index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
36,833
lizard
map_files_to_analyzer
null
def map_files_to_analyzer(files, analyzer, working_threads): mapmethod = get_map_method(working_threads) return mapmethod(analyzer, files)
(files, analyzer, working_threads)
36,834
lizard
md5_hash_file
return md5 hash of a file
def md5_hash_file(full_path_name): ''' return md5 hash of a file ''' try: with auto_open(full_path_name, mode='r') as source_file: if sys.version_info[0] == 3: code_md5 = hashlib.md5(source_file.read().encode('utf-8')) else: code_md5 = hashlib.md5(source_file.read()) return code_md5.hexdigest() except IOError: return None except UnicodeDecodeError: return None except UnicodeEncodeError: return None
(full_path_name)
36,835
lizard
open_output_file
null
def open_output_file(path): try: return codecs.open(path, 'w', encoding='utf8') except OSError: msg = "Error: failed to open output file '{}'\n.".format(path) sys.stderr.write(msg) sys.exit(2)
(path)
36,837
lizard
parse_args
null
def parse_args(argv): def extend_parser(parser_to_extend): from argparse import ArgumentParser parser = ArgumentParser(add_help=False) _extension_arg(parser) opt, _ = parser.parse_known_args(args=argv[1:]) extensions = get_extensions(opt.extensions) for ext in extensions: if hasattr(ext, "set_args"): ext.set_args(parser_to_extend) # pylint: disable=E1101 return parser_to_extend parser = extend_parser(arg_parser(argv[0])) opt = parser.parse_args(args=argv[1:]) opt.extensions = get_extensions(opt.extensions) values = OutputScheme(opt.extensions).value_columns() no_fields = (set(opt.sorting) | set(opt.thresholds.keys())) - set(values) if no_fields: error_message = "Wrong field name '%s'.\n" % ", ".join(no_fields) error_message += "Candidates are: " + ', '.join(values) + "\n" sys.stderr.write(error_message) sys.exit(2) if "cyclomatic_complexity" not in opt.thresholds: opt.thresholds["cyclomatic_complexity"] = opt.CCN if "max_nesting_depth" not in opt.thresholds and hasattr(opt, "ND"): opt.thresholds["max_nesting_depth"] = opt.ND if "max_nested_structures" not in opt.thresholds and hasattr(opt, "NS"): opt.thresholds["max_nested_structures"] = opt.NS if "length" not in opt.thresholds: opt.thresholds["length"] = opt.length if "nloc" not in opt.thresholds: opt.thresholds["nloc"] = 1000000 if "parameter_count" not in opt.thresholds: opt.thresholds["parameter_count"] = opt.arguments if opt.output_file: inferred_printer = infer_printer_from_file_ext(opt.output_file) if inferred_printer: if not opt.printer: opt.printer = inferred_printer else: msg = "Warning: overriding output file extension.\n" sys.stderr.write(msg) return opt
(argv)
36,838
lizard
preprocessing
null
def preprocessing(tokens, reader): if hasattr(reader, "preprocess"): return reader.preprocess(tokens) return (t for t in tokens if not t.isspace() or t == '\n')
(tokens, reader)
36,839
lizard
print_and_save_modules
null
def print_and_save_modules(all_fileinfos, scheme): saved_fileinfos = [] print(scheme.function_info_head()) for module_info in all_fileinfos: if module_info: saved_fileinfos.append(module_info) for fun in module_info.function_list: try: print(scheme.function_info(fun)) except UnicodeEncodeError: print("Found ill-formatted unicode function name.") print("%d file analyzed." % (len(saved_fileinfos))) print("==============================================================") print("NLOC " + scheme.average_captions() + " function_cnt file") print("--------------------------------------------------------------") for module_info in saved_fileinfos: print(( "{module.nloc:7d}" + scheme.average_formatter() + "{function_count:10d}" + " {module.filename}").format( module=module_info, function_count=len(module_info.function_list))) return saved_fileinfos
(all_fileinfos, scheme)
36,840
lizard
print_clang_style_warning
null
def print_clang_style_warning(code_infos, option, scheme, _): count = 0 for warning in get_warnings(code_infos, option): print(scheme.clang_warning_format().format(f=warning)) count += 1 return count
(code_infos, option, scheme, _)
36,841
lizard_ext
print_csv
null
def print_csv(results, options, _, total_factory): csv_output(total_factory(list(results)), options) return 0
(results, options, _, total_factory)
36,842
lizard
print_extension_results
null
def print_extension_results(extensions): for extension in extensions: if hasattr(extension, 'print_result'): extension.print_result()
(extensions)
36,843
lizard
print_msvs_style_warning
null
def print_msvs_style_warning(code_infos, option, scheme, _): count = 0 for warning in get_warnings(code_infos, option): print(scheme.msvs_warning_format().format(f=warning)) count += 1 return count
(code_infos, option, scheme, _)
36,844
lizard
print_no_warnings
null
def print_no_warnings(option): warn_str = "No thresholds exceeded ({0})".format( ' or '.join("{0} > {1}".format( k, val) for k, val in option.thresholds.items())) print("\n" + "=" * len(warn_str) + "\n" + warn_str)
(option)
36,845
lizard
print_result
null
def print_result(result, option, scheme, total_factory): result = print_and_save_modules(result, scheme) warnings = get_warnings(result, option) warning_count, warning_nloc = print_warnings(option, scheme, warnings) print_total(warning_count, warning_nloc, total_factory(result), scheme) return warning_count
(result, option, scheme, total_factory)
36,846
lizard
print_total
null
def print_total(warning_count, warning_nloc, all_result, scheme): print("=" * 90) print("Total nloc " + scheme.average_captions() + " Fun Cnt Warning" " cnt Fun Rt nloc Rt") print("-" * 90) print(( "{module.nloc:10d}" + scheme.average_formatter() + "{function_count:9d}{warning_count:13d}" + "{function_rate:10.2f}{nloc_rate:8.2f}").format( module=all_result.as_fileinfo(), function_count=all_result.function_count(), warning_count=warning_count, function_rate=(warning_count/all_result.function_count()), nloc_rate=(warning_nloc/all_result.nloc_in_functions())))
(warning_count, warning_nloc, all_result, scheme)
36,847
lizard
print_warnings
null
def print_warnings(option, scheme, warnings): warning_count = 0 warning_nloc = 0 warn_str = "!!!! Warnings ({0}) !!!!".format( ' or '.join("{0} > {1}".format( k, val) for k, val in option.thresholds.items())) for warning in warnings: if warning_count == 0: print("\n" + "=" * len(warn_str) + "\n" + warn_str) print(scheme.function_info_head()) warning_count += 1 warning_nloc += warning.nloc print(scheme.function_info(warning)) if warning_count == 0: print_no_warnings(option) return warning_count, warning_nloc
(option, scheme, warnings)
36,848
lizard_ext
print_xml
null
def print_xml(results, options, _, total_factory): print(xml_output(total_factory(list(results)), options.verbose)) return 0
(results, options, _, total_factory)
36,850
lizard
silent_printer
just to exhaust the result, no output.
def silent_printer(result, *_): ''' just to exhaust the result, no output. ''' for _ in result: pass return 0
(result, *_)
36,852
lizard
token_counter
null
def token_counter(tokens, reader): context = reader.context for token in tokens: context.fileinfo.token_count += 1 context.current_function.token_count += 1 yield token
(tokens, reader)
36,853
lizard
warning_filter
null
def warning_filter(option, module_infos): for file_info in module_infos: if file_info: for fun in file_info.function_list: if any(getattr(fun, attr) > limit for attr, limit in option.thresholds.items()): yield fun
(option, module_infos)
36,854
lizard
whitelist_filter
null
def whitelist_filter(warnings, script=None, whitelist=None): def _get_whitelist_item(script): white = {} pieces = script.replace('::', '##').split(':') if len(pieces) > 1: white['file_name'] = pieces[0] script = pieces[1] white['function_names'] = ( [x.strip().replace('##', '::') for x in script.split(',')]) return white def _in_list(warning): return any(_match_whitelist_item(white, warning) for white in whitelist) def _match_whitelist_item(white, warning): return (warning.name in white['function_names'] and warning.filename == white.get('file_name', warning.filename)) def get_whitelist(whitelist): if os.path.isfile(whitelist): return open(whitelist, mode='r').read() if whitelist != DEFAULT_WHITELIST: print("WARNING: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print("WARNING: the whitelist \""+whitelist+"\" doesn't exist.") return '' if not script: script = get_whitelist(whitelist) whitelist = [ _get_whitelist_item(line.split('#')[0]) for line in script.splitlines()] for warning in warnings: if not _in_list(warning): yield warning
(warnings, script=None, whitelist=None)
36,855
smbprotocol
Dialects
[MS-SMB2] v53.0 2017-09-15 2.2.3 SMB2 NEGOTIATE Request Dialects 16-bit integeres specifying an SMB2 dialect that is supported. 0x02FF is used in the SMBv1 negotiate request to say that dialects greater than 2.0.2 is supported.
class Dialects: """ [MS-SMB2] v53.0 2017-09-15 2.2.3 SMB2 NEGOTIATE Request Dialects 16-bit integeres specifying an SMB2 dialect that is supported. 0x02FF is used in the SMBv1 negotiate request to say that dialects greater than 2.0.2 is supported. """ SMB_2_0_2 = 0x0202 SMB_2_1_0 = 0x0210 SMB_3_0_0 = 0x0300 SMB_3_0_2 = 0x0302 SMB_3_1_1 = 0x0311 SMB_2_WILDCARD = 0x02FF
()
36,857
aws_assume_role_lib.aws_assume_role_lib
JSONFileCache
JSON file cache. This provides a dict like interface that stores JSON serializable objects. The objects are serialized to JSON and stored in a file. These values can be retrieved at a later time.
class JSONFileCache(botocore.credentials.JSONFileCache): """JSON file cache. This provides a dict like interface that stores JSON serializable objects. The objects are serialized to JSON and stored in a file. These values can be retrieved at a later time. """ def __init__(self, dir_path): super().__init__(working_dir=dir_path)
(dir_path)
36,858
botocore.utils
__contains__
null
def __contains__(self, cache_key): actual_key = self._convert_cache_key(cache_key) return os.path.isfile(actual_key)
(self, cache_key)
36,859
botocore.utils
__delitem__
null
def __delitem__(self, cache_key): actual_key = self._convert_cache_key(cache_key) try: key_path = Path(actual_key) key_path.unlink() except FileNotFoundError: raise KeyError(cache_key)
(self, cache_key)
36,860
botocore.utils
__getitem__
Retrieve value from a cache key.
def __getitem__(self, cache_key): """Retrieve value from a cache key.""" actual_key = self._convert_cache_key(cache_key) try: with open(actual_key) as f: return json.load(f) except (OSError, ValueError): raise KeyError(cache_key)
(self, cache_key)
36,861
aws_assume_role_lib.aws_assume_role_lib
__init__
null
def __init__(self, dir_path): super().__init__(working_dir=dir_path)
(self, dir_path)
36,862
botocore.utils
__setitem__
null
def __setitem__(self, cache_key, value): full_key = self._convert_cache_key(cache_key) try: file_content = self._dumps(value) except (TypeError, ValueError): raise ValueError( f"Value cannot be cached, must be " f"JSON serializable: {value}" ) if not os.path.isdir(self._working_dir): os.makedirs(self._working_dir) with os.fdopen( os.open(full_key, os.O_WRONLY | os.O_CREAT, 0o600), 'w' ) as f: f.truncate() f.write(file_content)
(self, cache_key, value)
36,863
botocore.utils
_convert_cache_key
null
def _convert_cache_key(self, cache_key): full_path = os.path.join(self._working_dir, cache_key + '.json') return full_path
(self, cache_key)
36,864
botocore.utils
_default_dumps
null
def _default_dumps(self, obj): return json.dumps(obj, default=self._serialize_if_needed)
(self, obj)
36,865
botocore.utils
_serialize_if_needed
null
def _serialize_if_needed(self, value, iso=False): if isinstance(value, _DatetimeClass): if iso: return value.isoformat() return value.strftime('%Y-%m-%dT%H:%M:%S%Z') return value
(self, value, iso=False)
36,866
aws_assume_role_lib.aws_assume_role_lib
assume_role
Produce a boto3 Session using the given role, assumed using the input session. Unlike creating a session with the credentials returned directly by sts.AssumeRole, the returned session will refresh the credentials automatically when they expire by calling AssumeRole again. By default, the parameters are checked so that errors can be raised at this point, rather than more confusingly when the first call is made using the child session. This can be disabled by setting validate=False. The parent session is available on the child session in the property assume_role_parent_session. Additional arguments for AssumeRole, if any are added in the future, can be passed in additional_kwargs.
def assume_role(session: boto3.Session, RoleArn: str, *, RoleSessionName: str=None, PolicyArns: typing.Union[typing.List[typing.Dict[str, str]], typing.List[str]]=None, Policy: typing.Union[str, typing.Dict]=None, DurationSeconds: typing.Union[int, datetime.timedelta]=None, Tags: typing.List[typing.Dict[str, str]]=None, TransitiveTagKeys:typing.List[str]=None, ExternalId: str=None, SerialNumber: str=None, TokenCode: str=None, SourceIdentity: str=None, region_name: typing.Union[str, bool]=None, validate: bool=True, cache: dict=None, additional_kwargs: typing.Dict=None) -> boto3.Session: """Produce a boto3 Session using the given role, assumed using the input session. Unlike creating a session with the credentials returned directly by sts.AssumeRole, the returned session will refresh the credentials automatically when they expire by calling AssumeRole again. By default, the parameters are checked so that errors can be raised at this point, rather than more confusingly when the first call is made using the child session. This can be disabled by setting validate=False. The parent session is available on the child session in the property assume_role_parent_session. Additional arguments for AssumeRole, if any are added in the future, can be passed in additional_kwargs.""" botocore_session = session._session if not RoleSessionName and SourceIdentity: RoleSessionName = SourceIdentity elif RoleSessionName == AUTOMATIC_ROLE_SESSION_NAME: RoleSessionName = None if PolicyArns: PolicyArns = [{"arn": value} if isinstance(value, str) else value for value in PolicyArns] if Policy is not None and not isinstance(Policy, str): Policy = json.dumps(Policy) if isinstance(DurationSeconds, datetime.timedelta): DurationSeconds = int(DurationSeconds.total_seconds()) extra_args = {} if additional_kwargs: extra_args.update(additional_kwargs) for var_name in [ "RoleSessionName", "PolicyArns", "Policy", "DurationSeconds", "Tags", "TransitiveTagKeys", "ExternalId", "SerialNumber", "TokenCode", "SourceIdentity"]: value = locals()[var_name] if value is not None: extra_args[var_name] = value credentials = botocore_session.get_credentials() if not credentials: raise botocore.exceptions.NoCredentialsError if validate: validate_args = extra_args.copy() validate_args["RoleArn"] = RoleArn if "RoleSessionName" not in validate_args: # this gets generated later if it's not present validate_args["RoleSessionName"] = "ToBeGenerated" shape = session.client("sts")._service_model.shape_for("AssumeRoleRequest") botocore.validate.validate_parameters(validate_args, shape) assume_role_provider = ProgrammaticAssumeRoleProvider( botocore_session.create_client, credentials, RoleArn, extra_args=extra_args, cache=cache, ) assumed_role_botocore_session = botocore.session.Session() assumed_role_botocore_session.register_component( "credential_provider", botocore.credentials.CredentialResolver([assume_role_provider]) ) if region_name is True: region_name = session.region_name elif region_name is False: region_name = None elif region_name is None: try: _set_parent_session_provider( botocore_session, assumed_role_botocore_session, "region") except Exception as e: raise RuntimeError( "Unexpected breakage of botocore config API. " + "Fall back to setting region_name=True to use parent session region " + "or region=False to use implicit region.") from e session_kwargs = { "botocore_session": assumed_role_botocore_session, "region_name": region_name, } assumed_role_boto3_session = boto3.Session(**session_kwargs) assumed_role_boto3_session.assume_role_parent_session = session return assumed_role_boto3_session
(session: boto3.session.Session, RoleArn: str, *, RoleSessionName: Optional[str] = None, PolicyArns: Union[List[Dict[str, str]], List[str], NoneType] = None, Policy: Union[str, Dict, NoneType] = None, DurationSeconds: Union[int, datetime.timedelta, NoneType] = None, Tags: Optional[List[Dict[str, str]]] = None, TransitiveTagKeys: Optional[List[str]] = None, ExternalId: Optional[str] = None, SerialNumber: Optional[str] = None, TokenCode: Optional[str] = None, SourceIdentity: Optional[str] = None, region_name: Union[str, bool, NoneType] = None, validate: bool = True, cache: Optional[dict] = None, additional_kwargs: Optional[Dict] = None) -> boto3.session.Session
36,868
aws_assume_role_lib.aws_assume_role_lib
generate_lambda_session_name
For Lambda functions, generate a role session name that identifies the function. The returned value is in one of the following forms: {function_name} {function_name}.{identifier} {function_name}.{function_version}.{identifier} The function name must be retrievable from the AWS_LAMBDA_FUNCTION_NAME environment variable, or it must be provided. The function version is looked for in the AWS_LAMBDA_FUNCTION_VERSION environment variable by default. Function versions of $LATEST are treated the same as missing function versions. The identifier is taken from the log stream name in the AWS_LAMBDA_LOG_STREAM_NAME environment variable by default; if it is not provided and this cannot be found, it's a timestamp if the identifier can be at least 14 characters long (to provide for second-level precision), otherwise it is a random string. The maximum role session name length is 64 characters. To ensure this, and to provide at least 4 characters of the identifier when it is used, the following rules apply, in order: 1. If the function name is longer than 59 characters, the session name is the truncated function name. 2. If the function name plus the function version is longer than 59 characters, the session name is the function name plus the identifier, truncated. 3. Otherwise, the session name is the function name plus the version (if one is found and not $LATEST) plus the identifier, truncated.
def generate_lambda_session_name( function_name: str=None, function_version: str=None, identifier: str=None): """For Lambda functions, generate a role session name that identifies the function. The returned value is in one of the following forms: {function_name} {function_name}.{identifier} {function_name}.{function_version}.{identifier} The function name must be retrievable from the AWS_LAMBDA_FUNCTION_NAME environment variable, or it must be provided. The function version is looked for in the AWS_LAMBDA_FUNCTION_VERSION environment variable by default. Function versions of $LATEST are treated the same as missing function versions. The identifier is taken from the log stream name in the AWS_LAMBDA_LOG_STREAM_NAME environment variable by default; if it is not provided and this cannot be found, it's a timestamp if the identifier can be at least 14 characters long (to provide for second-level precision), otherwise it is a random string. The maximum role session name length is 64 characters. To ensure this, and to provide at least 4 characters of the identifier when it is used, the following rules apply, in order: 1. If the function name is longer than 59 characters, the session name is the truncated function name. 2. If the function name plus the function version is longer than 59 characters, the session name is the function name plus the identifier, truncated. 3. Otherwise, the session name is the function name plus the version (if one is found and not $LATEST) plus the identifier, truncated. """ if not function_name: function_name = os.environ["AWS_LAMBDA_FUNCTION_NAME"] name_component = function_name if not function_version: function_version = os.environ.get("AWS_LAMBDA_FUNCTION_VERSION", "") if function_version and function_version != "$LATEST": version_component = "." + str(function_version) else: version_component = "" def _get_identifier(max_length): if identifier: return identifier # the execution environment has a unique ID, but it's not exposed directly # the log stream name (currently) includes it and looks like # 2020/01/31/[$LATEST]3893xmpl7fac4485b47bb75b671a283c log_stream_name = os.environ.get("AWS_LAMBDA_LOG_STREAM_NAME", "") match = re.search(r"\w+$", log_stream_name) if match: return match.group()[:max_length] elif max_length >= 14: # enough for second-level precision return datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S%f")[:max_length] else: chars = string.ascii_lowercase + string.digits return ''.join(random.choice(chars) for _ in range(max_length)) # truncate for max role session name length of 64 if len(name_component) > 59: # don't bother with the identifier unless we can get # at least four characters of it value = name_component[:64] elif len(name_component) + len(version_component) > 59: # don't bother with the version if we can't get it max_length = 63 - len(name_component) identifier_component = "." + _get_identifier(max_length) value = f"{name_component}{identifier_component}"[:64] else: max_length = 63 - (len(name_component) + len(version_component)) identifier_component = "." + _get_identifier(max_length) value = f"{name_component}{version_component}{identifier_component}"[:64] clean_value = re.sub(r"[^a-zA-Z0-9_=,.@-]+", "_", value) return clean_value
(function_name: Optional[str] = None, function_version: Optional[str] = None, identifier: Optional[str] = None)
36,869
aws_assume_role_lib.aws_assume_role_lib
get_assumed_role_session_arn
Get a correctly-formatted IAM assumed role session ARN. Note these ARNs do not contain the role's path, if it has one. If you provide the role name with path, it will be stripped off.
def get_assumed_role_session_arn( account_id: typing.Union[str, int], role_name: str, role_session_name: str, partition: str="aws"): """Get a correctly-formatted IAM assumed role session ARN. Note these ARNs do not contain the role's path, if it has one. If you provide the role name with path, it will be stripped off.""" if isinstance(account_id, numbers.Number): account_id = str(int(account_id)) if isinstance(account_id, str) and len(account_id) < 12: account_id = account_id.rjust(12, "0") if "/" in role_name: role_name = role_name.rsplit("/", 1)[1] return f"arn:{partition}:sts::{account_id}:assumed-role/{role_name}/{role_session_name}"
(account_id: Union[str, int], role_name: str, role_session_name: str, partition: str = 'aws')
36,870
aws_assume_role_lib.aws_assume_role_lib
get_role_arn
Get a correctly-formatted IAM role ARN. You can provide the path separately or as part of the role name.
def get_role_arn( account_id: typing.Union[str, int], role_name: str, path: str="", partition: str="aws"): """Get a correctly-formatted IAM role ARN. You can provide the path separately or as part of the role name.""" if isinstance(account_id, numbers.Number): account_id = str(int(account_id)) if isinstance(account_id, str) and len(account_id) < 12: account_id = account_id.rjust(12, "0") if "/" in role_name and path: raise ValueError("Path cannot be given in both role_name and path") if "/" in role_name: path, role_name = role_name.rsplit("/", 1) if path == "/": path = "" if path.startswith("/"): path = path[1:] if path and not path.endswith("/"): path = path + "/" return f"arn:{partition}:iam::{account_id}:role/{path}{role_name}"
(account_id: Union[str, int], role_name: str, path: str = '', partition: str = 'aws')
36,871
aws_assume_role_lib.aws_assume_role_lib
patch_boto3
Add boto3.assume_role() and boto3.Session.assume_role(). Each has the same interface as assume_role() except they do not take a session object as input.
def patch_boto3(): """Add boto3.assume_role() and boto3.Session.assume_role(). Each has the same interface as assume_role() except they do not take a session object as input.""" setattr(boto3.Session, assume_role.__name__, assume_role) def wrapper(RoleArn: str, *, RoleSessionName: str=None, PolicyArns: typing.Union[typing.List[typing.Dict[str, str]], typing.List[str]]=None, Policy: typing.Union[str, typing.Dict]=None, DurationSeconds: typing.Union[int, datetime.timedelta]=None, Tags: typing.List[typing.Dict[str, str]]=None, TransitiveTagKeys:typing.List[str]=None, ExternalId: str=None, SerialNumber: str=None, TokenCode: str=None, SourceIdentity: str=None, region_name: typing.Union[str, bool]=None, validate: bool=True, cache: dict=None, additional_kwargs: typing.Dict=None) -> boto3.Session: """Produce a boto3 Session using the given role. Unlike creating a session with the credentials returned directly by sts.AssumeRole, the returned session will refresh the credentials automatically when they expire by calling AssumeRole again. By default, the parameters are checked so that errors can be raised at this point, rather than more confusingly when the first call is made using the child session. This can be disabled by setting validate=False. The parent session is available on the child session in the property assume_role_parent_session. Additional arguments for AssumeRole, if any are added in the future, can be passed in additional_kwargs.""" session = boto3._get_default_session() return assume_role(session, RoleArn, RoleSessionName=RoleSessionName, PolicyArns=PolicyArns, Policy=Policy, DurationSeconds=DurationSeconds, Tags=Tags, TransitiveTagKeys=TransitiveTagKeys, ExternalId=ExternalId, SerialNumber=SerialNumber, TokenCode=TokenCode, SourceIdentity=SourceIdentity, region_name=region_name, validate=validate, cache=cache, additional_kwargs=additional_kwargs ) wrapper.__name__ = assume_role.__name__ setattr(boto3, assume_role.__name__, wrapper)
()
36,872
numba.core.errors
NumbaDeprecationWarning
Warning category for use of a deprecated feature.
class NumbaDeprecationWarning(NumbaWarning, DeprecationWarning): """ Warning category for use of a deprecated feature. """
(msg, loc=None, highlighting=True)
36,873
numba.core.errors
__init__
null
def __init__(self, msg, loc=None, highlighting=True, ): self.msg = msg self.loc = loc # If a warning is emitted inside validation of env-vars in # numba.core.config. Highlighting will not be available. if highlighting and _is_numba_core_config_loaded(): highlight = termcolor().errmsg else: def highlight(x): return x if loc: super(NumbaWarning, self).__init__( highlight("%s\n%s\n" % (msg, loc.strformat()))) else: super(NumbaWarning, self).__init__(highlight("%s" % (msg,)))
(self, msg, loc=None, highlighting=True)
36,874
ydata_profiling.profile_report
ProfileReport
Generate a profile report from a Dataset stored as a pandas `DataFrame`. Used as is, it will output its content as an HTML report in a Jupyter notebook.
class ProfileReport(SerializeReport, ExpectationsReport): """Generate a profile report from a Dataset stored as a pandas `DataFrame`. Used as is, it will output its content as an HTML report in a Jupyter notebook. """ _description_set = None _report = None _html = None _widgets = None _json = None config: Settings def __init__( self, df: Optional[Union[pd.DataFrame, sDataFrame]] = None, minimal: bool = False, tsmode: bool = False, sortby: Optional[str] = None, sensitive: bool = False, explorative: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Optional[Union[Path, str]] = None, lazy: bool = True, typeset: Optional[VisionsTypeset] = None, summarizer: Optional[BaseSummarizer] = None, config: Optional[Settings] = None, type_schema: Optional[dict] = None, **kwargs, ): """Generate a ProfileReport based on a pandas or spark.sql DataFrame Config processing order (in case of duplicate entries, entries later in the order are retained): - config presets (e.g. `config_file`, `minimal` arguments) - config groups (e.g. `explorative` and `sensitive` arguments) - custom settings (e.g. `config` argument) - custom settings **kwargs (e.g. `title`) Args: df: a pandas or spark.sql DataFrame minimal: minimal mode is a default configuration with minimal computation ts_mode: activates time-series analysis for all the numerical variables from the dataset. Only available for pd.DataFrame sort_by: ignored if ts_mode=False. Order the dataset by a provided column. sensitive: hides the values for categorical and text variables for report privacy config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame()) typeset: optional user typeset to use for type inference summarizer: optional user summarizer to generate custom summary output type_schema: optional dict containing pairs of `column name`: `type` **kwargs: other arguments, for valid arguments, check the default configuration file. """ self.__validate_inputs(df, minimal, tsmode, config_file, lazy) if config_file or minimal: if not config_file: config_file = get_config("config_minimal.yaml") report_config = Settings().from_file(config_file) elif config is not None: report_config = config else: if isinstance(df, pd.DataFrame): report_config = Settings() else: report_config = SparkSettings() groups = [ (explorative, "explorative"), (sensitive, "sensitive"), (dark_mode, "dark_mode"), (orange_mode, "orange_mode"), ] if any(condition for condition, _ in groups): cfg = Settings() for condition, key in groups: if condition: cfg = cfg.update(Config.get_arg_groups(key)) report_config = cfg.update(report_config.dict(exclude_defaults=True)) if len(kwargs) > 0: shorthands, kwargs = Config.shorthands(kwargs) report_config = ( Settings() .update(shorthands) .update(report_config.dict(exclude_defaults=True)) ) if kwargs: report_config = report_config.update(kwargs) report_config.vars.timeseries.active = tsmode if tsmode and sortby: report_config.vars.timeseries.sortby = sortby self.df = self.__initialize_dataframe(df, report_config) self.config = report_config self._df_hash = None self._sample = sample self._type_schema = type_schema self._typeset = typeset self._summarizer = summarizer if not lazy: # Trigger building the report structure _ = self.report @staticmethod def __validate_inputs( df: Optional[Union[pd.DataFrame, sDataFrame]], minimal: bool, tsmode: bool, config_file: Optional[Union[Path, str]], lazy: bool, ) -> None: # Lazy profile cannot be set if no DataFrame is provided if df is None and not lazy: raise ValueError("Can init a not-lazy ProfileReport with no DataFrame") if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) # Spark Dataframe validations if isinstance(df, pd.DataFrame): if df is not None and df.empty: raise ValueError( "DataFrame is empty. Please" "provide a non-empty DataFrame." ) else: if tsmode: raise NotImplementedError( "Time-Series dataset analysis is not yet supported for Spark DataFrames" ) if ( df is not None and df.rdd.isEmpty() ): # df.isEmpty is only support by 3.3.0 pyspark version raise ValueError( "DataFrame is empty. Please" "provide a non-empty DataFrame." ) @staticmethod def __initialize_dataframe( df: Optional[Union[pd.DataFrame, sDataFrame]], report_config: Settings ) -> Optional[Union[pd.DataFrame, sDataFrame]]: logger.info_def_report( dataframe=type(df), timeseries=report_config.vars.timeseries.active ) if ( df is not None and isinstance(df, pd.DataFrame) and report_config.vars.timeseries.active ): if report_config.vars.timeseries.sortby: df = df.sort_values(by=report_config.vars.timeseries.sortby) df = df.set_index(report_config.vars.timeseries.sortby, drop=False) df.index.name = None else: df = df.sort_index() return df def invalidate_cache(self, subset: Optional[str] = None) -> None: """Invalidate report cache. Useful after changing setting. Args: subset: - "rendering" to invalidate the html, json and widget report rendering - "report" to remove the caching of the report structure - None (default) to invalidate all caches Returns: None """ if subset is not None and subset not in ["rendering", "report"]: raise ValueError( "'subset' parameter should be None, 'rendering' or 'report'" ) if subset is None or subset in ["rendering", "report"]: self._widgets = None self._json = None self._html = None if subset is None or subset == "report": self._report = None if subset is None: self._description_set = None @property def typeset(self) -> Optional[VisionsTypeset]: if self._typeset is None: self._typeset = ProfilingTypeSet(self.config, self._type_schema) return self._typeset @property def summarizer(self) -> BaseSummarizer: if self._summarizer is None: self._summarizer = PandasProfilingSummarizer(self.typeset) return self._summarizer @property def description_set(self) -> BaseDescription: if self._description_set is None: self._description_set = describe_df( self.config, self.df, self.summarizer, self.typeset, self._sample, ) return self._description_set @property def df_hash(self) -> Optional[str]: if self._df_hash is None and self.df is not None: self._df_hash = hash_dataframe(self.df) return self._df_hash @property def report(self) -> Root: if self._report is None: self._report = get_report_structure(self.config, self.description_set) return self._report @property def html(self) -> str: if self._html is None: self._html = self._render_html() return self._html @property def json(self) -> str: if self._json is None: self._json = self._render_json() return self._json @property def widgets(self) -> Any: if ( isinstance(self.description_set.table["n"], list) and len(self.description_set.table["n"]) > 1 ): raise RuntimeError( "Widgets interface not (yet) supported for comparing reports, please use the HTML rendering." ) if self._widgets is None: self._widgets = self._render_widgets() return self._widgets def get_duplicates(self) -> Optional[pd.DataFrame]: """Get duplicate rows and counts based on the configuration Returns: A DataFrame with the duplicate rows and their counts. """ return self.description_set.duplicates def get_sample(self) -> dict: """Get head/tail samples based on the configuration Returns: A dict with the head and tail samples. """ return self.description_set.sample def get_description(self) -> BaseDescription: """Return the description (a raw statistical summary) of the dataset. Returns: Dict containing a description for each variable in the DataFrame. """ return self.description_set def get_rejected_variables(self) -> set: """Get variables that are rejected for analysis (e.g. constant, mixed data types) Returns: a set of column names that are unsupported """ return { alert.column_name for alert in self.description_set.alerts if alert.alert_type == AlertType.REJECTED } def to_file(self, output_file: Union[str, Path], silent: bool = True) -> None: """Write the report to a file. Args: output_file: The name or the path of the file to generate including the extension (.html, .json). silent: if False, opens the file in the default browser or download it in a Google Colab environment """ with warnings.catch_warnings(): warnings.simplefilter("ignore") pillow_version = pkg_resources.get_distribution("Pillow").version version_tuple = tuple(map(int, pillow_version.split("."))) if version_tuple < (9, 5, 0): warnings.warn( "Try running command: 'pip install --upgrade Pillow' to avoid ValueError" ) if not isinstance(output_file, Path): output_file = Path(str(output_file)) if output_file.suffix == ".json": data = self.to_json() else: if not self.config.html.inline: self.config.html.assets_path = str(output_file.parent) if self.config.html.assets_prefix is None: self.config.html.assets_prefix = str(output_file.stem) + "_assets" create_html_assets(self.config, output_file) data = self.to_html() if output_file.suffix != ".html": suffix = output_file.suffix output_file = output_file.with_suffix(".html") warnings.warn( f"Extension {suffix} not supported. For now we assume .html was intended. " f"To remove this warning, please use .html or .json." ) disable_progress_bar = not self.config.progress_bar with tqdm( total=1, desc="Export report to file", disable=disable_progress_bar ) as pbar: output_file.write_text(data, encoding="utf-8") pbar.update() if not silent: try: from google.colab import files # noqa: F401 files.download(output_file.absolute().as_uri()) except ModuleNotFoundError: import webbrowser webbrowser.open_new_tab(output_file.absolute().as_uri()) def _render_html(self) -> str: from ydata_profiling.report.presentation.flavours import HTMLReport report = self.report with tqdm( total=1, desc="Render HTML", disable=not self.config.progress_bar ) as pbar: html = HTMLReport(copy.deepcopy(report)).render( nav=self.config.html.navbar_show, offline=self.config.html.use_local_assets, inline=self.config.html.inline, assets_prefix=self.config.html.assets_prefix, primary_color=self.config.html.style.primary_colors[0], logo=self.config.html.style.logo, theme=self.config.html.style.theme, title=self.description_set.analysis.title, date=self.description_set.analysis.date_start, version=self.description_set.package["ydata_profiling_version"], ) if self.config.html.minify_html: from htmlmin.main import minify html = minify(html, remove_all_empty_space=True, remove_comments=True) pbar.update() return html def _render_widgets(self) -> Any: from ydata_profiling.report.presentation.flavours import WidgetReport report = self.report with tqdm( total=1, desc="Render widgets", disable=not self.config.progress_bar, leave=False, ) as pbar: widgets = WidgetReport(copy.deepcopy(report)).render() pbar.update() return widgets def _render_json(self) -> str: def encode_it(o: Any) -> Any: if is_dataclass(o): o = asdict(o) if isinstance(o, dict): return {encode_it(k): encode_it(v) for k, v in o.items()} else: if isinstance(o, (bool, int, float, str)): return o elif isinstance(o, list): return [encode_it(v) for v in o] elif isinstance(o, set): return {encode_it(v) for v in o} elif isinstance(o, pd.Series): return encode_it(o.to_list()) elif isinstance(o, pd.DataFrame): return encode_it(o.to_dict(orient="records")) elif isinstance(o, np.ndarray): return encode_it(o.tolist()) elif isinstance(o, Sample): return encode_it(o.dict()) elif isinstance(o, np.generic): return o.item() else: return str(o) description = self.description_set with tqdm( total=1, desc="Render JSON", disable=not self.config.progress_bar ) as pbar: description_dict = format_summary(description) description_dict = encode_it(description_dict) description_dict = redact_summary(description_dict, self.config) data = json.dumps(description_dict, indent=4) pbar.update() return data def to_html(self) -> str: """Generate and return complete template as lengthy string for using with frameworks. Returns: Profiling report html including wrapper. """ return self.html def to_json(self) -> str: """Represent the ProfileReport as a JSON string Returns: JSON string """ return self.json def to_notebook_iframe(self) -> None: """Used to output the HTML representation to a Jupyter notebook. When config.notebook.iframe.attribute is "src", this function creates a temporary HTML file in `./tmp/profile_[hash].html` and returns an Iframe pointing to that contents. When config.notebook.iframe.attribute is "srcdoc", the same HTML is injected in the "srcdoc" attribute of the Iframe. Notes: This constructions solves problems with conflicting stylesheets and navigation links. """ from IPython.core.display import display from ydata_profiling.report.presentation.flavours.widget.notebook import ( get_notebook_iframe, ) # Ignore warning: https://github.com/ipython/ipython/pull/11350/files with warnings.catch_warnings(): warnings.simplefilter("ignore") display(get_notebook_iframe(self.config, self)) def to_widgets(self) -> None: """The ipython notebook widgets user interface.""" try: from google.colab import files # noqa: F401 warnings.warn( "Ipywidgets is not yet fully supported on Google Colab (https://github.com/googlecolab/colabtools/issues/60)." "As an alternative, you can use the HTML report. See the documentation for more information." ) except ModuleNotFoundError: pass from IPython.core.display import display display(self.widgets) def _repr_html_(self) -> None: """The ipython notebook widgets user interface gets called by the jupyter notebook.""" self.to_notebook_iframe() def __repr__(self) -> str: """Override so that Jupyter Notebook does not print the object.""" return "" def compare( self, other: "ProfileReport", config: Optional[Settings] = None ) -> "ProfileReport": """Compare this report with another ProfileReport Alias for: ``` ydata_profiling.compare([report1, report2], config=config) ``` See `ydata_profiling.compare` for details. Args: other: the ProfileReport to compare to config: the settings object for the merged ProfileReport. If `None`, uses the caller's config Returns: Comparison ProfileReport """ from ydata_profiling.compare_reports import compare return compare([self, other], config if config is not None else self.config)
(df: Optional[pandas.core.frame.DataFrame] = None, minimal: bool = False, tsmode: bool = False, sortby: Optional[str] = None, sensitive: bool = False, explorative: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Union[pathlib.Path, str, NoneType] = None, lazy: bool = True, typeset: Optional[visions.typesets.typeset.VisionsTypeset] = None, summarizer: Optional[ydata_profiling.model.summarizer.BaseSummarizer] = None, config: ydata_profiling.config.Settings = None, type_schema: Optional[dict] = None, **kwargs)
36,875
ydata_profiling.profile_report
__initialize_dataframe
null
@staticmethod def __initialize_dataframe( df: Optional[Union[pd.DataFrame, sDataFrame]], report_config: Settings ) -> Optional[Union[pd.DataFrame, sDataFrame]]: logger.info_def_report( dataframe=type(df), timeseries=report_config.vars.timeseries.active ) if ( df is not None and isinstance(df, pd.DataFrame) and report_config.vars.timeseries.active ): if report_config.vars.timeseries.sortby: df = df.sort_values(by=report_config.vars.timeseries.sortby) df = df.set_index(report_config.vars.timeseries.sortby, drop=False) df.index.name = None else: df = df.sort_index() return df
(df: Union[pandas.core.frame.DataFrame, ~sDataFrame, NoneType], report_config: ydata_profiling.config.Settings) -> Union[pandas.core.frame.DataFrame, ~sDataFrame, NoneType]
36,876
ydata_profiling.profile_report
__validate_inputs
null
@staticmethod def __validate_inputs( df: Optional[Union[pd.DataFrame, sDataFrame]], minimal: bool, tsmode: bool, config_file: Optional[Union[Path, str]], lazy: bool, ) -> None: # Lazy profile cannot be set if no DataFrame is provided if df is None and not lazy: raise ValueError("Can init a not-lazy ProfileReport with no DataFrame") if config_file is not None and minimal: raise ValueError( "Arguments `config_file` and `minimal` are mutually exclusive." ) # Spark Dataframe validations if isinstance(df, pd.DataFrame): if df is not None and df.empty: raise ValueError( "DataFrame is empty. Please" "provide a non-empty DataFrame." ) else: if tsmode: raise NotImplementedError( "Time-Series dataset analysis is not yet supported for Spark DataFrames" ) if ( df is not None and df.rdd.isEmpty() ): # df.isEmpty is only support by 3.3.0 pyspark version raise ValueError( "DataFrame is empty. Please" "provide a non-empty DataFrame." )
(df: Union[pandas.core.frame.DataFrame, ~sDataFrame, NoneType], minimal: bool, tsmode: bool, config_file: Union[pathlib.Path, str, NoneType], lazy: bool) -> NoneType
36,877
ydata_profiling.profile_report
__init__
Generate a ProfileReport based on a pandas or spark.sql DataFrame Config processing order (in case of duplicate entries, entries later in the order are retained): - config presets (e.g. `config_file`, `minimal` arguments) - config groups (e.g. `explorative` and `sensitive` arguments) - custom settings (e.g. `config` argument) - custom settings **kwargs (e.g. `title`) Args: df: a pandas or spark.sql DataFrame minimal: minimal mode is a default configuration with minimal computation ts_mode: activates time-series analysis for all the numerical variables from the dataset. Only available for pd.DataFrame sort_by: ignored if ts_mode=False. Order the dataset by a provided column. sensitive: hides the values for categorical and text variables for report privacy config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame()) typeset: optional user typeset to use for type inference summarizer: optional user summarizer to generate custom summary output type_schema: optional dict containing pairs of `column name`: `type` **kwargs: other arguments, for valid arguments, check the default configuration file.
def __init__( self, df: Optional[Union[pd.DataFrame, sDataFrame]] = None, minimal: bool = False, tsmode: bool = False, sortby: Optional[str] = None, sensitive: bool = False, explorative: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Optional[Union[Path, str]] = None, lazy: bool = True, typeset: Optional[VisionsTypeset] = None, summarizer: Optional[BaseSummarizer] = None, config: Optional[Settings] = None, type_schema: Optional[dict] = None, **kwargs, ): """Generate a ProfileReport based on a pandas or spark.sql DataFrame Config processing order (in case of duplicate entries, entries later in the order are retained): - config presets (e.g. `config_file`, `minimal` arguments) - config groups (e.g. `explorative` and `sensitive` arguments) - custom settings (e.g. `config` argument) - custom settings **kwargs (e.g. `title`) Args: df: a pandas or spark.sql DataFrame minimal: minimal mode is a default configuration with minimal computation ts_mode: activates time-series analysis for all the numerical variables from the dataset. Only available for pd.DataFrame sort_by: ignored if ts_mode=False. Order the dataset by a provided column. sensitive: hides the values for categorical and text variables for report privacy config_file: a config file (.yml), mutually exclusive with `minimal` lazy: compute when needed sample: optional dict(name="Sample title", caption="Caption", data=pd.DataFrame()) typeset: optional user typeset to use for type inference summarizer: optional user summarizer to generate custom summary output type_schema: optional dict containing pairs of `column name`: `type` **kwargs: other arguments, for valid arguments, check the default configuration file. """ self.__validate_inputs(df, minimal, tsmode, config_file, lazy) if config_file or minimal: if not config_file: config_file = get_config("config_minimal.yaml") report_config = Settings().from_file(config_file) elif config is not None: report_config = config else: if isinstance(df, pd.DataFrame): report_config = Settings() else: report_config = SparkSettings() groups = [ (explorative, "explorative"), (sensitive, "sensitive"), (dark_mode, "dark_mode"), (orange_mode, "orange_mode"), ] if any(condition for condition, _ in groups): cfg = Settings() for condition, key in groups: if condition: cfg = cfg.update(Config.get_arg_groups(key)) report_config = cfg.update(report_config.dict(exclude_defaults=True)) if len(kwargs) > 0: shorthands, kwargs = Config.shorthands(kwargs) report_config = ( Settings() .update(shorthands) .update(report_config.dict(exclude_defaults=True)) ) if kwargs: report_config = report_config.update(kwargs) report_config.vars.timeseries.active = tsmode if tsmode and sortby: report_config.vars.timeseries.sortby = sortby self.df = self.__initialize_dataframe(df, report_config) self.config = report_config self._df_hash = None self._sample = sample self._type_schema = type_schema self._typeset = typeset self._summarizer = summarizer if not lazy: # Trigger building the report structure _ = self.report
(self, df: Union[pandas.core.frame.DataFrame, ~sDataFrame, NoneType] = None, minimal: bool = False, tsmode: bool = False, sortby: Optional[str] = None, sensitive: bool = False, explorative: bool = False, dark_mode: bool = False, orange_mode: bool = False, sample: Optional[dict] = None, config_file: Union[pathlib.Path, str, NoneType] = None, lazy: bool = True, typeset: Optional[visions.typesets.typeset.VisionsTypeset] = None, summarizer: Optional[ydata_profiling.model.summarizer.BaseSummarizer] = None, config: Optional[ydata_profiling.config.Settings] = None, type_schema: Optional[dict] = None, **kwargs)
36,878
ydata_profiling.profile_report
__repr__
Override so that Jupyter Notebook does not print the object.
def __repr__(self) -> str: """Override so that Jupyter Notebook does not print the object.""" return ""
(self) -> str
36,879
ydata_profiling.profile_report
_render_html
null
def _render_html(self) -> str: from ydata_profiling.report.presentation.flavours import HTMLReport report = self.report with tqdm( total=1, desc="Render HTML", disable=not self.config.progress_bar ) as pbar: html = HTMLReport(copy.deepcopy(report)).render( nav=self.config.html.navbar_show, offline=self.config.html.use_local_assets, inline=self.config.html.inline, assets_prefix=self.config.html.assets_prefix, primary_color=self.config.html.style.primary_colors[0], logo=self.config.html.style.logo, theme=self.config.html.style.theme, title=self.description_set.analysis.title, date=self.description_set.analysis.date_start, version=self.description_set.package["ydata_profiling_version"], ) if self.config.html.minify_html: from htmlmin.main import minify html = minify(html, remove_all_empty_space=True, remove_comments=True) pbar.update() return html
(self) -> str
36,880
ydata_profiling.profile_report
_render_json
null
def _render_json(self) -> str: def encode_it(o: Any) -> Any: if is_dataclass(o): o = asdict(o) if isinstance(o, dict): return {encode_it(k): encode_it(v) for k, v in o.items()} else: if isinstance(o, (bool, int, float, str)): return o elif isinstance(o, list): return [encode_it(v) for v in o] elif isinstance(o, set): return {encode_it(v) for v in o} elif isinstance(o, pd.Series): return encode_it(o.to_list()) elif isinstance(o, pd.DataFrame): return encode_it(o.to_dict(orient="records")) elif isinstance(o, np.ndarray): return encode_it(o.tolist()) elif isinstance(o, Sample): return encode_it(o.dict()) elif isinstance(o, np.generic): return o.item() else: return str(o) description = self.description_set with tqdm( total=1, desc="Render JSON", disable=not self.config.progress_bar ) as pbar: description_dict = format_summary(description) description_dict = encode_it(description_dict) description_dict = redact_summary(description_dict, self.config) data = json.dumps(description_dict, indent=4) pbar.update() return data
(self) -> str
36,881
ydata_profiling.profile_report
_render_widgets
null
def _render_widgets(self) -> Any: from ydata_profiling.report.presentation.flavours import WidgetReport report = self.report with tqdm( total=1, desc="Render widgets", disable=not self.config.progress_bar, leave=False, ) as pbar: widgets = WidgetReport(copy.deepcopy(report)).render() pbar.update() return widgets
(self) -> Any
36,882
ydata_profiling.profile_report
_repr_html_
The ipython notebook widgets user interface gets called by the jupyter notebook.
def _repr_html_(self) -> None: """The ipython notebook widgets user interface gets called by the jupyter notebook.""" self.to_notebook_iframe()
(self) -> NoneType
36,883
ydata_profiling.profile_report
compare
Compare this report with another ProfileReport Alias for: ``` ydata_profiling.compare([report1, report2], config=config) ``` See `ydata_profiling.compare` for details. Args: other: the ProfileReport to compare to config: the settings object for the merged ProfileReport. If `None`, uses the caller's config Returns: Comparison ProfileReport
def compare( self, other: "ProfileReport", config: Optional[Settings] = None ) -> "ProfileReport": """Compare this report with another ProfileReport Alias for: ``` ydata_profiling.compare([report1, report2], config=config) ``` See `ydata_profiling.compare` for details. Args: other: the ProfileReport to compare to config: the settings object for the merged ProfileReport. If `None`, uses the caller's config Returns: Comparison ProfileReport """ from ydata_profiling.compare_reports import compare return compare([self, other], config if config is not None else self.config)
(self, other: ydata_profiling.profile_report.ProfileReport, config: Optional[ydata_profiling.config.Settings] = None) -> ydata_profiling.profile_report.ProfileReport
36,884
ydata_profiling.serialize_report
dump
Dump ProfileReport to file
def dump(self, output_file: Union[Path, str]) -> None: """ Dump ProfileReport to file """ if not isinstance(output_file, Path): output_file = Path(str(output_file)) output_file = output_file.with_suffix(".pp") output_file.write_bytes(self.dumps())
(self, output_file: Union[pathlib.Path, str]) -> NoneType
36,885
ydata_profiling.serialize_report
dumps
Serialize ProfileReport and return bytes for reproducing ProfileReport or Caching. Returns: Bytes which contains hash of DataFrame, config, _description_set and _report
def dumps(self) -> bytes: """ Serialize ProfileReport and return bytes for reproducing ProfileReport or Caching. Returns: Bytes which contains hash of DataFrame, config, _description_set and _report """ import pickle # Note: _description_set and _report may are None if they haven't been computed return pickle.dumps( [ self.df_hash, self.config, self._description_set, self._report, ] )
(self) -> bytes
36,886
ydata_profiling.profile_report
get_description
Return the description (a raw statistical summary) of the dataset. Returns: Dict containing a description for each variable in the DataFrame.
def get_description(self) -> BaseDescription: """Return the description (a raw statistical summary) of the dataset. Returns: Dict containing a description for each variable in the DataFrame. """ return self.description_set
(self) -> ydata_profiling.model.description.BaseDescription
36,887
ydata_profiling.profile_report
get_duplicates
Get duplicate rows and counts based on the configuration Returns: A DataFrame with the duplicate rows and their counts.
def get_duplicates(self) -> Optional[pd.DataFrame]: """Get duplicate rows and counts based on the configuration Returns: A DataFrame with the duplicate rows and their counts. """ return self.description_set.duplicates
(self) -> Optional[pandas.core.frame.DataFrame]
36,888
ydata_profiling.profile_report
get_rejected_variables
Get variables that are rejected for analysis (e.g. constant, mixed data types) Returns: a set of column names that are unsupported
def get_rejected_variables(self) -> set: """Get variables that are rejected for analysis (e.g. constant, mixed data types) Returns: a set of column names that are unsupported """ return { alert.column_name for alert in self.description_set.alerts if alert.alert_type == AlertType.REJECTED }
(self) -> set
36,889
ydata_profiling.profile_report
get_sample
Get head/tail samples based on the configuration Returns: A dict with the head and tail samples.
def get_sample(self) -> dict: """Get head/tail samples based on the configuration Returns: A dict with the head and tail samples. """ return self.description_set.sample
(self) -> dict
36,890
ydata_profiling.profile_report
invalidate_cache
Invalidate report cache. Useful after changing setting. Args: subset: - "rendering" to invalidate the html, json and widget report rendering - "report" to remove the caching of the report structure - None (default) to invalidate all caches Returns: None
def invalidate_cache(self, subset: Optional[str] = None) -> None: """Invalidate report cache. Useful after changing setting. Args: subset: - "rendering" to invalidate the html, json and widget report rendering - "report" to remove the caching of the report structure - None (default) to invalidate all caches Returns: None """ if subset is not None and subset not in ["rendering", "report"]: raise ValueError( "'subset' parameter should be None, 'rendering' or 'report'" ) if subset is None or subset in ["rendering", "report"]: self._widgets = None self._json = None self._html = None if subset is None or subset == "report": self._report = None if subset is None: self._description_set = None
(self, subset: Optional[str] = None) -> NoneType
36,891
ydata_profiling.serialize_report
load
Load ProfileReport from file Raises: ValueError: if the DataFrame or Config do not match with the current ProfileReport
def load( self, load_file: Union[Path, str] ) -> Union["ProfileReport", "SerializeReport"]: """ Load ProfileReport from file Raises: ValueError: if the DataFrame or Config do not match with the current ProfileReport """ if not isinstance(load_file, Path): load_file = Path(str(load_file)) self.loads(load_file.read_bytes()) return self
(self, load_file: Union[pathlib.Path, str]) -> Union[ForwardRef('ProfileReport'), ForwardRef('SerializeReport')]
36,892
ydata_profiling.serialize_report
loads
Deserialize the serialized report Args: data: The bytes of a serialize ProfileReport object. Raises: ValueError: if ignore_config is set to False and the configs do not match. Returns: self
def loads(self, data: bytes) -> Union["ProfileReport", "SerializeReport"]: """ Deserialize the serialized report Args: data: The bytes of a serialize ProfileReport object. Raises: ValueError: if ignore_config is set to False and the configs do not match. Returns: self """ import pickle try: ( df_hash, loaded_config, loaded_description_set, loaded_report, ) = pickle.loads(data) except Exception as e: raise ValueError("Failed to load data") from e if not all( ( df_hash is None or isinstance(df_hash, str), isinstance(loaded_config, Settings), loaded_description_set is None or isinstance(loaded_description_set, BaseDescription), loaded_report is None or isinstance(loaded_report, Root), ) ): raise ValueError( "Failed to load data: file may be damaged or from an incompatible version" ) if (df_hash == self.df_hash) or (self.df is None): # load to an empty ProfileReport # Set description_set, report, sample if they are None,or raise an warning. if self._description_set is None: self._description_set = loaded_description_set else: warnings.warn( "The description set of current ProfileReport is not None. It won't be loaded." ) if self._report is None: self._report = loaded_report else: warnings.warn( "The report of current ProfileReport is not None. It won't be loaded." ) # overwrite config self.config = loaded_config # warn if version not equal if ( loaded_description_set is not None and loaded_description_set.package["ydata_profiling_version"] != __version__ ): warnings.warn( f"The package version specified in the loaded data is not equal to the version installed. " f"Currently running on ydata-profiling {__version__} , while loaded data is generated by ydata_profiling, {loaded_description_set.package['ydata_profiling_version']}." ) # set df_hash self._df_hash = df_hash else: raise ValueError("DataFrame does not match with the current ProfileReport.") return self
(self, data: bytes) -> Union[ForwardRef('ProfileReport'), ForwardRef('SerializeReport')]
36,893
ydata_profiling.expectations_report
to_expectation_suite
All parameters default to True to make it easier to access the full functionality of Great Expectations out of the box. Args: suite_name: The name of your expectation suite data_context: A user-specified data context save_suite: Boolean to determine whether to save the suite to .json as part of the method run_validation: Boolean to determine whether to run validation as part of the method build_data_docs: Boolean to determine whether to build data docs, save the .html file, and open data docs in your browser handler: The handler to use for building expectation Returns: An ExpectationSuite
def to_expectation_suite( self, suite_name: Optional[str] = None, data_context: Optional[Any] = None, save_suite: bool = True, run_validation: bool = True, build_data_docs: bool = True, handler: Optional[Handler] = None, ) -> Any: """ All parameters default to True to make it easier to access the full functionality of Great Expectations out of the box. Args: suite_name: The name of your expectation suite data_context: A user-specified data context save_suite: Boolean to determine whether to save the suite to .json as part of the method run_validation: Boolean to determine whether to run validation as part of the method build_data_docs: Boolean to determine whether to build data docs, save the .html file, and open data docs in your browser handler: The handler to use for building expectation Returns: An ExpectationSuite """ try: import great_expectations as ge except ImportError as ex: raise ImportError( "Please install great expectations before using the expectation functionality" ) from ex # Use report title if suite is empty if suite_name is None: suite_name = slugify(self.config.title) # Use the default handler if none if handler is None: handler = ExpectationHandler(self.typeset) # Obtain the ge context and create the expectation suite if not data_context: data_context = ge.data_context.DataContext() suite = data_context.add_expectation_suite(suite_name, overwrite_existing=True) # Instantiate an in-memory pandas dataset batch = ge.dataset.PandasDataset(self.df, expectation_suite=suite) # Obtain the profiling summary summary: BaseDescription = self.get_description() # type: ignore # Dispatch to expectations per semantic variable type for name, variable_summary in summary.variables.items(): handler.handle(variable_summary["type"], name, variable_summary, batch) # We don't actually update the suite object on the batch in place, so need # to get the populated suite from the batch suite = batch.get_expectation_suite() validation_result_identifier = None if run_validation: batch = ge.dataset.PandasDataset(self.df, expectation_suite=suite) results = data_context.run_validation_operator( "action_list_operator", assets_to_validate=[batch] ) validation_result_identifier = results.list_validation_result_identifiers()[ 0 ] # Write expectations and open data docs if save_suite or build_data_docs: data_context.save_expectation_suite(suite) if build_data_docs: data_context.build_data_docs() data_context.open_data_docs(validation_result_identifier) return batch.get_expectation_suite()
(self, suite_name: Optional[str] = None, data_context: Optional[Any] = None, save_suite: bool = True, run_validation: bool = True, build_data_docs: bool = True, handler: Optional[ydata_profiling.model.handler.Handler] = None) -> Any
36,894
ydata_profiling.profile_report
to_file
Write the report to a file. Args: output_file: The name or the path of the file to generate including the extension (.html, .json). silent: if False, opens the file in the default browser or download it in a Google Colab environment
def to_file(self, output_file: Union[str, Path], silent: bool = True) -> None: """Write the report to a file. Args: output_file: The name or the path of the file to generate including the extension (.html, .json). silent: if False, opens the file in the default browser or download it in a Google Colab environment """ with warnings.catch_warnings(): warnings.simplefilter("ignore") pillow_version = pkg_resources.get_distribution("Pillow").version version_tuple = tuple(map(int, pillow_version.split("."))) if version_tuple < (9, 5, 0): warnings.warn( "Try running command: 'pip install --upgrade Pillow' to avoid ValueError" ) if not isinstance(output_file, Path): output_file = Path(str(output_file)) if output_file.suffix == ".json": data = self.to_json() else: if not self.config.html.inline: self.config.html.assets_path = str(output_file.parent) if self.config.html.assets_prefix is None: self.config.html.assets_prefix = str(output_file.stem) + "_assets" create_html_assets(self.config, output_file) data = self.to_html() if output_file.suffix != ".html": suffix = output_file.suffix output_file = output_file.with_suffix(".html") warnings.warn( f"Extension {suffix} not supported. For now we assume .html was intended. " f"To remove this warning, please use .html or .json." ) disable_progress_bar = not self.config.progress_bar with tqdm( total=1, desc="Export report to file", disable=disable_progress_bar ) as pbar: output_file.write_text(data, encoding="utf-8") pbar.update() if not silent: try: from google.colab import files # noqa: F401 files.download(output_file.absolute().as_uri()) except ModuleNotFoundError: import webbrowser webbrowser.open_new_tab(output_file.absolute().as_uri())
(self, output_file: Union[str, pathlib.Path], silent: bool = True) -> NoneType
36,895
ydata_profiling.profile_report
to_html
Generate and return complete template as lengthy string for using with frameworks. Returns: Profiling report html including wrapper.
def to_html(self) -> str: """Generate and return complete template as lengthy string for using with frameworks. Returns: Profiling report html including wrapper. """ return self.html
(self) -> str
36,896
ydata_profiling.profile_report
to_json
Represent the ProfileReport as a JSON string Returns: JSON string
def to_json(self) -> str: """Represent the ProfileReport as a JSON string Returns: JSON string """ return self.json
(self) -> str
36,897
ydata_profiling.profile_report
to_notebook_iframe
Used to output the HTML representation to a Jupyter notebook. When config.notebook.iframe.attribute is "src", this function creates a temporary HTML file in `./tmp/profile_[hash].html` and returns an Iframe pointing to that contents. When config.notebook.iframe.attribute is "srcdoc", the same HTML is injected in the "srcdoc" attribute of the Iframe. Notes: This constructions solves problems with conflicting stylesheets and navigation links.
def to_notebook_iframe(self) -> None: """Used to output the HTML representation to a Jupyter notebook. When config.notebook.iframe.attribute is "src", this function creates a temporary HTML file in `./tmp/profile_[hash].html` and returns an Iframe pointing to that contents. When config.notebook.iframe.attribute is "srcdoc", the same HTML is injected in the "srcdoc" attribute of the Iframe. Notes: This constructions solves problems with conflicting stylesheets and navigation links. """ from IPython.core.display import display from ydata_profiling.report.presentation.flavours.widget.notebook import ( get_notebook_iframe, ) # Ignore warning: https://github.com/ipython/ipython/pull/11350/files with warnings.catch_warnings(): warnings.simplefilter("ignore") display(get_notebook_iframe(self.config, self))
(self) -> NoneType
36,898
ydata_profiling.profile_report
to_widgets
The ipython notebook widgets user interface.
def to_widgets(self) -> None: """The ipython notebook widgets user interface.""" try: from google.colab import files # noqa: F401 warnings.warn( "Ipywidgets is not yet fully supported on Google Colab (https://github.com/googlecolab/colabtools/issues/60)." "As an alternative, you can use the HTML report. See the documentation for more information." ) except ModuleNotFoundError: pass from IPython.core.display import display display(self.widgets)
(self) -> NoneType
36,899
ydata_profiling.compare_reports
compare
Compare Profile reports Args: reports: two reports to compare input may either be a ProfileReport, or the summary obtained from report.get_description() config: the settings object for the merged ProfileReport compute: recompute the profile report using config or the left report config recommended in cases where the reports were created using different settings
def compare( reports: Union[List[ProfileReport], List[BaseDescription]], config: Optional[Settings] = None, compute: bool = False, ) -> ProfileReport: """ Compare Profile reports Args: reports: two reports to compare input may either be a ProfileReport, or the summary obtained from report.get_description() config: the settings object for the merged ProfileReport compute: recompute the profile report using config or the left report config recommended in cases where the reports were created using different settings """ if len(reports) == 0: raise ValueError("No reports available for comparison.") report_dtypes = [type(r) for r in reports] if len(set(report_dtypes)) > 1: raise TypeError( "The input must have the same data type for all reports. Comparing ProfileReport objects to summaries obtained from the get_description() method is not supported." ) if isinstance(reports[0], ProfileReport): all_configs = [r.config for r in reports] # type: ignore else: configs_str = [ json.loads(r.package["ydata_profiling_config"]) for r in reports # type: ignore ] all_configs = [] for c_str in configs_str: c_setting = Settings() c_setting = c_setting.update(c_str) all_configs.append(c_setting) validate_reports(reports=reports, configs=all_configs) if isinstance(reports[0], ProfileReport): base_features = reports[0].df.columns # type: ignore for report in reports[1:]: cols_2_compare = [col for col in base_features if col in report.df.columns] # type: ignore report.df = report.df.loc[:, cols_2_compare] # type: ignore reports = [r for r in reports if not r.df.empty] # type: ignore if len(reports) == 1: return reports[0] # type: ignore else: base_features = list(reports[0].variables.keys()) non_empty_reports = 0 for report in reports[1:]: cols_2_compare = [ col for col in base_features if col in list(report.variables.keys()) # type: ignore ] if len(cols_2_compare) > 0: non_empty_reports += 1 if non_empty_reports == 0: profile = ProfileReport(None, config=all_configs[0]) profile._description_set = reports[0] return profile _config = None if config is None: _config = all_configs[0].copy() else: _config = config.copy() if isinstance(reports[0], ProfileReport): for report in reports: tsmode = report.config.vars.timeseries.active # type: ignore title = report.config.title # type: ignore report.config = config.copy() # type: ignore report.config.title = title # type: ignore report.config.vars.timeseries.active = tsmode # type: ignore if compute: report._description_set = None # type: ignore if all(isinstance(report, ProfileReport) for report in reports): # Type ignore is needed as mypy does not pick up on the type narrowing # Consider using TypeGuard (3.10): https://docs.python.org/3/library/typing.html#typing.TypeGuard _update_titles(reports) # type: ignore labels, descriptions = _compare_profile_report_preprocess(reports, _config) # type: ignore elif all(isinstance(report, BaseDescription) for report in reports): labels, descriptions = _compare_dataset_description_preprocess(reports) # type: ignore else: raise TypeError( "The input must have the same data type for all reports. Comparing ProfileReport objects to summaries obtained from the get_description() method is not supported." ) _config.html.style._labels = labels _placeholders(descriptions) descriptions_dict = [asdict(_apply_config(d, _config)) for d in descriptions] res: dict = _update_merge(None, descriptions_dict[0]) for r in descriptions_dict[1:]: res = _update_merge(res, r) res["analysis"]["title"] = _compare_title(res["analysis"]["title"]) res["alerts"] = _create_placehoder_alerts(res["alerts"]) if not any(res["time_index_analysis"]): res["time_index_analysis"] = None profile = ProfileReport(None, config=_config) profile._description_set = from_dict(data_class=BaseDescription, data=res) return profile
(reports: Union[List[ydata_profiling.profile_report.ProfileReport], List[ydata_profiling.model.description.BaseDescription]], config: Optional[ydata_profiling.config.Settings] = None, compute: bool = False) -> ydata_profiling.profile_report.ProfileReport
36,916
spacy_lookups_data
get_file
null
def get_file(filename): if sys.version_info < (3, 9): import pkg_resources return pkg_resources.resource_filename(__name__, os.path.join("data", filename)) else: import importlib.resources return importlib.resources.files(__name__).joinpath("data", filename)
(filename)
36,920
validador_colab.loop.first_block
first_block
null
from validador_colab.infra.repositories import SmarketAnalyticsRepositoryPostgres, ColabCountersRepositoryPostgres from validador_colab.core.usecases import SmarketService, ColabService from validador_colab.core.entities import Sakura, NaturalOne, ValidationDetail from validador_colab.core.errors import NoDataFound from validador_colab.infra.database import DBConnectionHandlerPostgres, DBConnectionHandlerPostgresControle, DB_CONTROLE from validador_colab.infra.utils import break_no_data_found import pickle import os import asyncio import datetime temp_data_folder = os.path.join(os.getcwd(), 'temp_data') db = DBConnectionHandlerPostgresControle() async def first_block(industry_id: int, date_start, date_end, print_corretos=True, pickle_use=False): if not os.path.exists(temp_data_folder): os.makedirs(temp_data_folder) if industry_id == 11: #Natural One industry = NaturalOne() elif industry_id == 13: #Sakura industry = Sakura() pickle_colab_name = "colab_data_" + industry.__repr__() + "_" + date_start + "_" + date_end + ".pkl" pickle_smarket_name = "smarket_data_" + industry.__repr__() + "_" + date_start + "_" + date_end + ".pkl" if pickle_use: try: if not os.path.exists(os.path.join(temp_data_folder, pickle_smarket_name)): print("Getting data from smarket") smarket_data = SmarketService(SmarketAnalyticsRepositoryPostgres()).get_smarket_counters(industry, date_start, date_end) with open(os.path.join(temp_data_folder, pickle_smarket_name), 'wb') as f: pickle.dump(smarket_data, f) print("Data saved") else: print("Loading data from smarket") with open(os.path.join(temp_data_folder, pickle_smarket_name), 'rb') as f: smarket_data = pickle.load(f) print("Data loaded") if not os.path.exists(os.path.join(temp_data_folder, pickle_colab_name)): print("Getting data from colab") colab_data = ColabService(ColabCountersRepositoryPostgres()).get_colab_counters(industry_id, date_start, date_end) with open(os.path.join(temp_data_folder, pickle_colab_name), 'wb') as f: pickle.dump(colab_data, f) print("Data saved") else: print("Loading data from colab") with open(os.path.join(temp_data_folder, pickle_colab_name), 'rb') as f: colab_data = pickle.load(f) print("Data loaded") except NoDataFound: print(f"Sem dados cadastrados para a industria no dia {date_start} até o dia {date_end}") else: print("Getting data from smarket") smarket_data = SmarketService(SmarketAnalyticsRepositoryPostgres()).get_smarket_counters(industry, date_start, date_end) print("Getting data from colab") colab_data = ColabService(ColabCountersRepositoryPostgres()).get_colab_counters(industry_id, date_start, date_end) if len(smarket_data) == 0 or len(colab_data) == 0: print("Erro na execução:") print(f"Data de consulta: {date_start} - {date_end}") print(f"len(smarket_data) = {len(smarket_data)}") print(f"len(colab_data) = {len(colab_data)}") print("Classificando dias como não aptos a atualização") DB_CONTROLE.insert(break_no_data_found(industry, date_start, date_end, 'fat_cupom')) print("Finalizando processo") return 0 #esta merda aqui vai ficar troncha, loop dentro de loop, mas é o que tem pra hoje print('Iniciando processamento') count_produtos_certos = {} count_produtos_errados = {} validation_intel = [] # Primeira validação: Se o produto está com os quantitativos iguais na fat_cupom e no Analytics for colab_unit in colab_data: for smarket_unit in smarket_data: if colab_unit.id_cliente == smarket_unit.client_id: if colab_unit.date == smarket_unit.date: if int(colab_unit.seqproduto) == int(smarket_unit.seqproduto): if colab_unit.seqproduto == 164059: print("Me gusta lá conchita") if int(colab_unit.qtd_fatcupom) == int(smarket_unit.analytics): if print_corretos: print('-------------------') print(f'Cliente {smarket_unit.client_id}') print(f"Data {smarket_unit.date}") print(f'Tudo certo no produto: {smarket_unit.seqproduto} - {smarket_unit.description}') print(f'Quantitativo no analytics: {smarket_unit.analytics}') print(f'Quantitativo na fatcupom colab: {colab_unit.qtd_fatcupom}') print('-------------------') if smarket_unit.client_id not in count_produtos_certos: count_produtos_certos[smarket_unit.client_id] = {} if smarket_unit.date not in count_produtos_certos[smarket_unit.client_id]: count_produtos_certos[smarket_unit.client_id][smarket_unit.date] = 0 count_produtos_certos[smarket_unit.client_id][smarket_unit.date] += 1 else: print('-------------------') print(f'Cliente {smarket_unit.client_id}') print(f"Data {smarket_unit.date}") print(f'ERRO no produto: {smarket_unit.seqproduto} - {smarket_unit.description}') print(f'Quantitativo no analytics: {smarket_unit.analytics}') print(f'Quantitativo na fatcupom colab: {colab_unit.qtd_fatcupom}') print('-------------------') if smarket_unit.client_id not in count_produtos_errados: count_produtos_errados[smarket_unit.client_id] = {} if smarket_unit.date not in count_produtos_errados[smarket_unit.client_id]: count_produtos_errados[smarket_unit.client_id][smarket_unit.date] = 0 count_produtos_errados[smarket_unit.client_id][smarket_unit.date] += 1 # Segunda validação - Produtos presentes nas tabelas: prod_cliente_data = {} colab_cliente_data = {} produtos_ausentes_analytics = {} produtos_ausentes_colab = {} datas_para_nao_subir = {} for colab_unit in colab_data: if colab_unit.id_cliente not in colab_cliente_data: colab_cliente_data[colab_unit.id_cliente] = {} if colab_unit.date not in colab_cliente_data[colab_unit.id_cliente]: colab_cliente_data[colab_unit.id_cliente][colab_unit.date] = [] if colab_unit.seqproduto not in colab_cliente_data[colab_unit.id_cliente][colab_unit.date]: colab_cliente_data[colab_unit.id_cliente][colab_unit.date].append(colab_unit.seqproduto) for smarket_unit in smarket_data: if smarket_unit.client_id not in prod_cliente_data: prod_cliente_data[smarket_unit.client_id] = {} if smarket_unit.date not in prod_cliente_data[smarket_unit.client_id]: prod_cliente_data[smarket_unit.client_id][smarket_unit.date] = [] if smarket_unit.seqproduto not in prod_cliente_data[smarket_unit.client_id][smarket_unit.date]: prod_cliente_data[smarket_unit.client_id][smarket_unit.date].append(smarket_unit.seqproduto) #Gerador produtos ausentes colab for client_id, date_counter in prod_cliente_data.items(): for date, prod_list in date_counter.items(): for prod in prod_list: if client_id in colab_cliente_data: if date in colab_cliente_data[client_id]: if prod not in colab_cliente_data[client_id][date]: if client_id not in produtos_ausentes_colab: produtos_ausentes_colab[client_id] = {} if date not in produtos_ausentes_colab[client_id]: produtos_ausentes_colab[client_id][date] = [] print(f"Produto {prod} não encontrado na base do colab para cliente: {client_id} na data: {date}, para a industria {industry_id}") produtos_ausentes_colab[client_id][date].append(prod) else: print(f"Data: {date} não encontrada na base do colab para cliente: {client_id} para a industria {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) break else: print(f"Cliente {client_id} não encontrado na base do colab para industria: {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) # Gerador produtos ausentes analitycs for client_id, date_counter in colab_cliente_data.items(): for date, prod_list in date_counter.items(): for prod in prod_list: if client_id in prod_cliente_data: if date in prod_cliente_data[client_id]: if prod not in prod_cliente_data[client_id][date]: if client_id not in produtos_ausentes_analytics: produtos_ausentes_analytics[client_id] = {} if date not in produtos_ausentes_analytics[client_id]: produtos_ausentes_analytics[client_id][date] = [] produtos_ausentes_analytics[client_id][date].append(prod) print(f"Produto {prod} não encontrado na base do analytics para cliente: {client_id} na data: {date} para a industria {industry_id}") else: print(f"Data: {date} não encontrada na base do analytics para cliente: {client_id} para a industria {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) break else: print(f"Cliente {client_id} não encontrado na base do colab para industria: {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) # Geração da primeira tabela com base nos valores errados if len(count_produtos_errados) > 0: for client_id, counter in count_produtos_errados.items(): for date, count in counter.items(): if client_id in datas_para_nao_subir: if date.strftime("%Y-%m-%d") not in [x.strftime("%Y-%m-%d") for x in datas_para_nao_subir[client_id]]: if count > 0: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False ) ) if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: datas_para_nao_subir[client_id].append(date) if len(count_produtos_certos) > 0: for client_id, counter in count_produtos_certos.items(): for date, count in counter.items(): if client_id in datas_para_nao_subir: if date.strftime("%Y-%m-%d") not in [x.strftime("%Y-%m-%d") for x in datas_para_nao_subir[client_id]]: if count > 0: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) # Inserindo os dados no banco de validation: sql_insert = """INSERT INTO PUBLIC.CONTROLE(id_industria, id_cliente, dt_venda, status_validacao, etapa) VALUES """ for validation in validation_intel: sql_insert += f""" ({int(validation.industry_id)}, {int(validation.client_id)}, '{validation.sale_date}', {bool(validation.validation_status)}, 'fat_cupom'),""" sql_insert = sql_insert[:-1] print(sql_insert) DB_CONTROLE.insert(sql_insert)
(industry_id: int, date_start, date_end, print_corretos=True, pickle_use=False)
36,923
validador_colab.loop.reprocessing_first_block
reprocessing_first_block
null
from validador_colab.loop import first_block import pickle import os import asyncio import datetime from validador_colab.core.entities import Sakura, NaturalOne from validador_colab.infra.utils import clean_old_data from validador_colab.infra.database import DB_CONTROLE temp_data_folder = os.path.join(os.getcwd(), 'temp_data') async def reprocessing_first_block(industry_id: int, date_start, date_end, print_corretos=True): if industry_id == 11: #Natural One industry = NaturalOne() elif industry_id == 13: #Sakura industry = Sakura() sqls = clean_old_data(industry, date_start, date_end) print(f"Limpado dado já cadastrados para a industria {industry.id} no periodo de {date_start} a {date_end}") for sql in sqls: DB_CONTROLE.insert(sql) await first_block(industry_id, date_start, date_end, print_corretos)
(industry_id: int, date_start, date_end, print_corretos=True)
36,924
validador_colab.loop.second_block
second_block
null
from validador_colab.infra.repositories import SmarketAnalyticsRepositoryPostgres, DatamartCountersRepositoryPostgres from validador_colab.core.usecases import SmarketService, DatamartService from validador_colab.core.entities import Sakura, NaturalOne, ValidationDetail from validador_colab.core.errors import NoDataFound from validador_colab.infra.database import DBConnectionHandlerPostgres, DBConnectionHandlerPostgresControle, DB_CONTROLE from validador_colab.infra.utils import break_no_data_found import pickle import os import asyncio import datetime temp_data_folder = os.path.join(os.getcwd(), 'temp_data') db = DBConnectionHandlerPostgresControle() async def second_block(industry_id: int, date_start, date_end, print_corretos=True, pickle_use=False): if not os.path.exists(temp_data_folder): os.makedirs(temp_data_folder) if industry_id == 11: #Natural One industry = NaturalOne() elif industry_id == 13: #Sakura industry = Sakura() pickle_datamart_name = "datamart_data_" + industry.__repr__() + "_" + date_start + "_" + date_end + ".pkl" pickle_smarket_name = "smarket_data_" + industry.__repr__() + "_" + date_start + "_" + date_end + ".pkl" if pickle_use: try: if not os.path.exists(os.path.join(temp_data_folder, pickle_smarket_name)): print("Getting data from smarket") smarket_data = SmarketService(SmarketAnalyticsRepositoryPostgres()).get_smarket_counters(industry, date_start, date_end) with open(os.path.join(temp_data_folder, pickle_smarket_name), 'wb') as f: pickle.dump(smarket_data, f) print("Data saved") else: print("Loading data from smarket") with open(os.path.join(temp_data_folder, pickle_smarket_name), 'rb') as f: smarket_data = pickle.load(f) print("Data loaded") if not os.path.exists(os.path.join(temp_data_folder, pickle_datamart_name)): print("Getting data from datamart") datamart_data = DatamartService(DatamartCountersRepositoryPostgres()).get_datamart_counters(industry_id, date_start, date_end) with open(os.path.join(temp_data_folder, pickle_datamart_name), 'wb') as f: pickle.dump(datamart_data, f) print("Data saved") else: print("Loading data from datamart") with open(os.path.join(temp_data_folder, pickle_datamart_name), 'rb') as f: datamart_data = pickle.load(f) print("Data loaded") except NoDataFound: print(f"Sem dados cadastrados para a industria no dia {date_start} até o dia {date_end}") else: print("Getting data from smarket") smarket_data = SmarketService(SmarketAnalyticsRepositoryPostgres()).get_smarket_counters(industry, date_start, date_end) print("Getting data from datamart") datamart_data = DatamartService(DatamartCountersRepositoryPostgres()).get_datamart_counters(industry_id, date_start, date_end) if len(smarket_data) == 0 or len(datamart_data) == 0: print("Erro na execução:") print(f"Data de consulta: {date_start} - {date_end}") print(f"len(smarket_data) = {len(smarket_data)}") print(f"len(colab_data) = {len(datamart_data)}") print("Classificando dias como não aptos a atualização") DB_CONTROLE.insert(break_no_data_found(industry, date_start, date_end, 'datamart')) print("Finalizando processo") return 0 #esta merda aqui vai ficar troncha, loop dentro de loop, mas é o que tem pra hoje print('Iniciando processamento') count_produtos_certos = {} count_produtos_errados = {} validation_intel = [] clientes_cadastrados_data = {} # verificar quais clientes estão presentes para aquela industria no analytics naquele dia de venda for smarket_unit in smarket_data: if smarket_unit.date.strftime("%Y-%m-%d") not in clientes_cadastrados_data: clientes_cadastrados_data[smarket_unit.date.strftime("%Y-%m-%d")] = [] if smarket_unit.client_id not in clientes_cadastrados_data[smarket_unit.date.strftime("%Y-%m-%d")]: clientes_cadastrados_data[smarket_unit.date.strftime("%Y-%m-%d")].append(smarket_unit.client_id) # Primeira validação: Se o produto está com os quantitativos iguais no datamart e no Analytics for datamart_unit in datamart_data: for smarket_unit in smarket_data: if datamart_unit.id_cliente == smarket_unit.client_id: if datamart_unit.date == smarket_unit.date: if int(datamart_unit.seqproduto) == int(smarket_unit.seqproduto): if int(datamart_unit.qtd_datamart) == int(smarket_unit.analytics): if print_corretos: print('-------------------') print(f'Cliente {smarket_unit.client_id}') print(f"Data {smarket_unit.date}") print(f'Tudo certo no produto: {smarket_unit.seqproduto} - {smarket_unit.description}') print(f'Quantitativo no analytics: {smarket_unit.analytics}') print(f'Quantitativo no datamart: {datamart_unit.qtd_datamart}') print('-------------------') if smarket_unit.client_id not in count_produtos_certos: count_produtos_certos[smarket_unit.client_id] = {} if smarket_unit.date not in count_produtos_certos[smarket_unit.client_id]: count_produtos_certos[smarket_unit.client_id][smarket_unit.date] = 0 count_produtos_certos[smarket_unit.client_id][smarket_unit.date] += 1 else: print('-------------------') print(f'Cliente {smarket_unit.client_id}') print(f"Data {smarket_unit.date}") print(f'ERRO no produto: {smarket_unit.seqproduto} - {smarket_unit.description}') print(f'Quantitativo no analytics: {smarket_unit.analytics}') print(f'Quantitativo no datamart: {datamart_unit.qtd_datamart}') print('-------------------') if smarket_unit.client_id not in count_produtos_errados: count_produtos_errados[smarket_unit.client_id] = {} if smarket_unit.date not in count_produtos_errados[smarket_unit.client_id]: count_produtos_errados[smarket_unit.client_id][smarket_unit.date] = 0 count_produtos_errados[smarket_unit.client_id][smarket_unit.date] += 1 # Segunda validação - Produtos presentes nas tabelas: prod_cliente_data = {} datamart_cliente_data = {} produtos_ausentes_analytics = {} produtos_ausentes_datamart = {} datas_para_nao_subir = {} for datamart_unit in datamart_data: if datamart_unit.id_cliente not in datamart_cliente_data: datamart_cliente_data[datamart_unit.id_cliente] = {} if datamart_unit.date not in datamart_cliente_data[datamart_unit.id_cliente]: datamart_cliente_data[datamart_unit.id_cliente][datamart_unit.date] = [] if datamart_unit.seqproduto not in datamart_cliente_data[datamart_unit.id_cliente][datamart_unit.date]: datamart_cliente_data[datamart_unit.id_cliente][datamart_unit.date].append(datamart_unit.seqproduto) for smarket_unit in smarket_data: if smarket_unit.client_id not in prod_cliente_data: prod_cliente_data[smarket_unit.client_id] = {} if smarket_unit.date not in prod_cliente_data[smarket_unit.client_id]: prod_cliente_data[smarket_unit.client_id][smarket_unit.date] = [] if smarket_unit.seqproduto not in prod_cliente_data[smarket_unit.client_id][smarket_unit.date]: prod_cliente_data[smarket_unit.client_id][smarket_unit.date].append(smarket_unit.seqproduto) #Gerador produtos ausentes datamart for client_id, date_counter in prod_cliente_data.items(): for date, prod_list in date_counter.items(): for prod in prod_list: if client_id in datamart_cliente_data: if date in datamart_cliente_data[client_id]: if prod not in datamart_cliente_data[client_id][date]: if client_id not in produtos_ausentes_datamart: produtos_ausentes_datamart[client_id] = {} if date not in produtos_ausentes_datamart[client_id]: produtos_ausentes_datamart[client_id][date] = [] print(f"Produto {prod} não encontrado na base do colab para cliente: {client_id} na data: {date}, para a industria {industry_id}") produtos_ausentes_datamart[client_id][date].append(prod) else: print(f"Data: {date} não encontrada na base do colab para cliente: {client_id} para a industria {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) break else: print(f"Cliente {client_id} não encontrado na base do colab para industria: {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) # Gerador produtos ausentes analitycs for client_id, date_counter in datamart_cliente_data.items(): for date, prod_list in date_counter.items(): for prod in prod_list: if client_id in prod_cliente_data: if date in prod_cliente_data[client_id]: if prod not in prod_cliente_data[client_id][date]: if client_id not in produtos_ausentes_analytics: produtos_ausentes_analytics[client_id] = {} if date not in produtos_ausentes_analytics[client_id]: produtos_ausentes_analytics[client_id][date] = [] produtos_ausentes_analytics[client_id][date].append(prod) print(f"Produto {prod} não encontrado na base do analytics para cliente: {client_id} na data: {date} para a industria {industry_id}") else: print(f"Data: {date} não encontrada na base do analytics para cliente: {client_id} para a industria {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) break else: print(f"Cliente {client_id} não encontrado na base do colab para industria: {industry_id}") if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: validation_intel.append(ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False )) datas_para_nao_subir[client_id].append(date) # Geração da primeira tabela com base nos valores errados if len(count_produtos_errados) > 0: for client_id, counter in count_produtos_errados.items(): for date, count in counter.items(): if client_id in datas_para_nao_subir: if date.strftime("%Y-%m-%d") not in [x.strftime("%Y-%m-%d") for x in datas_para_nao_subir[client_id]]: if count > 0: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=False ) ) if client_id not in datas_para_nao_subir: datas_para_nao_subir[client_id] = [] if date not in datas_para_nao_subir[client_id]: datas_para_nao_subir[client_id].append(date) if len(count_produtos_certos) > 0: for client_id, counter in count_produtos_certos.items(): for date, count in counter.items(): if client_id in datas_para_nao_subir: if date.strftime("%Y-%m-%d") not in [x.strftime("%Y-%m-%d") for x in datas_para_nao_subir[client_id]]: if count > 0: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) else: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=client_id, sale_date=date, validation_status=True ) ) # Validação dos controles já cadastrados sql_controle_validate = f""" select distinct dt_venda, id_industria, id_cliente from public.controle where 0=0 and created_at >= current_date and dt_venda between '{date_start}' and '{date_end}' and etapa = 'fat_cupom' and id_industria = {industry_id} """ controle_validate_data = DB_CONTROLE.get(sql_controle_validate) controle_controle_data = {} if len(controle_validate_data) > 0 : for controle_validate_unit in controle_validate_data: if controle_validate_unit[0] not in controle_controle_data: controle_controle_data[controle_validate_unit[0]] = [] if controle_validate_unit[2] not in controle_controle_data[controle_validate_unit[0]]: controle_controle_data[controle_validate_unit[0]].append(controle_validate_unit[2]) #Gera os dados para o processo abaixo validation_counter = {} for validation_unit in validation_intel: if validation_unit.sale_date not in validation_counter: validation_counter[validation_unit.sale_date] = [] if validation_unit.client_id not in validation_counter[validation_unit.sale_date]: validation_counter[validation_unit.sale_date].append(validation_unit.client_id) # Para todos os dias onde por algum motivo o cliente não apareceu em uma data de venda específica. Gerar # um intel com negativa de inserção for data, clientes in controle_controle_data.items(): for cliente in clientes: if cliente not in clientes_cadastrados_data[data.strftime("%Y-%m-%d")]: validation_intel.append( ValidationDetail( exec_date=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), industry_id=industry_id, client_id=cliente, sale_date=date, validation_status=False ) ) print(f"Os dados do cliente {cliente}, para a industria {industry_id}, na data {date}, não está presente no datamart") # Inserindo os dados no banco de validation: sql_insert = """INSERT INTO PUBLIC.CONTROLE(id_industria, id_cliente, dt_venda, status_validacao, etapa) VALUES """ for validation in validation_intel: sql_insert += f""" ({int(validation.industry_id)}, {int(validation.client_id)}, '{validation.sale_date}', {bool(validation.validation_status)}, 'datamart'),""" sql_insert = sql_insert[:-1] print(sql_insert) DB_CONTROLE.insert(sql_insert)
(industry_id: int, date_start, date_end, print_corretos=True, pickle_use=False)
36,925
nlpaug.util.action
Action
null
class Action: INSERT = 'insert' SUBSTITUTE = 'substitute' DELETE = 'delete' SWAP = 'swap' SPLIT = 'split' ALIGN = 'align' CROP = 'crop' SEQUENTIAL = 'sequential' SOMETIMES = 'sometimes' @staticmethod def getall(): return [Action.INSERT, Action.SUBSTITUTE, Action.SWAP, Action.DELETE, Action.SPLIT, Action.CROP, Action.SEQUENTIAL, Action.SOMETIMES, Action.ALIGN]
()
36,926
nlpaug.util.action
getall
null
@staticmethod def getall(): return [Action.INSERT, Action.SUBSTITUTE, Action.SWAP, Action.DELETE, Action.SPLIT, Action.CROP, Action.SEQUENTIAL, Action.SOMETIMES, Action.ALIGN]
()
36,927
nlpaug.base_augmenter
Augmenter
null
class Augmenter: def __init__(self, name, method, action, aug_min, aug_max, aug_p=0.1, device='cpu', include_detail=False, verbose=0): self.name = name self.action = action self.method = method self.aug_min = aug_min self.aug_max = aug_max self.aug_p = aug_p self.device = device self.verbose = verbose self.include_detail = include_detail self.parent_change_seq = 0 self._validate_augmenter(method, action) @classmethod def _validate_augmenter(cls, method, action): if method not in Method.getall(): raise ValueError( 'Method must be one of {} while {} is passed'.format(Method.getall(), method)) if action not in Action.getall(): raise ValueError( 'Action must be one of {} while {} is passed'.format(Action.getall(), action)) def augment(self, data, n=1, num_thread=1): """ :param object/list data: Data for augmentation. It can be list of data (e.g. list of string or numpy) or single element (e.g. string or numpy). Numpy format only supports audio or spectrogram data. For text data, only support string or list of string. :param int n: Default is 1. Number of unique augmented output. Will be force to 1 if input is list of data :param int num_thread: Number of thread for data augmentation. Use this option when you are using CPU and n is larger than 1 :return: Augmented data >>> augmented_data = aug.augment(data) """ max_retry_times = 3 # max loop times of n to generate expected number of outputs aug_num = 1 if isinstance(data, list) else n expected_output_num = len(data) if isinstance(data, list) else aug_num exceptions = self._validate_augment(data) # TODO: Handle multiple exceptions for exception in exceptions: if isinstance(exception, WarningException): if self.verbose > 0: exception.output() # Return empty value per data type if isinstance(data, str): return [] elif isinstance(data, list): return [] elif isinstance(data, np.ndarray): return np.array([]) return [] action_fx = None clean_data = self.clean(data) if self.action == Action.INSERT: action_fx = self.insert elif self.action == Action.SUBSTITUTE: action_fx = self.substitute elif self.action == Action.SWAP: action_fx = self.swap elif self.action == Action.DELETE: action_fx = self.delete elif self.action == Action.CROP: action_fx = self.crop elif self.action == Action.SPLIT: action_fx = self.split for _ in range(max_retry_times+1): augmented_results = [] # By design, it is one-to-many if self.__class__.__name__ in ['LambadaAug']: augmented_results = action_fx(clean_data, n=n) # PyTorch's augmenter elif self.__class__.__name__ in ['AbstSummAug', 'BackTranslationAug', 'ContextualWordEmbsAug', 'ContextualWordEmbsForSentenceAug']: for _ in range(aug_num): result = action_fx(clean_data) if isinstance(result, list): augmented_results.extend(result) else: augmented_results.append(result) # Multi inputs elif isinstance(data, list): # Single Thread if num_thread == 1: augmented_results = [action_fx(d) for d in clean_data] # Multi Thread else: batch_data = [data[i:i+num_thread] for i in range(0, len(data), num_thread)] for mini_batch_data in batch_data: augmented_results.extend(self._parallel_augments(self.augment, mini_batch_data)) # Single input with/without multiple input else: # Single Thread if num_thread == 1: augmented_results = [action_fx(clean_data) for _ in range(n)] # Multi Thread else: augmented_results = self._parallel_augment(action_fx, clean_data, n=n, num_thread=num_thread) if len(augmented_results) >= expected_output_num: break if len(augmented_results) == 0: # if not result, return itself if isinstance(data, list): return data # Single input with/without multiple input else: return [data] if isinstance(augmented_results, pd.DataFrame): return augmented_results else: if isinstance(data, list): return augmented_results else: return augmented_results[:n] # return augmented_results # def augments(self, data, num_thread=1): # """ # :param list data: List of data # :param int num_thread: Number of thread for data augmentation. Use this option when you are using CPU and # n is larger than 1. Do NOT support GPU process. # :return: Augmented data (Does not follow original order) # >>> augmented_data = aug.augment(data) # """ # n = 1 # augmented_results = [] # if num_thread == 1 or self.device == 'cuda': # for d in data: # augmented_result = self.augment(data=d, n=n, num_thread=1) # TOOD: cuda does not support mulithread # if n == 1: # augmented_results.append(augmented_result) # else: # augmented_results.extend(augmented_result) # else: # batch_data = [data[i:i+num_thread] for i in range(0, len(data), num_thread)] # for i in range(n): # for mini_batch_data in batch_data: # augmented_results.extend(self._parallel_augments(self.augment, mini_batch_data)) # return augmented_results @classmethod def _validate_augment(cls, data): if data is None or len(data) == 0: return [WarningException(name=WarningName.INPUT_VALIDATION_WARNING, code=WarningCode.WARNING_CODE_001, msg=WarningMessage.LENGTH_IS_ZERO)] return [] @classmethod def _parallel_augment(cls, action_fx, data, n, num_thread=2): pool = ThreadPool(num_thread) results = pool.map(action_fx, [data] * n) pool.close() pool.join() return results @classmethod def _parallel_augments(cls, action_fx, data): pool = ThreadPool(len(data)) results = pool.map(action_fx, data) pool.close() pool.join() return results def insert(self, data): raise NotImplementedError def substitute(self, data): raise NotImplementedError def swap(self, data): raise NotImplementedError def delete(self, data): raise NotImplementedError def crop(self, data): raise NotImplementedError def split(self, data): raise NotImplementedError def tokenizer(self, tokens): raise NotImplementedError def evaluate(self): raise NotImplementedError @classmethod def is_duplicate(cls, dataset, data): raise NotImplementedError @classmethod def prob(cls): return np.random.random() @classmethod def sample(cls, x, num=None): if isinstance(x, list): return random.sample(x, num) elif isinstance(x, int): return np.random.randint(1, x-1) @classmethod def clean(cls, data): raise NotImplementedError def _generate_aug_cnt(self, size, aug_min, aug_max, aug_p=None): if aug_p is not None: percent = aug_p elif self.aug_p: percent = self.aug_p else: percent = 0.3 cnt = int(math.ceil(percent * size)) if aug_min and cnt < aug_min: return aug_min if aug_max and cnt > aug_max: return aug_max return cnt def generate_aug_cnt(self, size, aug_p=None): if size == 0: return 0 return self._generate_aug_cnt(size, self.aug_min, self.aug_max, aug_p) def generate_aug_idxes(self, inputs): aug_cnt = self.generate_aug_cnt(len(inputs)) token_idxes = [i for i, _ in enumerate(inputs)] aug_idxes = self.sample(token_idxes, aug_cnt) return aug_idxes def _get_random_aug_idxes(self, data): aug_cnt = self.generate_aug_cnt(len(data)) idxes = self.pre_skip_aug(data) if len(idxes) < aug_cnt: aug_cnt = len(idxes) aug_idxes = self.sample(idxes, aug_cnt) return aug_idxes def __str__(self): return 'Name:{}, Action:{}, Method:{}'.format(self.name, self.action, self.method)
(name, method, action, aug_min, aug_max, aug_p=0.1, device='cpu', include_detail=False, verbose=0)
36,928
nlpaug.base_augmenter
__init__
null
def __init__(self, name, method, action, aug_min, aug_max, aug_p=0.1, device='cpu', include_detail=False, verbose=0): self.name = name self.action = action self.method = method self.aug_min = aug_min self.aug_max = aug_max self.aug_p = aug_p self.device = device self.verbose = verbose self.include_detail = include_detail self.parent_change_seq = 0 self._validate_augmenter(method, action)
(self, name, method, action, aug_min, aug_max, aug_p=0.1, device='cpu', include_detail=False, verbose=0)
36,929
nlpaug.base_augmenter
__str__
null
def __str__(self): return 'Name:{}, Action:{}, Method:{}'.format(self.name, self.action, self.method)
(self)
36,930
nlpaug.base_augmenter
_generate_aug_cnt
null
def _generate_aug_cnt(self, size, aug_min, aug_max, aug_p=None): if aug_p is not None: percent = aug_p elif self.aug_p: percent = self.aug_p else: percent = 0.3 cnt = int(math.ceil(percent * size)) if aug_min and cnt < aug_min: return aug_min if aug_max and cnt > aug_max: return aug_max return cnt
(self, size, aug_min, aug_max, aug_p=None)
36,931
nlpaug.base_augmenter
_get_random_aug_idxes
null
def _get_random_aug_idxes(self, data): aug_cnt = self.generate_aug_cnt(len(data)) idxes = self.pre_skip_aug(data) if len(idxes) < aug_cnt: aug_cnt = len(idxes) aug_idxes = self.sample(idxes, aug_cnt) return aug_idxes
(self, data)
36,932
nlpaug.base_augmenter
augment
:param object/list data: Data for augmentation. It can be list of data (e.g. list of string or numpy) or single element (e.g. string or numpy). Numpy format only supports audio or spectrogram data. For text data, only support string or list of string. :param int n: Default is 1. Number of unique augmented output. Will be force to 1 if input is list of data :param int num_thread: Number of thread for data augmentation. Use this option when you are using CPU and n is larger than 1 :return: Augmented data >>> augmented_data = aug.augment(data)
def augment(self, data, n=1, num_thread=1): """ :param object/list data: Data for augmentation. It can be list of data (e.g. list of string or numpy) or single element (e.g. string or numpy). Numpy format only supports audio or spectrogram data. For text data, only support string or list of string. :param int n: Default is 1. Number of unique augmented output. Will be force to 1 if input is list of data :param int num_thread: Number of thread for data augmentation. Use this option when you are using CPU and n is larger than 1 :return: Augmented data >>> augmented_data = aug.augment(data) """ max_retry_times = 3 # max loop times of n to generate expected number of outputs aug_num = 1 if isinstance(data, list) else n expected_output_num = len(data) if isinstance(data, list) else aug_num exceptions = self._validate_augment(data) # TODO: Handle multiple exceptions for exception in exceptions: if isinstance(exception, WarningException): if self.verbose > 0: exception.output() # Return empty value per data type if isinstance(data, str): return [] elif isinstance(data, list): return [] elif isinstance(data, np.ndarray): return np.array([]) return [] action_fx = None clean_data = self.clean(data) if self.action == Action.INSERT: action_fx = self.insert elif self.action == Action.SUBSTITUTE: action_fx = self.substitute elif self.action == Action.SWAP: action_fx = self.swap elif self.action == Action.DELETE: action_fx = self.delete elif self.action == Action.CROP: action_fx = self.crop elif self.action == Action.SPLIT: action_fx = self.split for _ in range(max_retry_times+1): augmented_results = [] # By design, it is one-to-many if self.__class__.__name__ in ['LambadaAug']: augmented_results = action_fx(clean_data, n=n) # PyTorch's augmenter elif self.__class__.__name__ in ['AbstSummAug', 'BackTranslationAug', 'ContextualWordEmbsAug', 'ContextualWordEmbsForSentenceAug']: for _ in range(aug_num): result = action_fx(clean_data) if isinstance(result, list): augmented_results.extend(result) else: augmented_results.append(result) # Multi inputs elif isinstance(data, list): # Single Thread if num_thread == 1: augmented_results = [action_fx(d) for d in clean_data] # Multi Thread else: batch_data = [data[i:i+num_thread] for i in range(0, len(data), num_thread)] for mini_batch_data in batch_data: augmented_results.extend(self._parallel_augments(self.augment, mini_batch_data)) # Single input with/without multiple input else: # Single Thread if num_thread == 1: augmented_results = [action_fx(clean_data) for _ in range(n)] # Multi Thread else: augmented_results = self._parallel_augment(action_fx, clean_data, n=n, num_thread=num_thread) if len(augmented_results) >= expected_output_num: break if len(augmented_results) == 0: # if not result, return itself if isinstance(data, list): return data # Single input with/without multiple input else: return [data] if isinstance(augmented_results, pd.DataFrame): return augmented_results else: if isinstance(data, list): return augmented_results else: return augmented_results[:n] # return augmented_results
(self, data, n=1, num_thread=1)
36,933
nlpaug.base_augmenter
crop
null
def crop(self, data): raise NotImplementedError
(self, data)
36,934
nlpaug.base_augmenter
delete
null
def delete(self, data): raise NotImplementedError
(self, data)
36,935
nlpaug.base_augmenter
evaluate
null
def evaluate(self): raise NotImplementedError
(self)
36,936
nlpaug.base_augmenter
generate_aug_cnt
null
def generate_aug_cnt(self, size, aug_p=None): if size == 0: return 0 return self._generate_aug_cnt(size, self.aug_min, self.aug_max, aug_p)
(self, size, aug_p=None)
36,937
nlpaug.base_augmenter
generate_aug_idxes
null
def generate_aug_idxes(self, inputs): aug_cnt = self.generate_aug_cnt(len(inputs)) token_idxes = [i for i, _ in enumerate(inputs)] aug_idxes = self.sample(token_idxes, aug_cnt) return aug_idxes
(self, inputs)
36,938
nlpaug.base_augmenter
insert
null
def insert(self, data): raise NotImplementedError
(self, data)
36,939
nlpaug.base_augmenter
split
null
def split(self, data): raise NotImplementedError
(self, data)
36,940
nlpaug.base_augmenter
substitute
null
def substitute(self, data): raise NotImplementedError
(self, data)
36,941
nlpaug.base_augmenter
swap
null
def swap(self, data): raise NotImplementedError
(self, data)
36,942
nlpaug.base_augmenter
tokenizer
null
def tokenizer(self, tokens): raise NotImplementedError
(self, tokens)
36,943
nlpaug.util.method
Method
null
class Method: CHAR = 'char' WORD = 'word' SENTENCE = 'sentence' SPECTROGRAM = 'spectrogram' AUDIO = 'audio' FLOW = 'flow' @staticmethod def getall(): return [Method.CHAR, Method.WORD, Method.SENTENCE, Method.AUDIO, Method.SPECTROGRAM, Method.FLOW]
()
36,944
nlpaug.util.method
getall
null
@staticmethod def getall(): return [Method.CHAR, Method.WORD, Method.SENTENCE, Method.AUDIO, Method.SPECTROGRAM, Method.FLOW]
()
36,945
multiprocessing.dummy
Pool
null
def Pool(processes=None, initializer=None, initargs=()): from ..pool import ThreadPool return ThreadPool(processes, initializer, initargs)
(processes=None, initializer=None, initargs=())
36,946
nlpaug.util.exception.warning
WarningCode
null
class WarningCode: WARNING_CODE_001 = 'W001' WARNING_CODE_002 = 'W002'
()
36,947
nlpaug.util.exception.warning
WarningException
null
class WarningException(ExceptionInfo): def __init__(self, name, code, msg): super(WarningException, self).__init__(name=name, exp_type=ExceptionType.WARNING, code=code, msg=msg)
(name, code, msg)
36,948
nlpaug.util.exception.warning
__init__
null
def __init__(self, name, code, msg): super(WarningException, self).__init__(name=name, exp_type=ExceptionType.WARNING, code=code, msg=msg)
(self, name, code, msg)
36,949
nlpaug.util.exception.exception_info
output
null
def output(self): msg = '[{}] Name:{}, Code:{}, Message:{}'.format(self.exp_type, self.name, self.code, self.msg) print(msg)
(self)
36,950
nlpaug.util.exception.warning
WarningMessage
null
class WarningMessage: LENGTH_IS_ZERO = 'Length of input is 0' NO_WORD = 'No other word except stop words and OOV. Returning input data without augmentation' DEPRECATED = 'Warning: {} will be removed after {} release. Change to use {}'
()
36,951
nlpaug.util.exception.warning
WarningName
null
class WarningName: INPUT_VALIDATION_WARNING = 'Input validation issue' OUT_OF_VOCABULARY = 'Out of vocabulary issue'
()
36,964
sphinx_autodoc_typehints
InsertIndexInfo
InsertIndexInfo(insert_index: 'int', found_param: 'bool' = False, found_return: 'bool' = False, found_directive: 'bool' = False)
class InsertIndexInfo: insert_index: int found_param: bool = False found_return: bool = False found_directive: bool = False
(insert_index: int, found_param: bool = False, found_return: bool = False, found_directive: bool = False) -> None
36,965
sphinx_autodoc_typehints
__eq__
null
"""Sphinx autodoc type hints.""" from __future__ import annotations import ast import importlib import inspect import re import sys import textwrap import types from dataclasses import dataclass from typing import TYPE_CHECKING, Any, AnyStr, Callable, ForwardRef, NewType, TypeVar, get_type_hints from docutils import nodes from docutils.frontend import OptionParser from sphinx.ext.autodoc.mock import mock from sphinx.parsers import RSTParser from sphinx.util import logging, rst from sphinx.util.inspect import signature as sphinx_signature from sphinx.util.inspect import stringify_signature from .parser import parse from .patches import install_patches from .version import __version__ if TYPE_CHECKING: from ast import FunctionDef, Module, stmt from docutils.nodes import Node from docutils.parsers.rst import states from sphinx.application import Sphinx from sphinx.config import Config from sphinx.environment import BuildEnvironment from sphinx.ext.autodoc import Options _LOGGER = logging.getLogger(__name__) _PYDATA_ANNOTATIONS = {"Any", "AnyStr", "Callable", "ClassVar", "Literal", "NoReturn", "Optional", "Tuple", "Union"} # types has a bunch of things like ModuleType where ModuleType.__module__ is # "builtins" and ModuleType.__name__ is "module", so we have to check for this. _TYPES_DICT = {getattr(types, name): name for name in types.__all__} # Prefer FunctionType to LambdaType (they are synonymous) _TYPES_DICT[types.FunctionType] = "FunctionType" def _get_types_type(obj: Any) -> str | None: try: return _TYPES_DICT.get(obj) except Exception: # noqa: BLE001 # e.g. exception: unhashable type return None
(self, other)
36,967
sphinx_autodoc_typehints
__repr__
null
def format_annotation(annotation: Any, config: Config) -> str: # noqa: C901, PLR0911, PLR0912, PLR0915, PLR0914 """ Format the annotation. :param annotation: :param config: :return: """ typehints_formatter: Callable[..., str] | None = getattr(config, "typehints_formatter", None) if typehints_formatter is not None: formatted = typehints_formatter(annotation, config) if formatted is not None: return formatted # Special cases if isinstance(annotation, ForwardRef): return annotation.__forward_arg__ if annotation is None or annotation is type(None): return ":py:obj:`None`" if annotation is Ellipsis: return ":py:data:`...<Ellipsis>`" if isinstance(annotation, tuple): return format_internal_tuple(annotation, config) try: module = get_annotation_module(annotation) class_name = get_annotation_class_name(annotation, module) args = get_annotation_args(annotation, module, class_name) except ValueError: return str(annotation).strip("'") # Redirect all typing_extensions types to the stdlib typing module if module == "typing_extensions": module = "typing" if module == "_io": module = "io" full_name = f"{module}.{class_name}" if module != "builtins" else class_name fully_qualified: bool = getattr(config, "typehints_fully_qualified", False) prefix = "" if fully_qualified or full_name == class_name else "~" role = "data" if module == "typing" and class_name in _PYDATA_ANNOTATIONS else "class" args_format = "\\[{}]" formatted_args: str | None = "" always_use_bars_union: bool = getattr(config, "always_use_bars_union", True) is_bars_union = full_name == "types.UnionType" or ( always_use_bars_union and type(annotation).__qualname__ == "_UnionGenericAlias" ) if is_bars_union: full_name = "" # Some types require special handling if full_name == "typing.NewType": args_format = f"\\(``{annotation.__name__}``, {{}})" role = "class" if sys.version_info >= (3, 10) else "func" elif full_name in {"typing.TypeVar", "typing.ParamSpec"}: params = {k: getattr(annotation, f"__{k}__") for k in ("bound", "covariant", "contravariant")} params = {k: v for k, v in params.items() if v} if "bound" in params: params["bound"] = f" {format_annotation(params['bound'], config)}" args_format = f"\\(``{annotation.__name__}``{', {}' if args else ''}" if params: args_format += "".join(f", {k}={v}" for k, v in params.items()) args_format += ")" formatted_args = None if args else args_format elif full_name == "typing.Optional": args = tuple(x for x in args if x is not type(None)) elif full_name in {"typing.Union", "types.UnionType"} and type(None) in args: if len(args) == 2: # noqa: PLR2004 full_name = "typing.Optional" role = "data" args = tuple(x for x in args if x is not type(None)) else: simplify_optional_unions: bool = getattr(config, "simplify_optional_unions", True) if not simplify_optional_unions: full_name = "typing.Optional" role = "data" args_format = f"\\[:py:data:`{prefix}typing.Union`\\[{{}}]]" args = tuple(x for x in args if x is not type(None)) elif full_name in {"typing.Callable", "collections.abc.Callable"} and args and args[0] is not ...: fmt = [format_annotation(arg, config) for arg in args] formatted_args = f"\\[\\[{', '.join(fmt[:-1])}], {fmt[-1]}]" elif full_name == "typing.Literal": formatted_args = f"\\[{', '.join(f'``{arg!r}``' for arg in args)}]" elif is_bars_union: return " | ".join([format_annotation(arg, config) for arg in args]) if args and not formatted_args: try: iter(args) except TypeError: fmt = [format_annotation(args, config)] else: fmt = [format_annotation(arg, config) for arg in args] formatted_args = args_format.format(", ".join(fmt)) escape = "\\ " if formatted_args else "" return f":py:{role}:`{prefix}{full_name}`{escape}{formatted_args}"
(self)
36,968
typing
NewType
NewType creates simple unique types with almost zero runtime overhead. NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp) returns a dummy callable that simply returns its argument. Usage:: UserId = NewType('UserId', int) def name_by_id(user_id: UserId) -> str: ... UserId('user') # Fails type check name_by_id(42) # Fails type check name_by_id(UserId(42)) # OK num = UserId(5) + 1 # type: int
class NewType: """NewType creates simple unique types with almost zero runtime overhead. NewType(name, tp) is considered a subtype of tp by static type checkers. At runtime, NewType(name, tp) returns a dummy callable that simply returns its argument. Usage:: UserId = NewType('UserId', int) def name_by_id(user_id: UserId) -> str: ... UserId('user') # Fails type check name_by_id(42) # Fails type check name_by_id(UserId(42)) # OK num = UserId(5) + 1 # type: int """ def __init__(self, name, tp): self.__qualname__ = name if '.' in name: name = name.rpartition('.')[-1] self.__name__ = name self.__supertype__ = tp def_mod = _caller() if def_mod != 'typing': self.__module__ = def_mod def __repr__(self): return f'{self.__module__}.{self.__qualname__}' def __call__(self, x): return x def __reduce__(self): return self.__qualname__ def __or__(self, other): return Union[self, other] def __ror__(self, other): return Union[other, self]
(name, tp)
36,969
typing
__call__
null
def __call__(self, x): return x
(self, x)
36,970
typing
__init__
null
def __init__(self, name, tp): self.__qualname__ = name if '.' in name: name = name.rpartition('.')[-1] self.__name__ = name self.__supertype__ = tp def_mod = _caller() if def_mod != 'typing': self.__module__ = def_mod
(self, name, tp)
36,972
typing
__reduce__
null
def __reduce__(self): return self.__qualname__
(self)