow(input[0, :, :], cmap='jet') # vmin=-100,vmax=100, cmap='jet') plt.colorbar() plt.subplot(332) plt.title('y vel') plt.imshow(input[1, :, :], cmap='jet') plt.colorbar() plt.show()
[ "matplotlib.pyplot.imshow", "os.listdir", "numpy.sqrt", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.subplot", "matplotlib.pyplot.figure", "matplotlib.pyplot.title", "numpy.load", "numpy.amax", "matplotlib.pyplot.show" ]
[((224, 240), 'os.listdir', 'listdir', (['dataDir'], {}), '(dataDir)\n', (231, 240), False, 'from os import listdir\n'), ((833, 861), 'numpy.amax', 'np.amax', (['targets[:, 0, :, :]'], {}), '(targets[:, 0, :, :])\n', (840, 861), True, 'import numpy as np\n'), ((413, 436), 'numpy.load', 'np.load', (['(dataDir + file)'], {}), '(dataDir + file)\n', (420, 436), True, 'import numpy as np\n'), ((645, 743), 'numpy.sqrt', 'np.sqrt', (['(targets[:, 1, :, :] * targets[:, 1, :, :] + targets[:, 2, :, :] * targets[\n :, 2, :, :])'], {}), '(targets[:, 1, :, :] * targets[:, 1, :, :] + targets[:, 2, :, :] *\n targets[:, 2, :, :])\n', (652, 743), True, 'import numpy as np\n'), ((887, 963), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': 'None', 'figsize': '(20, 10)', 'dpi': '(80)', 'facecolor': '"""w"""', 'edgecolor': '"""k"""'}), "(num=None, figsize=(20, 10), dpi=80, facecolor='w', edgecolor='k')\n", (897, 963), True, 'import matplotlib.pyplot as plt\n'), ((990, 1006), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(331)'], {}), '(331)\n', (1001, 1006), True, 'import matplotlib.pyplot as plt\n'), ((1011, 1029), 'matplotlib.pyplot.title', 'plt.title', (['"""x vel"""'], {}), "('x vel')\n", (1020, 1029), True, 'import matplotlib.pyplot as plt\n'), ((1034, 1072), 'matplotlib.pyplot.imshow', 'plt.imshow', (['input[0, :, :]'], {'cmap': '"""jet"""'}), "(input[0, :, :], cmap='jet')\n", (1044, 1072), True, 'import matplotlib.pyplot as plt\n'), ((1112, 1126), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1124, 1126), True, 'import matplotlib.pyplot as plt\n'), ((1131, 1147), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(332)'], {}), '(332)\n', (1142, 1147), True, 'import matplotlib.pyplot as plt\n'), ((1152, 1170), 'matplotlib.pyplot.title', 'plt.title', (['"""y vel"""'], {}), "('y vel')\n", (1161, 1170), True, 'import matplotlib.pyplot as plt\n'), ((1175, 1213), 'matplotlib.pyplot.imshow', 'plt.imshow', (['input[1, :, :]'], {'cmap': '"""jet"""'}), "(input[1, :, :], cmap='jet')\n", (1185, 1213), True, 'import matplotlib.pyplot as plt\n'), ((1218, 1232), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1230, 1232), True, 'import matplotlib.pyplot as plt\n'), ((1238, 1248), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1246, 1248), True, 'import matplotlib.pyplot as plt\n')]
# ~~~ # This file is part of the paper: # # " An Online Efficient Two-Scale Reduced Basis Approach # for the Localized Orthogonal Decomposition " # # https://github.com/TiKeil/Two-scale-RBLOD.git # # Copyright 2019-2021 all developers. All rights reserved. # License: Licensed as BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) # Authors: # <NAME> # <NAME> # ~~~ from setuptools import setup setup(name='rblod', version='2021.1', description='Pymor support for RBLOD', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['rblod'])
[ "setuptools.setup" ]
[((450, 606), 'setuptools.setup', 'setup', ([], {'name': '"""rblod"""', 'version': '"""2021.1"""', 'description': '"""Pymor support for RBLOD"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'license': '"""MIT"""', 'packages': "['rblod']"}), "(name='rblod', version='2021.1', description='Pymor support for RBLOD',\n author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['rblod'])\n", (455, 606), False, 'from setuptools import setup\n')]
import os import shutil import numpy as np import pandas as pd import seaborn as sns import cosmicfish as cf import matplotlib.pyplot as plt import dill # Instruct pyplot to use seaborn sns.set() # Set project, data, CLASS directories projectdir = os.environ['STORAGE_DIR'] datastore = os.environ['DATASTORE_DIR'] classpath = os.environ['CLASS_DIR'] fidx = int(os.environ['FORECAST_INDEX']) # Generate output paths fp_resultsdir = projectdir cf.makedirectory(fp_resultsdir) # Specify resolution of numerical integrals derivative_step = 0.008 # How much to vary parameter to calculate numerical derivative g_derivative_step = 0.1 mu_integral_step = 0.05 # For calculating numerical integral wrt mu between -1 and 1 # Linda Fiducial Cosmology fp_fid = { "A_s" : 2.2321e-9, "n_s" : 0.967, "omega_b" : 0.02226, "omega_cdm" : 0.1127, "tau_reio" : 0.0598, "h" : 0.701, "T_cmb" : 2.726, # Units [K] "N_ncdm" : 4., "deg_ncdm" : 1.0, "T_ncdm" : (0.79/2.726), # Units [T_cmb]. "m_ncdm" : 0.01, # Units [eV] "b0" : 1.0, "beta0" : 1.7, "beta1" : 1.0, "alphak2" : 1.0, "sigma_fog_0" : 250000, #Units [m s^-2] "N_eff" : 0.0064, #We allow relativistic neutrinos in addition to our DM relic "relic_vary" : "N_ncdm", # Fix T_ncdm or m_ncdm "m_nu" : 0.02 } # EUCLID values z_table = np.array([0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65, 1.75, 1.85, 1.95]) dNdz = np.array([2434.280, 4364.812, 4728.559, 4825.798, 4728.797, 4507.625, 4269.851, 3720.657, 3104.309, 2308.975, 1514.831, 1474.707, 893.716, 497.613]) skycover = 0.3636 # Run Fisher Forecast full_masses = np.geomspace(0.01, 10., 21) full_temps = np.array([0.79, 0.91, 0.94, 1.08]) mass_index=(fidx % 21) temp_index=(fidx // 21) masses = np.array([full_masses[mass_index]]) temps = np.array([full_temps[temp_index]]) omegacdm_set = np.array([ fp_fid['omega_cdm'] - ((masses/cf.NEUTRINO_SCALE_FACTOR)* np.power(tval / 1.95, 3.)) for tidx, tval in enumerate(temps)]) fp_fiducialset = [[ dict(fp_fid, **{ 'm_ncdm' : masses[midx], 'omega_cdm' : omegacdm_set[tidx, midx], 'T_ncdm' : temps[tidx]/2.726}) for midx, mval in enumerate(masses)] for tidx, tval in enumerate(temps)] fp_forecastset = [[cf.forecast( classpath, datastore, '2relic', fidval, z_table, "EUCLID", dNdz, fsky=skycover, dstep=derivative_step, gstep=g_derivative_step, RSD=True, FOG=True, AP=True, COV=True) for fididx, fidval in enumerate(fidrowvals)] for fidrowidx, fidrowvals in enumerate(fp_fiducialset)] #dill.load_session('') for frowidx, frowval in enumerate(fp_forecastset): for fidx, fcst in enumerate(frowval): if type(fcst.fisher)==type(None): fcst.gen_pm() fcst.gen_fisher( fisher_order=[ 'omega_b', 'omega_cdm', 'n_s', 'A_s', 'tau_reio', 'h', 'N_ncdm', 'M_ncdm', 'sigma_fog', 'beta0', 'beta1', 'alpha_k2'], mu_step=mu_integral_step, skipgen=False) print("Relic Forecast ", fidx, " complete...") dill.dump_session(os.path.join(fp_resultsdir, 'fp_'+str(temp_index)+'_'+str(mass_index)+'.db')) else: print('Fisher matrix already generated!')
[ "seaborn.set", "numpy.power", "numpy.geomspace", "numpy.array", "cosmicfish.makedirectory", "cosmicfish.forecast" ]
[((665, 674), 'seaborn.set', 'sns.set', ([], {}), '()\n', (672, 674), True, 'import seaborn as sns\n'), ((1328, 1359), 'cosmicfish.makedirectory', 'cf.makedirectory', (['fp_resultsdir'], {}), '(fp_resultsdir)\n', (1344, 1359), True, 'import cosmicfish as cf\n'), ((3270, 3368), 'numpy.array', 'np.array', (['[0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65, 1.75, \n 1.85, 1.95]'], {}), '([0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65,\n 1.75, 1.85, 1.95])\n', (3278, 3368), True, 'import numpy as np\n'), ((3372, 3529), 'numpy.array', 'np.array', (['[2434.28, 4364.812, 4728.559, 4825.798, 4728.797, 4507.625, 4269.851, \n 3720.657, 3104.309, 2308.975, 1514.831, 1474.707, 893.716, 497.613]'], {}), '([2434.28, 4364.812, 4728.559, 4825.798, 4728.797, 4507.625, \n 4269.851, 3720.657, 3104.309, 2308.975, 1514.831, 1474.707, 893.716, \n 497.613])\n', (3380, 3529), True, 'import numpy as np\n'), ((3675, 3703), 'numpy.geomspace', 'np.geomspace', (['(0.01)', '(10.0)', '(21)'], {}), '(0.01, 10.0, 21)\n', (3687, 3703), True, 'import numpy as np\n'), ((3768, 3802), 'numpy.array', 'np.array', (['[0.79, 0.91, 0.94, 1.08]'], {}), '([0.79, 0.91, 0.94, 1.08])\n', (3776, 3802), True, 'import numpy as np\n'), ((3865, 3900), 'numpy.array', 'np.array', (['[full_masses[mass_index]]'], {}), '([full_masses[mass_index]])\n', (3873, 3900), True, 'import numpy as np\n'), ((3909, 3943), 'numpy.array', 'np.array', (['[full_temps[temp_index]]'], {}), '([full_temps[temp_index]])\n', (3917, 3943), True, 'import numpy as np\n'), ((4805, 4991), 'cosmicfish.forecast', 'cf.forecast', (['classpath', 'datastore', '"""2relic"""', 'fidval', 'z_table', '"""EUCLID"""', 'dNdz'], {'fsky': 'skycover', 'dstep': 'derivative_step', 'gstep': 'g_derivative_step', 'RSD': '(True)', 'FOG': '(True)', 'AP': '(True)', 'COV': '(True)'}), "(classpath, datastore, '2relic', fidval, z_table, 'EUCLID', dNdz,\n fsky=skycover, dstep=derivative_step, gstep=g_derivative_step, RSD=True,\n FOG=True, AP=True, COV=True)\n", (4816, 4991), True, 'import cosmicfish as cf\n'), ((4147, 4173), 'numpy.power', 'np.power', (['(tval / 1.95)', '(3.0)'], {}), '(tval / 1.95, 3.0)\n', (4155, 4173), True, 'import numpy as np\n')]
import argparse import warnings warnings.simplefilter("ignore", UserWarning) import files from tensorboardX import SummaryWriter import os import numpy as np import time import torch import torch.optim import torch.nn as nn import torch.utils.data import torchvision import torchvision.transforms as tfs from data import DataSet,return_model_loader from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage def RotationDataLoader(image_dir, is_validation=False, batch_size=256, crop_size=224, num_workers=4,shuffle=True): normalize = tfs.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transforms = tfs.Compose([ tfs.RandomResizedCrop(crop_size), tfs.RandomGrayscale(p=0.2), tfs.ColorJitter(0.4, 0.4, 0.4, 0.4), tfs.RandomHorizontalFlip(), tfs.Lambda(lambda img: torch.stack([normalize(tfs.ToTensor()( tfs.functional.rotate(img, angle))) for angle in [0, 90, 180, 270]] )) ]) if is_validation: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/val', transforms)) else: dataset = DataSet(torchvision.datasets.ImageFolder(image_dir + '/train', transforms)) loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=True, drop_last=False ) return loader class Optimizer: def __init__(self): self.num_epochs = 30 self.lr = 0.05 self.lr_schedule = lambda epoch: (self.lr * (0.1 ** (epoch//args.lrdrop)))*(epoch<80) + (epoch>=80)*self.lr*(0.1**3) self.momentum = 0.9 self.weight_decay = 10**(-5) self.resume = True self.checkpoint_dir = None self.writer = None self.K = args.ncl self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.val_loader = RotationDataLoader(args.imagenet_path, is_validation=True, batch_size=args.batch_size, num_workers=args.workers,shuffle=True) def optimize_epoch(self, model, optimizer, loader, epoch, validation=False): print(f"Starting epoch {epoch}, validation: {validation} " + "="*30) loss_value = AverageMeter() rotacc_value = AverageMeter() # house keeping if not validation: model.train() lr = self.lr_schedule(epoch) for pg in optimizer.param_groups: pg['lr'] = lr else: model.eval() XE = torch.nn.CrossEntropyLoss().to(self.dev) l_dl = 0 # len(loader) now = time.time() batch_time = MovingAverage(intertia=0.9) for iter, (data, label, selected) in enumerate(loader): now = time.time() if not validation: niter = epoch * len(loader.dataset) + iter*args.batch_size data = data.to(self.dev) mass = data.size(0) where = np.arange(mass,dtype=int) * 4 data = data.view(mass * 4, 3, data.size(3), data.size(4)) rotlabel = torch.tensor(range(4)).view(-1, 1).repeat(mass, 1).view(-1).to(self.dev) #################### train CNN ########################################### if not validation: final = model(data) if args.onlyrot: loss = torch.Tensor([0]).to(self.dev) else: if args.hc == 1: loss = XE(final[0][where], self.L[selected]) else: loss = torch.mean(torch.stack([XE(final[k][where], self.L[k, selected]) for k in range(args.hc)])) rotloss = XE(final[-1], rotlabel) pred = torch.argmax(final[-1], 1) total_loss = loss + rotloss optimizer.zero_grad() total_loss.backward() optimizer.step() correct = (pred == rotlabel).to(torch.float) rotacc = correct.sum() / float(mass) else: final = model(data) pred = torch.argmax(final[-1], 1) correct = (pred == rotlabel.cuda()).to(torch.float) rotacc = correct.sum() / float(mass) total_loss = torch.Tensor([0]) loss = torch.Tensor([0]) rotloss = torch.Tensor([0]) rotacc_value.update(rotacc.item(), mass) loss_value.update(total_loss.item(), mass) batch_time.update(time.time() - now) now = time.time() print( f"Loss: {loss_value.avg:03.3f}, RotAcc: {rotacc_value.avg:03.3f} | {epoch: 3}/{iter:05}/{l_dl:05} Freq: {mass / batch_time.avg:04.1f}Hz:", end='\r', flush=True) # every few iter logging if (iter % args.logiter == 0): if not validation: print(niter, " Loss: {0:.3f}".format(loss.item()), flush=True) with torch.no_grad(): if not args.onlyrot: pred = torch.argmax(final[0][where], dim=1) pseudoloss = XE(final[0][where], pred) if not args.onlyrot: self.writer.add_scalar('Pseudoloss', pseudoloss.item(), niter) self.writer.add_scalar('lr', self.lr_schedule(epoch), niter) self.writer.add_scalar('Loss', loss.item(), niter) self.writer.add_scalar('RotLoss', rotloss.item(), niter) self.writer.add_scalar('RotAcc', rotacc.item(), niter) if iter > 0: self.writer.add_scalar('Freq(Hz)', mass/(time.time() - now), niter) # end of epoch logging if self.writer and (epoch % self.log_interval == 0): write_conv(self.writer, model, epoch) if validation: print('val Rot-Acc: ', rotacc_value.avg) self.writer.add_scalar('val Rot-Acc', rotacc_value.avg, epoch) files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch,lowest=False) return {'loss': loss_value.avg} def optimize(self, model, train_loader): """Perform full optimization.""" first_epoch = 0 model = model.to(self.dev) self.optimize_times = [0] optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), weight_decay=self.weight_decay, momentum=self.momentum, lr=self.lr) if self.checkpoint_dir is not None and self.resume: self.L, first_epoch = files.load_checkpoint_all(self.checkpoint_dir, model=None, opt=None) print('loaded from: ', self.checkpoint_dir,flush=True) print('first five entries of L: ', self.L[:5], flush=True) print('found first epoch to be', first_epoch, flush=True) first_epoch = 0 self.optimize_times = [0] self.L = self.L.cuda() print("model.headcount ", model.headcount, flush=True) ##################################################################################### # Perform optmization ############################################################### lowest_loss = 1e9 epoch = first_epoch while epoch < (self.num_epochs+1): if not args.val_only: m = self.optimize_epoch(model, optimizer, train_loader, epoch, validation=False) if m['loss'] < lowest_loss: lowest_loss = m['loss'] files.save_checkpoint_all(self.checkpoint_dir, model, args.arch, optimizer, self.L, epoch, lowest=True) else: print('='*30 +' doing only validation ' + "="*30) epoch = self.num_epochs m = self.optimize_epoch(model, optimizer, self.val_loader, epoch, validation=True) epoch += 1 print(f"Model optimization completed. Saving final model to {os.path.join(self.checkpoint_dir, 'model_final.pth.tar')}") torch.save(model, os.path.join(self.checkpoint_dir, 'model_final.pth.tar')) return model def get_parser(): parser = argparse.ArgumentParser(description='Retrain with given labels combined with RotNet loss') # optimizer parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of epochs') parser.add_argument('--batch-size', default=64, type=int, metavar='BS', help='batch size') parser.add_argument('--lr', default=0.05, type=float, metavar='FLOAT', help='initial learning rate') parser.add_argument('--lrdrop', default=30, type=int, metavar='INT', help='multiply LR by 0.1 every') # architecture parser.add_argument('--arch', default='alexnet', type=str, help='alexnet or resnet') parser.add_argument('--archspec', default='big', type=str, help='big or small for alexnet ') parser.add_argument('--ncl', default=1000, type=int, metavar='INT', help='number of clusters') parser.add_argument('--hc', default=1, type=int, metavar='INT', help='number of heads') parser.add_argument('--init', default=False, action='store_true', help='initialization of network to PyTorch 0.4') # what we do in this code parser.add_argument('--val-only', default=False, action='store_true', help='if we run only validation set') parser.add_argument('--onlyrot', default=False, action='store_true', help='if train only RotNet') # housekeeping parser.add_argument('--data', default="Imagenet", type=str) parser.add_argument('--device', default="0", type=str, metavar='N', help='GPU device') parser.add_argument('--exp', default='./rot-retrain', metavar='DIR', help='path to result dirs') parser.add_argument('--workers', default=6, type=int, metavar='N', help='number workers (default: 6)') parser.add_argument('--imagenet-path', default='/home/ubuntu/data/imagenet', type=str, help='') parser.add_argument('--comment', default='rot-retrain', type=str, help='comment for tensorboardX') parser.add_argument('--log-interval', default=1, type=int, metavar='INT', help='save stuff every x epochs') parser.add_argument('--logiter', default=200, type=int, metavar='INT', help='log every x-th batch') return parser if __name__ == "__main__": args = get_parser().parse_args() name = "%s" % args.comment.replace('/', '_') try: args.device = [int(item) for item in args.device.split(',')] except AttributeError: args.device = [int(args.device)] setup_runtime(seed=42, cuda_dev_id=args.device) print(args, flush=True) print() print(name,flush=True) writer = SummaryWriter('./runs/%s/%s'%(args.data,name)) writer.add_text('args', " \n".join(['%s %s' % (arg, getattr(args, arg)) for arg in vars(args)])) # Setup model and train_loader print('Commencing!', flush=True) model, train_loader = return_model_loader(args) train_loader = RotationDataLoader(args.imagenet_path, is_validation=False, crop_size=224, batch_size=args.batch_size, num_workers=args.workers, shuffle=True) # add additional head to the network for RotNet loss. if args.arch == 'alexnet': if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(4096, args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(4096, 4)) else: if args.hc == 1: model.__setattr__("top_layer0", nn.Linear(2048*int(args.archspec), args.ncl)) model.top_layer = None model.headcount = args.hc+1 model.__setattr__("top_layer%s" % args.hc, nn.Linear(2048*int(args.archspec), 4)) if args.init: for mod in model.modules(): mod.apply(weight_init) # Setup optimizer o = Optimizer() o.writer = writer o.lr = args.lr o.num_epochs = args.epochs o.resume = True o.log_interval = args.log_interval o.checkpoint_dir = os.path.join(args.exp, 'checkpoints') # Optimize o.optimize(model, train_loader)
[ "torch.nn.CrossEntropyLoss", "torchvision.transforms.ColorJitter", "torchvision.transforms.functional.rotate", "torch.cuda.is_available", "files.save_checkpoint_all", "numpy.arange", "util.setup_runtime", "tensorboardX.SummaryWriter", "argparse.ArgumentParser", "util.write_conv", "torchvision.datasets.ImageFolder", "util.MovingAverage", "files.load_checkpoint_all", "warnings.simplefilter", "torchvision.transforms.ToTensor", "torchvision.transforms.RandomResizedCrop", "torch.argmax", "torchvision.transforms.RandomHorizontalFlip", "torch.Tensor", "torchvision.transforms.Normalize", "data.return_model_loader", "util.AverageMeter", "time.time", "torchvision.transforms.RandomGrayscale", "os.path.join", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((32, 76), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (53, 76), False, 'import warnings\n'), ((594, 662), 'torchvision.transforms.Normalize', 'tfs.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n', (607, 662), True, 'import torchvision.transforms as tfs\n'), ((1444, 1583), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset'], {'batch_size': 'batch_size', 'shuffle': 'shuffle', 'num_workers': 'num_workers', 'pin_memory': '(True)', 'drop_last': '(False)'}), '(dataset, batch_size=batch_size, shuffle=shuffle,\n num_workers=num_workers, pin_memory=True, drop_last=False)\n', (1471, 1583), False, 'import torch\n'), ((8746, 8841), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Retrain with given labels combined with RotNet loss"""'}), "(description=\n 'Retrain with given labels combined with RotNet loss')\n", (8769, 8841), False, 'import argparse\n'), ((11101, 11148), 'util.setup_runtime', 'setup_runtime', ([], {'seed': '(42)', 'cuda_dev_id': 'args.device'}), '(seed=42, cuda_dev_id=args.device)\n', (11114, 11148), False, 'from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage\n'), ((11230, 11279), 'tensorboardX.SummaryWriter', 'SummaryWriter', (["('./runs/%s/%s' % (args.data, name))"], {}), "('./runs/%s/%s' % (args.data, name))\n", (11243, 11279), False, 'from tensorboardX import SummaryWriter\n'), ((11478, 11503), 'data.return_model_loader', 'return_model_loader', (['args'], {}), '(args)\n', (11497, 11503), False, 'from data import DataSet, return_model_loader\n'), ((12643, 12680), 'os.path.join', 'os.path.join', (['args.exp', '"""checkpoints"""'], {}), "(args.exp, 'checkpoints')\n", (12655, 12680), False, 'import os\n'), ((2512, 2526), 'util.AverageMeter', 'AverageMeter', ([], {}), '()\n', (2524, 2526), False, 'from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage\n'), ((2550, 2564), 'util.AverageMeter', 'AverageMeter', ([], {}), '()\n', (2562, 2564), False, 'from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage\n'), ((2900, 2911), 'time.time', 'time.time', ([], {}), '()\n', (2909, 2911), False, 'import time\n'), ((2933, 2960), 'util.MovingAverage', 'MovingAverage', ([], {'intertia': '(0.9)'}), '(intertia=0.9)\n', (2946, 2960), False, 'from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage\n'), ((6392, 6500), 'files.save_checkpoint_all', 'files.save_checkpoint_all', (['self.checkpoint_dir', 'model', 'args.arch', 'optimizer', 'self.L', 'epoch'], {'lowest': '(False)'}), '(self.checkpoint_dir, model, args.arch, optimizer,\n self.L, epoch, lowest=False)\n', (6417, 6500), False, 'import files\n'), ((726, 758), 'torchvision.transforms.RandomResizedCrop', 'tfs.RandomResizedCrop', (['crop_size'], {}), '(crop_size)\n', (747, 758), True, 'import torchvision.transforms as tfs\n'), ((792, 818), 'torchvision.transforms.RandomGrayscale', 'tfs.RandomGrayscale', ([], {'p': '(0.2)'}), '(p=0.2)\n', (811, 818), True, 'import torchvision.transforms as tfs\n'), ((852, 887), 'torchvision.transforms.ColorJitter', 'tfs.ColorJitter', (['(0.4)', '(0.4)', '(0.4)', '(0.4)'], {}), '(0.4, 0.4, 0.4, 0.4)\n', (867, 887), True, 'import torchvision.transforms as tfs\n'), ((921, 947), 'torchvision.transforms.RandomHorizontalFlip', 'tfs.RandomHorizontalFlip', ([], {}), '()\n', (945, 947), True, 'import torchvision.transforms as tfs\n'), ((1261, 1325), 'torchvision.datasets.ImageFolder', 'torchvision.datasets.ImageFolder', (["(image_dir + '/val')", 'transforms'], {}), "(image_dir + '/val', transforms)\n", (1293, 1325), False, 'import torchvision\n'), ((1363, 1429), 'torchvision.datasets.ImageFolder', 'torchvision.datasets.ImageFolder', (["(image_dir + '/train')", 'transforms'], {}), "(image_dir + '/train', transforms)\n", (1395, 1429), False, 'import torchvision\n'), ((3043, 3054), 'time.time', 'time.time', ([], {}), '()\n', (3052, 3054), False, 'import time\n'), ((4870, 4881), 'time.time', 'time.time', ([], {}), '()\n', (4879, 4881), False, 'import time\n'), ((6182, 6219), 'util.write_conv', 'write_conv', (['self.writer', 'model', 'epoch'], {}), '(self.writer, model, epoch)\n', (6192, 6219), False, 'from util import weight_init, write_conv, setup_runtime, AverageMeter, MovingAverage\n'), ((7114, 7182), 'files.load_checkpoint_all', 'files.load_checkpoint_all', (['self.checkpoint_dir'], {'model': 'None', 'opt': 'None'}), '(self.checkpoint_dir, model=None, opt=None)\n', (7139, 7182), False, 'import files\n'), ((8632, 8688), 'os.path.join', 'os.path.join', (['self.checkpoint_dir', '"""model_final.pth.tar"""'], {}), "(self.checkpoint_dir, 'model_final.pth.tar')\n", (8644, 8688), False, 'import os\n'), ((12051, 12069), 'torch.nn.Linear', 'nn.Linear', (['(4096)', '(4)'], {}), '(4096, 4)\n', (12060, 12069), True, 'import torch.nn as nn\n'), ((2095, 2120), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2118, 2120), False, 'import torch\n'), ((2813, 2840), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (2838, 2840), False, 'import torch\n'), ((3251, 3277), 'numpy.arange', 'np.arange', (['mass'], {'dtype': 'int'}), '(mass, dtype=int)\n', (3260, 3277), True, 'import numpy as np\n'), ((4042, 4068), 'torch.argmax', 'torch.argmax', (['final[-1]', '(1)'], {}), '(final[-1], 1)\n', (4054, 4068), False, 'import torch\n'), ((4414, 4440), 'torch.argmax', 'torch.argmax', (['final[-1]', '(1)'], {}), '(final[-1], 1)\n', (4426, 4440), False, 'import torch\n'), ((4591, 4608), 'torch.Tensor', 'torch.Tensor', (['[0]'], {}), '([0])\n', (4603, 4608), False, 'import torch\n'), ((4632, 4649), 'torch.Tensor', 'torch.Tensor', (['[0]'], {}), '([0])\n', (4644, 4649), False, 'import torch\n'), ((4676, 4693), 'torch.Tensor', 'torch.Tensor', (['[0]'], {}), '([0])\n', (4688, 4693), False, 'import torch\n'), ((11902, 11927), 'torch.nn.Linear', 'nn.Linear', (['(4096)', 'args.ncl'], {}), '(4096, args.ncl)\n', (11911, 11927), True, 'import torch.nn as nn\n'), ((4833, 4844), 'time.time', 'time.time', ([], {}), '()\n', (4842, 4844), False, 'import time\n'), ((8085, 8192), 'files.save_checkpoint_all', 'files.save_checkpoint_all', (['self.checkpoint_dir', 'model', 'args.arch', 'optimizer', 'self.L', 'epoch'], {'lowest': '(True)'}), '(self.checkpoint_dir, model, args.arch, optimizer,\n self.L, epoch, lowest=True)\n', (8110, 8192), False, 'import files\n'), ((8546, 8602), 'os.path.join', 'os.path.join', (['self.checkpoint_dir', '"""model_final.pth.tar"""'], {}), "(self.checkpoint_dir, 'model_final.pth.tar')\n", (8558, 8602), False, 'import os\n'), ((5318, 5333), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5331, 5333), False, 'import torch\n'), ((3661, 3678), 'torch.Tensor', 'torch.Tensor', (['[0]'], {}), '([0])\n', (3673, 3678), False, 'import torch\n'), ((5415, 5451), 'torch.argmax', 'torch.argmax', (['final[0][where]'], {'dim': '(1)'}), '(final[0][where], dim=1)\n', (5427, 5451), False, 'import torch\n'), ((1027, 1041), 'torchvision.transforms.ToTensor', 'tfs.ToTensor', ([], {}), '()\n', (1039, 1041), True, 'import torchvision.transforms as tfs\n'), ((1079, 1112), 'torchvision.transforms.functional.rotate', 'tfs.functional.rotate', (['img', 'angle'], {}), '(img, angle)\n', (1100, 1112), True, 'import torchvision.transforms as tfs\n'), ((6050, 6061), 'time.time', 'time.time', ([], {}), '()\n', (6059, 6061), False, 'import time\n')]
# -*- coding: utf-8 -*- from tests import HangulizeTestCase from hangulize.langs.vie import Vietnamese class VietnameseTestCase(HangulizeTestCase): """ http://korean.go.kr/09_new/dic/rule/rule_foreign_0218.jsp """ lang = Vietnamese() def test_1st(self): """์ œ1ํ•ญ nh๋Š” ์ด์–ด์ง€๋Š” ๋ชจ์Œ๊ณผ ํ•ฉ์ณ์„œ ํ•œ ์Œ์ ˆ๋กœ ์ ๋Š”๋‹ค. ์–ด๋ง์ด๋‚˜ ์ž์Œ ์•ž์—์„œ๋Š” ๋ฐ›์นจ โ€˜ใ„ด' ์œผ๋กœ ์ ๋˜, ๊ทธ ์•ž์˜ ๋ชจ์Œ์ด a์ธ ๊ฒฝ์šฐ์—๋Š” a์™€ ํ•ฉ์ณ โ€˜์•„์ธ'์œผ๋กœ ์ ๋Š”๋‹ค. """ self.assert_examples({ # u'Nha Trang': u'๋ƒ์งฑ', # u'<NAME>': u'ํ˜ธ์ฐŒ๋ฏผ', # u'Thanh Hoa': u'ํƒ€์ธํ˜ธ์•„', # u'ฤรดng Khanh': u'๋™์นด์ธ', }) def test_2nd(self): """์ œ2ํ•ญ qu๋Š” ์ด์–ด์ง€๋Š” ๋ชจ์Œ์ด a์ผ ๊ฒฝ์šฐ์—๋Š” ํ•ฉ์ณ์„œ โ€˜๊ฝˆ'๋กœ ์ ๋Š”๋‹ค. """ self.assert_examples({ 'Quang': '๊ฝ', # u'hat quan ho': u'ํ•ซ๊ฝŒํ˜ธ', 'Quรดc': '๊พธ์˜ฅ', 'Quyรชn': '๊พธ์˜Œ', }) def test_3rd(self): """์ œ3ํ•ญ y๋Š” ๋’ค๋”ฐ๋ฅด๋Š” ๋ชจ์Œ๊ณผ ํ•ฉ์ณ์„œ ํ•œ ์Œ์ ˆ๋กœ ์ ๋Š”๋‹ค. """ self.assert_examples({ 'yรชn': '์˜Œ', 'Nguyรชn': '์‘์šฐ์˜Œ', }) def test_4th(self): """์ œ4ํ•ญ ์–ด์ค‘์˜ l์ด ๋ชจ์Œ ์•ž์— ์˜ฌ ๋•Œ์—๋Š” โ€˜ใ„นใ„น'๋กœ ์ ๋Š”๋‹ค. ๋‹ค๋งŒ, ์ธ๋ช…์˜ ์„ฑ๊ณผ ์ด๋ฆ„์€ ๋ณ„๊ฐœ์˜ ๋‹จ์–ด๋กœ ๋ณด์•„ ์ด ๊ทœ์น™์„ ์ ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค. """ self.assert_examples({ # u'klรดng put': u'๋Œ๋กฑ์ซ', 'Pleiku': '์ ๋ž˜์ด๊พธ', # u'Ha Long': u'ํ• ๋กฑ', # u'My Lay': u'๋ฐ€๋ผ์ด', })
[ "hangulize.langs.vie.Vietnamese" ]
[((232, 244), 'hangulize.langs.vie.Vietnamese', 'Vietnamese', ([], {}), '()\n', (242, 244), False, 'from hangulize.langs.vie import Vietnamese\n')]
from mathlibpy.functions import * import unittest class SinTester(unittest.TestCase): def setUp(self): self.sin = Sin() def test_call(self): self.assertEqual(self.sin(0), 0) def test_eq(self): self.assertEqual(self.sin, Sin()) def test_get_derivative_call(self): self.assertEqual(self.sin.get_derivative()(0), 1) class CosTester(unittest.TestCase): def setUp(self): self.cos = Cos() def test_call(self): self.assertEqual(self.cos(0), 1) def test_eq(self): self.assertEqual(self.cos, Cos()) def test_get_derivative_call(self): self.assertEqual(self.cos.get_derivative()(math.pi/2), -1) class TanTester(unittest.TestCase): def setUp(self): self.tan = Tan() def test_call(self): self.assertEqual(self.tan(0), 0) def test_eq(self): self.assertEqual(self.tan, Tan()) def test_get_derivative(self): self.assertEqual(self.tan.get_derivative()(0), 1) if __name__ == "__main__": unittest.main()
[ "unittest.main" ]
[((1038, 1053), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1051, 1053), False, 'import unittest\n')]
import numpy as np from something import Top i = 0 while i < 10: a = np.ndarray((10,4)) b = np.ones((10, Top)) i += 1 del Top # show_store()
[ "numpy.ndarray", "numpy.ones" ]
[((74, 93), 'numpy.ndarray', 'np.ndarray', (['(10, 4)'], {}), '((10, 4))\n', (84, 93), True, 'import numpy as np\n'), ((101, 119), 'numpy.ones', 'np.ones', (['(10, Top)'], {}), '((10, Top))\n', (108, 119), True, 'import numpy as np\n')]
from aiohttp_admin2.mappers import Mapper from aiohttp_admin2.mappers import fields class FloatMapper(Mapper): field = fields.FloatField() def test_correct_float_type(): """ In this test we check success convert to float type. """ mapper = FloatMapper({"field": 1}) mapper.is_valid() assert mapper.data["field"] == 1.0 mapper = FloatMapper({"field": 2}) mapper.is_valid() assert mapper.data["field"] == 2.0 mapper = FloatMapper({"field": -3}) mapper.is_valid() assert mapper.data["field"] == -3.0 mapper = FloatMapper({"field": 0}) mapper.is_valid() assert mapper.data["field"] == 0.0 def test_wrong_float_type(): """ In this test we check error when we received wrong float type. """ assert FloatMapper({"field": "string"}).is_valid() is False assert FloatMapper({"field": []}).is_valid() is False
[ "aiohttp_admin2.mappers.fields.FloatField" ]
[((125, 144), 'aiohttp_admin2.mappers.fields.FloatField', 'fields.FloatField', ([], {}), '()\n', (142, 144), False, 'from aiohttp_admin2.mappers import fields\n')]
#!/usr/bin/env python3 import os from argparse import ArgumentParser, ArgumentTypeError, FileType, Namespace from typing import Any def DirType(string: str) -> str: if os.path.isdir(string): return string raise ArgumentTypeError( 'Directory does not exist: "{}"'.format(os.path.abspath(string))) class Cli(ArgumentParser): def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) def arg(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs) def arg_bool(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs, action='store_true') def arg_dir(self, *args: Any, **kwargs: Any) -> None: self.add_argument(*args, **kwargs, type=DirType) def arg_file(self, *args: Any, mode: str = 'r', **kwargs: Any) -> None: self.add_argument(*args, **kwargs, type=FileType(mode)) def parse(self) -> Namespace: return self.parse_args()
[ "os.path.abspath", "argparse.FileType", "os.path.isdir" ]
[((174, 195), 'os.path.isdir', 'os.path.isdir', (['string'], {}), '(string)\n', (187, 195), False, 'import os\n'), ((296, 319), 'os.path.abspath', 'os.path.abspath', (['string'], {}), '(string)\n', (311, 319), False, 'import os\n'), ((915, 929), 'argparse.FileType', 'FileType', (['mode'], {}), '(mode)\n', (923, 929), False, 'from argparse import ArgumentParser, ArgumentTypeError, FileType, Namespace\n')]
import torch import torch.nn as nn from torch.nn.functional import max_pool1d from utility.model_parameter import Configuration, ModelParameter class CNNLayer(nn.Module): def __init__(self, config: Configuration, vocab_size=30000, use_embeddings=True, embed_dim=-1, **kwargs): super(CNNLayer, self).__init__() # set parameters self.max_seq_length = config.get_int(ModelParameter.MAX_LENGTH) self.use_gpu = torch.cuda.is_available() if embed_dim == -1: self.embedding_dim = config.get_int(ModelParameter.EMBEDDING_SIZE) else: self.embedding_dim = embed_dim self.max_length = config.get_int(ModelParameter.MAX_LENGTH) self.use_embeddings = use_embeddings self.conv_out_channels = config.get_int(ModelParameter.CHANNELS) self.filter_sizes = [2] # create and initialize layers self.embedding = nn.Embedding(vocab_size, self.embedding_dim) self.relu = nn.ReLU() self.convolutions = nn.ModuleList( [nn.Conv2d(1, self.conv_out_channels, (K, self.embedding_dim)) for K in self.filter_sizes]) self.dropout = nn.Dropout(0.3) def get_output_length(self): return len(self.filter_sizes) * self.conv_out_channels def forward(self, samples, **kwargs): encoded_samples = self.encode(samples) return encoded_samples def encode(self, samples): x = self.embedding(samples) x = x.unsqueeze(1) x = [self.relu(conv(x)).squeeze(3) for conv in self.convolutions] x = [max_pool1d(i, i.size(2)).squeeze(2) for i in x] x = self.dropout(torch.cat(x, 1)) return x
[ "torch.nn.ReLU", "torch.nn.Dropout", "torch.nn.Embedding", "torch.nn.Conv2d", "torch.cuda.is_available", "torch.cat" ]
[((446, 471), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (469, 471), False, 'import torch\n'), ((919, 963), 'torch.nn.Embedding', 'nn.Embedding', (['vocab_size', 'self.embedding_dim'], {}), '(vocab_size, self.embedding_dim)\n', (931, 963), True, 'import torch.nn as nn\n'), ((984, 993), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (991, 993), True, 'import torch.nn as nn\n'), ((1164, 1179), 'torch.nn.Dropout', 'nn.Dropout', (['(0.3)'], {}), '(0.3)\n', (1174, 1179), True, 'import torch.nn as nn\n'), ((1653, 1668), 'torch.cat', 'torch.cat', (['x', '(1)'], {}), '(x, 1)\n', (1662, 1668), False, 'import torch\n'), ((1050, 1111), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', 'self.conv_out_channels', '(K, self.embedding_dim)'], {}), '(1, self.conv_out_channels, (K, self.embedding_dim))\n', (1059, 1111), True, 'import torch.nn as nn\n')]
''' <xs:complexType name="backup"> <xs:annotation> <xs:documentation></xs:documentation> </xs:annotation> <xs:sequence> <xs:group ref="duration"/> <xs:group ref="editorial"/> </xs:sequence> </xs:complexType> ''' from musicscore.dtd.dtd import Sequence, GroupReference, Element from musicscore.musicxml.groups.common import Editorial from musicscore.musicxml.elements.note import Duration from musicscore.musicxml.types.complextypes.complextype import ComplexType class ComplexTypeBackup(ComplexType): """ The backup and forward elements are required to coordinate multiple voices in one part, including music on multiple staves. The backup type is generally used to move between voices and staves. Thus the backup element does not include voice or staff elements. Duration values should always be positive, and should not cross measure boundaries or mid-measure changes in the divisions value. """ _DTD = Sequence( Element(Duration), GroupReference(Editorial) ) def __init__(self, tag, *args, **kwargs): super().__init__(tag=tag, *args, **kwargs)
[ "musicscore.dtd.dtd.GroupReference", "musicscore.dtd.dtd.Element" ]
[((972, 989), 'musicscore.dtd.dtd.Element', 'Element', (['Duration'], {}), '(Duration)\n', (979, 989), False, 'from musicscore.dtd.dtd import Sequence, GroupReference, Element\n'), ((999, 1024), 'musicscore.dtd.dtd.GroupReference', 'GroupReference', (['Editorial'], {}), '(Editorial)\n', (1013, 1024), False, 'from musicscore.dtd.dtd import Sequence, GroupReference, Element\n')]
import torch import numpy as np import hashlib from torch.autograd import Variable import os def deterministic_random(min_value, max_value, data): digest = hashlib.sha256(data.encode()).digest() raw_value = int.from_bytes(digest[:4], byteorder='little', signed=False) return int(raw_value / (2 ** 32 - 1) * (max_value - min_value)) + min_value def mpjpe_cal(predicted, target): assert predicted.shape == target.shape return torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1)) def test_calculation(predicted, target, action, error_sum, data_type, subject, MAE=False): error_sum = mpjpe_by_action_p1(predicted, target, action, error_sum) if not MAE: error_sum = mpjpe_by_action_p2(predicted, target, action, error_sum) return error_sum def mpjpe_by_action_p1(predicted, target, action, action_error_sum): assert predicted.shape == target.shape batch_num = predicted.size(0) frame_num = predicted.size(1) dist = torch.mean(torch.norm(predicted - target, dim=len(target.shape) - 1), dim=len(target.shape) - 2) if len(set(list(action))) == 1: end_index = action[0].find(' ') if end_index != -1: action_name = action[0][:end_index] else: action_name = action[0] action_error_sum[action_name]['p1'].update(torch.mean(dist).item()*batch_num*frame_num, batch_num*frame_num) else: for i in range(batch_num): end_index = action[i].find(' ') if end_index != -1: action_name = action[i][:end_index] else: action_name = action[i] action_error_sum[action_name]['p1'].update(torch.mean(dist[i]).item()*frame_num, frame_num) return action_error_sum def mpjpe_by_action_p2(predicted, target, action, action_error_sum): assert predicted.shape == target.shape num = predicted.size(0) pred = predicted.detach().cpu().numpy().reshape(-1, predicted.shape[-2], predicted.shape[-1]) gt = target.detach().cpu().numpy().reshape(-1, target.shape[-2], target.shape[-1]) dist = p_mpjpe(pred, gt) if len(set(list(action))) == 1: end_index = action[0].find(' ') if end_index != -1: action_name = action[0][:end_index] else: action_name = action[0] action_error_sum[action_name]['p2'].update(np.mean(dist) * num, num) else: for i in range(num): end_index = action[i].find(' ') if end_index != -1: action_name = action[i][:end_index] else: action_name = action[i] action_error_sum[action_name]['p2'].update(np.mean(dist), 1) return action_error_sum def p_mpjpe(predicted, target): assert predicted.shape == target.shape muX = np.mean(target, axis=1, keepdims=True) muY = np.mean(predicted, axis=1, keepdims=True) X0 = target - muX Y0 = predicted - muY normX = np.sqrt(np.sum(X0 ** 2, axis=(1, 2), keepdims=True)) normY = np.sqrt(np.sum(Y0 ** 2, axis=(1, 2), keepdims=True)) X0 /= normX Y0 /= normY H = np.matmul(X0.transpose(0, 2, 1), Y0) U, s, Vt = np.linalg.svd(H) V = Vt.transpose(0, 2, 1) R = np.matmul(V, U.transpose(0, 2, 1)) sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1)) V[:, :, -1] *= sign_detR s[:, -1] *= sign_detR.flatten() R = np.matmul(V, U.transpose(0, 2, 1)) tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2) a = tr * normX / normY t = muX - a * np.matmul(muY, R) predicted_aligned = a * np.matmul(predicted, R) + t return np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape) - 1), axis=len(target.shape) - 2) def define_actions( action ): actions = ["Directions","Discussion","Eating","Greeting", "Phoning","Photo","Posing","Purchases", "Sitting","SittingDown","Smoking","Waiting", "WalkDog","Walking","WalkTogether"] if action == "All" or action == "all" or action == '*': return actions if not action in actions: raise( ValueError, "Unrecognized action: %s" % action ) return [action] def define_error_list(actions): error_sum = {} error_sum.update({actions[i]: {'p1':AccumLoss(), 'p2':AccumLoss()} for i in range(len(actions))}) return error_sum class AccumLoss(object): def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val self.count += n self.avg = self.sum / self.count def get_varialbe(split, target): num = len(target) var = [] if split == 'train': for i in range(num): temp = Variable(target[i], requires_grad=False).contiguous().type(torch.cuda.FloatTensor) var.append(temp) else: for i in range(num): temp = Variable(target[i]).contiguous().cuda().type(torch.cuda.FloatTensor) var.append(temp) return var def print_error(data_type, action_error_sum, is_train): mean_error_p1, mean_error_p2 = print_error_action(action_error_sum, is_train) return mean_error_p1, mean_error_p2 def print_error_action(action_error_sum, is_train): mean_error_each = {'p1': 0.0, 'p2': 0.0} mean_error_all = {'p1': AccumLoss(), 'p2': AccumLoss()} if is_train == 0: print("{0:=^12} {1:=^10} {2:=^8}".format("Action", "p#1 mm", "p#2 mm")) for action, value in action_error_sum.items(): if is_train == 0: print("{0:<12} ".format(action), end="") mean_error_each['p1'] = action_error_sum[action]['p1'].avg * 1000.0 mean_error_all['p1'].update(mean_error_each['p1'], 1) mean_error_each['p2'] = action_error_sum[action]['p2'].avg * 1000.0 mean_error_all['p2'].update(mean_error_each['p2'], 1) if is_train == 0: print("{0:>6.2f} {1:>10.2f}".format(mean_error_each['p1'], mean_error_each['p2'])) if is_train == 0: print("{0:<12} {1:>6.2f} {2:>10.2f}".format("Average", mean_error_all['p1'].avg, \ mean_error_all['p2'].avg)) return mean_error_all['p1'].avg, mean_error_all['p2'].avg def save_model(previous_name, save_dir,epoch, data_threshold, model, model_name): # if os.path.exists(previous_name): # os.remove(previous_name) torch.save(model.state_dict(), '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100)) previous_name = '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100) return previous_name def save_model_new(save_dir,epoch, data_threshold, lr, optimizer, model, model_name): # if os.path.exists(previous_name): # os.remove(previous_name) # torch.save(model.state_dict(), # '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100)) torch.save({ 'epoch': epoch, 'lr': lr, 'optimizer': optimizer.state_dict(), 'model_pos': model.state_dict(), }, '%s/%s_%d_%d.pth' % (save_dir, model_name, epoch, data_threshold * 100))
[ "numpy.mean", "torch.mean", "numpy.linalg.det", "numpy.sum", "numpy.matmul", "numpy.linalg.svd", "torch.autograd.Variable" ]
[((2852, 2890), 'numpy.mean', 'np.mean', (['target'], {'axis': '(1)', 'keepdims': '(True)'}), '(target, axis=1, keepdims=True)\n', (2859, 2890), True, 'import numpy as np\n'), ((2901, 2942), 'numpy.mean', 'np.mean', (['predicted'], {'axis': '(1)', 'keepdims': '(True)'}), '(predicted, axis=1, keepdims=True)\n', (2908, 2942), True, 'import numpy as np\n'), ((3216, 3232), 'numpy.linalg.svd', 'np.linalg.svd', (['H'], {}), '(H)\n', (3229, 3232), True, 'import numpy as np\n'), ((3012, 3055), 'numpy.sum', 'np.sum', (['(X0 ** 2)'], {'axis': '(1, 2)', 'keepdims': '(True)'}), '(X0 ** 2, axis=(1, 2), keepdims=True)\n', (3018, 3055), True, 'import numpy as np\n'), ((3077, 3120), 'numpy.sum', 'np.sum', (['(Y0 ** 2)'], {'axis': '(1, 2)', 'keepdims': '(True)'}), '(Y0 ** 2, axis=(1, 2), keepdims=True)\n', (3083, 3120), True, 'import numpy as np\n'), ((3506, 3538), 'numpy.sum', 'np.sum', (['s'], {'axis': '(1)', 'keepdims': '(True)'}), '(s, axis=1, keepdims=True)\n', (3512, 3538), True, 'import numpy as np\n'), ((3346, 3362), 'numpy.linalg.det', 'np.linalg.det', (['R'], {}), '(R)\n', (3359, 3362), True, 'import numpy as np\n'), ((3594, 3611), 'numpy.matmul', 'np.matmul', (['muY', 'R'], {}), '(muY, R)\n', (3603, 3611), True, 'import numpy as np\n'), ((3641, 3664), 'numpy.matmul', 'np.matmul', (['predicted', 'R'], {}), '(predicted, R)\n', (3650, 3664), True, 'import numpy as np\n'), ((2399, 2412), 'numpy.mean', 'np.mean', (['dist'], {}), '(dist)\n', (2406, 2412), True, 'import numpy as np\n'), ((2705, 2718), 'numpy.mean', 'np.mean', (['dist'], {}), '(dist)\n', (2712, 2718), True, 'import numpy as np\n'), ((1347, 1363), 'torch.mean', 'torch.mean', (['dist'], {}), '(dist)\n', (1357, 1363), False, 'import torch\n'), ((1700, 1719), 'torch.mean', 'torch.mean', (['dist[i]'], {}), '(dist[i])\n', (1710, 1719), False, 'import torch\n'), ((4831, 4871), 'torch.autograd.Variable', 'Variable', (['target[i]'], {'requires_grad': '(False)'}), '(target[i], requires_grad=False)\n', (4839, 4871), False, 'from torch.autograd import Variable\n'), ((5001, 5020), 'torch.autograd.Variable', 'Variable', (['target[i]'], {}), '(target[i])\n', (5009, 5020), False, 'from torch.autograd import Variable\n')]