index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
32,066 | pingouin.parametric | welch_anova | One-way Welch ANOVA.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame. Note that this function can also directly be used as a
Pandas method, in which case this argument is no longer needed.
dv : string
Name of column containing the dependent variable.
between : string
Name of column containing the between factor.
Returns
-------
aov : :py:class:`pandas.DataFrame`
ANOVA summary:
* ``'Source'``: Factor names
* ``'ddof1'``: Numerator degrees of freedom
* ``'ddof2'``: Denominator degrees of freedom
* ``'F'``: F-values
* ``'p-unc'``: uncorrected p-values
* ``'np2'``: Partial eta-squared
See Also
--------
anova : One-way and N-way ANOVA
rm_anova : One-way and two-way repeated measures ANOVA
mixed_anova : Two way mixed ANOVA
kruskal : Non-parametric one-way ANOVA
Notes
-----
From Wikipedia:
*It is named for its creator, Bernard Lewis Welch, and is an adaptation of
Student's t-test, and is more reliable when the two samples have
unequal variances and/or unequal sample sizes.*
The classic ANOVA is very powerful when the groups are normally distributed
and have equal variances. However, when the groups have unequal variances,
it is best to use the Welch ANOVA that better controls for
type I error (Liu 2015). The homogeneity of variances can be measured with
the `homoscedasticity` function. The two other assumptions of
normality and independance remain.
The main idea of Welch ANOVA is to use a weight :math:`w_i` to reduce
the effect of unequal variances. This weight is calculated using the sample
size :math:`n_i` and variance :math:`s_i^2` of each group
:math:`i=1,...,r`:
.. math:: w_i = \frac{n_i}{s_i^2}
Using these weights, the adjusted grand mean of the data is:
.. math::
\overline{Y}_{\text{welch}} = \frac{\sum_{i=1}^r
w_i\overline{Y}_i}{\sum w}
where :math:`\overline{Y}_i` is the mean of the :math:`i` group.
The effect sums of squares is defined as:
.. math::
SS_{\text{effect}} = \sum_{i=1}^r w_i
(\overline{Y}_i - \overline{Y}_{\text{welch}})^2
We then need to calculate a term lambda:
.. math::
\Lambda = \frac{3\sum_{i=1}^r(\frac{1}{n_i-1})
(1 - \frac{w_i}{\sum w})^2}{r^2 - 1}
from which the F-value can be calculated:
.. math::
F_{\text{welch}} = \frac{SS_{\text{effect}} / (r-1)}
{1 + \frac{2\Lambda(r-2)}{3}}
and the p-value approximated using a F-distribution with
:math:`(r-1, 1 / \Lambda)` degrees of freedom.
When the groups are balanced and have equal variances, the optimal post-hoc
test is the Tukey-HSD test (:py:func:`pingouin.pairwise_tukey`).
If the groups have unequal variances, the Games-Howell test is more
adequate (:py:func:`pingouin.pairwise_gameshowell`).
Results have been tested against R.
References
----------
.. [1] Liu, Hangcheng. "Comparing Welch's ANOVA, a Kruskal-Wallis test and
traditional ANOVA in case of Heterogeneity of Variance." (2015).
.. [2] Welch, Bernard Lewis. "On the comparison of several mean values:
an alternative approach." Biometrika 38.3/4 (1951): 330-336.
Examples
--------
1. One-way Welch ANOVA on the pain threshold dataset.
>>> from pingouin import welch_anova, read_dataset
>>> df = read_dataset('anova')
>>> aov = welch_anova(dv='Pain threshold', between='Hair color', data=df)
>>> aov
Source ddof1 ddof2 F p-unc np2
0 Hair color 3 8.329841 5.890115 0.018813 0.575962
| @pf.register_dataframe_method
def welch_anova(data=None, dv=None, between=None):
"""One-way Welch ANOVA.
Parameters
----------
data : :py:class:`pandas.DataFrame`
DataFrame. Note that this function can also directly be used as a
Pandas method, in which case this argument is no longer needed.
dv : string
Name of column containing the dependent variable.
between : string
Name of column containing the between factor.
Returns
-------
aov : :py:class:`pandas.DataFrame`
ANOVA summary:
* ``'Source'``: Factor names
* ``'ddof1'``: Numerator degrees of freedom
* ``'ddof2'``: Denominator degrees of freedom
* ``'F'``: F-values
* ``'p-unc'``: uncorrected p-values
* ``'np2'``: Partial eta-squared
See Also
--------
anova : One-way and N-way ANOVA
rm_anova : One-way and two-way repeated measures ANOVA
mixed_anova : Two way mixed ANOVA
kruskal : Non-parametric one-way ANOVA
Notes
-----
From Wikipedia:
*It is named for its creator, Bernard Lewis Welch, and is an adaptation of
Student's t-test, and is more reliable when the two samples have
unequal variances and/or unequal sample sizes.*
The classic ANOVA is very powerful when the groups are normally distributed
and have equal variances. However, when the groups have unequal variances,
it is best to use the Welch ANOVA that better controls for
type I error (Liu 2015). The homogeneity of variances can be measured with
the `homoscedasticity` function. The two other assumptions of
normality and independance remain.
The main idea of Welch ANOVA is to use a weight :math:`w_i` to reduce
the effect of unequal variances. This weight is calculated using the sample
size :math:`n_i` and variance :math:`s_i^2` of each group
:math:`i=1,...,r`:
.. math:: w_i = \\frac{n_i}{s_i^2}
Using these weights, the adjusted grand mean of the data is:
.. math::
\\overline{Y}_{\\text{welch}} = \\frac{\\sum_{i=1}^r
w_i\\overline{Y}_i}{\\sum w}
where :math:`\\overline{Y}_i` is the mean of the :math:`i` group.
The effect sums of squares is defined as:
.. math::
SS_{\\text{effect}} = \\sum_{i=1}^r w_i
(\\overline{Y}_i - \\overline{Y}_{\\text{welch}})^2
We then need to calculate a term lambda:
.. math::
\\Lambda = \\frac{3\\sum_{i=1}^r(\\frac{1}{n_i-1})
(1 - \\frac{w_i}{\\sum w})^2}{r^2 - 1}
from which the F-value can be calculated:
.. math::
F_{\\text{welch}} = \\frac{SS_{\\text{effect}} / (r-1)}
{1 + \\frac{2\\Lambda(r-2)}{3}}
and the p-value approximated using a F-distribution with
:math:`(r-1, 1 / \\Lambda)` degrees of freedom.
When the groups are balanced and have equal variances, the optimal post-hoc
test is the Tukey-HSD test (:py:func:`pingouin.pairwise_tukey`).
If the groups have unequal variances, the Games-Howell test is more
adequate (:py:func:`pingouin.pairwise_gameshowell`).
Results have been tested against R.
References
----------
.. [1] Liu, Hangcheng. "Comparing Welch's ANOVA, a Kruskal-Wallis test and
traditional ANOVA in case of Heterogeneity of Variance." (2015).
.. [2] Welch, Bernard Lewis. "On the comparison of several mean values:
an alternative approach." Biometrika 38.3/4 (1951): 330-336.
Examples
--------
1. One-way Welch ANOVA on the pain threshold dataset.
>>> from pingouin import welch_anova, read_dataset
>>> df = read_dataset('anova')
>>> aov = welch_anova(dv='Pain threshold', between='Hair color', data=df)
>>> aov
Source ddof1 ddof2 F p-unc np2
0 Hair color 3 8.329841 5.890115 0.018813 0.575962
"""
# Check data
data = _check_dataframe(dv=dv, between=between, data=data, effects="between")
# Reset index (avoid duplicate axis error)
data = data.reset_index(drop=True)
# Number of groups
r = data[between].nunique()
ddof1 = r - 1
# Compute weights and ajusted means
grp = data.groupby(between, observed=True, group_keys=False)[dv]
weights = grp.count() / grp.var(numeric_only=True)
adj_grandmean = (weights * grp.mean(numeric_only=True)).sum() / weights.sum()
# Sums of squares (regular and adjusted)
ss_res = grp.apply(lambda x: (x - x.mean()) ** 2).sum()
ss_bet = (
(grp.mean(numeric_only=True) - data[dv].mean(numeric_only=True)) ** 2 * grp.count()
).sum()
ss_betadj = np.sum(weights * np.square(grp.mean(numeric_only=True) - adj_grandmean))
ms_betadj = ss_betadj / ddof1
# Calculate lambda, F-value, p-value and np2
lamb = (3 * np.sum((1 / (grp.count() - 1)) * (1 - (weights / weights.sum())) ** 2)) / (
r**2 - 1
)
ddof2 = 1 / lamb
fval = ms_betadj / (1 + (2 * lamb * (r - 2)) / 3)
pval = f.sf(fval, ddof1, ddof2)
np2 = ss_bet / (ss_bet + ss_res)
# Create output dataframe
aov = pd.DataFrame(
{
"Source": between,
"ddof1": ddof1,
"ddof2": ddof2,
"F": fval,
"p-unc": pval,
"np2": np2,
},
index=[0],
)
return _postprocess_dataframe(aov)
| (data=None, dv=None, between=None) |
32,067 | pingouin.nonparametric | wilcoxon |
Wilcoxon signed-rank test. It is the non-parametric version of the paired T-test.
Parameters
----------
x : array_like
Either the first set of measurements
(in which case y is the second set of measurements),
or the differences between two sets of measurements
(in which case y is not to be specified.) Must be one-dimensional.
y : array_like
Either the second set of measurements (if x is the first set of
measurements), or not specified (if x is the differences between
two sets of measurements.) Must be one-dimensional.
alternative : string
Defines the alternative hypothesis, or tail of the test. Must be one of
"two-sided" (default), "greater" or "less". See :py:func:`scipy.stats.wilcoxon` for
more details.
**kwargs : dict
Additional keywords arguments that are passed to :py:func:`scipy.stats.wilcoxon`.
Returns
-------
stats : :py:class:`pandas.DataFrame`
* ``'W-val'``: W-value
* ``'alternative'``: tail of the test
* ``'p-val'``: p-value
* ``'RBC'`` : matched pairs rank-biserial correlation (effect size)
* ``'CLES'`` : common language effect size
See also
--------
scipy.stats.wilcoxon, mwu
Notes
-----
The Wilcoxon signed-rank test [1]_ tests the null hypothesis that two
related paired samples come from the same distribution. In particular,
it tests whether the distribution of the differences x - y is symmetric
about zero.
.. important:: Pingouin automatically applies a continuity correction.
Therefore, the p-values will be slightly different than
:py:func:`scipy.stats.wilcoxon` unless ``correction=True`` is
explicitly passed to the latter.
In addition to the test statistic and p-values, Pingouin also computes two
measures of effect size. The matched pairs rank biserial correlation [2]_
is the simple difference between the proportion of favorable and
unfavorable evidence; in the case of the Wilcoxon signed-rank test,
the evidence consists of rank sums (Kerby 2014):
.. math:: r = f - u
The common language effect size is the proportion of pairs where ``x`` is
higher than ``y``. It was first introduced by McGraw and Wong (1992) [3]_.
Pingouin uses a brute-force version of the formula given by Vargha and
Delaney 2000 [4]_:
.. math:: \text{CL} = P(X > Y) + .5 \times P(X = Y)
The advantage is of this method are twofold. First, the brute-force
approach pairs each observation of ``x`` to its ``y`` counterpart, and
therefore does not require normally distributed data. Second, the formula
takes ties into account and therefore works with ordinal data.
When tail is ``'less'``, the CLES is then set to :math:`1 - \text{CL}`,
which gives the proportion of pairs where ``x`` is *lower* than ``y``.
References
----------
.. [1] Wilcoxon, F. (1945). Individual comparisons by ranking methods.
Biometrics bulletin, 1(6), 80-83.
.. [2] Kerby, D. S. (2014). The simple difference formula: An approach to
teaching nonparametric correlation. Comprehensive Psychology,
3, 11-IT.
.. [3] McGraw, K. O., & Wong, S. P. (1992). A common language effect size
statistic. Psychological bulletin, 111(2), 361.
.. [4] Vargha, A., & Delaney, H. D. (2000). A Critique and Improvement of
the “CL” Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics: A Quarterly
Publication Sponsored by the American Educational Research
Association and the American Statistical Association, 25(2),
101–132. https://doi.org/10.2307/1165329
Examples
--------
Wilcoxon test on two related samples.
>>> import numpy as np
>>> import pingouin as pg
>>> x = np.array([20, 22, 19, 20, 22, 18, 24, 20, 19, 24, 26, 13])
>>> y = np.array([38, 37, 33, 29, 14, 12, 20, 22, 17, 25, 26, 16])
>>> pg.wilcoxon(x, y, alternative='two-sided')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.285765 -0.378788 0.395833
Same but using pre-computed differences. However, the CLES effect size
cannot be computed as it requires the raw data.
>>> pg.wilcoxon(x - y)
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.285765 -0.378788 NaN
Compare with SciPy
>>> import scipy
>>> scipy.stats.wilcoxon(x, y)
WilcoxonResult(statistic=20.5, pvalue=0.2661660677806492)
The p-value is not exactly similar to Pingouin. This is because Pingouin automatically applies
a continuity correction. Disabling it gives the same p-value as scipy:
>>> pg.wilcoxon(x, y, alternative='two-sided', correction=False)
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.266166 -0.378788 0.395833
One-sided test
>>> pg.wilcoxon(x, y, alternative='greater')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 greater 0.876244 -0.378788 0.395833
>>> pg.wilcoxon(x, y, alternative='less')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 less 0.142883 -0.378788 0.604167
| def wilcoxon(x, y=None, alternative="two-sided", **kwargs):
"""
Wilcoxon signed-rank test. It is the non-parametric version of the paired T-test.
Parameters
----------
x : array_like
Either the first set of measurements
(in which case y is the second set of measurements),
or the differences between two sets of measurements
(in which case y is not to be specified.) Must be one-dimensional.
y : array_like
Either the second set of measurements (if x is the first set of
measurements), or not specified (if x is the differences between
two sets of measurements.) Must be one-dimensional.
alternative : string
Defines the alternative hypothesis, or tail of the test. Must be one of
"two-sided" (default), "greater" or "less". See :py:func:`scipy.stats.wilcoxon` for
more details.
**kwargs : dict
Additional keywords arguments that are passed to :py:func:`scipy.stats.wilcoxon`.
Returns
-------
stats : :py:class:`pandas.DataFrame`
* ``'W-val'``: W-value
* ``'alternative'``: tail of the test
* ``'p-val'``: p-value
* ``'RBC'`` : matched pairs rank-biserial correlation (effect size)
* ``'CLES'`` : common language effect size
See also
--------
scipy.stats.wilcoxon, mwu
Notes
-----
The Wilcoxon signed-rank test [1]_ tests the null hypothesis that two
related paired samples come from the same distribution. In particular,
it tests whether the distribution of the differences x - y is symmetric
about zero.
.. important:: Pingouin automatically applies a continuity correction.
Therefore, the p-values will be slightly different than
:py:func:`scipy.stats.wilcoxon` unless ``correction=True`` is
explicitly passed to the latter.
In addition to the test statistic and p-values, Pingouin also computes two
measures of effect size. The matched pairs rank biserial correlation [2]_
is the simple difference between the proportion of favorable and
unfavorable evidence; in the case of the Wilcoxon signed-rank test,
the evidence consists of rank sums (Kerby 2014):
.. math:: r = f - u
The common language effect size is the proportion of pairs where ``x`` is
higher than ``y``. It was first introduced by McGraw and Wong (1992) [3]_.
Pingouin uses a brute-force version of the formula given by Vargha and
Delaney 2000 [4]_:
.. math:: \\text{CL} = P(X > Y) + .5 \\times P(X = Y)
The advantage is of this method are twofold. First, the brute-force
approach pairs each observation of ``x`` to its ``y`` counterpart, and
therefore does not require normally distributed data. Second, the formula
takes ties into account and therefore works with ordinal data.
When tail is ``'less'``, the CLES is then set to :math:`1 - \\text{CL}`,
which gives the proportion of pairs where ``x`` is *lower* than ``y``.
References
----------
.. [1] Wilcoxon, F. (1945). Individual comparisons by ranking methods.
Biometrics bulletin, 1(6), 80-83.
.. [2] Kerby, D. S. (2014). The simple difference formula: An approach to
teaching nonparametric correlation. Comprehensive Psychology,
3, 11-IT.
.. [3] McGraw, K. O., & Wong, S. P. (1992). A common language effect size
statistic. Psychological bulletin, 111(2), 361.
.. [4] Vargha, A., & Delaney, H. D. (2000). A Critique and Improvement of
the “CL” Common Language Effect Size Statistics of McGraw and Wong.
Journal of Educational and Behavioral Statistics: A Quarterly
Publication Sponsored by the American Educational Research
Association and the American Statistical Association, 25(2),
101–132. https://doi.org/10.2307/1165329
Examples
--------
Wilcoxon test on two related samples.
>>> import numpy as np
>>> import pingouin as pg
>>> x = np.array([20, 22, 19, 20, 22, 18, 24, 20, 19, 24, 26, 13])
>>> y = np.array([38, 37, 33, 29, 14, 12, 20, 22, 17, 25, 26, 16])
>>> pg.wilcoxon(x, y, alternative='two-sided')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.285765 -0.378788 0.395833
Same but using pre-computed differences. However, the CLES effect size
cannot be computed as it requires the raw data.
>>> pg.wilcoxon(x - y)
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.285765 -0.378788 NaN
Compare with SciPy
>>> import scipy
>>> scipy.stats.wilcoxon(x, y)
WilcoxonResult(statistic=20.5, pvalue=0.2661660677806492)
The p-value is not exactly similar to Pingouin. This is because Pingouin automatically applies
a continuity correction. Disabling it gives the same p-value as scipy:
>>> pg.wilcoxon(x, y, alternative='two-sided', correction=False)
W-val alternative p-val RBC CLES
Wilcoxon 20.5 two-sided 0.266166 -0.378788 0.395833
One-sided test
>>> pg.wilcoxon(x, y, alternative='greater')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 greater 0.876244 -0.378788 0.395833
>>> pg.wilcoxon(x, y, alternative='less')
W-val alternative p-val RBC CLES
Wilcoxon 20.5 less 0.142883 -0.378788 0.604167
"""
x = np.asarray(x)
if y is not None:
y = np.asarray(y)
x, y = remove_na(x, y, paired=True) # Remove NA
else:
x = x[~np.isnan(x)]
# Check tails
assert alternative in [
"two-sided",
"greater",
"less",
], "Alternative must be one of 'two-sided' (default), 'greater' or 'less'."
if "tail" in kwargs:
raise ValueError(
"Since Pingouin 0.4.0, the 'tail' argument has been renamed to 'alternative'."
)
# Compute test
if "correction" not in kwargs:
kwargs["correction"] = True
wval, pval = scipy.stats.wilcoxon(x=x, y=y, alternative=alternative, **kwargs)
# Effect size 1: Common Language Effect Size
# Since Pingouin v0.3.5, CLES is tail-specific and calculated
# according to the formula given in Vargha and Delaney 2000 which
# works with ordinal data.
if y is not None:
diff = x[:, None] - y
# cles = max((diff < 0).sum(), (diff > 0).sum()) / diff.size
# alternative = 'greater', with ties set to 0.5
# Note that alternative = 'two-sided' gives same output as alternative = 'greater'
cles = np.where(diff == 0, 0.5, diff > 0).mean()
cles = 1 - cles if alternative == "less" else cles
else:
# CLES cannot be computed if y is None
cles = np.nan
# Effect size 2: matched-pairs rank biserial correlation (Kerby 2014)
if y is not None:
d = x - y
d = d[d != 0]
else:
d = x[x != 0]
r = scipy.stats.rankdata(abs(d))
rsum = r.sum()
r_plus = np.sum((d > 0) * r)
r_minus = np.sum((d < 0) * r)
rbc = r_plus / rsum - r_minus / rsum
# Fill output DataFrame
stats = pd.DataFrame(
{"W-val": wval, "alternative": alternative, "p-val": pval, "RBC": rbc, "CLES": cles},
index=["Wilcoxon"],
)
return _postprocess_dataframe(stats)
| (x, y=None, alternative='two-sided', **kwargs) |
32,068 | bqplot.scales | Albers | A geographical scale which is an alias for a conic equal area projection.
The Albers projection is a conic equal area map. It does not preserve scale
or shape, though it is recommended for chloropleths since it preserves the
relative areas of geographic features. Default values are US-centric.
Attributes
----------
scale_factor: float (default: 250)
Specifies the scale value for the projection
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
parallels: tuple (default: (29.5, 45.5))
Sets the two parallels for the conic projection.
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
| class Albers(GeoScale):
"""A geographical scale which is an alias for a conic equal area projection.
The Albers projection is a conic equal area map. It does not preserve scale
or shape, though it is recommended for chloropleths since it preserves the
relative areas of geographic features. Default values are US-centric.
Attributes
----------
scale_factor: float (default: 250)
Specifies the scale value for the projection
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
parallels: tuple (default: (29.5, 45.5))
Sets the two parallels for the conic projection.
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
"""
scale_factor = Float(250).tag(sync=True)
rotate = Tuple((96, 0)).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
parallels = Tuple((29.5, 45.5)).tag(sync=True)
precision = Float(0.1).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('Albers').tag(sync=True)
_model_name = Unicode('AlbersModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,125 | bqplot.scales | AlbersUSA | A composite projection of four Albers projections meant specifically for
the United States.
Attributes
----------
scale_factor: float (default: 1200)
Specifies the scale value for the projection
translate: tuple (default: (600, 490))
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
| class AlbersUSA(GeoScale):
"""A composite projection of four Albers projections meant specifically for
the United States.
Attributes
----------
scale_factor: float (default: 1200)
Specifies the scale value for the projection
translate: tuple (default: (600, 490))
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
"""
scale_factor = Float(1200).tag(sync=True)
translate = Tuple((600, 490)).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('AlbersUSA').tag(sync=True)
_model_name = Unicode('AlbersUSAModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,182 | traittypes.traittypes | Array | A numpy array trait type. | class Array(SciType):
"""A numpy array trait type."""
info_text = 'a numpy array'
dtype = None
def validate(self, obj, value):
if value is None and not self.allow_none:
self.error(obj, value)
if value is None or value is Undefined:
return super(Array, self).validate(obj, value)
try:
r = np.asarray(value, dtype=self.dtype)
if isinstance(value, np.ndarray) and r is not value:
warnings.warn(
'Given trait value dtype "%s" does not match required type "%s". '
'A coerced copy has been created.' % (
np.dtype(value.dtype).name,
np.dtype(self.dtype).name))
value = r
except (ValueError, TypeError) as e:
raise TraitError(e)
return super(Array, self).validate(obj, value)
def set(self, obj, value):
new_value = self._validate(obj, value)
old_value = obj._trait_values.get(self.name, self.default_value)
obj._trait_values[self.name] = new_value
if not np.array_equal(old_value, new_value):
obj._notify_trait(self.name, old_value, new_value)
def __init__(self, default_value=Empty, allow_none=False, dtype=None, **kwargs):
self.dtype = dtype
if default_value is Empty:
default_value = np.array(0, dtype=self.dtype)
elif default_value is not None and default_value is not Undefined:
default_value = np.asarray(default_value, dtype=self.dtype)
super(Array, self).__init__(default_value=default_value, allow_none=allow_none, **kwargs)
def make_dynamic_default(self):
if self.default_value is None or self.default_value is Undefined:
return self.default_value
else:
return np.copy(self.default_value)
| (default_value: Any = traittypes.Empty, allow_none: bool = False, dtype=None, **kwargs) |
32,184 | traittypes.traittypes | __init__ | null | def __init__(self, default_value=Empty, allow_none=False, dtype=None, **kwargs):
self.dtype = dtype
if default_value is Empty:
default_value = np.array(0, dtype=self.dtype)
elif default_value is not None and default_value is not Undefined:
default_value = np.asarray(default_value, dtype=self.dtype)
super(Array, self).__init__(default_value=default_value, allow_none=allow_none, **kwargs)
| (self, default_value=traittypes.Empty, allow_none=False, dtype=None, **kwargs) |
32,200 | traittypes.traittypes | make_dynamic_default | null | def make_dynamic_default(self):
if self.default_value is None or self.default_value is Undefined:
return self.default_value
else:
return np.copy(self.default_value)
| (self) |
32,201 | traittypes.traittypes | set | null | def set(self, obj, value):
new_value = self._validate(obj, value)
old_value = obj._trait_values.get(self.name, self.default_value)
obj._trait_values[self.name] = new_value
if not np.array_equal(old_value, new_value):
obj._notify_trait(self.name, old_value, new_value)
| (self, obj, value) |
32,205 | traittypes.traittypes | valid |
Register new trait validators
Validators are functions that take two arguments.
- The trait instance
- The proposed value
Validators return the (potentially modified) value, which is either
assigned to the HasTraits attribute or input into the next validator.
They are evaluated in the order in which they are provided to the `valid`
function.
Example
-------
.. code:: python
# Test with a shape constraint
def shape(*dimensions):
def validator(trait, value):
if value.shape != dimensions:
raise TraitError('Expected an of shape %s and got and array with shape %s' % (dimensions, value.shape))
else:
return value
return validator
class Foo(HasTraits):
bar = Array(np.identity(2)).valid(shape(2, 2))
foo = Foo()
foo.bar = [1, 2] # Should raise a TraitError
| def valid(self, *validators):
"""
Register new trait validators
Validators are functions that take two arguments.
- The trait instance
- The proposed value
Validators return the (potentially modified) value, which is either
assigned to the HasTraits attribute or input into the next validator.
They are evaluated in the order in which they are provided to the `valid`
function.
Example
-------
.. code:: python
# Test with a shape constraint
def shape(*dimensions):
def validator(trait, value):
if value.shape != dimensions:
raise TraitError('Expected an of shape %s and got and array with shape %s' % (dimensions, value.shape))
else:
return value
return validator
class Foo(HasTraits):
bar = Array(np.identity(2)).valid(shape(2, 2))
foo = Foo()
foo.bar = [1, 2] # Should raise a TraitError
"""
self.validators.extend(validators)
return self
| (self, *validators) |
32,206 | traittypes.traittypes | validate | null | def validate(self, obj, value):
if value is None and not self.allow_none:
self.error(obj, value)
if value is None or value is Undefined:
return super(Array, self).validate(obj, value)
try:
r = np.asarray(value, dtype=self.dtype)
if isinstance(value, np.ndarray) and r is not value:
warnings.warn(
'Given trait value dtype "%s" does not match required type "%s". '
'A coerced copy has been created.' % (
np.dtype(value.dtype).name,
np.dtype(self.dtype).name))
value = r
except (ValueError, TypeError) as e:
raise TraitError(e)
return super(Array, self).validate(obj, value)
| (self, obj, value) |
32,207 | bqplot.axes | Axis | A line axis.
A line axis is the visual representation of a numerical or date scale.
Attributes
----------
icon: string (class-level attribute)
The font-awesome icon name for this object.
axis_types: dict (class-level attribute)
A registry of existing axis types.
orientation: {'horizontal', 'vertical'}
The orientation of the axis, either vertical or horizontal
side: {'bottom', 'top', 'left', 'right'} or None (default: None)
The side of the axis, either bottom, top, left or right.
label: string (default: '')
The axis label
tick_format: string or None (default: '')
The tick format for the axis, for dates use d3 string formatting.
scale: Scale
The scale represented by the axis
num_ticks: int or None (default: None)
If tick_values is None, number of ticks
tick_values: numpy.ndarray or None (default: None)
Tick values for the axis
tick_labels: dict (default: None)
Override the tick labels with a dictionary of {value: label}.
Entries are optional, and if not provided, the default tick labels
will be used.
offset: dict (default: {})
Contains a scale and a value {'scale': scale or None,
'value': value of the offset}
If offset['scale'] is None, the corresponding figure scale is used
instead.
label_location: {'middle', 'start', 'end'}
The location of the label along the axis, one of 'start', 'end' or
'middle'
label_color: Color or None (default: None)
The color of the axis label
grid_lines: {'none', 'solid', 'dashed'}
The display of the grid lines
grid_color: Color or None (default: None)
The color of the grid lines
color: Color or None (default: None)
The color of the line
label_offset: string or None (default: None)
Label displacement from the axis line. Units allowed are 'em', 'px'
and 'ex'. Positive values are away from the figure and negative
values are towards the figure with respect to the axis line.
visible: bool (default: True)
A visibility toggle for the axis
tick_style: Dict (default: {})
Dictionary containing the CSS-style of the text for the ticks.
For example: font-size of the text can be changed by passing
`{'font-size': 14}`
tick_rotate: int (default: 0)
Degrees to rotate tick labels by.
| class Axis(BaseAxis):
"""A line axis.
A line axis is the visual representation of a numerical or date scale.
Attributes
----------
icon: string (class-level attribute)
The font-awesome icon name for this object.
axis_types: dict (class-level attribute)
A registry of existing axis types.
orientation: {'horizontal', 'vertical'}
The orientation of the axis, either vertical or horizontal
side: {'bottom', 'top', 'left', 'right'} or None (default: None)
The side of the axis, either bottom, top, left or right.
label: string (default: '')
The axis label
tick_format: string or None (default: '')
The tick format for the axis, for dates use d3 string formatting.
scale: Scale
The scale represented by the axis
num_ticks: int or None (default: None)
If tick_values is None, number of ticks
tick_values: numpy.ndarray or None (default: None)
Tick values for the axis
tick_labels: dict (default: None)
Override the tick labels with a dictionary of {value: label}.
Entries are optional, and if not provided, the default tick labels
will be used.
offset: dict (default: {})
Contains a scale and a value {'scale': scale or None,
'value': value of the offset}
If offset['scale'] is None, the corresponding figure scale is used
instead.
label_location: {'middle', 'start', 'end'}
The location of the label along the axis, one of 'start', 'end' or
'middle'
label_color: Color or None (default: None)
The color of the axis label
grid_lines: {'none', 'solid', 'dashed'}
The display of the grid lines
grid_color: Color or None (default: None)
The color of the grid lines
color: Color or None (default: None)
The color of the line
label_offset: string or None (default: None)
Label displacement from the axis line. Units allowed are 'em', 'px'
and 'ex'. Positive values are away from the figure and negative
values are towards the figure with respect to the axis line.
visible: bool (default: True)
A visibility toggle for the axis
tick_style: Dict (default: {})
Dictionary containing the CSS-style of the text for the ticks.
For example: font-size of the text can be changed by passing
`{'font-size': 14}`
tick_rotate: int (default: 0)
Degrees to rotate tick labels by.
"""
icon = 'fa-arrows'
orientation = Enum(['horizontal', 'vertical'], default_value='horizontal')\
.tag(sync=True)
side = Enum(['bottom', 'top', 'left', 'right'],
allow_none=True, default_value=None).tag(sync=True)
label = Unicode().tag(sync=True)
grid_lines = Enum(['none', 'solid', 'dashed'], default_value='solid')\
.tag(sync=True)
tick_format = Unicode(None, allow_none=True).tag(sync=True)
scale = Instance(Scale).tag(sync=True, **widget_serialization)
num_ticks = Int(default_value=None, allow_none=True).tag(sync=True)
tick_values = Array(None, allow_none=True)\
.tag(sync=True, **array_serialization)\
.valid(array_dimension_bounds(1, 1))
tick_labels = Dict(None, allow_none=True).tag(sync=True)
offset = Dict().tag(sync=True, **widget_serialization)
label_location = Enum(['middle', 'start', 'end'],
default_value='middle').tag(sync=True)
label_color = Color(None, allow_none=True).tag(sync=True)
grid_color = Color(None, allow_none=True).tag(sync=True)
color = Color(None, allow_none=True).tag(sync=True)
label_offset = Unicode(default_value=None, allow_none=True).tag(sync=True)
visible = Bool(True).tag(sync=True)
tick_style = Dict().tag(sync=True)
tick_rotate = Int(0).tag(sync=True)
_view_name = Unicode('Axis').tag(sync=True)
_model_name = Unicode('AxisModel').tag(sync=True)
_ipython_display_ = None # We cannot display an axis outside of a figure.
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,264 | bqplot.marks | Bars | Bar mark.
In the case of the Bars mark, scales for 'x' and 'y' MUST be provided.
The scales of other data attributes are optional. In the case where another
data attribute than 'x' or 'y' is provided but the corresponding scale is
missing, the data attribute is ignored.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
color_mode: {'auto', 'group', 'element', 'no_group'}
Specify how default colors are applied to bars.
The 'group' mode means colors are assigned per group. If the list
of colors is shorter than the number of groups, colors are reused.
The 'element' mode means colors are assigned per group element. If the list
of colors is shorter than the number of bars in a group, colors are reused.
The 'no_group' mode means colors are assigned per bar, discarding the fact
that there are groups or stacks. If the list of colors is shorter than the
total number of bars, colors are reused.
opacity_mode: {'auto', 'group', 'element', 'no_group'}
Same as the `color_mode` attribute, but for the opacity.
type: {'stacked', 'grouped'}
whether 2-dimensional bar charts should appear grouped or stacked.
colors: list of colors (default: ['steelblue'])
list of colors for the bars.
orientation: {'horizontal', 'vertical'}
Specifies whether the bar chart is drawn horizontally or vertically.
If a horizontal bar chart is drawn, the x data is drawn vertically.
padding: float (default: 0.05)
Attribute to control the spacing between the bars value is specified
as a percentage of the width of the bar
fill: Bool (default: True)
Whether to fill the bars or not
stroke: Color or None (default: None)
Stroke color for the bars
stroke_width: Float (default: 0.)
Stroke width of the bars
opacities: list of floats (default: [])
Opacities for the bars. Defaults to 1 when the list is too
short, or the element of the list is set to None.
base: float (default: 0.0)
reference value from which the bars are drawn. defaults to 0.0
align: {'center', 'left', 'right'}
alignment of bars with respect to the tick value
label_display: bool (default: False)
whether or not to display bar data labels
label_display_format: string (default: .2f)
format for displaying values.
label_font_style: dict
CSS style for the text of each cell
label_display_vertical_offset: float
vertical offset value for the label display
label_display_horizontal_offset: float
horizontal offset value for the label display
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the values for the data points
color: numpy.ndarray or None (default: None)
color of the data points (1d array). Defaults to default_color when not
provided or when a value is NaN
Notes
-----
The fields which can be passed to the default tooltip are:
All the data attributes
index: index of the bar being hovered on
sub_index: if data is two dimensional, this is the minor index
| class Bars(Mark):
"""Bar mark.
In the case of the Bars mark, scales for 'x' and 'y' MUST be provided.
The scales of other data attributes are optional. In the case where another
data attribute than 'x' or 'y' is provided but the corresponding scale is
missing, the data attribute is ignored.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
color_mode: {'auto', 'group', 'element', 'no_group'}
Specify how default colors are applied to bars.
The 'group' mode means colors are assigned per group. If the list
of colors is shorter than the number of groups, colors are reused.
The 'element' mode means colors are assigned per group element. If the list
of colors is shorter than the number of bars in a group, colors are reused.
The 'no_group' mode means colors are assigned per bar, discarding the fact
that there are groups or stacks. If the list of colors is shorter than the
total number of bars, colors are reused.
opacity_mode: {'auto', 'group', 'element', 'no_group'}
Same as the `color_mode` attribute, but for the opacity.
type: {'stacked', 'grouped'}
whether 2-dimensional bar charts should appear grouped or stacked.
colors: list of colors (default: ['steelblue'])
list of colors for the bars.
orientation: {'horizontal', 'vertical'}
Specifies whether the bar chart is drawn horizontally or vertically.
If a horizontal bar chart is drawn, the x data is drawn vertically.
padding: float (default: 0.05)
Attribute to control the spacing between the bars value is specified
as a percentage of the width of the bar
fill: Bool (default: True)
Whether to fill the bars or not
stroke: Color or None (default: None)
Stroke color for the bars
stroke_width: Float (default: 0.)
Stroke width of the bars
opacities: list of floats (default: [])
Opacities for the bars. Defaults to 1 when the list is too
short, or the element of the list is set to None.
base: float (default: 0.0)
reference value from which the bars are drawn. defaults to 0.0
align: {'center', 'left', 'right'}
alignment of bars with respect to the tick value
label_display: bool (default: False)
whether or not to display bar data labels
label_display_format: string (default: .2f)
format for displaying values.
label_font_style: dict
CSS style for the text of each cell
label_display_vertical_offset: float
vertical offset value for the label display
label_display_horizontal_offset: float
horizontal offset value for the label display
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the values for the data points
color: numpy.ndarray or None (default: None)
color of the data points (1d array). Defaults to default_color when not
provided or when a value is NaN
Notes
-----
The fields which can be passed to the default tooltip are:
All the data attributes
index: index of the bar being hovered on
sub_index: if data is two dimensional, this is the minor index
"""
# Mark decoration
icon = 'fa-bar-chart'
name = 'Bar chart'
# Scaled attributes
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
y = Array([]).tag(sync=True, scaled=True, rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_dimension_bounds(1, 2), array_supported_kinds())
color = Array(None, allow_none=True)\
.tag(sync=True, scaled=True, rtype='Color',
atype='bqplot.ColorAxis', **array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Bar text labels attributes -- add default values.
# Add bool for displaying a label or not. Add d3 formatting in docstring
label_display = Bool(default_value=False).tag(sync=True)
label_display_format = Unicode(default_value=".2f",
allow_none=False).tag(sync=True)
label_font_style = Dict().tag(sync=True)
label_display_vertical_offset = Float(default_value=0.0,
allow_none=False).tag(sync=True)
label_display_horizontal_offset = Float(default_value=0.0,
allow_none=False).tag(sync=True)
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'}
}).tag(sync=True)
color_mode = Enum(['auto', 'group', 'element', 'no_group'], default_value='auto')\
.tag(sync=True)
opacity_mode = Enum(['auto', 'group', 'element', 'no_group'], default_value='auto')\
.tag(sync=True)
type = Enum(['stacked', 'grouped'], default_value='stacked')\
.tag(sync=True, display_name='Type')
colors = List(trait=Color(default_value=None,
allow_none=True),
default_value=['steelblue'])\
.tag(sync=True, display_name='Colors')
padding = Float(0.05).tag(sync=True)
fill = Bool(True).tag(sync=True)
stroke = Color(None, allow_none=True).tag(sync=True)
stroke_width = Float(1.).tag(sync=True, display_name='Stroke width')
base = Float().tag(sync=True)
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
align = Enum(['center', 'left', 'right'], default_value='center')\
.tag(sync=True)
orientation = Enum(['vertical', 'horizontal'], default_value='vertical')\
.tag(sync=True)
@validate('orientation')
def _validate_orientation(self, proposal):
value = proposal['value']
x_orient = "horizontal" if value == "vertical" else "vertical"
self.scales_metadata = {'x': {'orientation': x_orient,
'dimension': 'x'},
'y': {'orientation': value, 'dimension': 'y'}}
return value
_view_name = Unicode('Bars').tag(sync=True)
_model_name = Unicode('BarsModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,269 | bqplot.marks | __init__ | null | def __init__(self, **kwargs):
super(Mark, self).__init__(**kwargs)
self._hover_handlers = CallbackDispatcher()
self._click_handlers = CallbackDispatcher()
self._legend_click_handlers = CallbackDispatcher()
self._legend_hover_handlers = CallbackDispatcher()
self._element_click_handlers = CallbackDispatcher()
self._bg_click_handlers = CallbackDispatcher()
self._name_to_handler = {
'hover': self._hover_handlers,
'click': self._click_handlers,
'legend_click': self._legend_click_handlers,
'legend_hover': self._legend_hover_handlers,
'element_click': self._element_click_handlers,
'background_click': self._bg_click_handlers
}
self.on_msg(self._handle_custom_msgs)
| (self, **kwargs) |
32,277 | bqplot.marks | _get_dimension_scales |
Return the list of scales corresponding to a given dimension.
The preserve_domain optional argument specifies whether one should
filter out the scales for which preserve_domain is set to True.
| def _get_dimension_scales(self, dimension, preserve_domain=False):
"""
Return the list of scales corresponding to a given dimension.
The preserve_domain optional argument specifies whether one should
filter out the scales for which preserve_domain is set to True.
"""
if preserve_domain:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get('dimension') == dimension and
not self.preserve_domain.get(k)
)
]
else:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get('dimension') == dimension
)
]
| (self, dimension, preserve_domain=False) |
32,281 | bqplot.marks | _handle_custom_msgs | null | def _handle_custom_msgs(self, _, content, buffers=None):
try:
handler = self._name_to_handler[content['event']]
except KeyError:
return
handler(self, content)
| (self, _, content, buffers=None) |
32,306 | bqplot.marks | on_background_click | null | def on_background_click(self, callback, remove=False):
self._bg_click_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,307 | bqplot.marks | on_click | null | def on_click(self, callback, remove=False):
self._click_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,308 | bqplot.marks | on_element_click | null | def on_element_click(self, callback, remove=False):
self._element_click_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,309 | bqplot.marks | on_hover | null | def on_hover(self, callback, remove=False):
self._hover_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,310 | bqplot.marks | on_legend_click | null | def on_legend_click(self, callback, remove=False):
self._legend_click_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,311 | bqplot.marks | on_legend_hover | null | def on_legend_hover(self, callback, remove=False):
self._legend_hover_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
32,329 | bqplot.axes | BaseAxis | null | class BaseAxis(Widget):
axis_types = {}
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,386 | bqplot.marks | Bins | Backend histogram mark.
A `Bars` instance that bins sample data.
It is very similar in purpose to the `Hist` mark, the difference being that
the binning is done in the backend (python), which avoids large amounts of
data being shipped back and forth to the frontend. It should therefore be
preferred for large data.
The binning method is the numpy `histogram` method.
The following documentation is in part taken from the numpy documentation.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
bins: nonnegative int (default: 10)
or {'auto', 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'}
If `bins` is an int, it defines the number of equal-width
bins in the given range (10, by default).
If `bins` is a string (method name), `histogram` will use
the method chosen to calculate the optimal bin width and
consequently the number of bins (see `Notes` for more detail on
the estimators) from the data that falls within the requested
range.
density : bool (default: `False`)
If `False`, the height of each bin is the number of samples in it.
If `True`, the height of each bin is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability *mass* function.
min : float (default: None)
The lower range of the bins. If not provided, lower range
is simply `x.min()`.
max : float (default: None)
The upper range of the bins. If not provided, lower range
is simply `x.max()`.
Data Attributes
sample: numpy.ndarray (default: [])
sample of which the histogram must be computed.
Notes
-----
The fields which can be passed to the default tooltip are:
All the `Bars` data attributes (`x`, `y`, `color`)
index: index of the bin
| class Bins(Bars):
"""Backend histogram mark.
A `Bars` instance that bins sample data.
It is very similar in purpose to the `Hist` mark, the difference being that
the binning is done in the backend (python), which avoids large amounts of
data being shipped back and forth to the frontend. It should therefore be
preferred for large data.
The binning method is the numpy `histogram` method.
The following documentation is in part taken from the numpy documentation.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
bins: nonnegative int (default: 10)
or {'auto', 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'}
If `bins` is an int, it defines the number of equal-width
bins in the given range (10, by default).
If `bins` is a string (method name), `histogram` will use
the method chosen to calculate the optimal bin width and
consequently the number of bins (see `Notes` for more detail on
the estimators) from the data that falls within the requested
range.
density : bool (default: `False`)
If `False`, the height of each bin is the number of samples in it.
If `True`, the height of each bin is the value of the
probability *density* function at the bin, normalized such that
the *integral* over the range is 1. Note that the sum of the
histogram values will not be equal to 1 unless bins of unity
width are chosen; it is not a probability *mass* function.
min : float (default: None)
The lower range of the bins. If not provided, lower range
is simply `x.min()`.
max : float (default: None)
The upper range of the bins. If not provided, lower range
is simply `x.max()`.
Data Attributes
sample: numpy.ndarray (default: [])
sample of which the histogram must be computed.
Notes
-----
The fields which can be passed to the default tooltip are:
All the `Bars` data attributes (`x`, `y`, `color`)
index: index of the bin
"""
# Mark decoration
icon = 'fa-signal'
name = 'Backend Histogram'
# Scaled Attributes
sample = Array([]).tag(
sync=False, display_name='Sample', rtype='Number',
atype='bqplot.Axis', **array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Binning options
min = Float(None, allow_none=True).tag(sync=True)
max = Float(None, allow_none=True).tag(sync=True)
density = Bool().tag(sync=True)
bins = (Int(10) | List() | Enum(['auto', 'fd', 'doane',
'scott', 'rice', 'sturges', 'sqrt']))\
.tag(sync=True, display_name='Number of bins')
def __init__(self, **kwargs):
'''
Sets listeners on the data and the binning parameters.
Adjusts `Bars` defaults to suit a histogram better.
'''
self.observe(self.bin_data,
names=['sample', 'bins', 'density', 'min', 'max'])
# One unique color by default
kwargs.setdefault('colors', [CATEGORY10[0]])
# No spacing between bars
kwargs.setdefault('padding', 0.)
super(Bins, self).__init__(**kwargs)
def bin_data(self, *args):
'''
Performs the binning of `sample` data, and draws the corresponding bars
'''
# Get range
_min = self.sample.min() if self.min is None else self.min
_max = self.sample.max() if self.max is None else self.max
_range = (min(_min, _max), max(_min, _max))
# Bin the samples
counts, bin_edges = histogram(self.sample, bins=self.bins,
range=_range, density=self.density)
midpoints = (bin_edges[:-1] + bin_edges[1:]) / 2
# Redraw the underlying Bars
with self.hold_sync():
self.x, self.y = midpoints, counts
| (**kwargs) |
32,391 | bqplot.marks | __init__ |
Sets listeners on the data and the binning parameters.
Adjusts `Bars` defaults to suit a histogram better.
| def __init__(self, **kwargs):
'''
Sets listeners on the data and the binning parameters.
Adjusts `Bars` defaults to suit a histogram better.
'''
self.observe(self.bin_data,
names=['sample', 'bins', 'density', 'min', 'max'])
# One unique color by default
kwargs.setdefault('colors', [CATEGORY10[0]])
# No spacing between bars
kwargs.setdefault('padding', 0.)
super(Bins, self).__init__(**kwargs)
| (self, **kwargs) |
32,418 | bqplot.marks | bin_data |
Performs the binning of `sample` data, and draws the corresponding bars
| def bin_data(self, *args):
'''
Performs the binning of `sample` data, and draws the corresponding bars
'''
# Get range
_min = self.sample.min() if self.min is None else self.min
_max = self.sample.max() if self.max is None else self.max
_range = (min(_min, _max), max(_min, _max))
# Bin the samples
counts, bin_edges = histogram(self.sample, bins=self.bins,
range=_range, density=self.density)
midpoints = (bin_edges[:-1] + bin_edges[1:]) / 2
# Redraw the underlying Bars
with self.hold_sync():
self.x, self.y = midpoints, counts
| (self, *args) |
32,476 | bqplot.marks | Boxplot | Boxplot marks.
Attributes
----------
stroke: Color or None
stroke color of the marker
color: Color
fill color of the box
opacities: list of floats (default: [])
Opacities for the markers of the boxplot. Defaults to 1 when the
list is too short, or the element of the list is set to None.
outlier-color: color
color for the outlier
box_width: int (default: None)
width of the box in pixels. The minimum value is 5.
If set to None, box_with is auto calculated
auto_detect_outliers: bool (default: True)
Flag to toggle outlier auto-detection
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [[]])
Sample data points (2d array)
| class Boxplot(Mark):
"""Boxplot marks.
Attributes
----------
stroke: Color or None
stroke color of the marker
color: Color
fill color of the box
opacities: list of floats (default: [])
Opacities for the markers of the boxplot. Defaults to 1 when the
list is too short, or the element of the list is set to None.
outlier-color: color
color for the outlier
box_width: int (default: None)
width of the box in pixels. The minimum value is 5.
If set to None, box_with is auto calculated
auto_detect_outliers: bool (default: True)
Flag to toggle outlier auto-detection
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [[]])
Sample data points (2d array)
"""
# Mark decoration
icon = 'fa-birthday-cake'
name = 'Boxplot chart'
# Scaled attributes
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
atype='bqplot.Axis', **array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Second dimension must contain OHLC data, otherwise the behavior
# is undefined.
y = Array([[]]).tag(sync=True, scaled=True, rtype='Number',
atype='bqplot.Axis', **array_serialization)\
.valid(array_dimension_bounds(1, 2), array_supported_kinds())
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'}
}).tag(sync=True)
stroke = Color(None, allow_none=True)\
.tag(sync=True, display_name='Stroke color')
box_fill_color = Color('steelblue')\
.tag(sync=True, display_name='Fill color for the box')
outlier_fill_color = Color('gray').tag(sync=True,
display_name='Outlier fill color')
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
box_width = Int(None, min=5, allow_none=True).tag(sync=True, display_name='Box Width')
auto_detect_outliers = Bool(True).tag(sync=True, display_name='Auto-detect Outliers')
_view_name = Unicode('Boxplot').tag(sync=True)
_model_name = Unicode('BoxplotModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,593 | bqplot.axes | ColorAxis | A colorbar axis.
A color axis is the visual representation of a color scale.
Attributes
----------
scale: ColorScale
The scale represented by the axis
| class ColorAxis(Axis):
"""A colorbar axis.
A color axis is the visual representation of a color scale.
Attributes
----------
scale: ColorScale
The scale represented by the axis
"""
orientation = Enum(['horizontal', 'vertical'],
default_value='horizontal').tag(sync=True)
side = Enum(['bottom', 'top', 'left', 'right'],
default_value='bottom').tag(sync=True)
label = Unicode().tag(sync=True)
scale = Instance(ColorScale).tag(sync=True, **widget_serialization)
_view_name = Unicode('ColorAxis').tag(sync=True)
_model_name = Unicode('ColorAxisModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,650 | bqplot.scales | ColorScale | A color scale.
A mapping from numbers to colors. The relation is affine by part.
Attributes
----------
scale_type: {'linear'}
scale type
colors: list of colors (default: [])
list of colors
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
mid: float or None (default: None)
if not None, mid is the value corresponding to the mid color.
scheme: string (default: 'RdYlGn')
Colorbrewer color scheme of the color scale.
extrapolation: {'constant', 'linear'} (default: 'constant')
How to extrapolate values outside the [min, max] domain.
rtype: string (class-level attribute)
The range type of a color scale is 'Color'. This should not be modified.
dtype: type (class-level attribute)
the associated data type / domain type
| class ColorScale(Scale):
"""A color scale.
A mapping from numbers to colors. The relation is affine by part.
Attributes
----------
scale_type: {'linear'}
scale type
colors: list of colors (default: [])
list of colors
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
mid: float or None (default: None)
if not None, mid is the value corresponding to the mid color.
scheme: string (default: 'RdYlGn')
Colorbrewer color scheme of the color scale.
extrapolation: {'constant', 'linear'} (default: 'constant')
How to extrapolate values outside the [min, max] domain.
rtype: string (class-level attribute)
The range type of a color scale is 'Color'. This should not be modified.
dtype: type (class-level attribute)
the associated data type / domain type
"""
rtype = 'Color'
dtype = np.number
scale_type = Enum(['linear'], default_value='linear').tag(sync=True)
colors = List(trait=Color(default_value=None, allow_none=True))\
.tag(sync=True)
min = Float(None, allow_none=True).tag(sync=True)
max = Float(None, allow_none=True).tag(sync=True)
mid = Float(None, allow_none=True).tag(sync=True)
scheme = Unicode('RdYlGn').tag(sync=True)
extrapolation = Enum(['constant', 'linear'], default_value='constant').tag(sync=True)
_view_name = Unicode('ColorScale').tag(sync=True)
_model_name = Unicode('ColorScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,768 | traittypes.traittypes | DataFrame | A pandas dataframe trait type. | class DataFrame(PandasType):
"""A pandas dataframe trait type."""
info_text = 'a pandas dataframe'
def __init__(self, default_value=Empty, allow_none=False, dtype=None, **kwargs):
if 'klass' not in kwargs and self.klass is None:
import pandas as pd
kwargs['klass'] = pd.DataFrame
super(DataFrame, self).__init__(
default_value=default_value, allow_none=allow_none, dtype=dtype, **kwargs)
| (default_value: Any = traittypes.Empty, allow_none: bool = False, dtype=None, **kwargs) |
32,770 | traittypes.traittypes | __init__ | null | def __init__(self, default_value=Empty, allow_none=False, dtype=None, **kwargs):
if 'klass' not in kwargs and self.klass is None:
import pandas as pd
kwargs['klass'] = pd.DataFrame
super(DataFrame, self).__init__(
default_value=default_value, allow_none=allow_none, dtype=dtype, **kwargs)
| (self, default_value=traittypes.Empty, allow_none=False, dtype=None, **kwargs) |
32,786 | traittypes.traittypes | make_dynamic_default | null | def make_dynamic_default(self):
if self.default_value is None or self.default_value is Undefined:
return self.default_value
else:
return self.default_value.copy()
| (self) |
32,787 | traittypes.traittypes | set | null | def set(self, obj, value):
new_value = self._validate(obj, value)
old_value = obj._trait_values.get(self.name, self.default_value)
obj._trait_values[self.name] = new_value
if ((old_value is None and new_value is not None) or
(old_value is Undefined and new_value is not Undefined) or
not old_value.equals(new_value)):
obj._notify_trait(self.name, old_value, new_value)
| (self, obj, value) |
32,792 | traittypes.traittypes | validate | null | def validate(self, obj, value):
if value is None and not self.allow_none:
self.error(obj, value)
if value is None or value is Undefined:
return super(PandasType, self).validate(obj, value)
try:
value = self.klass(value)
except (ValueError, TypeError) as e:
raise TraitError(e)
return super(PandasType, self).validate(obj, value)
| (self, obj, value) |
32,793 | bqplot.traits | Date |
A datetime trait type.
Converts the passed date into a string format that can be used to
construct a JavaScript datetime.
| class Date(TraitType):
"""
A datetime trait type.
Converts the passed date into a string format that can be used to
construct a JavaScript datetime.
"""
def validate(self, obj, value):
try:
if isinstance(value, dt.datetime):
return value
if isinstance(value, dt.date):
return dt.datetime(value.year, value.month, value.day)
if np.issubdtype(np.dtype(value), np.datetime64):
# TODO: Fix this. Right now, we have to limit the precision
# of time to microseconds because np.datetime64.astype(datetime)
# returns date values only for precision <= 'us'
value_truncated = np.datetime64(value, 'us')
return value_truncated.astype(dt.datetime)
except Exception:
self.error(obj, value)
self.error(obj, value)
def __init__(self, default_value=dt.datetime.today(), **kwargs):
super(Date, self).__init__(default_value=default_value, **kwargs)
self.tag(**date_serialization)
| (default_value: Any = datetime.datetime(2024, 5, 12, 8, 41, 20, 704540), **kwargs) |
32,795 | bqplot.traits | __init__ | null | def __init__(self, default_value=dt.datetime.today(), **kwargs):
super(Date, self).__init__(default_value=default_value, **kwargs)
self.tag(**date_serialization)
| (self, default_value=datetime.datetime(2024, 5, 12, 8, 41, 20, 704540), **kwargs) |
32,815 | bqplot.traits | validate | null | def validate(self, obj, value):
try:
if isinstance(value, dt.datetime):
return value
if isinstance(value, dt.date):
return dt.datetime(value.year, value.month, value.day)
if np.issubdtype(np.dtype(value), np.datetime64):
# TODO: Fix this. Right now, we have to limit the precision
# of time to microseconds because np.datetime64.astype(datetime)
# returns date values only for precision <= 'us'
value_truncated = np.datetime64(value, 'us')
return value_truncated.astype(dt.datetime)
except Exception:
self.error(obj, value)
self.error(obj, value)
| (self, obj, value) |
32,816 | bqplot.scales | DateColorScale | A date color scale.
A mapping from dates to a numerical domain.
Attributes
----------
min: Date or None (default: None)
if not None, min is the minimal value of the domain
max: Date or None (default: None)
if not None, max is the maximal value of the domain
mid: Date or None (default: None)
if not None, mid is the value corresponding to the mid color.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a color scale is 'Color'.
dtype: type (class-level attribute)
the associated data type / domain type
| class DateColorScale(ColorScale):
"""A date color scale.
A mapping from dates to a numerical domain.
Attributes
----------
min: Date or None (default: None)
if not None, min is the minimal value of the domain
max: Date or None (default: None)
if not None, max is the maximal value of the domain
mid: Date or None (default: None)
if not None, mid is the value corresponding to the mid color.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a color scale is 'Color'.
dtype: type (class-level attribute)
the associated data type / domain type
"""
dtype = np.datetime64
domain_class = Type(Date)
min = Date(default_value=None, allow_none=True).tag(sync=True)
mid = Date(default_value=None, allow_none=True).tag(sync=True)
max = Date(default_value=None, allow_none=True).tag(sync=True)
_view_name = Unicode('DateColorScale').tag(sync=True)
_model_name = Unicode('DateColorScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,873 | bqplot.scales | DateScale | A date scale, with customizable formatting.
An affine mapping from dates to a numerical range.
Attributes
----------
min: Date or None (default: None)
if not None, min is the minimal value of the domain
max: Date (default: None)
if not None, max is the maximal value of the domain
domain_class: type (default: Date)
traitlet type used to validate values in of the domain of the scale.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
| class DateScale(Scale):
"""A date scale, with customizable formatting.
An affine mapping from dates to a numerical range.
Attributes
----------
min: Date or None (default: None)
if not None, min is the minimal value of the domain
max: Date (default: None)
if not None, max is the maximal value of the domain
domain_class: type (default: Date)
traitlet type used to validate values in of the domain of the scale.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
"""
rtype = 'Number'
dtype = np.datetime64
domain_class = Type(Date)
min = Date(default_value=None, allow_none=True).tag(sync=True)
max = Date(default_value=None, allow_none=True).tag(sync=True)
_view_name = Unicode('DateScale').tag(sync=True)
_model_name = Unicode('DateScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
32,987 | bqplot.scales | EquiRectangular | An elementary projection that uses the identity function.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
| class EquiRectangular(GeoScale):
"""An elementary projection that uses the identity function.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
"""
scale_factor = Float(145.0).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('EquiRectangular').tag(sync=True)
_model_name = Unicode('EquiRectangularModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,044 | bqplot.figure | Figure | Main canvas for drawing a chart.
The Figure object holds the list of Marks and Axes. It also holds an
optional Interaction object that is responsible for figure-level mouse
interactions, the "interaction layer".
Besides, the Figure object has two reference scales, for positioning items
in an absolute fashion in the figure canvas.
Attributes
----------
title: string (default: '')
title of the figure
axes: List of Axes (default: [])
list containing the instances of the axes for the figure
marks: List of Marks (default: [])
list containing the marks which are to be appended to the figure
interaction: Interaction or None (default: None)
optional interaction layer for the figure
scale_x: Scale
Scale representing the x values of the figure
scale_y: Scale
Scale representing the y values of the figure
padding_x: Float (default: 0.0)
Padding to be applied in the horizontal direction of the figure
around the data points, proportion of the horizontal length
padding_y: Float (default: 0.025)
Padding to be applied in the vertical direction of the figure
around the data points, proportion of the vertical length
legend_location: {'top-right', 'top', 'top-left', 'left',
'bottom-left', 'bottom', 'bottom-right', 'right'}
location of the legend relative to the center of the figure
background_style: Dict (default: {})
CSS style to be applied to the background of the figure
legend_style: Dict (default: {})
CSS style to be applied to the SVG legend e.g, {'fill': 'white'}
legend_text: Dict (default: {})
CSS style to be applied to the legend text e.g., {'font-size': 20}
title_style: Dict (default: {})
CSS style to be applied to the title of the figure
animation_duration: nonnegative int (default: 0)
Duration of transition on change of data attributes, in milliseconds.
pixel_ratio:
Pixel ratio of the WebGL canvas (2 on retina screens). Set to 1 for better performance,
but less crisp edges. If set to None it will use the browser's window.devicePixelRatio.
Layout Attributes
fig_margin: dict (default: {top=60, bottom=60, left=60, right=60})
Dictionary containing the top, bottom, left and right margins. The user
is responsible for making sure that the width and height are greater
than the sum of the margins.
min_aspect_ratio: float
minimum width / height ratio of the figure
max_aspect_ratio: float
maximum width / height ratio of the figure
Methods
-------
save_png:
Saves the figure as a PNG file
save_svg:
Saves the figure as an SVG file
Note
----
The aspect ratios stand for width / height ratios.
- If the available space is within bounds in terms of min and max aspect
ratio, we use the entire available space.
- If the available space is too oblong horizontally, we use the client
height and the width that corresponds max_aspect_ratio (maximize width
under the constraints).
- If the available space is too oblong vertically, we use the client width
and the height that corresponds to min_aspect_ratio (maximize height
under the constraint).
This corresponds to maximizing the area under the constraints.
Default min and max aspect ratio are both equal to 16 / 9.
| class Figure(DOMWidget):
"""Main canvas for drawing a chart.
The Figure object holds the list of Marks and Axes. It also holds an
optional Interaction object that is responsible for figure-level mouse
interactions, the "interaction layer".
Besides, the Figure object has two reference scales, for positioning items
in an absolute fashion in the figure canvas.
Attributes
----------
title: string (default: '')
title of the figure
axes: List of Axes (default: [])
list containing the instances of the axes for the figure
marks: List of Marks (default: [])
list containing the marks which are to be appended to the figure
interaction: Interaction or None (default: None)
optional interaction layer for the figure
scale_x: Scale
Scale representing the x values of the figure
scale_y: Scale
Scale representing the y values of the figure
padding_x: Float (default: 0.0)
Padding to be applied in the horizontal direction of the figure
around the data points, proportion of the horizontal length
padding_y: Float (default: 0.025)
Padding to be applied in the vertical direction of the figure
around the data points, proportion of the vertical length
legend_location: {'top-right', 'top', 'top-left', 'left',
'bottom-left', 'bottom', 'bottom-right', 'right'}
location of the legend relative to the center of the figure
background_style: Dict (default: {})
CSS style to be applied to the background of the figure
legend_style: Dict (default: {})
CSS style to be applied to the SVG legend e.g, {'fill': 'white'}
legend_text: Dict (default: {})
CSS style to be applied to the legend text e.g., {'font-size': 20}
title_style: Dict (default: {})
CSS style to be applied to the title of the figure
animation_duration: nonnegative int (default: 0)
Duration of transition on change of data attributes, in milliseconds.
pixel_ratio:
Pixel ratio of the WebGL canvas (2 on retina screens). Set to 1 for better performance,
but less crisp edges. If set to None it will use the browser's window.devicePixelRatio.
Layout Attributes
fig_margin: dict (default: {top=60, bottom=60, left=60, right=60})
Dictionary containing the top, bottom, left and right margins. The user
is responsible for making sure that the width and height are greater
than the sum of the margins.
min_aspect_ratio: float
minimum width / height ratio of the figure
max_aspect_ratio: float
maximum width / height ratio of the figure
Methods
-------
save_png:
Saves the figure as a PNG file
save_svg:
Saves the figure as an SVG file
Note
----
The aspect ratios stand for width / height ratios.
- If the available space is within bounds in terms of min and max aspect
ratio, we use the entire available space.
- If the available space is too oblong horizontally, we use the client
height and the width that corresponds max_aspect_ratio (maximize width
under the constraints).
- If the available space is too oblong vertically, we use the client width
and the height that corresponds to min_aspect_ratio (maximize height
under the constraint).
This corresponds to maximizing the area under the constraints.
Default min and max aspect ratio are both equal to 16 / 9.
"""
title = Unicode().tag(sync=True, display_name='Title')
axes = List(Instance(Axis)).tag(sync=True, **widget_serialization)
marks = List(Instance(Mark)).tag(sync=True, **widget_serialization)
interaction = Instance(Interaction, default_value=None,
allow_none=True).tag(sync=True,
**widget_serialization)
scale_x = Instance(Scale).tag(sync=True, **widget_serialization)
scale_y = Instance(Scale).tag(sync=True, **widget_serialization)
title_style = Dict(value_trait=Unicode()).tag(sync=True)
background_style = Dict().tag(sync=True)
legend_style = Dict().tag(sync=True)
legend_text = Dict().tag(sync=True)
theme = Enum(['classic', 'gg'], default_value='classic').tag(sync=True)
min_aspect_ratio = Float(0.01).tag(sync=True)
max_aspect_ratio = Float(100).tag(sync=True)
pixel_ratio = Float(None, allow_none=True).tag(sync=True)
fig_margin = Dict(dict(top=60, bottom=60, left=60, right=60))\
.tag(sync=True)
padding_x = Float(0.0, min=0.0, max=1.0).tag(sync=True)
padding_y = Float(0.025, min=0.0, max=1.0).tag(sync=True)
legend_location = Enum(['top-right', 'top', 'top-left', 'left',
'bottom-left', 'bottom', 'bottom-right', 'right'],
default_value='top-right')\
.tag(sync=True, display_name='Legend position')
animation_duration = Int().tag(sync=True,
display_name='Animation duration')
def __init__(self, **kwargs):
super(Figure, self).__init__(**kwargs)
self._upload_png_callback = None
self.on_msg(self._handle_custom_msgs)
@default('scale_x')
def _default_scale_x(self):
return LinearScale(min=0, max=1, allow_padding=False)
@default('scale_y')
def _default_scale_y(self):
return LinearScale(min=0, max=1, allow_padding=False)
def save_png(self, filename='bqplot.png', scale=None):
'''
Saves the Figure as a PNG file
Parameters
----------
filename: str (default: 'bqplot.png')
name of the saved file
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
'''
self.send({'type': 'save_png', 'filename': filename, 'scale': scale})
def save_svg(self, filename='bqplot.svg'):
'''
Saves the Figure as an SVG file
Parameters
----------
filename: str (default: 'bqplot.svg')
name of the saved file
'''
self.send({"type": "save_svg", "filename": filename})
def get_png_data(self, callback, scale=None):
'''
Gets the Figure as a PNG memory view
Parameters
----------
callback: callable
Called with the PNG data as the only positional argument.
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
'''
if self._upload_png_callback:
raise Exception('get_png_data already in progress')
self._upload_png_callback = callback
self.send({'type': 'upload_png', 'scale': scale})
@validate('min_aspect_ratio', 'max_aspect_ratio')
def _validate_aspect_ratio(self, proposal):
value = proposal['value']
if proposal['trait'].name == 'min_aspect_ratio' and \
value > self.max_aspect_ratio:
raise TraitError('setting min_aspect_ratio > max_aspect_ratio')
if proposal['trait'].name == 'max_aspect_ratio' and \
value < self.min_aspect_ratio:
raise TraitError('setting max_aspect_ratio < min_aspect_ratio')
return value
def _handle_custom_msgs(self, _, content, buffers=None):
if content.get('event') == 'upload_png':
try:
self._upload_png_callback(buffers[0])
finally:
self._upload_png_callback = None
_view_name = Unicode('Figure').tag(sync=True)
_model_name = Unicode('FigureModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
| (**kwargs) |
33,049 | bqplot.figure | __init__ | null | def __init__(self, **kwargs):
super(Figure, self).__init__(**kwargs)
self._upload_png_callback = None
self.on_msg(self._handle_custom_msgs)
| (self, **kwargs) |
33,060 | bqplot.figure | _handle_custom_msgs | null | def _handle_custom_msgs(self, _, content, buffers=None):
if content.get('event') == 'upload_png':
try:
self._upload_png_callback(buffers[0])
finally:
self._upload_png_callback = None
| (self, _, content, buffers=None) |
33,080 | bqplot.figure | get_png_data |
Gets the Figure as a PNG memory view
Parameters
----------
callback: callable
Called with the PNG data as the only positional argument.
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
| def get_png_data(self, callback, scale=None):
'''
Gets the Figure as a PNG memory view
Parameters
----------
callback: callable
Called with the PNG data as the only positional argument.
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
'''
if self._upload_png_callback:
raise Exception('get_png_data already in progress')
self._upload_png_callback = callback
self.send({'type': 'upload_png', 'scale': scale})
| (self, callback, scale=None) |
33,094 | bqplot.figure | save_png |
Saves the Figure as a PNG file
Parameters
----------
filename: str (default: 'bqplot.png')
name of the saved file
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
| def save_png(self, filename='bqplot.png', scale=None):
'''
Saves the Figure as a PNG file
Parameters
----------
filename: str (default: 'bqplot.png')
name of the saved file
scale: float (default: None)
Scale up the png resolution when scale > 1, when not given base this on the screen pixel ratio.
'''
self.send({'type': 'save_png', 'filename': filename, 'scale': scale})
| (self, filename='bqplot.png', scale=None) |
33,095 | bqplot.figure | save_svg |
Saves the Figure as an SVG file
Parameters
----------
filename: str (default: 'bqplot.svg')
name of the saved file
| def save_svg(self, filename='bqplot.svg'):
'''
Saves the Figure as an SVG file
Parameters
----------
filename: str (default: 'bqplot.svg')
name of the saved file
'''
self.send({"type": "save_svg", "filename": filename})
| (self, filename='bqplot.svg') |
33,109 | bqplot.marks | FlexLine | Flexible Lines mark.
In the case of the FlexLines mark, scales for 'x' and 'y' MUST be provided.
Scales for the color and width data attributes are optional. In the case
where another data attribute than 'x' or 'y' is provided but the
corresponding scale is missing, the data attribute is ignored.
Attributes
----------
name: string (class-level attributes)
user-friendly name of the mark
colors: list of colors (default: CATEGORY10)
List of colors for the Lines
stroke_width: float (default: 1.5)
Default stroke width of the Lines
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d array)
color: numpy.ndarray or None (default: None)
Array controlling the color of the data points
width: numpy.ndarray or None (default: None)
Array controlling the widths of the Lines.
| class FlexLine(Mark):
"""Flexible Lines mark.
In the case of the FlexLines mark, scales for 'x' and 'y' MUST be provided.
Scales for the color and width data attributes are optional. In the case
where another data attribute than 'x' or 'y' is provided but the
corresponding scale is missing, the data attribute is ignored.
Attributes
----------
name: string (class-level attributes)
user-friendly name of the mark
colors: list of colors (default: CATEGORY10)
List of colors for the Lines
stroke_width: float (default: 1.5)
Default stroke width of the Lines
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d array)
color: numpy.ndarray or None (default: None)
Array controlling the color of the data points
width: numpy.ndarray or None (default: None)
Array controlling the widths of the Lines.
"""
# Mark decoration
icon = 'fa-line-chart'
name = 'Flexible lines'
# Scaled attributes
x = Array([]).tag(sync=True, scaled=True, rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
y = Array([]).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
color = Array(None, allow_none=True)\
.tag(sync=True, scaled=True, rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization).valid(array_squeeze)
width = Array(None, allow_none=True)\
.tag(sync=True, scaled=True, rtype='Number',
**array_serialization).valid(array_squeeze)
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'}
}).tag(sync=True)
stroke_width = Float(1.5).tag(sync=True, display_name='Stroke width')
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=CATEGORY10).tag(sync=True)
_view_name = Unicode('FlexLine').tag(sync=True)
_model_name = Unicode('FlexLineModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,197 | bqplot.scales | GeoScale | The base projection scale class for Map marks.
The GeoScale represents a mapping between topographic data and a
2d visual representation.
| class GeoScale(Scale):
"""The base projection scale class for Map marks.
The GeoScale represents a mapping between topographic data and a
2d visual representation.
"""
_view_name = Unicode('GeoScale').tag(sync=True)
_model_name = Unicode('GeoScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,254 | bqplot.scales | Gnomonic | A perspective projection which displays great circles as straight lines.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
clip_angle: float (default: 89.999)
Specifies the clipping circle radius to the specified angle in degrees.
| class Gnomonic(GeoScale):
"""A perspective projection which displays great circles as straight lines.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
clip_angle: float (default: 89.999)
Specifies the clipping circle radius to the specified angle in degrees.
"""
scale_factor = Float(145.0).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
precision = Float(0.1).tag(sync=True)
clip_angle = Float(89.999, min=0.0, max=360.0).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('Gnomonic').tag(sync=True)
_model_name = Unicode('GnomonicModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,311 | bqplot.marks | Graph | Graph with nodes and links.
Attributes
----------
node_data: List
list of node attributes for the graph
link_matrix: numpy.ndarray of shape(len(nodes), len(nodes))
link data passed as 2d matrix
link_data: List
list of link attributes for the graph
charge: int (default: -600)
charge of force layout. Will be ignored when x and y data attributes
are set
static: bool (default: False)
whether the graph is static or not
link_distance: float (default: 100)
link distance in pixels between nodes. Will be ignored when x and y
data attributes are set
link_type: {'arc', 'line', 'slant_line'} (default: 'arc')
Enum representing link type
directed: bool (default: True)
directed or undirected graph
highlight_links: bool (default: True)
highlights incoming and outgoing links when hovered on a node
colors: list (default: CATEGORY10)
list of node colors
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the node data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the node data points (1d array)
color: numpy.ndarray or None (default: None)
color of the node data points (1d array).
link_color: numpy.ndarray of shape(len(nodes), len(nodes))
link data passed as 2d matrix
| class Graph(Mark):
"""Graph with nodes and links.
Attributes
----------
node_data: List
list of node attributes for the graph
link_matrix: numpy.ndarray of shape(len(nodes), len(nodes))
link data passed as 2d matrix
link_data: List
list of link attributes for the graph
charge: int (default: -600)
charge of force layout. Will be ignored when x and y data attributes
are set
static: bool (default: False)
whether the graph is static or not
link_distance: float (default: 100)
link distance in pixels between nodes. Will be ignored when x and y
data attributes are set
link_type: {'arc', 'line', 'slant_line'} (default: 'arc')
Enum representing link type
directed: bool (default: True)
directed or undirected graph
highlight_links: bool (default: True)
highlights incoming and outgoing links when hovered on a node
colors: list (default: CATEGORY10)
list of node colors
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the node data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the node data points (1d array)
color: numpy.ndarray or None (default: None)
color of the node data points (1d array).
link_color: numpy.ndarray of shape(len(nodes), len(nodes))
link data passed as 2d matrix
"""
charge = Int(-600).tag(sync=True)
static = Bool(False).tag(sync=True)
link_distance = Float(100).tag(sync=True)
node_data = List().tag(sync=True)
link_data = List().tag(sync=True)
link_matrix = Array([]).tag(sync=True, rtype='Number',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 2))
link_type = Enum(['arc', 'line', 'slant_line'],
default_value='arc').tag(sync=True)
directed = Bool(True).tag(sync=True)
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=CATEGORY10).tag(sync=True,
display_name='Colors')
interactions = Dict({'hover': 'tooltip', 'click': 'select'}).tag(sync=True)
highlight_links = Bool(True).tag(sync=True)
# Scaled attributes
x = Array([], allow_none=True).tag(sync=True,
scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_dimension_bounds(1, 1))
y = Array([], allow_none=True).tag(sync=True,
scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_dimension_bounds(1, 1))
color = Array(None, allow_none=True).tag(sync=True,
scaled=True,
rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
link_color = Array([]).tag(sync=True, rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 2))
hovered_style = Dict().tag(sync=True)
unhovered_style = Dict().tag(sync=True)
hovered_point = Int(None, allow_none=True).tag(sync=True)
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'},
'link_color': {'dimension': 'link_color'}
}).tag(sync=True)
_model_name = Unicode('GraphModel').tag(sync=True)
_view_name = Unicode('Graph').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,376 | bqplot.marks | GridHeatMap | GridHeatMap mark.
Alignment: The tiles can be aligned so that the data matches either the
start, the end or the midpoints of the tiles. This is controlled by the
align attribute.
Suppose the data passed is a m-by-n matrix. If the scale for the rows is
Ordinal, then alignment is by default the mid points. For a non-ordinal
scale, the data cannot be aligned to the mid points of the rectangles.
If it is not ordinal, then two cases arise. If the number of rows passed
is m, then align attribute can be used. If the number of rows passed
is m+1, then the data are the boundaries of the m rectangles.
If rows and columns are not passed, and scales for them are also
not passed, then ordinal scales are generated for the rows and columns.
Attributes
----------
row_align: Enum(['start', 'end'])
This is only valid if the number of entries in `row` exactly match the
number of rows in `color` and the `row_scale` is not `OrdinalScale`.
`start` aligns the row values passed to be aligned with the start
of the tiles and `end` aligns the row values to the end of the tiles.
column_align: Enum(['start', end'])
This is only valid if the number of entries in `column` exactly
match the number of columns in `color` and the `column_scale` is
not `OrdinalScale`. `start` aligns the column values passed to
be aligned with the start of the tiles and `end` aligns the
column values to the end of the tiles.
anchor_style: dict (default: {})
Controls the style for the element which serves as the anchor during
selection.
display_format: string (default: None)
format for displaying values. If None, then values are not displayed
font_style: dict
CSS style for the text of each cell
Data Attributes
color: numpy.ndarray or None (default: None)
color of the data points (2d array). The number of elements in
this array correspond to the number of cells created in the heatmap.
row: numpy.ndarray or None (default: None)
labels for the rows of the `color` array passed. The length of
this can be no more than 1 away from the number of rows in `color`.
This is a scaled attribute and can be used to affect the height of the
cells as the entries of `row` can indicate the start or the end points
of the cells. Refer to the property `row_align`.
If this property is None, then a uniformly spaced grid is generated in
the row direction.
column: numpy.ndarray or None (default: None)
labels for the columns of the `color` array passed. The length of
this can be no more than 1 away from the number of columns in `color`
This is a scaled attribute and can be used to affect the width of the
cells as the entries of `column` can indicate the start or the
end points of the cells. Refer to the property `column_align`.
If this property is None, then a uniformly spaced grid is generated in
the column direction.
| class GridHeatMap(Mark):
"""GridHeatMap mark.
Alignment: The tiles can be aligned so that the data matches either the
start, the end or the midpoints of the tiles. This is controlled by the
align attribute.
Suppose the data passed is a m-by-n matrix. If the scale for the rows is
Ordinal, then alignment is by default the mid points. For a non-ordinal
scale, the data cannot be aligned to the mid points of the rectangles.
If it is not ordinal, then two cases arise. If the number of rows passed
is m, then align attribute can be used. If the number of rows passed
is m+1, then the data are the boundaries of the m rectangles.
If rows and columns are not passed, and scales for them are also
not passed, then ordinal scales are generated for the rows and columns.
Attributes
----------
row_align: Enum(['start', 'end'])
This is only valid if the number of entries in `row` exactly match the
number of rows in `color` and the `row_scale` is not `OrdinalScale`.
`start` aligns the row values passed to be aligned with the start
of the tiles and `end` aligns the row values to the end of the tiles.
column_align: Enum(['start', end'])
This is only valid if the number of entries in `column` exactly
match the number of columns in `color` and the `column_scale` is
not `OrdinalScale`. `start` aligns the column values passed to
be aligned with the start of the tiles and `end` aligns the
column values to the end of the tiles.
anchor_style: dict (default: {})
Controls the style for the element which serves as the anchor during
selection.
display_format: string (default: None)
format for displaying values. If None, then values are not displayed
font_style: dict
CSS style for the text of each cell
Data Attributes
color: numpy.ndarray or None (default: None)
color of the data points (2d array). The number of elements in
this array correspond to the number of cells created in the heatmap.
row: numpy.ndarray or None (default: None)
labels for the rows of the `color` array passed. The length of
this can be no more than 1 away from the number of rows in `color`.
This is a scaled attribute and can be used to affect the height of the
cells as the entries of `row` can indicate the start or the end points
of the cells. Refer to the property `row_align`.
If this property is None, then a uniformly spaced grid is generated in
the row direction.
column: numpy.ndarray or None (default: None)
labels for the columns of the `color` array passed. The length of
this can be no more than 1 away from the number of columns in `color`
This is a scaled attribute and can be used to affect the width of the
cells as the entries of `column` can indicate the start or the
end points of the cells. Refer to the property `column_align`.
If this property is None, then a uniformly spaced grid is generated in
the column direction.
"""
# Scaled attributes
row = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
column = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
color = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 2))
# Other attributes
scales_metadata = Dict({
'row': {'orientation': 'vertical', 'dimension': 'y'},
'column': {'orientation': 'horizontal', 'dimension': 'x'},
'color': {'dimension': 'color'}
}).tag(sync=True)
row_align = Enum(['start', 'end'], default_value='start').tag(sync=True)
column_align = Enum(['start', 'end'], default_value='start').tag(sync=True)
null_color = Color('black', allow_none=True).tag(sync=True)
stroke = Color('black', allow_none=True).tag(sync=True)
opacity = Float(1.0, min=0.2, max=1).tag(sync=True, display_name='Opacity')
anchor_style = Dict().tag(sync=True)
display_format = Unicode(default_value=None, allow_none=True)\
.tag(sync=True)
font_style = Dict().tag(sync=True)
def __init__(self, **kwargs):
# Adding scales in case they are not passed too.
scales = kwargs.pop('scales', {})
if scales.get('row', None) is None:
row_scale = OrdinalScale(reverse=True)
scales['row'] = row_scale
if scales.get('column', None) is None:
column_scale = OrdinalScale()
scales['column'] = column_scale
kwargs['scales'] = scales
super(GridHeatMap, self).__init__(**kwargs)
@validate('row')
def _validate_row(self, proposal):
row = proposal.value
if row is None:
return row
color = np.asarray(self.color)
n_rows = color.shape[0]
if len(row) != n_rows and len(row) != n_rows + 1 and len(row) != n_rows - 1:
raise TraitError('row must be an array of size color.shape[0]')
return row
@validate('column')
def _validate_column(self, proposal):
column = proposal.value
if column is None:
return column
color = np.asarray(self.color)
n_columns = color.shape[1]
if len(column) != n_columns and len(column) != n_columns + 1 and len(column) != n_columns - 1:
raise TraitError('column must be an array of size color.shape[1]')
return column
_view_name = Unicode('GridHeatMap').tag(sync=True)
_model_name = Unicode('GridHeatMapModel').tag(sync=True)
| (**kwargs) |
33,381 | bqplot.marks | __init__ | null | def __init__(self, **kwargs):
# Adding scales in case they are not passed too.
scales = kwargs.pop('scales', {})
if scales.get('row', None) is None:
row_scale = OrdinalScale(reverse=True)
scales['row'] = row_scale
if scales.get('column', None) is None:
column_scale = OrdinalScale()
scales['column'] = column_scale
kwargs['scales'] = scales
super(GridHeatMap, self).__init__(**kwargs)
| (self, **kwargs) |
33,441 | bqplot.marks | HeatMap | HeatMap mark.
Attributes
----------
Data Attributes
color: numpy.ndarray or None (default: None)
color of the data points (2d array).
x: numpy.ndarray or None (default: None)
labels for the columns of the `color` array passed. The length of
this has to be the number of columns in `color`.
This is a scaled attribute.
y: numpy.ndarray or None (default: None)
labels for the rows of the `color` array passed. The length of this has
to be the number of rows in `color`.
This is a scaled attribute.
| class HeatMap(Mark):
"""HeatMap mark.
Attributes
----------
Data Attributes
color: numpy.ndarray or None (default: None)
color of the data points (2d array).
x: numpy.ndarray or None (default: None)
labels for the columns of the `color` array passed. The length of
this has to be the number of columns in `color`.
This is a scaled attribute.
y: numpy.ndarray or None (default: None)
labels for the rows of the `color` array passed. The length of this has
to be the number of rows in `color`.
This is a scaled attribute.
"""
# Scaled attributes
x = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
y = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
color = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(2, 2))
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'}
}).tag(sync=True)
null_color = Color('black', allow_none=True).tag(sync=True)
def __init__(self, **kwargs):
data = kwargs['color']
kwargs.setdefault('x', range(data.shape[1]))
kwargs.setdefault('y', range(data.shape[0]))
scales = kwargs.pop('scales', {})
# Adding default x and y data if they are not passed.
# Adding scales in case they are not passed too.
if scales.get('x', None) is None:
x_scale = LinearScale()
scales['x'] = x_scale
if scales.get('y', None) is None:
y_scale = LinearScale()
scales['y'] = y_scale
kwargs['scales'] = scales
super(HeatMap, self).__init__(**kwargs)
_view_name = Unicode('HeatMap').tag(sync=True)
_model_name = Unicode('HeatMapModel').tag(sync=True)
| (**kwargs) |
33,446 | bqplot.marks | __init__ | null | def __init__(self, **kwargs):
data = kwargs['color']
kwargs.setdefault('x', range(data.shape[1]))
kwargs.setdefault('y', range(data.shape[0]))
scales = kwargs.pop('scales', {})
# Adding default x and y data if they are not passed.
# Adding scales in case they are not passed too.
if scales.get('x', None) is None:
x_scale = LinearScale()
scales['x'] = x_scale
if scales.get('y', None) is None:
y_scale = LinearScale()
scales['y'] = y_scale
kwargs['scales'] = scales
super(HeatMap, self).__init__(**kwargs)
| (self, **kwargs) |
33,506 | bqplot.marks | Hist | Histogram mark.
In the case of the Hist mark, scales for 'sample' and 'count' MUST be
provided.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
bins: nonnegative int (default: 10)
number of bins in the histogram
normalized: bool (default: False)
Boolean attribute to return normalized values which
sum to 1 or direct counts for the `count` attribute. The scale of
`count` attribute is determined by the value of this flag.
colors: list of colors (default: ['steelblue'])
List of colors of the Histogram. If the list is shorter than the number
of bins, the colors are reused.
stroke: Color or None (default: None)
Stroke color of the histogram
opacities: list of floats (default: [])
Opacity for the bins of the histogram. Defaults to 1 when the list
is too short, or the element of the list is set to None.
midpoints: list (default: [])
midpoints of the bins of the histogram. It is a read-only attribute.
Data Attributes
sample: numpy.ndarray (default: [])
sample of which the histogram must be computed.
count: numpy.ndarray (read-only)
number of sample points per bin. It is a read-only attribute.
Notes
-----
The fields which can be passed to the default tooltip are:
midpoint: mid-point of the bin related to the rectangle hovered on
count: number of elements in the bin hovered on
bin_start: start point of the bin
bin-end: end point of the bin
index: index of the bin
| class Hist(Mark):
"""Histogram mark.
In the case of the Hist mark, scales for 'sample' and 'count' MUST be
provided.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
bins: nonnegative int (default: 10)
number of bins in the histogram
normalized: bool (default: False)
Boolean attribute to return normalized values which
sum to 1 or direct counts for the `count` attribute. The scale of
`count` attribute is determined by the value of this flag.
colors: list of colors (default: ['steelblue'])
List of colors of the Histogram. If the list is shorter than the number
of bins, the colors are reused.
stroke: Color or None (default: None)
Stroke color of the histogram
opacities: list of floats (default: [])
Opacity for the bins of the histogram. Defaults to 1 when the list
is too short, or the element of the list is set to None.
midpoints: list (default: [])
midpoints of the bins of the histogram. It is a read-only attribute.
Data Attributes
sample: numpy.ndarray (default: [])
sample of which the histogram must be computed.
count: numpy.ndarray (read-only)
number of sample points per bin. It is a read-only attribute.
Notes
-----
The fields which can be passed to the default tooltip are:
midpoint: mid-point of the bin related to the rectangle hovered on
count: number of elements in the bin hovered on
bin_start: start point of the bin
bin-end: end point of the bin
index: index of the bin
"""
# Mark decoration
icon = 'fa-signal'
name = 'Histogram'
# Scaled attributes
sample = Array([]).tag(sync=True, display_name='Sample',
scaled=True, rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
count = Array([], read_only=True).tag(sync=True,
display_name='Count',
scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze)
normalized = Bool().tag(sync=True)
# Other attributes
scales_metadata = Dict({
'sample': {'orientation': 'horizontal', 'dimension': 'x'},
'count': {'orientation': 'vertical', 'dimension': 'y'}
}).tag(sync=True)
bins = Int(10).tag(sync=True, display_name='Number of bins')
midpoints = List(read_only=True).tag(sync=True, display_name='Mid points')
# midpoints is a read-only attribute that is set when the mark is drawn
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=['steelblue'])\
.tag(sync=True, display_name='Colors')
stroke = Color(None, allow_none=True).tag(sync=True)
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
_view_name = Unicode('Hist').tag(sync=True)
_model_name = Unicode('HistModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,571 | bqplot.marks | Image | Image mark, based on the ipywidgets image
If no scales are passed, uses the parent Figure scales.
Attributes
----------
image: Instance of ipywidgets.Image
Image to be displayed
Data Attributes
x: tuple (default: (0, 1))
abscissas of the left and right-hand side of the image
in the format (x0, x1)
y: tuple (default: (0, 1))
ordinates of the bottom and top side of the image
in the format (y0, y1)
| class Image(Mark):
"""Image mark, based on the ipywidgets image
If no scales are passed, uses the parent Figure scales.
Attributes
----------
image: Instance of ipywidgets.Image
Image to be displayed
Data Attributes
x: tuple (default: (0, 1))
abscissas of the left and right-hand side of the image
in the format (x0, x1)
y: tuple (default: (0, 1))
ordinates of the bottom and top side of the image
in the format (y0, y1)
"""
_view_name = Unicode('Image').tag(sync=True)
_model_name = Unicode('ImageModel').tag(sync=True)
image = Instance(widgets.Image).tag(sync=True, **widget_serialization)
pixelated = Bool(True).tag(sync=True)
x = Array(default_value=(0, 1)).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, shape(2))
y = Array(default_value=(0, 1)).tag(sync=True, scaled=True,
rtype='Number',
atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, shape(2))
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
}).tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,685 | bqplot.interacts | Interaction | The base interaction class.
An interaction is a mouse interaction layer for a figure that requires the
capture of all mouse events on the plot area. A consequence is that one can
allow only one interaction at any time on a figure.
An interaction can be associated with features such as selection or
manual change of specific mark. Although, they differ from the so called
'mark interactions' in that they do not rely on knowing whether a specific
element of the mark are hovered by the mouse.
Attributes
----------
types: dict (class-level attribute) representing interaction types
A registry of existing interaction types.
| class Interaction(Widget):
"""The base interaction class.
An interaction is a mouse interaction layer for a figure that requires the
capture of all mouse events on the plot area. A consequence is that one can
allow only one interaction at any time on a figure.
An interaction can be associated with features such as selection or
manual change of specific mark. Although, they differ from the so called
'mark interactions' in that they do not rely on knowing whether a specific
element of the mark are hovered by the mouse.
Attributes
----------
types: dict (class-level attribute) representing interaction types
A registry of existing interaction types.
"""
types = {}
_view_name = Unicode('Interaction').tag(sync=True)
_model_name = Unicode('BaseModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
# We cannot display an interaction outside of a figure
_ipython_display_ = None
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,742 | bqplot.marks | Label | Label mark.
Attributes
----------
x_offset: int (default: 0)
horizontal offset in pixels from the stated x location
y_offset: int (default: 0)
vertical offset in pixels from the stated y location
text: string (default: '')
text to be displayed
default_size: string (default: '14px')
font size in px, em or ex
font_weight: {'bold', 'normal', 'bolder'}
font weight of the caption
drag_size: nonnegative float (default: 1.)
Ratio of the size of the dragged label font size to the default
label font size.
align: {'start', 'middle', 'end'}
alignment of the text with respect to the provided location
enable_move: Bool (default: False)
Enable the label to be moved by dragging. Refer to restrict_x,
restrict_y for more options.
restrict_x: bool (default: False)
Restricts movement of the label to only along the x axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the label cannot be moved.
restrict_y: bool (default: False)
Restricts movement of the label to only along the y axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the label cannot be moved.
Data Attributes
x: numpy.ndarray (default: [])
horizontal position of the labels, in data coordinates or in
figure coordinates
y: numpy.ndarray (default: [])
vertical position of the labels, in data coordinates or in
figure coordinates
color: numpy.ndarray or None (default: None)
label colors
size: numpy.ndarray or None (default: None)
label sizes
rotation: numpy.ndarray or None (default: None)
label rotations
opacity: numpy.ndarray or None (default: None)
label opacities
| class Label(_ScatterBase):
"""Label mark.
Attributes
----------
x_offset: int (default: 0)
horizontal offset in pixels from the stated x location
y_offset: int (default: 0)
vertical offset in pixels from the stated y location
text: string (default: '')
text to be displayed
default_size: string (default: '14px')
font size in px, em or ex
font_weight: {'bold', 'normal', 'bolder'}
font weight of the caption
drag_size: nonnegative float (default: 1.)
Ratio of the size of the dragged label font size to the default
label font size.
align: {'start', 'middle', 'end'}
alignment of the text with respect to the provided location
enable_move: Bool (default: False)
Enable the label to be moved by dragging. Refer to restrict_x,
restrict_y for more options.
restrict_x: bool (default: False)
Restricts movement of the label to only along the x axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the label cannot be moved.
restrict_y: bool (default: False)
Restricts movement of the label to only along the y axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the label cannot be moved.
Data Attributes
x: numpy.ndarray (default: [])
horizontal position of the labels, in data coordinates or in
figure coordinates
y: numpy.ndarray (default: [])
vertical position of the labels, in data coordinates or in
figure coordinates
color: numpy.ndarray or None (default: None)
label colors
size: numpy.ndarray or None (default: None)
label sizes
rotation: numpy.ndarray or None (default: None)
label rotations
opacity: numpy.ndarray or None (default: None)
label opacities
"""
# Mark decoration
icon = 'fa-font'
name = 'Labels'
# Other attributes
x_offset = Int(0).tag(sync=True)
y_offset = Int(0).tag(sync=True)
colors = List(trait=Color(default_value=None,
allow_none=True),
default_value=CATEGORY10)\
.tag(sync=True, display_name='Colors')
rotate_angle = Float(0.0).tag(sync=True)
text = Array(None, allow_none=True)\
.tag(sync=True, **array_serialization).valid(array_squeeze)
default_size = Float(16.).tag(sync=True)
drag_size = Float(1.).tag(sync=True)
font_unit = Enum(['px', 'em', 'pt', '%'],
default_value='px').tag(sync=True)
font_weight = Enum(['bold', 'normal', 'bolder'],
default_value='bold').tag(sync=True)
align = Enum(['start', 'middle', 'end'],
default_value='start').tag(sync=True)
_view_name = Unicode('Label').tag(sync=True)
_model_name = Unicode('LabelModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,747 | bqplot.marks | __init__ | null | def __init__(self, **kwargs):
self._drag_start_handlers = CallbackDispatcher()
self._drag_handlers = CallbackDispatcher()
self._drag_end_handlers = CallbackDispatcher()
super(_ScatterBase, self).__init__(**kwargs)
self._name_to_handler.update({
'drag_start': self._drag_start_handlers,
'drag_end': self._drag_end_handlers,
'drag': self._drag_handlers
})
| (self, **kwargs) |
33,786 | bqplot.marks | on_drag | null | def on_drag(self, callback, remove=False):
self._drag_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
33,787 | bqplot.marks | on_drag_end | null | def on_drag_end(self, callback, remove=False):
self._drag_end_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
33,788 | bqplot.marks | on_drag_start | null | def on_drag_start(self, callback, remove=False):
self._drag_start_handlers.register_callback(callback, remove=remove)
| (self, callback, remove=False) |
33,810 | ipywidgets.widgets.widget_layout | Layout | Layout specification
Defines a layout that can be expressed using CSS. Supports a subset of
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
When a property is also accessible via a shorthand property, we only
expose the shorthand.
For example:
- ``flex-grow``, ``flex-shrink`` and ``flex-basis`` are bound to ``flex``.
- ``flex-wrap`` and ``flex-direction`` are bound to ``flex-flow``.
- ``margin-[top/bottom/left/right]`` values are bound to ``margin``, etc.
| class Layout(Widget):
"""Layout specification
Defines a layout that can be expressed using CSS. Supports a subset of
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
When a property is also accessible via a shorthand property, we only
expose the shorthand.
For example:
- ``flex-grow``, ``flex-shrink`` and ``flex-basis`` are bound to ``flex``.
- ``flex-wrap`` and ``flex-direction`` are bound to ``flex-flow``.
- ``margin-[top/bottom/left/right]`` values are bound to ``margin``, etc.
"""
_view_name = Unicode('LayoutView').tag(sync=True)
_view_module = Unicode('@jupyter-widgets/base').tag(sync=True)
_view_module_version = Unicode(__jupyter_widgets_base_version__).tag(sync=True)
_model_name = Unicode('LayoutModel').tag(sync=True)
# Keys
align_content = CaselessStrEnum(['flex-start', 'flex-end', 'center', 'space-between',
'space-around', 'space-evenly', 'stretch'] + CSS_PROPERTIES, allow_none=True, help="The align-content CSS attribute.").tag(sync=True)
align_items = CaselessStrEnum(['flex-start', 'flex-end', 'center',
'baseline', 'stretch'] + CSS_PROPERTIES, allow_none=True, help="The align-items CSS attribute.").tag(sync=True)
align_self = CaselessStrEnum(['auto', 'flex-start', 'flex-end',
'center', 'baseline', 'stretch'] + CSS_PROPERTIES, allow_none=True, help="The align-self CSS attribute.").tag(sync=True)
border_top = Unicode(None, allow_none=True, help="The border top CSS attribute.").tag(sync=True)
border_right = Unicode(None, allow_none=True, help="The border right CSS attribute.").tag(sync=True)
border_bottom = Unicode(None, allow_none=True, help="The border bottom CSS attribute.").tag(sync=True)
border_left = Unicode(None, allow_none=True, help="The border left CSS attribute.").tag(sync=True)
bottom = Unicode(None, allow_none=True, help="The bottom CSS attribute.").tag(sync=True)
display = Unicode(None, allow_none=True, help="The display CSS attribute.").tag(sync=True)
flex = Unicode(None, allow_none=True, help="The flex CSS attribute.").tag(sync=True)
flex_flow = Unicode(None, allow_none=True, help="The flex-flow CSS attribute.").tag(sync=True)
height = Unicode(None, allow_none=True, help="The height CSS attribute.").tag(sync=True)
justify_content = CaselessStrEnum(['flex-start', 'flex-end', 'center',
'space-between', 'space-around'] + CSS_PROPERTIES, allow_none=True, help="The justify-content CSS attribute.").tag(sync=True)
justify_items = CaselessStrEnum(['flex-start', 'flex-end', 'center'] + CSS_PROPERTIES,
allow_none=True, help="The justify-items CSS attribute.").tag(sync=True)
left = Unicode(None, allow_none=True, help="The left CSS attribute.").tag(sync=True)
margin = Unicode(None, allow_none=True, help="The margin CSS attribute.").tag(sync=True)
max_height = Unicode(None, allow_none=True, help="The max-height CSS attribute.").tag(sync=True)
max_width = Unicode(None, allow_none=True, help="The max-width CSS attribute.").tag(sync=True)
min_height = Unicode(None, allow_none=True, help="The min-height CSS attribute.").tag(sync=True)
min_width = Unicode(None, allow_none=True, help="The min-width CSS attribute.").tag(sync=True)
overflow = Unicode(None, allow_none=True, help="The overflow CSS attribute.").tag(sync=True)
order = Unicode(None, allow_none=True, help="The order CSS attribute.").tag(sync=True)
padding = Unicode(None, allow_none=True, help="The padding CSS attribute.").tag(sync=True)
right = Unicode(None, allow_none=True, help="The right CSS attribute.").tag(sync=True)
top = Unicode(None, allow_none=True, help="The top CSS attribute.").tag(sync=True)
visibility = CaselessStrEnum(['visible', 'hidden']+CSS_PROPERTIES, allow_none=True, help="The visibility CSS attribute.").tag(sync=True)
width = Unicode(None, allow_none=True, help="The width CSS attribute.").tag(sync=True)
object_fit = CaselessStrEnum(['contain', 'cover', 'fill', 'scale-down', 'none'], allow_none=True, help="The object-fit CSS attribute.").tag(sync=True)
object_position = Unicode(None, allow_none=True, help="The object-position CSS attribute.").tag(sync=True)
grid_auto_columns = Unicode(None, allow_none=True, help="The grid-auto-columns CSS attribute.").tag(sync=True)
grid_auto_flow = CaselessStrEnum(['column','row','row dense','column dense']+ CSS_PROPERTIES, allow_none=True, help="The grid-auto-flow CSS attribute.").tag(sync=True)
grid_auto_rows = Unicode(None, allow_none=True, help="The grid-auto-rows CSS attribute.").tag(sync=True)
grid_gap = Unicode(None, allow_none=True, help="The grid-gap CSS attribute.").tag(sync=True)
grid_template_rows = Unicode(None, allow_none=True, help="The grid-template-rows CSS attribute.").tag(sync=True)
grid_template_columns = Unicode(None, allow_none=True, help="The grid-template-columns CSS attribute.").tag(sync=True)
grid_template_areas = Unicode(None, allow_none=True, help="The grid-template-areas CSS attribute.").tag(sync=True)
grid_row = Unicode(None, allow_none=True, help="The grid-row CSS attribute.").tag(sync=True)
grid_column = Unicode(None, allow_none=True, help="The grid-column CSS attribute.").tag(sync=True)
grid_area = Unicode(None, allow_none=True, help="The grid-area CSS attribute.").tag(sync=True)
def __init__(self, **kwargs):
if 'border' in kwargs:
border = kwargs.pop('border')
for side in ['top', 'right', 'bottom', 'left']:
kwargs.setdefault(f'border_{side}', border)
super().__init__(**kwargs)
def _get_border(self):
"""
`border` property getter. Return the common value of all side
borders if they are identical. Otherwise return None.
"""
found = None
for side in ['top', 'right', 'bottom', 'left']:
if not hasattr(self, "border_" + side):
return
old, found = found, getattr(self, "border_" + side)
if found is None or (old is not None and found != old):
return
return found
def _set_border(self, border):
"""
`border` property setter. Set all 4 sides to `border` string.
"""
for side in ['top', 'right', 'bottom', 'left']:
setattr(self, "border_" + side, border)
border = property(_get_border, _set_border)
| (**kwargs) |
33,815 | ipywidgets.widgets.widget_layout | __init__ | null | def __init__(self, **kwargs):
if 'border' in kwargs:
border = kwargs.pop('border')
for side in ['top', 'right', 'bottom', 'left']:
kwargs.setdefault(f'border_{side}', border)
super().__init__(**kwargs)
| (self, **kwargs) |
33,823 | ipywidgets.widgets.widget_layout | _get_border |
`border` property getter. Return the common value of all side
borders if they are identical. Otherwise return None.
| def _get_border(self):
"""
`border` property getter. Return the common value of all side
borders if they are identical. Otherwise return None.
"""
found = None
for side in ['top', 'right', 'bottom', 'left']:
if not hasattr(self, "border_" + side):
return
old, found = found, getattr(self, "border_" + side)
if found is None or (old is not None and found != old):
return
return found
| (self) |
33,837 | ipywidgets.widgets.widget_layout | _set_border |
`border` property setter. Set all 4 sides to `border` string.
| def _set_border(self, border):
"""
`border` property setter. Set all 4 sides to `border` string.
"""
for side in ['top', 'right', 'bottom', 'left']:
setattr(self, "border_" + side, border)
| (self, border) |
33,869 | bqplot.scales | LinearScale | A linear scale.
An affine mapping from a numerical domain to a numerical range.
Attributes
----------
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
rtype: string (class-level attribute)
This attribute should not be modified. The range type of a linear
scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
precedence: int (class-level attribute, default_value=2)
attribute used to determine which scale takes precedence in cases when
two or more scales have the same rtype and dtype.
default_value is 2 because for the same range and domain types,
LinearScale should take precedence.
stabilized: bool (default: False)
if set to False, the domain of the scale is tied to the data range
if set to True, the domain of the scale is updated only when
the data range is beyond certain thresholds, given by the attributes
mid_range and min_range.
mid_range: float (default: 0.8)
Proportion of the range that is spanned initially.
Used only if stabilized is True.
min_range: float (default: 0.6)
Minimum proportion of the range that should be spanned by the data.
If the data span falls beneath that level, the scale is reset.
min_range must be <= mid_range.
Used only if stabilized is True.
| class LinearScale(Scale):
"""A linear scale.
An affine mapping from a numerical domain to a numerical range.
Attributes
----------
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
rtype: string (class-level attribute)
This attribute should not be modified. The range type of a linear
scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
precedence: int (class-level attribute, default_value=2)
attribute used to determine which scale takes precedence in cases when
two or more scales have the same rtype and dtype.
default_value is 2 because for the same range and domain types,
LinearScale should take precedence.
stabilized: bool (default: False)
if set to False, the domain of the scale is tied to the data range
if set to True, the domain of the scale is updated only when
the data range is beyond certain thresholds, given by the attributes
mid_range and min_range.
mid_range: float (default: 0.8)
Proportion of the range that is spanned initially.
Used only if stabilized is True.
min_range: float (default: 0.6)
Minimum proportion of the range that should be spanned by the data.
If the data span falls beneath that level, the scale is reset.
min_range must be <= mid_range.
Used only if stabilized is True.
"""
rtype = 'Number'
dtype = np.number
precedence = 2
min = Float(None, allow_none=True).tag(sync=True)
max = Float(None, allow_none=True).tag(sync=True)
stabilized = Bool(False).tag(sync=True)
min_range = Float(0.6, min=0.0, max=1.0).tag(sync=True)
mid_range = Float(0.8, min=0.1, max=1.0).tag(sync=True)
_view_name = Unicode('LinearScale').tag(sync=True)
_model_name = Unicode('LinearScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
33,926 | bqplot.marks | Lines | Lines mark.
In the case of the Lines mark, scales for 'x' and 'y' MUST be provided.
Attributes
----------
icon: string (class-level attribute)
Font-awesome icon for the respective mark
name: string (class-level attribute)
User-friendly name of the mark
colors: list of colors (default: CATEGORY10)
List of colors of the Lines. If the list is shorter than the number
of lines, the colors are reused.
close_path: bool (default: False)
Whether to close the paths or not.
fill: {'none', 'bottom', 'top', 'inside', 'between'}
Fill in the area defined by the curves
fill_colors: list of colors (default: [])
Fill colors for the areas. Defaults to stroke-colors when no
color provided
opacities: list of floats (default: [])
Opacity for the lines and patches. Defaults to 1 when the list is too
short, or the element of the list is set to None.
fill_opacities: list of floats (default: [])
Opacity for the areas. Defaults to 1 when the list is too
short, or the element of the list is set to None.
stroke_width: float (default: 2)
Stroke width of the Lines
labels_visibility: {'none', 'label'}
Visibility of the curve labels
curves_subset: list of integers or None (default: [])
If set to None, all the lines are displayed. Otherwise, only the items
in the list will have full opacity, while others will be faded.
line_style: {'solid', 'dashed', 'dotted', 'dash_dotted'}
Line style.
interpolation: {'linear', 'basis', 'basis-open', 'basis-closed', 'bundle', 'cardinal', 'cardinal-open',
'cardinal-closed', 'monotone', 'step-before', 'step-after'}
Interpolation scheme used for interpolation between the data points
provided. Please refer to the svg interpolate documentation for details
about the different interpolation schemes.
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus', 'crosshair', 'point'}
Marker shape
marker_size: nonnegative int (default: 64)
Default marker size in pixels
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d or 2d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d or 2d array)
color: numpy.ndarray (default: None)
colors of the different lines based on data. If it is [], then the
colors from the colors attribute are used. Each line has a single color
and if the size of colors is less than the number of lines, the
remaining lines are given the default colors.
Notes
-----
The fields which can be passed to the default tooltip are:
name: label of the line
index: index of the line being hovered on
color: data attribute for the color of the line
The following are the events which can trigger interactions:
click: left click of the mouse
hover: mouse-over an element
The following are the interactions which can be linked to the above events:
tooltip: display tooltip
| class Lines(Mark):
"""Lines mark.
In the case of the Lines mark, scales for 'x' and 'y' MUST be provided.
Attributes
----------
icon: string (class-level attribute)
Font-awesome icon for the respective mark
name: string (class-level attribute)
User-friendly name of the mark
colors: list of colors (default: CATEGORY10)
List of colors of the Lines. If the list is shorter than the number
of lines, the colors are reused.
close_path: bool (default: False)
Whether to close the paths or not.
fill: {'none', 'bottom', 'top', 'inside', 'between'}
Fill in the area defined by the curves
fill_colors: list of colors (default: [])
Fill colors for the areas. Defaults to stroke-colors when no
color provided
opacities: list of floats (default: [])
Opacity for the lines and patches. Defaults to 1 when the list is too
short, or the element of the list is set to None.
fill_opacities: list of floats (default: [])
Opacity for the areas. Defaults to 1 when the list is too
short, or the element of the list is set to None.
stroke_width: float (default: 2)
Stroke width of the Lines
labels_visibility: {'none', 'label'}
Visibility of the curve labels
curves_subset: list of integers or None (default: [])
If set to None, all the lines are displayed. Otherwise, only the items
in the list will have full opacity, while others will be faded.
line_style: {'solid', 'dashed', 'dotted', 'dash_dotted'}
Line style.
interpolation: {'linear', 'basis', 'basis-open', 'basis-closed', 'bundle', 'cardinal', 'cardinal-open',
'cardinal-closed', 'monotone', 'step-before', 'step-after'}
Interpolation scheme used for interpolation between the data points
provided. Please refer to the svg interpolate documentation for details
about the different interpolation schemes.
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus', 'crosshair', 'point'}
Marker shape
marker_size: nonnegative int (default: 64)
Default marker size in pixels
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d or 2d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d or 2d array)
color: numpy.ndarray (default: None)
colors of the different lines based on data. If it is [], then the
colors from the colors attribute are used. Each line has a single color
and if the size of colors is less than the number of lines, the
remaining lines are given the default colors.
Notes
-----
The fields which can be passed to the default tooltip are:
name: label of the line
index: index of the line being hovered on
color: data attribute for the color of the line
The following are the events which can trigger interactions:
click: left click of the mouse
hover: mouse-over an element
The following are the interactions which can be linked to the above events:
tooltip: display tooltip
"""
# Mark decoration
icon = 'fa-line-chart'
name = 'Lines'
# Scaled attributes
x = Array([]).tag(sync=True, scaled=True,
rtype='Number', atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 2), array_supported_kinds())
y = Array([]).tag(sync=True, scaled=True,
rtype='Number', atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 2), array_supported_kinds())
color = Array(None, allow_none=True).tag(sync=True,
scaled=True,
rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'}
}).tag(sync=True)
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=CATEGORY10)\
.tag(sync=True, display_name='Colors')
fill_colors = List(trait=Color(default_value=None, allow_none=True))\
.tag(sync=True, display_name='Fill colors')
stroke_width = Float(2.0).tag(sync=True, display_name='Stroke width')
labels_visibility = Enum(['none', 'label'], default_value='none')\
.tag(sync=True, display_name='Labels visibility')
curves_subset = List().tag(sync=True)
line_style = Enum(['solid', 'dashed', 'dotted', 'dash_dotted'],
default_value='solid')\
.tag(sync=True, display_name='Line style')
# TODO: Only Lines have interpolatoin but we can extend for other types of graphs
interpolation = Enum(['linear', 'basis', 'basis-open',
'basis-closed', 'bundle',
'cardinal', 'cardinal-open',
'cardinal-closed', 'monotone', 'step-before',
'step-after'],
default_value='linear')\
.tag(sync=True, display_name='Interpolation')
close_path = Bool().tag(sync=True, display_name='Close path')
fill = Enum(['none', 'bottom', 'top', 'inside', 'between'],
default_value='none')\
.tag(sync=True, display_name='Fill')
marker = Enum(['circle', 'cross', 'diamond', 'square', 'triangle-down',
'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus',
'crosshair', 'point'],
default_value=None, allow_none=True)\
.tag(sync=True, display_name='Marker')
marker_size = Int(64).tag(sync=True, display_name='Default size')
opacities = List().tag(sync=True, display_name='Opacity')
fill_opacities = List().tag(sync=True, display_name='Fill Opacity')
_view_name = Unicode('Lines').tag(sync=True)
_model_name = Unicode('LinesModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,021 | bqplot.scales | LogScale | A log scale.
A logarithmic mapping from a numerical domain to a numerical range.
Attributes
----------
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
| class LogScale(Scale):
"""A log scale.
A logarithmic mapping from a numerical domain to a numerical range.
Attributes
----------
min: float or None (default: None)
if not None, min is the minimal value of the domain
max: float or None (default: None)
if not None, max is the maximal value of the domain
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
"""
rtype = 'Number'
dtype = np.number
min = Float(None, allow_none=True).tag(sync=True)
max = Float(None, allow_none=True).tag(sync=True)
_view_name = Unicode('LogScale').tag(sync=True)
_model_name = Unicode('LogScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,078 | bqplot.marks | Map | Map mark.
Attributes
----------
colors: Dict (default: {})
default colors for items of the map when no color data is passed.
The dictionary should be indexed by the id of the element and have
the corresponding colors as values. The key `default_color`
controls the items for which no color is specified.
selected_styles: Dict (default: {'selected_fill': 'Red',
'selected_stroke': None, 'selected_stroke_width': 2.0})
Dictionary containing the styles for selected subunits
hovered_styles: Dict (default: {'hovered_fill': 'Orange',
'hovered_stroke': None, 'hovered_stroke_width': 2.0})
Dictionary containing the styles for hovered subunits
hover_highlight: bool (default: True)
boolean to control if the map should be aware of which country is being
hovered on.
map_data: dict (default: topo_load("map_data/WorldMap.json"))
a topojson-formatted dictionary with the objects to map under the key
'subunits'.
Data Attributes
color: Dict or None (default: None)
dictionary containing the data associated with every country for the
color scale
| class Map(Mark):
"""Map mark.
Attributes
----------
colors: Dict (default: {})
default colors for items of the map when no color data is passed.
The dictionary should be indexed by the id of the element and have
the corresponding colors as values. The key `default_color`
controls the items for which no color is specified.
selected_styles: Dict (default: {'selected_fill': 'Red',
'selected_stroke': None, 'selected_stroke_width': 2.0})
Dictionary containing the styles for selected subunits
hovered_styles: Dict (default: {'hovered_fill': 'Orange',
'hovered_stroke': None, 'hovered_stroke_width': 2.0})
Dictionary containing the styles for hovered subunits
hover_highlight: bool (default: True)
boolean to control if the map should be aware of which country is being
hovered on.
map_data: dict (default: topo_load("map_data/WorldMap.json"))
a topojson-formatted dictionary with the objects to map under the key
'subunits'.
Data Attributes
color: Dict or None (default: None)
dictionary containing the data associated with every country for the
color scale
"""
# Mark decoration
icon = 'fa-globe'
name = 'Map'
# Scaled attributes
color = Dict(allow_none=True).tag(sync=True, scaled=True, rtype='Color',
atype='bqplot.ColorAxis')
# Other attributes
scales_metadata = Dict({'color': {'dimension': 'color'}}).tag(sync=True)
hover_highlight = Bool(True).tag(sync=True)
hovered_styles = Dict({
'hovered_fill': 'Orange',
'hovered_stroke': None,
'hovered_stroke_width': 2.0}, allow_none=True).tag(sync=True)
stroke_color = Color(default_value=None, allow_none=True).tag(sync=True)
colors = Dict().tag(sync=True, display_name='Colors')
scales_metadata = Dict({'color': {'dimension': 'color'},
'projection': {'dimension': 'geo'}}).tag(sync=True)
selected_styles = Dict({
'selected_fill': 'Red',
'selected_stroke': None,
'selected_stroke_width': 2.0
}).tag(sync=True)
map_data = Dict(topo_load('map_data/WorldMap.json')).tag(sync=True)
_view_name = Unicode('Map').tag(sync=True)
_model_name = Unicode('MapModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,143 | bqplot.marks | Mark | The base mark class.
Traitlet mark attributes may be decorated with metadata.
**Data Attribute Decoration**
Data attributes are decorated with the following values:
scaled: bool
Indicates whether the considered attribute is a data attribute which
must be associated with a scale in order to be taken into account.
rtype: string
Range type of the associated scale.
atype: string
Key in bqplot's axis registry of the recommended axis type to represent
this scale. When not specified, the default is 'bqplot.Axis'.
Attributes
----------
display_name: string
Holds a user-friendly name for the trait attribute.
mark_types: dict (class-level attribute)
A registry of existing mark types.
scales: Dict of scales (default: {})
A dictionary of scales holding scales for each data attribute.
- If a mark holds a scaled attribute named 'x', the scales dictionary
must have a corresponding scale for the key 'x'.
- The scale's range type should be equal to the scaled attribute's
range type (rtype).
scales_metadata: Dict (default: {})
A dictionary of dictionaries holding metadata on the way scales are
used by the mark. For example, a linear scale may be used to count
pixels horizontally or vertically. The content of this dictionary
may change dynamically. It is an instance-level attribute.
preserve_domain: dict (default: {})
Indicates if this mark affects the domain(s) of the specified scale(s).
The keys of this dictionary are the same as the ones of the "scales"
attribute, and values are boolean. If a key is missing, it is
considered as False.
display_legend: bool (default: False)
Display toggle for the mark legend in the general figure legend
labels: list of unicode strings (default: [])
Labels of the items of the mark. This attribute has different meanings
depending on the type of mark.
apply_clip: bool (default: True)
Indicates whether the items that are beyond the limits of the chart
should be clipped.
visible: bool (default: True)
Visibility toggle for the mark.
selected_style: dict (default: {})
CSS style to be applied to selected items in the mark.
unselected_style: dict (default: {})
CSS style to be applied to items that are not selected in the mark,
when a selection exists.
selected: list of integers or None (default: None)
Indices of the selected items in the mark.
tooltip: DOMWidget or None (default: None)
Widget to be displayed as tooltip when elements of the scatter are
hovered on
tooltip_style: Dictionary (default: {'opacity': 0.9})
Styles to be applied to the tooltip widget
enable_hover: Bool (default: True)
Boolean attribute to control the hover interaction for the scatter. If
this is false, the on_hover custom mssg is not sent back to the python
side
interactions: Dictionary (default: {'hover': 'tooltip'})
Dictionary listing the different interactions for each mark. The key is
the event which triggers the interaction and the value is the kind of
interactions. Keys and values can only take strings from separate enums
for each mark.
tooltip_location : {'mouse', 'center'} (default: 'mouse')
Enum specifying the location of the tooltip. 'mouse' places the tooltip
at the location of the mouse when the tooltip is activated and 'center'
places the tooltip at the center of the figure. If tooltip is linked to
a click event, 'mouse' places the tooltip at the location of the click
that triggered the tooltip to be visible.
| class Mark(Widget):
"""The base mark class.
Traitlet mark attributes may be decorated with metadata.
**Data Attribute Decoration**
Data attributes are decorated with the following values:
scaled: bool
Indicates whether the considered attribute is a data attribute which
must be associated with a scale in order to be taken into account.
rtype: string
Range type of the associated scale.
atype: string
Key in bqplot's axis registry of the recommended axis type to represent
this scale. When not specified, the default is 'bqplot.Axis'.
Attributes
----------
display_name: string
Holds a user-friendly name for the trait attribute.
mark_types: dict (class-level attribute)
A registry of existing mark types.
scales: Dict of scales (default: {})
A dictionary of scales holding scales for each data attribute.
- If a mark holds a scaled attribute named 'x', the scales dictionary
must have a corresponding scale for the key 'x'.
- The scale's range type should be equal to the scaled attribute's
range type (rtype).
scales_metadata: Dict (default: {})
A dictionary of dictionaries holding metadata on the way scales are
used by the mark. For example, a linear scale may be used to count
pixels horizontally or vertically. The content of this dictionary
may change dynamically. It is an instance-level attribute.
preserve_domain: dict (default: {})
Indicates if this mark affects the domain(s) of the specified scale(s).
The keys of this dictionary are the same as the ones of the "scales"
attribute, and values are boolean. If a key is missing, it is
considered as False.
display_legend: bool (default: False)
Display toggle for the mark legend in the general figure legend
labels: list of unicode strings (default: [])
Labels of the items of the mark. This attribute has different meanings
depending on the type of mark.
apply_clip: bool (default: True)
Indicates whether the items that are beyond the limits of the chart
should be clipped.
visible: bool (default: True)
Visibility toggle for the mark.
selected_style: dict (default: {})
CSS style to be applied to selected items in the mark.
unselected_style: dict (default: {})
CSS style to be applied to items that are not selected in the mark,
when a selection exists.
selected: list of integers or None (default: None)
Indices of the selected items in the mark.
tooltip: DOMWidget or None (default: None)
Widget to be displayed as tooltip when elements of the scatter are
hovered on
tooltip_style: Dictionary (default: {'opacity': 0.9})
Styles to be applied to the tooltip widget
enable_hover: Bool (default: True)
Boolean attribute to control the hover interaction for the scatter. If
this is false, the on_hover custom mssg is not sent back to the python
side
interactions: Dictionary (default: {'hover': 'tooltip'})
Dictionary listing the different interactions for each mark. The key is
the event which triggers the interaction and the value is the kind of
interactions. Keys and values can only take strings from separate enums
for each mark.
tooltip_location : {'mouse', 'center'} (default: 'mouse')
Enum specifying the location of the tooltip. 'mouse' places the tooltip
at the location of the mouse when the tooltip is activated and 'center'
places the tooltip at the center of the figure. If tooltip is linked to
a click event, 'mouse' places the tooltip at the location of the click
that triggered the tooltip to be visible.
"""
mark_types = {}
scales = Dict(value_trait=Instance(Scale)).tag(sync=True, **widget_serialization)
scales_metadata = Dict().tag(sync=True)
preserve_domain = Dict().tag(sync=True)
display_legend = Bool().tag(sync=True, display_name='Display legend')
labels = List(trait=Unicode()).tag(sync=True, display_name='Labels')
apply_clip = Bool(True).tag(sync=True)
visible = Bool(True).tag(sync=True)
selected_style = Dict().tag(sync=True)
unselected_style = Dict().tag(sync=True)
selected = Array(None, allow_none=True).tag(sync=True, **array_serialization)
enable_hover = Bool(True).tag(sync=True)
tooltip = Instance(DOMWidget, allow_none=True, default_value=None)\
.tag(sync=True, **widget_serialization)
tooltip_style = Dict({'opacity': 0.9}).tag(sync=True)
interactions = Dict({'hover': 'tooltip'}).tag(sync=True)
tooltip_location = Enum(['mouse', 'center'], default_value='mouse')\
.tag(sync=True)
_model_name = Unicode('MarkModel').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
_ipython_display_ = None
def _get_dimension_scales(self, dimension, preserve_domain=False):
"""
Return the list of scales corresponding to a given dimension.
The preserve_domain optional argument specifies whether one should
filter out the scales for which preserve_domain is set to True.
"""
if preserve_domain:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get('dimension') == dimension and
not self.preserve_domain.get(k)
)
]
else:
return [
self.scales[k] for k in self.scales if (
k in self.scales_metadata and
self.scales_metadata[k].get('dimension') == dimension
)
]
@validate('scales')
def _validate_scales(self, proposal):
"""
Validates the `scales` based on the mark's scaled attributes metadata.
First checks for missing scale and then for 'rtype' compatibility.
"""
# Validate scales' 'rtype' versus data attribute 'rtype' decoration
# At this stage it is already validated that all values in self.scales
# are instances of Scale.
scales = proposal.value
for name in self.trait_names(scaled=True):
trait = self.traits()[name]
if name not in scales:
# Check for missing scale
if not trait.allow_none:
raise TraitError("Missing scale for data attribute %s." %
name)
else:
# Check scale range type compatibility
if scales[name].rtype != trait.metadata['rtype']:
raise TraitError("Range type mismatch for scale %s." %
name)
return scales
def __init__(self, **kwargs):
super(Mark, self).__init__(**kwargs)
self._hover_handlers = CallbackDispatcher()
self._click_handlers = CallbackDispatcher()
self._legend_click_handlers = CallbackDispatcher()
self._legend_hover_handlers = CallbackDispatcher()
self._element_click_handlers = CallbackDispatcher()
self._bg_click_handlers = CallbackDispatcher()
self._name_to_handler = {
'hover': self._hover_handlers,
'click': self._click_handlers,
'legend_click': self._legend_click_handlers,
'legend_hover': self._legend_hover_handlers,
'element_click': self._element_click_handlers,
'background_click': self._bg_click_handlers
}
self.on_msg(self._handle_custom_msgs)
def on_hover(self, callback, remove=False):
self._hover_handlers.register_callback(callback, remove=remove)
def on_click(self, callback, remove=False):
self._click_handlers.register_callback(callback, remove=remove)
def on_legend_click(self, callback, remove=False):
self._legend_click_handlers.register_callback(callback, remove=remove)
def on_legend_hover(self, callback, remove=False):
self._legend_hover_handlers.register_callback(callback, remove=remove)
def on_element_click(self, callback, remove=False):
self._element_click_handlers.register_callback(callback, remove=remove)
def on_background_click(self, callback, remove=False):
self._bg_click_handlers.register_callback(callback, remove=remove)
def _handle_custom_msgs(self, _, content, buffers=None):
try:
handler = self._name_to_handler[content['event']]
except KeyError:
return
handler(self, content)
| (**kwargs) |
34,208 | bqplot.scales | Mercator | A geographical projection scale commonly used for world maps.
The Mercator projection is a cylindrical map projection which ensures that
any course of constant bearing is a straight line.
Attributes
----------
scale_factor: float (default: 190)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
rotate: tuple (default: (0, 0))
Degree of rotation in each axis.
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
| class Mercator(GeoScale):
"""A geographical projection scale commonly used for world maps.
The Mercator projection is a cylindrical map projection which ensures that
any course of constant bearing is a straight line.
Attributes
----------
scale_factor: float (default: 190)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
rotate: tuple (default: (0, 0))
Degree of rotation in each axis.
rtype: (Number, Number) (class-level attribute)
This attribute should not be modified. The range type of a geo
scale is a tuple.
dtype: type (class-level attribute)
the associated data type / domain type
"""
scale_factor = Float(190).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
rotate = Tuple((0, 0)).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('Mercator').tag(sync=True)
_model_name = Unicode('MercatorModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,265 | bqplot.marks | OHLC | Open/High/Low/Close marks.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
marker: {'candle', 'bar'}
marker type
stroke: color (default: None)
stroke color of the marker
stroke_width: float (default: 1.0)
stroke width of the marker
colors: List of colors (default: ['limegreen', 'red'])
fill colors for the markers (up/down)
opacities: list of floats (default: [])
Opacities for the markers of the OHLC mark. Defaults to 1 when
the list is too short, or the element of the list is set to None.
format: string (default: 'ohlc')
description of y data being passed
supports all permutations of the strings 'ohlc', 'oc', and 'hl'
Data Attributes
x: numpy.ndarray
abscissas of the data points (1d array)
y: numpy.ndarrays
Open/High/Low/Close ordinates of the data points (2d array)
Notes
-----
The fields which can be passed to the default tooltip are:
x: the x value associated with the bar/candle
open: open value for the bar/candle
high: high value for the bar/candle
low: low value for the bar/candle
close: close value for the bar/candle
index: index of the bar/candle being hovered on
| class OHLC(Mark):
"""Open/High/Low/Close marks.
Attributes
----------
icon: string (class-level attribute)
font-awesome icon for that mark
name: string (class-level attribute)
user-friendly name of the mark
marker: {'candle', 'bar'}
marker type
stroke: color (default: None)
stroke color of the marker
stroke_width: float (default: 1.0)
stroke width of the marker
colors: List of colors (default: ['limegreen', 'red'])
fill colors for the markers (up/down)
opacities: list of floats (default: [])
Opacities for the markers of the OHLC mark. Defaults to 1 when
the list is too short, or the element of the list is set to None.
format: string (default: 'ohlc')
description of y data being passed
supports all permutations of the strings 'ohlc', 'oc', and 'hl'
Data Attributes
x: numpy.ndarray
abscissas of the data points (1d array)
y: numpy.ndarrays
Open/High/Low/Close ordinates of the data points (2d array)
Notes
-----
The fields which can be passed to the default tooltip are:
x: the x value associated with the bar/candle
open: open value for the bar/candle
high: high value for the bar/candle
low: low value for the bar/candle
close: close value for the bar/candle
index: index of the bar/candle being hovered on
"""
# Mark decoration
icon = 'fa-birthday-cake'
name = 'OHLC chart'
# Scaled attributes
x = Array([]).tag(sync=True, scaled=True,
rtype='Number', atype='bqplot.Axis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
y = Array([[]]).tag(sync=True, scaled=True,
rtype='Number', atype='bqplot.Axis',
**array_serialization)\
.valid(array_dimension_bounds(1, 2))
# Other attributes
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'}
}).tag(sync=True)
marker = Enum(['candle', 'bar'], default_value='candle')\
.tag(sync=True, display_name='Marker')
stroke = Color(None, allow_none=True)\
.tag(sync=True, display_name='Stroke color')
stroke_width = Float(1.0).tag(sync=True, display_name='Stroke Width')
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=['green', 'red'])\
.tag(sync=True, display_name='Colors')
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
format = Unicode('ohlc').tag(sync=True, display_name='Format')
_view_name = Unicode('OHLC').tag(sync=True)
_model_name = Unicode('OHLCModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,330 | bqplot.scales | OrdinalColorScale | An ordinal color scale.
A mapping from a discrete set of values to colors.
Attributes
----------
domain: list (default: [])
The discrete values mapped by the ordinal scales.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a color scale is 'color'.
dtype: type (class-level attribute)
the associated data type / domain type
| class OrdinalColorScale(ColorScale):
"""An ordinal color scale.
A mapping from a discrete set of values to colors.
Attributes
----------
domain: list (default: [])
The discrete values mapped by the ordinal scales.
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a color scale is 'color'.
dtype: type (class-level attribute)
the associated data type / domain type
"""
rtype = 'Color'
dtype = np.str_
domain = List().tag(sync=True)
_view_name = Unicode('OrdinalColorScale').tag(sync=True)
_model_name = Unicode('OrdinalColorScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,387 | bqplot.scales | OrdinalScale | An ordinal scale.
A mapping from a discrete set of values to a numerical range.
Attributes
----------
domain: list (default: [])
The discrete values mapped by the ordinal scale
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
| class OrdinalScale(Scale):
"""An ordinal scale.
A mapping from a discrete set of values to a numerical range.
Attributes
----------
domain: list (default: [])
The discrete values mapped by the ordinal scale
rtype: string (class-level attribute)
This attribute should not be modified by the user.
The range type of a linear scale is numerical.
dtype: type (class-level attribute)
the associated data type / domain type
"""
rtype = 'Number'
dtype = np.str_
domain = List().tag(sync=True)
_view_name = Unicode('OrdinalScale').tag(sync=True)
_model_name = Unicode('OrdinalScaleModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,444 | bqplot.scales | Orthographic | A perspective projection that depicts a hemisphere as it appears from
outer space.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
clip_angle: float (default: 90.)
Specifies the clipping circle radius to the specified angle in degrees.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
| class Orthographic(GeoScale):
"""A perspective projection that depicts a hemisphere as it appears from
outer space.
The projection is neither equal-area nor conformal.
Attributes
----------
scale_factor: float (default: 145)
Specifies the scale value for the projection
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
clip_angle: float (default: 90.)
Specifies the clipping circle radius to the specified angle in degrees.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
"""
scale_factor = Float(145.0).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
rotate = Tuple((0, 0)).tag(sync=True)
clip_angle = Float(90.0, min=0.0, max=360.0).tag(sync=True)
precision = Float(0.1).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('Orthographic').tag(sync=True)
_model_name = Unicode('OrthographicModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,501 | bqplot.interacts | PanZoom | An interaction to pan and zoom wrt scales.
Attributes
----------
allow_pan: bool (default: True)
Toggle the ability to pan.
allow_zoom: bool (default: True)
Toggle the ability to zoom.
scales: Dictionary of lists of Scales (default: {})
Dictionary with keys such as 'x' and 'y' and values being the scales in
the corresponding direction (dimensions) which should be panned or
zoomed.
| class PanZoom(Interaction):
"""An interaction to pan and zoom wrt scales.
Attributes
----------
allow_pan: bool (default: True)
Toggle the ability to pan.
allow_zoom: bool (default: True)
Toggle the ability to zoom.
scales: Dictionary of lists of Scales (default: {})
Dictionary with keys such as 'x' and 'y' and values being the scales in
the corresponding direction (dimensions) which should be panned or
zoomed.
"""
allow_pan = Bool(True).tag(sync=True)
allow_zoom = Bool(True).tag(sync=True)
scales = Dict(value_trait=List(trait=Instance(Scale)))\
.tag(sync=True, **widget_serialization)
_view_name = Unicode('PanZoom').tag(sync=True)
_model_name = Unicode('PanZoomModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,558 | bqplot.marks | Pie | Piechart mark.
Attributes
----------
colors: list of colors (default: CATEGORY10)
list of colors for the slices.
stroke: color (default: 'white')
stroke color for the marker
opacities: list of floats (default: [])
Opacities for the slices of the Pie mark. Defaults to 1 when the list
is too short, or the element of the list is set to None.
sort: bool (default: False)
sort the pie slices by descending sizes
x: Float (default: 0.5) or Date
horizontal position of the pie center, in data coordinates or in figure
coordinates
y: Float (default: 0.5)
vertical y position of the pie center, in data coordinates or in figure
coordinates
radius: Float
radius of the pie, in pixels
inner_radius: Float
inner radius of the pie, in pixels
start_angle: Float (default: 0.0)
start angle of the pie (from top), in degrees
end_angle: Float (default: 360.0)
end angle of the pie (from top), in degrees
display_labels: {'none', 'inside', 'outside'} (default: 'inside')
label display options
display_values: bool (default: False)
if True show values along with labels
values_format: string (default: '.2f')
format for displaying values
label_color: Color or None (default: None)
color of the labels
font_size: string (default: '14px')
label font size in px, em or ex
font_weight: {'bold', 'normal', 'bolder'} (default: 'normal')
label font weight
Data Attributes
sizes: numpy.ndarray (default: [])
proportions of the pie slices
color: numpy.ndarray or None (default: None)
color of the data points. Defaults to colors when not provided.
Notes
-----
The fields which can be passed to the default tooltip are:
: the x value associated with the bar/candle
open: open value for the bar/candle
high: high value for the bar/candle
low: low value for the bar/candle
close: close value for the bar/candle
index: index of the bar/candle being hovered on
| class Pie(Mark):
"""Piechart mark.
Attributes
----------
colors: list of colors (default: CATEGORY10)
list of colors for the slices.
stroke: color (default: 'white')
stroke color for the marker
opacities: list of floats (default: [])
Opacities for the slices of the Pie mark. Defaults to 1 when the list
is too short, or the element of the list is set to None.
sort: bool (default: False)
sort the pie slices by descending sizes
x: Float (default: 0.5) or Date
horizontal position of the pie center, in data coordinates or in figure
coordinates
y: Float (default: 0.5)
vertical y position of the pie center, in data coordinates or in figure
coordinates
radius: Float
radius of the pie, in pixels
inner_radius: Float
inner radius of the pie, in pixels
start_angle: Float (default: 0.0)
start angle of the pie (from top), in degrees
end_angle: Float (default: 360.0)
end angle of the pie (from top), in degrees
display_labels: {'none', 'inside', 'outside'} (default: 'inside')
label display options
display_values: bool (default: False)
if True show values along with labels
values_format: string (default: '.2f')
format for displaying values
label_color: Color or None (default: None)
color of the labels
font_size: string (default: '14px')
label font size in px, em or ex
font_weight: {'bold', 'normal', 'bolder'} (default: 'normal')
label font weight
Data Attributes
sizes: numpy.ndarray (default: [])
proportions of the pie slices
color: numpy.ndarray or None (default: None)
color of the data points. Defaults to colors when not provided.
Notes
-----
The fields which can be passed to the default tooltip are:
: the x value associated with the bar/candle
open: open value for the bar/candle
high: high value for the bar/candle
low: low value for the bar/candle
close: close value for the bar/candle
index: index of the bar/candle being hovered on
"""
# Mark decoration
icon = 'fa-pie-chart'
name = 'Pie chart'
# Scaled attributes
sizes = Array([]).tag(sync=True, rtype='Number', **array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
color = Array(None, allow_none=True).tag(sync=True,
scaled=True,
rtype='Color',
atype='bqplot.ColorAxis',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Other attributes
x = (Float(0.5) | Date() | Unicode()).tag(sync=True)
y = (Float(0.5) | Date() | Unicode()).tag(sync=True)
scales_metadata = Dict({'color': {'dimension': 'color'}}).tag(sync=True)
sort = Bool().tag(sync=True)
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=CATEGORY10).tag(sync=True,
display_name='Colors')
stroke = Color(None, allow_none=True).tag(sync=True)
opacities = List(trait=Float(1.0, min=0, max=1, allow_none=True))\
.tag(sync=True, display_name='Opacities')
radius = Float(180.0, min=0.0, max=float('inf')).tag(sync=True)
inner_radius = Float(0.1, min=0.0, max=float('inf')).tag(sync=True)
start_angle = Float().tag(sync=True)
end_angle = Float(360.0).tag(sync=True)
display_labels = Enum(['none', 'inside', 'outside'],
default_value='inside').tag(sync=True)
display_values = Bool(False).tag(sync=True)
values_format = Unicode(default_value='.1f').tag(sync=True)
label_color = Color(None, allow_none=True).tag(sync=True)
font_size = Unicode(default_value='12px').tag(sync=True)
font_weight = Enum(['bold', 'normal', 'bolder'],
default_value='normal').tag(sync=True)
_view_name = Unicode('Pie').tag(sync=True)
_model_name = Unicode('PieModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,623 | bqplot.plotting_widgets | Radar |
Radar chart created from a pandas Dataframe. Each column of the df will be
represented as a loop in the radar chart. Each row of the df will be
represented as a spoke of the radar chart
Attributes
----------
data: DataFrame
data for the radar
band_type: {"circle", "polygon"} (default: "circle")
type of bands to display in the radar
num_bands: Int (default: 5)
number of bands on the radar. As of now, this attribute is not
dynamic and it has to set in the constructor
data_range: List (default: [0, 1])
range of data
fill: Bool(default: True)
flag which lets us fill the radar loops or not
| class Radar(Figure):
"""
Radar chart created from a pandas Dataframe. Each column of the df will be
represented as a loop in the radar chart. Each row of the df will be
represented as a spoke of the radar chart
Attributes
----------
data: DataFrame
data for the radar
band_type: {"circle", "polygon"} (default: "circle")
type of bands to display in the radar
num_bands: Int (default: 5)
number of bands on the radar. As of now, this attribute is not
dynamic and it has to set in the constructor
data_range: List (default: [0, 1])
range of data
fill: Bool(default: True)
flag which lets us fill the radar loops or not
"""
data = DataFrame()
data_range = List([0, 1]).tag(sync=True)
band_type = Enum(
["circle", "polygon"], default_value="circle", allow_none=True
).tag(sync=True)
colors = List(default_value=CATEGORY10).tag(sync=True)
num_bands = Int(default_value=5).tag(sync=True)
fill = Bool(default_value=False).tag(sync=True)
def __init__(self, **kwargs):
super(Radar, self).__init__(**kwargs)
self.scales = {"x": LinearScale(), "y": LinearScale()}
# set some defaults for the figure
self.layout = Layout(min_width="600px", min_height="600px")
self.max_aspect_ratio = 1
self.preserve_aspect = True
# marks for the radar figure
# spokes (straight lines going away from the center)
self.spokes = Lines(
scales=self.scales, colors=["#ccc"], stroke_width=0.5
)
# bands
self.bands = Lines(
colors=["#ccc"], scales=self.scales, stroke_width=0.5
)
# loops of the radar
self.loops = Lines(
scales=self.scales,
display_legend=True,
colors=self.colors,
stroke_width=2,
fill="inside" if self.fill else "none",
marker="circle",
marker_size=50,
)
self.band_labels = Label(
scales=self.scales,
default_size=12,
font_weight="normal",
apply_clip=False,
colors=["#ccc"],
align="middle",
)
self.spoke_labels = Label(
scales=self.scales,
default_size=14,
font_weight="bold",
apply_clip=False,
colors=["#ccc"],
align="middle",
)
self.marks = [
self.spokes,
self.bands,
self.loops,
self.band_labels,
self.spoke_labels,
]
# handlers for data updates
self.observe(self.update_data, "data")
self.observe(self.update_bands, ["band_type", "num_bands"])
self.observe(self.update_fill, "fill")
self.loops.on_legend_click(self.on_legend_click)
self.loops.on_background_click(self.reset)
self.update_bands(None)
self.update_data(None)
def update_bands(self, *args):
band_data = np.linspace(
self.data_range[0], self.data_range[1], self.num_bands + 1
)
self.scaled_band_data = (
(band_data - self.data_range[0])
/ (self.data_range[1] - self.data_range[0])
)[:, np.newaxis]
n = len(self.data.index)
if self.band_type == "circle":
t = np.linspace(0, 2 * np.pi, 1000)
band_data_x, band_data_y = (
self.scaled_band_data * np.cos(t),
self.scaled_band_data * np.sin(t),
)
elif self.band_type == "polygon":
t = np.linspace(0, 2 * np.pi, n + 1)
band_data_x, band_data_y = (
self.scaled_band_data * np.sin(t),
self.scaled_band_data * np.cos(t),
)
with self.bands.hold_sync():
self.bands.x = band_data_x
self.bands.y = band_data_y
with self.band_labels.hold_sync():
self.band_labels.x = self.scaled_band_data[:, 0]
self.band_labels.y = [0.0] * (self.num_bands + 1)
self.band_labels.text = ["{:.0%}".format(b) for b in band_data]
def update_data(self, *args):
self.update_bands(None)
rows = list(self.data.index)
n = len(rows)
# spokes representing each data set
self.spoke_data_t = np.linspace(0, 2 * np.pi, n + 1)[:-1]
spoke_data_x, spoke_data_y = (
np.sin(self.spoke_data_t),
np.cos(self.spoke_data_t),
)
# Update mark data based on data changes
with self.spokes.hold_sync():
self.spokes.x = np.column_stack(
[self.scaled_band_data[1] * spoke_data_x, spoke_data_x]
)
self.spokes.y = np.column_stack(
[self.scaled_band_data[1] * spoke_data_y, spoke_data_y]
)
scaled_data = (self.data.values - self.data_range[0]) / (
self.data_range[1] - self.data_range[0]
)
data_x = scaled_data * np.sin(self.spoke_data_t)[:, np.newaxis]
data_y = scaled_data * np.cos(self.spoke_data_t)[:, np.newaxis]
# update data lines
with self.loops.hold_sync():
self.loops.x = np.column_stack([data_x.T, data_x.T[:, 0]])
self.loops.y = np.column_stack([data_y.T, data_y.T[:, 0]])
if self.fill:
self.loops.fill = "inside"
self.loops.fill_opacities = [0.2] * len(self.loops.y)
else:
self.loops.fill = "none"
self.loops.fill_opacities = [0.0] * len(self.loops.y)
self.loops.labels = [str(c) for c in self.data.columns]
# update spoke labels
t = np.linspace(0, 2 * np.pi, n + 1)
with self.spoke_labels.hold_sync():
self.spoke_labels.text = [str(row) for row in rows]
self.spoke_labels.x = np.sin(t)
self.spoke_labels.y = np.cos(t)
def update_fill(self, *args):
if self.fill:
with self.loops.hold_sync():
self.loops.fill = "inside"
self.loops.fill_opacities = [0.2] * len(self.loops.y)
else:
self.loops.fill = "none"
self.loops.fill_opacities = [0.0] * len(self.loops.y)
def on_legend_click(self, line, target):
selected_ix = target["data"]["index"]
n = len(line.y)
opacities = line.opacities
if opacities is None or len(opacities) == 0:
opacities = [1.0] * n
new_opacities = [0.1] * n
new_opacities[selected_ix] = 1
line.opacities = new_opacities
def reset(self, line, target):
line.opacities = [1.0] * len(line.y)
| (**kwargs) |
34,628 | bqplot.plotting_widgets | __init__ | null | def __init__(self, **kwargs):
super(Radar, self).__init__(**kwargs)
self.scales = {"x": LinearScale(), "y": LinearScale()}
# set some defaults for the figure
self.layout = Layout(min_width="600px", min_height="600px")
self.max_aspect_ratio = 1
self.preserve_aspect = True
# marks for the radar figure
# spokes (straight lines going away from the center)
self.spokes = Lines(
scales=self.scales, colors=["#ccc"], stroke_width=0.5
)
# bands
self.bands = Lines(
colors=["#ccc"], scales=self.scales, stroke_width=0.5
)
# loops of the radar
self.loops = Lines(
scales=self.scales,
display_legend=True,
colors=self.colors,
stroke_width=2,
fill="inside" if self.fill else "none",
marker="circle",
marker_size=50,
)
self.band_labels = Label(
scales=self.scales,
default_size=12,
font_weight="normal",
apply_clip=False,
colors=["#ccc"],
align="middle",
)
self.spoke_labels = Label(
scales=self.scales,
default_size=14,
font_weight="bold",
apply_clip=False,
colors=["#ccc"],
align="middle",
)
self.marks = [
self.spokes,
self.bands,
self.loops,
self.band_labels,
self.spoke_labels,
]
# handlers for data updates
self.observe(self.update_data, "data")
self.observe(self.update_bands, ["band_type", "num_bands"])
self.observe(self.update_fill, "fill")
self.loops.on_legend_click(self.on_legend_click)
self.loops.on_background_click(self.reset)
self.update_bands(None)
self.update_data(None)
| (self, **kwargs) |
34,668 | bqplot.plotting_widgets | on_legend_click | null | def on_legend_click(self, line, target):
selected_ix = target["data"]["index"]
n = len(line.y)
opacities = line.opacities
if opacities is None or len(opacities) == 0:
opacities = [1.0] * n
new_opacities = [0.1] * n
new_opacities[selected_ix] = 1
line.opacities = new_opacities
| (self, line, target) |
34,674 | bqplot.plotting_widgets | reset | null | def reset(self, line, target):
line.opacities = [1.0] * len(line.y)
| (self, line, target) |
34,690 | bqplot.plotting_widgets | update_bands | null | def update_bands(self, *args):
band_data = np.linspace(
self.data_range[0], self.data_range[1], self.num_bands + 1
)
self.scaled_band_data = (
(band_data - self.data_range[0])
/ (self.data_range[1] - self.data_range[0])
)[:, np.newaxis]
n = len(self.data.index)
if self.band_type == "circle":
t = np.linspace(0, 2 * np.pi, 1000)
band_data_x, band_data_y = (
self.scaled_band_data * np.cos(t),
self.scaled_band_data * np.sin(t),
)
elif self.band_type == "polygon":
t = np.linspace(0, 2 * np.pi, n + 1)
band_data_x, band_data_y = (
self.scaled_band_data * np.sin(t),
self.scaled_band_data * np.cos(t),
)
with self.bands.hold_sync():
self.bands.x = band_data_x
self.bands.y = band_data_y
with self.band_labels.hold_sync():
self.band_labels.x = self.scaled_band_data[:, 0]
self.band_labels.y = [0.0] * (self.num_bands + 1)
self.band_labels.text = ["{:.0%}".format(b) for b in band_data]
| (self, *args) |
34,691 | bqplot.plotting_widgets | update_data | null | def update_data(self, *args):
self.update_bands(None)
rows = list(self.data.index)
n = len(rows)
# spokes representing each data set
self.spoke_data_t = np.linspace(0, 2 * np.pi, n + 1)[:-1]
spoke_data_x, spoke_data_y = (
np.sin(self.spoke_data_t),
np.cos(self.spoke_data_t),
)
# Update mark data based on data changes
with self.spokes.hold_sync():
self.spokes.x = np.column_stack(
[self.scaled_band_data[1] * spoke_data_x, spoke_data_x]
)
self.spokes.y = np.column_stack(
[self.scaled_band_data[1] * spoke_data_y, spoke_data_y]
)
scaled_data = (self.data.values - self.data_range[0]) / (
self.data_range[1] - self.data_range[0]
)
data_x = scaled_data * np.sin(self.spoke_data_t)[:, np.newaxis]
data_y = scaled_data * np.cos(self.spoke_data_t)[:, np.newaxis]
# update data lines
with self.loops.hold_sync():
self.loops.x = np.column_stack([data_x.T, data_x.T[:, 0]])
self.loops.y = np.column_stack([data_y.T, data_y.T[:, 0]])
if self.fill:
self.loops.fill = "inside"
self.loops.fill_opacities = [0.2] * len(self.loops.y)
else:
self.loops.fill = "none"
self.loops.fill_opacities = [0.0] * len(self.loops.y)
self.loops.labels = [str(c) for c in self.data.columns]
# update spoke labels
t = np.linspace(0, 2 * np.pi, n + 1)
with self.spoke_labels.hold_sync():
self.spoke_labels.text = [str(row) for row in rows]
self.spoke_labels.x = np.sin(t)
self.spoke_labels.y = np.cos(t)
| (self, *args) |
34,692 | bqplot.plotting_widgets | update_fill | null | def update_fill(self, *args):
if self.fill:
with self.loops.hold_sync():
self.loops.fill = "inside"
self.loops.fill_opacities = [0.2] * len(self.loops.y)
else:
self.loops.fill = "none"
self.loops.fill_opacities = [0.0] * len(self.loops.y)
| (self, *args) |
34,693 | bqplot.scales | Scale | The base scale class.
Scale objects represent a mapping between data (the domain) and a visual
quantity (The range).
Attributes
----------
scale_types: dict (class-level attribute)
A registry of existing scale types.
domain_class: type (default: Float)
traitlet type used to validate values in of the domain of the scale.
reverse: bool (default: False)
whether the scale should be reversed.
allow_padding: bool (default: True)
indicates whether figures are allowed to add data padding to this scale
or not.
precedence: int (class-level attribute)
attribute used to determine which scale takes precedence in cases when
two or more scales have the same rtype and dtype.
| class Scale(Widget):
"""The base scale class.
Scale objects represent a mapping between data (the domain) and a visual
quantity (The range).
Attributes
----------
scale_types: dict (class-level attribute)
A registry of existing scale types.
domain_class: type (default: Float)
traitlet type used to validate values in of the domain of the scale.
reverse: bool (default: False)
whether the scale should be reversed.
allow_padding: bool (default: True)
indicates whether figures are allowed to add data padding to this scale
or not.
precedence: int (class-level attribute)
attribute used to determine which scale takes precedence in cases when
two or more scales have the same rtype and dtype.
"""
scale_types = {}
precedence = 1
domain_class = Type(Float)
reverse = Bool().tag(sync=True)
allow_padding = Bool(True).tag(sync=True)
_view_name = Unicode('Scale').tag(sync=True)
_model_name = Unicode('ScaleModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
_ipython_display_ = None # We cannot display a scale outside of a figure
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,750 | bqplot.marks | Scatter | Scatter mark.
In the case of the Scatter mark, scales for 'x' and 'y' MUST be provided.
The scales of other data attributes are optional. In the case where another
data attribute than 'x' or 'y' is provided but the corresponding scale is
missing, the data attribute is ignored.
Attributes
----------
icon: string (class-level attribute)
Font-awesome icon for that mark
name: string (class-level attribute)
User-friendly name of the mark
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus', 'crosshair', 'point'}
Marker shape
colors: list of colors (default: ['steelblue'])
List of colors of the markers. If the list is shorter than the number
of points, the colors are reused.
default_colors: Deprecated
Same as `colors`, deprecated as of version 0.8.4
fill: Bool (default: True)
Whether to fill the markers or not
stroke: Color or None (default: None)
Stroke color of the marker
stroke_width: Float (default: 1.5)
Stroke width of the marker
opacities: list of floats (default: [1.0])
Default opacities of the markers. If the list is shorter than
the number
of points, the opacities are reused.
default_skew: float (default: 0.5)
Default skew of the marker.
This number is validated to be between 0 and 1.
default_size: nonnegative int (default: 64)
Default marker size in pixel.
If size data is provided with a scale, default_size stands for the
maximal marker size (i.e. the maximum value for the 'size' scale range)
drag_size: nonnegative float (default: 5.)
Ratio of the size of the dragged scatter size to the default
scatter size.
names: numpy.ndarray (default: None)
Labels for the points of the chart
display_names: bool (default: True)
Controls whether names are displayed for points in the scatter
label_display_horizontal_offset: float (default: None)
Adds an offset, in pixels, to the horizontal positioning of the 'names'
label above each data point
label_display_vertical_offset: float (default: None)
Adds an offset, in pixels, to the vertical positioning of the 'names'
label above each data point
enable_move: bool (default: False)
Controls whether points can be moved by dragging. Refer to restrict_x,
restrict_y for more options.
restrict_x: bool (default: False)
Restricts movement of the point to only along the x axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the point cannot be moved.
restrict_y: bool (default: False)
Restricts movement of the point to only along the y axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the point cannot be moved.
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d array)
color: numpy.ndarray or None (default: None)
color of the data points (1d array). Defaults to default_color when not
provided or when a value is NaN
opacity: numpy.ndarray or None (default: None)
opacity of the data points (1d array). Defaults to default_opacity when
not provided or when a value is NaN
size: numpy.ndarray or None (default: None)
size of the data points. Defaults to default_size when not provided or
when a value is NaN
skew: numpy.ndarray or None (default: None)
skewness of the markers representing the data points. Defaults to
default_skew when not provided or when a value is NaN
rotation: numpy.ndarray or None (default: None)
orientation of the markers representing the data points.
The rotation scale's range is [0, 180]
Defaults to 0 when not provided or when a value is NaN.
Notes
-----
The fields which can be passed to the default tooltip are:
All the data attributes
index: index of the marker being hovered on
The following are the events which can trigger interactions:
click: left click of the mouse
hover: mouse-over an element
The following are the interactions which can be linked to the above events:
tooltip: display tooltip
add: add new points to the scatter (can only linked to click)
| class Scatter(_ScatterBase):
"""Scatter mark.
In the case of the Scatter mark, scales for 'x' and 'y' MUST be provided.
The scales of other data attributes are optional. In the case where another
data attribute than 'x' or 'y' is provided but the corresponding scale is
missing, the data attribute is ignored.
Attributes
----------
icon: string (class-level attribute)
Font-awesome icon for that mark
name: string (class-level attribute)
User-friendly name of the mark
marker: {'circle', 'cross', 'diamond', 'square', 'triangle-down', 'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus', 'crosshair', 'point'}
Marker shape
colors: list of colors (default: ['steelblue'])
List of colors of the markers. If the list is shorter than the number
of points, the colors are reused.
default_colors: Deprecated
Same as `colors`, deprecated as of version 0.8.4
fill: Bool (default: True)
Whether to fill the markers or not
stroke: Color or None (default: None)
Stroke color of the marker
stroke_width: Float (default: 1.5)
Stroke width of the marker
opacities: list of floats (default: [1.0])
Default opacities of the markers. If the list is shorter than
the number
of points, the opacities are reused.
default_skew: float (default: 0.5)
Default skew of the marker.
This number is validated to be between 0 and 1.
default_size: nonnegative int (default: 64)
Default marker size in pixel.
If size data is provided with a scale, default_size stands for the
maximal marker size (i.e. the maximum value for the 'size' scale range)
drag_size: nonnegative float (default: 5.)
Ratio of the size of the dragged scatter size to the default
scatter size.
names: numpy.ndarray (default: None)
Labels for the points of the chart
display_names: bool (default: True)
Controls whether names are displayed for points in the scatter
label_display_horizontal_offset: float (default: None)
Adds an offset, in pixels, to the horizontal positioning of the 'names'
label above each data point
label_display_vertical_offset: float (default: None)
Adds an offset, in pixels, to the vertical positioning of the 'names'
label above each data point
enable_move: bool (default: False)
Controls whether points can be moved by dragging. Refer to restrict_x,
restrict_y for more options.
restrict_x: bool (default: False)
Restricts movement of the point to only along the x axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the point cannot be moved.
restrict_y: bool (default: False)
Restricts movement of the point to only along the y axis. This is valid
only when enable_move is set to True. If both restrict_x and restrict_y
are set to True, the point cannot be moved.
Data Attributes
x: numpy.ndarray (default: [])
abscissas of the data points (1d array)
y: numpy.ndarray (default: [])
ordinates of the data points (1d array)
color: numpy.ndarray or None (default: None)
color of the data points (1d array). Defaults to default_color when not
provided or when a value is NaN
opacity: numpy.ndarray or None (default: None)
opacity of the data points (1d array). Defaults to default_opacity when
not provided or when a value is NaN
size: numpy.ndarray or None (default: None)
size of the data points. Defaults to default_size when not provided or
when a value is NaN
skew: numpy.ndarray or None (default: None)
skewness of the markers representing the data points. Defaults to
default_skew when not provided or when a value is NaN
rotation: numpy.ndarray or None (default: None)
orientation of the markers representing the data points.
The rotation scale's range is [0, 180]
Defaults to 0 when not provided or when a value is NaN.
Notes
-----
The fields which can be passed to the default tooltip are:
All the data attributes
index: index of the marker being hovered on
The following are the events which can trigger interactions:
click: left click of the mouse
hover: mouse-over an element
The following are the interactions which can be linked to the above events:
tooltip: display tooltip
add: add new points to the scatter (can only linked to click)
"""
# Mark decoration
icon = 'fa-cloud'
name = 'Scatter'
# Scaled attributes
skew = Array(None, allow_none=True).tag(sync=True, scaled=True,
rtype='Number',
**array_serialization)\
.valid(array_squeeze, array_dimension_bounds(1, 1))
# Other attributes
marker = Enum(['circle', 'cross', 'diamond', 'square', 'triangle-down',
'triangle-up', 'arrow', 'rectangle', 'ellipse', 'plus',
'crosshair', 'point'],
default_value='circle').tag(sync=True, display_name='Marker')
colors = List(trait=Color(default_value=None, allow_none=True),
default_value=['steelblue'])\
.tag(sync=True, display_name='Colors')
scales_metadata = Dict({
'x': {'orientation': 'horizontal', 'dimension': 'x'},
'y': {'orientation': 'vertical', 'dimension': 'y'},
'color': {'dimension': 'color'},
'size': {'dimension': 'size'},
'opacity': {'dimension': 'opacity'},
'rotation': {'dimension': 'rotation'},
'skew': {'dimension': 'skew'}
}).tag(sync=True)
@property
def default_colors(self):
return self.colors
@default_colors.setter
def default_colors(self, value):
warn("default_colors is deprecated, use colors instead.",
DeprecationWarning)
self.colors = value
@property
def default_opacities(self):
return self.opacities
@default_opacities.setter
def default_opacities(self, value):
warn("default_opacities is deprecated, use opacities instead.",
DeprecationWarning)
self.opacities = value
stroke = Color(None, allow_none=True).tag(sync=True,
display_name='Stroke color')
stroke_width = Float(1.5).tag(sync=True, display_name='Stroke width')
default_skew = Float(0.5, min=0, max=1).tag(sync=True)
default_size = Int(64).tag(sync=True, display_name='Default size')
names = Array(None, allow_none=True)\
.tag(sync=True, **array_serialization).valid(array_squeeze)
display_names = Bool(True).tag(sync=True, display_name='Display names')
label_display_horizontal_offset = Float(allow_none=True).tag(sync=True)
label_display_vertical_offset = Float(allow_none=True).tag(sync=True)
fill = Bool(True).tag(sync=True)
drag_color = Color(None, allow_none=True).tag(sync=True)
drag_size = Float(5.).tag(sync=True)
names_unique = Bool(True).tag(sync=True)
_view_name = Unicode('Scatter').tag(sync=True)
_model_name = Unicode('ScatterModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,818 | bqplot.marks | ScatterGL | null | class ScatterGL(Scatter):
_view_name = Unicode('ScatterGL').tag(sync=True)
_model_name = Unicode('ScatterGLModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,886 | bqplot.scales | Stereographic | A perspective projection that uses a bijective and smooth map at every
point except the projection point.
The projection is not an equal-area projection but it is conformal.
Attributes
----------
scale_factor: float (default: 250)
Specifies the scale value for the projection
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
clip_angle: float (default: 90.)
Specifies the clipping circle radius to the specified angle in degrees.
| class Stereographic(GeoScale):
"""A perspective projection that uses a bijective and smooth map at every
point except the projection point.
The projection is not an equal-area projection but it is conformal.
Attributes
----------
scale_factor: float (default: 250)
Specifies the scale value for the projection
rotate: tuple (default: (96, 0))
Degree of rotation in each axis.
center: tuple (default: (0, 60))
Specifies the longitude and latitude where the map is centered.
precision: float (default: 0.1)
Specifies the threshold for the projections adaptive resampling to the
specified value in pixels.
clip_angle: float (default: 90.)
Specifies the clipping circle radius to the specified angle in degrees.
"""
scale_factor = Float(145.0).tag(sync=True)
center = Tuple((0, 60)).tag(sync=True)
precision = Float(0.1).tag(sync=True)
rotate = Tuple((96, 0)).tag(sync=True)
clip_angle = Float(179.9999, min=0.0, max=360.0).tag(sync=True)
rtype = '(Number, Number)'
dtype = np.number
_view_name = Unicode('Stereographic').tag(sync=True)
_model_name = Unicode('StereographicModel').tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
34,943 | bqplot.toolbar | Toolbar | Default toolbar for bqplot figures.
The default toolbar provides three buttons:
- A *Panzoom* toggle button which enables panning and zooming the figure.
- A *Save* button to save the figure as a png image.
- A *Reset* button, which resets the figure position to its original
state.
When the *Panzoom* button is toggled to True for the first time, a new
instance of ``PanZoom`` widget is created.
The created ``PanZoom`` widget uses the scales of all the marks that are on
the figure at this point.
When the *PanZoom* widget is toggled to False, the figure retrieves its
previous interaction.
When the *Reset* button is pressed, the ``PanZoom`` widget is deleted and
the figure scales reset to their initial state. We are back to the case
where the PanZoom widget has never been set.
If new marks are added to the figure after the panzoom button is toggled,
and these use new scales, those scales will not be panned or zoomed,
unless the reset button is clicked.
Attributes
----------
figure: instance of Figure
The figure to which the toolbar will apply.
| class Toolbar(DOMWidget):
"""Default toolbar for bqplot figures.
The default toolbar provides three buttons:
- A *Panzoom* toggle button which enables panning and zooming the figure.
- A *Save* button to save the figure as a png image.
- A *Reset* button, which resets the figure position to its original
state.
When the *Panzoom* button is toggled to True for the first time, a new
instance of ``PanZoom`` widget is created.
The created ``PanZoom`` widget uses the scales of all the marks that are on
the figure at this point.
When the *PanZoom* widget is toggled to False, the figure retrieves its
previous interaction.
When the *Reset* button is pressed, the ``PanZoom`` widget is deleted and
the figure scales reset to their initial state. We are back to the case
where the PanZoom widget has never been set.
If new marks are added to the figure after the panzoom button is toggled,
and these use new scales, those scales will not be panned or zoomed,
unless the reset button is clicked.
Attributes
----------
figure: instance of Figure
The figure to which the toolbar will apply.
"""
figure = Instance(Figure).tag(sync=True, **widget_serialization)
_panning = Bool(read_only=True).tag(sync=True)
_panzoom = Instance(PanZoom, default_value=None, allow_none=True,
read_only=True).tag(sync=True, **widget_serialization)
_view_name = Unicode('Toolbar').tag(sync=True)
_model_name = Unicode('ToolbarModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
35,004 | bqplot.default_tooltip | Tooltip | Default tooltip widget for marks.
Attributes
----------
fields: list (default: [])
list of names of fields to be displayed in the tooltip
All the attributes of the mark are accessible in the tooltip
formats: list (default: [])
list of formats to be applied to each of the fields.
if no format is specified for a field, the value is displayed as it is
labels: list (default: [])
list of labels to be displayed in the table instead of the fields. If
the length of labels is less than the length of fields, then the field
names are displayed for those fields for which label is missing.
show_labels: bool (default: True)
Boolean attribute to enable and disable display of the
label /field name
as the first column along with the value
| class Tooltip(DOMWidget):
"""Default tooltip widget for marks.
Attributes
----------
fields: list (default: [])
list of names of fields to be displayed in the tooltip
All the attributes of the mark are accessible in the tooltip
formats: list (default: [])
list of formats to be applied to each of the fields.
if no format is specified for a field, the value is displayed as it is
labels: list (default: [])
list of labels to be displayed in the table instead of the fields. If
the length of labels is less than the length of fields, then the field
names are displayed for those fields for which label is missing.
show_labels: bool (default: True)
Boolean attribute to enable and disable display of the
label /field name
as the first column along with the value
"""
fields = List().tag(sync=True)
formats = List().tag(sync=True)
show_labels = Bool(True).tag(sync=True)
labels = List().tag(sync=True)
_view_name = Unicode('Tooltip').tag(sync=True)
_model_name = Unicode('TooltipModel').tag(sync=True)
_view_module = Unicode('bqplot').tag(sync=True)
_model_module = Unicode('bqplot').tag(sync=True)
_view_module_version = Unicode(__frontend_version__).tag(sync=True)
_model_module_version = Unicode(__frontend_version__).tag(sync=True)
| (*args: 't.Any', **kwargs: 't.Any') -> 't.Any' |
35,095 | traitlets.traitlets | Type | A trait whose value must be a subclass of a specified class. | class Type(ClassBasedTraitType[G, S]):
"""A trait whose value must be a subclass of a specified class."""
if t.TYPE_CHECKING:
@t.overload
def __init__(
self: Type[type, type],
default_value: Sentinel | None | str = ...,
klass: None | str = ...,
allow_none: Literal[False] = ...,
read_only: bool | None = ...,
help: str | None = ...,
config: t.Any | None = ...,
**kwargs: t.Any,
) -> None:
...
@t.overload
def __init__(
self: Type[type | None, type | None],
default_value: Sentinel | None | str = ...,
klass: None | str = ...,
allow_none: Literal[True] = ...,
read_only: bool | None = ...,
help: str | None = ...,
config: t.Any | None = ...,
**kwargs: t.Any,
) -> None:
...
@t.overload
def __init__(
self: Type[S, S],
default_value: S = ...,
klass: S = ...,
allow_none: Literal[False] = ...,
read_only: bool | None = ...,
help: str | None = ...,
config: t.Any | None = ...,
**kwargs: t.Any,
) -> None:
...
@t.overload
def __init__(
self: Type[S | None, S | None],
default_value: S | None = ...,
klass: S = ...,
allow_none: Literal[True] = ...,
read_only: bool | None = ...,
help: str | None = ...,
config: t.Any | None = ...,
**kwargs: t.Any,
) -> None:
...
def __init__(
self,
default_value: t.Any = Undefined,
klass: t.Any = None,
allow_none: bool = False,
read_only: bool | None = None,
help: str | None = None,
config: t.Any | None = None,
**kwargs: t.Any,
) -> None:
"""Construct a Type trait
A Type trait specifies that its values must be subclasses of
a particular class.
If only ``default_value`` is given, it is used for the ``klass`` as
well. If neither are given, both default to ``object``.
Parameters
----------
default_value : class, str or None
The default value must be a subclass of klass. If an str,
the str must be a fully specified class name, like 'foo.bar.Bah'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
klass : class, str [ default object ]
Values of this trait must be a subclass of klass. The klass
may be specified in a string like: 'foo.bar.MyClass'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
allow_none : bool [ default False ]
Indicates whether None is allowed as an assignable value.
**kwargs
extra kwargs passed to `ClassBasedTraitType`
"""
if default_value is Undefined:
new_default_value = object if (klass is None) else klass
else:
new_default_value = default_value
if klass is None:
if (default_value is None) or (default_value is Undefined):
klass = object
else:
klass = default_value
if not (inspect.isclass(klass) or isinstance(klass, str)):
raise TraitError("A Type trait must specify a class.")
self.klass = klass
super().__init__(
new_default_value,
allow_none=allow_none,
read_only=read_only,
help=help,
config=config,
**kwargs,
)
def validate(self, obj: t.Any, value: t.Any) -> G:
"""Validates that the value is a valid object instance."""
if isinstance(value, str):
try:
value = self._resolve_string(value)
except ImportError as e:
raise TraitError(
f"The '{self.name}' trait of {obj} instance must be a type, but "
f"{value!r} could not be imported"
) from e
try:
if issubclass(value, self.klass): # type:ignore[arg-type]
return t.cast(G, value)
except Exception:
pass
self.error(obj, value)
def info(self) -> str:
"""Returns a description of the trait."""
if isinstance(self.klass, str):
klass = self.klass
else:
klass = self.klass.__module__ + "." + self.klass.__name__
result = "a subclass of '%s'" % klass
if self.allow_none:
return result + " or None"
return result
def instance_init(self, obj: t.Any) -> None:
# we can't do this in subclass_init because that
# might be called before all imports are done.
self._resolve_classes()
def _resolve_classes(self) -> None:
if isinstance(self.klass, str):
self.klass = self._resolve_string(self.klass)
if isinstance(self.default_value, str):
self.default_value = self._resolve_string(self.default_value)
def default_value_repr(self) -> str:
value = self.default_value
assert value is not None
if isinstance(value, str):
return repr(value)
else:
return repr(f"{value.__module__}.{value.__name__}")
| (default_value: Any = traitlets.Undefined, klass: 't.Any' = None, allow_none: bool = False, read_only: bool = None, help: 'str | None' = None, config: 't.Any | None' = None, **kwargs: 't.Any') -> 'None' |
35,097 | traitlets.traitlets | __init__ | Construct a Type trait
A Type trait specifies that its values must be subclasses of
a particular class.
If only ``default_value`` is given, it is used for the ``klass`` as
well. If neither are given, both default to ``object``.
Parameters
----------
default_value : class, str or None
The default value must be a subclass of klass. If an str,
the str must be a fully specified class name, like 'foo.bar.Bah'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
klass : class, str [ default object ]
Values of this trait must be a subclass of klass. The klass
may be specified in a string like: 'foo.bar.MyClass'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
allow_none : bool [ default False ]
Indicates whether None is allowed as an assignable value.
**kwargs
extra kwargs passed to `ClassBasedTraitType`
| def __init__(
self,
default_value: t.Any = Undefined,
klass: t.Any = None,
allow_none: bool = False,
read_only: bool | None = None,
help: str | None = None,
config: t.Any | None = None,
**kwargs: t.Any,
) -> None:
"""Construct a Type trait
A Type trait specifies that its values must be subclasses of
a particular class.
If only ``default_value`` is given, it is used for the ``klass`` as
well. If neither are given, both default to ``object``.
Parameters
----------
default_value : class, str or None
The default value must be a subclass of klass. If an str,
the str must be a fully specified class name, like 'foo.bar.Bah'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
klass : class, str [ default object ]
Values of this trait must be a subclass of klass. The klass
may be specified in a string like: 'foo.bar.MyClass'.
The string is resolved into real class, when the parent
:class:`HasTraits` class is instantiated.
allow_none : bool [ default False ]
Indicates whether None is allowed as an assignable value.
**kwargs
extra kwargs passed to `ClassBasedTraitType`
"""
if default_value is Undefined:
new_default_value = object if (klass is None) else klass
else:
new_default_value = default_value
if klass is None:
if (default_value is None) or (default_value is Undefined):
klass = object
else:
klass = default_value
if not (inspect.isclass(klass) or isinstance(klass, str)):
raise TraitError("A Type trait must specify a class.")
self.klass = klass
super().__init__(
new_default_value,
allow_none=allow_none,
read_only=read_only,
help=help,
config=config,
**kwargs,
)
| (self, default_value: Any = traitlets.Undefined, klass: Optional[Any] = None, allow_none: bool = False, read_only: Optional[bool] = None, help: Optional[str] = None, config: Optional[Any] = None, **kwargs: Any) -> NoneType |
35,101 | traitlets.traitlets | _resolve_classes | null | def _resolve_classes(self) -> None:
if isinstance(self.klass, str):
self.klass = self._resolve_string(self.klass)
if isinstance(self.default_value, str):
self.default_value = self._resolve_string(self.default_value)
| (self) -> NoneType |
35,106 | traitlets.traitlets | default_value_repr | null | def default_value_repr(self) -> str:
value = self.default_value
assert value is not None
if isinstance(value, str):
return repr(value)
else:
return repr(f"{value.__module__}.{value.__name__}")
| (self) -> str |
35,112 | traitlets.traitlets | info | Returns a description of the trait. | def info(self) -> str:
"""Returns a description of the trait."""
if isinstance(self.klass, str):
klass = self.klass
else:
klass = self.klass.__module__ + "." + self.klass.__name__
result = "a subclass of '%s'" % klass
if self.allow_none:
return result + " or None"
return result
| (self) -> str |
35,119 | traitlets.traitlets | validate | Validates that the value is a valid object instance. | def validate(self, obj: t.Any, value: t.Any) -> G:
"""Validates that the value is a valid object instance."""
if isinstance(value, str):
try:
value = self._resolve_string(value)
except ImportError as e:
raise TraitError(
f"The '{self.name}' trait of {obj} instance must be a type, but "
f"{value!r} could not be imported"
) from e
try:
if issubclass(value, self.klass): # type:ignore[arg-type]
return t.cast(G, value)
except Exception:
pass
self.error(obj, value)
| (self, obj: Any, value: Any) -> ~G |
35,200 | bqplot | _jupyter_labextension_paths | null | def _jupyter_labextension_paths():
return [{
'src': f'{_prefix()}/share/jupyter/labextensions/bqplot/',
'dest': 'bqplot',
}]
| () |
35,201 | bqplot | _jupyter_nbextension_paths | null | def _jupyter_nbextension_paths():
return [{
'section': 'notebook',
'src': f'{_prefix()}/share/jupyter/nbextensions/bqplot/',
'dest': 'bqplot',
'require': 'bqplot/extension'
}]
| () |
35,202 | bqplot | _prefix | null | def _prefix():
import sys
from pathlib import Path
prefix = sys.prefix
here = Path(__file__).parent
# for when in dev mode
if (here.parent / 'share/jupyter/nbextensions/bqplot').parent.exists():
prefix = here.parent
return prefix
| () |
35,204 | bqplot.traits | array_dimension_bounds | null | def array_dimension_bounds(mindim=0, maxdim=np.inf):
def validator(trait, value):
dim = len(value.shape)
if dim < mindim or dim > maxdim:
raise TraitError('Dimension mismatch for trait %s of class %s: expected an \
array of dimension comprised in interval [%s, %s] and got an array of shape %s' % (
trait.name, trait.this_class, mindim, maxdim, value.shape))
return value
return validator
| (mindim=0, maxdim=inf) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.