import dask.dataframe as dd | |
from functools import partial | |
def read_parquet_file(parquet_file_path, npartitions=50, top=None): | |
print(f"Process parquet file from {parquet_file_path}") | |
file_name = parquet_file_path.split("/")[-1] | |
parquet_df = dd.read_parquet(parquet_file_path, engine="pyarrow") | |
parquet_df = parquet_df.repartition(npartitions=npartitions) # Smaller partitions | |
if top: | |
parquet_df = parquet_df.head(top, compute=False) # compute=False to keep it as DaskDataframe | |
return parquet_df, file_name | |
def process_parquet_df(parquet_df, file_name, process_row_func, process_partition): | |
# A new function of process_row_func to allow pre-defining parameters of process-row_func. | |
process_row_with_params = partial(process_row_func, parquet_file_name=file_name) | |
result_df = parquet_df.map_partitions(process_partition, process_row_with_params) | |
return result_df | |
def save_to_csv(df, final_path): | |
# Save the processed DataFrame to csv | |
df.to_csv(final_path, index=False, single_file=True) | |