code
stringlengths 12
2.05k
| label
int64 0
1
| programming_language
stringclasses 9
values | cwe_id
stringlengths 6
14
| cwe_name
stringlengths 5
103
⌀ | description
stringlengths 36
1.23k
⌀ | url
stringlengths 36
48
⌀ | label_name
stringclasses 2
values |
---|---|---|---|---|---|---|---|
inline void StringData::setSize(int len) {
assertx(!isImmutable() && !hasMultipleRefs());
assertx(len >= 0 && len <= capacity());
mutableData()[len] = 0;
m_lenAndHash = len;
assertx(m_hash == 0);
assertx(checkSane());
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
void RemoteFsDevice::serviceRemoved(const QString &name)
{
if (name==details.serviceName && constSambaAvahiProtocol==details.url.scheme()) {
sub=tr("Not Available");
updateStatus();
}
} | 0 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | vulnerable |
TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context,
TfLiteNode* node, OpData* op_data) {
// Get the input tensors
const TfLiteTensor* input_box_encodings =
GetInput(context, node, kInputTensorBoxEncodings);
const TfLiteTensor* input_class_predictions =
GetInput(context, node, kInputTensorClassPredictions);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0],
kBatchSize);
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes);
const int num_classes_with_background =
input_class_predictions->dims->data[2];
TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1));
TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes));
const TfLiteTensor* scores;
switch (input_class_predictions->type) {
case kTfLiteUInt8: {
TfLiteTensor* temporary_scores = &context->tensors[op_data->scores_index];
DequantizeClassPredictions(input_class_predictions, num_boxes,
num_classes_with_background, temporary_scores);
scores = temporary_scores;
} break;
case kTfLiteFloat32:
scores = input_class_predictions;
break;
default:
// Unsupported type.
return kTfLiteError;
}
if (op_data->use_regular_non_max_suppression)
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper(
context, node, op_data, GetTensorData<float>(scores)));
else
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassFastHelper(
context, node, op_data, GetTensorData<float>(scores)));
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
TfLiteIntArray* output_size = TfLiteIntArrayCreate(4);
output_size->data[0] = input->dims->data[0];
output_size->data[1] = input->dims->data[1];
output_size->data[2] = input->dims->data[2];
output_size->data[3] = input->dims->data[3];
return context->ResizeTensor(context, output, output_size);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
void pb_controller::play_file(const std::string& file) {
std::string cmdline;
std::string player = cfg->get_configvalue("player");
if (player == "")
return;
cmdline.append(player);
cmdline.append(" '");
cmdline.append(utils::replace_all(file,"'", "%27"));
cmdline.append("'");
stfl::reset();
utils::run_interactively(cmdline, "pb_controller::play_file");
} | 1 | C++ | CWE-78 | Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') | The software constructs all or part of an OS command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended OS command when it is sent to a downstream component. | https://cwe.mitre.org/data/definitions/78.html | safe |
TfLiteStatus GenericPrepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
if (!is_supported_type(input->type)) {
TF_LITE_UNSUPPORTED_TYPE(context, input->type, op_name);
}
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
bool AdminRequestHandler::handleDumpStaticStringsRequest(folly::File& file) {
auto const& list = lookupDefinedStaticStrings();
for (auto item : list) {
auto const line = formatStaticString(item);
folly::writeFull(file.fd(), line.data(), line.size());
if (RuntimeOption::EvalPerfDataMap) {
auto const len = std::min<size_t>(item->size(), 255);
std::string str(item->data(), len);
// Only print the first line (up to 255 characters). Since we want '\0' in
// the list of characters to avoid, we need to use the version of
// `find_first_of()' with explicit length.
auto cutOffPos = str.find_first_of("\r\n", 0, 3);
if (cutOffPos != std::string::npos) str.erase(cutOffPos);
Debug::DebugInfo::recordDataMap(item->mutableData(),
item->mutableData() + item->size(),
"Str-" + str);
}
}
return true;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus EluPrepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, 0);
TfLiteTensor* output = GetOutput(context, node, 0);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
// Use LUT to handle quantized elu path.
if (input->type == kTfLiteInt8) {
PopulateLookupTable<int8_t>(data, input, output, [](float value) {
return value < 0.0 ? std::exp(value) - 1.0f : value;
});
}
return GenericPrepare(context, node);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void jas_matrix_asl(jas_matrix_t *matrix, int n)
{
jas_matind_t i;
jas_matind_t j;
jas_seqent_t *rowstart;
jas_matind_t rowstep;
jas_seqent_t *data;
if (jas_matrix_numrows(matrix) > 0 && jas_matrix_numcols(matrix) > 0) {
assert(matrix->rows_);
rowstep = jas_matrix_rowstep(matrix);
for (i = matrix->numrows_, rowstart = matrix->rows_[0]; i > 0; --i,
rowstart += rowstep) {
for (j = matrix->numcols_, data = rowstart; j > 0; --j,
++data) {
//*data <<= n;
*data = jas_seqent_asl(*data, n);
}
}
}
} | 1 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | safe |
static optional<Principal> parse_principal(CephContext* cct, TokenID t,
string&& s) {
// Wildcard!
if ((t == TokenID::AWS) && (s == "*")) {
return Principal::wildcard();
// Do nothing for now.
} else if (t == TokenID::CanonicalUser) {
// AWS ARNs
} else if (t == TokenID::AWS) {
auto a = ARN::parse(s);
if (!a) {
if (std::none_of(s.begin(), s.end(),
[](const char& c) {
return (c == ':') || (c == '/');
})) {
// Since tenants are simply prefixes, there's no really good
// way to see if one exists or not. So we return the thing and
// let them try to match against it.
return Principal::tenant(std::move(s));
}
}
if (a->resource == "root") {
return Principal::tenant(std::move(a->account));
}
static const char rx_str[] = "([^/]*)/(.*)";
static const regex rx(rx_str, sizeof(rx_str) - 1,
ECMAScript | optimize);
smatch match;
if (regex_match(a->resource, match, rx)) {
ceph_assert(match.size() == 3);
if (match[1] == "user") {
return Principal::user(std::move(a->account),
match[2]);
}
if (match[1] == "role") {
return Principal::role(std::move(a->account),
match[2]);
}
}
}
ldout(cct, 0) << "Supplied principal is discarded: " << s << dendl;
return boost::none;
} | 0 | C++ | CWE-617 | Reachable Assertion | The product contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary. | https://cwe.mitre.org/data/definitions/617.html | vulnerable |
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
MaxEvalFloat<kernel_type>(context, node, params, data, input, output);
break;
case kTfLiteUInt8:
MaxEvalQuantizedUInt8<kernel_type>(context, node, params, data, input,
output);
break;
case kTfLiteInt8:
MaxEvalQuantizedInt8<kernel_type>(context, node, params, data, input,
output);
break;
case kTfLiteInt16:
MaxEvalQuantizedInt16<kernel_type>(context, node, params, data, input,
output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
void CoreUserInputHandler::handleSay(const BufferInfo &bufferInfo, const QString &msg)
{
if (bufferInfo.bufferName().isEmpty() || !bufferInfo.acceptsRegularMessages())
return; // server buffer
std::function<QByteArray(const QString &, const QString &)> encodeFunc = [this] (const QString &target, const QString &message) -> QByteArray {
return channelEncode(target, message);
};
#ifdef HAVE_QCA2
putPrivmsg(bufferInfo.bufferName(), msg, encodeFunc, network()->cipher(bufferInfo.bufferName()));
#else
putPrivmsg(bufferInfo.bufferName(), msg, encodeFunc);
#endif
emit displayMsg(Message::Plain, bufferInfo.type(), bufferInfo.bufferName(), msg, network()->myNick(), Message::Self);
} | 1 | C++ | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | https://cwe.mitre.org/data/definitions/399.html | safe |
bool WideToCharMap(const wchar *Src,char *Dest,size_t DestSize,bool &Success)
{
// String with inconvertible characters mapped to private use Unicode area
// must have the mark code somewhere.
if (wcschr(Src,(wchar)MappedStringMark)==NULL)
return false;
Success=true;
uint SrcPos=0,DestPos=0;
while (Src[SrcPos]!=0 && DestPos<DestSize-MB_CUR_MAX)
{
if (uint(Src[SrcPos])==MappedStringMark)
{
SrcPos++;
continue;
}
// For security reasons do not restore low ASCII codes, so mapping cannot
// be used to hide control codes like path separators.
if (uint(Src[SrcPos])>=MapAreaStart+0x80 && uint(Src[SrcPos])<MapAreaStart+0x100)
Dest[DestPos++]=char(uint(Src[SrcPos++])-MapAreaStart);
else
{
mbstate_t ps;
memset(&ps,0,sizeof(ps));
if (wcrtomb(Dest+DestPos,Src[SrcPos],&ps)==-1)
{
Dest[DestPos]='_';
Success=false;
}
SrcPos++;
memset(&ps,0,sizeof(ps));
int Length=mbrlen(Dest+DestPos,MB_CUR_MAX,&ps);
DestPos+=Max(Length,1);
}
}
Dest[Min(DestPos,DestSize-1)]=0;
return true;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void writeStats(Array& /*ret*/) override {
fprintf(stderr, "writeStats start\n");
// RetSame: the return value is the same instance every time
// HasThis: call has a this argument
// AllSame: all returns were the same data even though args are different
// MemberCount: number of different arg sets (including this)
fprintf(stderr, "Count Function MinSerLen MaxSerLen RetSame HasThis "
"AllSame MemberCount\n");
for (auto& me : m_memos) {
if (me.second.m_ignore) continue;
if (me.second.m_count == 1) continue;
int min_ser_len = 999999999;
int max_ser_len = 0;
int count = 0;
int member_count = 0;
bool all_same = true;
if (me.second.m_has_this) {
bool any_multiple = false;
auto& fr = me.second.m_member_memos.begin()->second.m_return_value;
member_count = me.second.m_member_memos.size();
for (auto& mme : me.second.m_member_memos) {
if (mme.second.m_return_value != fr) all_same = false;
count += mme.second.m_count;
auto ser_len = mme.second.m_return_value.length();
min_ser_len = std::min(min_ser_len, ser_len);
max_ser_len = std::max(max_ser_len, ser_len);
if (mme.second.m_count > 1) any_multiple = true;
}
if (!any_multiple && !all_same) continue;
} else {
min_ser_len = max_ser_len = me.second.m_return_value.length();
count = me.second.m_count;
all_same = me.second.m_ret_tv_same;
}
fprintf(stderr, "%d %s %d %d %s %s %s %d\n",
count, me.first.data(),
min_ser_len, max_ser_len,
me.second.m_ret_tv_same ? " true" : "false",
me.second.m_has_this ? " true" : "false",
all_same ? " true" : "false",
member_count
);
}
fprintf(stderr, "writeStats end\n");
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
static INLINE SIZE_T ntlm_av_pair_get_len(const NTLM_AV_PAIR* pAvPair)
{
UINT16 AvLen;
Data_Read_UINT16(&pAvPair->AvLen, AvLen);
return AvLen;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* seq_lengths;
TF_LITE_ENSURE_OK(
context, GetInputSafe(context, node, kSeqLengthsTensor, &seq_lengths));
TF_LITE_ENSURE_EQ(context, NumDimensions(seq_lengths), 1);
if (input->type != kTfLiteInt32 && input->type != kTfLiteFloat32 &&
input->type != kTfLiteUInt8 && input->type != kTfLiteInt16 &&
input->type != kTfLiteInt64) {
context->ReportError(context,
"Type '%s' is not supported by reverse_sequence.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
if (seq_lengths->type != kTfLiteInt32 && seq_lengths->type != kTfLiteInt64) {
context->ReportError(
context, "Seq_lengths type '%s' is not supported by reverse_sequence.",
TfLiteTypeGetName(seq_lengths->type));
return kTfLiteError;
}
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
return context->ResizeTensor(context, output, output_shape);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
req::ptr<XMLDocumentData> doc() const {
return m_node ? m_node->doc() : nullptr;
} | 1 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | safe |
bool ConstantFolding::SimplifyReshape(const GraphProperties& properties,
bool use_shape_info, NodeDef* node) {
if (!use_shape_info || node->attr().count("T") == 0 ||
!IsSimplifiableReshape(*node, properties).ok()) {
return false;
}
DataType output_type = node->attr().at("T").type();
node->set_op("Identity");
EraseRegularNodeAttributes(node);
(*node->mutable_attr())["T"].set_type(output_type);
*node->mutable_input(1) = AsControlDependency(node->input(1));
return true;
} | 1 | C++ | CWE-617 | Reachable Assertion | The product contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary. | https://cwe.mitre.org/data/definitions/617.html | safe |
mptctl_replace_fw (unsigned long arg)
{
struct mpt_ioctl_replace_fw __user *uarg = (void __user *) arg;
struct mpt_ioctl_replace_fw karg;
MPT_ADAPTER *ioc;
int iocnum;
int newFwSize;
if (copy_from_user(&karg, uarg, sizeof(struct mpt_ioctl_replace_fw))) {
printk(KERN_ERR MYNAM "%s@%d::mptctl_replace_fw - "
"Unable to read in mpt_ioctl_replace_fw struct @ %p\n",
__FILE__, __LINE__, uarg);
return -EFAULT;
}
if (((iocnum = mpt_verify_adapter(karg.hdr.iocnum, &ioc)) < 0) ||
(ioc == NULL)) {
printk(KERN_DEBUG MYNAM "%s::mptctl_replace_fw() @%d - ioc%d not found!\n",
__FILE__, __LINE__, iocnum);
return -ENODEV;
}
dctlprintk(ioc, printk(MYIOC_s_DEBUG_FMT "mptctl_replace_fw called.\n",
ioc->name));
/* If caching FW, Free the old FW image
*/
if (ioc->cached_fw == NULL)
return 0;
mpt_free_fw_memory(ioc);
/* Allocate memory for the new FW image
*/
newFwSize = ALIGN(karg.newImageSize, 4);
mpt_alloc_fw_memory(ioc, newFwSize);
if (ioc->cached_fw == NULL)
return -ENOMEM;
/* Copy the data from user memory to kernel space
*/
if (copy_from_user(ioc->cached_fw, uarg->newImage, newFwSize)) {
printk(MYIOC_s_ERR_FMT "%s@%d::mptctl_replace_fw - "
"Unable to read in mpt_ioctl_replace_fw image "
"@ %p\n", ioc->name, __FILE__, __LINE__, uarg);
mpt_free_fw_memory(ioc);
return -EFAULT;
}
/* Update IOCFactsReply
*/
ioc->facts.FWImageSize = newFwSize;
return 0;
} | 0 | C++ | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The program contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently. | https://cwe.mitre.org/data/definitions/362.html | vulnerable |
TightDecoder::FilterGradient24(const rdr::U8 *inbuf,
const PixelFormat& pf, PIXEL_T* outbuf,
int stride, const Rect& r)
{
int x, y, c;
rdr::U8 prevRow[TIGHT_MAX_WIDTH*3];
rdr::U8 thisRow[TIGHT_MAX_WIDTH*3];
rdr::U8 pix[3];
int est[3];
memset(prevRow, 0, sizeof(prevRow));
// Set up shortcut variables
int rectHeight = r.height();
int rectWidth = r.width();
for (y = 0; y < rectHeight; y++) {
/* First pixel in a row */
for (c = 0; c < 3; c++) {
pix[c] = inbuf[y*rectWidth*3+c] + prevRow[c];
thisRow[c] = pix[c];
}
pf.bufferFromRGB((rdr::U8*)&outbuf[y*stride], pix, 1);
/* Remaining pixels of a row */
for (x = 1; x < rectWidth; x++) {
for (c = 0; c < 3; c++) {
est[c] = prevRow[x*3+c] + pix[c] - prevRow[(x-1)*3+c];
if (est[c] > 0xff) {
est[c] = 0xff;
} else if (est[c] < 0) {
est[c] = 0;
}
pix[c] = inbuf[(y*rectWidth+x)*3+c] + est[c];
thisRow[x*3+c] = pix[c];
}
pf.bufferFromRGB((rdr::U8*)&outbuf[y*stride+x], pix, 1);
}
memcpy(prevRow, thisRow, sizeof(prevRow));
}
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus GreaterEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
bool requires_broadcast = !HaveSameShapes(input1, input2);
switch (input1->type) {
case kTfLiteFloat32:
Comparison<float, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt32:
Comparison<int32_t, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteInt64:
Comparison<int64_t, reference_ops::GreaterFn>(input1, input2, output,
requires_broadcast);
break;
case kTfLiteUInt8:
ComparisonQuantized<uint8_t, reference_ops::GreaterFn>(
input1, input2, output, requires_broadcast);
break;
case kTfLiteInt8:
ComparisonQuantized<int8_t, reference_ops::GreaterFn>(
input1, input2, output, requires_broadcast);
break;
default:
context->ReportError(context,
"Does not support type %d, requires float|int|uint8",
input1->type);
return kTfLiteError;
}
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
void Compute(OpKernelContext* context) override {
const Tensor& prefix = context->input(0);
const Tensor& tensor_names = context->input(1);
const Tensor& shape_and_slices = context->input(2);
OP_REQUIRES(context, tensor_names.NumElements() == dtypes_.size(),
errors::InvalidArgument("Got ", tensor_names.NumElements(),
" tensor names, but ", dtypes_.size(),
" expected dtypes."));
ValidateInputs(false /* not save op */, context, prefix, tensor_names,
shape_and_slices);
if (!context->status().ok()) return;
const string& prefix_string = prefix.scalar<tstring>()();
// Intention: we plan to use the RestoreV2 op as a backward-compatible
// reader as we upgrade to the V2 format. This allows transparent upgrade.
// We here attempt to read a V1 checkpoint, if "prefix_string" does not
// refer to a V2 checkpoint.
Env* env = Env::Default();
std::vector<string> paths;
if (!env->GetMatchingPaths(MetaFilename(prefix_string), &paths).ok() ||
paths.empty()) {
// Cannot find V2's metadata file, so "prefix_string" does not point to a
// V2 checkpoint. Invokes the V1 read path instead.
for (size_t i = 0; i < tensor_names.NumElements(); ++i) {
RestoreTensor(context, &checkpoint::OpenTableTensorSliceReader,
/* preferred_shard */ -1, /* restore_slice */ true,
/* restore_index */ i);
if (!context->status().ok()) {
return;
}
}
return;
}
// If found, invokes the V2 reader.
OP_REQUIRES_OK(context, RestoreTensorsV2(context, prefix, tensor_names,
shape_and_slices, dtypes_));
} | 1 | C++ | CWE-476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. | https://cwe.mitre.org/data/definitions/476.html | safe |
TypedValue HHVM_FUNCTION(substr_compare,
const String& main_str,
const String& str,
int offset,
int length /* = INT_MAX */,
bool case_insensitivity /* = false */) {
int s1_len = main_str.size();
int s2_len = str.size();
if (length <= 0) {
raise_warning("The length must be greater than zero");
return make_tv<KindOfBoolean>(false);
}
if (offset < 0) {
offset = s1_len + offset;
if (offset < 0) offset = 0;
}
if (offset >= s1_len) {
raise_warning("The start position cannot exceed initial string length");
return make_tv<KindOfBoolean>(false);
}
int cmp_len = s1_len - offset;
if (cmp_len < s2_len) cmp_len = s2_len;
if (cmp_len > length) cmp_len = length;
const char *s1 = main_str.data();
if (case_insensitivity) {
return tvReturn(bstrcasecmp(s1 + offset, cmp_len, str.data(), cmp_len));
}
return tvReturn(string_ncmp(s1 + offset, str.data(), cmp_len));
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
Status TensorSliceReader::GetTensor(
const string& name, std::unique_ptr<tensorflow::Tensor>* out_tensor) const {
DataType type;
TensorShape shape;
TensorSlice slice;
{
mutex_lock l(mu_);
const TensorSliceSet* tss = gtl::FindPtrOrNull(tensors_, name);
if (tss == nullptr) {
return errors::NotFound(name, " not found in checkpoint file");
}
if (tss->Slices().size() > 1) {
// TODO(sherrym): Support multi-slice checkpoints.
return errors::Unimplemented("Sliced checkpoints are not supported");
}
type = tss->type();
shape = tss->shape();
slice = tss->Slices().begin()->second.slice;
}
std::unique_ptr<tensorflow::Tensor> t(new tensorflow::Tensor(type, shape));
bool success = false;
#define READER_COPY(dt) \
case dt: \
success = CopySliceData(name, slice, \
t->flat<EnumToDataType<dt>::Type>().data()); \
break;
switch (type) {
READER_COPY(DT_FLOAT);
READER_COPY(DT_DOUBLE);
READER_COPY(DT_INT32);
READER_COPY(DT_UINT8);
READER_COPY(DT_INT16);
READER_COPY(DT_INT8);
READER_COPY(DT_INT64);
READER_COPY(DT_STRING);
default:
return errors::Unimplemented("Data type not supported");
}
#undef READER_COPY
if (!success) {
return errors::NotFound(name, " not found in checkpoint file");
}
std::swap(*out_tensor, t);
return Status::OK();
} | 0 | C++ | CWE-345 | Insufficient Verification of Data Authenticity | The software does not sufficiently verify the origin or authenticity of data, in a way that causes it to accept invalid data. | https://cwe.mitre.org/data/definitions/345.html | vulnerable |
void writeStats(Array& /*ret*/) override {
fprintf(stderr, "writeStats start\n");
// RetSame: the return value is the same instance every time
// HasThis: call has a this argument
// AllSame: all returns were the same data even though args are different
// MemberCount: number of different arg sets (including this)
fprintf(stderr, "Count Function MinSerLen MaxSerLen RetSame HasThis "
"AllSame MemberCount\n");
for (auto& me : m_memos) {
if (me.second.m_ignore) continue;
if (me.second.m_count == 1) continue;
int min_ser_len = 999999999;
int max_ser_len = 0;
int count = 0;
int member_count = 0;
bool all_same = true;
if (me.second.m_has_this) {
bool any_multiple = false;
auto& fr = me.second.m_member_memos.begin()->second.m_return_value;
member_count = me.second.m_member_memos.size();
for (auto& mme : me.second.m_member_memos) {
if (mme.second.m_return_value != fr) all_same = false;
count += mme.second.m_count;
auto ser_len = mme.second.m_return_value.length();
min_ser_len = std::min<int64_t>(min_ser_len, ser_len);
max_ser_len = std::max<int64_t>(max_ser_len, ser_len);
if (mme.second.m_count > 1) any_multiple = true;
}
if (!any_multiple && !all_same) continue;
} else {
min_ser_len = max_ser_len = me.second.m_return_value.length();
count = me.second.m_count;
all_same = me.second.m_ret_tv_same;
}
fprintf(stderr, "%d %s %d %d %s %s %s %d\n",
count, me.first.data(),
min_ser_len, max_ser_len,
me.second.m_ret_tv_same ? " true" : "false",
me.second.m_has_this ? " true" : "false",
all_same ? " true" : "false",
member_count
);
}
fprintf(stderr, "writeStats end\n");
} | 1 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | safe |
inline int check(int itemSize, int nItems=1)
{
if (ptr + itemSize * nItems > end) {
if (ptr + itemSize > end)
return overrun(itemSize, nItems);
nItems = (end - ptr) / itemSize;
}
return nItems;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
Http::Response AbstractWebApplication::processRequest(const Http::Request &request, const Http::Environment &env)
{
session_ = 0;
request_ = request;
env_ = env;
clear(); // clear response
sessionInitialize();
if (!sessionActive() && !isAuthNeeded())
sessionStart();
if (isBanned()) {
status(403, "Forbidden");
print(QObject::tr("Your IP address has been banned after too many failed authentication attempts."), Http::CONTENT_TYPE_TXT);
}
else {
processRequest();
}
return response();
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
gdImagePtr gdImageCreateTrueColor (int sx, int sy)
{
int i;
gdImagePtr im;
if (overflow2(sx, sy)) {
return NULL;
}
if (overflow2(sizeof(unsigned char *), sy)) {
return NULL;
}
if (overflow2(sizeof(int) + sizeof(unsigned char), sx * sy)) {
return NULL;
}
// Check for OOM before doing a potentially large allocation.
auto allocsz = sizeof(gdImage)
+ (sizeof(int *) + sizeof(unsigned char *)) * sy
+ (sizeof(int) + sizeof(unsigned char)) * sx * sy;
if (UNLIKELY(precheckOOM(allocsz))) {
// Don't throw here because GD might need to do its own cleanup.
return NULL;
}
im = (gdImage *) gdMalloc(sizeof(gdImage));
memset(im, 0, sizeof(gdImage));
im->tpixels = (int **) gdMalloc(sizeof(int *) * sy);
im->AA_opacity = (unsigned char **) gdMalloc(sizeof(unsigned char *) * sy);
im->polyInts = 0;
im->polyAllocated = 0;
im->brush = 0;
im->tile = 0;
im->style = 0;
for (i = 0; i < sy; i++) {
im->tpixels[i] = (int *) gdCalloc(sx, sizeof(int));
im->AA_opacity[i] = (unsigned char *) gdCalloc(sx, sizeof(unsigned char));
}
im->sx = sx;
im->sy = sy;
im->transparent = (-1);
im->interlace = 0;
im->trueColor = 1;
/* 2.0.2: alpha blending is now on by default, and saving of alpha is
* off by default. This allows font antialiasing to work as expected
* on the first try in JPEGs -- quite important -- and also allows
* for smaller PNGs when saving of alpha channel is not really
* desired, which it usually isn't!
*/
im->saveAlphaFlag = 0;
im->alphaBlendingFlag = 1;
im->thick = 1;
im->AA = 0;
im->AA_polygon = 0;
im->cx1 = 0;
im->cy1 = 0;
im->cx2 = im->sx - 1;
im->cy2 = im->sy - 1;
im->interpolation = NULL;
im->interpolation_id = GD_BILINEAR_FIXED;
return im;
} | 1 | C++ | CWE-22 | Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') | The software uses external input to construct a pathname that is intended to identify a file or directory that is located underneath a restricted parent directory, but the software does not properly neutralize special elements within the pathname that can cause the pathname to resolve to a location that is outside of the restricted directory. | https://cwe.mitre.org/data/definitions/22.html | safe |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
TfLiteTensor* hits;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 1, &hits));
const TfLiteTensor* lookup;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &lookup));
const TfLiteTensor* key;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &key));
const TfLiteTensor* value;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &value));
const int num_rows = SizeOfDimension(value, 0);
const int row_bytes = value->bytes / num_rows;
void* pointer = nullptr;
DynamicBuffer buf;
for (int i = 0; i < SizeOfDimension(lookup, 0); i++) {
int idx = -1;
pointer = bsearch(&(lookup->data.i32[i]), key->data.i32, num_rows,
sizeof(int32_t), greater);
if (pointer != nullptr) {
idx = (reinterpret_cast<char*>(pointer) - (key->data.raw)) /
sizeof(int32_t);
}
if (idx >= num_rows || idx < 0) {
if (output->type == kTfLiteString) {
buf.AddString(nullptr, 0);
} else {
memset(output->data.raw + i * row_bytes, 0, row_bytes);
}
hits->data.uint8[i] = 0;
} else {
if (output->type == kTfLiteString) {
buf.AddString(GetString(value, idx));
} else {
memcpy(output->data.raw + i * row_bytes,
value->data.raw + idx * row_bytes, row_bytes);
}
hits->data.uint8[i] = 1;
}
}
if (output->type == kTfLiteString) {
buf.WriteToTensorAsVector(output);
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
bool IsOpened() {return hFile!=FILE_BAD_HANDLE;}; | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
QPDF::resolve(int objid, int generation)
{
// Check object cache before checking xref table. This allows us
// to insert things into the object cache that don't actually
// exist in the file.
QPDFObjGen og(objid, generation);
if (this->resolving.count(og))
{
// This can happen if an object references itself directly or
// indirectly in some key that has to be resolved during
// object parsing, such as stream length.
QTC::TC("qpdf", "QPDF recursion loop in resolve");
warn(QPDFExc(qpdf_e_damaged_pdf, this->file->getName(),
"", this->file->getLastOffset(),
"loop detected resolving object " +
QUtil::int_to_string(objid) + " " +
QUtil::int_to_string(generation)));
return new QPDF_Null;
}
ResolveRecorder rr(this, og);
if (! this->obj_cache.count(og))
{
if (! this->xref_table.count(og))
{
// PDF spec says unknown objects resolve to the null object.
return new QPDF_Null;
}
QPDFXRefEntry const& entry = this->xref_table[og];
switch (entry.getType())
{
case 1:
{
qpdf_offset_t offset = entry.getOffset();
// Object stored in cache by readObjectAtOffset
int aobjid;
int ageneration;
QPDFObjectHandle oh =
readObjectAtOffset(true, offset, "", objid, generation,
aobjid, ageneration);
}
break;
case 2:
resolveObjectsInStream(entry.getObjStreamNumber());
break;
default:
throw QPDFExc(qpdf_e_damaged_pdf, this->file->getName(), "", 0,
"object " +
QUtil::int_to_string(objid) + "/" +
QUtil::int_to_string(generation) +
" has unexpected xref entry type");
}
}
return this->obj_cache[og].object;
} | 1 | C++ | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | https://cwe.mitre.org/data/definitions/399.html | safe |
Jsi_Value *jsi_ValueObjKeyAssign(Jsi_Interp *interp, Jsi_Value *target, Jsi_Value *keyval, Jsi_Value *value, int flag)
{
int arrayindex = -1;
if (keyval->vt == JSI_VT_NUMBER && Jsi_NumberIsInteger(keyval->d.num) && keyval->d.num >= 0) {
arrayindex = (int)keyval->d.num;
}
/* TODO: array["1"] also extern the length of array */
if (arrayindex >= 0 && arrayindex < MAX_ARRAY_LIST &&
target->vt == JSI_VT_OBJECT && target->d.obj->arr) {
return jsi_ObjArraySetDup(interp, target->d.obj, value, arrayindex);
}
const char *kstr = Jsi_ValueToString(interp, keyval, NULL);
#if (defined(JSI_HAS___PROTO__) && JSI_HAS___PROTO__==2)
if (Jsi_Strcmp(kstr, "__proto__")==0) {
Jsi_Obj *obj = target->d.obj;
obj->__proto__ = Jsi_ValueDup(interp, value);
//obj->clearProto = 1;
return obj->__proto__;
}
#endif
Jsi_Value *v = Jsi_ValueNew1(interp);
if (value)
Jsi_ValueCopy(interp, v, value);
jsi_ValueObjSet(interp, target, kstr, v, flag, (Jsi_ValueIsStringKey(interp, keyval)? JSI_OM_ISSTRKEY:0));
Jsi_DecrRefCount(interp, v);
return v;
} | 0 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | vulnerable |
R_API RBinJavaAnnotation *r_bin_java_annotation_new(ut8 *buffer, ut64 sz, ut64 buf_offset) {
ut32 i = 0;
RBinJavaAnnotation *annotation = NULL;
RBinJavaElementValuePair *evps = NULL;
ut64 offset = 0;
annotation = R_NEW0 (RBinJavaAnnotation);
if (!annotation) {
return NULL;
}
// (ut16) read and set annotation_value.type_idx;
annotation->type_idx = R_BIN_JAVA_USHORT (buffer, offset);
offset += 2;
// (ut16) read and set annotation_value.num_element_value_pairs;
annotation->num_element_value_pairs = R_BIN_JAVA_USHORT (buffer, offset);
offset += 2;
annotation->element_value_pairs = r_list_newf (r_bin_java_element_pair_free);
// read annotation_value.num_element_value_pairs, and append to annotation_value.element_value_pairs
for (i = 0; i < annotation->num_element_value_pairs; i++) {
if (offset > sz) {
break;
}
evps = r_bin_java_element_pair_new (buffer + offset, sz - offset, buf_offset + offset);
if (evps) {
offset += evps->size;
r_list_append (annotation->element_value_pairs, (void *) evps);
}
}
annotation->size = offset;
return annotation;
} | 0 | C++ | CWE-788 | Access of Memory Location After End of Buffer | The software reads or writes to a buffer using an index or pointer that references a memory location after the end of the buffer. | https://cwe.mitre.org/data/definitions/788.html | vulnerable |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<TfLiteLocalResponseNormParams*>(node->builtin_data);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (output->type == kTfLiteFloat32) {
#define TF_LITE_LOCAL_RESPONSE_NORM(type) \
tflite::LocalResponseNormalizationParams op_params; \
op_params.range = params->radius; \
op_params.bias = params->bias; \
op_params.alpha = params->alpha; \
op_params.beta = params->beta; \
type::LocalResponseNormalization( \
op_params, GetTensorShape(input), GetTensorData<float>(input), \
GetTensorShape(output), GetTensorData<float>(output))
if (kernel_type == kReference) {
TF_LITE_LOCAL_RESPONSE_NORM(reference_ops);
}
if (kernel_type == kGenericOptimized) {
TF_LITE_LOCAL_RESPONSE_NORM(optimized_ops);
}
#undef TF_LITE_LOCAL_RESPONSE_NORM
} else {
context->ReportError(context, "Output type is %d, requires float.",
output->type);
return kTfLiteError;
}
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
// There are two ways in which the 'output' can be made dynamic: it could be
// a string tensor, or its shape cannot be calculated during Prepare(). In
// either case, we now have all the information to calculate its shape.
if (IsDynamicTensor(output)) {
TF_LITE_ENSURE_OK(context, ResizeOutput(context, node));
}
// Note that string tensors are always "dynamic" in the sense that their size
// is not known until we have all the content. This applies even when their
// shape is known ahead of time. As a result, a string tensor is never given
// any memory by ResizeOutput(), and we need to do it manually here. Since
// reshape doesn't change the data, the output tensor needs exactly as many
// bytes as the input tensor.
if (output->type == kTfLiteString) {
auto bytes_required = input->bytes;
TfLiteTensorRealloc(bytes_required, output);
output->bytes = bytes_required;
}
memcpy(output->data.raw, input->data.raw, input->bytes);
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void Bezier(double x1,double y1,double x2,double y2,double x3,double y3) {
sprintf(outputbuffer,"\n %12.3f %12.3f %12.3f %12.3f %12.3f %12.3f c",x1,y1,x2,y2,x3,y3);
sendClean(outputbuffer);
} | 1 | C++ | NVD-CWE-noinfo | null | null | null | safe |
bool read(ReadonlyBytes buffer)
{
auto fields_size = sizeof(EndOfCentralDirectory) - sizeof(u8*);
if (buffer.size() < fields_size)
return false;
if (memcmp(buffer.data(), end_of_central_directory_signature, sizeof(end_of_central_directory_signature)) != 0)
return false;
memcpy(reinterpret_cast<void*>(&disk_number), buffer.data() + sizeof(end_of_central_directory_signature), fields_size);
comment = buffer.data() + sizeof(end_of_central_directory_signature) + fields_size;
return true;
} | 0 | C++ | CWE-120 | Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') | The program copies an input buffer to an output buffer without verifying that the size of the input buffer is less than the size of the output buffer, leading to a buffer overflow. | https://cwe.mitre.org/data/definitions/120.html | vulnerable |
TfLiteStatus PrepareMeanOrSum(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_OK(context, PrepareSimple(context, node));
OpData* data = reinterpret_cast<OpData*>(node->user_data);
// reduce_mean requires a buffer to store intermediate sum result.
OpContext op_context(context, node);
if (op_context.input->type == kTfLiteInt8 ||
op_context.input->type == kTfLiteUInt8 ||
op_context.input->type == kTfLiteInt16) {
const double real_multiplier =
static_cast<double>(op_context.input->params.scale) /
static_cast<double>(op_context.output->params.scale);
int exponent;
QuantizeMultiplier(real_multiplier, &data->multiplier, &exponent);
data->shift = exponent;
}
TfLiteTensor* temp_sum;
TF_LITE_ENSURE_OK(context,
GetTemporarySafe(context, node, /*index=*/2, &temp_sum));
if (!IsConstantTensor(op_context.axis)) {
SetTensorToDynamic(temp_sum);
return kTfLiteOk;
}
temp_sum->allocation_type = kTfLiteArenaRw;
return ResizeTempSum(context, &op_context, temp_sum);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
Jsi_RC Jsi_ValueInsertArray(Jsi_Interp *interp, Jsi_Value *target, int key, Jsi_Value *val, int flags)
{
if (target->vt != JSI_VT_OBJECT) {
if (interp->strict)
Jsi_LogWarn("Target is not object");
return JSI_ERROR;
}
Jsi_Obj *obj = target->d.obj;
if (obj->isarrlist) {
if (key >= 0 && key < interp->maxArrayList) {
Jsi_ObjArraySet(interp, obj, val, key);
return JSI_OK;
}
return JSI_ERROR;
}
char unibuf[JSI_MAX_NUMBER_STRING];
Jsi_NumberItoA10(key, unibuf, sizeof(unibuf));
Jsi_ObjInsert(interp, obj, unibuf, val, flags);
return JSI_OK;
} | 0 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | vulnerable |
TEST_CASE_METHOD(TestFixture, "AES encrypt/decrypt", "[aes-encrypt-decrypt]") {
int errStatus = 0;
vector<char> errMsg(BUF_LEN, 0);
uint32_t encLen;
string key = SAMPLE_AES_KEY;
vector <uint8_t> encrypted_key(BUF_LEN, 0);
PRINT_SRC_LINE
auto status = trustedEncryptKeyAES(eid, &errStatus, errMsg.data(), key.c_str(), encrypted_key.data(), &encLen);
REQUIRE(status == 0);
REQUIRE(errStatus == 0);
vector<char> decr_key(BUF_LEN, 0);
PRINT_SRC_LINE
status = trustedDecryptKeyAES(eid, &errStatus, errMsg.data(), encrypted_key.data(), encLen, decr_key.data());
REQUIRE(status == 0);
REQUIRE(errStatus == 0);
REQUIRE(key.compare(decr_key.data()) == 0);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
explicit ThreadPoolHandleOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("display_name", &display_name_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("num_threads", &num_threads_));
OP_REQUIRES_OK(ctx, ctx->GetAttr("max_intra_op_parallelism",
&max_intra_op_parallelism_));
OP_REQUIRES(
ctx, num_threads_ > 0,
errors::InvalidArgument("`num_threads` must be greater than zero."));
} | 0 | C++ | CWE-770 | Allocation of Resources Without Limits or Throttling | The software allocates a reusable resource or group of resources on behalf of an actor without imposing any restrictions on the size or number of resources that can be allocated, in violation of the intended security policy for that actor. | https://cwe.mitre.org/data/definitions/770.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
TF_LITE_ENSURE_TYPES_EQ(context, GetInput(context, node, 0)->type,
kTfLiteString);
TF_LITE_ENSURE_TYPES_EQ(context, GetOutput(context, node, 0)->type,
kTfLiteString);
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus L2Eval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
L2EvalFloat<kernel_type>(context, node, params, data, input, output);
break;
case kTfLiteUInt8:
// We don't have a quantized implementation, so just fall through to the
// 'default' case.
default:
context->ReportError(context, "Type %d not currently supported.",
input->type);
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
static const EVP_MD *tpm_algorithm_to_openssl_digest(TPMI_ALG_HASH algorithm) {
switch(algorithm) {
case TPM_ALG_SHA1:
return EVP_sha1();
case ALG_SHA256_VALUE:
return EVP_sha256();
case TPM_ALG_SHA384:
return EVP_sha384();
case TPM_ALG_SHA512:
return EVP_sha512();
default:
return NULL;
}
/* no return, not possible */
} | 1 | C++ | CWE-522 | Insufficiently Protected Credentials | The product transmits or stores authentication credentials, but it uses an insecure method that is susceptible to unauthorized interception and/or retrieval. | https://cwe.mitre.org/data/definitions/522.html | safe |
static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n)
{
int dy = y1 - y0;
int adx = x1 - x0;
int ady = abs(dy);
int base;
int x=x0,y=y0;
int err = 0;
int sy;
#ifdef STB_VORBIS_DIVIDE_TABLE
if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) {
if (dy < 0) {
base = -integer_divide_table[ady][adx];
sy = base-1;
} else {
base = integer_divide_table[ady][adx];
sy = base+1;
}
} else {
base = dy / adx;
if (dy < 0)
sy = base - 1;
else
sy = base+1;
}
#else
base = dy / adx;
if (dy < 0)
sy = base - 1;
else
sy = base+1;
#endif
ady -= abs(base) * adx;
if (x1 > n) x1 = n;
if (x < x1) {
LINE_OP(output[x], inverse_db_table[y&255]);
for (++x; x < x1; ++x) {
err += ady;
if (err >= adx) {
err -= adx;
y += sy;
} else
y += base;
LINE_OP(output[x], inverse_db_table[y&255]);
}
}
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
output->type = input->type;
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void Compute(OpKernelContext* context) override {
const Tensor& input = context->input(0);
const Tensor& filter = context->input(1);
const Tensor& out_backprop = context->input(2);
// Determine relevant sizes from input and filters.
int stride_rows = 0, stride_cols = 0;
int rate_rows = 0, rate_cols = 0;
int64 pad_top = 0, pad_left = 0;
int64 out_rows = 0, out_cols = 0;
ParseSizes(context, strides_, rates_, padding_, &stride_rows, &stride_cols,
&rate_rows, &rate_cols, &pad_top, &pad_left, &out_rows,
&out_cols);
if (!context->status().ok()) return;
// Verify that the incoming gradient tensor has the expected size
// [ batch, out_rows, out_cols, depth ]
const int batch = input.dim_size(0);
const int depth = input.dim_size(3);
OP_REQUIRES(context,
batch == out_backprop.dim_size(0) &&
out_rows == out_backprop.dim_size(1) &&
out_cols == out_backprop.dim_size(2) &&
depth == out_backprop.dim_size(3),
errors::InvalidArgument("out_backprop has incompatible size."));
// The computed filter_backprop has the same dimensions as the filter:
// [ batch, input_rows, input_cols, depth ]
Tensor* filter_backprop = nullptr;
OP_REQUIRES_OK(
context, context->allocate_output(0, filter.shape(), &filter_backprop));
// If there is nothing to compute, return.
if (filter.shape().num_elements() == 0) {
return;
}
functor::DilationBackpropFilter<Device, T>()(
context->eigen_device<Device>(), input.tensor<T, 4>(),
filter.tensor<T, 3>(), out_backprop.tensor<T, 4>(), stride_rows,
stride_cols, rate_rows, rate_cols, pad_top, pad_left,
filter_backprop->tensor<T, 3>());
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
void operator = (const IniSection &s)
{
if (&s == this)
{
return;
}
IniBase::operator = (s);
ip = s.ip;
end_comment = s.end_comment; rewrite_by = s.rewrite_by;
container = s.container;
reindex ();
} | 0 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | vulnerable |
FdInStream::FdInStream(int fd_, int timeoutms_, int bufSize_,
bool closeWhenDone_)
: fd(fd_), closeWhenDone(closeWhenDone_),
timeoutms(timeoutms_), blockCallback(0),
timing(false), timeWaitedIn100us(5), timedKbits(0),
bufSize(bufSize_ ? bufSize_ : DEFAULT_BUF_SIZE), offset(0)
{
ptr = end = start = new U8[bufSize];
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus SimpleStatefulOp::Invoke(TfLiteContext* context,
TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
*data->invoke_count += 1;
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const uint8_t* input_data = GetTensorData<uint8_t>(input);
int size = NumElements(input->dims);
uint8_t* sorting_buffer = reinterpret_cast<uint8_t*>(
context->GetScratchBuffer(context, data->sorting_buffer));
// Copy inputs data to the sorting buffer. We don't want to mutate the input
// tensor as it might be used by a another node.
for (int i = 0; i < size; i++) {
sorting_buffer[i] = input_data[i];
}
// In place insertion sort on `sorting_buffer`.
for (int i = 1; i < size; i++) {
for (int j = i; j > 0 && sorting_buffer[j] < sorting_buffer[j - 1]; j--) {
std::swap(sorting_buffer[j], sorting_buffer[j - 1]);
}
}
TfLiteTensor* median;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kMedianTensor, &median));
uint8_t* median_data = GetTensorData<uint8_t>(median);
TfLiteTensor* invoke_count;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kInvokeCount, &invoke_count));
int32_t* invoke_count_data = GetTensorData<int32_t>(invoke_count);
median_data[0] = sorting_buffer[size / 2];
invoke_count_data[0] = *data->invoke_count;
return kTfLiteOk;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
bool canContinue() override { return true; } | 0 | C++ | CWE-416 | Use After Free | Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code. | https://cwe.mitre.org/data/definitions/416.html | vulnerable |
void Compute(OpKernelContext* context) override {
auto min_input_tensor = context->input(1);
auto max_input_tensor = context->input(2);
OP_REQUIRES(
context, min_input_tensor.NumElements() == 1,
errors::InvalidArgument(
"min_input must be a scalar float value, got tensor with shape ",
min_input_tensor.shape()));
OP_REQUIRES(
context, max_input_tensor.NumElements() == 1,
errors::InvalidArgument(
"max_input must be a scalar float value, got tensor with shape ",
max_input_tensor.shape()));
const float min_input = context->input(1).flat<float>()(0);
const float max_input = context->input(2).flat<float>()(0);
MaxPoolingOp<Device, T>::Compute(context);
Tensor* output_min = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(1, {}, &output_min));
output_min->flat<float>()(0) = min_input;
Tensor* output_max = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(2, {}, &output_max));
output_max->flat<float>()(0) = max_input;
} | 1 | C++ | CWE-476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. | https://cwe.mitre.org/data/definitions/476.html | safe |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
const TfLiteTensor* input2;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor2, &input2));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
switch (input1->type) {
case kTfLiteInt32: {
return EvalImpl<int32_t>(context, data->requires_broadcast, input1,
input2, output);
}
case kTfLiteFloat32: {
return EvalImpl<float>(context, data->requires_broadcast, input1, input2,
output);
}
default: {
context->ReportError(context, "Type '%s' is not supported by floor_div.",
TfLiteTypeGetName(input1->type));
return kTfLiteError;
}
}
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void EvalAddN(TfLiteContext* context, TfLiteNode* node) {
// TODO(haoliang): Initialize all_inputs only once during init.
VectorOfTensors<T> all_inputs(*context, *node->inputs);
// Safe to use unchecked since caller checks that tensor is valid
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
int num_inputs = NumInputs(node);
// Safe to use unchecked since caller checks that tensor is valid
const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1);
reference_ops::AddN<T>(GetTensorShape(input1), num_inputs, all_inputs.data(),
GetTensorData<T>(output));
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
void FormatConverter<T>::InitSparseToDenseConverter(
std::vector<int> shape, std::vector<int> traversal_order,
std::vector<TfLiteDimensionType> format, std::vector<int> dense_size,
std::vector<std::vector<int>> segments,
std::vector<std::vector<int>> indices, std::vector<int> block_map) {
dense_shape_ = std::move(shape);
traversal_order_ = std::move(traversal_order);
block_map_ = std::move(block_map);
format_ = std::move(format);
dense_size_ = 1;
for (int i = 0; i < dense_shape_.size(); i++) {
dense_size_ *= dense_shape_[i];
}
dim_metadata_.resize(2 * format_.size());
for (int i = 0; i < format_.size(); i++) {
if (format_[i] == kTfLiteDimDense) {
dim_metadata_[2 * i] = {dense_size[i]};
} else {
dim_metadata_[2 * i] = std::move(segments[i]);
dim_metadata_[2 * i + 1] = std::move(indices[i]);
}
}
int original_rank = dense_shape_.size();
int block_dim = 0;
blocked_shape_.resize(original_rank);
block_size_.resize(block_map_.size());
for (int i = 0; i < original_rank; i++) {
if (block_dim < block_map_.size() && block_map_[block_dim] == i) {
int orig_dim = traversal_order_[original_rank + block_dim];
block_size_[block_dim] = dense_size[orig_dim];
blocked_shape_[i] = dense_shape_[i] / dense_size[orig_dim];
block_dim++;
} else {
blocked_shape_[i] = dense_shape_[i];
}
}
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
absl::Status IsSupported(const TfLiteContext* context,
const TfLiteNode* tflite_node,
const TfLiteRegistration* registration) final {
if (mirror_pad_) {
const TfLiteMirrorPaddingParams* tf_options;
RETURN_IF_ERROR(RetrieveBuiltinData(tflite_node, &tf_options));
if (tf_options->mode !=
TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect) {
return absl::InvalidArgumentError(
"Only Reflective padding is supported for Mirror Pad operation.");
}
}
RETURN_IF_ERROR(CheckMaxSupportedOpVersion(registration, 2));
RETURN_IF_ERROR(CheckInputsOutputs(context, tflite_node,
/*runtime_inputs=*/1, /*outputs=*/1));
RETURN_IF_ERROR(CheckTensorIsAvailable(context, tflite_node, 1));
auto pad_tensor = tflite::GetInput(context, tflite_node, 1);
if (pad_tensor->dims->size != 2) {
return absl::InvalidArgumentError(absl::StrCat(
"Invalid paddings tensor dimension: expected 2 dim, got ",
pad_tensor->dims->size, " dim"));
}
bool supported =
pad_tensor->dims->data[0] == 3 || pad_tensor->dims->data[0] == 4;
if (!supported || pad_tensor->dims->data[1] != 2) {
return absl::InvalidArgumentError(absl::StrCat(
"Invalid paddings tensor shape: expected 4x2 or 3x2, got ",
pad_tensor->dims->data[0], "x", pad_tensor->dims->data[1]));
}
return absl::OkStatus();
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus EvalHashtableImport(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input_resource_id_tensor;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputResourceIdTensor,
&input_resource_id_tensor));
const int resource_id = input_resource_id_tensor->data.i32[0];
const TfLiteTensor* key_tensor;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kKeyTensor, &key_tensor));
const TfLiteTensor* value_tensor;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kValueTensor, &value_tensor));
Subgraph* subgraph = reinterpret_cast<Subgraph*>(context->impl_);
auto& resources = subgraph->resources();
auto* lookup = resource::GetHashtableResource(&resources, resource_id);
TF_LITE_ENSURE(context, lookup != nullptr);
TF_LITE_ENSURE_STATUS(
lookup->CheckKeyAndValueTypes(context, key_tensor, value_tensor));
// The hashtable resource will only be initialized once, attempting to
// initialize it multiple times will be a no-op.
auto result = lookup->Import(context, key_tensor, value_tensor);
return result;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
if (input->type != kTfLiteFloat32) {
TF_LITE_UNSUPPORTED_TYPE(context, input->type, "Ceil");
}
optimized_ops::Ceil(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output), GetTensorData<float>(output));
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void CommandData::ProcessCommand()
{
#ifndef SFX_MODULE
const wchar *SingleCharCommands=L"FUADPXETK";
if (Command[0]!=0 && Command[1]!=0 && wcschr(SingleCharCommands,Command[0])!=NULL || *ArcName==0)
OutHelp(*Command==0 ? RARX_SUCCESS:RARX_USERERROR); // Return 'success' for 'rar' without parameters.
const wchar *ArcExt=GetExt(ArcName);
#ifdef _UNIX
if (ArcExt==NULL && (!FileExist(ArcName) || IsDir(GetFileAttr(ArcName))))
wcsncatz(ArcName,L".rar",ASIZE(ArcName));
#else
if (ArcExt==NULL)
wcsncatz(ArcName,L".rar",ASIZE(ArcName));
#endif
// Treat arcname.part1 as arcname.part1.rar.
if (ArcExt!=NULL && wcsnicomp(ArcExt,L".part",5)==0 && IsDigit(ArcExt[5]) &&
!FileExist(ArcName))
{
wchar Name[NM];
wcsncpyz(Name,ArcName,ASIZE(Name));
wcsncatz(Name,L".rar",ASIZE(Name));
if (FileExist(Name))
wcsncpyz(ArcName,Name,ASIZE(ArcName));
}
if (wcschr(L"AFUMD",*Command)==NULL)
{
if (GenerateArcName)
GenerateArchiveName(ArcName,ASIZE(ArcName),GenerateMask,false);
StringList ArcMasks;
ArcMasks.AddString(ArcName);
ScanTree Scan(&ArcMasks,Recurse,SaveSymLinks,SCAN_SKIPDIRS);
FindData FindData;
while (Scan.GetNext(&FindData)==SCAN_SUCCESS)
AddArcName(FindData.Name);
}
else
AddArcName(ArcName);
#endif
switch(Command[0])
{
case 'P':
case 'X':
case 'E':
case 'T':
case 'I':
{
CmdExtract Extract(this);
Extract.DoExtract();
}
break;
#ifndef SILENT
case 'V':
case 'L':
ListArchive(this);
break;
default:
OutHelp(RARX_USERERROR);
#endif
}
if (!BareOutput)
mprintf(L"\n");
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
R_API RBinJavaVerificationObj *r_bin_java_read_from_buffer_verification_info_new(ut8 *buffer, ut64 sz, ut64 buf_offset) {
if (sz < 8) {
return NULL;
}
ut64 offset = 0;
RBinJavaVerificationObj *se = R_NEW0 (RBinJavaVerificationObj);
if (!se) {
return NULL;
}
se->file_offset = buf_offset;
se->tag = buffer[offset];
offset += 1;
if (se->tag == R_BIN_JAVA_STACKMAP_OBJECT) {
se->info.obj_val_cp_idx = R_BIN_JAVA_USHORT (buffer, offset);
offset += 2;
} else if (se->tag == R_BIN_JAVA_STACKMAP_UNINIT) {
se->info.uninit_offset = R_BIN_JAVA_USHORT (buffer, offset);
offset += 2;
}
if (R_BIN_JAVA_STACKMAP_UNINIT < se->tag) {
r_bin_java_verification_info_free (se);
return NULL;
}
se->size = offset;
return se;
} | 1 | C++ | CWE-805 | Buffer Access with Incorrect Length Value | The software uses a sequential operation to read or write a buffer, but it uses an incorrect length value that causes it to access memory that is outside of the bounds of the buffer. | https://cwe.mitre.org/data/definitions/805.html | safe |
TfLiteStatus GetOutputSafe(const TfLiteContext* context, const TfLiteNode* node,
int index, TfLiteTensor** tensor) {
int tensor_index;
TF_LITE_ENSURE_OK(
context, ValidateTensorIndexingSafe(context, index, node->outputs->size,
node->outputs->data, &tensor_index));
*tensor = GetTensorAtIndex(context, tensor_index);
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
int FileInStream::overrun(int itemSize, int nItems, bool wait)
{
if (itemSize > (int)sizeof(b))
throw Exception("FileInStream overrun: max itemSize exceeded");
if (end - ptr != 0)
memmove(b, ptr, end - ptr);
end -= ptr - b;
ptr = b;
while (end < b + itemSize) {
size_t n = fread((U8 *)end, b + sizeof(b) - end, 1, file);
if (n == 0) {
if (ferror(file))
throw SystemException("fread", errno);
if (feof(file))
throw EndOfStream();
return 0;
}
end += b + sizeof(b) - end;
}
if (itemSize * nItems > end - ptr)
nItems = (end - ptr) / itemSize;
return nItems;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
// Reinterprete the opaque data provided by user.
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input1;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor1, &input1));
const TfLiteTensor* input2;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensor2, &input2));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
const TfLiteType type = input1->type;
if (type != kTfLiteBool) {
context->ReportError(context, "Logical ops only support bool type.");
return kTfLiteError;
}
output->type = type;
data->requires_broadcast = !HaveSameShapes(input1, input2);
TfLiteIntArray* output_size = nullptr;
if (data->requires_broadcast) {
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
context, input1, input2, &output_size));
} else {
output_size = TfLiteIntArrayCopy(input1->dims);
}
return context->ResizeTensor(context, output, output_size);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
int bit, loops;
u64 status;
int handled;
perf_sample_data_init(&data, 0);
cpuc = &__get_cpu_var(cpu_hw_events);
/*
* Some chipsets need to unmask the LVTPC in a particular spot
* inside the nmi handler. As a result, the unmasking was pushed
* into all the nmi handlers.
*
* This handler doesn't seem to have any issues with the unmasking
* so it was left at the top.
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
intel_pmu_disable_all();
handled = intel_pmu_drain_bts_buffer();
status = intel_pmu_get_status();
if (!status) {
intel_pmu_enable_all(0);
return handled;
}
loops = 0;
again:
intel_pmu_ack_status(status);
if (++loops > 100) {
WARN_ONCE(1, "perfevents: irq loop stuck!\n");
perf_event_print_debug();
intel_pmu_reset();
goto done;
}
inc_irq_stat(apic_perf_irqs);
intel_pmu_lbr_read();
/*
* PEBS overflow sets bit 62 in the global status register
*/
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
handled++;
x86_pmu.drain_pebs(regs);
}
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_event *event = cpuc->events[bit];
handled++;
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(event))
continue;
data.period = event->hw.last_period;
if (perf_event_overflow(event, 1, &data, regs))
x86_pmu_stop(event, 0);
}
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
done:
intel_pmu_enable_all(0);
return handled;
} | 0 | C++ | CWE-400 | Uncontrolled Resource Consumption | The software does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources. | https://cwe.mitre.org/data/definitions/400.html | vulnerable |
untrusted_launcher_response_callback (GtkDialog *dialog,
int response_id,
ActivateParametersDesktop *parameters)
{
GdkScreen *screen;
char *uri;
GFile *file;
switch (response_id)
{
case RESPONSE_RUN:
{
screen = gtk_widget_get_screen (GTK_WIDGET (parameters->parent_window));
uri = nautilus_file_get_uri (parameters->file);
DEBUG ("Launching untrusted launcher %s", uri);
nautilus_launch_desktop_file (screen, uri, NULL,
parameters->parent_window);
g_free (uri);
}
break;
case RESPONSE_MARK_TRUSTED:
{
file = nautilus_file_get_location (parameters->file);
nautilus_file_mark_desktop_file_trusted (file,
parameters->parent_window,
TRUE,
NULL, NULL);
g_object_unref (file);
}
break;
default:
{
/* Just destroy dialog */
}
break;
}
gtk_widget_destroy (GTK_WIDGET (dialog));
activate_parameters_desktop_free (parameters);
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
DoQuickSanityCheck();
ModularArithmetic modn(m_n);
Integer r, rInv;
// do this in a loop for people using small numbers for testing
do {
r.Randomize(rng, Integer::One(), m_n - Integer::One());
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
// Squaring to satisfy Jacobi requirements suggested by JPM.
r = modn.Square(r);
rInv = modn.MultiplicativeInverse(r);
} while (rInv.IsZero());
Integer re = modn.Square(r);
re = modn.Multiply(re, x); // blind
Integer cp=re%m_p, cq=re%m_q;
if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)
{
cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1;
cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1;
}
#pragma omp parallel
#pragma omp sections
{
#pragma omp section
cp = ModularSquareRoot(cp, m_p);
#pragma omp section
cq = ModularSquareRoot(cq, m_q);
}
Integer y = CRT(cq, m_q, cp, m_p, m_u);
y = modn.Multiply(y, rInv); // unblind
y = STDMIN(y, m_n-y);
if (ApplyFunction(y) != x) // check
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
return y;
} | 1 | C++ | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. | https://cwe.mitre.org/data/definitions/200.html | safe |
TEST(TensorSliceReaderTest, MissingTensorData) {
const string fname =
io::JoinPath(testing::TmpDir(), "missing_data_checkpoint");
TensorSliceWriter writer(fname, CreateTableTensorSliceBuilder);
const int32 data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
TF_ASSERT_OK(writer.Add("test", TensorShape({4, 5}),
TensorSlice::ParseOrDie("0,2:-"), data));
TF_ASSERT_OK(writer.Finish());
MutateSavedTensorSlices(fname, [&](SavedTensorSlices sts) {
if (sts.has_data()) {
// Replace the data with only 4 elements.
Fill(data, 4, sts.mutable_data()->mutable_data());
}
return sts.SerializeAsString();
});
TensorSliceReader reader(fname, OpenTableTensorSliceReader);
TF_ASSERT_OK(reader.status());
// The tensor should be present, but loading it should fail due to the missing
// data.
EXPECT_TRUE(reader.HasTensor("test", nullptr, nullptr));
std::unique_ptr<Tensor> tensor;
EXPECT_FALSE(reader.GetTensor("test", &tensor).ok());
} | 1 | C++ | CWE-345 | Insufficient Verification of Data Authenticity | The software does not sufficiently verify the origin or authenticity of data, in a way that causes it to accept invalid data. | https://cwe.mitre.org/data/definitions/345.html | safe |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteIntArray* input_dims = input->dims;
int input_dims_size = input_dims->size;
TF_LITE_ENSURE(context, input_dims_size >= 2);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(input_dims_size);
for (int i = 0; i < input_dims_size; i++) {
output_shape->data[i] = input_dims->data[i];
}
// Resize the output tensor to the same size as the input tensor.
output->type = input->type;
TF_LITE_ENSURE_OK(context,
context->ResizeTensor(context, output, output_shape));
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void RequestContext::SetApiKeyHeader() {
request_->AddHeaderToBackend(kDefaultApiKeyHeaderName, api_key_);
} | 0 | C++ | CWE-290 | Authentication Bypass by Spoofing | This attack-focused weakness is caused by improperly implemented authentication schemes that are subject to spoofing attacks. | https://cwe.mitre.org/data/definitions/290.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
const TfLiteTensor* axis;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxisTensor, &axis));
TF_LITE_ENSURE_EQ(context, NumDimensions(axis), 1);
TF_LITE_ENSURE(context, NumDimensions(input) >= NumElements(axis));
if (input->type != kTfLiteInt32 && input->type != kTfLiteFloat32 &&
input->type != kTfLiteUInt8 && input->type != kTfLiteInt16 &&
input->type != kTfLiteInt64 && input->type != kTfLiteBool) {
context->ReportError(context, "Type '%s' is not supported by reverse.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
if (axis->type != kTfLiteInt32) {
context->ReportError(context, "Axis Type '%s' is not supported by reverse.",
TfLiteTypeGetName(axis->type));
return kTfLiteError;
}
// TODO(renjieliu): support multi-axis case.
if (NumElements(axis) > 1) {
context->ReportError(context, "Current does not support more than 1 axis.");
}
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
TfLiteIntArray* output_shape = TfLiteIntArrayCopy(input->dims);
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
return context->ResizeTensor(context, output, output_shape);
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
Envoy::Ssl::ClientValidationStatus DefaultCertValidator::verifyCertificate(
X509* cert, const std::vector<std::string>& verify_san_list,
const std::vector<Matchers::StringMatcherImpl<envoy::type::matcher::v3::StringMatcher>>&
subject_alt_name_matchers) {
Envoy::Ssl::ClientValidationStatus validated = Envoy::Ssl::ClientValidationStatus::NotValidated;
if (!verify_san_list.empty()) {
if (!verifySubjectAltName(cert, verify_san_list)) {
stats_.fail_verify_san_.inc();
return Envoy::Ssl::ClientValidationStatus::Failed;
}
validated = Envoy::Ssl::ClientValidationStatus::Validated;
}
if (!subject_alt_name_matchers.empty()) {
if (!matchSubjectAltName(cert, subject_alt_name_matchers)) {
stats_.fail_verify_san_.inc();
return Envoy::Ssl::ClientValidationStatus::Failed;
}
validated = Envoy::Ssl::ClientValidationStatus::Validated;
}
if (!verify_certificate_hash_list_.empty() || !verify_certificate_spki_list_.empty()) {
const bool valid_certificate_hash =
!verify_certificate_hash_list_.empty() &&
verifyCertificateHashList(cert, verify_certificate_hash_list_);
const bool valid_certificate_spki =
!verify_certificate_spki_list_.empty() &&
verifyCertificateSpkiList(cert, verify_certificate_spki_list_);
if (!valid_certificate_hash && !valid_certificate_spki) {
stats_.fail_verify_cert_hash_.inc();
return Envoy::Ssl::ClientValidationStatus::Failed;
}
validated = Envoy::Ssl::ClientValidationStatus::Validated;
}
return validated;
} | 0 | C++ | CWE-295 | Improper Certificate Validation | The software does not validate, or incorrectly validates, a certificate. | https://cwe.mitre.org/data/definitions/295.html | vulnerable |
void Context::onDone() {
if (wasm_->onDone_) {
wasm_->onDone_(this, id_);
}
} | 0 | C++ | CWE-476 | NULL Pointer Dereference | A NULL pointer dereference occurs when the application dereferences a pointer that it expects to be valid, but is NULL, typically causing a crash or exit. | https://cwe.mitre.org/data/definitions/476.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
auto* params = reinterpret_cast<TfLiteShapeParams*>(node->builtin_data);
switch (params->out_type) {
case kTfLiteInt32:
output->type = kTfLiteInt32;
break;
case kTfLiteInt64:
output->type = kTfLiteInt64;
break;
default:
context->ReportError(context, "Unknown shape output data type: %d",
params->out_type);
return kTfLiteError;
}
// By design, the input shape is always known at the time of Prepare, even
// if the preceding op that generates |input| is dynamic. Thus, we can
// always compute the shape immediately, without waiting for Eval.
SetTensorToPersistentRo(output);
// Shape always produces a 1-dimensional output tensor, where each output
// element is the length of the corresponding input tensor's dimension.
TfLiteIntArray* output_size = TfLiteIntArrayCreate(1);
output_size->data[0] = NumDimensions(input);
TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_size));
TFLITE_DCHECK_EQ(NumDimensions(output), 1);
TFLITE_DCHECK_EQ(SizeOfDimension(output, 0), NumDimensions(input));
// Immediately propagate the known shape to the output tensor. This allows
// downstream ops that rely on the value to use it during prepare.
switch (output->type) {
case kTfLiteInt32:
ExtractShape(input, GetTensorData<int32_t>(output));
break;
case kTfLiteInt64:
ExtractShape(input, GetTensorData<int64_t>(output));
break;
default:
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TfLiteStatus GatherStrings(TfLiteContext* context, const TfLiteTensor* input,
const TfLiteTensor* positions,
TfLiteTensor* output) {
DynamicBuffer buffer;
const PositionT* indexes = GetTensorData<PositionT>(positions);
bool indices_has_only_positive_elements = true;
const size_t num_indices = positions->bytes / sizeof(PositionT);
for (size_t i = 0; i < num_indices; i++) {
if (indexes[i] < 0) {
indices_has_only_positive_elements = false;
break;
}
}
TF_LITE_ENSURE(context, indices_has_only_positive_elements);
const PositionT num_strings = GetStringCount(input);
const int num_indexes = NumElements(positions);
for (int i = 0; i < num_indexes; ++i) {
const PositionT pos = indexes[i];
TF_LITE_ENSURE(context, pos < num_strings);
const auto string_ref = GetString(input, pos);
buffer.AddString(string_ref.str, string_ref.len);
}
buffer.WriteToTensor(output, /*new_shape=*/nullptr);
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
OpContext op_context(context, node);
TF_LITE_ENSURE_TYPES_EQ(context, op_context.axis->type, kTfLiteInt32);
TF_LITE_ENSURE_OK(context, InitializeTemporaries(context, node, &op_context));
TfLiteTensor* resolved_axis = GetTemporary(context, node, /*index=*/1);
// Leaves work to Eval if axis is not constant; else resizes output.
if (!IsConstantTensor(op_context.axis)) {
SetTensorToDynamic(op_context.output);
SetTensorToDynamic(resolved_axis);
return kTfLiteOk;
}
resolved_axis->allocation_type = kTfLiteArenaRw;
TF_LITE_ENSURE_OK(context,
ResizeTempAxis(context, &op_context, resolved_axis));
TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
static int lookup1_values(int entries, int dim)
{
int r = (int) floor(exp((float) log((float) entries) / dim));
if ((int) floor(pow((float) r+1, dim)) <= entries) // (int) cast for MinGW warning;
++r; // floor() to avoid _ftol() when non-CRT
if (pow((float) r+1, dim) <= entries)
return -1;
if ((int) floor(pow((float) r, dim)) > entries)
return -1;
return r;
} | 1 | C++ | CWE-617 | Reachable Assertion | The product contains an assert() or similar statement that can be triggered by an attacker, which leads to an application exit or other behavior that is more severe than necessary. | https://cwe.mitre.org/data/definitions/617.html | safe |
TfLiteStatus Gather(const TfLiteGatherParams& params, const TfLiteTensor* input,
const TfLiteTensor* positions, TfLiteTensor* output) {
tflite::GatherParams op_params;
op_params.axis = params.axis;
op_params.batch_dims = params.batch_dims;
optimized_ops::Gather(op_params, GetTensorShape(input),
GetTensorData<InputT>(input), GetTensorShape(positions),
GetTensorData<PositionsT>(positions),
GetTensorShape(output), GetTensorData<InputT>(output));
return kTfLiteOk;
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32:
AverageEvalFloat<kernel_type>(context, node, params, data, input, output);
break;
case kTfLiteUInt8:
AverageEvalQuantizedUint8<kernel_type>(context, node, params, data, input,
output);
break;
case kTfLiteInt8:
AverageEvalQuantizedInt8<kernel_type>(context, node, params, data, input,
output);
break;
case kTfLiteInt16:
AverageEvalQuantizedInt16<kernel_type>(context, node, params, data, input,
output);
break;
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
return kTfLiteOk;
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void * alloc_bottom(size_t size, size_t align)
{loop:
align_bottom(align);
byte * tmp = bottom;
bottom += size;
if (bottom > top) {new_chunk(); goto loop;}
return tmp;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void TileManager::crop( RawTile *ttt ){
int tw = image->getTileWidth();
int th = image->getTileHeight();
if( loglevel >= 5 ){
*logfile << "TileManager :: Edge tile: Base size: " << tw << "x" << th
<< ": This tile: " << ttt->width << "x" << ttt->height
<< endl;
}
// Create a new buffer, fill it with the old data, then copy
// back the cropped part into the RawTile buffer
int len = tw * th * ttt->channels * (ttt->bpc/8);
unsigned char* buffer = (unsigned char*) malloc( len );
unsigned char* src_ptr = (unsigned char*) memcpy( buffer, ttt->data, len );
unsigned char* dst_ptr = (unsigned char*) ttt->data;
// Copy one scanline at a time
len = ttt->width * ttt->channels * (ttt->bpc/8);
for( unsigned int i=0; i<ttt->height; i++ ){
memcpy( dst_ptr, src_ptr, len );
dst_ptr += len;
src_ptr += tw * ttt->channels * (ttt->bpc/8);
}
free( buffer );
// Reset the data length
len = ttt->width * ttt->height * ttt->channels * (ttt->bpc/8);
ttt->dataLength = len;
ttt->padded = false;
} | 0 | C++ | CWE-190 | Integer Overflow or Wraparound | The software performs a calculation that can produce an integer overflow or wraparound, when the logic assumes that the resulting value will always be larger than the original value. This can introduce other weaknesses when the calculation is used for resource management or execution control. | https://cwe.mitre.org/data/definitions/190.html | vulnerable |
void ecall_partition_for_sort(uint8_t *sort_order, size_t sort_order_length,
uint32_t num_partitions,
uint8_t *input_rows, size_t input_rows_length,
uint8_t *boundary_rows, size_t boundary_rows_length,
uint8_t **output_partitions, size_t *output_partition_lengths) {
// Guard against operating on arbitrary enclave memory
assert(sgx_is_outside_enclave(input_rows, input_rows_length) == 1);
assert(sgx_is_outside_enclave(boundary_rows, boundary_rows_length) == 1);
sgx_lfence();
try {
partition_for_sort(sort_order, sort_order_length,
num_partitions,
input_rows, input_rows_length,
boundary_rows, boundary_rows_length,
output_partitions, output_partition_lengths);
} catch (const std::runtime_error &e) {
ocall_throw(e.what());
}
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus AverageEvalQuantizedUint8(TfLiteContext* context, TfLiteNode* node,
TfLitePoolParams* params, OpData* data,
const TfLiteTensor* input,
TfLiteTensor* output) {
int32_t activation_min;
int32_t activation_max;
(void)CalculateActivationRangeQuantized(context, params->activation, output,
&activation_min, &activation_max);
#define TF_LITE_AVERAGE_POOL(type) \
tflite::PoolParams op_params; \
op_params.stride_height = params->stride_height; \
op_params.stride_width = params->stride_width; \
op_params.filter_height = params->filter_height; \
op_params.filter_width = params->filter_width; \
op_params.padding_values.height = data->padding.height; \
op_params.padding_values.width = data->padding.width; \
op_params.quantized_activation_min = activation_min; \
op_params.quantized_activation_max = activation_max; \
TF_LITE_ENSURE(context, type::AveragePool(op_params, GetTensorShape(input), \
GetTensorData<uint8_t>(input), \
GetTensorShape(output), \
GetTensorData<uint8_t>(output)))
if (kernel_type == kReference) {
TF_LITE_AVERAGE_POOL(reference_ops);
} else {
TF_LITE_AVERAGE_POOL(optimized_ops);
}
#undef TF_LITE_AVERAGE_POOL
return kTfLiteOk;
} | 1 | C++ | CWE-835 | Loop with Unreachable Exit Condition ('Infinite Loop') | The program contains an iteration or loop with an exit condition that cannot be reached, i.e., an infinite loop. | https://cwe.mitre.org/data/definitions/835.html | safe |
void CConfig::Write(CFile& File, unsigned int iIndentation) {
CString sIndentation = CString(iIndentation, '\t');
auto SingleLine = [](const CString& s) {
return s.Replace_n("\r", "").Replace_n("\n", "");
};
for (const auto& it : m_ConfigEntries) {
for (const CString& sValue : it.second) {
File.Write(SingleLine(sIndentation + it.first + " = " + sValue) +
"\n");
}
}
for (const auto& it : m_SubConfigs) {
for (const auto& it2 : it.second) {
File.Write("\n");
File.Write(SingleLine(sIndentation + "<" + it.first + " " +
it2.first + ">") +
"\n");
it2.second.m_pSubConfig->Write(File, iIndentation + 1);
File.Write(SingleLine(sIndentation + "</" + it.first + ">") + "\n");
}
}
} | 1 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | safe |
TfLiteStatus ReverseSequenceHelper(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* seq_lengths_tensor =
GetInput(context, node, kSeqLengthsTensor);
switch (seq_lengths_tensor->type) {
case kTfLiteInt32: {
return ReverseSequenceImpl<T, int32_t>(context, node);
}
case kTfLiteInt64: {
return ReverseSequenceImpl<T, int64_t>(context, node);
}
default: {
context->ReportError(
context,
"Seq_lengths type '%s' is not supported by reverse_sequence.",
TfLiteTypeGetName(seq_lengths_tensor->type));
return kTfLiteError;
}
}
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
ObfuscatedPasswd::ObfuscatedPasswd(const PlainPasswd& plainPwd) : CharArray(8), length(8) {
int l = strlen(plainPwd.buf), i;
for (i=0; i<8; i++)
buf[i] = i<l ? plainPwd.buf[i] : 0;
deskey(d3desObfuscationKey, EN0);
des((rdr::U8*)buf, (rdr::U8*)buf);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
SilenceMessage(const std::string& mask, const std::string& flags)
: ClientProtocol::Message("SILENCE")
{
PushParam(mask);
PushParamRef(flags);
} | 1 | C++ | CWE-416 | Use After Free | Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code. | https://cwe.mitre.org/data/definitions/416.html | safe |
CFontFileBase(char *sFile, int nLen, bool bFreeFileData)
{
m_sFileData = m_sFile = (unsigned char *)sFile;
m_nLen = nLen;
m_bFreeFileData = bFreeFileData;
m_nPos = 0;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input));
switch (input->type) {
case kTfLiteFloat32:
return EvalImpl<kernel_type, kTfLiteFloat32>(context, node);
case kTfLiteUInt8:
return EvalImpl<kernel_type, kTfLiteUInt8>(context, node);
case kTfLiteInt8:
return EvalImpl<kernel_type, kTfLiteInt8>(context, node);
case kTfLiteInt16:
return EvalImpl<kernel_type, kTfLiteInt16>(context, node);
default:
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
TfLiteTypeGetName(input->type));
return kTfLiteError;
}
} | 1 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | safe |
void FormatConverter<T>::Populate(const T* src_data, std::vector<int> indices,
int level, int prev_idx, int* src_data_ptr,
T* dest_data) {
if (level == indices.size()) {
int orig_rank = dense_shape_.size();
std::vector<int> orig_idx;
orig_idx.resize(orig_rank);
int i = 0;
for (; i < orig_idx.size(); i++) {
int orig_dim = traversal_order_[i];
orig_idx[orig_dim] = indices[i];
}
for (; i < indices.size(); i++) {
const int block_idx = traversal_order_[i] - orig_rank;
const int orig_dim = block_map_[block_idx];
orig_idx[orig_dim] =
orig_idx[orig_dim] * block_size_[block_idx] + indices[i];
}
dest_data[GetFlattenedIndex(orig_idx, dense_shape_)] =
src_data[*src_data_ptr];
*src_data_ptr = *src_data_ptr + 1;
return;
}
const int metadata_idx = 2 * level;
const int shape_of_level = dim_metadata_[metadata_idx][0];
if (format_[level] == kTfLiteDimDense) {
for (int i = 0; i < shape_of_level; i++) {
indices[level] = i;
Populate(src_data, indices, level + 1, prev_idx * shape_of_level + i,
src_data_ptr, dest_data);
}
} else if (prev_idx + 1 < dim_metadata_[metadata_idx].size()) {
const auto& array_segments = dim_metadata_[metadata_idx];
const auto& array_indices = dim_metadata_[metadata_idx + 1];
for (int i = array_segments[prev_idx]; i < array_segments[prev_idx + 1];
i++) {
if (i < array_indices.size() && level < indices.size()) {
indices[level] = array_indices[i];
Populate(src_data, indices, level + 1, i, src_data_ptr, dest_data);
}
}
}
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
static ssize_t _hostsock_sendto(
oe_fd_t* sock_,
const void* buf,
size_t count,
int flags,
const struct oe_sockaddr* dest_addr,
oe_socklen_t addrlen)
{
ssize_t ret = -1;
sock_t* sock = _cast_sock(sock_);
oe_errno = 0;
if (!sock || (count && !buf))
OE_RAISE_ERRNO(OE_EINVAL);
if (oe_syscall_sendto_ocall(
&ret,
sock->host_fd,
buf,
count,
flags,
(struct oe_sockaddr*)dest_addr,
addrlen) != OE_OK)
{
OE_RAISE_ERRNO(OE_EINVAL);
}
done:
return ret;
} | 0 | C++ | NVD-CWE-Other | Other | NVD is only using a subset of CWE for mapping instead of the entire CWE, and the weakness type is not covered by that subset. | https://nvd.nist.gov/vuln/categories | vulnerable |
void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
{
#ifdef BN_LLONG
BN_ULLONG t,tt;
#else
BN_ULONG bl,bh;
#endif
BN_ULONG t1,t2;
BN_ULONG c1,c2,c3;
c1=0;
c2=0;
c3=0;
sqr_add_c(a,0,c1,c2,c3);
r[0]=c1;
c1=0;
sqr_add_c2(a,1,0,c2,c3,c1);
r[1]=c2;
c2=0;
sqr_add_c(a,1,c3,c1,c2);
sqr_add_c2(a,2,0,c3,c1,c2);
r[2]=c3;
c3=0;
sqr_add_c2(a,3,0,c1,c2,c3);
sqr_add_c2(a,2,1,c1,c2,c3);
r[3]=c1;
c1=0;
sqr_add_c(a,2,c2,c3,c1);
sqr_add_c2(a,3,1,c2,c3,c1);
r[4]=c2;
c2=0;
sqr_add_c2(a,3,2,c3,c1,c2);
r[5]=c3;
c3=0;
sqr_add_c(a,3,c1,c2,c3);
r[6]=c1;
r[7]=c2;
} | 0 | C++ | CWE-310 | Cryptographic Issues | Weaknesses in this category are related to the design and implementation of data confidentiality and integrity. Frequently these deal with the use of encoding techniques, encryption libraries, and hashing algorithms. The weaknesses in this category could lead to a degradation of the quality data if they are not addressed. | https://cwe.mitre.org/data/definitions/310.html | vulnerable |
req::ptr<XMLDocumentData> doc() const {
return m_node ? m_node->doc() : nullptr;
} | 1 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | safe |
TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context,
TfLiteNode* node, OpData* op_data) {
// Get the input tensors
const TfLiteTensor* input_box_encodings =
GetInput(context, node, kInputTensorBoxEncodings);
const TfLiteTensor* input_class_predictions =
GetInput(context, node, kInputTensorClassPredictions);
const int num_boxes = input_box_encodings->dims->data[1];
const int num_classes = op_data->num_classes;
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0],
kBatchSize);
TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes);
const int num_classes_with_background =
input_class_predictions->dims->data[2];
TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1));
TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes));
const TfLiteTensor* scores;
switch (input_class_predictions->type) {
case kTfLiteUInt8: {
TfLiteTensor* temporary_scores = &context->tensors[op_data->scores_index];
DequantizeClassPredictions(input_class_predictions, num_boxes,
num_classes_with_background, temporary_scores);
scores = temporary_scores;
} break;
case kTfLiteFloat32:
scores = input_class_predictions;
break;
default:
// Unsupported type.
return kTfLiteError;
}
if (op_data->use_regular_non_max_suppression)
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper(
context, node, op_data, GetTensorData<float>(scores)));
else
TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassFastHelper(
context, node, op_data, GetTensorData<float>(scores)));
return kTfLiteOk;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
static port::StatusOr<CudnnRnnSequenceTensorDescriptor> Create(
GpuExecutor* parent, int max_seq_length, int batch_size, int data_size,
cudnnDataType_t data_type) {
CHECK_GT(max_seq_length, 0);
int dims[] = {batch_size, data_size, 1};
int strides[] = {dims[1] * dims[2], dims[2], 1};
TensorDescriptor tensor_desc = CreateTensorDescriptor();
RETURN_IF_CUDNN_ERROR(cudnnSetTensorNdDescriptor(
/*tensorDesc=*/tensor_desc.get(), /*dataType=*/data_type,
/*nbDims=*/sizeof(dims) / sizeof(dims[0]), /*dimA=*/dims,
/*strideA=*/strides));
return CudnnRnnSequenceTensorDescriptor(parent, max_seq_length, batch_size,
data_size, data_type,
nullptr,
std::move(tensor_desc));
} | 0 | C++ | CWE-20 | Improper Input Validation | The product receives input or data, but it does
not validate or incorrectly validates that the input has the
properties that are required to process the data safely and
correctly. | https://cwe.mitre.org/data/definitions/20.html | vulnerable |
otError Commissioner::GeneratePskc(const char * aPassPhrase,
const char * aNetworkName,
const Mac::ExtendedPanId &aExtPanId,
Pskc & aPskc)
{
otError error = OT_ERROR_NONE;
const char *saltPrefix = "Thread";
uint8_t salt[OT_PBKDF2_SALT_MAX_LEN];
uint16_t saltLen = 0;
VerifyOrExit((strlen(aPassPhrase) >= OT_COMMISSIONING_PASSPHRASE_MIN_SIZE) &&
(strlen(aPassPhrase) <= OT_COMMISSIONING_PASSPHRASE_MAX_SIZE),
error = OT_ERROR_INVALID_ARGS);
memset(salt, 0, sizeof(salt));
memcpy(salt, saltPrefix, strlen(saltPrefix));
saltLen += static_cast<uint16_t>(strlen(saltPrefix));
memcpy(salt + saltLen, aExtPanId.m8, sizeof(aExtPanId));
saltLen += OT_EXT_PAN_ID_SIZE;
memcpy(salt + saltLen, aNetworkName, strlen(aNetworkName));
saltLen += static_cast<uint16_t>(strlen(aNetworkName));
otPbkdf2Cmac(reinterpret_cast<const uint8_t *>(aPassPhrase), static_cast<uint16_t>(strlen(aPassPhrase)),
reinterpret_cast<const uint8_t *>(salt), saltLen, 16384, OT_PSKC_MAX_SIZE, aPskc.m8);
exit:
return error;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
TEST_F(RouterTest, RetryUpstreamResetResponseStarted) {
NiceMock<Http::MockRequestEncoder> encoder1;
Http::ResponseDecoder* response_decoder = nullptr;
expectNewStreamWithImmediateEncoder(encoder1, &response_decoder, Http::Protocol::Http10);
expectResponseTimerCreate();
Http::TestRequestHeaderMapImpl headers{{"x-envoy-retry-on", "5xx"}, {"x-envoy-internal", "true"}};
HttpTestUtility::addDefaultHeaders(headers);
router_.decodeHeaders(headers, true);
EXPECT_EQ(1U,
callbacks_.route_->route_entry_.virtual_cluster_.stats().upstream_rq_total_.value());
// Since the response is already started we don't retry.
EXPECT_CALL(*router_.retry_state_, shouldRetryHeaders(_, _, _)).WillOnce(Return(RetryStatus::No));
EXPECT_CALL(callbacks_, encodeHeaders_(_, false));
Http::ResponseHeaderMapPtr response_headers(
new Http::TestResponseHeaderMapImpl{{":status", "200"}});
EXPECT_CALL(cm_.thread_local_cluster_.conn_pool_.host_->outlier_detector_,
putHttpResponseCode(200));
response_decoder->decodeHeaders(std::move(response_headers), false);
EXPECT_CALL(cm_.thread_local_cluster_.conn_pool_.host_->outlier_detector_,
putResult(Upstream::Outlier::Result::LocalOriginConnectFailed, _));
// Normally, sendLocalReply will actually send the reply, but in this case the
// HCM will detect the headers have already been sent and not route through
// the encoder again.
EXPECT_CALL(callbacks_, sendLocalReply(_, _, _, _, _)).WillOnce(testing::InvokeWithoutArgs([] {
}));
encoder1.stream_.resetStream(Http::StreamResetReason::RemoteReset);
// For normal HTTP, once we have a 200 we consider this a success, even if a
// later reset occurs.
EXPECT_TRUE(verifyHostUpstreamStats(1, 0));
EXPECT_EQ(1U,
callbacks_.route_->route_entry_.virtual_cluster_.stats().upstream_rq_total_.value());
} | 0 | C++ | CWE-670 | Always-Incorrect Control Flow Implementation | The code contains a control flow path that does not reflect the algorithm that the path is intended to implement, leading to incorrect behavior any time this path is navigated. | https://cwe.mitre.org/data/definitions/670.html | vulnerable |
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
output->type = input->type;
return context->ResizeTensor(context, output,
TfLiteIntArrayCopy(input->dims));
} | 0 | C++ | CWE-125 | Out-of-bounds Read | The software reads data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/125.html | vulnerable |
inline void* aligned_malloc(size_t size, size_t alignment) {
return folly::detail::aligned_malloc(size, alignment);
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
void ComputeAsync(OpKernelContext* c, DoneCallback done) override {
auto col_params = new CollectiveParams();
auto done_with_cleanup = [col_params, done = std::move(done)]() {
done();
col_params->Unref();
};
core::RefCountPtr<CollectiveGroupResource> resource;
OP_REQUIRES_OK_ASYNC(c, LookupResource(c, HandleFromInput(c, 1), &resource),
done_with_cleanup);
Tensor group_assignment = c->input(2);
OP_REQUIRES_OK_ASYNC(
c,
FillCollectiveParams(col_params, group_assignment,
ALL_TO_ALL_COLLECTIVE, resource.get()),
done);
col_params->instance.shape = c->input(0).shape();
VLOG(1) << "CollectiveAllToAll group_size " << col_params->group.group_size
<< " group_key " << col_params->group.group_key << " instance_key "
<< col_params->instance.instance_key;
// Allocate the output tensor, trying to reuse the input.
Tensor* output = nullptr;
OP_REQUIRES_OK_ASYNC(c,
c->forward_input_or_allocate_output(
{0}, 0, col_params->instance.shape, &output),
done_with_cleanup);
Run(c, col_params, std::move(done_with_cleanup));
} | 1 | C++ | CWE-416 | Use After Free | Referencing memory after it has been freed can cause a program to crash, use unexpected values, or execute code. | https://cwe.mitre.org/data/definitions/416.html | safe |
void * alloc_top(size_t size) {
top -= size;
if (top < bottom) {new_chunk(); top -= size;}
return top;
} | 0 | C++ | CWE-787 | Out-of-bounds Write | The software writes data past the end, or before the beginning, of the intended buffer. | https://cwe.mitre.org/data/definitions/787.html | vulnerable |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.