Q
stringlengths
70
13.7k
A
stringlengths
28
13.2k
meta
dict
for a $3 \times 3$ matrix A ,value of $ A^{50} $ is I f $$A= \begin{pmatrix}1& 0 & 0 \\ 1 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$ then $ A^{50} $ is * *$$ \begin{pmatrix}1& 0 & 0 \\ 50 & 1 & 0\\ 50 & 0 & 1 \end{pmatrix}$$ *$$\begin{pmatrix}1& 0 & 0 \\ 48 & 1 & 0\\ 48 & 0 & 1 \end{pmatrix}$$ *$$\begin{pmatrix}1& 0 & 0 \\ 25 & 1 & 0\\ 25 & 0 & 1 \end{pmatrix}$$ *$$\begin{pmatrix}1& 0 & 0 \\ 24 & 1 & 0\\ 24 & 0 & 1\end{pmatrix}$$ I am stuck on this problem. Can anyone help me please...............
You should learn BenjaLim's answer, which provides a general method for dealing with this kind of problems. However, here is a simple answer just for fun. Note that $$ A^2= \begin{pmatrix} 1&0&0\\ 1&1&0\\ 1&0&1\end{pmatrix} =I+\underbrace{\begin{pmatrix} 0&0&0\\ 1&0&0\\ 1&0&0\end{pmatrix}}_{L} $$ and $L^2=0$. Therefore $$ A^{50} = (I+L)^{25} = I+{25\choose 1}L+\sum_{k=2}^{25}{25\choose k}L^k=I+25L $$ and hence the answer is 3.
{ "language": "en", "url": "https://math.stackexchange.com/questions/267492", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "7", "answer_count": 3, "answer_id": 2 }
Help with counting factors Can someone help me prove that the product below has $(\large\frac{10^{100}}{6}-\frac{17}{3})$ factors of $7$? $$\large\prod_{{k}={1}}^{{{10^{100}}}}({4k}+1)$$
Below is a partial answer. Let $S_n = \displaystyle \prod_{k=1}^n(4k+1)$. Number of multiples of $7$ in $S_n$ is $\left \lfloor \dfrac{n +2}7 \right\rfloor$ Number of multiples of $7^2$ in $S_n$ is $\left \lfloor \dfrac{n +37}{49} \right\rfloor$ Number of multiples of $7^3$ in $S_n$ is $\left \lfloor \dfrac{n +86}{343} \right\rfloor$ Number of multiples of $7^{2k}$ in $S_n$ is $$\left \lfloor \dfrac{n + 7^{2k} - (7^{2k}-1)/4}{7^{2k}} \right\rfloor = \left \lfloor \dfrac{4n + 3\cdot 7^{2k} + 1}{4 \cdot 7^{2k}} \right\rfloor$$ Number of multiples of $7^{2k+1}$ in $S_n$ is $$\left \lfloor \dfrac{n + 7^{2k+1} - (3 \cdot 7^{2k+1}-1)/4}{7^{2k+1}} \right\rfloor = \left \lfloor \dfrac{4n + 7^{2k+1}+1}{4 \cdot 7^{2k+1}} \right\rfloor$$ Hence, the highest power of $7$ dividing $S_n$ is $$\sum_{k=1}^{\infty} \left(\left \lfloor \dfrac{4n + 7^{2k-1}+1}{4 \cdot 7^{2k-1}} \right\rfloor + \left \lfloor \dfrac{4n + 3\cdot 7^{2k} + 1}{4 \cdot 7^{2k}} \right\rfloor \right)$$ I computed the sum above using WolframAlpha and it agrees with $\dfrac{10^{100}}6 - \dfrac{17}3$
{ "language": "en", "url": "https://math.stackexchange.com/questions/268506", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
How many ways to write one million as a product of three positive integers? In how many ways can the number 1;000;000 (one million) be written as the product of three positive integers $a, b, c,$ where $a \le b \le c$? (A) 139 (B) 196 (C) 219 (D) 784 (E) None of the above This is my working out so far: $1000000 = 10^{6} = 2^{6} \cdot 5^{6}$ and then to consider this as the product of three factors i.e. $10^6 = 2^6 \cdot 5^6$ $= 2^a 5^p \cdot 2^b5^q \cdot 2^c 5^r$ (where $a+b+c = 6$ and $p+q+r = 6$). However there are repetitions here because $2^3\,5^3 \cdot 2^2\,5^2 \cdot 2^1\,5^1$ is the product of the same three factors as $2^2\,5^2 \cdot 2^3\,5^3 \cdot 2^1\,5^1$. I think there are 139 such factors.
As we can factorise one million as $5^6 \times 2^6 $, it becomes a matter of how many ways we can split up a set of size 12 into three disjoint subsets. This is more of a combinatronics problem, really.
{ "language": "en", "url": "https://math.stackexchange.com/questions/273137", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 1 }
I am trying to solve the inequality $\log_{\log{\sqrt{9-x^2}}} x^2 <0$ I am trying to solve the inequality $$\log_{\log{\sqrt{9-x^2}}} x^2 <0.$$ I got $\mathrm{S.S}=(-\sqrt8 ,-1)\cup( 1,\sqrt8)$, but a friend got $\mathrm{S.S}=(-1,1)- \{0\}$. Please, what is true?
$$\log_{\log_c(\sqrt{9-x^2})}x^2=\frac{\log_b x^2}{\log_b(\log_c\sqrt{9-x^2})}<0 $$ Without any loss of generality, we can take base $b>1$ (i)If $\log_b x^2<0 \iff x^2<1$ then we need $\log_b(\log_c\sqrt{9-x^2})>0\implies \log_c\sqrt{9-x^2}>1\implies x^2<9-c^2$ $\implies x^2<min(1,9-c^2)$ Here observe that for real $x, min(1,9-c^2)>x^2>0\implies 9-c^2>0\implies c^2<9$ else there will be no solution. (ii)If $\log_b x^2>0 \iff x^2>1$ then we need $\log_b(\log_c\sqrt{9-x^2})<0\implies\log_c\sqrt{9-x^2}<1\implies x^2>9-c^2$ $\implies x^2>max(1,9-c^2)$
{ "language": "en", "url": "https://math.stackexchange.com/questions/275727", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 2, "answer_id": 0 }
Calculate $\underset{x\rightarrow7}{\lim}\frac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}$ Please help me calculate this: $$\underset{x\rightarrow7}{\lim}\frac{\sqrt{x+2}-\sqrt[3]{x+20}}{\sqrt[4]{x+9}-2}$$ Here I've tried multiplying by $\sqrt[4]{x+9}+2$ and few other method. Thanks in advance for solution / hints using simple methods. Edit Please don't use l'Hosplital rule. We are before derivatives, don't know how to use it correctly yet. Thanks!
Hint: Use that $\frac{a^4-b^4}{a-b} = a^3 + a^2b + ab^2 + b^3$. Setting $a=\sqrt[4]{x+9}$ and $b=2$, you see $a^4-b^4 = x-7$, and you get $$\frac{1}{\sqrt[4]{x+9}-2} = \frac{a^3 + a^2b + ab^2 + b^3}{x-7}$$ Similarly you can write $\sqrt{x+2}-3$ as: $$\sqrt{x+2}-3 = \frac{x-7}{\sqrt{x+2}+3}$$ And a similar but uglier result for $\sqrt[3]{x+20}-3$ using $u-v=\frac{u^3-v^3}{u^2+uv+v^2}$ with $u=\sqrt[3]{x+20}$ and $v=3$, that gives $u^3-v^3 = x-7$. Note then that the $x-7$s cancel out, and you get an expression where none of the numerators or denominators approach zero as $x\to 7$, so you can finally just plug in $x=7$ in that expression. Cancelling out the $x-7$ terms, you get: $$(a^3 + a^2b + ab^2 + b^3)\left(\frac{1}{\sqrt{x+2}+3}-\frac{1}{u^2+uv+v^2}\right)$$ But as $x\to 7$ $a\to b=2$ and $u\to v=3$. So the limit is: $$(4\cdot2^3)\left(\frac{1}{6}-\frac{1}{3\cdot 3^2}\right)$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/275990", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "12", "answer_count": 5, "answer_id": 1 }
Finding polynomial function's zero values not native English speaker so I may get some terms wrong and so on. On to the question: I have as an assignment to find a polynomial function $f(x)$ with the coefficients $a$, $b$ and $c$ (which are all integers) which has one root at $x = \sqrt{a} + \sqrt{b} + \sqrt{c}$. I've done this with $f(x) = 0$ where $x = \sqrt{a} + \sqrt{b}$ through an iterative method which looks like this (forgive me for my pseudo code): * *var x = sqrt(a) + sqrt(b) *Set x to x multiplied by the conjugate of x *Repeat from step 2 until all square roots are gone The full calculation looks like this (the exponent signs disappeared, sorry about that): $(x-(\sqrt{a}+\sqrt{b}))(x+(\sqrt{a}+\sqrt{b})) = x^2-(\sqrt{a} +\sqrt{b})^2 \\ = x^2-(a+2\sqrt{a}\sqrt{b} +b) \\ = x^2-a-b-2\sqrt{a}\sqrt{b} $ $((x^2-a-b)-(2\sqrt{a}\sqrt{b} ))(( x^2-a-b)+(2\sqrt{a}\sqrt{b} )) = x^4-2ax^2-2bx^2+2ab+a^2+b^2-4ab \\ = x^4-2ax^2-2bx^2-2ab+a^2+b^2 \\ = x^4-2x^2(a+b)-2ab+a^2+b^2$ $p(x) = x^4-2x^2(a+b)-2ab+a^2+b^2$ And then I used the factor theorem to calculate the remaining roots, which gave the following results: $x = (\sqrt{a} +\sqrt{b} )$, $x = -(\sqrt{a} +\sqrt{b} )$, $x = (\sqrt{a} -\sqrt{b} )$ and $x = -(\sqrt{a} - \sqrt{b})$. When I try the same method on $x = \sqrt{a} + \sqrt{b} + \sqrt{c}$, the calculations just become absurd. Any kind of help would be enormously appreciated!
Subtract $\sqrt a$ from both sides, square both sides: now you have $\sqrt a$ on one side, $\sqrt{bc}$ on the other. Solve for $\sqrt a$, square both sides: now you have only $\sqrt{bc}$. Solve for $\sqrt{bc}$, square both sides, voila! all square roots gone. If you need to know the other zeros, the full set is $\pm\sqrt a\pm\sqrt b\pm\sqrt c$ where the signs are to be taken independently of each other (making 8 zeros in all).
{ "language": "en", "url": "https://math.stackexchange.com/questions/276111", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 0 }
How to show that $\frac{x^2}{x-1}$ simplifies to $x + \frac{1}{x-1} +1$ How does $\frac{x^2}{(x-1)}$ simplify to $x + \frac{1}{x-1} +1$? The second expression would be much easier to work with, but I cant figure out how to get there. Thanks
$\textbf{Hint:}$ Do you know about polynomial long divison? A simpler way of dealing with this problem is noticing that for all $x\neq 1$, $$\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=\frac{(x-1)(x+1)}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}.$$ It's not always this easy, though. So you should learn polynomial long divison.
{ "language": "en", "url": "https://math.stackexchange.com/questions/278481", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "7", "answer_count": 6, "answer_id": 0 }
Finding $\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+\cdots+\frac{1}{S_{2013}}$ Assume $S_1=1 ,S_2=1+2,S=1+2+3+,\ldots,S_n=1+2+3+\cdots+n$ How to find : $$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+\cdots+\frac{1}{S_{2013}}$$
you can see $ s_{n}=1+2+\cdots=\dfrac{n(n+1)}{2}$, so $\dfrac{1}{s_{n}}=\dfrac{2}{n(n+1)}=2\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)$ then $\dfrac{1}{s_{1}}+\dfrac{1}{s_{2}}+\cdots+\dfrac{1}{s_{2013}}=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots+\dfrac{1}{2013}-\dfrac{1}{2014}\right)=\dfrac{2013}{1007}$
{ "language": "en", "url": "https://math.stackexchange.com/questions/281318", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 1 }
Solve the inequality on the number line? How would I solve the following inequality. $x^2+10x \gt-24$ How would I solve it and put it in a number line?
$x^2+10x>−24$ iff $x^2-10x+25 > 1$ iff $(x-5)^2 > 1$. (Note: "iff" means "if and only if".) Because of the magical property of $1$ being its own square root (funny how this happens, eh?) this is true iff $|x-5| > 1$ which is true iff $x<4$ or $x > 6$. By completing the square like this, you are implicitly solving the equation. If you start with the inequality $x^2-2bx > c$ ($b=5$ and $c=-24$ in your case) this becomes $(x-b)^2 > c + b^2$. If $c + b^2 < 0$, all $x$ satisfy this; otherwise this can be rewritten as $|x-b| > \sqrt{c+b^2}$ for which the solutions are $x < b-\sqrt{c+b^2}$ and $x > b+\sqrt{c+b^2}$ If you start with the inequality $x^2-2bx < c$ this becomes $(x-b)^2 < c + b^2$. If $c + b^2 < 0$, no $x$ satisfies this; otherwise this can be rewritten as $|x-b| < \sqrt{c+b^2}$ for which the solutions are $b-\sqrt{c+b^2} < x < b+\sqrt{c+b^2}$
{ "language": "en", "url": "https://math.stackexchange.com/questions/282950", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 4, "answer_id": 3 }
How to find the solution of the differential equation Find the solution of the differential equation $$\frac{dy}{dx}=-\frac{x(x^2+y^2-10)}{y(x^2+y^2+5)}, y(0)=1$$ Trial: $$\begin{align} \frac{dy}{dx}=-\frac{x(x^2+y^2-10)}{y(x^2+y^2+5)} \\ \implies \frac{dy}{dx}=-\frac{1+(y/x)^2-10/x^2}{(y/x)(1+(y/x)^2+5/x^2)} \\ \implies v+x\frac{dv}{dx}=-\frac{1+v^2-10/x^2}{v(1+v^2+5/x^2)} \end{align}$$ I can't seperate $x$ and $v$.
Hint: It is an exact equation. Assume there is an differentiable function $f(x,y)$ such that $$f_x=x^3+xy^2-10x,~~~f_y=x^2y+y^3+5y$$ and then find the function. The solution is as $$f(x,y)=C$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/285114", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 0 }
Consider a function $f(x) = x^4+x^3+x^2+x+1$, where x is an integer, $x\gt 1$. What will be the remainder when $f(x^5)$ is divided by $f(x)$? Consider a function $f(x) = x^4+x^3+x^2+x+1$, where x is an integer, $x\gt 1$. What will be the remainder when $f(x^5)$ is divided by $f(x)$ ? $f(x)=x^4+x^3+x^2+x+1$ $f(x^5)=x^{20}+x^{15}+x^{10}+x^5+1$
Observe that $f(x^5) = f(x)(x^{16}-x^{15}+2x^{11}-2x^{10}+3x^6-3x^5+4x-4) + 5$. So the remainder will be $5$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/285594", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "6", "answer_count": 4, "answer_id": 1 }
What is the formula for $\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\cdots +\frac{1}{n(n+1)}$ How can I find the formula for the following equation? $$\frac{1}{1\cdot 2}+\frac{1}{2\cdot 3}+\frac{1}{3\cdot 4}+\cdots +\frac{1}{n(n+1)}$$ More importantly, how would you approach finding the formula? I have found that every time, the denominator number seems to go up by $n+2$, but that's about as far as I have been able to get: $\frac12 + \frac16 + \frac1{12} + \frac1{20} + \frac1{30}...$ the denominator increases by $4,6,8,10,12,\ldots$ etc. So how should I approach finding the formula? Thanks!
Observe that $$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$$ $\therefore$ The given series can be written as $$1-\frac12+\frac12-\frac13+\frac13+\cdots -\frac{1}{n}+\frac1n-\frac{1}{n+1}$$ $$=1-\frac1{n+1}$$ $$=\frac{n}{n+1}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/286024", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "9", "answer_count": 5, "answer_id": 2 }
Calculation of $x$ in $\tan^{-1}\left(\frac{x}{1-x^2}\right)+\tan^{-1}\left(\frac{1}{x^3}\right) = \frac{3\pi}{4}$ The no. of real values of $x$ satisfying $\displaystyle \tan^{-1}\left(\frac{x}{1-x^2}\right)+\tan^{-1}\left(\frac{1}{x^3}\right) = \frac{3\pi}{4}$ options :: (a) $0$ (b) $1$ (c) $2$ (d) Infinitely many My Try:: Using The formula $\tan^{-1}A+\tan^{-1}B = \tan^{-1}\left(\frac{A+B}{1-AB}\right)$ So $\displaystyle \tan^{-1}\left(\frac{\frac{x}{1-x^2}+\frac{1}{x^3}}{1-\frac{x}{x^3.(1-x^2)}}\right) = \frac{3\pi}{4}$ So $\displaystyle \frac{x^4+1-x^2}{x^3-x^5-x}= -1$ So $(x-1)(x^4-x+1) = 0$ $x = 1$ and $x^4 -x+1 = 0$ So Iam getting only one value of $x$ which is $x=1$ and How can i calculate any real value of $x$ exists from $x^4-x+1 = 0$ OR any other method by using we can solve this Question Thanks
* *If $|x|<1$, then $x^4+1>1>x$. If $|x|\geq 1$, then $x^4+1>x^4\geq x$. In both cases $$ x^4-x+1>0 $$ so the equation $x^4-x+1=0$ have no real solutions. *Note that $x=1$ is not a solution of original equation.
{ "language": "en", "url": "https://math.stackexchange.com/questions/287220", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
How to find the value of $h(99)$ in the function? If $$h(x) + h(x+1) = 2x^2$$ and $$h(33) = 99$$ What will be the value of $h(99)$?
From your definition, $$h(34)=2\times 33^2-h(33)$$ $$h(35)=2\times 34^2-h(34)=2\times 34^2-2\times 33^2+h(33)$$ $$\dots$$ $$h(99)=2\times 98^2 - 2\times 97^2 + 2\times 96^2 -\cdots + 2\times 34^2 - 2\times 33^2 +h(33)\\=2(98^2-97^2+96^2-\cdots+34^2-33^2)+99\\ =2(98+97+\cdots +34+33)+99\\ =8745$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/287521", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
How to show $AB^{-1}A=A$ Let $$A^{n \times n}=\begin{pmatrix} a & b &b & \dots & b \\ b & a &b & \dots & b \\ b & b & a & \dots & b \\ \vdots & \vdots & \vdots & & \vdots \\ b & b & b & \dots &a\end{pmatrix}$$ where $a \neq b$ and $a + (n - 1)b = 0$. Suppose $B=A+\frac{11'}{n}$ , where $1=(1,1,\dots,1)'$ is an $n \times 1$ vector. Show that $AB^{-1}A=A$ Trial: Here $B^{-1}=\frac{1}{\alpha-\beta}I_n-\frac{\beta~11'}{(\alpha-\beta)(\alpha+(n-1)\beta)}$ Where $(\alpha-\beta)=(a+\frac{1}{n}-b-\frac{1}{n})=(a-b)$ and $\alpha+(n-1)\beta=1$ So, $B^{-1}=\frac{1}{a-b}[I_n-(b+\frac{1}{n})11']$. Then pre and post multipling $A$ I can't reach to the desire result . Please help.
Here is another answer of mine. Let $E={\mathbf 1}{\mathbf 1}^T$. By Sherman-Morrison formula, \begin{align*} &B = (a-b)I + \left(b + \frac1n\right){\mathbf 1}{\mathbf 1}^T\\ \Rightarrow&B^{-1} = \frac{I}{a-b} + cE \end{align*} for some constant $c$. We will see that the exact value of $c$ is unimportant. Now, note that \begin{align*} &A = (a-b)I + bE\\ \Rightarrow&AE = (a-b)E + bE^2 = (a-b)E + nbE = 0. \end{align*} Therefore, \begin{align*} AB^{-1}A &= A\left(\frac{I}{a-b} + cE\right)[(a-b)I + bE]\\ &= \left(\frac{A}{a-b} + cAE\right)[(a-b)I + bE]\\ &= \frac{A}{a-b}[(a-b)I + bE]\\ &= A. \end{align*}
{ "language": "en", "url": "https://math.stackexchange.com/questions/287917", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 4, "answer_id": 2 }
Compute the limit $\displaystyle \lim_{x\rightarrow 0}\frac{n!.x^n-\sin (x).\sin (2x).\sin (3x).......\sin (nx)}{x^{n+2}}\;\;,$ How can i calculate the Given limit $\displaystyle \lim_{x\rightarrow 0}\frac{n!x^n-\sin (x)\sin (2x)\sin (3x)\dots\sin (nx)}{x^{n+2}}\;\;,$ where $n\in\mathbb{N}$
$$\dfrac{\sin(kx)}{kx} = \left(1- \dfrac{k^2x^2}{3!} + \mathcal{O}(x^4)\right)$$ Hence, $$\prod_{k=1}^n \dfrac{\sin(kx)}{kx} = \prod_{k=1}^n\left(1- \dfrac{k^2x^2}{3!} + \mathcal{O}(x^4)\right) = 1 - \dfrac{\displaystyle \sum_{k=1}^n k^2}6x^2 + \mathcal{O}(x^4)\\ = 1 - \dfrac{n(n+1)(2n+1)}{36}x^2 + \mathcal{O}(x^4)$$ Hence, the limit you have is $$\lim_{x \to 0} \dfrac{n!x^n - \displaystyle \prod_{k=1}^n \sin(kx)}{x^{n+2}} = n!\left(\lim_{x \to 0} \dfrac{1 - \displaystyle \prod_{k=1}^n \dfrac{\sin(kx)}{kx}}{x^{2}} \right) = \dfrac{n(2n+1)(n+1)!}{36}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/291087", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "7", "answer_count": 3, "answer_id": 2 }
Stochastic Calc (a) Consider the process $$ \mathrm d\sqrt{v} = (\alpha - \beta\sqrt{v})\mathrm dt + \delta \mathrm dW $$ Here $\alpha, \beta,$ and $\delta$ are constants. Using Ito's Lemma show that $$ \mathrm dv = (\delta^2 + 2\alpha\sqrt{v} - 2\beta v)\mathrm dt + 2\delta\sqrt{v}\mathrm dW. $$ (b) Using Ito's Lemma to find the SDE satisfied by $U$ given that $U =\ln(Y)$ and $Y$ satisfies $$ \mathrm dY = \frac{1}{2Y}\mathrm dt + \mathrm dW \\ Y(0) = Y_0. $$
(a)  Notice that $v = f(\sqrt{v})$ for $f(x)=x^2$. We have $f'(x)=2x$ and $f''(x)=2$. Ito's lemma yields: $$ dv = f'(\sqrt{v})\,d\sqrt{v} + \frac{1}{2}f''(\sqrt{v})\,d\langle\sqrt{v}\rangle. $$ Hence \begin{align} dv &= 2\sqrt{v}\times\left((\alpha-\beta\sqrt{v})\,dt + \delta \,dW\right) + \frac{1}{2}\times 2\times\delta^2\,dt\\ &=(\delta^2 + 2\alpha\sqrt{v} - 2\beta v)\,dt + 2\delta \sqrt{v}\, dW. \end{align} (b)  Take $f(y)=\ln y$. We have $f'(y)=\dfrac{1}{y}$ and $f''(y)=-\dfrac{1}{y^2}$. Hence $U(0)=\ln Y(0)$ and \begin{align} dU &= df(Y) = \frac{1}{Y}\left(\frac{1}{2Y}dt+dW\right) - \frac{1}{2}\frac{1}{Y^2}dt\\ & = \frac{1}{Y}dW\\ & = e^{-U}dW \end{align}
{ "language": "en", "url": "https://math.stackexchange.com/questions/291747", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
Number theory - congruence Let $n$ be an even integer not divisible by $10$, what digit is in the $10$s place for $n^{20}$ and the hundreds place for $n^{200}$, can you generalise this? I know that for $n^{20}$ they end in $76$ and for $n^{200}$ they all end in $376$ I even went on too see that $n^{2000}$ always ends in $9376$. I was given a clue that $76$ is the only number that is divisible by $4$ that gives $1$ when working $\bmod{25}$, I'm not sure how to relate that and generalise When working $\bmod{100}$ for $n^{20}$ I noticed, $100 = 4 \times 25 = 2^2 \times 5^2$ , so we looked at a number divisible by $4$ that gave $1$ when working in $\bmod{25}$. Similarly for $n^{200}$, $1000 = 2^3 \times 5^3$, for which $376$ is divisible by $8$ and gives $1$ when working with $\bmod{125}$? Am I looking along the right lines? Any help would be greatly appreciated. Thanks!
Let us first do the case $n^{20} \pmod{100}$. You have been advised to split this into two problems * *$n^{20} \pmod{4}$. Since $n$ is even, this yields $n^{20} \equiv 0 \pmod{4}$ here. *$n^{20} \pmod{25}$. Since $n$ is not divisible by $5$, we have $(n, 25) = 1$. Since $\varphi(25) = 20$, we obtain $n^{20} \equiv 1 \pmod{25}$. (Here $\varphi$ is Euler's totient function.) Now you solve the system of congruences $$ \begin{cases} x \equiv 0 \pmod{4}\\ x \equiv 1 \pmod{25} \end{cases} $$ which has the solution(s) $x \equiv 76 \pmod{100}$. In the general case $k \ge 2$ you have $n^{2 \cdot 10^{k-1}} \pmod{10^{k}}$. Again, split it into two problems * *$n^{2 \cdot 10^{k-1}} \equiv 0 \pmod{2^k}$, as above. *$n^{2 \cdot 10^{k-1}} \pmod{5^k}$. Since $n$ is not divisible by $5$, we have $(n, 5^k) = 1$. Since $\varphi(5^k) = 5^k - 5^{k-1} = 4 \cdot 5^{k-1}$, we obtain $n^{2 \cdot 10^{k-1}} \equiv 1 \pmod{5^k}$. Now you solve the system of congruences $$ \begin{cases} x \equiv 0 \pmod{2^k}\\ x \equiv 1 \pmod{5^k}. \end{cases} $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/295361", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
Evaluating $\sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}}$ Inspired by Ramanujan's problem and solution of $\sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + \ldots}}}$, I decided to attempt evaluating the infinite radical $$ \sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}} $$ Taking a cue from Ramanujan's solution method, I defined a function $f(x)$ such that $$ f(x) = \sqrt{2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}}} $$ We can see that $$\begin{align} f(0) &= \sqrt{2^0 + \sqrt{2^1 + \sqrt{2^2 + \sqrt{2^3 + \ldots}}}} \\ &= \sqrt{1 + \sqrt{2 + \sqrt{4 + \sqrt{8 + \ldots}}}} \end{align}$$ And we begin solving by $$\begin{align} f(x) &= \sqrt{2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}}} \\ f(x)^2 &= 2^x + \sqrt{2^{x+1} + \sqrt{2^{x+2} + \sqrt{2^{x+3} + \ldots}}} \\ &= 2^x + f(x + 1) \\ f(x + 1) &= f(x)^2 - 2^x \end{align}$$ At this point I find myself stuck, as I have little experience with recurrence relations. How would this recurrence relation be solved? Would the method extend easily to $$\begin{align} f_n(x) &= \sqrt{n^x + \sqrt{n^{x+1} + \sqrt{n^{x+2} + \sqrt{n^{x+3} + \ldots}}}} \\ f_n(x)^2 &= n^x + f_n(x + 1)~\text ? \end{align}$$
This is not an answer to your question, but you may be interested in the following two similar evaluations: $$\sqrt{1+\sqrt{4+\sqrt{16+\sqrt{64+...}}}}=2\tag{1}$$ $$\sqrt{1+2^{-1}\sqrt{1+2^{-2}\sqrt{1+2^{-3}\sqrt{1+...}}}}=\frac{5}{4}\tag{2}$$ To prove $(1)$, one may use the fact that $$2^n+1=\sqrt{4^n+2^{n+1}+1}$$ and $(2)$ can be obtained from $(1)$ by multiplying it by $1/2$ and inverting the first radical.
{ "language": "en", "url": "https://math.stackexchange.com/questions/300299", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "29", "answer_count": 6, "answer_id": 4 }
Solving Recurrence $T(n) = T(n − 3) + 1/2$; I have to solve the following recurrence. $$\begin{gather} T(n) = T(n − 3) + 1/2\\ T(0) = T(1) = T(2) = 1. \end{gather}$$ I tried solving it using the forward iteration. $$\begin{align} T(3) &= 1 + 1/2\\ T(4) &= 1 + 1/2\\ T(5) &= 1 + 1/2\\ T(6) &= 1 + 1/2 + 1/2 = 2\\ T(7) &= 1 + 1/2 + 1/2 = 2\\ T(8) &= 1 + 1/2 + 1/2 = 2\\ T(9) &= 2 + 1/2 \end{align}$$ I couldnt find any sequence here. can anyone help!
The crucial observation is that the sequence occurs in blocks of 3, so for each $n$ we need to find out "which block of 3 is $n$ in". So using $\lfloor n/3\rfloor$ or $\lceil n/3\rceil$ would be good. Observe the pattern: $$\begin{array}{c} n & T(n) & \lceil n/3\rceil\\\hline 0 & 2/2 & 1\\\hline 1 & 2/2 & 1\\\hline 2 & 2/2 & 1\\\hline 3 & 3/2 & 2\\\hline 4 & 3/2 & 2\\\hline 5 & 3/2 & 2\\\hline 6 & 4/2 & 3\\\hline 7 & 4/2 & 3\\\hline 8 & 4/2 & 3\\\hline \end{array}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/300934", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 4, "answer_id": 0 }
Prove $\frac{a}{ab+2c}+\frac{b}{bc+2a}+\frac{c}{ca+2b} \ge \frac 98$ $a,b,c \in \mathbb{R^+} \text{such that }a+b+c=2$. Prove inequality $$\frac a{ab+2c}+\frac b{bc+2a}+\frac c{ca+2b} \ge \frac 98$$ I tried * *$$LHS = \sum \frac{1}{b+2\cdot c/a} \ge \frac 9 {2+2(\sum c/a)} \longrightarrow failed$$ *$$\frac a {ab+2c} \ge \frac 9{16}a \longrightarrow failed$$
\begin{align} \sum_{cyc}{\frac{a}{ab+2c}}=\sum_{cyc}{\frac{a}{ab+(a+b+c)c}}=\sum_{cyc}{\frac{a}{(a+c)(b+c)}}& =\frac{\sum_{cyc}{a(a+b)}}{(a+b)(a+c)(b+c)} \\ & =\frac{a^2+b^2+c^2+ab+ac+bc}{(a+b)(a+c)(b+c)} \\ & \geq \frac{\frac{2}{3}(a+b+c)^2}{(a+b)(a+c)(b+c)} \\ & \geq \frac{\frac{2}{3}(a+b+c)^2}{\left(\frac{(a+b)+(a+c)+(b+c)}{3}\right)^3} \\ & =\frac{9}{8} \end{align}
{ "language": "en", "url": "https://math.stackexchange.com/questions/304777", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 1, "answer_id": 0 }
Integral of type $\displaystyle \int\frac{1}{\sqrt[4]{x^4+1}}dx$ How can I solve integral of types (1) $\displaystyle \int\dfrac{1}{\sqrt[4]{x^4+1}}dx$ (2) $\displaystyle \int\dfrac{1}{\sqrt[4]{x^4-1}}dx$
(1) Put $x=\sqrt{\tan t}\implies dx=\frac{\sec^2tdt}{2\sqrt{\tan t}}$ and $1+x^4=1+\tan^2t=\sec^2t$ So, $$\int\frac{dx}{(1+x^4)^\frac14}=\int\frac{\sec^2tdt}{2\sqrt{\tan t}\sqrt{\sec t}}=\int\frac{dt}{2\cos t\sqrt{\sin t}}=\int\frac{\cos tdt}{2\cos^2t\sqrt{\sin t}}$$ Put $\sin t=y^2\implies \cos tdt=2ydy $ $$\int\frac{\cos tdt}{2\cos^2t\sqrt{\sin t}}=\int\frac{2ydy}{2(1-y^4)y}=\frac12\left(\int\frac{dy}{1-y^2}+\int\frac{dy}{1+y^2}\right)$$ $$=\frac12\left(\frac12\ln\left|\frac{1+y}{1-y}\right|+\arctan y\right)+C$$ where $y^4=\sin^2t=\frac1{1+\cot^2t}=\frac1{1+\frac1{x^4}}=\frac{x^4}{1+x^4}$ (2) should be handled similarly by putting $x=\sqrt{\sec t}$
{ "language": "en", "url": "https://math.stackexchange.com/questions/306027", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "6", "answer_count": 4, "answer_id": 2 }
Solve Trignometric Equation Solve the equation: $\sin^25x+\sin^23x = 1+\cos(8x)$. I tried : $1+\cos(8x) = 2\cos^2(4x)$ which gives : $$\begin{align*} \sin^25x+\sin^23x &= 2\cos^2(4x)\\ &= 2(1-\sin^2(4x))\\ &= 2-2\sin^2(4x)\\ \end{align*}$$
As $\cos(A-B)\cos(A+B)=\cos^2A-\sin^2B$ $\cos8x=\sin^25x+\sin^23x-1=-(\cos^23x-\sin^25x)=-\cos(5x-3x)\cos(5x+3x)=-\cos8x\cos2x$ $\cos8x(1+\cos2x)=0$ If $\cos8x=0,8x=(2n+1)\frac\pi2,x=(2n+1)\frac\pi{16}$ If $1+\cos2x=0\implies \cos2x=-1=\cos\pi,2x=(2m+1)\pi,x=(2m+1)\frac\pi2$ where $m,n$ are any integer
{ "language": "en", "url": "https://math.stackexchange.com/questions/306829", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 1 }
How to compute Nullspace on maple? I have the matrix $$A := \begin{bmatrix}6& 9& 15\\-5& -10& -21\\ 2& 5& 11\end{bmatrix}.$$ Can anyone please tell me how to both find the eigenspaces by hand and also by using the Nullspace command on maple? Thanks.
Given the matrix $$A = \left(\begin{matrix}6& 9& 15\\-5& -10& -21\\ 2& 5& 11\end{matrix}\right).$$ Find the Eigensystem by hand. First, lets find the eigenvalues by solving $det(A - \lambda I) = 0$, so we have: $$det(A - \lambda I) = \left|\begin{matrix}6 - \lambda & 9& 15\\-5& -10 - \lambda & -21\\ 2& 5& 11 - \lambda\end{matrix}\right| = 0.$$ This gives us the characteristic polynomial: $$-\lambda^3 + 7\lambda^2 - 16\lambda + 12 = 0$$ From this we get two eigenvalues (one is repeated) as: $\lambda_1 = 3, ~ \lambda_{2,3} = 2$ Next, we want to find the eigenvector for the eigenvalue $\lambda_1$, by solving the equation $(A - \lambda_1) v_1 = 0$. $(A-\lambda_1)v_1 = (A-3)v_1 = \left(\begin{matrix}3 & 9& 15\\-5& -13 & -21\\ 2& 5& 8\end{matrix}\right)v_1 = 0.$ Using the row-reduced-echelon-form, this leads to $v_1 = (1,-2,1).$ Next, we want to find the eigenvector for the eigenvalue $\lambda_2$, by solving the equation $(A - \lambda_2) v_2 = 0.$ $(A-\lambda_2)v_2 = (A-2)v_2 = \left(\begin{matrix}4 & 9& 15\\-5& -12 & -21\\ 2& 5& 9\end{matrix}\right)v_2 = 0.$ Using the row-reduced-echelon-form, this leads to $v_2 = (3,-3,1).$ Since we have a repeated eigenvalue, care needs to be taken using algebraic and geometric multiplicities (know what those are), if the matrix is diagonalizable (you can work these details). * *The algebraic multiplicity of an eigenvalue is the number of times it is a root. *The geometric multiplicity of an eigenvalue is the number of linearly independent eigenvectors for the eigenvalue. To find the eigenvector for $\lambda_3$, we will solve $(A - \lambda_3 I)v_3 = v_2$ (you must have learned why this is in class), so we have (shown in augmented form): $\left(\begin{array}{@{}ccc|c@{}} 4 & 9& 15 & 3\\-5& -13 & -21 & -3\\ 2& 5& 8 & 1 \end{array} \right)v_3 = 0$ Using RREF, this results in $v_3 = (3, -1, 0)$. Thus, we have: $$\lambda_1 = 3, v_1 = (1, -2, 1)$$ $$\lambda_2 = 2, v_2 = (3, -3, 1)$$ $$\lambda_2 = 2, v_3 = (3,-1, 0)$$ Do you know how to use the information above to write the diagonal form, otherwise known as the Jordan Normal Form? $$A = P J P^{-1} = \begin{bmatrix} 3 & 3 & 1 \\ -3 & -1 & -2 \\ 1 & 0 & 1\end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 & -3 & -5 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$$ Babak Sorouh already told you the nullspace and Mhenni Benghorbal showed the Maple commands, so no need to repeat that. Regards
{ "language": "en", "url": "https://math.stackexchange.com/questions/308117", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "5", "answer_count": 3, "answer_id": 0 }
Determine whether $x^3$ is $O(g(x))$ for certain functions $g(x)$. a) $g(x) = x^2$ b) $g(x) = x^3$ c) $g(x) = x^2 + x^3$ d) $g(x) = x^2 + x^4$ e) $g(x) = 3^x$ f) $g(x) = (x^3)/2$ Do you guys have any ideas? Thanks!
Since you asked in a comment about (e), let's discuss that. Saying "$x^3$ is $O\bigl(3^x\bigr)$" means the following: There is some constant $c$, such that for all sufficiently large $x$, $$x^3 < c\cdot3^x.$$ Consider the functions $x^3$ and $3^x$. Clearly, $3^x$ increases much faster than $x^3$. For $x=10$, $3^x$ is already 59,049 and $x^3$ is only 1,000. And $3^x$ triples every time $x$ becomes $x+1$, whereas $x^3$ does not triple so easily; to triple $x^3$ you have to multiply $x$ by something. So there is no trouble finding the constant $c$ that we want; $c=1$ will do. And indeed, for all $x>10$, it is the case that $x^3 < 1\cdot 3^x$. So $x^3$ is $ O\bigl(3^x\bigr)$. Now on the other hand, $x^3$ is not $O\bigl(x^2\bigr)$. Why not? Well, if it were, then There is some constant $c$, such that for all sufficiently large $x$, $$x^3 < c\cdot x^2$$ But clearly that's not true, since no matter what $c$ is, $x^3 > c\cdot x^2$ whenever $x>c$. So $x^3$ is not $O\bigl(x^2\bigr)$. Does that help?
{ "language": "en", "url": "https://math.stackexchange.com/questions/309008", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 0 }
proving $\csc^2 \left( \frac{\pi}{7}\right)+\csc^2 \left( \frac{2\pi}{7}\right)+\csc^2 \left( \frac{4\pi}{7}\right)=8$ How can I prove the following identity using complex variables $$ \begin{align*} 1) & \csc^2 \left( \frac{\pi}{7}\right)+\csc^2 \left( \frac{2\pi}{7}\right)+\csc^2 \left( \frac{4\pi}{7}\right)=8 \\ 2) & \tan^2 \left( \frac{\pi}{16}\right) + \tan^2\left( \frac{3\pi}{16}\right) + \tan^2\left( \frac{5\pi}{16}\right)+ \tan^2\left( \frac{7\pi}{16}\right) = 28 \end{align*} $$ On earlier problem, I was given, $\displaystyle (z+a)^{2m}-(z-a)^{2m}=4maz \prod_{k=1}^{m-1} \left(z^2+a^2 \cot^2 \left(\frac{k\pi}{2m} \right )\right ) $ for integer $m>1$. I am not sure if I can use this is helpful. I am stumped please help.
I am going to answer the question 2 by grouping terms. Firstly, we are going to evaluate the sum $\displaystyle \sum_{k=1}^{7} \tan ^{2}\left(\frac{k \pi}{16}\right). $ $\begin{aligned}\because \tan \frac{(8-k) \pi}{16} &=\tan \left(\frac{\pi}{2}-\frac{k \pi}{16}\right) =\frac{1}{\tan \frac{k\pi}{16}} \\\therefore \tan ^{2} \frac{k \pi}{16}+\tan ^{2} \frac{(8-k) \pi}{16}&=\tan ^{2} \frac{k \pi}{16}+\frac{1}{\tan ^{2} \frac{k \pi}{16}} \\&=\frac{\sin ^{4} \frac{k \pi}{16}+\cos ^{4} \frac{k \pi}{16}}{\cos ^{2} \frac{k \pi}{16} \cdot \sin ^{2} \frac{k \pi}{16}} \\&=\frac{1-2 \sin ^{2} \frac{k \pi}{16} \cos ^{2} \frac{k \pi}{16}}{\cos ^{2} \frac{k \pi}{16} \cdot \sin ^{2} \frac{k \pi}{16}} \\&=\frac{4}{\sin ^2\left(\frac{k \pi}{8}\right)}-2\end{aligned} \tag*{} $ $\begin{aligned} \sum_{k=1}^{7} \tan ^{2} \frac{k \pi}{16}=& \sum_{k=1}^{3}\left(\tan ^{2} \frac{k \pi}{16}+\tan ^{2} \frac{(8-k) \pi}{16}\right)+\tan ^{2} \frac{\pi}{4} \\=& \sum_{k=1}^{3}\left(\frac{4}{\sin ^{2} \frac{k \pi}{8}}-2\right)+1 \\=& 4 \sum_{k=1}^{3} \frac{1}{\sin ^{2} \frac{k \pi}{8}}-5\end{aligned} \tag*{} $ Now let’s evaluate the three terms one by one and get $\displaystyle \sin ^{2}\left(\frac{\pi}{8}\right) =\frac{1-\cos \frac{\pi}{4}}{2} =\frac{1-\frac{\sqrt{2}}{2}}{2} =\frac{2-\sqrt{2}}{4} \tag*{} $ $\displaystyle \sin ^{2}\left(\frac{2 \pi}{8}\right)=\frac{1}{2} \tag*{} $ $\displaystyle \sin ^{2}\left(\frac{3 \pi}{8}\right) =\sin ^{2}\left(\frac{\pi}{2}-\frac{\pi}{8}\right) =\cos ^{2} \frac{\pi}{8} =1-\frac{2-\sqrt{2}}{4} =\frac{2+\sqrt{2}}{4} \tag*{} $ Summing them up yields $\displaystyle \sum_{k=1}^{7} \tan ^{2}\left(\frac{k \pi}{16}\right)=4\left(\frac{4}{2-\sqrt{2}}+2+\frac{4}{2+\sqrt{2}}\right)-5 =35 \tag*{} $ Moreover, $$\tan \left(\frac{2\pi}{16}\right)=\sqrt{2}-1 \Rightarrow \tan ^{2}\left(\frac{2\pi}{16}\right)=3-2 \sqrt{2} $$ $$\begin{aligned} \tan \left(\frac{6 \pi}{16}\right) &=\tan \left(\frac{\pi}{2}-\frac{\pi}{8}\right) =\frac{1}{\tan \frac{\pi}{8}} =\sqrt{2}+1 \end{aligned}\Rightarrow \tan ^{2}\left(\frac{6 \pi}{16}\right)=3+2 \sqrt{2}$$ Now we can conclude that $$ \displaystyle \tan ^{2}\left(\frac{\pi}{16}\right)+\tan ^{2}\left(\frac{3 \pi}{16}\right)+\tan ^{2}\left(\frac{5 \pi}{16}\right)+\tan ^{2}\left(\frac{7 \pi}{16}\right)=35-(3-2\sqrt 2)-1-(3+2\sqrt 2)=28$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/309271", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 1, "answer_id": 0 }
Implicit differentiation 2 questions? Hello everyone I have two questions on implicit differentiation. My first one is express $\frac{dy}{dx}$ in terms of $x$ and $y$ if $x^2-4xy^3+8x^2y=20$ what I did is this $2x-4x(3y^2)(\frac{dy}{dx})+4y^3+8x^2\frac{dy}{dx}+16xy=0$ $-4x(3y^2\frac{dy}{dx})+8x^2\frac{dy}{dx}=-2x-4y^3-16$ Finally I got $\frac{dy}{dx}=\frac{2x-4y^3-16}{-4(x)(3y^2)+8x^2}$ My second question is Find an equation for the tangent line to the graph of $2x^2-5y^2+xy=5$ at the point $(2,1)$ Anyway I simplified the equation to $\frac{dy}{dx}=\frac{-4x-1}{-10y+x}$ plugging in x and y I got $\frac{9}{8}$ so my line is $y-1=\frac{9}{8}(x-2)$ but I am unsure if if I did this correctly.
Very well done, Fernando. You indeed found the equation for the line tangent to the second equation at the point $(2, 1)$, and your first solution look like you differentiated properly, too. You could simplify just a tad: $$\frac{dy}{dx}=\frac{2x-4y^3-16}{-4(x)(3y^2)+8x^2} = \frac{2(x-2y^3 - 8)}{4(-3xy^2 +2)} = \frac{x - 2y^3 - 8}{2(-3xy^2 + 2)}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/310408", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 2, "answer_id": 0 }
Formula for this sequence? $P_n= \prod^n_k_=_2 \frac{k^2-1}{k^2}$ for $n \ge 2$ I calculated $P_1 to P_3$ . I have been trying to come up with a formula but I can't really see any pattern. $P_2 = \frac{3}{4} , P_3 = \frac{2}{3}, P_4 = \frac{5}{8}$
$$P_n = \prod_{k=2}^n \dfrac{k^2-1}{k^2} = \prod_{k=2}^n \dfrac{(k-1)(k+1)}{k^2}$$ Hence, $$P_n = \dfrac{1 \times \color{red}3}{2 \times \color{blue}2} \cdot \dfrac{\color{blue}2 \times \color{green}4}{\color{red}3 \times \color{orange}3} \cdot \dfrac{\color{orange}3 \times \color{magenta}5}{\color{green}4 \times \color{brown}4} \cdot \dfrac{\color{brown}4 \times 6}{\color{magenta}5 \times 5} \cdots \dfrac{(n-2) \times \color{darkgreen}n}{(n-1) \times \color{purple}{(n-1)}} \cdot \dfrac{\color{purple}{(n-1)} \times (n+1)}{\color{darkgreen}n \times n}$$ Rearranging we get, $$P_n = \dfrac12 \cdot \dfrac{3 \times 2}{2 \times 3} \cdot \dfrac{4 \times 3}{3 \times 4} \cdot \dfrac{5 \times 4}{4 \times 5} \cdots \dfrac{n \times (n-1)}{(n-1) \times n} \cdot \dfrac{n+1}n$$ All the terms in the middle are $1$, except the two end terms. Hence, we get that $$P_n = \dfrac12 \cdot \dfrac{n+1}{n}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/311745", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 1, "answer_id": 0 }
Maclaurin series for $\frac{x}{e^x-1}$ Maclaurin series for $$\frac{x}{e^x-1}$$ The answer is $$1-\frac x2 + \frac {x^2}{12} - \frac {x^4}{720} + \cdots$$ How can i get that answer?
This is not a straightforward solution, but I added this to show that we have other ways if we know some properties of the function. Method 2. Using the Taylor series of the logarithm, we have \begin{align*} \frac{x}{e^x - 1} &= \frac{\log(1+(e^x - 1))}{e^x - 1} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (e^x - 1)^n \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n \left( \frac{e^x - 1}{x} \right)^n . \end{align*} Since we only want to extract terms up to degree 4, we can focus on the following expansion: \begin{align*} \frac{x}{e^x - 1} &= 1 - \frac{x}{2} \left( 1 + \frac{x}{2} + \frac{x^2}{6} + \frac{x^3}{24} + \cdots \right) + \frac{x^2}{3} \left( 1 + \frac{x}{2} + \frac{x^2}{6} + \cdots \right)^2 \\ &\qquad - \frac{x^3}{4} \left(1 + \frac{x}{2} + \cdots \right)^3 + \frac{x^4}{5} \left(1 + \cdots \right)^4 \end{align*} Method 3. We decompose the function into the odd part and the even part: \begin{align*} \frac{x}{e^x - 1} &= \color{red}{\frac{1}{2}\left( \frac{x}{e^x - 1} - \frac{(-x)}{e^{-x} - 1} \right) } + \color{blue}{\frac{1}{2}\left( \frac{x}{e^x - 1} + \frac{(-x)}{e^{-x} - 1} \right)} \\ &= \color{red}{-\frac{x}{2}} + \color{blue}{\frac{x}{2} \cdot \frac{e^x + 1}{e^x - 1}} \\ &= \color{red}{-\frac{x}{2}} + \color{blue}{\frac{\cosh (x/2)}{\left(\frac{\sinh(x/2)}{x/2}\right)}} \end{align*} Expanding both the numerator and the denominator of the blue-colored term, $$ \cosh(x/2) = 1 + \frac{x^2}{8} + \frac{x^4}{384} + \cdots, \qquad \frac{\sinh (x/2)}{x/2} = 1 + \frac{x^2}{24} + \frac{x^4}{1920} + \cdots. $$ Thus using the same trick as other answers we find that $$ \frac{x}{e^x - 1} = -\frac{x}{2} + \left( 1 + \frac{x^2}{8} + \frac{x^4}{384} + \cdots \right)\left[ 1 - \left( \frac{x^2}{24} + \frac{x^4}{1920} + \cdots \right) + \left( \frac{x^2}{24} + \cdots \right)^2 - \cdots \right]. $$ So the burden of calculation reduces greatly.
{ "language": "en", "url": "https://math.stackexchange.com/questions/311817", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "13", "answer_count": 4, "answer_id": 1 }
Proof of inequality involving logarithms How could we show that $$\left|\log\left( \left({1 + \frac{1}{n}}\right)^{n + \frac{1}{2}}\cdot \frac{1}{e}\right)\right| \leq \left|\log\left( \left({1 - \frac{1}{n}}\right)^{n - \frac{1}{2}}\cdot \frac{1}{e}\right)\right| ,\; \forall n \text{ sufficiently large?} $$ I already calculated in wolfram the limit of the quotient of the logs when $n \rightarrow \infty$. And it is zero. However, I can't prove it.
It is enough to prove that $$\lim_{n\rightarrow \infty }\log \left( \left( 1+\frac{1}{n}\right) ^{n+1/2} \frac{1}{e}\right) =0$$ and $$\lim_{n\rightarrow \infty }\log \left( \left( 1-\frac{1}{n}\right) ^{n-1/2}\frac{1}{e}\right) =-2.$$ The first limit can be evaluated as follows: $$\begin{eqnarray*} \lim_{n\rightarrow \infty }\log \left( \left( 1+\frac{1}{n}\right) ^{n+1/2}\frac{1}{e}\right) &=&\lim_{n\rightarrow \infty }\left(n+\frac{1}{2}\right)\log \left( 1+\frac{1}{n}\right) -1 \\ &=&\lim_{n\rightarrow \infty }n\log \left( 1+\frac{1}{n}\right)+\frac{1}{2}\lim_{n\rightarrow \infty }\log \left( 1+\frac{1}{n}\right) -1 \\ &=&\lim_{n\rightarrow \infty }\frac{\log \left( 1+\frac{1}{n}\right) }{\frac{1}{n}}+0-1 \\ &=&1-1=0; \end{eqnarray*}$$ and the second: \begin{eqnarray*} \lim_{n\rightarrow \infty }\log \left( \left( 1-\frac{1}{n}\right) ^{n-1/2}\frac{1}{e}\right) &=&\lim_{n\rightarrow \infty }\left(n-\frac{1}{2}\right)\log \left( 1-\frac{1}{n}\right) -1 \\ &=&\lim_{n\rightarrow \infty }n\log \left( 1-\frac{1}{n}\right) -\frac{1}{2}% \lim_{n\rightarrow \infty }\log \left( 1-\frac{1}{n}\right) -1 \\ &=&\lim_{n\rightarrow \infty }\frac{\log \left( 1-\frac{1}{n}\right) }{\frac{1}{n}}-0-1 \\ &=&-1-1=-2. \end{eqnarray*}
{ "language": "en", "url": "https://math.stackexchange.com/questions/312123", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 0 }
Orthogonal trajectories for a given family of curves Find the orthogonal trajectories for the given family of curves: $$y^2=Cx^3-2$$ Derivative with respect to x, and finding the value of C: $$2yy' = C3x^2 $$ $$C=\frac{y^2+2}{x^3}$$ Replacing C, and solving for y': $$2yy' = \frac{3y^2+6}{x}$$ $$y'=\frac{3y^2+6}{2xy}$$ Finding the orthogonal and separating terms: $$y' = -\frac{2xy}{3y^2+6}$$ $$\frac{(3y^2+6)}{y}y'=-2x$$ $$\frac{(3y^2+6)}{y}dy=-2xdx$$ Integrating: $$\int{\frac{(3y^2+6)}{y}dy}=\int{-2xdx}$$ $$\frac{3y^2}{2}+6log(y)=-x^2+C$$ $$C=\frac{3y^2}{2}+6log(y)+x^2$$ Was I close? We weren't given solutions, so I'd appreciate a check on my answer. :)
That's what I got $$ y^2=Cx^3-2 \\ 2yy'= 3Cx^2 \\ y'=\frac{3Cx^2}{2y} $$ Orthogonal curve $$ y'=-\frac {2y}{3Cx^2} \\ \frac {y'}{y} = -\frac 2{3Cx^2} \\ \ln |y| = \frac 2{3Cx} \\ |y| = \exp \left (\frac 2{3Cx} \right) $$ and here some plots
{ "language": "en", "url": "https://math.stackexchange.com/questions/315317", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 1 }
Simple AM-GM inequality Let $a,b,c$ positive real numbers such that $a+b+c=3$, using only AM-GM inequalities show that $$ a+b+c \geq ab+bc+ca $$ I was able to prove that $$ \begin{align} a^2+b^2+c^2 &=\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{a^2+c^2}{2} \geq \\ &\ge \frac{2\sqrt{a^2b^2}}{2}+\frac{2\sqrt{b^2c^2}}{2}+\frac{2\sqrt{a^2c^2}}{2} \\ &= ab+bc+ca \end{align} $$ but now I am stuck. I don't know how to use the fact that $a+b+c=3$ to prove the inequality. Anybody can give me a hint?
Reformulate first $a+b+c=S$ and $a=M+d \qquad b=M-d $ then $$S \ge M^2-d^2 + (S-2M)2M$$ reorganize $$ 3M^2-2SM+S +d^2 \ge 0 $$ Now make use of the given definition that $S=3$. We get $$3(M^2-2M+1) +d^2 \ge 0 $$ $$3(M-1)^2 +d^2 \ge 0 $$ which is always true. Well, this focuses "when and how" it makes sense to introduce the condition that $S=3$. Unfortunately the step with the AM-GM-inequality is lost. But maybe you can combine your steps with this derivations?
{ "language": "en", "url": "https://math.stackexchange.com/questions/315699", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "5", "answer_count": 5, "answer_id": 4 }
Finding the limit of $f(x)$ tends to infinity How do you find this limit? $$\lim_{x \rightarrow \infty} \sqrt[5]{x^5-x^4} -x$$ I was given a clue to use L'Hospital's rule. I did it this way: UPDATE 1: $$ \begin{align*} \lim_{x \rightarrow \infty} \sqrt[5]{x^5-x^4} -x &= \lim_{x \rightarrow \infty} x\begin{pmatrix}\sqrt[5]{1-\frac 1 x} -1\end{pmatrix}\\ &= \lim_{x \rightarrow \infty} \frac{\sqrt[5]{1-\frac 1 x} -1}{\frac1x} \end{align*} $$ Applying L' Hospital's, $$ \begin{align*} \lim_{x \rightarrow \infty} \frac{\sqrt[5]{1-\frac 1 x} -1}{\frac1x}&= \lim_{x \rightarrow \infty} \frac{0.2\begin{pmatrix}1-\frac 1 x\end{pmatrix}^{-0.8}\begin{pmatrix}-x^{-2}\end{pmatrix}(-1)} {\begin{pmatrix}-x^{-2}\end{pmatrix}}\\ &= -0.2 \end{align*} $$ However the answer is $0.2$, so I would like to clarify the correct use of L'Hospital's
If we are not compelled to use L'Hospital's Rule, $$\lim_{x \rightarrow \infty} \sqrt[5]{x^5-x^4} -x$$ $$=\lim_{y\to0}\frac{(1-y)^\frac15-1}y$$ $$=\lim_{y\to0}\frac{(1-y)-1}{y\{(1-y)^\frac45+(1-y)^\frac35+(1-y)^\frac25+(1-y)^\frac15+1\}}$$ as $ a^n-1=(a-1)(a^{n-1}+a^{n-2}+\cdots+a+1)$ $$=\frac{-1}{1+1+1+1+1}\text { as } y\to0\implies y\ne0$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/316865", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 4, "answer_id": 2 }
The series $\sum_{n=1}^{+\infty}\frac{1}{1^2+2^2+\cdots+n^2}.$ How to justify the convergence and calculate the sum of the series: $$\sum_{n=1}^{+\infty}\frac{1}{1^2+2^2+\cdots+n^2}.$$
$$\begin{array}{lcl} \sum_{n=1}^\infty \frac{1}{1^2+2^2+\cdots+n^2}&=& \sum_{n=1}^\infty\frac{6}{n(n+1)(2n+1)} \\ &=& 6\sum_{n=1}^\infty \frac{1}{2n+1} \left( \frac{1}{n}-\frac{1}{n+1}\right) \\ &=& 12\sum_{n=1}^\infty \frac{1}{2n(2n+1)} -12\sum_{n=1}^\infty \frac{1}{(2n+1)(2n+2)} \\ &=& 12\sum_{n=1}^\infty \left[ \frac{1}{2n}-\frac{1}{2n+1} \right] - 12\sum_{n=1}^\infty \left[ \frac{1}{2n+1}-\frac{1}{2n+2} \right]\\ &=& 12(1-\ln 2)- 12\left(\ln 2-\frac{1}{2}\right)\\ &=& 18-24\ln 2 \end{array} $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/317219", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "22", "answer_count": 2, "answer_id": 0 }
Solve $x^{11}+x^8+5\equiv 0\pmod{49}$ Solve $x^{11}+x^8+5\pmod{49}$ My work $f(x)=x^{11}+x^8+5$ consider the polynomial congruence $f(x) \equiv 0 \pmod {49}$ Prime factorization of $49 = 7^2$ we have $f(x) \equiv 0 \mod 7^2$ Test the value $x\equiv0,1,2,3,4,5,6$ for $x^{11}+x^8+5 \equiv 0\pmod 7$ It works for $x\equiv1$, $x\equiv1\pmod7$ is a solution. We proceed to lift the solution $\mod 7^2$ $f'(x) = 11x^{10} + 8x^7 +5$, we have $f(1) = 7$ , $f'(x) = 24$ Since $7$ can not divide $f'(1)$, we need to solve $24t \equiv 0 \mod 7$ we get $t \equiv 0 \pmod 5$ and then ..................... ?????
Hint $\rm\ mod\ 49\!:\ 5+(1\!+\!7n)^8\!+(1\!+\!7n)^{11}\!\equiv 5 + (1\!+\!56n) + (1\!+\!77n) \equiv 7 - 14 n\equiv 7(1\!-\!2n)$ Thus $\rm\ 49\mid 7\,(1\!-\!2n)\iff 7\mid 1\!-\!2n\iff n\equiv 4\,\ (mod\ 7),\ $ so $\rm\ x \equiv 1+7n\equiv 29\,\ (mod\ 49).$ Alternatively $ $ we may compute $\rm\:f(1\!+\!7n)\:$ by Taylor's formula (vs. Binomial Theorem above) $$\rm mod\ 49\!:\,\ g(n) = f(1\!+\!7n) = g(0) + g'(0)\, n + \cdots\, \equiv\, f(1) + 7\, f'(1)\,n$$ Thus $\rm\ 7\mid f(1)\:\Rightarrow\:49\mid f(1)+7\,f'(1)\,n\!\iff\! 7\mid f(1)/7+f'(1)\,n\!\iff\! n\equiv\, -\dfrac{f(1)/7}{f'(1)}\:\ (mod\ 7)$ So $\rm\,\ mod\ 7\!:\ n \equiv -\dfrac{f(1)/7}{f'(1)} \equiv \dfrac{-1}{11+8}\equiv \dfrac{6}{-2}\equiv -3\equiv 4.\:$ This is equivalent to using Hensel's Lemma. It is instructive to compare the two approaches.
{ "language": "en", "url": "https://math.stackexchange.com/questions/317458", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 3, "answer_id": 0 }
$2005|(a^3+b^3) , 2005|(a^4+b^4 ) \implies2005|a^5+b^5$ How can I show that if $$2005|a^3+b^3 , 2005|a^4+b^4$$ then $$2005|a^5+b^5$$ I'm trying to solve them from $a^{2k+1} + b^{2k+1}=...$ but I'm not getting anywhere. Can you please point in me the correct direction? Thanks in advance
If prime $p|(a^3+b^3), p|(a+b)(a^3+b^3) \implies p| \{(a^4+b^4)+ab(a^2+b^2)\}$ If $p|(a^4+b^4), p$ must divide $ab(a^2+b^2)$ If $p|a,$ $p$ must divide $b$ as $p|(a^3+b^3)$ If $p|a$ and $p|b,$ then $p|(a^n+b^n)$ for integer $n\ge1$ Else $p\not\mid ab $ and $p|(a^2+b^2)\implies p|(a+b)(a^2+b^2) \implies p| \{(a^3+b^3)+ab(a+b)\}$ As $p|(a^3+b^3),p|ab(a+b)\implies p|(a+b)$ as $p\not\mid ab$ As $p|(a+b)$ then $p|(a^m+b^m)$ for odd integer $m\ge1$ Now put $p=5,p=401$ separately and use lcm$[5,401]=2005$
{ "language": "en", "url": "https://math.stackexchange.com/questions/319248", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "5", "answer_count": 5, "answer_id": 2 }
Show that that $\lim_{n\to\infty}\sqrt[n]{\binom{2n}{n}} = 4$ I know that $$ \lim_{n\to\infty}{{2n}\choose{n}}^\frac{1}{n} = 4 $$ but I have no Idea how to show that; I think it has something to do with reducing ${n}!$ to $n^n$ in the limit, but don't know how to get there. How might I prove that the limit is four?
Hint: $$ \begin{align} \binom{2n}{n} &=\frac{2n(2n-1)}{n^2}\frac{(2n-2)(2n-3)}{(n-1)^2}\frac{(2n-4)(2n-5)}{(n-2)^2}\cdots\frac{4\cdot3}{2^2}\frac{2\cdot1}{1^2}\\ &=2^n\frac{2n-1}{n}\frac{2n-3}{n-1}\frac{2n-5}{n-2}\cdots\frac{3}{2}\frac{1}{1}\\ &=4^n\frac{n-1/2}{n}\frac{n-3/2}{n-1}\frac{n-5/2}{n-2}\cdots\frac{3/2}{2}\frac{1/2}{1}\tag{1}\\ &\ge4^n\frac{n-1}{n}\frac{n-2}{n-1}\frac{n-3}{n-2}\cdots\frac{1}{2}\cdot1/2\\ &=4^n\frac1{2n}\tag{2} \end{align} $$ $(1)$ and $(2)$ show that $$ \frac1{2n}4^n\le\binom{2n}{n}\le4^n\tag{3} $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/320846", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "14", "answer_count": 7, "answer_id": 0 }
Differential problem, find the maximum and minimum value Find the maximum, minimum value and inflection/saddle point of the following function * *$f(x)=12x^5-45x^4+40x^3+6$ *$f(x)=x+\frac{1}{x}$ *$f(x)=(2x+4) (x^2-1)$ Give a little explanation or procedural details if possible
Many questions! $1.$ We have $f'(x)=60x^4-180x^3+120x^2=60x^2(x^2-3x+2)=60x^2(x-1)(x-2)$. Note that $(x-1)(x-2)\gt 0$ if $x\lt 1$ or $x\gt 2$. Ao $f(x)$ is increasing in $(-\infty,1]$, then decreasing in $[-1,2]$, then increasing in $[2,\infty)$. (It hesitates slightly at $x=0$, since the derivative is $0$ there, but then decides to keep on increasing for a while.) So there is a local (relative) maximum at $x=1$, and a local minimum at $x=2$. There is no global maximum, since $f(x)$ is large when $x$ is large positive or negative. But the local minimum at $x=2$ is also a global minimum. Note that $f''(x)=60(4x^3-9x^2+4x)=60x(4x^2-9x+4)$. Set this equal to $0$. The solutions are $x=0$ and (by the Quadratic Fomula) $x=\frac{9\pm\sqrt{17}}{8}$. Note that $f''(x)$ is negative for $x\lt 0$, positive between $0$ and the first root of the quadratic, then negative between the two roots of the quadratic, and finally positive. So there is a change of concavity at each of the $3$ roots, and therefore there are $3$ inflection points. $2.$ This has been done by anorton. Please note that there is no (absolute) maximum, since $x+\frac{1}{x}$ blows up as we approach $0$ from the right. There is also no absolute minimum, for $x+\frac{1}{x}$ becomes very large negative as we approach $0$ from the left. There is one local maximum, and one local minimum. We have $f'(x)=0$ at $x=\pm 1$. Note also (very importantly) the singularity at $x=0$. So there are $3$ "critical points," $-1$, $0$ and $1$. We examine the behaviour of the function in the four regions determined by the critical points. For example, note that $f'(x) \gt 0$ if $x\lt -1$, and $f'(x)\lt 0$ if $-1\lt x\lt 0$. So $f(x)$ is increasing in $(-\infty,-1]$ and decreasing in $[-1,0)$. It follows that there is a local maximum at $x=-1$. $3.$ This is less interesting. We have $f'(x)=6x^2+8x-2$, so we need to use the quadratic Formula to find the critical points.
{ "language": "en", "url": "https://math.stackexchange.com/questions/321819", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 1 }
Show that $z^3 + (1+i)z - 3 + i = 0$ does not have any roots in the unit circle $|z|\leq 1$. I need help with showing that $z^3 + (1+i)z - 3 + i = 0$ does not have any roots in the unit circle $|z|\leq 1$? My approach so far has been to try to develop the expression further. $$ z^3 +(1+i)z-3+i = z(z^2+i+1)-3+i$$ $$z(z^2+i+1) = 3 - i \longrightarrow |z(z^2+i+1)| = |3 - i|$$ This gives me the expression: $z((z^2+1)^2+(1)^2) = \sqrt{10}$ Which can be written as: $z(z^4 +2z^2 +2) = \sqrt{10}$ But how do I move on from here? Or am I attempting the wrong solution? Thank you for your help!
$z^3 + (1+i)z - 3 + i = 0\iff z^3+(1+i)z=3-i$ Now, If $|z|\leq 1$, then $|z^3+(1+i)z|\leq |z|^3+|1+i||z|\leq1+\sqrt2$ As $|3-i|=\sqrt{10}\gt 1+\sqrt{2}$ Therefore, $z^3+(1+i)z\neq 3-i$ for any $z\in \Bbb C, |z|\leq 1$
{ "language": "en", "url": "https://math.stackexchange.com/questions/321860", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 1 }
prove $ \frac{1}{13}<\frac{1}{2}\cdot \frac{3}{4}\cdot \frac{5}{6}\cdot \cdots \cdot \frac{99}{100}<\frac{1}{12} $ Without the aid of a computer,how to prove $$ \frac{1}{13}<\frac{1}{2}\cdot \frac{3}{4}\cdot \frac{5}{6}\cdot \cdots \cdot \frac{99}{100}<\frac{1}{12} $$
When you multiply up and down in the product by $2 \cdot 4 \cdot 6 \ldots 50$, the product becomes $$\frac{1}{2^{100}} \binom{100}{50} = \frac{1}{2^{100}} \frac{100!}{(50!)^2}$$ Use Stirling: $$n! \sim \sqrt{2 \pi n} n^n e^{-n} \left ( 1+ \frac{1}{12 n}\right )$$ for large $n$. We will see what that means: plug in this approximation into the binomial expression above for $n=50$; the result is $$\frac{1}{2^{100}} \binom{100}{50} \approx \frac{1}{\sqrt{50 \pi}} \left ( 1- \frac{1}{400}\right )$$ Note that the product being about $\frac{1}{\sqrt{50 \pi}}$ is accurate to $1$ part in $400$. Now, it is clear that $50 \pi \approx 157$ to within that margin of error. As $157$ falls between $12^2=144$ and $13^2=169$, the assertion is true.
{ "language": "en", "url": "https://math.stackexchange.com/questions/322224", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "13", "answer_count": 2, "answer_id": 1 }
Equation of one branch of a hyperbola in general position Given a generic expression of a conic: $$Ax^2 + Bxy + Cy^2 + Dx + Ey + F=0$$ is there a way to write an expression for one of the branches as a function of the coefficients? I tried using the quadratic formula to get an expression for $y$: $$y=\frac{-(Bx+E)\pm \sqrt{(Bx+E)^2 - 4(C)(Ax^2 + Dx + F)}}{2C}$$ but this doesn't always work. Consider: $$xy=1$$ Here, $A=0, B=1, C=0, D=0, E=0, F=0$, so $y=\frac{\cdot}{0}$, which isn't particularly helpful. In other cases it is not as bad, but still not what I'm looking for. E.g. $$x^2 - y^2 - 1=0$$ Using the formula above, we get $$y=\pm \sqrt{x^2-1}$$ which seems nice, but $y=\sqrt{x^2-1}$ it is actually one half of each branch rather than one entire branch, as can be seen here. http://www.wolframalpha.com/input/?i=plot%28x^2+-+y^2+-+1%3D0%29 http://www.wolframalpha.com/input/?i=plot%28y%3Dsqrt%28x^2-1%29%29 I am trying to draw one of these branches, so I need an ordered set of points along a predefined "grid" of either of the variables. Is it possible to do this?
Following Will Jagy's suggestion, here are some examples: Example #1 Consider $$x^2 - y^2 -1 = 0$$ ($A=1$, $B=0$, $C=-1$, $D=0$, $E=0$, $F=-1$). From $$p_c = \begin{pmatrix}x_c\\y_c\end{pmatrix} = \begin{pmatrix}\frac{BE-2CD}{4AC-B^2}\\ \frac{DB-2AE}{4AC-B^2}\end{pmatrix}$$ we have $$p_c = \begin{pmatrix}0\\0\end{pmatrix}$$ Now, the eigenvalues/vectors of the matrix $$\begin{pmatrix}A & \frac{B}{2}\\\frac{B}{2} & C\end{pmatrix} = \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$$ are $\lambda_1 = -1$, $\lambda_2 = 1$, $v_1 = \begin{pmatrix}0\\1\end{pmatrix}$, $v_2 = \begin{pmatrix}1\\0\end{pmatrix}$ From the parametric form $$g(t)=p_c + v_1 cosh(t) + v_2 sinh(t)$$ we have $$g(t) = \begin{pmatrix}0\\1\end{pmatrix} cosh(t) + \begin{pmatrix}1\\0\end{pmatrix} sinh(t)$$ which looks like Now how would we draw the other branch? That is, how do you determine the values of the parameter that constitute each branch? Example #2 Consider $$7x^2 - 3y^2 - 25 = 0$$ ($A=7$, $B=0$, $C=-3$, $D=0$, $E=0$, $F=-25$). From $$p_c = \begin{pmatrix}x_c\\y_c\end{pmatrix} = \begin{pmatrix}\frac{BE-2CD}{4AC-B^2}\\ \frac{DB-2AE}{4AC-B^2}\end{pmatrix}$$ we have $$p_c = \begin{pmatrix}0\\\frac{-25}{6}\end{pmatrix}$$ Now, the eigenvalues/vectors of the matrix $$\begin{pmatrix}A & \frac{B}{2}\\\frac{B}{2} & C\end{pmatrix} = \begin{pmatrix}7 & 0 \\ 0 & -3 \end{pmatrix}$$ are $\lambda_1 = -3$, $\lambda_2 = 7$, $v_1 = \begin{pmatrix}0\\1\end{pmatrix}$, $v_2 = \begin{pmatrix}1\\0\end{pmatrix}$ From the parametric form $$g(t)=p_c + v_1 cosh(t) + v_2 sinh(t)$$ we have $$g(t) = \begin{pmatrix}0\\ \frac{-25}{6}\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix} cosh(t) + \begin{pmatrix}1\\0\end{pmatrix} sinh(t)$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/324048", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 2 }
Can the Basel problem be solved by Leibniz today? It is well known that Leibniz derived the series $$\begin{align} \frac{\pi}{4}&=\sum_{i=0}^\infty \frac{(-1)^i}{2i+1},\tag{1} \end{align}$$ but apparently he did not prove that $$\begin{align} \frac{\pi^2}{6}&=\sum_{i=1}^\infty \frac{1}{i^2}.\tag{2} \end{align}$$ Euler did, in 1741 (unfortunately, after the demise of Leibniz). Note that this was also before the time of Fourier. My question: do we now have the tools to prove (2) using solely (1) as the definition of $\pi$? Any positive/negative results would be much appreciated. Thanks! Clarification: I am not looking for a full-fledged rigorous proof of (1)$\Rightarrow$(2). An estimate that (2) should hold, given (1), would qualify as an answer.
One of the best way without leibnizSince $\int_0^1 \frac{dx}{1+x^2}=\frac{\pi}{4}$, we have $$\frac{\pi^2}{16}=\int_0^1\int_0^1\frac{dydx}{(1+x^2)(1+y^2)}\overset{t=xy}{=}\int_0^1\int_0^x\frac{dtdx}{x(1+x^2)(1+t^2/x^2)}$$ $$=\frac12\int_0^1\int_t^1\frac{dxdt}{x(1+x^2)(1+t^2/x^2)}\overset{x^2\to x}{=}\frac12\int_0^1\left(\int_{t^2}^1\frac{dx}{(1+x)(x+t^2)}\right)dt$$ $$=-\frac12\int_0^1\frac{\ln\left(\frac{4t^2}{(1+t^2)^2}\right)}{1-t^2}dt\overset{t=\frac{1-x}{1+x}}{=}-\frac12\int_0^1\frac{\ln\left(\frac{1-x^2}{1+x^2}\right)}{x}dx$$ $$\overset{x^2\to x}{=}-\frac14\int_0^1\frac{\ln\left(\frac{1-x}{1+x}\right)}{x}dx=-\frac14\int_0^1\frac{\ln\left(\frac{(1-x)^2}{1-x^2}\right)}{x}dx$$ $$=-\frac12\int_0^1\frac{\ln(1-x)}{x}dx+\frac14\underbrace{\int_0^1\frac{\ln(1-x^2)}{x}dx}_{x^2\to x}$$ $$=-\frac38\int_0^1\frac{\ln(1-x)}{x}dx\Longrightarrow \int_0^1\frac{-\ln(1-x)}{x}dx=\frac{\pi^2}{6}$$ Remark: This solution can be considered a proof that $\zeta(2)=\frac{\pi^2}{6}$ as we have $\int_0^1\frac{-\ln(1-x)}{x}dx=\text{Li}_2(x)|_0^1=\text{Li}_2(1)=\zeta(2)$
{ "language": "en", "url": "https://math.stackexchange.com/questions/324249", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "15", "answer_count": 2, "answer_id": 1 }
If all the signs are negative in an $(a + b + c)^2$ bracket, can I just make them all positive? I have to do the expansion $$(-y - z - x^2 - y^2 - z^2)^2$$ Can I say that this is $$(y + z + x^2 + y^2 + z^2)^2$$ as all the signs are the same inside the brackets and so multiplying two negatives together will always give me a positive? Or if I wanted to show it algebraically, I could do $$(-y - z - x^2 - y^2 - z^2)^2 = [(-1)(y + z + x^2 + y^2 +z^2)]^2$$ $$ = (-1)^2(y + z + x^2 + y^2 +z^2)^2 = (y + z + x^2 + y^2 +z^2)^2$$ EDIT: Ok, lets say just one of those terms in that bracket was positive, could I still do the $(-1)$ trick and make just one term negative and so its easier to work out, or would I need to leave it as it is and expand it?
Yes. $$(-a -b -c)^2 = ((-1)(a + b + c))^2 = \underbrace{(-1)^2}_{=+1}(a+b+c)^2 = (a+b+c)^2$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/324681", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 0 }
Need help proving this integration If $a>b>0$, prove that : $$\int_0^{2\pi} \frac{\sin^2\theta}{a+b\cos\theta}\ d\theta = \frac{2\pi}{b^2} \left(a-\sqrt{a^2-b^2} \right) $$
$$I = \int_0^{2 \pi} \dfrac{\sin^2(x)}{a+b \cos(x)} dx \implies aI = \int_0^{2 \pi} \dfrac{\sin^2(x)}{1+\dfrac{b \cos(x)}a}dx$$ \begin{align} aI & = \sum_{k=0}^{\infty}\left(\dfrac{(-b)^k}{a^k} \int_0^{2 \pi}\sin^2(x) \cos^k(x) dx \right) = \sum_{k=0}^{\infty}\left(\dfrac{b^{2k}}{a^{2k}} \int_0^{2 \pi}\sin^2(x) \cos^{2k}(x) dx \right) \end{align} Note that we have thrown away the odd terms since for $k$ odd, the integral $\displaystyle \int_0^{2 \pi}\sin^2(x) \cos^k(x) dx$ is zero. \begin{align} \dfrac{\displaystyle \int_0^{2 \pi}\sin^2(x) \cos^{2k}(x) dx}4 & = \int_0^{\pi/2}\sin^2(x) \cos^{2k}(x) dx\\ & \int_0^{\pi/2}\cos^{2k}(x) dx - \int_0^{\pi/2}\cos^{2k+2}(x) dx\\ & = \dfrac{2k-1}{2k} \dfrac{2k-3}{2k-2} \cdots \dfrac12 \dfrac{\pi}2 - \dfrac{2k+1}{2k+2} \dfrac{2k-1}{2k} \dfrac{2k-3}{2k-2} \cdots \dfrac12 \dfrac{\pi}2\\ & = \dfrac1{2k+2} \dfrac{2k-1}{2k} \dfrac{2k-3}{2k-2} \cdots \dfrac12 \dfrac{\pi}2\\ & = \dfrac{\pi}{2^{k+2}} \dfrac{(2k-1)(2k-3)\cdots3 \cdot 1}{(k+1)!} = \dfrac{\pi}{2^{2k+2}} \dfrac{(2k)!}{k! (k+1)!} \end{align} Hence, $$\dfrac{aI}{\pi} = \sum_{k=0}^{\infty} \left(\dfrac{b}{2a} \right)^{2k} \underbrace{\dfrac{(2k)!}{k! (k+1)!}}_{\text{Catalan numbers}}$$ Now $$\sum_{k=0}^{\infty} \dfrac{\dbinom{2k}k x^{k}}{k+1} = \dfrac{1-\sqrt{1-4x}}{2x} \,\,\,\,\,\, \forall \vert x \vert < \dfrac14$$ This is the generating function for the Catalan numbers. Hence, in our case, we get that $$\sum_{k=0}^{\infty} \left(\dfrac{b}{2a} \right)^{2k} \underbrace{\dfrac{(2k)!}{k! (k+1)!}}_{\text{Catalan numbers}} = \dfrac{1-\sqrt{1-4 \cdot \left(\dfrac{b}{2a} \right)^2}}{2 \cdot \left(\dfrac{b}{2a} \right)^2} \,\,\,\,\,\,\,\,\forall \dfrac{b}{2a} < \dfrac12$$ Hence, $$\dfrac{aI}{\pi} = \dfrac{1-\sqrt{1-\left(\dfrac{b}a\right)^2}}{\dfrac{b^2}{2a^2}} = \dfrac{a-\sqrt{a^2-b^2}}{\dfrac{b^2}{2a}}$$ Hence, $$I = \dfrac{2\pi}{b^2} (a-\sqrt{a^2-b^2})$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/326714", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "6", "answer_count": 4, "answer_id": 0 }
Half-symmetric, homogeneous inequality Let $x,y,z$ be three positive numbers. Can anybode prove the follwing inequality : $(x^2y^2+z^4)^3 \leq (x^3+y^3+z^3)^4$ (or find a counterexample, or find a reference ...)
Note that we have $(x^3+y^3+z^3)^2\geq (x^3+y^3)^2+z^6\geq 4x^3y^3+z^6,$ and also $x^3+y^3\geq 2\sqrt{x^3y^3},$ so that it suffices to check that $$\left(2\sqrt{x^3y^3}+z^3\right)^2(4x^3y^3+z^6)\geq (x^2y^2+z^4)^3.$$ Using the Holder's inequality, we can get a sharper bound: $$\begin{aligned}\left(2\sqrt{x^3y^3}+z^3\right)^2(4x^3y^3+z^6)&\geq \left(\sqrt[3]{16x^6y^6}+z^4\right)^3\\&=\left(2\sqrt[3]2x^2y^2+z^4\right)^3.\end{aligned}$$ In this stronger version, equality holds for $(x,y,z)=(t,t,\sqrt[3]{2t}).$ For the original inequality, if nonnegative reals are allowed, then equality holds if and only if $x=y=0.$ Otherwise there is no equality. $\Box$
{ "language": "en", "url": "https://math.stackexchange.com/questions/331427", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "6", "answer_count": 2, "answer_id": 1 }
How to solve this system of equations? How to solve this system of equations? $$\begin{cases} 1+\sqrt{2 x+y+1}=4 (2 x+y)^2+\sqrt{6 x+3 y},\\ (x+1) \sqrt{2 x^2-x+4}+8 x^2+4 x y=4. \end{cases}$$
You have two equations with two variables. $$1+\sqrt{2x+y+1}-4(2x+y)^2-\sqrt{6x+3y}=0$$ $$(x+1)\sqrt{2x^2-x+4}+8x^2+4xy-4=0$$ Solve it with any root finding algortihm. If you are looking for real solutions $$x=0.5\qquad y=-0.5$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/332059", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 0 }
Simplify $ \frac{1}{x-y}+\frac{1}{x+y}+\frac{2x}{x^2+y^2}+\frac{4x^3}{x^4+y^4}+\frac{8x^7}{x^8+y^8}+\frac{16x^{15}}{x^{16}+y^{16}} $ Please help me find the sum $$ \frac{1}{x-y}+\frac{1}{x+y}+\frac{2x}{x^2+y^2}+\frac{4x^3}{x^4+y^4}+\frac{8x^7}{x^8+y^8}+\frac{16x^{15}}{x^{16}+y^{16}} $$
They're arranged rather nicely. Proceed from left to right and keep using the formula $(a-b)(a+b)=a^2-b^2$ to rewrite the two terms you're about to add with a common (unfactored) denominator. You'll get a good deal of additive cancellation in the numerators, so it won't be all that messy at any stage.
{ "language": "en", "url": "https://math.stackexchange.com/questions/332191", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "6", "answer_count": 5, "answer_id": 3 }
If $p$ is prime, $a \in \Bbb Z$, $ord^a_p=3$. Then how to find $ord^{a+1}_p=?$ If $p$ is prime, $a \in \Bbb Z$, $ord^a_p=3$. Then how to find $ord^{a+1}_p=?$ about $ord_n^a$ we know that is $(a,n)=1$ and smallest integer number as $d$ such that $a^d \equiv 1$ so $d=ord_n^a$ also we have: if $(a,n)=1 $, $a\equiv b \pmod n$then $gcd(b,n)=1$, $ord_n^b=ord_n^a$ if $k \in \Bbb N$ , $a^k \equiv 1 \pmod n$ iff $ord_n^a|k$ $a^{k_1} \equiv a^{k_2} \pmod n$ iff $k_1 \equiv k_2 \pmod { ord_n^a}$ $ord_n^a| \phi(n)$ it's my trying : $a^3\equiv 1 \pmod p$ so $(a-1)(a^2 +a+1) \equiv 0 \pmod p$ so $a \equiv1 \pmod p$ that is impossible. so $a^2+a+1 \equiv 0 \pmod p$ so $a+1 \equiv -a^2 \pmod p$ how to find smallest $d$ such that $gcd(p,a+1)=1$ and $(a+1)^d \equiv 1 \pmod p$ also we have: $(-(a+1))^d \equiv (a^2)^d \equiv 1 $ also $ord^a_p=ord^{a^2}_p$so $d=3$, $(a+1)^3 \equiv -1 $ so $(a+1)^6 \equiv 1$ the problem is : Is $6$ smallest? how to prove for $2,4,5$ that is not ? in fact how to prove : $(a+1)^i \not \equiv 0 \pmod p$, $i=2,4,5$
Hint: Note that since $(a+1)^6\equiv 1\pmod{p}$, the order of $a+1$ divides $6$. It follows that the only candidates to be eliminated are $1$, $2$, and $3$. The numbers $4$ and $5$ are not in the game. Added: The fact that the order of $a+1$ is not $1$ is easy to prove, but should be proved. It comes down to the fact that the order of $a$ is $\ne 2$. To show $a+1$ does not have order $2$, suppose that it does. Then from $(a+1)^2\equiv 1\pmod{p}$ we get that $a(a+2)\equiv 0\pmod{p}$. Now show that we cannot have $a\equiv -2\pmod{p}$. To show that the order of $a+1$ is not $3$, suppose it is. Then from $(a+1)^3\equiv 1\pmod{p}$ we obtain $3a^2+3a+1\equiv 0\pmod{p}$. But $p^2+p+1\equiv 0\pmod{p}$. From this one can quickly obtain a contradiction.
{ "language": "en", "url": "https://math.stackexchange.com/questions/332325", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
Logarithm simplification Simplify: $\log_4(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}})$ Can we use the formula to solve this: $\sqrt{a+\sqrt{b}}= \sqrt{\frac{{a+\sqrt{a^2-b}}}{2}}$ Therefore first term will become: $\sqrt{\frac{3}{2}}$ + $\sqrt{\frac{1}{2}}$ $\log_4$ can be written as $\frac{1}{2}\log_2$ Please guide further..
$$\sqrt{2+\sqrt3}=\sqrt{\frac{4+2\sqrt3}2}=\sqrt{\frac{(\sqrt3)^2+1^2+2\cdot\sqrt3\cdot1}2}=\sqrt{\frac{(\sqrt3+1)^2}2}$$ $$\text{So,}\sqrt{2+\sqrt3}=\frac{\sqrt3+1}{\sqrt2}$$ $$\text{Similarly, }\sqrt{2-\sqrt3}=\frac{\sqrt3-1}{\sqrt2}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/332636", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 2 }
The rational points on the curve: $y^2=ax^4+bx^2+c$. I wonder how to find the rational points on the curve: $y^2=ax^4+bx^2+c$. Is there infinite rational points on this curve? For example:$y^2=x^4+3x^2+1.$If we set $y=x^2+k$,then $2kx^2+k^2=3x^2+1$, Can one turn the equation to the form :$y^2=ax^3+bx^2+cx+d$? Thanks in advance.
You can turn $y^2 = a x^4 + b x^2 + c$ into $y^2 = x^3 + px + q$ assuming you can find one rational point on $y^2 = a x^4 + b x^2 +c$. The easiest case is when $a$ is square. I do an example of this computation here.
{ "language": "en", "url": "https://math.stackexchange.com/questions/334680", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 3, "answer_id": 1 }
Variation of Pythagorean triplets: $x^2+y^2 = z^3$ I need to prove that the equation $x^2 + y^2 = z^3$ has infinitely many solutions for positive $x, y$ and $z$. I got to as far as $4^3 = 8^2$ but that seems to be of no help. Can some one help me with it?
Take any Pythagorean triplet $(a,b,c)$. $$\begin{align*} a^2+b^2 &=c^2\\ a^2\cdot c^4+b^2\cdot c^4&=(c^2)^3\\ (ac^2)^2+(bc^2)^2 &=(c^2)^3 \end{align*}$$ Multiplying $c^{6k-2}$, where $k$ is a natural number.
{ "language": "en", "url": "https://math.stackexchange.com/questions/334839", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "26", "answer_count": 8, "answer_id": 2 }
How do I show $\sin^2(x+y)−\sin^2(x−y)≡\sin(2x)\sin(2y)$? I really don't know where I'm going wrong, I use the sum to product formula but always end up far from $\sin(2x)\sin(2y)$. Any help is appreciated, thanks.
\begin{align} \Big(\sin(x+y)\Big)^2 - \Big(\sin(x-y)\Big)^2 & = \Big( \sin x\cos y+\cos x\sin y \Big)^2 - \Big( \sin x\cos y+\cos x\sin y \Big)^2 \\[6pt] & = \Big( \sin^2\cos^2y + 2\sin x\cos y\cos x\sin y + \cos^2x\sin^2y \Big) \\[6pt] &\phantom{{}=} {}- \Big( \sin^2\cos^2y - 2\sin x\cos y\cos x\sin y + \cos^2x\sin^2y \Big) \\[6pt] & = 4\sin x\cos y\cos x\sin y \\[6pt] & = (2\sin x\cos x)(2\sin y\cos y) \\[6pt] & = \sin(2x)\sin(2y). \end{align}
{ "language": "en", "url": "https://math.stackexchange.com/questions/334897", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 7, "answer_id": 1 }
How does $\int_{z=-R+0i}^{R+0i} \frac{e^{2iz}-1-2iz}{z^2}\ dx$ become $\int_{-R}^R \frac{\sin^2x}{x^2}\ dx$? While trying to compute $\int_0^\infty \frac{\sin^2 x}{x^2}\ dx$, the author of this book suggests computing $\int_{C_R} \frac{e^{2iz}-1-2iz}{z^2}\ dz$ on a semi-circular contour in the upper half-plane. The singularity at $z=0$ is removable, so the function is entire, so the integral becomes zero. He then makes a huge jump and says, "Thus, $-2\int_{-R}^R \frac{\sin^2 x}{x^2}\ dx -2i\int_{\Gamma_R} \frac{dz}{z} + \int_{\Gamma_R} \frac{e^{2i z}-1}{z^2}\ dz = 0$." Here, $\Gamma_R$ denote the "arc" part of the semi-circular contour. I get where he gets the second terms from. I don't get where he gets the first. How do we go from $$\int_{-R}^R \frac{e^{2ix}-1-2ix}{x^2}\ dx$$ to $$\int_{-R}^R \frac{\sin^2 x}{x^2}\ dx?$$
$$ e^{2iz}-1-2iz=1+2iz+\frac {(2iz)^2}2+\frac{(2iz)^3}6+\ldots\frac {(2iz)^n}{n!}+\ldots-1-2iz=\\ =\frac{(2iz)^2}2+\frac{(2iz)^3}{3!}+\ldots+\frac{(2iz)^{n+2}}{(n+2)!}+\ldots $$ If you integrate it over $(-R, R)$, obviously all odd powers will drop out since their antiderivatives will be even. So let's consider even powers only $$ e^{2iz}-1-2iz \stackrel{\int}{\equiv} \frac {(2ix)^2}{2!} + \frac {(2ix)^4}{4!} + \frac {(2ix)^6}{6!} + \ldots + \frac {(2ix)^{2k+2}}{(2k+2)!} + \ldots = \\ = -\frac {(2x)^2}{2!} + \frac {(2x)^4}{4!} - \frac {(2x)^6}{6!} + \ldots + (-1)^{k+1} \frac {(2x)^{2k+2}}{(2k+2)!} + \ldots = \\ = 1 -\frac {(2x)^2}{2!} + \frac {(2x)^4}{4!} - \frac {(2x)^6}{6!} + \ldots + (-1)^{k+1} \frac {(2x)^{2k+2}}{(2k+2)!} + \ldots - 1 = \\ = \cos 2x-1 = -2\sin^2x $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/335160", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 2, "answer_id": 0 }
Find a closed form of the series $\sum_{n=0}^{\infty} n^2x^n$ The question I've been given is this: Using both sides of this equation: $$\frac{1}{1-x} = \sum_{n=0}^{\infty}x^n$$ Find an expression for $$\sum_{n=0}^{\infty} n^2x^n$$ Then use that to find an expression for $$\sum_{n=0}^{\infty}\frac{n^2}{2^n}$$ This is as close as I've gotten: \begin{align*} \frac{1}{1-x} & = \sum_{n=0}^{\infty} x^n \\ \frac{-2}{(x-1)^3} & = \frac{d^2}{dx^2} \sum_{n=0}^{\infty} x^n \\ \frac{-2}{(x-1)^3} & = \sum_{n=2}^{\infty} n(n-1)x^{n-2} \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} n(n-1)\frac{x^n}{x}(x+1) \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} (n^2x + n^2 - nx - n)\frac{x^n}{x} \\ \frac{-2x(x+1)}{(x-1)^3} & = \sum_{n=0}^{\infty} n^2x^n + n^2\frac{x^n}{x} - nx^n - n\frac{x^n}{x} \\ \end{align*} Any help is appreciated, thanks :)
$\displaystyle \frac{1}{1-x} = \sum_{n=0}^{\infty}x^n$ Differentiating (and multiplying with $x$)we have, $\displaystyle \frac{x}{(1-x)^2}=\sum_{n=0}^{\infty}nx^n$ Differentiating(and multiplying with $x$) we have, $\displaystyle \frac{[(1-x)^2(1)-(x)2(1-x)(-1)]x}{(1-x)^4}= \frac{x^2+x}{(1-x)^3}= \sum_{n=0}^{\infty}n^2x^n$
{ "language": "en", "url": "https://math.stackexchange.com/questions/338852", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "10", "answer_count": 5, "answer_id": 1 }
Prove $ax^2+bx+c=0$ has no rational roots if $a,b,c$ are odd If $a,b,c$ are odd, how can we prove that $ax^2+bx+c=0$ has no rational roots? I was unable to proceed beyond this: Roots are $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ and rational numbers are of the form $\frac pq$.
Suppose that $a,b,c$ are odd. $ax^2+bx+c=0$ has rational roots iff the discriminant is the square of an integer. That is, there is an integer $d$ so that $d^2=b^2-4ac$. Since $a,b,c$ are odd, $d$ must also be odd. Note that the right hand side of $$ (b-d)(b+d)=4ac\tag{1} $$ has exactly two factors of $2$. However, since $b$ and $d$ are both odd, $2d\equiv2\pmod{4}$ and so one of $b-d$ and $b+d$ is $0\bmod{4}$ and the other is $2\bmod{4}$. Thus, the left hand side of $(1)$ has at least three factors of $2$. Contradiction.
{ "language": "en", "url": "https://math.stackexchange.com/questions/339605", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "9", "answer_count": 11, "answer_id": 1 }
$ (n-7)^2$ is $\Theta(n^2) $ Prove if it's true $$ (n-7)^2 \, \text{is} \, \Theta(n^2) $$ Is this correct? So far I have: $ (n-7)^2 \, \text{is} \, O(n^2) \\ n^2 -14n +49 \, \text{is} \, O(n^2) \\ \begin{align} n^2 -14n +49 & \le \, C \cdot n^2 \, , \, n \ge 1 \\ & \le 50n^2 \end{align} \\ $ $ (n-7)^2 \, \text{is} \, \Omega(n^2) \\ n^2 -14n +49 \, \text{is} \, \Omega(n^2) \\ \begin{align} n^2 -14n +49 \, & \ge \, C \cdot (n^2) \; ,n \ge 1 \\ & \ge -14 n^2 \end{align}$ This proves it true right? Must both proofs have the same constant? I'm very new with Asymptotics.
Easier: $(n-7)^2 > (\frac{n}{2})^2=\Omega(n^2), \ (n-7)^2 < (2n)^2=O(n^2)$ for $n$ large enough, hence $(n-7)^2 = \Theta(n^2)$
{ "language": "en", "url": "https://math.stackexchange.com/questions/341792", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 1, "answer_id": 0 }
Recursion Formulas of $\int x^{\alpha}\ln x \ \text{dx}$ and $\int\frac{\ln^{\beta}x}{x} \ \text{dx}$ Suppose that I have recursion formulas of $\int x^{\alpha}\ln x \ \text{dx}$ and $\int\frac{\ln^{\beta}x}{x} \ \text{dx}$, and suppose that i found them(integration by parts), $$\int x^{\alpha}\ln x \ \text{dx}=\frac{x^{{\alpha} + 1}}{{\alpha} + 1} \big[\ln x - \frac{1}{{\alpha} + 1}\big] + C_1$$ and, $$\int\frac{\ln^{\beta}x}{x} \ \text{dx}=\frac{\ln^{\beta + 1}x }{\beta + 1}+C_2$$ I have trouble showing that for $\alpha=-1$ and $\beta=1$ they have the same value(I cannot put $\alpha=-1$) What to do?
For $\alpha=-1$, we have \begin{align} \int x^{-1} \ln(x) dx & = \overbrace{\int \dfrac{\ln(x)}x dx = \int t dt}^{t = \ln(x)} = \dfrac{t^2}2 + \text{constant}\\ & = \dfrac{\ln^2(x)}2 + \text{constant} = \dfrac{\ln^{1+1}(x)}{1+1} + \text{constant} \end{align} The expression you have is \begin{align} \int x^{\alpha} \ln(x) dx & = \dfrac{x^{\alpha+1} \ln(x)}{1+\alpha} - \dfrac{x^{\alpha+1}}{(1+\alpha)^2} + \text{constant} \end{align} You cannot directly take the limit as $\alpha \to -1$. But note that you can draw some constants out from the constant term to help you. \begin{align} \int x^{\alpha} \ln(x) dx & = \dfrac{(x^{\alpha+1} - 1) \ln(x)}{1+\alpha} + \dfrac{\ln(x)}{1+\alpha}+ \dfrac{1-x^{\alpha+1}}{(1+\alpha)^2} \underbrace{- \dfrac1{(1+\alpha)^2}+ \text{constant}}_{\text{new constant}}\\ & = \dfrac{(x^{\alpha+1} - 1) \ln(x)}{1+\alpha} + \dfrac{\ln(x)}{1+\alpha}+ \dfrac{1-x^{\alpha+1}}{(1+\alpha)^2} + \text{constant} \,\,\,\, (\spadesuit) \end{align} Now note that $$x^{1+\alpha} = \exp((1+\alpha) \ln(x)) = 1 + (1+\alpha) \ln(x) + \dfrac{(1+\alpha)^2}2 \ln^2(x) + \mathcal{O}((1+\alpha)^3)$$ Hence, \begin{align} \dfrac{1- x^{1+\alpha}}{1+\alpha} & = - \ln(x) - \dfrac{1+\alpha}2 \ln^2(x) + \mathcal{O}((1+\alpha)^2)\\ \ln(x) + \dfrac{1- x^{1+\alpha}}{1+\alpha} & = - \dfrac{1+\alpha}2 \ln^2(x) + \mathcal{O}((1+\alpha)^2)\\ \dfrac{\ln(x)}{1+\alpha} + \dfrac{1- x^{1+\alpha}}{(1+\alpha)^2} & = - \dfrac{\ln^2(x)}2 + \mathcal{O}((1+\alpha)) \end{align} Plug this in $(\spadesuit)$ to get $$\int x^{\alpha} \ln(x) = \ln^2(x) + \dfrac{1+\alpha}2 ln^3x + ln x\,\mathcal{O}((1+\alpha)) - \dfrac{\ln^2(x)}2 + \mathcal{O}((1+\alpha)) = \dfrac{\ln^2(x)}2 + \dfrac{1+\alpha}2 ln^3x + (ln x + 1)\,\mathcal{O}((1+\alpha))$$ Now letting $\alpha \to -1$, we get that $$\lim_{\alpha \to -1} \int x^{\alpha} \ln(x) = \lim_{\alpha \to -1} \dfrac{\ln^2(x)}2 + \mathcal{O}((1+\alpha)) = \dfrac{\ln^2(x)}2$$ which matches with our original integral.
{ "language": "en", "url": "https://math.stackexchange.com/questions/344041", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "4", "answer_count": 1, "answer_id": 0 }
Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$ $$\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$$ I have attempted this question by expanding the left side using the cosine sum and difference formulas and then multiplying, and then simplifying till I replicated the identity on the right. I am not stuck. What's bothering me is that the way I went about this question seemed like a rather "clunky" method. I'm just curious if I've missed some underlying pattern that could have made it easier to reproduce the identity on the right. The way I did it: $$\begin{array}{l} \cos (A + B)\cos (A - B)\\ \equiv (\cos A\cos B - \sin A\sin B)(\cos A\cos B + \sin A\sin B)\\ \equiv {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B\\ \equiv {\cos ^2}A(1 - {\sin ^2}B) - (1 - {\cos ^2}A){\sin ^2}B\\ \equiv {\cos ^2}A - {\cos ^2}A{\sin ^2}B - {\sin ^2}B + {\cos ^2}A{\sin ^2}B\\ \equiv {\cos ^2}A - {\sin ^2}B\end{array}$$
Another way of looking at it: $$\begin{align*} \cos(A+B)\cos(A-B) &= \frac14\left(e^{i(A+B)}+\frac{1}{e^{i(A+B)}}\right)\left(e^{i(A-B)}+\frac{1}{e^{i(A-B)}}\right) \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + 2 - 2 + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + 2\right] + \frac14\left[ - 2 + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \left(\frac{e^{iA} + e^{-iA}}{2}\right)^2 - \left( \frac{e^{iB}-e^{-iB}}{2i}\right)^2 \\ &= \cos^2 A - \sin^2 B. \end{align*} $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/345703", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "11", "answer_count": 5, "answer_id": 2 }
Simplifying $\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt {5 +\cdots}}}}$ How to simplify the expression: $$\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt{\cdots}}}}.$$ If I could at least know what kind of reference there is that would explain these type of expressions that would be very helpful. Thank you.
Let $x=\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt{\dots}}}}$. Then $x^2=5+2\sqrt{5+2\sqrt{5+\sqrt{5+2\sqrt{\dots}}}}$. So, $x^2-5=2\sqrt{5+2\sqrt{5+\sqrt{5+2\sqrt{\dots}}}}$ Remember that $x=\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt{\dots}}}}$ So, $2\sqrt{5+2\sqrt{5+\sqrt{5+2\sqrt{\dots}}}}$. So, $2\sqrt{5+2\sqrt{5+\sqrt{5+2\sqrt{\dots}}}}=2x$ This automatically makes our equation to be $x^2-5=2x$. Just solve the quadratic equation, and take the positive root. Why only positive? Think about it: how can $\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt{\dots}}}}$ equal a negative number? It must be positive! So that's why we only take the positive root. $$x^2-2x-5=0$$ $$x=\dfrac{2\pm \sqrt{(-2)^2-4(1)(-5)}}{2(1)}$$ $$x=\dfrac{2\pm \sqrt{4+20}}{2}$$ $$x=\dfrac{2\pm \sqrt{24}}{2}$$ $$x=\dfrac{2\pm 2\sqrt{6}}{2}$$ $$x=1\pm \sqrt{6}$$ Since $1-\sqrt{6}$ equals a negative number, we reject that root. So, $x=1+\sqrt{6}$, which is also the answer to the original problem. Answer: $$\displaystyle \boxed{\sqrt{5+2\sqrt{5+2\sqrt{5+2\sqrt{\dots}}}}=1+\sqrt{6}}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/346303", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "14", "answer_count": 4, "answer_id": 3 }
Proving $\tan \left(\frac{\pi }{4} - x\right) = \frac{{1 - \sin 2x}}{{\cos 2x}}$ How do I prove the identity: $$\tan \left(\frac{\pi }{4} - x\right) = \frac{{1 - \sin 2x}}{{\cos 2x}}$$ Any common strategies on solving other identities would also be appreciated. I chose to expand the left hand side of the equation and got stuck here: $$\frac{\cos x-\sin x}{\cos x+\sin x}$$
$$ \begin{aligned} & \frac{1-\sin 2 x}{\cos 2 x} \\ =& \frac{(\cos x-\sin x)^{2}}{\cos ^{2} x-\sin ^{2} x} \\ =&\frac{(\cos x-\sin x)^{2}}{(\cos x+\sin x)(\cos x-\sin x)} \\ =& \frac{\cos x-\sin x}{\cos x+\sin x} \\ =& \frac{1-\tan x}{1+\tan x} \\ =& \tan \left(\frac{\pi}{4}-x\right) \end{aligned} $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/347248", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 3, "answer_id": 2 }
Infinite product simplification I found the following identity $\prod_{k=0}^{\infty}(1+\frac{1}{2^{2^k}-1})=\frac{1}{2}+\sum_{k=0}^{\infty}\frac{1}{\prod_{j=0}^{k-1}(2^{2^j}-1)}$ My first thought was to use eulers identity somehow $\prod_{k=1}^{\infty}(1+z^k)=\prod_{k=1}^{\infty}(1-z^{2k-1})^{-1}$ but it does not help me. If you have an idea or know a helpful identity to prove this result I would really appreciate it.
To prove this identity, observe that the left-hand side is \begin{eqnarray*} \prod_{k\ge 0} (1+\frac{1}{2^{2^k}-1}) &=& \prod_{k\ge 0} \frac{2^{2^k}}{2^{2^k}-1}\\ &=& \prod_{k\ge 0} \frac{1}{1-2^{-2^k}}\\ &=& \prod_{k\ge 0} (1 + 2^{-2^k} + 2^{-2\cdot 2^k} + 2^{-3\cdot 2^k} + \cdots) \end{eqnarray*} and then, partially expanding the infinite product, \begin{eqnarray*} &\ & \prod_{k\ge 0} (1 + 2^{-2^k} + 2^{-2\cdot 2^k} + 2^{-3\cdot 2^k} + \cdots)\\ &=& 1+\sum_{k\ge 0} (2^{-2^k} + 2^{-2\cdot 2^k}+ 2^{-3\cdot 2^k} + \cdots)\prod_{0\le j<k} (1 + 2^{-2^j} + 2^{-2\cdot 2^j} + 2^{-3\cdot 2^j} + \cdots)\\ &=& 1+\sum_{k\ge 0} \left(2^{-2^k} + \frac{2^{-2\cdot 2^k}}{1-2^{-2^k}}\right) \prod_{0\le j<k} (1-2^{-2^j})^{-1}\\ &=& 1+\sum_{k\ge 0} \left(2^{-2^k} \prod_{0\le j<k} (1-2^{-2^j})^{-1}+ 2^{-2^{k+1}} \prod_{0\le j\le k} (1-2^{-2^j})^{-1}\right)\\ &=& 1+\sum_{k\ge 0} 2^{-2^k} \prod_{0\le j<k} (1-2^{-2^j})^{-1} +\sum_{\ell\ge 1} 2^{-2^\ell} \prod_{0\le j<\ell} (1-2^{-2^j})^{-1}, \ \ \text{setting } \ell=k+1\\ &=& 1-\frac{1}{2}+2\sum_{k\ge 0} 2^{-2^k} \prod_{0\le j<k} (1-2^{-2^j})^{-1}, \qquad \text{lumping the two sums into one}\\ &=& \frac12+\sum_{k\ge 0} 2^{-(2^0+\cdots+2^{k-1})} \prod_{0\le j<k} (1-2^{-2^j})^{-1}\\ &=& \frac12 + \sum_{k\ge 0} \prod_{0\le j\le k-1} \frac{1}{2^{2^j}-1}, \\ \end{eqnarray*} which is the right-hand side.
{ "language": "en", "url": "https://math.stackexchange.com/questions/349404", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "9", "answer_count": 1, "answer_id": 0 }
Integral solutions of hyperboloid $x^2+y^2-z^2=1$ Are there integral solutions to the equation $x^2+y^2-z^2=1$?
Recall the Brahmagupta formula $$(ad-bc)^2 + (ac+bd)^2 = (a^2+b^2)(c^2+d^2) = (ac-bd)^2 + (ad+bc)^2$$ Now find $a,b,c,d$ such that say $ad-bc = 1$. Then set $z = ac+bd$, $x=ac-bd$ and $y = ad+bc$ to get a solution. For instance, one such one parameter family solution following the above procedure is $$x = 2t, y = 2t^2-1, z = 2t^2$$ where $a = d = t, b = (t+1), c = (t-1)$ since $t^2 - (t^2-1) = 1$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/351491", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "5", "answer_count": 9, "answer_id": 1 }
Integrating $\int \sqrt{(2+\sin{3x})\cos{3x}}{dx}$ Integrating $$\int \sqrt{(2+\sin{3x})\cos{3x}}\mathrm{d} x$$ Let, $\sqrt{2+\sin{3x}}=t$ then, $\frac{3\cos{3x}}{2\sqrt{2+\sin{3x}}}\mathrm{d} x=\mathrm{d} t$ Integral = $\frac{2}{3}\int\frac{t^2}{\sqrt{1-(t^2-2)^2}}\mathrm{d} t$ Integral = $\frac{2}{3}\int\frac{t^2}{\sqrt{1-(t^2-2)}\sqrt{1+(t^2-2)}}\mathrm{d} t$
Some idea: by parts $$u:=t\;\;,\;\;u'=1\\v'=\frac{t}{\sqrt{1-(t^2-2)^2}}\;\;,\;\;v=\frac{1}{2}\arcsin(t^2-2)$$ so $$\frac{2}{3}\int\frac{t^2}{\sqrt{1-(t^2-2)^2}}dt=-\frac{1}{3}t\arcsin(t^2-2)-\frac{1}{3}\int\arcsin(t^2-2) dt\ldots$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/351721", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
Triangle proof using law of sines In triangle $ABC$, suppose that angle $C$ is twice angle $A$. Use the law of sines to show that $ab= c^2 - a^2$.
A common way to invoke the Law of Sines is to note what its ratios equal: $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = d$$ where $d$ is the circum-diameter of $\triangle ABC$. Thus, $$a = d \sin A \qquad b = d \sin B \qquad c = d \sin C$$ Consequently, the identity in question, upon division by $d^2$, is equivalent to $$\sin A \sin B \stackrel{?}{=} \sin^2 C - \sin^2 A$$ Now, $C=2A$ implies $B=\pi-3A$, so that $\sin B = \sin 3A$, and the identity to be proven becomes $$\begin{align} \sin A \sin 3A &\stackrel{?}{=} \sin^2 2A - \sin^2 A \\[6pt] &= \left( \sin 2A + \sin A \right) \left( \sin 2 A - \sin A \right) \\[6pt] &= 2 \sin\frac{3A}{2}\cos\frac{A}{2} \cdot 2 \sin\frac{A}{2} \cos\frac{3A}{2} \\[6pt] &= 2 \sin\frac{A}{2}\cos\frac{A}{2} \cdot 2 \sin\frac{3A}{2} \cos\frac{3A}{2} \\[6pt] &= \sin A \; \sin 3A \end{align}$$ In the above, I use the sum-to-product identity $\sin\theta \pm \sin\phi = 2 \sin\frac{\theta\pm \phi}{2} \cos\frac{\theta\mp \phi}{2}$, which is familiar to me. Someone familiar with multiple-angle identities may have proceeded thusly: $$\begin{align} \sin A \sin 3A &\stackrel{?}{=} \sin^2 2A - \sin^2 A \\[6pt] &= 4\sin^2 A\cos^2 A - \sin^2 A \\[6pt] &= \sin A \cdot \sin A \left( 4 \cos^2 A - 1 \right) \\[6pt] &= \sin A \cdot \sin A \left( 3 - 4\sin^2 A \right) \\[6pt] &= \sin A \; \sin 3A \end{align}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/354452", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 4, "answer_id": 2 }
Least square solution of a matrix Determine the least squares solution to the system $$\begin{pmatrix} 1 & 2 & 1 \\ 1&3&2\\2&5&3\\2&0&1 \\ 3 &1&1\end{pmatrix}\begin{pmatrix}a\\b\\c\end{pmatrix}=\begin{pmatrix}-1\\2\\0\\1\\-2\end{pmatrix}$$ So the previous equation was Ax = B To find the least square regression we need $(A^tA)^{-1}A^t B = x$ wherein the regression line is $ y=x_i+x_{i+1}+...+x_{n}$ The problem is: A= $\begin{pmatrix} 1 & 2 & 1 \\ 1&3&2\\2&5&3\\2&0&1 \\ 3 &1&1\end{pmatrix}$ $A^{t}$ = $\begin{pmatrix} 1 & 1 & 2&2&3 \\ 2&3&5&0&1\\1&2&3&1&1\end{pmatrix}$ $(A^{t}A)$=$\begin{pmatrix} 6 & 9 & 15&3&6 \\ 9&14&23&4&8\\15&23&38&7&14\\3&4&7&5&7\\6&8&14&7&11\end{pmatrix}$ This is the problem: $(A^{t}A)^{-1}$ = singular
You have computed $AA^T$, not $A^TA$. The correct $A^TA$ should be: $$\left(\begin{array}\\ 19 & 18 & 14 \\ 18 & 39 & 24 \\ 13 & 24 & 16 \end{array}\right)$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/355486", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
Quadratic equation with tricky conditions. Need to prove resulting inequalities. The roots of the quadratic equation $ax^ 2-bx+c=0,$ $a>0$, both lie within the interval $[2,\frac{12}{5}]$. Prove that: (a) $a \leq b \leq c <a+b$. (b) $\frac{a}{a+c}+\frac{b}{b+a}>\frac{c}{c+b}$ So we can use the quadractic formula and obtain $2 \leq \frac{b \pm \sqrt{b^2-4ac}}{2a} \leq \frac{12}{5}$ and as $a>0$, this implies that $4a \leq b \pm \sqrt{b^2-4ac} \leq \frac{24a}{5}$. Then we can divide this into two cases (plus or minus) --- But how can we manipulate it to yield the required result? Another idea is to make use of the fact that $b^2-4ac$ is non-negative
As shown in other answers, let $\alpha,\beta$ be the two real roots of $ax^2-bx+c=0$, i.e. $$ax^2-bx+c=a(x-\alpha)(x-\beta)\iff \alpha+\beta=\frac{b}{a},\ \alpha\beta=\frac{c}{a}.$$ Since $\alpha,\beta\in[2,2.4]$ and $a>0$, $$\frac{b}{a}=\alpha+\beta\ge 4\Rightarrow a\le \frac{b}{4}<b;$$ $$\frac{b}{c}=\frac{\alpha+\beta}{\alpha\beta}=\frac{1}{\alpha}+\frac{1}{\beta}\le 1\Rightarrow b\le c;$$ and $$(\alpha-1)(\beta-1)<2\Rightarrow 1+\frac{b}{a}=\alpha+\beta+1>\alpha\beta=\frac{c}{a}\Rightarrow c< a+b.$$ Therefore, $$\frac{a}{a+c}+\frac{b}{a+b}\ge \frac{a}{a+c}+\frac{b}{a+c}=\frac{a+b}{a+c}>\frac{c}{a+c},$$ where the first inequality is due to $a,b>0$ and $0\le b\le c$ and the second one is due to $a+b>c$ and $a+c>0$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/356594", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 1 }
$ \int_{C}^{} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} $ where $C$ is $ |x|+|y|=4 $ Calculate $$ \int_{C}^{} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} $$ where C is the curve $$ |x|+|y|=4 $$ counterclock-wise, a full revolution. Answer: $$-2\pi$$ So, I've tried to figure this out for a while now. I've tried Green's formula, that gives me 0 as its answer, which is wrong. I've tried to parametrized it, which gives me nothing useful. Ideas?
I think we could exploit the fact that the integrand is a gradient of the fundamental function for a Poisson equation. Notice: $$ \nabla \big(\ln((x+1)^2+y^2)\big) = 2\left(\frac{x+1}{(x+1)^2+y^2}, \frac{y}{(x+1)^2+y^2}\right) $$ Denote the square as $\Omega$, the infinitesimal tangent of the curve is $(dx,dy)$, then rotate it clockwise by $\pi/2$ we get the normal, and the normal is $(dy,-dx)$. So the original integral $I$ becomes: $$ I = -\frac{1}{2}\int_{\partial \Omega} \nabla \big(\ln((x+1)^2+y^2)\big) \cdot \mathbf{n} \,ds $$ Moreover recall the fundamental solution of Poisson equation in 2D is $\displaystyle \phi = \frac{1}{2\pi}\ln|\mathbf{x}-\mathbf{x}_0|$ which solves: $$ \Delta \phi = \delta(\mathbf{x}-\mathbf{x}_0) $$ in $\mathbb{R}^2$. Let $\mathbf{x}_0 = (-1,0)$, then $u =\ln\big((x+1)^2+y^2\big) = 2\ln|\mathbf{x}-\mathbf{x}_0|$, and $u$ solves: $$ \Delta u = 4\pi \delta(\mathbf{x}-\mathbf{x}_0) $$ Now uses Divergence theorem: $$ I = -\frac{1}{2}\int_{\partial \Omega} \nabla u \cdot \mathbf{n} \,ds = -\frac{1}{2} \int_{\Omega} \Delta u = -\frac{1}{2} \int_{\Omega} 4\pi \delta(\mathbf{x}-\mathbf{x}_0) = -2\pi $$ Above method looks like a little bit cheating though. EDIT: Guess this is a standard Calculus III problem, so we shouldn't use either Dirac delta nor Cauchy integral formula. Thinking of the Cauchy integral formula reminded me a trick we used in Calculus III (maybe it was too long and slipped from my mind, now I recollected how we did this kind of problem): When the enclosed $\Omega$ by the curve $C$ has a singularity, i.e., $\displaystyle \frac{\partial Q}{\partial x}$ or $\displaystyle \frac{\partial P}{\partial y}$ is not continuous, we could just cut a hole with a small radius $r$ centered at this singularity , in this example it is $(-1,0)$, such that outside this small disk of radius $r$ there is no singularity (See the picture below). Denote $C'$ the boundary of this disk $B$, rotating clockwisely. Then: $$ \oint_{C} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} + \oint_{C'} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} = \int_{\Omega\backslash B}\left\{ -\frac{\partial}{\partial x}\left(\frac{x+1}{(x+1)^2+y^2}\right) - \frac{\partial}{\partial y}\left(\frac{y}{(x+1)^2+y^2}\right)\right\} dx dy = 0 $$ Therefore: $$ \oint_{C} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} =- \oint_{C'} \frac{ydx-(x+1)dy}{x^2+y^2+2x+1} $$ Now we could just parametrize the curve $C'$ using $t$, by letting $x+1 = r\cos t$, $y = r\sin t$, so $dx = -r\sin t\, dt$, $dy = r \cos t \,dt$. The integral becomes: $$ \oint_{C'}\frac{y }{(x+1)^2+y^2}dx-\frac{(x+1)}{(x+1)^2+y^2}dy = \int^{2\pi}_0 \left(\frac{r\sin t\, }{r^2\cos^2 t + r^2\sin^2 t} (-r\sin t) - \frac{r\cos t\,}{r^2\cos^2 t + r^2\sin^2 t}r \cos t \right)dt = -2\pi $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/360668", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
Summation of Arithmetic-Geometric Series I've been working through my homework paper, and I've come across this question. Now I'm confident in what I have done for the most part, but I am stuck at the end. I have this recurrence relation, that I am supposed to solve using backward substitution. $$ T(n) = 2T(n/2) + n + 11 $$ Where n is some power of 2, for all n>1 and T(1) = 0. I started out by some backward substitution and eventually arrived at this: $$ 2^3T(n/2^3) + 2^2(n) + 2^2(11) + 2(n) + 2(11) + n + 11 $$ And I reasoned that the general case was: $$ 2^kT(n/2^k) + 2^{k-1}(n) + 2^{k-1}(11) + 2^{k-2}(n) + 2^{k-2}(11)...2^0(n) + 2^0(11) $$ n is a power of two, meaning that I can resolve this further: $$ T(n) = 2^{k-1}(n) + 2^{k-1}(11) + 2^{k-2}(n) + 2^{k-2}(11)...2^0(n) + 2^0(11) $$ Now I know I am supposed to summate this in some way, but I really don't know how! Can you guys point me in the right direction please? Second attempt I started from the beginning again, and this is how I went. I can see my answer coming closer to yours now, but I'm just struggling with one bit. $$ T(n) = 2T(n/2) + n + 11 $$ $$ T(n) = 2^2T(n/4) + n/2 + n + 22 + 11 $$ $$ T(n) = 2^3T(n/8) + n/4 + n/2 + n + 44 + 22 + 11 $$ Factorized the 11.. $$ T(n) = 2^3T(n/8) + n/4 + n/2 + n + 11(4 + 2 + 1) $$ I'm struggling to get from this point to your answer. Sorry to be such a pain!
Well $$\sum_{j=0}^{k-1} 2^j = 2^k-1$$ since it's just a geometric sum of ratio 2. But let's check your substitution: $$T(2^k) = 2 T(2^{k-1}) + 2^k + 11 = 2 \left(2 T(2^{k-2}) + 2^{k-1} + 11\right) + 2^k + 11$$ or $$2^2T(2^{k-2}) + 2\times 2^k + (2 + 1)\times 11$$ Adding another term gives $$2^2\left(2T(2^{k-3}) + 2^{k-2} + 11\right) + 2\times 2^k + (2 + 1)\times 11$$ or $$2^3T(2^{k-3}) + 3\times 2^k + (4 + 2 + 1)\times 11$$ Edit: Note that you accidentally substituted in $T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{4}\right) + \boxed{n} + 11$. The boxed term should be $\frac{n}{2}$. Then you accidentally left out the $\boxed{2} \times 2^{k-1}$ and the $\boxed{2\times 2}\times2^{k-2}$ etc. In general, we get $$2^k T(1) + k 2^k + (1 + 2 + \cdots + 2^{k-1})\times 11 = k 2^k+11(2^k-1)$$ or $$T(2^k) = (k+11)2^k-11$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/362656", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
Finding Pi variables from matrix. From PageRank Algorithm. $$\pmatrix{\pi_1 & \pi_2 & \pi_3} = \pmatrix{\pi_1 & \pi_2 & \pi_3}\pmatrix{\frac{1}{6} & \frac{4}{6} & \frac{1}{6} \\ \frac{5}{12} & \frac{2}{12} & \frac{5}{12} \\ \frac{1}{6} & \frac{4}{6} & \frac{1}{6} \\}$$ Answer: $$\pi_1=\frac{5}{18}$$ $$\pi_2=\frac{8}{18}$$ $$\pi_3=\frac{5}{18}$$ Could someone please explain how to find these variables.
The key terms are the Perron-Frobenius theorem and the stable state of a Markov chain. In practice, this vector $\pi$ is found as the eigenvector for the eigenvalue $1$, and is normalized so that the sum of its components is $1$. Subtract $1$ along the diagonal to get $$B=\pmatrix{-\frac{5}{6} & \frac{4}{6} & \frac{1}{6} \\ \frac{5}{12} & -\frac{10}{12} & \frac{5}{12} \\ \frac{1}{6} & \frac{4}{6} & -\frac{5}{6} }$$ Since we multiply by the matrix on the right, the desired vector is in the kernel of $B^T$. The Scilab command v=kernel(B')' outputs v = 0.4682929 0.7492686 0.4682929 This is normalized to have length $1$, but we want the sum of components to be $1$. The command v/sum(v) does the job: 0.2777778 0.4444444 0.2777778 which is your vector. Of course, with sufficient patience one can do it by hand as well.
{ "language": "en", "url": "https://math.stackexchange.com/questions/365443", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
How to expand this taylor series and find radius of convergence f(x)= √(1-x) at x=0 How do you find the taylor series and radius of convergence?
$$(1-x)^\frac{1}{2}=1+\sum_{k=1}^\infty(-1)^k\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-k+1)}{k!}x^k$$ and \begin{align}\frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)\cdots(\frac{1}{2}-k+1)}{k!}&=\frac{(-1)(-3)\cdots(3-2k)}{2^kk!}=(-1)^{k-1}\frac{1\times3\times\cdots\times(2k-3)}{2^kk!}\\&=(-1)^{k-1}\frac{(2k-2)!}{2^{2k-1}k!(k-1)!}\end{align} hence we have $$(1-x)^\frac{1}{2}=1-\sum_{k=1}^\infty \frac{(2k-2)!}{2^{2k-1}k!(k-1)!}x^k=1-\sum_{k=1}^\infty a_kx^k$$ Finaly by the D'Alembert criterion we have $$\frac{1}{R}=\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=\lim_{k\to\infty}\frac{2k(2k+1)}{2^2(k+1)k}=1$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/365789", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 1, "answer_id": 0 }
How prove this equation(18)? my book have this:let $f(x)=\sqrt{nx},n\in N,0<x<1$, then use Taylor we have $$f(x)=1+f'(x_{0})(x-x_{0})-\dfrac{g(x)}{2}$$ where $x_{0}=\dfrac{1}{n},g(x)=(\sqrt{nx}-1)^2$ my question: $g(x)=(\sqrt{nx}-1)^2$? why?
$$f(x)=\sqrt{nx}, \quad f'(x)=\frac{1}{2}\cdot\frac{1}{\sqrt{nx}}\cdot n = \frac{n}{2\sqrt{nx}}$$ $$x_0=1/n, \quad f(x_0)=\sqrt{n\cdot(1/n)}=1, \quad f'(x_0)=\frac{n}{2\sqrt{n\cdot(1/n)}}=\frac{n}{2}$$ $$\sqrt{nx} = 1 + \frac{n}{2} \cdot (x-1/n) - \frac{g(x)}{2}$$ $$2\sqrt{nx} = 2 + (nx-1) - g(x)$$ $$g(x) = 2 + (nx-1) - 2\sqrt{nx} = nx - 2 \sqrt{nx} - 1 = (\sqrt{nx}-1)^2$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/366222", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
Symmetry properties of $\sin$ and $\cos$. Why does $\cos\left(\frac{3\pi}{2} - x\right) = \cos\left(-\frac{\pi}{2} - x\right)$? For a question such as: If $\sin(x) = 0.34$, find the value of $\cos\left(\frac{3\pi}{2} - x\right)$. The solution says that: \begin{align*} \cos\left(\frac{3\pi}{2} - x\right) &= \cos\left(-\frac{\pi}{2} - x\right)\\ &= \cos\left(\frac{\pi}{2} + x\right)\\ &= -\sin(x) \end{align*} Why does $\cos\left(\frac{3\pi}{2} - x\right) = \cos\left(-\frac{\pi}{2} - x\right)$? Similarly, if $\cos(x) = 0.6$, find $\sin\left(\frac{3\pi}{2} + x\right)$, the solution says $\sin\left(\frac{3\pi}{2} + x\right)$ is equal to $\cos(\pi+x)$. How did they get $\cos(\pi+x)$?
HINT : as $\cos(2\pi+y)=\cos2\pi\cos y-\sin2\pi\sin y=\cos y$ As $$\left(\frac{3\pi}2-x\right)-\left(-\frac\pi2-x\right)=2\pi$$ $$\implies \left(\frac{3\pi}2-x\right)=2\pi+\left(-\frac\pi2-x\right)$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/367938", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 4, "answer_id": 1 }
How to estimate the following integral: $\int_0^1 \frac{1-\cos x}{x}\,dx$ How to estimate the following integral? $$ \int_0^1 \frac{1-\cos x}{x}\,dx $$
Since $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$, $1-\cos(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n}}{(2n)!}$, so $\frac{1-\cos(x)}{x} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n)!}$. Therefore $\begin{align} \int_0^1 \frac{1-\cos(x)}{x} dx &= \int_0^1 dx \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n)!}\\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} }{(2n)!} \int_0^1 x^{2n-1} dx\\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} }{(2n)!} \frac1{2n} \\ &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} }{2n(2n)!}\\ \end{align} $ This is an alternating series with terms decreasing in absolute value, so its sum is between any two consecutive terms. The first two terms are $\frac1{4}$ and $\frac{-1}{4\cdot 4!} = \frac{-1}{96}$, so the result is slightly less than $\frac1{4}$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/368988", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 2, "answer_id": 1 }
Expand into power series $f(x)=\log(x+\sqrt{1+x^2})$ As in the topic, I am also supposed to find the radius of convergence. My solution: $$\log(x+\sqrt{1+x^2})=\log \left ( x(1+\sqrt{\frac{1}{x^2}+1})\right )=\log(x)+\log(1+\sqrt{\frac{1}{x^2}+1})$$Now I tried to use expansion for $\log(1+x)$ as $x\rightarrow0:\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots$$$ \log(1+(x-1))=(x-1)-\frac{(x-1)^2}{2}+\frac{(x-1)^3}{3}-\cdots=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}(x-1)^k $$ $$\log(1+\sqrt{\frac{1}{x^2}+1})= \sqrt{\frac{1}{x^2}+1}-\frac{(\sqrt{\frac{1}{x^2}+1})^2}{2}+\frac{(\sqrt{\frac{1}{x^2}+1})^3}{3}-\cdots=$$$$=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}(\sqrt{\frac{1}{x^2}+1})^k$$Here I end up with nasty identity $$f(x)=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}(x-1)^k+\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k}(\sqrt{\frac{1}{x^2}+1})^k$$and I don't know how to evaluate it into one serie. ($|x|<1$). Any hints? Thanks in advance
Hint: $$\dfrac{d}{dx}\ln\left(x+\sqrt{1+x^2}\right)=\dfrac{1}{\sqrt{1+x^2}}=(1+x^2)^{-\frac{1}{2}}.$$ Radius of convergence for the $\ln\left(x+\sqrt{1+x^2}\right)$ will be the same as for $(1+x^2)^{-\frac{1}{2}}.$
{ "language": "en", "url": "https://math.stackexchange.com/questions/369733", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 0 }
Solving recursive sequence using generating functions $$a_{0} = 0$$ $$a_{1} = 1$$ $$a_{n} = a_{n-1} - a_{n-2}$$ I have to find the solution of this equation ($a_{n} = ...$, non-recursive, you know what I mean...). So let's pretend that: $$ A(x) = \sum_{n=0}a_{n}x^{n}$$ Using this formula and the recursive equation I'm getting: $$A(x) = xA(x) - x^{2}A(x)$$ Substituting $t = A(x)$, solving simple quadratic equation, and I'm getting two solutions: $t = A(x) = \frac{1 - i\sqrt{3}}{2}$ or $t = A(x) = \frac{1 + i\sqrt{3}}{2}$ So actually this should be the right side of the generating function $A(x)$, it also has no variable so it already is a coefficient - the job is done. However, the book shows different results, and they differ a lot. Let me write it: $a_{n} = -\frac{i\sqrt{3}}{3}(\frac{1+i\sqrt{3}}{2})^{n mod6}$ or $a_{n} = \frac{i\sqrt{3}}{3}(\frac{1-i\sqrt{3}}{2})^{n mod6}$ What did I do wrong?
The trick is to forget about convergence. To encourage self-study, I will feature a slightly different series (the Fibonacci numbers), but the technique is the same. $$a_n=a_{n-1}+a_{n-2} \implies a_nx^n=xa_{n-1}x^{n-1}+x^2a_{n-2}x^{n-2}\quad \text{for n}=2,3,\dots$$ Let $A(x)$ be the generating function of the sequence, $A(x):=\sum_{n=0}^{\infty}a_nx^n$. $$A(x)-a_1x-a_0=x(A(x)-a_0)+x^2A(x)$$ Note that we subtract some terms from the sum. Next, plug in the initial conditions $a_0=0$ and $a_1=1$. $$A(x)-1\cdot x-0=x(A(x)-0)+x^2A(x) \implies A(x)=\frac{x}{1-x-x^2}$$ Up to now, the only difference between the sequences was a sign. You should have arrived at $A(x)=\frac{x}{1-x+x^2}$. Unfortunately, the following part is specific to the Fibonacci series. Now, we use the geometric series to obtain a closed formula. $$\begin{align*}A(x)&=\frac{1}{\sqrt{5}\left(1-\frac{2}{\left(\sqrt{5}-1\right)}x\right)}-\frac{1}{\sqrt{5}\left(1+\frac{2}{\left(\sqrt{5}+1\right)}x\right)}=\\ &=\frac{1}{\sqrt{5}}\sum_{n=0}^{\infty}\left(\frac{2}{\sqrt{5}-1}x\right)^n-\frac{1}{\sqrt{5}}\sum_{n=0}^{\infty}\left(-\frac{2}{\sqrt{5}+1}x\right)^n=\\ &=\frac{1}{\sqrt{5}}\sum_{n=0}^{\infty}\left(\left(\frac{2\left(\sqrt{5}+1\right)}{4}\right)^n-\left(-\frac{2\left(\sqrt{5}-1\right)}{4}\right)^n\right)x^n\end{align*}$$ Finally, let us identify the coefficients of both expansions. $$a_n=\frac{1}{\sqrt{5}}\left(\left(\frac{\sqrt{5}+1}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right) \implies a_n=0,1,1,2,3,5,8,13,\dots$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/371714", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 5, "answer_id": 3 }
Finding a coefficient using generating functions I need to find a coefficient of $x^{21}$ inside the following expression: $$(x^{2} + x^{3} + x^{4} + x^{5} + x^{6})^{8}$$ I think the only way (using generating functions) is to express the parentheses content with a generating function. The generating function for the $(1, x, x^{2}, x^{3}, ...)$ sequence is equal to $\frac{1}{1-x}$. However, well...the expression at the top is not infinite, so I can't really express it as a generating function. How can I do this?
$(x^{2} + x^{3} + x^{4} + x^{5} + x^{6})^{8} = x^{16}(1+x+x^2+x^3+x^4)^8$, so you should find the coefficient of $x^5$ in $(1+x+x^2+x^3+x^4)^8$. If you write $5$ as sum of $8$ terms $4\geq k_i\geq 0$ in all possible ways, you'll to see in how many ways you can get $x^5$. It is also known what is the number of sums of $k$ nonegative terms which sum up in $n$: $n+k-1 \choose k-1$. In your case, there are $8$ sums $5=0+0+...+5=0+...+0+5+0=...=5+0+..+0$,which you cannot get in the products, because $k_i\leq 4$. So the answer is ${5+8-1} \choose{8-1}$$-8$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/371914", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 3, "answer_id": 2 }
Prove That $x=y=z$ If $x, y,z \in \mathbb{R}$, and if $$ \left ( \frac{x}{y} \right )^2+\left ( \frac{y}{z} \right )^2+\left ( \frac{z}{x} \right )^2=\left ( \frac{x}{y} \right )+\left ( \frac{y}{z} \right )+\left ( \frac{z}{x} \right ) $$ Prove that $$x=y=z$$
Let $$ a=\frac{x}{y} $$ $$ b=\frac{y}{z} $$ $$ c=\frac{z}{x} $$ Then $$abc=1$$ $$ a^2+b^2+c^2=a+b+c$$ which implies $$ (a-0.5)^2+(b-0.5)^2+(c-0.5)^2=0.75$$ I was struck up here, i would appreciate if any one helps me here
{ "language": "en", "url": "https://math.stackexchange.com/questions/372143", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "10", "answer_count": 4, "answer_id": 2 }
Prove the inequality $\frac{a}{c+a-b}+\frac{b}{a+b-c}+\frac{c}{b+c-a}\ge{3}$ Let a, b, c be the three side lengths of a triangle. Prove that $$\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\geq 3$$ Under what conditions is equality obtained?
solution 1: let $$b+c-a=x,a+c-b=y,a+b-c=z$$, then $$a=\dfrac{y+z}{2},b=\dfrac{x+z}{2},c=\dfrac{x+y}{2}$$ then $$\sum\dfrac{b}{a+c-b}=\dfrac{1}{2}\left[\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\right]\ge 3$$ solution 2: by cauchy-Schwarz inequality we have $$\sum\dfrac{a}{b+c-a}=\sum\dfrac{a^2}{a(b+c-a)}\ge\dfrac{(a+b+c)^2}{\sum a(b+c-a)}$$ $$\Longleftrightarrow (a+b+c)^2\ge\sum a(b+c-a)$$ $$\Longleftrightarrow 2a^2+2b^2+2c^2\ge ab+bc+ac$$ It's obivous. solution 3: since$a+b-c>0,b+c-a>0,a+c-b>0$ then we have $$\sum\dfrac{2a}{b+c-a}=\sum\left(\dfrac{a+b-c}{b+c-a}+\dfrac{a-b+c}{b+c-a}\right)=\sum\left(\dfrac{a+b-c}{b+c-a}+\dfrac{b+c-a}{a+b-c}\right)\ge 6$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/374373", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 1, "answer_id": 0 }
(USAJMO)Find the integer solutions:$ab^5+3=x^3,a^5b+3=y^3$ Find the integer solutions: $$a·b^5+3=x^3,a^5·b+3=y^3$$ This is the first problem of today's USAJMO (has finished),I only find a trival result that $x\equiv y \pmod6$ and $abxy≠0 \pmod 3$. Thanks in advance!
If $3 \mid a$, then $3\| (a^5b+3)=y^3$, a contradiction. Thus $3\nmid a$. Similarly $3 \nmid b$, so $3 \nmid x, y$. Note that if $3 \nmid n$, then $n^3 \equiv \pm 1 \pmod{9}$. Thus $x^3-3, y^3-3 \equiv 5, 7 \pmod{9}$, so $$1\equiv(ab)^6 \equiv (x^3-3)(y^3-3) \equiv 4, 7, 8 \pmod{9}$$ We get a contradiction, so there are no integer solutions.
{ "language": "en", "url": "https://math.stackexchange.com/questions/377800", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "8", "answer_count": 1, "answer_id": 0 }
recursive sequence Given $0<a<b$, $\forall n$ define $x_n$ as $x_1=a$, $x_2=b$, $x_{n+2}=\frac{x_n+x_{n+1}}{2}$. Show that $(x_n)$ converges and find the limit. In order to prove the convergence, I claim that $|x_{n+2}-x_{n+1}|\le\lambda|x_{n+1}-x_{n}|$, $0<\lambda<1$. In fact, $|x_{n+2}-x_{n+1}|\le|\frac{x_{n+1}+x{n}}{2}-x_{n+1}|=\frac{1}{2}|x_{n+1}-x_n|$.But I have no idea about how to find the limit. I'd like to get some help.
Simpler: For $A(z) = \sum_{n \ge 0} x_{n + 1} z^n$ the recurrence directly translates into $$ \frac{A(z) - x_1 - x_2 z}{z^2} = \frac{1}{2} \frac{A(z) - x_1}{z} + \frac{A(z)}{2} $$ This gives: $$ A(z) = \frac{2 a + (2 b - a) z}{2 - z - z^2} = \frac{2 a - 2 b}{3} \frac{1}{1 + z / 2} + \frac{a + 2 b}{3} \frac{1}{1 - z} $$ These are two geometric series: $$ x_n = \frac{2 a - 2 b}{3} 2^{-n - 1} + \frac{a + 2 b}{3} = \frac{a - b}{3} 2^{-n} + \frac{a + 2 b}{3} $$ Thus $x_n \rightarrow (a + 2 b) / 3$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/378835", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 3, "answer_id": 2 }
Expanding $\frac{1}{1-z-z^2}$ to a power series. How would you expand the analytic function $$\frac{1}{1-z-z^2}$$ to a series of the form $$\sum_{k=0}^\infty a_k z^k \, \, ?$$
Three ways: * *Write as partial fractions: $$ \frac{1}{1 - z - z^2} = \frac{1}{(1 - \tau z) (1 - \overline{\tau} z)} = \frac{\tau}{\sqrt{5} (1 - \tau z)} - \frac{\overline{\tau}}{\sqrt{5} (1 -\overline{\tau} z)} $$ Here $\tau$ is the positive root of $r^2 - r - 1 = 0$, $\overline{\tau}$ the negative one ($\tau$s are zeros of the denominator $1 - z - z^2$). That is: \begin{align} \tau &= \frac{-1 + \sqrt{5}}{2} \\ \overline{\tau} &= \frac{-1 - \sqrt{5}}{2} \end{align} This is a pair of geometric series: $$ [z^n] \frac{1}{1 - z - z^2} = \frac{\tau^{n + 1} - \overline{\tau}^{n + 1}}{\sqrt{5}} $$ *Expand: \begin{align} \frac{1}{1 - z(1 + z)} &= \sum_{r \ge 0} z^r (1 + z)^r \\ &= \sum_{r \ge 0} z^r \sum_{0 \le s \le r} \binom{r}{s} z^s \\ [z^n] \frac{1}{1 - z - z^2} &= \sum_{r + s = n} \binom{r}{s} \\ &= \sum_{0 \le k \le n} \binom{k}{n - k} \end{align} *Recognize the generating function of the Fibonacci numbers: $$ F_0 = 0, F_1 = 1, F_{n + 2} = F_{n + 1} + F_n $$ gives: $$ F(z) = \sum_{n \ge 0} F_n z^n = \frac{z}{1 - z - z^2} $$ so that: $$ \frac{1}{1 - z - z^2} = \frac{F(z) - F_0}{z} = \sum_{n \ge 0} F_{n + 1} z^n $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/379483", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 3, "answer_id": 1 }
Finding the kth term of an iterated sequence The sequence $x_0, x_1, \dots$ is defined through $x_0 =3, x_1 = 18$ and $x_{n+2} = 6x_{n+1}-9x_n$ for $n=0,1,2,\dots\;$. What is the smallest $k$ such that $x_k$ is divisible by $2013$?
HINT: Using Characteristic equation, $$r^2-6r+9=0$$ So, $r=3,3$ $$\text{So,}x_n=(An+B)3^n$$ where $A,B$ are arbitrary constants $3=x_0=B\implies B=3$ and $18=(A+3)\cdot3\implies A=3\implies x_n=(n+1)3^{n+1}$ Now, $2013=3\cdot11\cdot 61$ As $(3,61)=(3,11)=1\implies (n+1)$ must be divisible by $11\cdot 61=671$ and $(n+1)3^{n+1}$ must be divisible by $3$ which is true if $n\ge0$ So, $n=671\cdot a-1$ where $a$ is any integer The minimum positive value of $n$ will be $671\cdot1-1=670$
{ "language": "en", "url": "https://math.stackexchange.com/questions/383381", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 2, "answer_id": 0 }
Evaluate $\int {\sin 2\theta \over 1 + \cos \theta} \, d\theta $, using the substitution $u = 1 + \cos \theta $ Evaluate $$\int_0^{\pi \over 2} {{\sin 2\theta } \over {1 + \cos \theta }} \, d\theta$$ using the substitution $u = 1 + \cos \theta $ Using $$\begin{align} u &= 1 + \cos \theta \\ \frac{du}{d\theta} &= -\sin\theta \\ d\theta &= \frac{du}{-\sin\theta}\\ \end{align}$$ $$\begin{align} \int_0^{\pi \over 2} {{\sin 2\theta } \over {1 + \cos \theta }} &= \int_0^{\pi \over 2} {{\sin 2\theta } \over {1 + \cos \theta }} {{du} \over { - \sin \theta }} \\ & = \int_0^{\pi \over 2} {{2\sin \theta \cos \theta } \over {1 + \cos \theta }} {{du} \over { - \sin \theta }} \\ & = \int_1^2 {{2(u - 1)} \over { - u}}\, du \\ & = \int_1^2 {{2 - 2u} \over u} \,du \\ &= \int_1^2\left( {2 \over u} - 2\right) \,du \\ & = \left[ 2\ln |u| - 2u \right]_1^2 \\ & = (2\ln 2 - 2(2)) - (2\ln1 - 2(1)) \\ & = (2\ln 2 - 4) - (2\ln 1 - 2) \\ & = 2\ln 2 - 2 \\ \end{align} $$ This answer is incorrect, the answer in the book is $$2 - 2\ln 2$$ Could someone tell me where and how I went wrong? I'm not sure, but I think it may have been when I distributed the minus sign from the denominator to the numerator.
Even easier $(t=\cos x$): $$ \int_{a}^{b}\frac{\sin 2x \, dx}{1+\cos x} =-2 \int_{a}^{b} \frac{\cos x \, d \cos x}{1+\cos x}=-2\int _{\varphi(a)}^{\varphi(b)}\frac{(t+1-1) \, dt}{1+t} $$ Can you handle from here?
{ "language": "en", "url": "https://math.stackexchange.com/questions/387635", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 2, "answer_id": 1 }
What have I done wrong in solving this problem with indices rules? The question asks to simplify: $$\left(\dfrac{25x^4}{4}\right)^{-\frac{1}{2}}.$$ So I used $(a^m)^n=a^{mn}$ to get $$\dfrac{25}{4}x^{-2} = \dfrac{25}{4} \times \dfrac{1}{x^2} = \frac{25}{4x^2} = \frac{25}{4}x^{-2}$$ However, this isn't the answer, and I can't see what I've done wrong. This is what the mark scheme says: $$\left(\dfrac{25x^4}{4}\right)^{-\frac{1}{2}} = \left[\left(\frac{4}{25x^4}\right)^{\frac{1}{2}} \text{ or } \left(\frac{5x^2}{2}\right)^{-1} \text{ or } \frac{1}{\left(\dfrac{25x^4}{4}\right)^{\frac{1}{2}}}\right] = \frac{2}{5}x^{-2}$$ To me, my answer looks more simple than theirs, and I can't see what I've done wrong.
Just to point out the "rule" you forgot: It is correct that $$(a^m)^n=a^{mn}$$ But you have more than $(x^4)^{-1/2}$ to consider. You need to apply the fact that when a product and/or quotient of numbers/variables, enclosed in parentheses, is raised to a power, you need to distribute that power across the product in parentheses: $$(ab)^n = a^nb^n\quad \text{or given,} \quad \left(\frac{ab}c\right)^n = \dfrac{a^nb^n}{c^n}$$ So in your case, you need to combine the two rules: $$(ab^m)^n = a^n\cdot \left(b^{m}\right)^n = a^n \cdot b^{mn}$$ So for $$\left(\dfrac{25x^4}{4}\right)^{-\frac{1}{2}}$$ I would simplify matters to express this as $$\left(\frac{25}{4} x^4\right)^{-1/2} = \left(\frac{25}{4}\right)^{-1/2} (x^4)^{-1/2} = \left(\frac{5^2}{2^2}\right)^{-1/2} (x^4)^{-2} = \frac{5^{-1}}{2^{-1}}x^{-2} = \frac 25 x^{-2} = \frac 2{5 x^2}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/388748", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 1 }
An integral involving Fresnel integrals $\int_0^\infty \left(\left(2\ S(x)-1\right)^2+\left(2\ C(x)-1\right)^2\right)^2 x\ \mathrm dx,$ I need to calculate the following integral: $$\int_0^\infty \left(\left(2\ S(x)-1\right)^2+\left(2\ C(x)-1\right)^2\right)^2 x\ \mathrm dx,$$ where $$S(x)=\int_0^x\sin\frac{\pi z^2}{2}\mathrm dz,$$ $$C(x)=\int_0^x\cos\frac{\pi z^2}{2}\mathrm dz$$ are the Fresnel integrals. Numerical integration gives an approximate result $0.31311841522422385...$ that is close to $\frac{16\log2-8}{\pi^2}$, so it might be the answer.
Following on from Ron... Make the substitutions: $x=\sqrt{y}$, $p=1/2+1/2\,\sqrt {1+4\,r}$, to get: $\displaystyle \dfrac{64}{{\pi }^{2}}\,\int _{0}^{\infty }\!x \left( \int _{1}^{\infty }\!{\frac {\sin \left( 2\,\pi \,{x}^{2}p \left( p-1 \right) \right) }{p}}{dp} \right) ^{2}{dx}$, $\displaystyle=\dfrac{32}{{\pi }^{2}}\,\int _{0}^{\infty }\! \left( \int _{0 }^{\infty }\!{\frac {2\,\sin \left( 2\,\pi\, y\, r \right) }{\sqrt {1+4\, r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} \right) ^{2}{dy} $, see Appendix, $\displaystyle=\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \left( \int _{0 }^{\infty }\!{\frac {2\,\sin \left( 2\,\pi \,y \,r \right) }{\sqrt {1+4\, r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} \right) ^{2}{dy} $, $\displaystyle=\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \left( \int _{-\infty }^{\infty }\!{\frac {H(r)\,\sin \left( 2\,\pi \,\,y\,r \right) }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right) ^{2}{dy} $ : $H \left( r \right) =\cases{1&$0\leq x$\cr -1&$x<0$\cr}$. Note then that: $\displaystyle\left(\int _{-\infty }^{\infty }\!{\frac {H(r)\,\sin \left( 2\,\pi \,\,y\,r \right) }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right) ^{2}=\displaystyle\left|-\dfrac{i}{2}\int _{-\infty }^{\infty }\!{\frac {H(r)\,e^{ -i2\pi \,y\,r } }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr}+\dfrac{i}{2}\int _{-\infty }^{\infty }\!{\frac {H(r)\,e^{ i2\pi\, y\,r } }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}$ $=\displaystyle\left|\int _{\infty }^{\infty }\!{\frac {\left(H(r)-H(-r)\right)\,e^{ i2\pi \,y\,r } }{2\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}=\displaystyle\left|\int _{\infty }^{\infty }\!{\frac {\,e^{ i2\pi \,y\,r } }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}.$ We can now use Plancherel's theorem which states: $\displaystyle \int _{-\infty }^{\infty }\! \left| f \left( y \right) \right| ^{2}{dy}=\int _{-\infty }^{\infty }\! \left| F \left( r \right) \right| ^{2}{dr} $ : $ \displaystyle F \left( r \right) =\int _{-\infty }^{\infty }\!f \left( y \right) { e^{-i2\pi r y}}{dy} $, and thus: $\displaystyle\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \displaystyle\left|\int _{\infty }^{\infty }\!{\frac {\,e^{ i2\pi \,y\,r } }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }}{dr} \right| ^{2}{dy}$ $=\displaystyle\dfrac{16}{{\pi }^{2}}\,\int _{-\infty}^{\infty }\! \displaystyle\left|{\frac {1 }{\sqrt {1+4\, |r|} \left( 1+\sqrt {1+4\,|r|} \right) }} \right| ^{2}{dr}$, $=\dfrac{16}{{\pi }^{2}}\displaystyle\int _{0}^{\infty }\!{\frac {2}{ \left( 1+4\,r \right) \left( 1+ \sqrt {1+4\,r} \right) ^{2}}}{dr}$. Now if we undo the substitution made earlier by letting $r = p^2-p$: $\dfrac{16}{{\pi }^{2}}\displaystyle\int _{0}^{\infty }\!{\frac {2}{ \left( 1+4\,r \right) \left( 1+ \sqrt {1+4\,r} \right) ^{2}}}{dr}=\dfrac{16}{{\pi }^{2}}\int _{1}^{\infty }\!{ \frac {1}{2{p}^{2} \left( 2\,p-1 \right) }}{dp}$, and then make one final substitution $p=\dfrac{1}{q+2}$ we get: $\displaystyle\dfrac{16}{{\pi }^{2}}\int _{1}^{\infty }\!{ \frac {1}{2{p}^{2} \left( 2\,p-1 \right) }}{dp}=-\dfrac{16}{{\pi }^{2}}\int_{-2}^{-1}\dfrac{1}{2}+\dfrac{1}{q}{dq}=\dfrac{16\ln(2)-8}{\pi^2}$. Appendix: Note that the integral: $$\int _{0 }^{\infty }\!{\frac {2\,\sin \left( 2\,\pi \,y \,r \right) }{\sqrt {1+4\, r} \left( 1+\sqrt {1+4\,r} \right) }}{dr} $$ converges by the Chartier-Dirichlet test because: $$f(r)={\frac {2\, }{\sqrt {1+4\, r} \left( 1+\sqrt {1+4\,r} \right) }}$$ is monotonic and continuous on $ \mathbb R^+ $ and $f(r)\rightarrow0$ as $r\rightarrow \infty$, and because: $$\left|\int_{0}^{b}\sin\left(2\pi\,y\,r\right){dr}\right|$$ is bounded as $b\rightarrow\infty$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/390847", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "46", "answer_count": 2, "answer_id": 0 }
Reducibility of $x^{2n} + x^{2n-2} + \cdots + x^{2} + 1$ Just for fun I am experimenting with irreducibility of certain polynomials over the integers. Since $x^4+x^2+1=(x^2-x+1)(x^2+x+1)$, I thought perhaps $x^6+x^4+x^2+1$ is also reducible. Indeed: $$x^6+x^4+x^2+1=(x^2+1)(x^4+1)$$ Let $f_n(x)=x^{2n}+x^{2n-2}+\cdots + x^2+1$. Using Macaulay2 (powerful software package) I checked that: $$f_4(x) = (x^4-x^3+x^2-x+1)(x^4+x^3+x^2+x+1)$$ We get that $$ f_5(x)=(x^2+1)(x^2-x+1)(x^2+x+1)(x^4-x^2+1)$$ The polynomial is reducible for $n=6, 7, 8, 9$ as far as I checked. I suspect that $f_n(x)$ is reducible over integers for all $n\ge 2$. Is this true? Thanks!
Let $g_n(x) = x^n + x^{n-1} + \ldots + x + 1$. Then $g_n(x) = \frac{x^{n+1}-1}{x-1}$. Your polynomial $f_n(x) = g_n(x^2)$. The factorization of $x^n-1$ over $\mathbb{Q}$ is known: $$ x^n-1 = \prod_{d\mid n}{\Phi_d(x)}, $$ where $\Phi_d(x)$ is the $d$th cyclotomic polynomial. Thus, the factorization of $g_n(x)$ will lead to a factorization of $f_n(x) = g_n(x^2)$ in $\mathbb{Q}[x^2]$. It is then possible that this factorization may be refined further. So, the only chance of an irreducible $f_n(x)$ would be when $n = p-1$ for some prime: in this case, it is known that $g_{p-1}(x) = x^{p-1} + \ldots + x + 1$ is irreducible over $\mathbb{Q}$. However, for odd primes $p$, the splitting field $\mathbb{Q}(\zeta_p)$ is equal to $\mathbb{Q}(\zeta_{2p})$. Thus, $\zeta_p = \zeta_{2p}^2$, that is, $\zeta_{p}$ has a square root in the same field. So $\zeta_{2p}$ has a minimal polynomial of degree $p-1$ and it is a root of $f_{p-1}(x)$, which has degree $2(p-1)$. So, $f_{p-1}(x)$ must split into two irreducible factors. Therefore, the answer is yes, $f_n(x)$ is always reducible when $n\geq 2$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/391086", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "11", "answer_count": 5, "answer_id": 2 }
Solve $\sqrt{2x-5} - \sqrt{x-1} = 1$ Although this is a simple question I for the life of me can not figure out why one would get a 2 in front of the second square root when expanding. Can someone please explain that to me? Example: solve $\sqrt{(2x-5)} - \sqrt{(x-1)} = 1$ Isolate one of the square roots: $\sqrt{(2x-5)} = 1 + \sqrt{(x-1)}$ Square both sides: $2x-5 = (1 + \sqrt{(x-1)})^{2}$ We have removed one square root. Expand right hand side: $2x-5 = 1 + 2\sqrt{(x-1)} + (x-1)$-- I don't understand? Simplify: $2x-5 = 2\sqrt{(x-1)} + x$ Simplify more: $x-5 = 2\sqrt{(x-1)}$ Now do the "square root" thing again: Isolate the square root: $\sqrt{(x-1)} = \frac{(x-5)}{2}$ Square both sides: $x-1 = (\frac{(x-5)}{2})^{2}$ Square root removed Thank you in advance for your help
$\sqrt{2x-5} - \sqrt{x-1} = 1$ Let $\sqrt{2x-5} + \sqrt{x-1} = y$ Multiplying, we get $(2x-5) - (x-1) = y$ $y = x - 4$ \begin{align} \sqrt{2x-5} + \sqrt{x-1} &= x - 4 \\ \sqrt{2x-5} - \sqrt{x-1} &= 1 & \text{subtract}\\ \hline 2\sqrt{x-1} &= x-5 \\ 4x-4 &= x^2 - 10x + 25 \\ x^2 -14x + 29 &= 0 \\ x &= 7 \pm 2 \sqrt 5 \end{align}
{ "language": "en", "url": "https://math.stackexchange.com/questions/392308", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 6, "answer_id": 2 }
Simplifying fractions - Ending up with wrong sign I've been trying to simplify this $$ 1-\frac{1}{n+2}+\frac{1}{(n+2) (n+3)} $$ to get it to that $$ 1-\frac{(n+3)-1}{(n+2)(n+3)} $$ but I always end up with this $$ 1-\frac{(n+3)+1}{(n+2)(n+3)} $$ Any ideas of where I'm going wrong? Wolfram Alpha gets it to correct form but it doesn't show me the steps (even in pro version) Thanks
Just in case you want to see a full simplification: \begin{align*} 1-\frac{1}{n+2}+\frac{1}{(n+2)(n+3)} &= \frac{(n+2)(n+3)}{(n+2)(n+3)} - \frac{(n+3)}{(n+2)(n+3)}+\frac{1}{(n+2)(n+3)} \\ &= \frac{(n+2)(n+3)-(n+3)+1}{(n+2)(n+3)}\\ &= \frac{(n^2+5n+6) -n-2 }{(n+2)(n+3)} \\ &= \frac{n^2+4n+4}{(n+2)(n+3)} \\ &= \frac{(n+2)^2}{(n+2)(n+3)} \\ &= \frac{n+2}{n+3} \\ \end{align*} Provided $n\neq -2$.
{ "language": "en", "url": "https://math.stackexchange.com/questions/393530", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 2 }
Knowing that $n= 3598057$ is a product of two different prime numbers and that 20779 a square root of $1$ mod $n$, find prime factorization of $n$. Knowing that $n= 3598057$ is a product of two different prime numbers and that 20779 is a square root of $1$ mod $n$, find prime factorization of $n$. What I have done so far: $n = p \cdot q$ $x^2 \equiv 1\pmod{n}$ $x^2 -1 \equiv 0\pmod{n}$ $(x-1)(x+1) \equiv 0\pmod{n}$ $x-1 = 20779 \lor x + 1=20779$ I have also noticed that: $(x-1)(x+1) \equiv 0\pmod{p \cdot q}$ $(x-1)(x+1) \equiv 0\pmod{p} \land (x-1)(x+1) \equiv 0\pmod{q}$ But I have no idea what to do next. Any hints?
From the condition (x-1)(x+1)=0 mod n you can conclude (a) n divides (x-1), or (b) n divides (x+1), or (c) some factor of n divides (x-1) and some other factor of n divides (x+1) Since (a) and (b) are ruled out (x is not plus or minus 1) we get two factors as f1 = gcd(x-1,n) f2 = gcd(x+1,n) If n is not known to be a product of two primes, then one will try to factor f1 and f2 or prove their primality.
{ "language": "en", "url": "https://math.stackexchange.com/questions/394044", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 2, "answer_id": 1 }
Partial fraction expansion two variables How to expand $$\frac{y}{(x-y)(y-1)}$$ by partial fraction expansion.
$$\text{Plot3D}\left[\left\{\frac{y^4}{(x-1) (y-1)}-\frac{y \left(x^2 y^2+x^2 y+x^2+x y^2+x y+y^2\right)}{x^3},\frac{y}{(y-1) (x-y)},x \left(y+\frac{1}{y}+1\right)+y+1\right\},\{x,-2,2\},\{y,-2,2\},\text{PlotLegends}\to \text{Automatic}\right]$$ use this $$\frac{y^4}{(x-1) (y-1)}-\frac{y \left(x^2 y^2+x^2 y+x^2+x y^2+x y+y^2\right)}{x^3}$$ as you can see the orange (above ) and the blue (your fraction ) are very near is the generalitated laurent series
{ "language": "en", "url": "https://math.stackexchange.com/questions/394312", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 2 }
Integrate ${\sec 4x}$ How do I go about doing this? I try doing it by parts, but it seems to work out wrong: $\eqalign{ & \int {\sec 4xdx} \cr & u = \sec 4x \cr & {{du} \over {dx}} = 4\sec 4x\tan 4x \cr & {{dv} \over {dx}} = 1 \cr & v = x \cr & \int {\sec 4xdx} = x\sec 4x - \int {4x\sec 4x\tan 4xdx} \cr & \int {4x\sec 4x\tan 4xdx} : \cr & u = 4x \cr & {{du} \over {dx}} = 4 \cr & {{dv} \over {dx}} = \sec 4x\tan 4x \cr & v = {1 \over 4}\sec x \cr & \int {4x\sec 4x\tan 4xdx} = x\sec 4x - \int {\sec 4x} dx \cr & \int {\sec 4xdx} = x\sec 4x - \left( {x\sec 4x - \int {\sec 4xdx} } \right) \cr} $ I don't know where to go from here, everything looks like it equals 0, where have I went wrong? Thank you! EDIT: Is there an easier way to do this?
Use two substitutions. The first substitution transforms the integrand into $\sec \theta$, whose evaluation was asked here. The second substitution is the Weirstrass substitution. (See comment below). In the present case the second integral becomes an easy table integral: $$\begin{eqnarray*} \int \sec 4x\,dx &=&\frac{1}{4}\int \sec \theta \,d\theta ,\qquad \theta =4x \\ &=&\frac{1}{4}\int \frac{1}{\frac{1-t^{2}}{1+t^{2}}}\frac{2}{1+t^{2}} \,dt,\qquad t=\tan \frac{\theta }{2} \\ &=&\frac{1}{2}\int \frac{1}{1-t^{2}}dt=\frac{1}{2}\operatorname{arctanh}t+C \\ &=&\frac{1}{2}\operatorname{arctanh}\left( \tan \frac{\theta }{2}\right) +C \\ &=&\frac{1}{2}\operatorname{arctanh}\left( \tan 2x\right) +C. \end{eqnarray*}$$ This integral can be rewritten as $$\frac{1}{2}\operatorname{arctanh}\left( \tan 2x\right) =\frac{1}{4}\ln \left\vert \tan 2x+1\right\vert -\frac{1}{4}\ln \left\vert 1-\tan 2x\right\vert .$$ Comment: The Weierstrass substitution is a universal standard substitution to evaluate an integral of a rational fraction in $\sin \theta,\cos \theta$, i.e. a rational fraction of the form $$R(\sin \theta,\cos \theta)=\frac{P(\sin \theta,\cos \theta)}{Q(\sin \theta,\cos \theta)},$$ where $P,Q$ are polynomials in $\sin \theta,\cos \theta$ $$ \begin{equation*} \tan \frac{\theta }{2}=t,\qquad\theta =2\arctan t,\qquad d\theta =\frac{2}{1+t^{2}}dt \end{equation*}, $$ which converts the integrand into a rational function in $t$. We know from trigonometry (see this answer) that $$\cos \theta =\frac{1-\tan ^{2}\frac{\theta }{2}}{1+\tan ^{2}\frac{ \theta}{2}}=\frac{1-t^2}{1+t^2},\qquad \sin \theta =\frac{2\tan \frac{\theta }{2}}{1+\tan ^{2} \frac{\theta }{2}}=\frac{2t}{1+t^2}.$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/394893", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "8", "answer_count": 4, "answer_id": 1 }
A question about an inequality How to get the solution set of the inequality $$\left ( \frac{\pi}{2} \right )^{(x-1)^2}\leq \left ( \frac{2}{\pi} \right )^{x^2-5x-5}?$$
Multiplying either sides by $\left(\frac\pi2\right)^{(x^2-5x-5)}$ $$\left(\frac\pi2\right)^{(x-1)^2+(x^2-5x-5)}\le 1\iff \left(\frac\pi2\right)^{2x^2-7x-4}\le 1=\left(\frac\pi2\right)^0$$ $\implies 2x^2-7x-4\le0$ as $\pi>2\iff \frac\pi2>1,$ Now, if $(x-a)(x-b)\le0$ where $a\le b,$ $a\le x\le b$
{ "language": "en", "url": "https://math.stackexchange.com/questions/395424", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 4, "answer_id": 1 }
A limit on binomial coefficients Let $$x_n=\frac{1}{n^2}\sum_{k=0}^n \ln\left(n\atop k\right).$$ Find the limit of $x_n$. What I can do is just use Stolz formula. But I could not proceed.
The limit is $\frac{1}{2}$. We have $$\begin{eqnarray*} \sum_{k=0}^n \log {n\choose k} &=& \sum_{k=0}^n \log n! - \sum_{k=0}^n \log k! - \sum_{k=0}^n \log (n-k)! \\ &=& (n+1)\log n! - 2\sum_{k=1}^n \log k!. \end{eqnarray*}$$ But $$\begin{eqnarray*} \sum_{k=1}^n \log k! &=& \sum_{k=1}^n \sum_{j=1}^k \log j \\ &=& \sum_{j=1}^n \sum_{k=j}^n \log j \\ &=& \sum_{j=1}^n (n-j+1)\log j \\ &=& (n+1)\sum_{j=1}^n \log j - \sum_{j=1}^n j\log j \\ &=& (n+1)\log n! - n^2 \frac{1}{n}\sum_{j=1}^n \frac{j}{n}\log \frac{j}{n} - \sum_{j=1}^n j\log n \\ &=& (n+1)\log n! - n^2\int_0^1 dx\ x\log x - \frac{n(n+1)}{2}\log n + O(n\log n) \\ &=& (n+1)\log n! +\frac{n^2}{4} - \frac{n(n+1)}{2}\log n + O(n\log n). \end{eqnarray*}$$ (The error estimate above can probably be tightened.) Using Stirling's approximation we find $$\begin{eqnarray*} \frac{1}{n^2}\sum_{k=0}^n \log {n\choose k} &=& -\frac{n+1}{n^2}(\log n! - n\log n) - \frac{1}{2} + O\left(\frac{\log n}{n}\right) \\ &=& -\frac{n+1}{n^2}(-n + O(\log n)) - \frac{1}{2} + O\left(\frac{\log n}{n}\right) \\ &=& \frac{1}{2} + O\left(\frac{\log n}{n}\right). \end{eqnarray*}$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/395507", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "11", "answer_count": 6, "answer_id": 0 }
Using generating functions, Find a closed formula to next expression: $\sum_{k=0}^m{k(k+2)}$ Using generating functions, Find a closed formula to next expression: $\sum_{k=0}^m{k(k+2)}$ If i use calculus power series rules, The question is fairly simple. But how can i find the proper relation with generating functions?
Let the desired sum be given by \begin{align} S_{m} = \sum_{k=0}^{m} k(k+2). \end{align} Using the generating function method it is seen that the expression to calculate is \begin{align} \sum_{m=0}^{\infty} S_{m} \, t^{m}. \end{align} The calculation of this series is as follows. \begin{align} \sum_{m=0}^{\infty} S_{m} \, t^{m} &= \sum_{m=0}^{\infty} \sum_{k=0}^{m} k(k+2) t^{m} \nonumber\\ &= \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} k(k+2) t^{m+k} \nonumber\\ &= \sum_{m=0}^{\infty} t^{m} \cdot \sum_{k=0}^{\infty} k(k+2) t^{k} = \frac{1}{t(1-t)} \sum_{k=0}^{\infty} k(k+2) t^{k+1} \nonumber\\ &= \frac{1}{t(1-t)} \partial_{t} \, \sum_{k=0}^{\infty} k \, t^{k+2} = \frac{1}{t(1-t)} \partial_{t} \left[ t^{3} \sum_{k=0}^{\infty} k t^{k-1} \right] \\ &= \frac{1}{t(1-t)} \partial_{t} \left[ t^{3} \partial_{t} \sum_{k=0}^{\infty} t^{k} \right] = \frac{1}{t(1-t)} \partial_{t} \left[ t^{3} \partial_{t} \left( \frac{1}{1-t} \right) \right] \\ &= \frac{1}{t(1-t)} \left[ \frac{2 t^{3}}{(1-t)^{3}} + \frac{3 t^{2}}{(1-t)^{2}} \right] = \frac{2t^{2}}{(1-t)^{4}} + \frac{3 t}{(1-t)^{3}}. \\ \end{align} Since $t = 1-(1-t)$ and $t^{2} =1-2(1-t) + (1-t)^{2}$ then the last result becomes \begin{align} \sum_{m=0}^{\infty} S_{m} t^{m} = \frac{2}{(1-t)^{4}} - \frac{1}{(1-t)^{3}} - \frac{1}{(1-t)^{2}}. \end{align} Now using the standard series \begin{align} \frac{1}{(1-t)^{2}} &= \sum_{m=0}^{\infty} (m+1) t^{m} \\ \frac{1}{(1-t)^{3}} &= \frac{1}{2} \sum_{m=0}^{\infty} (m+1)(m+2) t^{m} \\ \frac{1}{(1-t)^{4}} &= \frac{1}{6} \sum_{m=0}^{\infty} (m+1)(m+2)(m+3) t^{m} \end{align} then \begin{align} \sum_{m=0}^{\infty} S_{m} t^{m} &= \sum_{m=0}^{\infty} (m+1) \left[ \frac{1}{6} (m+2)(m+3) - \frac{1}{2} (m+2) - 1 \right] t^{m} \\ &= \sum_{m=0}^{\infty} \left[ \frac{m(m+1)(2m+7)}{6} \right] \, t^{m} \end{align} and upon equating the coefficients of both sides it is seen that \begin{align} S_{m} = \sum_{k=0}^{m} k(k+2) = \frac{m(m+1)(2m+7)}{6} = \frac{1}{6} (2m^{3}+ 9m^{2} +7m). \end{align} This result may be verified by combining the two series, \begin{align} \sum_{k=0}^{n} k &= \frac{1}{2}(n^{2} +n) \\ \sum_{k=0}^{n} k^{2} &= \frac{1}{6}(2n^{3}+3n^{2}+n), \end{align} in the desired way. This provides \begin{align} \sum_{k=0}^{n} k(k+2) = \frac{1}{6} ( 2n^{3}+9n^{2}+7n ). \end{align} This example shows that the generating function method yields the desired result.
{ "language": "en", "url": "https://math.stackexchange.com/questions/396502", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 3, "answer_id": 2 }
Uniform convergence of $\sum_{n=1}^{\infty} \frac{\sin(n x) \sin(n^2 x)}{n+x^2}$ I'm not sure wether or not the following sum uniformly converge on $\mathbb{R}$ : $$\sum_{n=1}^{\infty} \frac{\sin(n x) \sin(n^2 x)}{n+x^2}$$ Can someone help me with it? (I can't use Dirichlet' because of the areas where $x$ is close to $0$)
The series does converge uniformly. For the proof, put $S_n(x) = \sum_{k = 0}^n \sin{(kx)}\sin{(k^2 x)}$ for $n\geq 0$. The general idea is to use summation by parts to reduce ourselves to showing that $S_n(x)$ is bounded uniformly, and then to prove that by giving a closed form for $S_n(x)$. First, the summation by parts (I write $S_n$ in place of $S_n(x)$ for brevity): $$ \begin{align} \sum_{n = 1}^N{\sin{(nx)}\sin{(n^2 x)}\over n + x^2} & = \sum_{n = 1}^N {1\over n+x^2}(S_n - S_{n-1}) \\ & = \sum_{n = 1}^N {S_n\over n+x^2} - \sum_{n = 1}^N {S_{n-1}\over n+x^2} \\ & = \sum_{n = 1}^N {S_n\over n+x^2} - \sum_{n = 0}^{N-1} {S_{n}\over n+1+x^2} \\ & = {S_N\over N+x^2} - {S_0\over 1 + x^2} + \sum_{n = 1}^{N-1} S_n\left({1\over n+x^2} - {1\over n+1+x^2}\right) \\ & = {S_N\over N+x^2} + \sum_{n = 1}^{N-1} {S_n\over (n+x^2)(n+1+x^2)}. \end{align} $$ From here it is clear that it is enough to prove that $S_n = S_n(x)$ is uniformly bounded in $x$. To do this, note that $$ \begin{align} 2\sin{(kx)}\sin{(k^2 x)} &= \cos{\{(k^2 - k)x\}} - \cos{\{(k^2 + k)x\}} \\ & = \cos{\{k(k - 1)x\}} - \cos{\{(k+1)k)x\}}, \end{align} $$ and therefore that $$ \begin{align} 2S_n(x) & = \sum_{k = 0}^n 2\sin{(kx)}\sin{(k^2 x)} \\ & = \sum_{k = 0}^n\left(\cos{\{k(k - 1)x\}} - \cos{\{(k+1)k)x\}}\right) \end{align} $$ The last sum telescopes, and we are left with $$ 2S_n(x) = 1 - \cos{\{n(n+1)x\}}, $$ which is plainly bounded uniformly in $x$. So we're done.
{ "language": "en", "url": "https://math.stackexchange.com/questions/397097", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "42", "answer_count": 1, "answer_id": 0 }
Laurent expansion problem Expand the function $$f(z)=\frac{z^2 -2z +5}{(z-2)(z^2+1)} $$ on the ring $$ 1 < |z| < 2 $$ I used partial fractions to get the following $$f(z)=\frac{1}{(z-2)} +\frac{-2}{(z^2+1)} $$ then $$ \frac{1}{z-2} = \frac{-1}{2(1-z/2)} = \frac{-1}{2} \left[1+z/2 + (z/2)^2 + (z/2)^3 +\cdots\right] $$ but I'm stuck with $$ \frac{-2} {z^2+1} $$ how can I expand it?
Hint: $$\frac{-2}{1+z^2} = \sum_{n=0}^\infty (-(-i)^n-i^n) z^n,\quad\mid z\mid<1$$ and: $$\frac{-2}{1+z^2} = \sum_{n=0}^\infty (-1+z)^n (-1+i) (2^{-1-n} ((-1-i)^n+i (-1+i)^n))$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/397696", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "1", "answer_count": 3, "answer_id": 2 }
linear Transformation of polynomial with degrees less than or equal to 2 I would like to determine if the following map $T$ is a linear transformation: \begin{align*} T: P_{2} &\to P_{2}\\ A_{0} + A_{1}x + A_{2}x^{2} &\mapsto A_{0} + A_{1}(x+1) + A_{2}(x+1)^{2} \end{align*} My attempt at solving: \begin{align} T(p + q) &= p(x+1) + q(x+1)\\ &= \left[A_{0} + A_{1}(x+1) + A_{2}(x+1)^2\right] + \left[b_{0} + b_{1}(x+1) + b_{2}(x+1)^2\right]\\ &= \left(A_{0} + b_{0}\right) + \left(A_{1} + b_{1}\right)(x+1) + \left(A_{2} + b_{2}\right)(x+1)^2\\ &= T(p) + T(q) \end{align} Is this right so far? If not, what am I doing wrong?
The idea is right but you are starting from what you have to proof Hint : $T(p+q)=T(A_0+B_0+(A_1+B_1)x+(A_2+B_2)x^2)=...=T(p)+T(q)$. I see that you had the right idea maybe this could make you start
{ "language": "en", "url": "https://math.stackexchange.com/questions/397748", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "2", "answer_count": 3, "answer_id": 2 }
Integration of $\displaystyle \int\frac{1}{1+x^8}\,dx$ Compute the indefinite integral $$ \int\frac{1}{1+x^8}\,dx $$ My Attempt: First we will factor $1+x^8$ $$ \begin{align} 1+x^8 &= 1^2+(x^4)^2+2x^4-2x^4\\ &= (1+x^4)^2-(\sqrt{2}x^2)^2\\ &= (x^4+\sqrt{2}x^2+1)(x^4-\sqrt{2}x^2+1) \end{align} $$ Then we can rewrite the integral as $$ \int\frac{1}{1+x^8}\,dx = \int \frac{1}{(x^4+\sqrt{2}x^2+1)(x^4-\sqrt{2}x^2+1)}\,dx$$ To use partial fractions let $t = x^2$ to get $$ \frac {1}{(t^2+\sqrt{2}t+1)(t^2-\sqrt{2}t+1)} = \frac{At+B}{t^2+\sqrt{2}t+1}+\frac{Ct+D}{t^2-\sqrt{2}t+1} $$ This method of solving the problem becomes very complex. Is there a less complex approach to the problem?
Why not splitting up in fractions until you have first degree polynomials in the nominators? $$\frac{1}{1+x^8}=\frac{A}{x-e^{i\pi/8}}+\frac{B}{x-e^{-i\pi/8}}+\frac{C}{x-e^{i3\pi/8}}+\frac{D}{x-e^{-i3\pi/8}}+\frac{E}{x-e^{i5\pi/8}}+\frac{F}{x-e^{-i5\pi/8}}+\frac{G}{x-e^{i7\pi/8}}+\frac{H}{x-e^{-i7\pi/8}}$$ or if you prefer without the complex numbers $$\frac{1}{1+x^8}=\frac{ax+b}{x^2-2\cos(\pi/8)x+1}+\frac{cx+d}{x^2-2\cos(3\pi/8)x+1}+\frac{ex+f}{x^2-2\cos(5\pi/8)x+1}+\frac{gx+h}{x^2-2\cos(7\pi/8)x+1} \; .$$ With the complex formula, you can find the coefficients easily as follows $$A=\lim_{x \to e^{i\pi/8}}\frac{x-e^{i\pi/8}}{1+x^8}\overset{\text{H}}{=}\lim_{x \to e^{i\pi/8}}\frac{1}{8x^7}=\frac{e^{-i7\pi/8}}{8}$$ where I used de l'Hôpital's rule.
{ "language": "en", "url": "https://math.stackexchange.com/questions/398878", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "7", "answer_count": 1, "answer_id": 0 }
Solve equations $\sqrt{t +9} - \sqrt{t} = 1$ Solve equation: $\sqrt{t +9} - \sqrt{t} = 1$ I moved - √t to the left side of the equation $\sqrt{t +9} = 1 -\sqrt{t}$ I squared both sides $(\sqrt{t+9})^2 = (1)^2 (\sqrt{t})^2$ Then I got $t + 9 = 1+ t$ Can't figure it out after that point. The answer is $16$
$$\sqrt{t +9} - \sqrt{t} = 1$$ Multiplying by $\sqrt{t +9} + \sqrt{t}$ you get $$9=\sqrt{t +9} +\sqrt{t} $$ Now adding $$\sqrt{t +9} + \sqrt{t} =9$$ $$\sqrt{t +9} - \sqrt{t} = 1$$ you get $$\sqrt{t+9}=5 \Rightarrow t=25-9 $$
{ "language": "en", "url": "https://math.stackexchange.com/questions/399199", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "13", "answer_count": 7, "answer_id": 2 }
Finding the sum of a Taylor expansion I want to find the following sum: $$ \sum\limits_{k=0}^\infty (-1)^k \frac{(\ln{4})^k}{k!} $$ I decided to substitute $x = \ln{4}$: $$ \sum\limits_{k=0}^\infty (-1)^k \frac{x^k}{k!} $$ The first thing I noticed is that this looks an awful lot like the series expansion of $e^x$: $$ e^x = \sum\limits_{k=0}^\infty \frac{x^k}{k!} $$ The only obstacle is the $(-1)^k$ term. I tried getting rid of it by rewriting: \begin{align*} \sum\limits_{k=0}^\infty (-1)^k \frac{x^k}{k!} &= 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \frac{x^5}{5!} + \dots\\ &= (1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots) - (x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots)\\ &= \sum\limits_{k=0}^\infty \frac{x^{2k}}{(2k)!} - \sum\limits_{k=0}^\infty \frac{x^{2k+1}}{(2k+1)!} \end{align*} These sums look a lot like the series expansions of $\sin(x)$ and $\cos(x)$: \begin{align*} \sin(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}\\ \cos(x) &= \sum\limits_{k=0}^\infty (-1)^k \frac{x^{2k}}{(2k)!} \end{align*} However, these sums do have a $(-1)^k$ term, just when I got rid of it! So now I'm stuck. Can someone help me in the right direction?
You started fine, but then you got sidetracked: $$\sum\limits_{k\ge 0}(-1)^k \frac{(\ln{4})^k}{k!}=\sum_{k\ge 0}\frac{(-\ln 4)^k}{k!}=e^{-\ln 4}=\frac1{e^{\ln 4}}=\frac14\;.$$
{ "language": "en", "url": "https://math.stackexchange.com/questions/401556", "timestamp": "2023-03-29T00:00:00", "source": "stackexchange", "question_score": "3", "answer_count": 2, "answer_id": 1 }