text
stringlengths 0
1.96k
|
---|
"Why is for example the output temporally smoothed instead of using spatio-temporal consistency in higher dimensional networks?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Why hasn't the semi-supervised paradigm be explored in more detail instead of only using a few biasing iterations with user input?" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"A radical ablation study is clearly missing here" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The task itself would imply that a deep network classifier is potentially an overkill." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Can't simple heuristics perform at least as well" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Assessing in-focus will even get rid of blurred frames and frames as discussed in the Appendix." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Writing, experimental setup and methodological proposals need to be improved and condensed" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"I have been working in this field for many years and published papers about these topics." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I am advising regulatory decision makers and do active research in clinical environments." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I am advocating open data access and reproducible research." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"This is nice work that addresses the credit assignment problem with a meta-learning approach" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Is the work trying to address the credit assignment problem in general, or just when applied to online learning tasks" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Either way this is important work, with many interesting future directions" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The model and implementation make sense as far as I can tell from this brief submission." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The theoretical results stated are nice to have" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Section 1 pitches the method as solving the credit assignment problem, citing problems with weight symmetry etc, that apply to many forms of learning." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"But the related work in Section 2 then goes on to talk about the efficiency of backprop for solving online learning and few-shot learning tasks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"While much human learning may be more naturally cast as online learning, not all of it is." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"There may be much interest in how we learn from so few samples in certain settings, but we also learn some relationships/tasks in a classical associationist manner which is well modeled by 'slow' gradient-descent like learning (e.g. Rescorla Wagner)." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The credit assignment problem exists in these cases also" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"So I think the present work needs to be repitched slightly as solving credit assignment in an online/few shot learning setting" "['non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Or discuss how it can be extended to more general learning problems" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The submission is pretty clear" "['arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"In understanding the model, it would be useful to more explicitly define the model" "['non', 'non', 'non', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"For instance, how is the b at line 63 related to the activation x_i and ReLU at lines 75 and 76?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Seeing if these meta-learnt rules line up with previously characterized biological learning rules is particularly interesting" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"And emphasize that this only solves credit assignment for certain types of learning problems (at the moment)" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"I believe the concept of using predictive coding and unlabeled video data to train convnets is a great idea" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The work is lacking a discussion of the most recent work in the similarity of visual processing in convnets to brain data, which incorporate recurrence into convnets (Nayebi et al. 2018, Kubilius et al. 2018 and 2019), thereby potentially allowing for similar behavior as a PredNet." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"How would you expect those networks to perform when trained on unlabeled video data?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Does PredNet outperform other user-submitted models?" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"For this result to be convincing, I would like to see some reasons why the authors think PredNet is outperforming previous models." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"What precisely about predictive coding makes the similarity to brain data expected" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Results were presented quite clearly , although datasets and methods rely entirely on previously published work, such that digging into previous work on PredNet and the Algonauts project was necessary for a full understanding" "['arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The question of how the visual world is represented in the brain is an essential question in neuroscience as well as for building successful machine learning techniques for artificial vision." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"It does not seem like predictive coding is the main thing going on in V1 (Stringer et al., Science 2019), so Id be curious how the authors think that should be taken into account in the future." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"Typo line 24 Moreover, we show that as (we) train the model Typo line 87 Second, the model does not rely on labeled data and learn(s)" "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The proposed model is essentially a constrained/specific parameterisation within the broader class of 'context dependent' models." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The heavy lifting is seemingly done by well known architectures: default RNN & a feed-forward NN." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"While it does not seemingly add anything conceptual , the exact implementation is arguably new" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The model description is nice and clear" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"I think a more persuasive bench marking could be done" "['non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Perhaps compare to reference models [11] or [10] rather than a 'vanilla' RNN , as this amounts to not using any prior information about the task (which, by construction, we 'know' is useful)" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Paper is clear and quite readable" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The paper takes a crudely 'neuroscience inspired' concept (though, admittedly it could simply be 'task structure' inspired) and builds a simple model from it, which it benchmarks on a appropriately designed simplest-working-example." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"So it fits well with the workshop theme" "['non', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"Authors could also add some context by considering related works in the computational neuroscience literature , e.g. Stroud et al. Nature Neurosciencevolume 21, pages 17741783 (2018) and pseudo-url (though the latter is very recent)." "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"The work of Hill et al. (2019) very clearly addresses these questions by devising tasks that require generalization across domains, showing how training regime is sufficient to overcome the difficulties of these tasks, even in shallow networks." "['non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non', 'non']" "paper quality"
|
"I dont see how the current work adds more clarity to this research direction" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
"The main point relies purely on a visual representation of the top PCs of the penultimate layer of a CNN, which I believe is insufficient" "['arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg', 'arg']" "paper quality"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.