text
stringlengths 0
1.96k
|
---|
"The paper is written clearly" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"In contrast, ACNN auto-encoders train their encoder and decoder in conjunction." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"How do authors suggest to apply their approach to anatomies where it is impossible (in terms of feasibility and manual effort) to place a sufficiently large number of unique landmarks on the anatomy (e.g. smooth shapes, such as left ventricle in ACNN)?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Method only evaluated on one dataset (BRATS)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non']" "paper quality"
|
"Often new methods are manually ""overfitted"" to one dataset." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"When used on another dataset they do not show gains anymore." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"How is training till ""convergence"" (section 4.3) defined?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Not 100% clear if the IMM method used in the experiments is the method described in section 3.2 (alpha=1/T) ?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The method is compared to five embryologists and results clearly shows that learning directly from the clinical outcome outperfoms embryologists by a large margin" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The main weakness of the paper is in the methods section" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The methods section lacks details for reproducing the work" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"As I read it, UBar is the same LSTM just trained on clinical outcomes." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"If you dont use it, remove it from the section" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"In your case, you train on data that has already been filtered to only include positive decisions by embryologists, otherwise the eggs would not have been implanted." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"It is not obvious how to best get around this issue, since the first embryologist screening probably has false negatives, but you need to take it into account" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Your statement about AUCs and training sizes is either obviously correct or obviously wrong, depending on interpretation." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The only way training size can influence AUC is by influencing the training of the model." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"This holds for all the popular performance measures" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Maybe you meant the size of the test set?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"A mior nitpick: You define all abbreviations except for UBar" "['non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"I am aware of the page limitation, so maybe MIDL should allow an extra page solely for an image of the raw data." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The experiments are clearly explained and the results are well presented." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Multi-task learning can extract a shared representation that is generalisable and this is evidenced in the results in the TUPAC16 set." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The work also raises some interesting points regarding multi-task training for pathology and with further work could be a good paper" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"This paper proposes to add a self-expressiveness regularization term to learn a union of subspaces for image-to-image translation in medical domain." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"This will provide more insights or explanations." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"If a sonographer is able to acquire these images, they are also able to perform these measurements" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The boxplot shows that six outliers are resolved by the AF-Net, so it can be debated if that is clinically relevant to reduce (6/435=)1.4% of the errors" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"It is an interesting idea and the quality is overall rather good for an abstract paper" "['arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Some points to address are listed in the following: The early stopping is not clear" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Can you comment?" "['non', 'non', 'non', 'non']" "paper quality"
|
"The idea of learning convolution weights for different input image quality is novel" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"In Table 3., the result of the proposed method is slightly higher than the CSM." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Therefore I recommend the weak accept." "['non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Overall, the problem the paper tackles is critical, and the proposed network component is effective to some extent" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Other specific suggestions: Section 2: region of interest (ROI) performing motions does not make sense to me" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Section 3: combing should be combining" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"However, I have following concerns: 1." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Also, I would be convinced that the variance would increase for out of distribution test samples because you used a prior that enforced uncertainty of all labels" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The main contribution of the work was adding a normalization step to the network, and learning the affine transformation parameters during the training." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The results of the model was compared also to the state of the art.From the following sentence, I understand that for each pathology, a different model was trained." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"If this is true, the model is not efficient" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Do we really need a labelled ground truth here" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"There will be domain shift problems for the simple methods but same is true for the presented method." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The motivation needs to be a bit clearer" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The efficiency of backprop should be mentioned in the intro if it is something this work is aiming to address" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Define the model more explicitly" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"For example, is there something different about the feature maps that support this" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Also perhaps report results from one of the 2 (mentioned) more complex benchmarks" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Only real point for improvement is more earnest bench marking/model comparison" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.