text
stringlengths 0
1.96k
|
---|
Minor suggestions a- Some recent work on using the complex-valued neural networks (Virtue Patrick et al., arxiv), geometry of deep learning (Golbabaee et al., arxiv)and recurrent neural networks (Oksuz et al.,arxiv) for MRF dictionary matching can be mentioned in the literature review with their strengths and weakneses. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The key idea in the paper is to use functional prior that is completely uncertain about prediction of any class. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
It is quite well known that more training data, in general, results in improved performance of networks. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
There is no novelty about this ['arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Imaging 34.9 (2015): 1797-1807. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
While I understand the stance taken by the authors that these methods leverage the tractability of the conditional distributions, these strategies are sufficiently general to be considered widely applicable and a true competitor for AdVIL ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
In Figure 1, OTRainbow is compared against the reported results in (Kaiser et al, 2019), along with other baselines, when limiting the experience to 100k interactions. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
It would be interesting to have the author's point of you on the less than optimal results, and how they plan to improve it. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
While there are advantages to training the modules separately , there is a risk that they are reasoning over different portions of the goal space ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This is in contrast to semantic parsing and symbol grounding models, which exploit the compositionality of language to generalize to new instructions. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
1- This paper is well written and the message is clear to the reader ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This implementation showed improvement of performance on both tasks. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
In my opinion this paper is generally of good quality and clarity, modest originality and significance ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Very well written ['arg', 'arg', 'arg'] paper quality
|
It certainly does not seem justified to me to just assume this framework and disregard past successful approaches even as a comparison ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
While it covers important ground , I think the arguments need more refinement and focus before they can inspire productive discussion ['non', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
It would be helpful to put the results in context with all other methods such as automatic and semi-automatic methods ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
"What does ""similar scale mean" ['arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
obtained an F1-score of 0.68 -> 0.686? ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Since the HRF data set contains images from normal, glaucomatous and diabetic retinopathy patients, I would suggest to use that one. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
You do not report results for the embryologist trained LSTM , so what do you use this LSTM for? ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
MAAC does not consistently outperform baselines , and it is not clear how the stated explanations about the difference in performance apply to other problems ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
I note that I am aware of the theoretical representation differences between directed and undirected models, I am wondering how these differences actually matter in practical applications at scale ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This paper evaluates 5 different models for motion tracking in 4D OCT. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Mostly neuroscientific, but addresses the important topic of how models from machine learning can best be used in neuro research ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
If this does not lead to the same improvement, there should be a value in the expansion ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
You might be able to convince me more if you had a stronger baseline e.g. a bag-of-words Drawer model which works off of the average of the word embeddings in a scripted Teller input ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
However, recon accuracy highly depends on decoder network. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Clustering of aortic value prosthesis shapes has a high contribution to personalized medicine ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
The method is well explained and the validation is strong with convincing results versus state of the art methods. ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This demonstrates that even when the Bayes-optimal classifier is robust, we may need to explicitly regularize/incentivize neural networks to learn the correct decision boundary. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
And emphasize that this only solves credit assignment for certain types of learning problems (at the moment) ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
thesis 2015; Christensen et. al. Computer Science Review 2017). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Please elaborate on this. ['non', 'non', 'non', 'non', 'non'] paper quality
|
Experimental results demonstrate that the proposed method can achieve better performance than non-ensemble one under the same training steps, and the decision space can also be stabilized. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The results for vessel segmentation in IDRID images do not look as accurate as those in the DRIVE data set ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
The models are variants of that proposed in Gessert et al (2019), which is here extended in different ways to perform motion forecasting/prediction using a sequence of OCT volumes, rather than motion estimation between 2 OCT volumes. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
"We require a new class of theories that dispose of the simplistic stimulus-driven encode/ transmit/decode doctrine. """ ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
How does this relate to their synaptic time constants ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
"The work would have benefited from a discussion of the implications of longer intrinsic timescale neurons retaining task-relevant information for longer -- in particular, this finding feels a bit ""trivial"" without the case being made for why this should push understanding in the field" ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
In this scheme, a Teacher generates data according to a Gaussian random field, and a Student learns them via kernel regression. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
While much human learning may be more naturally cast as online learning, not all of it is. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The authors use an artificial network model to shed light on the biological mechanisms enabling and shaping working memory in the brain. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
This paper proposes A*MCTS, which combines A* and MCTS with policy and value networks to prioritize the next state to be explored. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The paper is well written and describes an interesting and relatively novel approach to solving multi-class classification in a clinical domain where overlap between classes is frequently a possibility ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
And how do you use that later ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
"The authors show because the ""gradient"" in the feedback pathway is a rough approximation, it is hard to use this gradient to train an adversarial attack." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
How do we know that the network is learning 1/F (inverse of speckle noise) ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Also, I would be convinced that the variance would increase for out of distribution test samples because you used a prior that enforced uncertainty of all labels ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
The model description is nice and clear ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
In particular, with such low-variance directions, at standard dataset sizes the distributions generated here are most likely statistically indistinguishable from their robust/non-robust counterparts (you can see hints of this in the fact that the CNN gets . ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
c- Quantitative results can be mentioned in the abstract . ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non'] paper quality
|
3- The description of the network architecture is not clear for the reader ['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Or apply distributed knowledge distillation like in (Anil 2018 Large scale distributed neural network training through online distillation) 3. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The utilized network architecture can be better explained with an emphasis on specific design choices ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This authors evaluted their approach on two tasks: Text Classification and Sequence Labeling. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
It also would have been nice to comment on the relationship of this work to unsupervised (e.g. Hebbian-based) learning rules. ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Unfortunately the authors didn't report indications in this sense in their paper ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
The question of how networks maintain memory over long timescales is a longstanding and important one, and to my knowledge this question hasn't been thoroughly explored in spiking, trained recurrent neural networks (RNN). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The compositional action classification task is harder and shows that incorporating LSTMs for temporal reasoning leads to non-trivial performance improvements over frame averaging. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
However, the conclusions do not directly follow from the results, so should be made more precise ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
It would be important to see if the proposed method is also beneficial with the state of the art neural networks on the two applications ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This work is an extension to the work of Sukbaatar et al. (2016) with two main differences: 1) Selective communication: agents are able to decide whether they want to communicate. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
In addition, images representing eliminated nuclei using noisy RCM images should be presented with their counterpart using despeckling network ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Is it just smoothing ? ['arg', 'arg', 'arg', 'arg', 'non'] paper quality
|
The clear contribution of the article is, in my opinion, the ability to exploit complementary information from different data sets. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
c) According to the problem formulation and the experiments, it seems that the authors are studying a restricted subclass of 2D/3D bin packing problems: there is only one bin, so (it seems that) the authors are dealing with geometric knapsack problems (with rotations). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
There are exiting directions in both AI and neuroscience this work could be take ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The choice de-speckle network architecture is somewhat not sound, with the multiplicative residual connection near the outputs of the network and the median filtering operation ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Our challenge is to understand how this occurs. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
"Smooth shape interpolation by traversal of the latent space was also demonstrated, and some of their latents also corresponded to reasonable variations in anatomical shape, without being ""restricted"" to statistical modes of variation as discussed here." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
There was an absence of nuance ['arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Moreover, BPPs have been extensively studied in theoretical computer science, with various approximation results. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
I would expect at least the following baselines : i) use normal large batch training and complicated data augmentation, train the model for same number of epochs ii) use normal large batch training and complicated data augmentation, train the model for same number of iterations ii) use normal large batch training and complicated data augmentation, scale the learning rate up as in Goyal et al. 2017 4. ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
A similar experiment can be made using other data sets with red/bright lesions (e.g. e-ophtha, pseudo-url) or optic disc annotations (e.g. REFUGE database, pseudo-url). ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
The first of two modules is responsible for learning a goal embedding of a given instruction using a learned distance function. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
"The primitive action classification task is ""solved"" by nearly all methods and only serves for debugging purposes." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Instead of using a hold-out set they propose to randomly flip the labels of certain amounts of training data and inspect the corresponding 'accuracy vs. randomization curves. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Cons: However, there are several issues that should be addressed including the presentation of the paper : The algorithm seeks to combine A* search with MCTS (combined with policy and value networks), and is shown to outperform the baseline MCTS method. ['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
"How is training till ""convergence"" (section 4.3) defined?" ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
This paper discusses State Representation Learning for RL from camera images. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
So while an interesting connection they did not make clear where they substantively pursue it ['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
This concern does not make the contribution of the symmetric dataset less valuable , but a discussion of such caveats would help further elucidate the similarities and differences of this setup from real datasets ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
For example, is there something different about the feature maps that support this ['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
I wonder how good the results are if these more advanced versions are used. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
3) more details about the convGRU may be useful, for example its architecture. ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Overall, the idea is presented clearly and the writing is well structured ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Adversarially robust generalization requires more data (pseudo-url): Schmidt et al show a setup where many more samples are required for adversarial robustness than for standard classification error. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Why are the robotics priors not in Table 1? ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
However, I am aware of at least one work where such concepts have been proposed and explored already ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Summary Authors present a decentralized policy, centralized value function approach (MAAC) to multi-agent learning. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
However, I have following concerns: 1. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Although the concept of normalizing flow is simple, and it has been applied to other models such as VAE , there seems no work on applying it for policy optimization ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Pro - MAAC is a simple combination of attention and a centralized value function approach ['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
The analysis of the results is quite insightful ['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg'] paper quality
|
Those maps are used for training with a partial cross-entropy. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
"It would be interesting to know that aspect, as it is crucial to allow the network to learn to ""transfer"" its own ability for detecting a new region from one data set to another." ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
How would a generic linear classifier on the image histograms perform here, or perceptual hashing with a linear classifier on top? ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Page 4, Assumption. ['non', 'non', 'non', 'non', 'non'] paper quality
|
For theorem 1, it is hard to say how much the theoretical analysis based on linear approximation near global minimizer would help understand the behavior of SGD. ['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non'] paper quality
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.