index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
44,206 |
gwcs.selector
|
LabelMapperArray
|
Maps array locations to labels.
Parameters
----------
mapper : ndarray
An array of integers or strings where the values
correspond to a label in `~gwcs.selector.RegionsSelector` model.
For pixels for which the transform is not defined the value should
be set to 0 or " ".
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order
so that the output of it is (x, y) values to index the array.
name : str
The name of this transform.
Use case:
For an IFU observation, the array represents the detector and its
values correspond to the IFU slice label.
|
class LabelMapperArray(_LabelMapper):
"""
Maps array locations to labels.
Parameters
----------
mapper : ndarray
An array of integers or strings where the values
correspond to a label in `~gwcs.selector.RegionsSelector` model.
For pixels for which the transform is not defined the value should
be set to 0 or " ".
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order
so that the output of it is (x, y) values to index the array.
name : str
The name of this transform.
Use case:
For an IFU observation, the array represents the detector and its
values correspond to the IFU slice label.
"""
n_inputs = 2
n_outputs = 1
linear = False
fittable = False
def __init__(self, mapper, inputs_mapping=None, name=None, **kwargs):
if mapper.dtype.type is not np.str_:
mapper = np.asanyarray(mapper, dtype=int)
_no_label = 0
else:
_no_label = ""
super(LabelMapperArray, self).__init__(mapper, _no_label, name=name, **kwargs)
self.inputs = ('x', 'y')
self.outputs = ('label',)
def evaluate(self, *args):
args = tuple([_toindex(a) for a in args])
try:
result = self._mapper[args[::-1]]
except IndexError as e:
raise LabelMapperArrayIndexingError(e)
return result
@classmethod
def from_vertices(cls, shape, regions):
"""
Create a `~gwcs.selector.LabelMapperArray` from
polygon vertices stores in a dict.
Parameters
----------
shape : tuple
shape of mapper array
regions: dict
{region_label : list_of_polygon_vertices}
The keys in this dictionary should match the region labels
in `~gwcs.selector.RegionsSelector`.
The list of vertices is ordered in such a way that when traversed in a
counterclockwise direction, the enclosed area is the polygon.
The last vertex must coincide with the first vertex, minimum
4 vertices are needed to define a triangle.
Returns
-------
mapper : `~gwcs.selector.LabelMapperArray`
This models is used with `~gwcs.selector.RegionsSelector`.
A model which takes the same inputs as `~gwcs.selector.RegionsSelector`
and returns a label.
Examples
--------
>>> regions = {1: [[795, 970], [2047, 970], [2047, 999], [795, 999], [795, 970]],
... 2: [[844, 1067], [2047, 1067], [2047, 1113], [844, 1113], [844, 1067]],
... 3: [[654, 1029], [2047, 1029], [2047, 1078], [654, 1078], [654, 1029]],
... 4: [[772, 990], [2047, 990], [2047, 1042], [772, 1042], [772, 990]]
... }
>>> mapper = LabelMapperArray.from_vertices((2400, 2400), regions)
"""
labels = np.array(list(regions.keys()))
mask = np.zeros(shape, dtype=labels.dtype)
for rid, vert in regions.items():
pol = region.Polygon(rid, vert)
mask = pol.scan(mask)
return cls(mask)
|
(mapper, inputs_mapping=None, name=None, **kwargs)
|
44,209 |
gwcs.selector
|
__call__
|
Evaluate this model using the given input(s) and the parameter values
that were specified when the model was instantiated.
|
@staticmethod
def _has_overlapping(ranges):
"""
Test a list of tuple representing ranges of values has no overlapping ranges.
"""
d = dict(ranges)
start = ranges[:, 0]
end = ranges[:, 1]
start.sort()
l = []
for v in start:
l.append([v, d[v]])
l = np.array(l)
start = np.roll(l[:, 0], -1)
end = l[:, 1]
if any((end - start)[:-1] > 0) or any(start[-1] > end):
return True
else:
return False
|
(self, *inputs, model_set_axis=None, with_bounding_box=False, fill_value=nan, equivalencies=None, inputs_map=None, **new_inputs)
|
44,210 |
gwcs.selector
|
__init__
| null |
def __init__(self, mapper, inputs_mapping=None, name=None, **kwargs):
if mapper.dtype.type is not np.str_:
mapper = np.asanyarray(mapper, dtype=int)
_no_label = 0
else:
_no_label = ""
super(LabelMapperArray, self).__init__(mapper, _no_label, name=name, **kwargs)
self.inputs = ('x', 'y')
self.outputs = ('label',)
|
(self, mapper, inputs_mapping=None, name=None, **kwargs)
|
44,253 |
gwcs.selector
|
evaluate
| null |
def evaluate(self, *args):
args = tuple([_toindex(a) for a in args])
try:
result = self._mapper[args[::-1]]
except IndexError as e:
raise LabelMapperArrayIndexingError(e)
return result
|
(self, *args)
|
44,266 |
gwcs.selector
|
LabelMapperDict
|
Maps a number to a transform, which when evaluated returns a label.
Use case: inverse transforms of an IFU.
For an IFU observation, the keys are constant angles (corresponding to a slice)
and values are transforms which return a slice number.
Parameters
----------
inputs : tuple of str
Names for the inputs, e.g. ('alpha', 'beta', lam')
mapper : dict
Maps key values to transforms.
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order.
It returns a number which is one of the keys of ``mapper``.
atol : float
Absolute tolerance when comparing inputs to ``mapper.keys``.
It is passed to np.isclose.
name : str
The name of this transform.
|
class LabelMapperDict(_LabelMapper):
"""
Maps a number to a transform, which when evaluated returns a label.
Use case: inverse transforms of an IFU.
For an IFU observation, the keys are constant angles (corresponding to a slice)
and values are transforms which return a slice number.
Parameters
----------
inputs : tuple of str
Names for the inputs, e.g. ('alpha', 'beta', lam')
mapper : dict
Maps key values to transforms.
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order.
It returns a number which is one of the keys of ``mapper``.
atol : float
Absolute tolerance when comparing inputs to ``mapper.keys``.
It is passed to np.isclose.
name : str
The name of this transform.
"""
standard_broadcasting = False
linear = False
fittable = False
n_outputs = 1
def __init__(self, inputs, mapper, inputs_mapping=None, atol=10**-8, name=None, **kwargs):
self._atol = atol
_no_label = 0
self._inputs = inputs
self._n_inputs = len(inputs)
if not all([m.n_outputs == 1 for m in mapper.values()]):
raise TypeError("All transforms in mapper must have one output.")
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(LabelMapperDict, self).__init__(mapper, _no_label, inputs_mapping,
name=name, **kwargs)
self.outputs = ('labels',)
@property
def n_inputs(self):
return self._n_inputs
@property
def inputs(self):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
return self._inputs
@inputs.setter
def inputs(self, val):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
self._inputs = val
@property
def atol(self):
return self._atol
@atol.setter
def atol(self, val):
self._atol = val
def evaluate(self, *args):
shape = args[0].shape
args = [a.flatten() for a in args]
# if n_inputs > 1, determine which one is to be used as keys
if self.inputs_mapping is not None:
keys = self._inputs_mapping.evaluate(*args)
else:
keys = args
keys = keys.flatten()
# create an empty array for the results
res = np.zeros(keys.shape) + self._no_label
# If this is part of a combined transform, some of the inputs
# may be NaNs.
# Set NaNs to the ``_no_label`` value
mapper_keys = list(self.mapper.keys())
# Loop over the keys in mapper and compare to inputs.
# Find the indices where they are within ``atol``
# and evaluate the transform to get the corresponding label.
for key in mapper_keys:
ind = np.isclose(key, keys, atol=self._atol)
inputs = [a[ind] for a in args]
res[ind] = self.mapper[key](*inputs)
res.shape = shape
return res
|
(inputs, mapper, inputs_mapping=None, atol=1e-08, name=None, **kwargs)
|
44,270 |
gwcs.selector
|
__init__
| null |
def __init__(self, inputs, mapper, inputs_mapping=None, atol=10**-8, name=None, **kwargs):
self._atol = atol
_no_label = 0
self._inputs = inputs
self._n_inputs = len(inputs)
if not all([m.n_outputs == 1 for m in mapper.values()]):
raise TypeError("All transforms in mapper must have one output.")
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(LabelMapperDict, self).__init__(mapper, _no_label, inputs_mapping,
name=name, **kwargs)
self.outputs = ('labels',)
|
(self, inputs, mapper, inputs_mapping=None, atol=1e-08, name=None, **kwargs)
|
44,313 |
gwcs.selector
|
evaluate
| null |
def evaluate(self, *args):
shape = args[0].shape
args = [a.flatten() for a in args]
# if n_inputs > 1, determine which one is to be used as keys
if self.inputs_mapping is not None:
keys = self._inputs_mapping.evaluate(*args)
else:
keys = args
keys = keys.flatten()
# create an empty array for the results
res = np.zeros(keys.shape) + self._no_label
# If this is part of a combined transform, some of the inputs
# may be NaNs.
# Set NaNs to the ``_no_label`` value
mapper_keys = list(self.mapper.keys())
# Loop over the keys in mapper and compare to inputs.
# Find the indices where they are within ``atol``
# and evaluate the transform to get the corresponding label.
for key in mapper_keys:
ind = np.isclose(key, keys, atol=self._atol)
inputs = [a[ind] for a in args]
res[ind] = self.mapper[key](*inputs)
res.shape = shape
return res
|
(self, *args)
|
44,326 |
gwcs.selector
|
LabelMapperRange
|
The structure this class uses maps a range of values to a transform.
Given an input value it finds the range the value falls in and returns
the corresponding transform. When evaluated the transform returns a label.
Example: Pick a transform based on wavelength range.
For an IFU observation, the keys are (lambda_min, lambda_max) tuples
and values are transforms which return a label corresponding to a slice.
Parameters
----------
inputs : tuple of str
Names for the inputs, e.g. ('alpha', 'beta', 'lambda')
mapper : dict
Maps tuples of length 2 to transforms.
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order.
atol : float
Absolute tolerance when comparing inputs to ``mapper.keys``.
It is passed to np.isclose.
name : str
The name of this transform.
|
class LabelMapperRange(_LabelMapper):
"""
The structure this class uses maps a range of values to a transform.
Given an input value it finds the range the value falls in and returns
the corresponding transform. When evaluated the transform returns a label.
Example: Pick a transform based on wavelength range.
For an IFU observation, the keys are (lambda_min, lambda_max) tuples
and values are transforms which return a label corresponding to a slice.
Parameters
----------
inputs : tuple of str
Names for the inputs, e.g. ('alpha', 'beta', 'lambda')
mapper : dict
Maps tuples of length 2 to transforms.
inputs_mapping : `~astropy.modeling.mappings.Mapping`
An optional Mapping model to be prepended to the LabelMapper
with the purpose to filter the inputs or change their order.
atol : float
Absolute tolerance when comparing inputs to ``mapper.keys``.
It is passed to np.isclose.
name : str
The name of this transform.
"""
standard_broadcasting = False
n_outputs = 1
linear = False
fittable = False
def __init__(self, inputs, mapper, inputs_mapping=None, name=None, **kwargs):
if self._has_overlapping(np.array(list(mapper.keys()))):
raise ValueError("Overlapping ranges of values are not supported.")
self._inputs = inputs
self._n_inputs = len(inputs)
_no_label = 0
if not all([m.n_outputs == 1 for m in mapper.values()]):
raise TypeError("All transforms in mapper must have one output.")
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(LabelMapperRange, self).__init__(mapper, _no_label, inputs_mapping,
name=name, **kwargs)
self.outputs = ('labels',)
@property
def n_inputs(self):
return self._n_inputs
@property
def inputs(self):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
return self._inputs
@inputs.setter
def inputs(self, val):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
self._inputs = val
@staticmethod
def _has_overlapping(ranges):
"""
Test a list of tuple representing ranges of values has no overlapping ranges.
"""
d = dict(ranges)
start = ranges[:, 0]
end = ranges[:, 1]
start.sort()
l = []
for v in start:
l.append([v, d[v]])
l = np.array(l)
start = np.roll(l[:, 0], -1)
end = l[:, 1]
if any((end - start)[:-1] > 0) or any(start[-1] > end):
return True
else:
return False
# move this to utils?
def _find_range(self, value_range, value):
"""
Returns the index of the tuple which holds value.
Parameters
----------
value_range : np.ndarray
an (2, 2) array of non-overlapping (min, max) values
value : float
The value
Returns
-------
ind : int
Index of the tuple which defines a range holding the input value.
None, if the input value is not within any available range.
"""
a, b = value_range[:, 0], value_range[:, 1]
ind = np.logical_and(value >= a, value <= b).nonzero()[0]
if ind.size > 1:
raise ValueError("There are overlapping ranges.")
elif ind.size == 0:
return None
else:
return ind.item()
def evaluate(self, *args):
shape = args[0].shape
args = [a.flatten() for a in args]
if self.inputs_mapping is not None:
keys = self._inputs_mapping.evaluate(*args)
else:
keys = args
keys = keys.flatten()
# Define an array for the results.
res = np.zeros(keys.shape) + self._no_label
nan_ind = np.isnan(keys)
res[nan_ind] = self._no_label
value_ranges = list(self.mapper.keys())
# For each tuple in mapper, find the indices of the inputs
# which fall within the range it defines.
for val_range in value_ranges:
temp = keys.copy()
temp[nan_ind] = np.nan
temp = np.where(np.logical_or(temp <= val_range[0],
temp >= val_range[1]),
np.nan, temp)
ind = ~np.isnan(temp)
if ind.any():
inputs = [a[ind] for a in args]
res[ind] = self.mapper[tuple(val_range)](*inputs)
else:
continue
res.shape = shape
if len(np.nonzero(res)[0]) == 0:
warnings.warn("All data is outside the valid range - {0}.".format(self.name))
return res
|
(inputs, mapper, inputs_mapping=None, name=None, **kwargs)
|
44,330 |
gwcs.selector
|
__init__
| null |
def __init__(self, inputs, mapper, inputs_mapping=None, name=None, **kwargs):
if self._has_overlapping(np.array(list(mapper.keys()))):
raise ValueError("Overlapping ranges of values are not supported.")
self._inputs = inputs
self._n_inputs = len(inputs)
_no_label = 0
if not all([m.n_outputs == 1 for m in mapper.values()]):
raise TypeError("All transforms in mapper must have one output.")
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(LabelMapperRange, self).__init__(mapper, _no_label, inputs_mapping,
name=name, **kwargs)
self.outputs = ('labels',)
|
(self, inputs, mapper, inputs_mapping=None, name=None, **kwargs)
|
44,344 |
gwcs.selector
|
_find_range
|
Returns the index of the tuple which holds value.
Parameters
----------
value_range : np.ndarray
an (2, 2) array of non-overlapping (min, max) values
value : float
The value
Returns
-------
ind : int
Index of the tuple which defines a range holding the input value.
None, if the input value is not within any available range.
|
def _find_range(self, value_range, value):
"""
Returns the index of the tuple which holds value.
Parameters
----------
value_range : np.ndarray
an (2, 2) array of non-overlapping (min, max) values
value : float
The value
Returns
-------
ind : int
Index of the tuple which defines a range holding the input value.
None, if the input value is not within any available range.
"""
a, b = value_range[:, 0], value_range[:, 1]
ind = np.logical_and(value >= a, value <= b).nonzero()[0]
if ind.size > 1:
raise ValueError("There are overlapping ranges.")
elif ind.size == 0:
return None
else:
return ind.item()
|
(self, value_range, value)
|
44,350 |
gwcs.selector
|
_has_overlapping
|
Test a list of tuple representing ranges of values has no overlapping ranges.
|
@staticmethod
def _has_overlapping(ranges):
"""
Test a list of tuple representing ranges of values has no overlapping ranges.
"""
d = dict(ranges)
start = ranges[:, 0]
end = ranges[:, 1]
start.sort()
l = []
for v in start:
l.append([v, d[v]])
l = np.array(l)
start = np.roll(l[:, 0], -1)
end = l[:, 1]
if any((end - start)[:-1] > 0) or any(start[-1] > end):
return True
else:
return False
|
(ranges)
|
44,375 |
gwcs.selector
|
evaluate
| null |
def evaluate(self, *args):
shape = args[0].shape
args = [a.flatten() for a in args]
if self.inputs_mapping is not None:
keys = self._inputs_mapping.evaluate(*args)
else:
keys = args
keys = keys.flatten()
# Define an array for the results.
res = np.zeros(keys.shape) + self._no_label
nan_ind = np.isnan(keys)
res[nan_ind] = self._no_label
value_ranges = list(self.mapper.keys())
# For each tuple in mapper, find the indices of the inputs
# which fall within the range it defines.
for val_range in value_ranges:
temp = keys.copy()
temp[nan_ind] = np.nan
temp = np.where(np.logical_or(temp <= val_range[0],
temp >= val_range[1]),
np.nan, temp)
ind = ~np.isnan(temp)
if ind.any():
inputs = [a[ind] for a in args]
res[ind] = self.mapper[tuple(val_range)](*inputs)
else:
continue
res.shape = shape
if len(np.nonzero(res)[0]) == 0:
warnings.warn("All data is outside the valid range - {0}.".format(self.name))
return res
|
(self, *args)
|
44,388 |
gwcs.wcs
|
NoConvergence
|
An error class used to report non-convergence and/or divergence
of numerical methods. It is used to report errors in the
iterative solution used by
the :py:meth:`~astropy.wcs.WCS.all_world2pix`.
Attributes
----------
best_solution : `numpy.ndarray`
Best solution achieved by the numerical method.
accuracy : `numpy.ndarray`
Estimate of the accuracy of the ``best_solution``.
niter : `int`
Number of iterations performed by the numerical method
to compute ``best_solution``.
divergent : None, `numpy.ndarray`
Indices of the points in ``best_solution`` array
for which the solution appears to be divergent. If the
solution does not diverge, ``divergent`` will be set to `None`.
slow_conv : None, `numpy.ndarray`
Indices of the solutions in ``best_solution`` array
for which the solution failed to converge within the
specified maximum number of iterations. If there are no
non-converging solutions (i.e., if the required accuracy
has been achieved for all input data points)
then ``slow_conv`` will be set to `None`.
|
class NoConvergence(Exception):
"""
An error class used to report non-convergence and/or divergence
of numerical methods. It is used to report errors in the
iterative solution used by
the :py:meth:`~astropy.wcs.WCS.all_world2pix`.
Attributes
----------
best_solution : `numpy.ndarray`
Best solution achieved by the numerical method.
accuracy : `numpy.ndarray`
Estimate of the accuracy of the ``best_solution``.
niter : `int`
Number of iterations performed by the numerical method
to compute ``best_solution``.
divergent : None, `numpy.ndarray`
Indices of the points in ``best_solution`` array
for which the solution appears to be divergent. If the
solution does not diverge, ``divergent`` will be set to `None`.
slow_conv : None, `numpy.ndarray`
Indices of the solutions in ``best_solution`` array
for which the solution failed to converge within the
specified maximum number of iterations. If there are no
non-converging solutions (i.e., if the required accuracy
has been achieved for all input data points)
then ``slow_conv`` will be set to `None`.
"""
def __init__(self, *args, best_solution=None, accuracy=None, niter=None,
divergent=None, slow_conv=None):
super().__init__(*args)
self.best_solution = best_solution
self.accuracy = accuracy
self.niter = niter
self.divergent = divergent
self.slow_conv = slow_conv
|
(*args, best_solution=None, accuracy=None, niter=None, divergent=None, slow_conv=None)
|
44,389 |
gwcs.wcs
|
__init__
| null |
def __init__(self, *args, best_solution=None, accuracy=None, niter=None,
divergent=None, slow_conv=None):
super().__init__(*args)
self.best_solution = best_solution
self.accuracy = accuracy
self.niter = niter
self.divergent = divergent
self.slow_conv = slow_conv
|
(self, *args, best_solution=None, accuracy=None, niter=None, divergent=None, slow_conv=None)
|
44,390 |
gwcs.selector
|
RegionsSelector
|
This model defines discontinuous transforms.
It maps inputs to their corresponding transforms.
It uses an instance of `_LabelMapper` as a proxy to map inputs to
the correct region.
Parameters
----------
inputs : list of str
Names of the inputs.
outputs : list of str
Names of the outputs.
selector : dict
Mapping of region labels to transforms.
Labels can be of type int or str, transforms are of type
`~astropy.modeling.Model`.
label_mapper : a subclass of `~gwcs.selector._LabelMapper`
A model which maps locations to region labels.
undefined_transform_value : float, np.nan (default)
Value to be returned if there's no transform defined for the inputs.
name : str
The name of this transform.
|
class RegionsSelector(Model):
"""
This model defines discontinuous transforms.
It maps inputs to their corresponding transforms.
It uses an instance of `_LabelMapper` as a proxy to map inputs to
the correct region.
Parameters
----------
inputs : list of str
Names of the inputs.
outputs : list of str
Names of the outputs.
selector : dict
Mapping of region labels to transforms.
Labels can be of type int or str, transforms are of type
`~astropy.modeling.Model`.
label_mapper : a subclass of `~gwcs.selector._LabelMapper`
A model which maps locations to region labels.
undefined_transform_value : float, np.nan (default)
Value to be returned if there's no transform defined for the inputs.
name : str
The name of this transform.
"""
standard_broadcasting = False
linear = False
fittable = False
def __init__(self, inputs, outputs, selector, label_mapper, undefined_transform_value=np.nan,
name=None, **kwargs):
self._inputs = inputs
self._outputs = outputs
self._n_inputs = len(inputs)
self._n_outputs = len(outputs)
self.label_mapper = label_mapper
self._undefined_transform_value = undefined_transform_value
self._selector = selector # copy.deepcopy(selector)
if " " in selector.keys() or 0 in selector.keys():
raise ValueError('"0" and " " are not allowed as keys.')
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(RegionsSelector, self).__init__(n_models=1, name=name, **kwargs)
def set_input(self, rid):
"""
Sets one of the inputs and returns a transform associated with it.
"""
if rid in self._selector:
return self._selector[rid]
else:
raise RegionError("Region {0} not found".format(rid))
def inverse(self):
if self.label_mapper.inverse is not None:
try:
transforms_inv = {}
for rid in self._selector:
transforms_inv[rid] = self._selector[rid].inverse
except AttributeError:
raise NotImplementedError("The inverse of all regions must be defined"
"for RegionsSelector to have an inverse.")
return self.__class__(self.outputs, self.inputs, transforms_inv,
self.label_mapper.inverse)
else:
raise NotImplementedError("The label mapper must have an inverse "
"for RegionsSelector to have an inverse.")
def evaluate(self, *args):
"""
Parameters
----------
args : float or ndarray
Input pixel coordinate, one input for each dimension.
"""
# Get the region labels corresponding to these inputs
rids = self.label_mapper(*args).flatten()
# Raise an error if all pixels are outside regions
if (rids == self.label_mapper.no_label).all():
warnings.warn("The input positions are not inside any region.")
# Create output arrays and set any pixels not within regions to
# "undefined_transform_value"
no_trans_ind = (rids == self.label_mapper.no_label).nonzero()
outputs = [np.empty(rids.shape) for n in range(self.n_outputs)]
for out in outputs:
out[no_trans_ind] = self.undefined_transform_value
# Compute the transformations
args = [a.flatten() for a in args]
uniq = get_unique_regions(rids)
for rid in uniq:
ind = (rids == rid)
inputs = [a[ind] for a in args]
if rid in self._selector:
result = self._selector[rid](*inputs)
else:
# If there's no transform for a label, return np.nan
result = [np.empty(inputs[0].shape) +
self._undefined_transform_value for i in range(self.n_outputs)]
for j in range(self.n_outputs):
outputs[j][ind] = result[j]
return outputs
@property
def undefined_transform_value(self):
return self._undefined_transform_value
@undefined_transform_value.setter
def undefined_transform_value(self, value):
self._undefined_transform_value = value
@property
def outputs(self):
"""The name(s) of the output(s) of the model."""
return self._outputs
@property
def selector(self):
return self._selector
@property
def inputs(self):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
return self._inputs
@inputs.setter
def inputs(self, val):
"""
The name(s) of the input variable(s) on which a model is evaluated.
"""
self._inputs = val
@outputs.setter
def outputs(self, val):
"""
The name(s) of the output variable(s).
"""
self._outputs = val
@property
def n_inputs(self):
return self._n_inputs
@property
def n_outputs(self):
return self._n_outputs
|
(inputs, outputs, selector, label_mapper, undefined_transform_value=nan, name=None, **kwargs)
|
44,394 |
gwcs.selector
|
__init__
| null |
def __init__(self, inputs, outputs, selector, label_mapper, undefined_transform_value=np.nan,
name=None, **kwargs):
self._inputs = inputs
self._outputs = outputs
self._n_inputs = len(inputs)
self._n_outputs = len(outputs)
self.label_mapper = label_mapper
self._undefined_transform_value = undefined_transform_value
self._selector = selector # copy.deepcopy(selector)
if " " in selector.keys() or 0 in selector.keys():
raise ValueError('"0" and " " are not allowed as keys.')
self._input_units_strict = {key: False for key in self._inputs}
self._input_units_allow_dimensionless = {key: False for key in self._inputs}
super(RegionsSelector, self).__init__(n_models=1, name=name, **kwargs)
|
(self, inputs, outputs, selector, label_mapper, undefined_transform_value=nan, name=None, **kwargs)
|
44,419 |
gwcs.selector
|
inverse
| null |
def inverse(self):
if self.label_mapper.inverse is not None:
try:
transforms_inv = {}
for rid in self._selector:
transforms_inv[rid] = self._selector[rid].inverse
except AttributeError:
raise NotImplementedError("The inverse of all regions must be defined"
"for RegionsSelector to have an inverse.")
return self.__class__(self.outputs, self.inputs, transforms_inv,
self.label_mapper.inverse)
else:
raise NotImplementedError("The label mapper must have an inverse "
"for RegionsSelector to have an inverse.")
|
(self)
|
44,438 |
gwcs.selector
|
evaluate
|
Parameters
----------
args : float or ndarray
Input pixel coordinate, one input for each dimension.
|
def evaluate(self, *args):
"""
Parameters
----------
args : float or ndarray
Input pixel coordinate, one input for each dimension.
"""
# Get the region labels corresponding to these inputs
rids = self.label_mapper(*args).flatten()
# Raise an error if all pixels are outside regions
if (rids == self.label_mapper.no_label).all():
warnings.warn("The input positions are not inside any region.")
# Create output arrays and set any pixels not within regions to
# "undefined_transform_value"
no_trans_ind = (rids == self.label_mapper.no_label).nonzero()
outputs = [np.empty(rids.shape) for n in range(self.n_outputs)]
for out in outputs:
out[no_trans_ind] = self.undefined_transform_value
# Compute the transformations
args = [a.flatten() for a in args]
uniq = get_unique_regions(rids)
for rid in uniq:
ind = (rids == rid)
inputs = [a[ind] for a in args]
if rid in self._selector:
result = self._selector[rid](*inputs)
else:
# If there's no transform for a label, return np.nan
result = [np.empty(inputs[0].shape) +
self._undefined_transform_value for i in range(self.n_outputs)]
for j in range(self.n_outputs):
outputs[j][ind] = result[j]
return outputs
|
(self, *args)
|
44,446 |
gwcs.selector
|
set_input
|
Sets one of the inputs and returns a transform associated with it.
|
def set_input(self, rid):
"""
Sets one of the inputs and returns a transform associated with it.
"""
if rid in self._selector:
return self._selector[rid]
else:
raise RegionError("Region {0} not found".format(rid))
|
(self, rid)
|
44,452 |
gwcs.coordinate_frames
|
SpectralFrame
|
Represents Spectral Frame
Parameters
----------
axes_order : tuple or int
A dimension in the input data that corresponds to this axis.
reference_frame : astropy.coordinates.builtin_frames
Reference frame (usually used with output_frame to convert to world coordinate objects).
unit : str or units.Unit instance
Spectral unit.
axes_names : str
Spectral axis name.
name : str
Name for this frame.
reference_position : str
Reference position - one of ``STANDARD_REFERENCE_POSITION``
|
class SpectralFrame(CoordinateFrame):
"""
Represents Spectral Frame
Parameters
----------
axes_order : tuple or int
A dimension in the input data that corresponds to this axis.
reference_frame : astropy.coordinates.builtin_frames
Reference frame (usually used with output_frame to convert to world coordinate objects).
unit : str or units.Unit instance
Spectral unit.
axes_names : str
Spectral axis name.
name : str
Name for this frame.
reference_position : str
Reference position - one of ``STANDARD_REFERENCE_POSITION``
"""
def __init__(self, axes_order=(0,), reference_frame=None, unit=None,
axes_names=None, name=None, axis_physical_types=None,
reference_position=None):
super(SpectralFrame, self).__init__(naxes=1, axes_type="SPECTRAL", axes_order=axes_order,
axes_names=axes_names, reference_frame=reference_frame,
unit=unit, name=name,
reference_position=reference_position,
axis_physical_types=axis_physical_types)
@property
def _default_axis_physical_types(self):
if self.unit[0].physical_type == "frequency":
return ("em.freq",)
elif self.unit[0].physical_type == "length":
return ("em.wl",)
elif self.unit[0].physical_type == "energy":
return ("em.energy",)
elif self.unit[0].physical_type == "speed":
return ("spect.dopplerVeloc",)
logging.warning("Physical type may be ambiguous. Consider "
"setting the physical type explicitly as "
"either 'spect.dopplerVeloc.optical' or "
"'spect.dopplerVeloc.radio'.")
else:
return ("custom:{}".format(self.unit[0].physical_type),)
@property
def _world_axis_object_classes(self):
return {'spectral': (
coord.SpectralCoord,
(),
{'unit': self.unit[0]})}
@property
def _world_axis_object_components(self):
return [('spectral', 0, 'value')]
def coordinates(self, *args):
# using SpectralCoord
if isinstance(args[0], coord.SpectralCoord):
return args[0].to(self.unit[0])
else:
if hasattr(args[0], 'unit'):
return coord.SpectralCoord(*args).to(self.unit[0])
else:
return coord.SpectralCoord(*args, self.unit[0])
def coordinate_to_quantity(self, *coords):
if hasattr(coords[0], 'unit'):
return coords[0]
return coords[0] * self.unit[0]
|
(axes_order=(0,), reference_frame=None, unit=None, axes_names=None, name=None, axis_physical_types=None, reference_position=None)
|
44,453 |
gwcs.coordinate_frames
|
__init__
| null |
def __init__(self, axes_order=(0,), reference_frame=None, unit=None,
axes_names=None, name=None, axis_physical_types=None,
reference_position=None):
super(SpectralFrame, self).__init__(naxes=1, axes_type="SPECTRAL", axes_order=axes_order,
axes_names=axes_names, reference_frame=reference_frame,
unit=unit, name=name,
reference_position=reference_position,
axis_physical_types=axis_physical_types)
|
(self, axes_order=(0,), reference_frame=None, unit=None, axes_names=None, name=None, axis_physical_types=None, reference_position=None)
|
44,457 |
gwcs.coordinate_frames
|
coordinate_to_quantity
| null |
def coordinate_to_quantity(self, *coords):
if hasattr(coords[0], 'unit'):
return coords[0]
return coords[0] * self.unit[0]
|
(self, *coords)
|
44,458 |
gwcs.coordinate_frames
|
coordinates
| null |
def coordinates(self, *args):
# using SpectralCoord
if isinstance(args[0], coord.SpectralCoord):
return args[0].to(self.unit[0])
else:
if hasattr(args[0], 'unit'):
return coord.SpectralCoord(*args).to(self.unit[0])
else:
return coord.SpectralCoord(*args, self.unit[0])
|
(self, *args)
|
44,459 |
gwcs.wcs
|
Step
|
Represents a ``step`` in the WCS pipeline.
Parameters
----------
frame : `~gwcs.coordinate_frames.CoordinateFrame`
A gwcs coordinate frame object.
transform : `~astropy.modeling.Model` or None
A transform from this step's frame to next step's frame.
The transform of the last step should be `None`.
|
class Step:
"""
Represents a ``step`` in the WCS pipeline.
Parameters
----------
frame : `~gwcs.coordinate_frames.CoordinateFrame`
A gwcs coordinate frame object.
transform : `~astropy.modeling.Model` or None
A transform from this step's frame to next step's frame.
The transform of the last step should be `None`.
"""
def __init__(self, frame, transform=None):
self.frame = frame
self.transform = transform
@property
def frame(self):
return self._frame
@frame.setter
def frame(self, val):
if not isinstance(val, (cf.CoordinateFrame, str)):
raise TypeError('"frame" should be an instance of CoordinateFrame or a string.')
self._frame = val
@property
def transform(self):
return self._transform
@transform.setter
def transform(self, val):
if val is not None and not isinstance(val, (Model)):
raise TypeError('"transform" should be an instance of astropy.modeling.Model.')
self._transform = val
@property
def frame_name(self):
if isinstance(self.frame, str):
return self.frame
return self.frame.name
def __getitem__(self, ind):
warnings.warn("Indexing a WCS.pipeline step is deprecated. "
"Use the `frame` and `transform` attributes instead.", DeprecationWarning)
if ind not in (0, 1):
raise IndexError("Allowed inices are 0 (frame) and 1 (transform).")
if ind == 0:
return self.frame
return self.transform
def __str__(self):
return f"{self.frame_name}\t {getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__}"
def __repr__(self):
return f"Step(frame={self.frame_name}, \
transform={getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__})"
|
(frame, transform=None)
|
44,460 |
gwcs.wcs
|
__getitem__
| null |
def __getitem__(self, ind):
warnings.warn("Indexing a WCS.pipeline step is deprecated. "
"Use the `frame` and `transform` attributes instead.", DeprecationWarning)
if ind not in (0, 1):
raise IndexError("Allowed inices are 0 (frame) and 1 (transform).")
if ind == 0:
return self.frame
return self.transform
|
(self, ind)
|
44,461 |
gwcs.wcs
|
__init__
| null |
def __init__(self, frame, transform=None):
self.frame = frame
self.transform = transform
|
(self, frame, transform=None)
|
44,462 |
gwcs.wcs
|
__repr__
| null |
def __repr__(self):
return f"Step(frame={self.frame_name}, \
transform={getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__})"
|
(self)
|
44,463 |
gwcs.wcs
|
__str__
| null |
def __str__(self):
return f"{self.frame_name}\t {getattr(self.transform, 'name', 'None') or self.transform.__class__.__name__}"
|
(self)
|
44,464 |
gwcs.coordinate_frames
|
StokesFrame
|
A coordinate frame for representing Stokes polarisation states.
Parameters
----------
name : str
Name of this frame.
axes_order : tuple
A dimension in the data that corresponds to this axis.
|
class StokesFrame(CoordinateFrame):
"""
A coordinate frame for representing Stokes polarisation states.
Parameters
----------
name : str
Name of this frame.
axes_order : tuple
A dimension in the data that corresponds to this axis.
"""
def __init__(self, axes_order=(0,), axes_names=("stokes",), name=None, axis_physical_types=None):
super(StokesFrame, self).__init__(1, ["STOKES"], axes_order, name=name,
axes_names=axes_names, unit=u.one,
axis_physical_types=axis_physical_types)
@property
def _default_axis_physical_types(self):
return ("phys.polarization.stokes",)
@property
def _world_axis_object_classes(self):
return {'stokes': (
StokesCoord,
(),
{},
)}
@property
def _world_axis_object_components(self):
return [('stokes', 0, 'value')]
def coordinates(self, *args):
if isinstance(args[0], u.Quantity):
arg = args[0].value
else:
arg = args[0]
return StokesCoord(arg)
def coordinate_to_quantity(self, *coords):
if isinstance(coords[0], StokesCoord):
return coords[0].value << u.one
return coords[0]
|
(axes_order=(0,), axes_names=('stokes',), name=None, axis_physical_types=None)
|
44,465 |
gwcs.coordinate_frames
|
__init__
| null |
def __init__(self, axes_order=(0,), axes_names=("stokes",), name=None, axis_physical_types=None):
super(StokesFrame, self).__init__(1, ["STOKES"], axes_order, name=name,
axes_names=axes_names, unit=u.one,
axis_physical_types=axis_physical_types)
|
(self, axes_order=(0,), axes_names=('stokes',), name=None, axis_physical_types=None)
|
44,469 |
gwcs.coordinate_frames
|
coordinate_to_quantity
| null |
def coordinate_to_quantity(self, *coords):
if isinstance(coords[0], StokesCoord):
return coords[0].value << u.one
return coords[0]
|
(self, *coords)
|
44,470 |
gwcs.coordinate_frames
|
coordinates
| null |
def coordinates(self, *args):
if isinstance(args[0], u.Quantity):
arg = args[0].value
else:
arg = args[0]
return StokesCoord(arg)
|
(self, *args)
|
44,471 |
gwcs.coordinate_frames
|
TemporalFrame
|
A coordinate frame for time axes.
Parameters
----------
reference_frame : `~astropy.time.Time`
A Time object which holds the time scale and format.
If data is provided, it is the time zero point.
To not set a zero point for the frame initialize ``reference_frame``
with an empty list.
unit : str or `~astropy.units.Unit`
Time unit.
axes_names : str
Time axis name.
axes_order : tuple or int
A dimension in the data that corresponds to this axis.
name : str
Name for this frame.
|
class TemporalFrame(CoordinateFrame):
"""
A coordinate frame for time axes.
Parameters
----------
reference_frame : `~astropy.time.Time`
A Time object which holds the time scale and format.
If data is provided, it is the time zero point.
To not set a zero point for the frame initialize ``reference_frame``
with an empty list.
unit : str or `~astropy.units.Unit`
Time unit.
axes_names : str
Time axis name.
axes_order : tuple or int
A dimension in the data that corresponds to this axis.
name : str
Name for this frame.
"""
def __init__(self, reference_frame, unit=None, axes_order=(0,),
axes_names=None, name=None, axis_physical_types=None):
axes_names = axes_names or "{}({}; {}".format(reference_frame.format,
reference_frame.scale,
reference_frame.location)
super().__init__(naxes=1, axes_type="TIME", axes_order=axes_order,
axes_names=axes_names, reference_frame=reference_frame,
unit=unit, name=name, axis_physical_types=axis_physical_types)
self._attrs = {}
for a in self.reference_frame.info._represent_as_dict_extra_attrs:
try:
self._attrs[a] = getattr(self.reference_frame, a)
except AttributeError:
pass
@property
def _default_axis_physical_types(self):
return ("time",)
@property
def _world_axis_object_classes(self):
comp = (
time.Time,
(),
{'unit': self.unit[0], **self._attrs},
self._convert_to_time)
return {'temporal': comp}
@property
def _world_axis_object_components(self):
if isinstance(self.reference_frame.value, np.ndarray):
return [('temporal', 0, 'value')]
def offset_from_time_and_reference(time):
return (time - self.reference_frame).sec
return [('temporal', 0, offset_from_time_and_reference)]
def coordinates(self, *args):
if np.isscalar(args):
dt = args
else:
dt = args[0]
return self._convert_to_time(dt, unit=self.unit[0], **self._attrs)
def _convert_to_time(self, dt, *, unit, **kwargs):
if (not isinstance(dt, time.TimeDelta) and
isinstance(dt, time.Time) or
isinstance(self.reference_frame.value, np.ndarray)):
return time.Time(dt, **kwargs)
if not hasattr(dt, 'unit'):
dt = dt * unit
return self.reference_frame + dt
def coordinate_to_quantity(self, *coords):
if isinstance(coords[0], time.Time):
ref_value = self.reference_frame.value
if not isinstance(ref_value, np.ndarray):
return (coords[0] - self.reference_frame).to(self.unit[0])
else:
# If we can't convert to a quantity just drop the object out
# and hope the transform can cope.
return coords[0]
# Is already a quantity
elif hasattr(coords[0], 'unit'):
return coords[0]
if isinstance(coords[0], np.ndarray):
return coords[0] * self.unit[0]
else:
raise ValueError("Can not convert {} to Quantity".format(coords[0]))
|
(reference_frame, unit=None, axes_order=(0,), axes_names=None, name=None, axis_physical_types=None)
|
44,472 |
gwcs.coordinate_frames
|
__init__
| null |
def __init__(self, reference_frame, unit=None, axes_order=(0,),
axes_names=None, name=None, axis_physical_types=None):
axes_names = axes_names or "{}({}; {}".format(reference_frame.format,
reference_frame.scale,
reference_frame.location)
super().__init__(naxes=1, axes_type="TIME", axes_order=axes_order,
axes_names=axes_names, reference_frame=reference_frame,
unit=unit, name=name, axis_physical_types=axis_physical_types)
self._attrs = {}
for a in self.reference_frame.info._represent_as_dict_extra_attrs:
try:
self._attrs[a] = getattr(self.reference_frame, a)
except AttributeError:
pass
|
(self, reference_frame, unit=None, axes_order=(0,), axes_names=None, name=None, axis_physical_types=None)
|
44,475 |
gwcs.coordinate_frames
|
_convert_to_time
| null |
def _convert_to_time(self, dt, *, unit, **kwargs):
if (not isinstance(dt, time.TimeDelta) and
isinstance(dt, time.Time) or
isinstance(self.reference_frame.value, np.ndarray)):
return time.Time(dt, **kwargs)
if not hasattr(dt, 'unit'):
dt = dt * unit
return self.reference_frame + dt
|
(self, dt, *, unit, **kwargs)
|
44,477 |
gwcs.coordinate_frames
|
coordinate_to_quantity
| null |
def coordinate_to_quantity(self, *coords):
if isinstance(coords[0], time.Time):
ref_value = self.reference_frame.value
if not isinstance(ref_value, np.ndarray):
return (coords[0] - self.reference_frame).to(self.unit[0])
else:
# If we can't convert to a quantity just drop the object out
# and hope the transform can cope.
return coords[0]
# Is already a quantity
elif hasattr(coords[0], 'unit'):
return coords[0]
if isinstance(coords[0], np.ndarray):
return coords[0] * self.unit[0]
else:
raise ValueError("Can not convert {} to Quantity".format(coords[0]))
|
(self, *coords)
|
44,478 |
gwcs.coordinate_frames
|
coordinates
| null |
def coordinates(self, *args):
if np.isscalar(args):
dt = args
else:
dt = args[0]
return self._convert_to_time(dt, unit=self.unit[0], **self._attrs)
|
(self, *args)
|
44,479 |
gwcs.wcs
|
WCS
|
Basic WCS class.
Parameters
----------
forward_transform : `~astropy.modeling.Model` or a list
The transform between ``input_frame`` and ``output_frame``.
A list of (frame, transform) tuples where ``frame`` is the starting frame and
``transform`` is the transform from this frame to the next one or ``output_frame``.
The last tuple is (transform, None), where None indicates the end of the pipeline.
input_frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
A coordinates object or a string name.
output_frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
A coordinates object or a string name.
name : str
a name for this WCS
|
class WCS(GWCSAPIMixin):
"""
Basic WCS class.
Parameters
----------
forward_transform : `~astropy.modeling.Model` or a list
The transform between ``input_frame`` and ``output_frame``.
A list of (frame, transform) tuples where ``frame`` is the starting frame and
``transform`` is the transform from this frame to the next one or ``output_frame``.
The last tuple is (transform, None), where None indicates the end of the pipeline.
input_frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
A coordinates object or a string name.
output_frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
A coordinates object or a string name.
name : str
a name for this WCS
"""
def __init__(self, forward_transform=None, input_frame='detector', output_frame=None,
name=""):
#self.low_level_wcs = self
self._approx_inverse = None
self._available_frames = []
self._pipeline = []
self._name = name
self._initialize_wcs(forward_transform, input_frame, output_frame)
self._pixel_shape = None
pipe = []
for step in self._pipeline:
if isinstance(step, Step):
pipe.append(Step(step.frame, step.transform))
else:
pipe.append(Step(*step))
self._pipeline = pipe
def _initialize_wcs(self, forward_transform, input_frame, output_frame):
if forward_transform is not None:
if isinstance(forward_transform, Model):
if output_frame is None:
raise CoordinateFrameError("An output_frame must be specified "
"if forward_transform is a model.")
_input_frame, inp_frame_obj = self._get_frame_name(input_frame)
_output_frame, outp_frame_obj = self._get_frame_name(output_frame)
super(WCS, self).__setattr__(_input_frame, inp_frame_obj)
super(WCS, self).__setattr__(_output_frame, outp_frame_obj)
self._pipeline = [(input_frame, forward_transform.copy()),
(output_frame, None)]
elif isinstance(forward_transform, list):
for item in forward_transform:
if isinstance(item, Step):
name, frame_obj = self._get_frame_name(item.frame)
else:
name, frame_obj = self._get_frame_name(item[0])
super(WCS, self).__setattr__(name, frame_obj)
#self._pipeline.append((name, item[1]))
self._pipeline = forward_transform
else:
raise TypeError("Expected forward_transform to be a model or a "
"(frame, transform) list, got {0}".format(
type(forward_transform)))
else:
# Initialize a WCS without a forward_transform - allows building a WCS programmatically.
if output_frame is None:
raise CoordinateFrameError("An output_frame must be specified "
"if forward_transform is None.")
_input_frame, inp_frame_obj = self._get_frame_name(input_frame)
_output_frame, outp_frame_obj = self._get_frame_name(output_frame)
super(WCS, self).__setattr__(_input_frame, inp_frame_obj)
super(WCS, self).__setattr__(_output_frame, outp_frame_obj)
self._pipeline = [(_input_frame, None),
(_output_frame, None)]
def get_transform(self, from_frame, to_frame):
"""
Return a transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame name of object.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame name or object.
Returns
-------
transform : `~astropy.modeling.Model`
Transform between two frames.
"""
if not self._pipeline:
return None
from_ind = self._get_frame_index(from_frame)
to_ind = self._get_frame_index(to_frame)
if to_ind < from_ind:
transforms = [step.transform for step in self._pipeline[to_ind: from_ind]]
transforms = [tr.inverse for tr in transforms[::-1]]
elif to_ind == from_ind:
return None
else:
transforms = [step.transform for step in self._pipeline[from_ind: to_ind]]
return functools.reduce(lambda x, y: x | y, transforms)
def set_transform(self, from_frame, to_frame, transform):
"""
Set/replace the transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame.
transform : `~astropy.modeling.Model`
Transform between ``from_frame`` and ``to_frame``.
"""
from_name, from_obj = self._get_frame_name(from_frame)
to_name, to_obj = self._get_frame_name(to_frame)
if not self._pipeline:
if from_name != self._input_frame:
raise CoordinateFrameError(
"Expected 'from_frame' to be {0}".format(self._input_frame))
if to_frame != self._output_frame:
raise CoordinateFrameError(
"Expected 'to_frame' to be {0}".format(self._output_frame))
try:
from_ind = self._get_frame_index(from_name)
except ValueError:
raise CoordinateFrameError("Frame {0} is not in the available frames".format(from_name))
try:
to_ind = self._get_frame_index(to_name)
except ValueError:
raise CoordinateFrameError("Frame {0} is not in the available frames".format(to_name))
if from_ind + 1 != to_ind:
raise ValueError("Frames {0} and {1} are not in sequence".format(from_name, to_name))
self._pipeline[from_ind].transform = transform
@property
def forward_transform(self):
"""
Return the total forward transform - from input to output coordinate frame.
"""
if self._pipeline:
#return functools.reduce(lambda x, y: x | y, [step[1] for step in self._pipeline[: -1]])
return functools.reduce(lambda x, y: x | y, [step.transform for step in self._pipeline[:-1]])
else:
return None
@property
def backward_transform(self):
"""
Return the total backward transform if available - from output to input coordinate system.
Raises
------
NotImplementedError :
An analytical inverse does not exist.
"""
try:
backward = self.forward_transform.inverse
except NotImplementedError as err:
raise NotImplementedError("Could not construct backward transform. \n{0}".format(err))
try:
backward.inverse
except NotImplementedError: # means "hasattr" won't work
backward.inverse = self.forward_transform
return backward
def _get_frame_index(self, frame):
"""
Return the index in the pipeline where this frame is locate.
"""
if isinstance(frame, cf.CoordinateFrame):
frame = frame.name
frame_names = [step.frame if isinstance(step.frame, str) else step.frame.name for step in self._pipeline]
try:
return frame_names.index(frame)
except ValueError as e:
raise CoordinateFrameError(f"Frame {frame} is not in the available frames") from e
def _get_frame_name(self, frame):
"""
Return the name of the frame and a ``CoordinateFrame`` object.
Parameters
----------
frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame.
Returns
-------
name : str
The name of the frame
frame_obj : `~gwcs.coordinate_frames.CoordinateFrame`
Frame instance or None (if `frame` is str)
"""
if isinstance(frame, str):
name = frame
frame_obj = None
else:
name = frame.name
frame_obj = frame
return name, frame_obj
def __call__(self, *args, **kwargs):
"""
Executes the forward transform.
args : float or array-like
Inputs in the input coordinate system, separate inputs
for each dimension.
with_units : bool
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame.
Optional, default=False.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to
any of the inputs being outside the bounding_box are set
to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box
(default is np.nan).
"""
transform = self.forward_transform
if transform is None:
raise NotImplementedError("WCS.forward_transform is not implemented.")
with_units = kwargs.pop("with_units", False)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
if self.bounding_box is not None:
# Currently compound models do not attempt to combine individual model
# bounding boxes. Get the forward transform and assign the bounding_box to it
# before evaluating it. The order Model.bounding_box is reversed.
transform.bounding_box = self.bounding_box
result = transform(*args, **kwargs)
if with_units:
if self.output_frame.naxes == 1:
result = self.output_frame.coordinates(result)
else:
result = self.output_frame.coordinates(*result)
return result
def in_image(self, *args, **kwargs):
"""
This method tests if one or more of the input world coordinates are
contained within forward transformation's image and that it maps to
the domain of definition of the forward transformation.
In practical terms, this function tests
that input world coordinate(s) can be converted to input frame and that
it is within the forward transformation's ``bounding_box`` when
defined.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or
`~astropy.units.Unit` coordinates to be inverted
kwargs : dict
keyword arguments to be passed either to ``backward_transform``
(when defined) or to the iterative invert method.
Returns
-------
result : bool, numpy.ndarray
A single boolean value or an array of boolean values with `True`
indicating that the WCS footprint contains the coordinate
and `False` if input is outside the footprint.
"""
kwargs['with_bounding_box'] = True
kwargs['fill_value'] = np.nan
coords = self.invert(*args, **kwargs)
result = np.isfinite(coords)
if self.input_frame.naxes > 1:
result = np.all(result, axis=0)
if self.bounding_box is None or not np.any(result):
return result
if self.input_frame.naxes == 1:
x1, x2 = self.bounding_box.bounding_box()
if len(np.shape(args[0])) > 0:
result[result] = (coords[result] >= x1) & (coords[result] <= x2)
elif result:
result = (coords >= x1) and (coords <= x2)
else:
if len(np.shape(args[0])) > 0:
for c, (x1, x2) in zip(coords, self.bounding_box):
result[result] = (c[result] >= x1) & (c[result] <= x2)
elif result:
result = all([(c >= x1) and (c <= x2) for c, (x1, x2) in zip(coords, self.bounding_box)])
return result
def invert(self, *args, **kwargs):
"""
Invert coordinates from output frame to input frame using analytical or
user-supplied inverse. When neither analytical nor user-supplied
inverses are defined, a numerical solution will be attempted using
:py:meth:`numerical_inverse`.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
Other Parameters
----------------
kwargs : dict
Keyword arguments to be passed to :py:meth:`numerical_inverse`
(when defined) or to the iterative invert method.
Returns
-------
result : tuple or value
Returns a tuple of scalar or array values for each axis. Unless
``input_frame.naxes == 1`` when it shall return the value.
"""
with_units = kwargs.pop('with_units', False)
if not utils.isnumerical(args[0]):
args = self.output_frame.coordinate_to_quantity(*args)
if self.output_frame.naxes == 1:
args = [args]
try:
if not self.backward_transform.uses_quantity:
args = utils.get_values(self.output_frame.unit, *args)
except (NotImplementedError, KeyError):
args = utils.get_values(self.output_frame.unit, *args)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
try:
# remove iterative inverse-specific keyword arguments:
akwargs = {k: v for k, v in kwargs.items() if k not in _ITER_INV_KWARGS}
result = self.backward_transform(*args, **akwargs)
except (NotImplementedError, KeyError):
result = self.numerical_inverse(*args, **kwargs, with_units=with_units)
if with_units and self.input_frame:
if self.input_frame.naxes == 1:
return self.input_frame.coordinates(result)
else:
return self.input_frame.coordinates(*result)
else:
return result
def numerical_inverse(self, *args, tolerance=1e-5, maxiter=50, adaptive=True,
detect_divergence=True, quiet=True, with_bounding_box=True,
fill_value=np.nan, with_units=False, **kwargs):
"""
Invert coordinates from output frame to input frame using numerical
inverse.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
.. note::
This method uses a combination of vectorized fixed-point
iterations algorithm and `scipy.optimize.root`. The later is used
for input coordinates for which vectorized algorithm diverges.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
tolerance : float, optional
*Absolute tolerance* of solution. Iteration terminates when the
iterative solver estimates that the "true solution" is
within this many pixels current estimate, more
specifically, when the correction to the solution found
during the previous iteration is smaller
(in the sense of the L2 norm) than ``tolerance``.
Default ``tolerance`` is 1.0e-5.
maxiter : int, optional
Maximum number of iterations allowed to reach a solution.
Default is 50.
quiet : bool, optional
Do not throw :py:class:`NoConvergence` exceptions when
the method does not converge to a solution with the
required accuracy within a specified number of maximum
iterations set by ``maxiter`` parameter. Instead,
simply return the found solution. Default is `True`.
adaptive : bool, optional
Specifies whether to adaptively select only points that
did not converge to a solution within the required
accuracy for the next iteration. Default (`True`) is recommended.
.. note::
The :py:meth:`numerical_inverse` uses a vectorized
implementation of the method of consecutive
approximations (see ``Notes`` section below) in which it
iterates over *all* input points *regardless* until
the required accuracy has been reached for *all* input
points. In some cases it may be possible that
*almost all* points have reached the required accuracy
but there are only a few of input data points for
which additional iterations may be needed (this
depends mostly on the characteristics of the geometric
distortions for a given instrument). In this situation
it may be advantageous to set ``adaptive`` = `True` in
which case :py:meth:`numerical_inverse` will continue
iterating *only* over the points that have not yet
converged to the required accuracy.
.. note::
When ``detect_divergence`` is `True`,
:py:meth:`numerical_inverse` will automatically switch
to the adaptive algorithm once divergence has been
detected.
detect_divergence : bool, optional
Specifies whether to perform a more detailed analysis
of the convergence to a solution. Normally
:py:meth:`numerical_inverse` may not achieve the required
accuracy if either the ``tolerance`` or ``maxiter`` arguments
are too low. However, it may happen that for some
geometric distortions the conditions of convergence for
the the method of consecutive approximations used by
:py:meth:`numerical_inverse` may not be satisfied, in which
case consecutive approximations to the solution will
diverge regardless of the ``tolerance`` or ``maxiter``
settings.
When ``detect_divergence`` is `False`, these divergent
points will be detected as not having achieved the
required accuracy (without further details). In addition,
if ``adaptive`` is `False` then the algorithm will not
know that the solution (for specific points) is diverging
and will continue iterating and trying to "improve"
diverging solutions. This may result in ``NaN`` or
``Inf`` values in the return results (in addition to a
performance penalties). Even when ``detect_divergence``
is `False`, :py:meth:`numerical_inverse`, at the end of the
iterative process, will identify invalid results
(``NaN`` or ``Inf``) as "diverging" solutions and will
raise :py:class:`NoConvergence` unless the ``quiet``
parameter is set to `True`.
When ``detect_divergence`` is `True` (default),
:py:meth:`numerical_inverse` will detect points for which
current correction to the coordinates is larger than
the correction applied during the previous iteration
**if** the requested accuracy **has not yet been
achieved**. In this case, if ``adaptive`` is `True`,
these points will be excluded from further iterations and
if ``adaptive`` is `False`, :py:meth:`numerical_inverse` will
automatically switch to the adaptive algorithm. Thus, the
reported divergent solution will be the latest converging
solution computed immediately *before* divergence
has been detected.
.. note::
When accuracy has been achieved, small increases in
current corrections may be possible due to rounding
errors (when ``adaptive`` is `False`) and such
increases will be ignored.
.. note::
Based on our testing using JWST NIRCAM images, setting
``detect_divergence`` to `True` will incur about 5-10%
performance penalty with the larger penalty
corresponding to ``adaptive`` set to `True`.
Because the benefits of enabling this
feature outweigh the small performance penalty,
especially when ``adaptive`` = `False`, it is
recommended to set ``detect_divergence`` to `True`,
unless extensive testing of the distortion models for
images from specific instruments show a good stability
of the numerical method for a wide range of
coordinates (even outside the image itself).
.. note::
Indices of the diverging inverse solutions will be
reported in the ``divergent`` attribute of the
raised :py:class:`NoConvergence` exception object.
Returns
-------
result : tuple
Returns a tuple of scalar or array values for each axis.
Raises
------
NoConvergence
The iterative method did not converge to a
solution to the required accuracy within a specified
number of maximum iterations set by the ``maxiter``
parameter. To turn off this exception, set ``quiet`` to
`True`. Indices of the points for which the requested
accuracy was not achieved (if any) will be listed in the
``slow_conv`` attribute of the
raised :py:class:`NoConvergence` exception object.
See :py:class:`NoConvergence` documentation for
more details.
NotImplementedError
Numerical inverse has not been implemented for this WCS.
ValueError
Invalid argument values.
Examples
--------
>>> from astropy.utils.data import get_pkg_data_filename
>>> from gwcs import NoConvergence
>>> import asdf
>>> import numpy as np
>>> filename = get_pkg_data_filename('data/nircamwcs.asdf', package='gwcs.tests')
>>> with asdf.open(filename, copy_arrays=True, lazy_load=False, ignore_missing_extensions=True) as af:
... w = af.tree['wcs']
>>> ra, dec = w([1,2,3], [1,1,1])
>>> assert np.allclose(ra, [5.927628, 5.92757069, 5.92751337]);
>>> assert np.allclose(dec, [-72.01341247, -72.01341273, -72.013413])
>>> x, y = w.numerical_inverse(ra, dec)
>>> assert np.allclose(x, [1.00000005, 2.00000005, 3.00000006]);
>>> assert np.allclose(y, [1.00000004, 0.99999979, 1.00000015]);
>>> x, y = w.numerical_inverse(ra, dec, maxiter=3, tolerance=1.0e-10, quiet=False)
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy after 3 iterations.
>>> w.numerical_inverse(
... *w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False),
... adaptive=False,
... detect_divergence=True,
... quiet=False,
... with_bounding_box=False
... )
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy. After 4 iterations, the solution is diverging at
least for one input point.
>>> # Now try to use some diverging data:
>>> divra, divdec = w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False)
>>> assert np.allclose(divra, [5.92762673, 148.21600848, 5.92750827])
>>> assert np.allclose(divdec, [-72.01339464, -7.80968079, -72.01334172])
>>> try: # doctest: +SKIP
... x, y = w.numerical_inverse(divra, divdec, maxiter=20,
... tolerance=1.0e-4, adaptive=True,
... detect_divergence=True,
... quiet=False)
... except NoConvergence as e:
... print(f"Indices of diverging points: {e.divergent}")
... print(f"Indices of poorly converging points: {e.slow_conv}")
... print(f"Best solution:\\n{e.best_solution}")
... print(f"Achieved accuracy:\\n{e.accuracy}")
Indices of diverging points: None
Indices of poorly converging points: [1]
Best solution:
[[1.00000040e+00 1.99999841e+00]
[6.33507833e+17 3.40118820e+17]
[3.00000038e+00 4.99999841e+00]]
Achieved accuracy:
[[2.75925982e-05 1.18471543e-05]
[3.65405005e+04 1.31364188e+04]
[2.76552923e-05 1.14789013e-05]]
"""
if not utils.isnumerical(args[0]):
args = self.output_frame.coordinate_to_quantity(*args)
if self.output_frame.naxes == 1:
args = [args]
args = utils.get_values(self.output_frame.unit, *args)
args_shape = np.shape(args)
nargs = args_shape[0]
arg_dim = len(args_shape) - 1
if nargs != self.world_n_dim:
raise ValueError("Number of input coordinates is different from "
"the number of defined world coordinates in the "
f"WCS ({self.world_n_dim:d})")
if self.world_n_dim != self.pixel_n_dim:
raise NotImplementedError(
"Support for iterative inverse for transformations with "
"different number of inputs and outputs was not implemented."
)
# initial guess:
if nargs == 2 and self._approx_inverse is None:
self._calc_approx_inv(max_inv_pix_error=5, inv_degree=None)
if self._approx_inverse is None:
if self.bounding_box is None:
x0 = np.ones(self.pixel_n_dim)
else:
x0 = np.mean(self.bounding_box, axis=-1)
if arg_dim == 0:
argsi = args
if nargs == 2 and self._approx_inverse is not None:
x0 = self._approx_inverse(*argsi)
if not np.all(np.isfinite(x0)):
return [np.array(np.nan) for _ in range(nargs)]
result = tuple(self._vectorized_fixed_point(
x0, argsi,
tolerance=tolerance,
maxiter=maxiter,
adaptive=adaptive,
detect_divergence=detect_divergence,
quiet=quiet,
with_bounding_box=with_bounding_box,
fill_value=fill_value
).T.ravel().tolist())
else:
arg_shape = args_shape[1:]
nelem = np.prod(arg_shape)
args = np.reshape(args, (nargs, nelem))
if self._approx_inverse is None:
x0 = np.full((nelem, nargs), x0)
else:
x0 = np.array(self._approx_inverse(*args)).T
result = self._vectorized_fixed_point(
x0, args.T,
tolerance=tolerance,
maxiter=maxiter,
adaptive=adaptive,
detect_divergence=detect_divergence,
quiet=quiet,
with_bounding_box=with_bounding_box,
fill_value=fill_value
).T
result = tuple(np.reshape(result, args_shape))
if with_units and self.input_frame:
if self.input_frame.naxes == 1:
return self.input_frame.coordinates(result)
else:
return self.input_frame.coordinates(*result)
else:
return result
def _vectorized_fixed_point(self, pix0, world, tolerance, maxiter,
adaptive, detect_divergence, quiet,
with_bounding_box, fill_value):
# ############################################################
# # INITIALIZE ITERATIVE PROCESS: ##
# ############################################################
# make a copy of the initial approximation
pix0 = np.atleast_2d(np.array(pix0)) # 0-order solution
pix = np.array(pix0)
world0 = np.atleast_2d(np.array(world))
world = np.array(world0)
# estimate pixel scale using approximate algorithm
# from https://trs.jpl.nasa.gov/handle/2014/40409
if self.bounding_box is None:
crpix = np.ones(self.pixel_n_dim)
else:
crpix = np.mean(self.bounding_box, axis=-1)
l1, phi1 = np.deg2rad(self.__call__(*(crpix - 0.5)))
l2, phi2 = np.deg2rad(self.__call__(*(crpix + [-0.5, 0.5])))
l3, phi3 = np.deg2rad(self.__call__(*(crpix + 0.5)))
l4, phi4 = np.deg2rad(self.__call__(*(crpix + [0.5, -0.5])))
area = np.abs(0.5 * ((l4 - l2) * (np.sin(phi1) - np.sin(phi3)) +
(l1 - l3) * (np.sin(phi2) - np.sin(phi4))))
inv_pscale = 1 / np.rad2deg(np.sqrt(area))
# form equation:
def f(x):
w = np.array(self.__call__(*(x.T), with_bounding_box=False)).T
dw = np.mod(np.subtract(w, world) - 180.0, 360.0) - 180.0
return np.add(inv_pscale * dw, x)
def froot(x):
return np.mod(np.subtract(self.__call__(*x, with_bounding_box=False), worldi) - 180.0, 360.0) - 180.0
# compute correction:
def correction(pix):
p1 = f(pix)
p2 = f(p1)
d = p2 - 2.0 * p1 + pix
idx = np.where(d != 0)
corr = pix - p2
corr[idx] = np.square(p1[idx] - pix[idx]) / d[idx]
return corr
# initial iteration:
dpix = correction(pix)
# Update initial solution:
pix -= dpix
# Norm (L2) squared of the correction:
dn = np.sum(dpix * dpix, axis=1)
dnprev = dn.copy() # if adaptive else dn
tol2 = tolerance**2
# Prepare for iterative process
k = 1
ind = None
inddiv = None
# Turn off numpy runtime warnings for 'invalid' and 'over':
old_invalid = np.geterr()['invalid']
old_over = np.geterr()['over']
np.seterr(invalid='ignore', over='ignore')
# ############################################################
# # NON-ADAPTIVE ITERATIONS: ##
# ############################################################
if not adaptive:
# Fixed-point iterations:
while (np.nanmax(dn) >= tol2 and k < maxiter):
# Find correction to the previous solution:
dpix = correction(pix)
# Compute norm (L2) squared of the correction:
dn = np.sum(dpix * dpix, axis=1)
# Check for divergence (we do this in two stages
# to optimize performance for the most common
# scenario when successive approximations converge):
if detect_divergence:
divergent = (dn >= dnprev)
if np.any(divergent):
# Find solutions that have not yet converged:
slowconv = (dn >= tol2)
inddiv, = np.where(divergent & slowconv)
if inddiv.shape[0] > 0:
# Update indices of elements that
# still need correction:
conv = (dn < dnprev)
iconv = np.where(conv)
# Apply correction:
dpixgood = dpix[iconv]
pix[iconv] -= dpixgood
dpix[iconv] = dpixgood
# For the next iteration choose
# non-divergent points that have not yet
# converged to the requested accuracy:
ind, = np.where(slowconv & conv)
world = world[ind]
dnprev[ind] = dn[ind]
k += 1
# Switch to adaptive iterations:
adaptive = True
break
# Save current correction magnitudes for later:
dnprev = dn
# Apply correction:
pix -= dpix
k += 1
# ############################################################
# # ADAPTIVE ITERATIONS: ##
# ############################################################
if adaptive:
if ind is None:
ind, = np.where(np.isfinite(pix).all(axis=1))
world = world[ind]
# "Adaptive" fixed-point iterations:
while (ind.shape[0] > 0 and k < maxiter):
# Find correction to the previous solution:
dpixnew = correction(pix[ind])
# Compute norm (L2) of the correction:
dnnew = np.sum(np.square(dpixnew), axis=1)
# Bookkeeping of corrections:
dnprev[ind] = dn[ind].copy()
dn[ind] = dnnew
if detect_divergence:
# Find indices of pixels that are converging:
conv = np.logical_or(dnnew < dnprev[ind], dnnew < tol2)
if not np.all(conv):
conv = np.ones_like(dnnew, dtype=bool)
iconv = np.where(conv)
iiconv = ind[iconv]
# Apply correction:
dpixgood = dpixnew[iconv]
pix[iiconv] -= dpixgood
dpix[iiconv] = dpixgood
# Find indices of solutions that have not yet
# converged to the requested accuracy
# AND that do not diverge:
subind, = np.where((dnnew >= tol2) & conv)
else:
# Apply correction:
pix[ind] -= dpixnew
dpix[ind] = dpixnew
# Find indices of solutions that have not yet
# converged to the requested accuracy:
subind, = np.where(dnnew >= tol2)
# Choose solutions that need more iterations:
ind = ind[subind]
world = world[subind]
k += 1
# ############################################################
# # FINAL DETECTION OF INVALID, DIVERGING, ##
# # AND FAILED-TO-CONVERGE POINTS ##
# ############################################################
# Identify diverging and/or invalid points:
invalid = ((~np.all(np.isfinite(pix), axis=1)) &
(np.all(np.isfinite(world0), axis=1)))
# When detect_divergence is False, dnprev is outdated
# (it is the norm of the very first correction).
# Still better than nothing...
inddiv, = np.where(((dn >= tol2) & (dn >= dnprev)) | invalid)
if inddiv.shape[0] == 0:
inddiv = None
# If there are divergent points, attempt to find a solution using
# scipy's 'hybr' method:
if detect_divergence and inddiv is not None and inddiv.size:
bad = []
for idx in inddiv:
worldi = world0[idx]
result = optimize.root(
froot,
pix0[idx],
method='hybr',
tol=tolerance / (np.linalg.norm(pix0[idx]) + 1),
options={'maxfev': 2 * maxiter}
)
if result['success']:
pix[idx, :] = result['x']
invalid[idx] = False
else:
bad.append(idx)
if bad:
inddiv = np.array(bad, dtype=int)
else:
inddiv = None
# Identify points that did not converge within 'maxiter'
# iterations:
if k >= maxiter:
ind, = np.where((dn >= tol2) & (dn < dnprev) & (~invalid))
if ind.shape[0] == 0:
ind = None
else:
ind = None
# Restore previous numpy error settings:
np.seterr(invalid=old_invalid, over=old_over)
# ############################################################
# # RAISE EXCEPTION IF DIVERGING OR TOO SLOWLY CONVERGING ##
# # DATA POINTS HAVE BEEN DETECTED: ##
# ############################################################
if (ind is not None or inddiv is not None) and not quiet:
if inddiv is None:
raise NoConvergence(
"'WCS.numerical_inverse' failed to "
"converge to the requested accuracy after {:d} "
"iterations.".format(k), best_solution=pix,
accuracy=np.abs(dpix), niter=k,
slow_conv=ind, divergent=None)
else:
raise NoConvergence(
"'WCS.numerical_inverse' failed to "
"converge to the requested accuracy.\n"
"After {:d} iterations, the solution is diverging "
"at least for one input point."
.format(k), best_solution=pix,
accuracy=np.abs(dpix), niter=k,
slow_conv=ind, divergent=inddiv)
if with_bounding_box and self.bounding_box is not None:
# find points outside the bounding box and replace their values
# with fill_value
valid = np.logical_not(invalid)
in_bb = np.ones_like(invalid, dtype=np.bool_)
for c, (x1, x2) in zip(pix[valid].T, self.bounding_box):
in_bb[valid] &= (c >= x1) & (c <= x2)
pix[np.logical_not(in_bb)] = fill_value
return pix
def transform(self, from_frame, to_frame, *args, **kwargs):
"""
Transform positions between two frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame into which to transform.
args : float or array-like
Inputs in ``from_frame``, separate inputs for each dimension.
output_with_units : bool
If ``True`` - returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to any of the inputs being
outside the bounding_box are set to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is np.nan).
"""
transform = self.get_transform(from_frame, to_frame)
if not utils.isnumerical(args[0]):
inp_frame = getattr(self, from_frame)
args = inp_frame.coordinate_to_quantity(*args)
if not transform.uses_quantity:
args = utils.get_values(inp_frame.unit, *args)
with_units = kwargs.pop("with_units", False)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
result = transform(*args, **kwargs)
if with_units:
to_frame_name, to_frame_obj = self._get_frame_name(to_frame)
if to_frame_obj is not None:
if to_frame_obj.naxes == 1:
result = to_frame_obj.coordinates(result)
else:
result = to_frame_obj.coordinates(*result)
else:
raise TypeError("Coordinate objects could not be created because"
"frame {0} is not defined.".format(to_frame_name))
return result
@property
def available_frames(self):
"""
List all frames in this WCS object.
Returns
-------
available_frames : dict
{frame_name: frame_object or None}
"""
if self._pipeline:
#return [getattr(frame[0], "name", frame[0]) for frame in self._pipeline]
return [step.frame if isinstance(step.frame, str) else step.frame.name for step in self._pipeline ]
else:
return None
def insert_transform(self, frame, transform, after=False):
"""
Insert a transform before (default) or after a coordinate frame.
Append (or prepend) a transform to the transform connected to frame.
Parameters
----------
frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame which sets the point of insertion.
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
after : bool
If True, the new transform is inserted in the pipeline
immediately after ``frame``.
"""
name, _ = self._get_frame_name(frame)
frame_ind = self._get_frame_index(name)
if not after:
current_transform = self._pipeline[frame_ind - 1].transform
self._pipeline[frame_ind - 1].transform = current_transform | transform
else:
current_transform = self._pipeline[frame_ind].transform
self._pipeline[frame_ind].transform = transform | current_transform
def insert_frame(self, input_frame, transform, output_frame):
"""
Insert a new frame into an existing pipeline. This frame must be
anchored to a frame already in the pipeline by a transform. This
existing frame is identified solely by its name, although an entire
`~gwcs.coordinate_frames.CoordinateFrame` can be passed (e.g., the
`input_frame` or `output_frame` attribute). This frame is never
modified.
Parameters
----------
input_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at start of new transform
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
output_frame: str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at end of new transform
"""
input_name, input_frame_obj = self._get_frame_name(input_frame)
output_name, output_frame_obj = self._get_frame_name(output_frame)
try:
input_index = self._get_frame_index(input_frame)
except CoordinateFrameError:
input_index = None
if input_frame_obj is None:
raise ValueError(f"New coordinate frame {input_name} must "
"be defined")
try:
output_index = self._get_frame_index(output_frame)
except CoordinateFrameError:
output_index = None
if output_frame_obj is None:
raise ValueError(f"New coordinate frame {output_name} must "
"be defined")
new_frames = [input_index, output_index].count(None)
if new_frames == 0:
raise ValueError("Could not insert frame as both frames "
f"{input_name} and {output_name} already exist")
elif new_frames == 2:
raise ValueError("Could not insert frame as neither frame "
f"{input_name} nor {output_name} exists")
if input_index is None:
self._pipeline = (self._pipeline[:output_index] +
[Step(input_frame_obj, transform)] +
self._pipeline[output_index:])
super(WCS, self).__setattr__(input_name, input_frame_obj)
else:
split_step = self._pipeline[input_index]
self._pipeline = (self._pipeline[:input_index] +
[Step(split_step.frame, transform),
Step(output_frame_obj, split_step.transform)] +
self._pipeline[input_index + 1:])
super(WCS, self).__setattr__(output_name, output_frame_obj)
@property
def unit(self):
"""The unit of the coordinates in the output coordinate system."""
if self._pipeline:
try:
#return getattr(self, self._pipeline[-1][0].name).unit
return self._pipeline[-1].frame.unit
except AttributeError:
return None
else:
return None
@property
def output_frame(self):
"""Return the output coordinate frame."""
if self._pipeline:
frame = self._pipeline[-1].frame
if not isinstance(frame, str):
frame = frame.name
return getattr(self, frame)
else:
return None
@property
def input_frame(self):
"""Return the input coordinate frame."""
if self._pipeline:
frame = self._pipeline[0].frame
if not isinstance(frame, str):
frame = frame.name
return getattr(self, frame)
else:
return None
@property
def name(self):
"""Return the name for this WCS."""
return self._name
@name.setter
def name(self, value):
"""Set the name for the WCS."""
self._name = value
@property
def pipeline(self):
"""Return the pipeline structure."""
return self._pipeline
@property
def bounding_box(self):
"""
Return the range of acceptable values for each input axis.
The order of the axes is `~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
"""
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
try:
bb = transform_0.bounding_box
except NotImplementedError:
return None
return bb
@bounding_box.setter
def bounding_box(self, value):
"""
Set the range of acceptable values for each input axis.
The order of the axes is `~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two inputs and axes_order(0, 1) the bounding box is ((xlow, xhigh), (ylow, yhigh)).
Parameters
----------
value : tuple or None
Tuple of tuples with ("low", high") values for the range.
"""
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
if value is None:
transform_0.bounding_box = value
else:
try:
# Make sure the dimensions of the new bbox are correct.
if isinstance(value, CompoundBoundingBox):
bbox = CompoundBoundingBox.validate(transform_0, value, order='F')
else:
bbox = Bbox.validate(transform_0, value, order='F')
except Exception:
raise
transform_0.bounding_box = bbox
self.set_transform(frames[0], frames[1], transform_0)
def attach_compound_bounding_box(self, cbbox, selector_args):
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
self.bounding_box = CompoundBoundingBox.validate(transform_0, cbbox, selector_args=selector_args,
order='F')
def _get_axes_indices(self):
try:
axes_ind = np.argsort(self.input_frame.axes_order)
except AttributeError:
# the case of a frame being a string
axes_ind = np.arange(self.forward_transform.n_inputs)
return axes_ind
def __str__(self):
from astropy.table import Table
col1 = [step.frame for step in self._pipeline]
col2 = []
for item in self._pipeline[: -1]:
model = item.transform
if model is None:
col2.append(None)
elif model.name is not None:
col2.append(model.name)
else:
col2.append(model.__class__.__name__)
col2.append(None)
t = Table([col1, col2], names=['From', 'Transform'])
return str(t)
def __repr__(self):
fmt = "<WCS(output_frame={0}, input_frame={1}, forward_transform={2})>".format(
self.output_frame, self.input_frame, self.forward_transform)
return fmt
def footprint(self, bounding_box=None, center=False, axis_type="all"):
"""
Return the footprint in world coordinates.
Parameters
----------
bounding_box : tuple of floats: (start, stop)
``prop: bounding_box``
center : bool
If `True` use the center of the pixel, otherwise use the corner.
axis_type : str
A supported ``output_frame.axes_type`` or ``"all"`` (default).
One of [``'spatial'``, ``'spectral'``, ``'temporal'``] or a custom type.
Returns
-------
coord : ndarray
Array of coordinates in the output_frame mapping
corners to the output frame. For spatial coordinates the order
is clockwise, starting from the bottom left corner.
"""
def _order_clockwise(v):
return np.asarray([[v[0][0], v[1][0]], [v[0][0], v[1][1]],
[v[0][1], v[1][1]], [v[0][1], v[1][0]]]).T
if bounding_box is None:
if self.bounding_box is None:
raise TypeError("Need a valid bounding_box to compute the footprint.")
bb = self.bounding_box
else:
bb = bounding_box
all_spatial = all([t.lower() == "spatial" for t in self.output_frame.axes_type])
if all_spatial:
vertices = _order_clockwise(bb)
else:
vertices = np.array(list(itertools.product(*bb))).T
if center:
vertices = utils._toindex(vertices)
result = np.asarray(self.__call__(*vertices, **{'with_bounding_box': False}))
axis_type = axis_type.lower()
if axis_type == 'spatial' and all_spatial:
return result.T
if axis_type != "all":
axtyp_ind = np.array([t.lower() for t in self.output_frame.axes_type]) == axis_type
if not axtyp_ind.any():
raise ValueError('This WCS does not have axis of type "{}".'.format(axis_type))
result = np.asarray([(r.min(), r.max()) for r in result[axtyp_ind]])
if axis_type == "spatial":
result = _order_clockwise(result)
else:
result.sort()
result = np.squeeze(result)
return result.T
def fix_inputs(self, fixed):
"""
Return a new unique WCS by fixing inputs to constant values.
Parameters
----------
fixed : dict
Keyword arguments with fixed values corresponding to ``self.selector``.
Returns
-------
new_wcs : `WCS`
A new unique WCS corresponding to the values in ``fixed``.
Examples
--------
>>> w = WCS(pipeline, selector={"spectral_order": [1, 2]}) # doctest: +SKIP
>>> new_wcs = w.set_inputs(spectral_order=2) # doctest: +SKIP
>>> new_wcs.inputs # doctest: +SKIP
("x", "y")
"""
new_pipeline = []
step0 = self.pipeline[0]
new_transform = fix_inputs(step0[1], fixed)
new_pipeline.append((step0[0], new_transform))
new_pipeline.extend(self.pipeline[1:])
return self.__class__(new_pipeline)
def to_fits_sip(self, bounding_box=None, max_pix_error=0.25, degree=None,
max_inv_pix_error=0.25, inv_degree=None,
npoints=32, crpix=None, projection='TAN',
verbose=False):
"""
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Parameters
----------
bounding_box : tuple, optional
A pair of tuples, each consisting of two numbers
Represents the range of pixel values in both dimensions
((xmin, xmax), (ymin, ymax))
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale. Ignored when ``degree`` is an integer or
a list with a single degree.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated. Ignored when
``degree`` is an integer or a list with a single degree.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS \
<https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/\
reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
verbose : bool, optional
Print progress of fits.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
Notes
-----
Use of this requires a judicious choice of required accuracies.
Attempts to use higher degrees (~7 or higher) will typically fail due
to floating point problems that arise with high powers.
"""
_, _, celestial_group = self._separable_groups(detect_celestial=True)
if celestial_group is None:
raise ValueError("The to_fits_sip requires an output celestial frame.")
hdr = self._to_fits_sip(
celestial_group=celestial_group,
keep_axis_position=False,
bounding_box=bounding_box,
max_pix_error=max_pix_error,
degree=degree,
max_inv_pix_error=max_inv_pix_error,
inv_degree=inv_degree,
npoints=npoints,
crpix=crpix,
projection=projection,
matrix_type='CD',
verbose=verbose
)
return hdr
def _to_fits_sip(self, celestial_group, keep_axis_position,
bounding_box, max_pix_error, degree,
max_inv_pix_error, inv_degree,
npoints, crpix, projection, matrix_type,
verbose):
r"""
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Below we describe only parameters additional to the ones explained for
`to_fits_sip`.
Other Parameters
----------------
frame : gwcs.coordinate_frames.CelestialFrame
A celestial frame.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes to be represented using standard
image FITS WCS and maybe ``-SIP`` polynomials.
keep_axis_position : bool
This parameter controls whether to keep/preserve output axes
indices in this WCS object when creating FITS WCS and create a FITS
header with ``CTYPE`` axes indices preserved from the ``frame``
object or whether to reset the indices of output celestial axes
to 1 and 2 with ``CTYPE1``, ``CTYPE2``. Default is `False`.
.. warning::
Returned header will have both ``NAXIS`` and ``WCSAXES`` set
to 2. If ``max(axes_mapping) > 2`` this will lead to an invalid
WCS. It is caller's responsibility to adjust NAXIS to a valid
value.
.. note::
The ``lon``/``lat`` order is still preserved regardless of this
setting.
matrix_type : {'CD', 'PC-CDELT1', 'PC-SUM1', 'PC-DET1', 'PC-SCALE'}
Specifies formalism (``PC`` or ``CD``) to be used for the linear
transformation matrix and normalization for the ``PC`` matrix
*when non-linear polynomial terms are not required to achieve
requested accuracy*.
.. note:: ``CD`` matrix is always used when requested SIP
approximation accuracy requires non-linear terms (when
``CTYPE`` ends in ``-SIP``). This parameter is ignored when
non-linear polynomial terms are used.
- ``'CD'``: use ``CD`` matrix;
- ``'PC-CDELT1'``: set ``PC=CD`` and ``CDELTi=1``. This is the
behavior of `~astropy.wcs.WCS.to_header` method;
- ``'PC-SUM1'``: normalize ``PC`` matrix such that sum
of its squared elements is 1: :math:`\Sigma PC_{ij}^2=1`;
- ``'PC-DET1'``: normalize ``PC`` matrix such that :math:`|\det(PC)|=1`;
- ``'PC-SCALE'``: normalize ``PC`` matrix such that ``CDELTi``
are estimates of the linear pixel scales.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
"""
if isinstance(matrix_type, str):
matrix_type = matrix_type.upper()
if matrix_type not in ['CD', 'PC-CDELT1', 'PC-SUM1', 'PC-DET1', 'PC-SCALE']:
raise ValueError(f"Unsupported 'matrix_type' value: {repr(matrix_type)}.")
if npoints < 8:
raise ValueError("Number of sampling points is too small. 'npoints' must be >= 8.")
if isinstance(projection, str):
projection = projection.upper()
try:
sky2pix_proj = getattr(projections, f'Sky2Pix_{projection}')(name=projection)
except AttributeError:
raise ValueError("Unsupported FITS WCS sky projection: {projection}")
elif isinstance(projection, projections.Sky2PixProjection):
sky2pix_proj = projection
projection = projection.name
if not projection or not isinstance(projection, str) or len(projection) != 3:
raise ValueError("Unsupported FITS WCS sky projection: {sky2pix_proj}")
try:
getattr(projections, f'Sky2Pix_{projection}')()
except AttributeError:
raise ValueError("Unsupported FITS WCS sky projection: {projection}")
else:
raise TypeError(
"'projection' must be either a FITS WCS string projection code "
"or an instance of astropy.modeling.projections.Pix2SkyProjection.")
frame = celestial_group[0].frame
lon_axis = frame.axes_order[0]
lat_axis = frame.axes_order[1]
# identify input axes:
input_axes = []
for wax in celestial_group:
input_axes.extend(wax.input_axes)
input_axes = sorted(set(input_axes))
if len(input_axes) != 2:
raise ValueError("Only CelestialFrame that correspond to two "
"input axes are supported.")
# Axis number for FITS axes.
# iax? - image axes; nlon, nlat - celestial axes:
if keep_axis_position:
nlon = lon_axis + 1
nlat = lat_axis + 1
iax1, iax2 = (i + 1 for i in input_axes)
else:
nlon, nlat = (1, 2) if lon_axis < lat_axis else (2, 1)
iax1 = 1
iax2 = 2
# Determine reference points.
if bounding_box is None and self.bounding_box is None:
raise ValueError("A bounding_box is needed to proceed.")
if bounding_box is None:
bounding_box = self.bounding_box
bb_center = np.mean(bounding_box, axis=1)
fixi_dict = {
k: bb_center[k] for k in set(range(self.pixel_n_dim)).difference(input_axes)
}
# transform = fix_inputs(self.forward_transform, fixi_dict)
# This is a workaround to the bug in https://github.com/astropy/astropy/issues/11360
# Once that bug is fixed, the code below can be replaced with fix_inputs
# statement commented out immediately above.
transform = _fix_transform_inputs(self.forward_transform, fixi_dict)
transform = transform | Mapping((lon_axis, lat_axis),
n_inputs=self.forward_transform.n_outputs)
(xmin, xmax) = bounding_box[input_axes[0]]
(ymin, ymax) = bounding_box[input_axes[1]]
# 0-based crpix:
if crpix is None:
crpix1 = round(bb_center[input_axes[0]], 1)
crpix2 = round(bb_center[input_axes[1]], 1)
else:
crpix1 = crpix[0] - 1
crpix2 = crpix[1] - 1
# check that the bounding box has some reasonable size:
if (xmax - xmin) < 1 or (ymax - ymin) < 1:
raise ValueError("Bounding box is too small for fitting a SIP polynomial")
lon, lat = transform(crpix1, crpix2)
# Now rotate to native system and deproject. Recall that transform
# expects pixels in the original coordinate system, but the SIP
# transform is relative to crpix coordinates, thus the initial shift.
ntransform = ((Shift(crpix1) & Shift(crpix2)) | transform
| RotateCelestial2Native(lon, lat, 180)
| sky2pix_proj)
# standard sampling:
u, v = _make_sampling_grid(
npoints,
tuple(bounding_box[k] for k in input_axes),
crpix=[crpix1, crpix2]
)
undist_x, undist_y = ntransform(u, v)
# Double sampling to check if sampling is sufficient.
ud, vd = _make_sampling_grid(
2 * npoints,
tuple(bounding_box[k] for k in input_axes),
crpix=[crpix1, crpix2]
)
undist_xd, undist_yd = ntransform(ud, vd)
# Determine approximate pixel scale in order to compute error threshold
# from the specified pixel error. Computed at the center of the array.
x0, y0 = ntransform(0, 0)
xx, xy = ntransform(1, 0)
yx, yy = ntransform(0, 1)
pixarea = np.abs((xx - x0) * (yy - y0) - (xy - y0) * (yx - x0))
plate_scale = np.sqrt(pixarea)
# The fitting section.
if verbose:
print("\nFitting forward SIP ...")
fit_poly_x, fit_poly_y, max_resid = _fit_2D_poly(
degree, max_pix_error, plate_scale,
u, v, undist_x, undist_y,
ud, vd, undist_xd, undist_yd,
verbose=verbose
)
# The following is necessary to put the fit into the SIP formalism.
cdmat, sip_poly_x, sip_poly_y = _reform_poly_coefficients(fit_poly_x, fit_poly_y)
# cdmat = np.array([[fit_poly_x.c1_0.value, fit_poly_x.c0_1.value],
# [fit_poly_y.c1_0.value, fit_poly_y.c0_1.value]])
det = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0]
U = ( cdmat[1][1] * undist_x - cdmat[0][1] * undist_y) / det
V = (-cdmat[1][0] * undist_x + cdmat[0][0] * undist_y) / det
detd = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0]
Ud = ( cdmat[1][1] * undist_xd - cdmat[0][1] * undist_yd) / detd
Vd = (-cdmat[1][0] * undist_xd + cdmat[0][0] * undist_yd) / detd
if max_inv_pix_error:
if verbose:
print("\nFitting inverse SIP ...")
fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly(
inv_degree,
max_inv_pix_error, 1,
U, V, u-U, v-V,
Ud, Vd, ud-Ud, vd-Vd,
verbose=verbose
)
# create header with WCS info:
w = celestial_frame_to_wcs(frame.reference_frame, projection=projection)
w.wcs.crval = [lon, lat]
w.wcs.crpix = [crpix1 + 1, crpix2 + 1]
w.wcs.pc = cdmat if nlon < nlat else cdmat[::-1]
w.wcs.set()
hdr = w.to_header(True)
# data array info:
hdr.insert(0, ('NAXIS', 2, 'number of array dimensions'))
hdr.insert(1, (f'NAXIS{iax1:d}', int(xmax) + 1))
hdr.insert(2, (f'NAXIS{iax2:d}', int(ymax) + 1))
assert len(hdr['NAXIS*']) == 3
# list of celestial axes related keywords:
cel_kwd = ['CRVAL', 'CTYPE', 'CUNIT']
# Add SIP info:
if fit_poly_x.degree > 1:
mat_kind = 'CD'
# CDELT is not used with CD matrix (PC->CD later):
del hdr['CDELT?']
hdr['CTYPE1'] = hdr['CTYPE1'].strip() + '-SIP'
hdr['CTYPE2'] = hdr['CTYPE2'].strip() + '-SIP'
hdr['A_ORDER'] = fit_poly_x.degree
hdr['B_ORDER'] = fit_poly_x.degree
_store_2D_coefficients(hdr, sip_poly_x, 'A')
_store_2D_coefficients(hdr, sip_poly_y, 'B')
hdr['sipmxerr'] = (max_resid, 'Max diff from GWCS (equiv pix).')
if max_inv_pix_error:
hdr['AP_ORDER'] = fit_inv_poly_u.degree
hdr['BP_ORDER'] = fit_inv_poly_u.degree
_store_2D_coefficients(hdr, fit_inv_poly_u, 'AP', keeplinear=True)
_store_2D_coefficients(hdr, fit_inv_poly_v, 'BP', keeplinear=True)
hdr['sipiverr'] = (max_inv_resid, 'Max diff for inverse (pixels)')
else:
if matrix_type.startswith('PC'):
mat_kind = 'PC'
cel_kwd.append('CDELT')
if matrix_type == 'PC-CDELT1':
cdelt = [1.0, 1.0]
elif matrix_type == 'PC-SUM1':
norm = np.sqrt(np.sum(w.wcs.pc**2))
cdelt = [norm, norm]
elif matrix_type == 'PC-DET1':
det_pc = np.linalg.det(w.wcs.pc)
norm = np.sqrt(np.abs(det_pc))
cdelt = [norm, np.sign(det_pc) * norm]
elif matrix_type == 'PC-SCALE':
cdelt = proj_plane_pixel_scales(w)
for i in range(1, 3):
s = cdelt[i - 1]
hdr[f'CDELT{i}'] = s
for j in range(1, 3):
pc_kwd = f'PC{i}_{j}'
if pc_kwd in hdr:
hdr[pc_kwd] = w.wcs.pc[i - 1, j - 1] / s
else:
mat_kind = 'CD'
del hdr['CDELT?']
hdr['sipmxerr'] = (max_resid, 'Max diff from GWCS (equiv pix).')
# Construct CD matrix while remapping input axes.
# We do not update comments to typical comments for CD matrix elements
# (such as 'partial of second axis coordinate w.r.t. y'), because
# when input frame has number of axes > 2, then imaging
# axes arbitrary.
old_nlon, old_nlat = (1, 2) if nlon < nlat else (2, 1)
# Remap input axes (CRPIX) and output axes-related parameters
# (CRVAL, CUNIT, CTYPE, CD/PC). This has to be done in two steps to avoid
# name conflicts (i.e., swapping CRPIX1<->CRPIX2).
# remap input axes:
axis_rename = {}
if iax1 != 1:
axis_rename['CRPIX1'] = f'CRPIX{iax1}'
if iax2 != 2:
axis_rename['CRPIX2'] = f'CRPIX{iax2}'
# CP/PC matrix:
axis_rename[f'PC{old_nlon}_1'] = f'{mat_kind}{nlon}_{iax1}'
axis_rename[f'PC{old_nlon}_2'] = f'{mat_kind}{nlon}_{iax2}'
axis_rename[f'PC{old_nlat}_1'] = f'{mat_kind}{nlat}_{iax1}'
axis_rename[f'PC{old_nlat}_2'] = f'{mat_kind}{nlat}_{iax2}'
# remap celestial axes keywords:
for kwd in cel_kwd:
for iold, inew in [(1, nlon), (2, nlat)]:
if iold != inew:
axis_rename[f'{kwd:s}{iold:d}'] = f'{kwd:s}{inew:d}'
# construct new header cards with remapped axes:
new_cards = []
for c in hdr.cards:
if c[0] in axis_rename:
c = fits.Card(keyword=axis_rename[c.keyword], value=c.value, comment=c.comment)
new_cards.append(c)
hdr = fits.Header(new_cards)
hdr['WCSAXES'] = 2
hdr.insert('WCSAXES', ('WCSNAME', f'{self.output_frame.name}'), after=True)
# for PC matrix formalism, set diagonal elements to 0 if necessary
# (by default, in PC formalism, diagonal matrix elements by default
# are 0):
if mat_kind == 'PC':
if nlon not in [iax1, iax2]:
hdr.insert(
f'{mat_kind}{nlon}_{iax2}',
(f'{mat_kind}{nlon}_{nlon}', 0.0,
'Coordinate transformation matrix element')
)
if nlat not in [iax1, iax2]:
hdr.insert(
f'{mat_kind}{nlat}_{iax2}',
(f'{mat_kind}{nlat}_{nlat}', 0.0,
'Coordinate transformation matrix element')
)
return hdr
def _separable_groups(self, detect_celestial):
"""
This method finds sets (groups) of separable axes - axes that are
dependent on other axes within a set/group but do not depend on
axes from other groups. In other words, axes from different
groups are separable.
Parameters
----------
detect_celestial : bool
If `True`, will return, as the third return value, the group of
celestial axes separately from all other (groups of) axes. If
no celestial frame is detected, then return value for the
celestial axes group will be set to `None`.
Returns
-------
axes_groups : list of lists of ``_WorldAxisInfo``
Each inner list represents a group of non-separable (among
themselves) axes and each axis in a group is independent of axes
in *other* groups. Each axis in a group is represented through
the `_WorldAxisInfo` class used to store relevant information about
an axis. When ``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
world_axes : list of ``_WorldAxisInfo``
A flattened version of ``axes_groups``. Even though it is not
difficult to flatten ``axes_groups``, this list is a by-product
of other checks and returned here for efficiency. When
``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes. This group is returned *only when*
``detect_celestial`` is set to `True`.
"""
def find_frame(axis_number):
for frame in frames:
if axis_number in frame.axes_order:
return frame
else:
raise RuntimeError("Encountered an output axes that does not "
"belong to any output coordinate frames.")
# use correlation matrix to find separable axes:
corr_mat = self.axis_correlation_matrix
axes_sets = [set(np.flatnonzero(r)) for r in corr_mat.T]
k = 0
while len(axes_sets) - 1 > k:
for m in range(len(axes_sets) - 1, k, -1):
if axes_sets[k].isdisjoint(axes_sets[m]):
continue
axes_sets[k] = axes_sets[k].union(axes_sets[m])
del axes_sets[m]
k += 1
# create a mapping of output axes to input/image axes groups:
mapping = {k: tuple(np.flatnonzero(r)) for k, r in enumerate(corr_mat)}
axes_groups = []
world_axes = [] # flattened version of axes_groups
input_axes = [] # all input axes
if isinstance(self.output_frame, cf.CompositeFrame):
frames = self.output_frame.frames
else:
frames = [self.output_frame]
celestial_group = None
# identify which separable group of axes belong
for s in axes_sets:
axis_info_group = [] # group of separable output axes info
# Find the frame to which the first axis in the group belongs.
# Most likely this frame will be the frame of all other axes in
# this group; if not, we will update it later.
s = sorted(s)
frame = find_frame(s[0])
celestial = (detect_celestial and len(s) == 2 and
len(frame.axes_order) == 2 and
isinstance(frame, cf.CelestialFrame))
for axno in s:
if axno not in frame.axes_order:
frame = find_frame(axno)
celestial = False # Celestial axes must belong to the same frame
# index of the axis in this frame's
fidx = frame.axes_order.index(axno)
if hasattr(frame.unit[fidx], 'get_format_name'):
cunit = frame.unit[fidx].get_format_name(u.format.Fits).upper()
else:
cunit = ''
axis_info = _WorldAxisInfo(
axis=axno,
frame=frame,
world_axis_order=self.output_frame.axes_order.index(axno),
cunit=cunit,
ctype=cf.get_ctype_from_ucd(self.world_axis_physical_types[axno]),
input_axes=mapping[axno]
)
axis_info_group.append(axis_info)
input_axes.extend(mapping[axno])
world_axes.extend(axis_info_group)
if celestial:
celestial_group = axis_info_group
else:
axes_groups.append(axis_info_group)
# sanity check:
input_axes = set(sum((ax.input_axes for ax in world_axes),
world_axes[0].input_axes.__class__()))
n_inputs = len(input_axes)
if (n_inputs != self.pixel_n_dim or
max(input_axes) + 1 != n_inputs or
min(input_axes) < 0):
raise ValueError("Input axes indices are inconsistent with the "
"forward transformation.")
if detect_celestial:
return axes_groups, world_axes, celestial_group
else:
return axes_groups, world_axes
def to_fits_tab(self, bounding_box=None, bin_ext_name='WCS-TABLE',
coord_col_name='coordinates', sampling=1):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if bounding_box is None:
if self.bounding_box is None:
raise ValueError(
"Need a valid bounding_box to compute the footprint."
)
bounding_box = self.bounding_box
else:
# validate user-supplied bounding box:
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
Bbox.validate(transform_0, bounding_box)
if self.forward_transform.n_inputs == 1:
bounding_box = [bounding_box]
if self.pixel_n_dim > self.world_n_dim:
raise RuntimeError(
"The case when the number of input axes is larger than the "
"number of output axes is not supported."
)
try:
sampling = np.broadcast_to(sampling, (self.pixel_n_dim, ))
except ValueError:
raise ValueError("Number of sampling values either must be 1 "
"or it must match the number of pixel axes.")
_, world_axes = self._separable_groups(detect_celestial=False)
hdr, bin_table_hdu = self._to_fits_tab(
hdr=None,
world_axes_group=world_axes,
use_cd=False,
bounding_box=bounding_box,
bin_ext=bin_ext_name,
coord_col_name=coord_col_name,
sampling=sampling
)
return hdr, bin_table_hdu
def to_fits(self, bounding_box=None, max_pix_error=0.25, degree=None,
max_inv_pix_error=0.25, inv_degree=None, npoints=32,
crpix=None, projection='TAN', bin_ext_name='WCS-TABLE',
coord_col_name='coordinates', sampling=1, verbose=False):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ . If WCS contains
celestial frame, PC/CD formalism will be used for the celestial axes.
.. note::
SIP distortion fitting requires that the WCS object has only two
celestial axes. When WCS does not contain celestial axes,
SIP fitting parameters (``max_pix_error``, ``degree``,
``max_inv_pix_error``, ``inv_degree``, and ``projection``)
are ignored. When a WCS, in addition to celestial
frame, contains other types of axes, SIP distortion fitting is
disabled (ony linear terms are fitted for celestial frame).
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
.. note::
When WCS object has When ``degree`` is `None` and the WCS object has
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS \
<https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/\
reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
verbose : bool, optional
Print progress of fits.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
hdulist : a list of `~astropy.io.fits.BinTableHDU`
A Python list of binary table extensions containing the coordinate
array for TAB extensions; one extension per separable axes group.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if bounding_box is None:
if self.bounding_box is None:
raise ValueError(
"Need a valid bounding_box to compute the footprint."
)
bounding_box = self.bounding_box
else:
# validate user-supplied bounding box:
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
Bbox.validate(transform_0, bounding_box)
if self.forward_transform.n_inputs == 1:
bounding_box = [bounding_box]
if self.pixel_n_dim > self.world_n_dim:
raise RuntimeError(
"The case when the number of input axes is larger than the "
"number of output axes is not supported."
)
try:
sampling = np.broadcast_to(sampling, (self.pixel_n_dim, ))
except ValueError:
raise ValueError("Number of sampling values either must be 1 "
"or it must match the number of pixel axes.")
world_axes_groups, _, celestial_group = self._separable_groups(
detect_celestial=True
)
# Find celestial axes group and treat it separately from other axes:
if celestial_group:
# if world_axes_groups is empty, then we have only celestial axes
# and so we can allow arbitrary degree for SIP. When there are
# other axes types present, issue a warning and set 'degree' to 1
# because use of SIP when world_n_dim > 2 currently is not supported by
# astropy.wcs.WCS - see https://github.com/astropy/astropy/pull/11452
if world_axes_groups and (degree is None or np.max(degree) != 2):
if degree is not None:
warnings.warn(
"SIP distortion is not supported when the number\n"
"of axes in WCS is larger than 2. Setting 'degree'\n"
"to 1 and 'max_inv_pix_error' to None."
)
degree = 1
max_inv_pix_error = None
hdr = self._to_fits_sip(
celestial_group=celestial_group,
keep_axis_position=True,
bounding_box=bounding_box,
max_pix_error=max_pix_error,
degree=degree,
max_inv_pix_error=max_inv_pix_error,
inv_degree=inv_degree,
npoints=npoints,
crpix=crpix,
projection=projection,
matrix_type='PC-CDELT1',
verbose=verbose
)
use_cd = 'A_ORDER' in hdr
else:
use_cd = False
hdr = fits.Header()
hdr['NAXIS'] = 0
hdr['WCSAXES'] = 0
# now handle non-celestial axes using -TAB convention for each
# separable axes group:
hdulist = []
for extver0, world_axes_group in enumerate(world_axes_groups):
# For each subset of separable axes call _to_fits_tab to
# convert that group to a single Bin TableHDU with a
# coordinate array for this group of axes:
hdr, bin_table_hdu = self._to_fits_tab(
hdr=hdr,
world_axes_group=world_axes_group,
use_cd=use_cd,
bounding_box=bounding_box,
bin_ext=(bin_ext_name, extver0 + 1),
coord_col_name=coord_col_name,
sampling=sampling
)
hdulist.append(bin_table_hdu)
hdr.add_comment('FITS WCS created by approximating a gWCS')
return hdr, hdulist
def _to_fits_tab(self, hdr, world_axes_group, use_cd, bounding_box,
bin_ext, coord_col_name, sampling):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Below we describe only parameters additional to the ones explained for
`to_fits_tab`.
.. warn::
For this helper function, parameters ``bounding_box`` and
``sampling`` (when provided as a tuple) are expected to have
the same length as the number of input axes in the *full* WCS
object. That is, the number of elements in ``bounding_box`` and
``sampling`` is not be affected by ``ignore_axes``.
Other Parameters
----------------
hdr : astropy.io.fits.Header, None
The first time this function is called, ``hdr`` should be set to
`None` or be an empty :py:class:`~astropy.io.fits.Header` object.
On subsequent calls, updated header from the previous iteration
should be provided.
world_axes_group : tuple of dict
A list of world axes to represent through FITS' -TAB convention.
This is a list of dictionaries with each dicti
axes_mapping : dict
A dictionary that maps output axis index to a tuple of input
axis indices. In a typical scenario of two input image axes
and two output celestial axes for a FITS-like WCS,
this dictionary would look like ``{0: (0, 1), 1: (0, 1)}``
with the two non-separable input axes.
fix_axes : dict
A dictionary containing as keys image axes' indices to be
fixed and as values - the values to which inputs should be kept
fixed. For example, this dictionary may be used to indicate the
celestial axes that should not be included into -TAB approximation
because they will be approximated using -SIP.
use_cd : bool
When `True` - CD-matrix formalism will be used instead of the
PC-matrix formalism.
bin_ext : str, tuple of str and int
Extension name and optionally version for the
`~astropy.io.fits.BinTableHDU` HDU. When only a string extension
name is provided, extension version will be set to 1.
When ``bin_ext`` is a tuple, first element should be extension
name and the second element is a positive integer extension version
number.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
ValueError
When extension version is smaller than 1.
TypeError
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if isinstance(bin_ext, str):
bin_ext = (bin_ext, 1)
if isinstance(bounding_box, Bbox):
bounding_box = bounding_box.bounding_box(order='F')
if isinstance(bounding_box, list):
for index, bbox in enumerate(bounding_box):
if isinstance(bbox, Bbox):
bounding_box[index] = bbox.bounding_box(order='F')
# identify input axes:
input_axes = []
world_axes_idx = []
for ax in world_axes_group:
world_axes_idx.append(ax.axis)
input_axes.extend(ax.input_axes)
input_axes = sorted(set(input_axes))
n_inputs = len(input_axes)
n_outputs = len(world_axes_group)
world_axes_idx.sort()
# Create initial header and deal with non-degenerate axes
if hdr is None:
hdr = fits.Header()
hdr['NAXIS'] = n_inputs, 'number of array dimensions'
hdr['WCSAXES'] = n_outputs
hdr.insert('WCSAXES', ('WCSNAME', f'{self.output_frame.name}'), after=True)
else:
hdr['NAXIS'] += n_inputs
hdr['WCSAXES'] += n_outputs
# see what axes have been already populated in the header:
used_hdr_axes = []
for v in hdr['naxis*'].keys():
try:
used_hdr_axes.append(int(v.split('NAXIS')[1]) - 1)
except ValueError:
continue
degenerate_axis_start = max(
self.pixel_n_dim + 1,
max(used_hdr_axes) + 1 if used_hdr_axes else 1
)
# Deal with non-degenerate axes and add NAXISi to the header:
offset = hdr.index('NAXIS')
for iax in input_axes:
iiax = int(np.searchsorted(used_hdr_axes, iax))
hdr.insert(iiax + offset + 1, (f'NAXIS{iax + 1:d}', int(max(bounding_box[iiax])) + 1))
# 1D grid coordinates:
gcrds = []
cdelt = []
bb = [bounding_box[k] for k in input_axes]
for (xmin, xmax), s in zip(bb, sampling):
npix = max(2, 1 + int(np.ceil(abs((xmax - xmin) / s))))
gcrds.append(np.linspace(xmin, xmax, npix))
cdelt.append((npix - 1) / (xmax - xmin) if xmin != xmax else 1)
# In the forward transformation, select only inputs and outputs
# that we need given world_axes_group parameter:
bb_center = np.mean(bounding_box, axis=1)
fixi_dict = {
k: bb_center[k] for k in set(range(self.pixel_n_dim)).difference(input_axes)
}
transform = _fix_transform_inputs(self.forward_transform, fixi_dict)
transform = transform | Mapping(world_axes_idx,
n_inputs=self.forward_transform.n_outputs)
xyz = np.meshgrid(*gcrds[::-1], indexing='ij')[::-1]
shape = xyz[0].shape
xyz = [v.ravel() for v in xyz]
coord = np.stack(
transform(*xyz),
axis=-1
)
coord = coord.reshape(shape + (len(world_axes_group), ))
# create header with WCS info:
if hdr is None:
hdr = fits.Header()
for m, axis_info in enumerate(world_axes_group):
k = axis_info.axis
widx = world_axes_idx.index(k)
k1 = k + 1
ct = cf.get_ctype_from_ucd(self.world_axis_physical_types[k])
if len(ct) > 4:
raise ValueError("Axis type name too long.")
hdr[f'CTYPE{k1:d}'] = ct + (4 - len(ct)) * '-' + '-TAB'
hdr[f'CUNIT{k1:d}'] = self.world_axis_units[k]
hdr[f'PS{k1:d}_0'] = bin_ext[0]
hdr[f'PV{k1:d}_1'] = bin_ext[1]
hdr[f'PS{k1:d}_1'] = coord_col_name
hdr[f'PV{k1:d}_3'] = widx + 1
hdr[f'CRVAL{k1:d}'] = 1
if widx < n_inputs:
m1 = input_axes[widx] + 1
hdr[f'CRPIX{m1:d}'] = gcrds[widx][0] + 1
if use_cd:
hdr[f'CD{k1:d}_{m1:d}'] = cdelt[widx]
else:
if k1 != m1:
hdr[f'PC{k1:d}_{k1:d}'] = 0.0
hdr[f'PC{k1:d}_{m1:d}'] = 1.0
hdr[f'CDELT{k1:d}'] = cdelt[widx]
else:
m1 = degenerate_axis_start
degenerate_axis_start += 1
hdr[f'CRPIX{m1:d}'] = 1
if use_cd:
hdr[f'CD{k1:d}_{m1:d}'] = 1.0
else:
if k1 != m1:
hdr[f'PC{k1:d}_{k1:d}'] = 0.0
hdr[f'PC{k1:d}_{m1:d}'] = 1.0
hdr[f'CDELT{k1:d}'] = 1
# Uncomment 3 lines below to enable use of degenerate axes:
# hdr['NAXIS'] = hdr['NAXIS'] + 1
# naxisi_max = max(int(k[5:]) for k in hdr['naxis*'] if k[5:].strip())
# hdr.insert(f'NAXIS{naxisi_max:d}', (f'NAXIS{m1:d}', 1), after=True)
# NOTE: in this case make sure NAXIS=WCSAXES
coord = coord[None, :]
# structured array (data) for binary table HDU:
arr = np.array(
[(coord, )],
dtype=[
(coord_col_name, np.float64, coord.shape),
]
)
# create binary table HDU:
bin_table_hdu = fits.BinTableHDU(arr, name=bin_ext[0], ver=bin_ext[1])
return hdr, bin_table_hdu
def _calc_approx_inv(self, max_inv_pix_error=5, inv_degree=None, npoints=16):
"""
Compute polynomial fit for the inverse transformation to be used as
initial aproximation/guess for the iterative solution.
"""
self._approx_inverse = None
try:
# try to use analytic inverse if available:
self._approx_inverse = functools.partial(self.backward_transform,
with_bounding_box=False)
return
except (NotImplementedError, KeyError):
pass
if not isinstance(self.output_frame, cf.CelestialFrame):
# The _calc_approx_inv method only works with celestial frame transforms
return
# Determine reference points.
if self.bounding_box is None:
# A bounding_box is needed to proceed.
return
crpix = np.mean(self.bounding_box, axis=1)
crval1, crval2 = self.forward_transform(*crpix)
# Rotate to native system and deproject. Set center of the projection
# transformation to the middle of the bounding box ("image") in order
# to minimize projection effects across the entire image,
# thus the initial shift.
ntransform = ((Shift(crpix[0]) & Shift(crpix[1])) | self.forward_transform
| RotateCelestial2Native(crval1, crval2, 180)
| Sky2Pix_TAN())
# standard sampling:
u, v = _make_sampling_grid(npoints, self.bounding_box, crpix=crpix)
undist_x, undist_y = ntransform(u, v)
# Double sampling to check if sampling is sufficient.
ud, vd = _make_sampling_grid(2 * npoints, self.bounding_box, crpix=crpix)
undist_xd, undist_yd = ntransform(ud, vd)
fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly(
None,
max_inv_pix_error, 1,
undist_x, undist_y, u, v,
undist_xd, undist_yd, ud, vd,
verbose=True
)
self._approx_inverse = (RotateCelestial2Native(crval1, crval2, 180) |
Sky2Pix_TAN() | Mapping((0, 1, 0, 1)) |
(fit_inv_poly_u & fit_inv_poly_v) |
(Shift(crpix[0]) & Shift(crpix[1])))
|
(forward_transform=None, input_frame='detector', output_frame=None, name='')
|
44,480 |
gwcs.wcs
|
__call__
|
Executes the forward transform.
args : float or array-like
Inputs in the input coordinate system, separate inputs
for each dimension.
with_units : bool
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame.
Optional, default=False.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to
any of the inputs being outside the bounding_box are set
to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box
(default is np.nan).
|
def __call__(self, *args, **kwargs):
"""
Executes the forward transform.
args : float or array-like
Inputs in the input coordinate system, separate inputs
for each dimension.
with_units : bool
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame.
Optional, default=False.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to
any of the inputs being outside the bounding_box are set
to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box
(default is np.nan).
"""
transform = self.forward_transform
if transform is None:
raise NotImplementedError("WCS.forward_transform is not implemented.")
with_units = kwargs.pop("with_units", False)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
if self.bounding_box is not None:
# Currently compound models do not attempt to combine individual model
# bounding boxes. Get the forward transform and assign the bounding_box to it
# before evaluating it. The order Model.bounding_box is reversed.
transform.bounding_box = self.bounding_box
result = transform(*args, **kwargs)
if with_units:
if self.output_frame.naxes == 1:
result = self.output_frame.coordinates(result)
else:
result = self.output_frame.coordinates(*result)
return result
|
(self, *args, **kwargs)
|
44,481 |
gwcs.wcs
|
__init__
| null |
def __init__(self, forward_transform=None, input_frame='detector', output_frame=None,
name=""):
#self.low_level_wcs = self
self._approx_inverse = None
self._available_frames = []
self._pipeline = []
self._name = name
self._initialize_wcs(forward_transform, input_frame, output_frame)
self._pixel_shape = None
pipe = []
for step in self._pipeline:
if isinstance(step, Step):
pipe.append(Step(step.frame, step.transform))
else:
pipe.append(Step(*step))
self._pipeline = pipe
|
(self, forward_transform=None, input_frame='detector', output_frame=None, name='')
|
44,482 |
gwcs.wcs
|
__repr__
| null |
def __repr__(self):
fmt = "<WCS(output_frame={0}, input_frame={1}, forward_transform={2})>".format(
self.output_frame, self.input_frame, self.forward_transform)
return fmt
|
(self)
|
44,483 |
gwcs.wcs
|
__str__
| null |
def __str__(self):
from astropy.table import Table
col1 = [step.frame for step in self._pipeline]
col2 = []
for item in self._pipeline[: -1]:
model = item.transform
if model is None:
col2.append(None)
elif model.name is not None:
col2.append(model.name)
else:
col2.append(model.__class__.__name__)
col2.append(None)
t = Table([col1, col2], names=['From', 'Transform'])
return str(t)
|
(self)
|
44,484 |
gwcs.api
|
_add_units_input
| null |
def _add_units_input(self, arrays, transform, frame):
if transform.uses_quantity:
return tuple(u.Quantity(array, unit) for array, unit in zip(arrays, frame.unit))
return arrays
|
(self, arrays, transform, frame)
|
44,485 |
astropy.wcs.wcsapi.low_level_api
|
_as_mpl_axes
|
Compatibility hook for Matplotlib and WCSAxes.
With this method, one can do::
from astropy.wcs import WCS
import matplotlib.pyplot as plt
wcs = WCS('filename.fits')
fig = plt.figure()
ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=wcs)
...
and this will generate a plot with the correct WCS coordinates on the
axes.
|
def _as_mpl_axes(self):
"""Compatibility hook for Matplotlib and WCSAxes.
With this method, one can do::
from astropy.wcs import WCS
import matplotlib.pyplot as plt
wcs = WCS('filename.fits')
fig = plt.figure()
ax = fig.add_axes([0.15, 0.1, 0.8, 0.8], projection=wcs)
...
and this will generate a plot with the correct WCS coordinates on the
axes.
"""
from astropy.visualization.wcsaxes import WCSAxes
return WCSAxes, {"wcs": self}
|
(self)
|
44,486 |
gwcs.wcs
|
_calc_approx_inv
|
Compute polynomial fit for the inverse transformation to be used as
initial aproximation/guess for the iterative solution.
|
def _calc_approx_inv(self, max_inv_pix_error=5, inv_degree=None, npoints=16):
"""
Compute polynomial fit for the inverse transformation to be used as
initial aproximation/guess for the iterative solution.
"""
self._approx_inverse = None
try:
# try to use analytic inverse if available:
self._approx_inverse = functools.partial(self.backward_transform,
with_bounding_box=False)
return
except (NotImplementedError, KeyError):
pass
if not isinstance(self.output_frame, cf.CelestialFrame):
# The _calc_approx_inv method only works with celestial frame transforms
return
# Determine reference points.
if self.bounding_box is None:
# A bounding_box is needed to proceed.
return
crpix = np.mean(self.bounding_box, axis=1)
crval1, crval2 = self.forward_transform(*crpix)
# Rotate to native system and deproject. Set center of the projection
# transformation to the middle of the bounding box ("image") in order
# to minimize projection effects across the entire image,
# thus the initial shift.
ntransform = ((Shift(crpix[0]) & Shift(crpix[1])) | self.forward_transform
| RotateCelestial2Native(crval1, crval2, 180)
| Sky2Pix_TAN())
# standard sampling:
u, v = _make_sampling_grid(npoints, self.bounding_box, crpix=crpix)
undist_x, undist_y = ntransform(u, v)
# Double sampling to check if sampling is sufficient.
ud, vd = _make_sampling_grid(2 * npoints, self.bounding_box, crpix=crpix)
undist_xd, undist_yd = ntransform(ud, vd)
fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly(
None,
max_inv_pix_error, 1,
undist_x, undist_y, u, v,
undist_xd, undist_yd, ud, vd,
verbose=True
)
self._approx_inverse = (RotateCelestial2Native(crval1, crval2, 180) |
Sky2Pix_TAN() | Mapping((0, 1, 0, 1)) |
(fit_inv_poly_u & fit_inv_poly_v) |
(Shift(crpix[0]) & Shift(crpix[1])))
|
(self, max_inv_pix_error=5, inv_degree=None, npoints=16)
|
44,487 |
gwcs.wcs
|
_get_axes_indices
| null |
def _get_axes_indices(self):
try:
axes_ind = np.argsort(self.input_frame.axes_order)
except AttributeError:
# the case of a frame being a string
axes_ind = np.arange(self.forward_transform.n_inputs)
return axes_ind
|
(self)
|
44,488 |
gwcs.wcs
|
_get_frame_index
|
Return the index in the pipeline where this frame is locate.
|
def _get_frame_index(self, frame):
"""
Return the index in the pipeline where this frame is locate.
"""
if isinstance(frame, cf.CoordinateFrame):
frame = frame.name
frame_names = [step.frame if isinstance(step.frame, str) else step.frame.name for step in self._pipeline]
try:
return frame_names.index(frame)
except ValueError as e:
raise CoordinateFrameError(f"Frame {frame} is not in the available frames") from e
|
(self, frame)
|
44,489 |
gwcs.wcs
|
_get_frame_name
|
Return the name of the frame and a ``CoordinateFrame`` object.
Parameters
----------
frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame.
Returns
-------
name : str
The name of the frame
frame_obj : `~gwcs.coordinate_frames.CoordinateFrame`
Frame instance or None (if `frame` is str)
|
def _get_frame_name(self, frame):
"""
Return the name of the frame and a ``CoordinateFrame`` object.
Parameters
----------
frame : str, `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame.
Returns
-------
name : str
The name of the frame
frame_obj : `~gwcs.coordinate_frames.CoordinateFrame`
Frame instance or None (if `frame` is str)
"""
if isinstance(frame, str):
name = frame
frame_obj = None
else:
name = frame.name
frame_obj = frame
return name, frame_obj
|
(self, frame)
|
44,490 |
gwcs.wcs
|
_initialize_wcs
| null |
def _initialize_wcs(self, forward_transform, input_frame, output_frame):
if forward_transform is not None:
if isinstance(forward_transform, Model):
if output_frame is None:
raise CoordinateFrameError("An output_frame must be specified "
"if forward_transform is a model.")
_input_frame, inp_frame_obj = self._get_frame_name(input_frame)
_output_frame, outp_frame_obj = self._get_frame_name(output_frame)
super(WCS, self).__setattr__(_input_frame, inp_frame_obj)
super(WCS, self).__setattr__(_output_frame, outp_frame_obj)
self._pipeline = [(input_frame, forward_transform.copy()),
(output_frame, None)]
elif isinstance(forward_transform, list):
for item in forward_transform:
if isinstance(item, Step):
name, frame_obj = self._get_frame_name(item.frame)
else:
name, frame_obj = self._get_frame_name(item[0])
super(WCS, self).__setattr__(name, frame_obj)
#self._pipeline.append((name, item[1]))
self._pipeline = forward_transform
else:
raise TypeError("Expected forward_transform to be a model or a "
"(frame, transform) list, got {0}".format(
type(forward_transform)))
else:
# Initialize a WCS without a forward_transform - allows building a WCS programmatically.
if output_frame is None:
raise CoordinateFrameError("An output_frame must be specified "
"if forward_transform is None.")
_input_frame, inp_frame_obj = self._get_frame_name(input_frame)
_output_frame, outp_frame_obj = self._get_frame_name(output_frame)
super(WCS, self).__setattr__(_input_frame, inp_frame_obj)
super(WCS, self).__setattr__(_output_frame, outp_frame_obj)
self._pipeline = [(_input_frame, None),
(_output_frame, None)]
|
(self, forward_transform, input_frame, output_frame)
|
44,491 |
gwcs.api
|
_remove_quantity_output
| null |
def _remove_quantity_output(self, result, frame):
if self.forward_transform.uses_quantity:
if self.output_frame.naxes == 1:
result = [result]
result = tuple(r.to_value(unit) for r, unit in zip(result, frame.unit))
# If we only have one output axes, we shouldn't return a tuple.
if self.output_frame.naxes == 1 and isinstance(result, tuple):
return result[0]
return result
|
(self, result, frame)
|
44,492 |
gwcs.api
|
_sanitize_pixel_inputs
| null |
def _sanitize_pixel_inputs(self, *pixel_arrays):
pixels = []
if self.forward_transform.uses_quantity:
for i, pixel in enumerate(pixel_arrays):
if not isinstance(pixel, u.Quantity):
pixel = u.Quantity(value=pixel, unit=self.input_frame.unit[i])
pixels.append(pixel)
else:
for i, pixel in enumerate(pixel_arrays):
if isinstance(pixel, u.Quantity):
if pixel.unit != self.input_frame.unit[i]:
raise ValueError('Quantity input does not match the '
'input_frame unit.')
pixel = pixel.value
pixels.append(pixel)
return pixels
|
(self, *pixel_arrays)
|
44,493 |
gwcs.wcs
|
_separable_groups
|
This method finds sets (groups) of separable axes - axes that are
dependent on other axes within a set/group but do not depend on
axes from other groups. In other words, axes from different
groups are separable.
Parameters
----------
detect_celestial : bool
If `True`, will return, as the third return value, the group of
celestial axes separately from all other (groups of) axes. If
no celestial frame is detected, then return value for the
celestial axes group will be set to `None`.
Returns
-------
axes_groups : list of lists of ``_WorldAxisInfo``
Each inner list represents a group of non-separable (among
themselves) axes and each axis in a group is independent of axes
in *other* groups. Each axis in a group is represented through
the `_WorldAxisInfo` class used to store relevant information about
an axis. When ``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
world_axes : list of ``_WorldAxisInfo``
A flattened version of ``axes_groups``. Even though it is not
difficult to flatten ``axes_groups``, this list is a by-product
of other checks and returned here for efficiency. When
``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes. This group is returned *only when*
``detect_celestial`` is set to `True`.
|
def _separable_groups(self, detect_celestial):
"""
This method finds sets (groups) of separable axes - axes that are
dependent on other axes within a set/group but do not depend on
axes from other groups. In other words, axes from different
groups are separable.
Parameters
----------
detect_celestial : bool
If `True`, will return, as the third return value, the group of
celestial axes separately from all other (groups of) axes. If
no celestial frame is detected, then return value for the
celestial axes group will be set to `None`.
Returns
-------
axes_groups : list of lists of ``_WorldAxisInfo``
Each inner list represents a group of non-separable (among
themselves) axes and each axis in a group is independent of axes
in *other* groups. Each axis in a group is represented through
the `_WorldAxisInfo` class used to store relevant information about
an axis. When ``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
world_axes : list of ``_WorldAxisInfo``
A flattened version of ``axes_groups``. Even though it is not
difficult to flatten ``axes_groups``, this list is a by-product
of other checks and returned here for efficiency. When
``detect_celestial`` is set to `True`, celestial axes
group is not included in this list.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes. This group is returned *only when*
``detect_celestial`` is set to `True`.
"""
def find_frame(axis_number):
for frame in frames:
if axis_number in frame.axes_order:
return frame
else:
raise RuntimeError("Encountered an output axes that does not "
"belong to any output coordinate frames.")
# use correlation matrix to find separable axes:
corr_mat = self.axis_correlation_matrix
axes_sets = [set(np.flatnonzero(r)) for r in corr_mat.T]
k = 0
while len(axes_sets) - 1 > k:
for m in range(len(axes_sets) - 1, k, -1):
if axes_sets[k].isdisjoint(axes_sets[m]):
continue
axes_sets[k] = axes_sets[k].union(axes_sets[m])
del axes_sets[m]
k += 1
# create a mapping of output axes to input/image axes groups:
mapping = {k: tuple(np.flatnonzero(r)) for k, r in enumerate(corr_mat)}
axes_groups = []
world_axes = [] # flattened version of axes_groups
input_axes = [] # all input axes
if isinstance(self.output_frame, cf.CompositeFrame):
frames = self.output_frame.frames
else:
frames = [self.output_frame]
celestial_group = None
# identify which separable group of axes belong
for s in axes_sets:
axis_info_group = [] # group of separable output axes info
# Find the frame to which the first axis in the group belongs.
# Most likely this frame will be the frame of all other axes in
# this group; if not, we will update it later.
s = sorted(s)
frame = find_frame(s[0])
celestial = (detect_celestial and len(s) == 2 and
len(frame.axes_order) == 2 and
isinstance(frame, cf.CelestialFrame))
for axno in s:
if axno not in frame.axes_order:
frame = find_frame(axno)
celestial = False # Celestial axes must belong to the same frame
# index of the axis in this frame's
fidx = frame.axes_order.index(axno)
if hasattr(frame.unit[fidx], 'get_format_name'):
cunit = frame.unit[fidx].get_format_name(u.format.Fits).upper()
else:
cunit = ''
axis_info = _WorldAxisInfo(
axis=axno,
frame=frame,
world_axis_order=self.output_frame.axes_order.index(axno),
cunit=cunit,
ctype=cf.get_ctype_from_ucd(self.world_axis_physical_types[axno]),
input_axes=mapping[axno]
)
axis_info_group.append(axis_info)
input_axes.extend(mapping[axno])
world_axes.extend(axis_info_group)
if celestial:
celestial_group = axis_info_group
else:
axes_groups.append(axis_info_group)
# sanity check:
input_axes = set(sum((ax.input_axes for ax in world_axes),
world_axes[0].input_axes.__class__()))
n_inputs = len(input_axes)
if (n_inputs != self.pixel_n_dim or
max(input_axes) + 1 != n_inputs or
min(input_axes) < 0):
raise ValueError("Input axes indices are inconsistent with the "
"forward transformation.")
if detect_celestial:
return axes_groups, world_axes, celestial_group
else:
return axes_groups, world_axes
|
(self, detect_celestial)
|
44,494 |
gwcs.wcs
|
_to_fits_sip
|
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Below we describe only parameters additional to the ones explained for
`to_fits_sip`.
Other Parameters
----------------
frame : gwcs.coordinate_frames.CelestialFrame
A celestial frame.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes to be represented using standard
image FITS WCS and maybe ``-SIP`` polynomials.
keep_axis_position : bool
This parameter controls whether to keep/preserve output axes
indices in this WCS object when creating FITS WCS and create a FITS
header with ``CTYPE`` axes indices preserved from the ``frame``
object or whether to reset the indices of output celestial axes
to 1 and 2 with ``CTYPE1``, ``CTYPE2``. Default is `False`.
.. warning::
Returned header will have both ``NAXIS`` and ``WCSAXES`` set
to 2. If ``max(axes_mapping) > 2`` this will lead to an invalid
WCS. It is caller's responsibility to adjust NAXIS to a valid
value.
.. note::
The ``lon``/``lat`` order is still preserved regardless of this
setting.
matrix_type : {'CD', 'PC-CDELT1', 'PC-SUM1', 'PC-DET1', 'PC-SCALE'}
Specifies formalism (``PC`` or ``CD``) to be used for the linear
transformation matrix and normalization for the ``PC`` matrix
*when non-linear polynomial terms are not required to achieve
requested accuracy*.
.. note:: ``CD`` matrix is always used when requested SIP
approximation accuracy requires non-linear terms (when
``CTYPE`` ends in ``-SIP``). This parameter is ignored when
non-linear polynomial terms are used.
- ``'CD'``: use ``CD`` matrix;
- ``'PC-CDELT1'``: set ``PC=CD`` and ``CDELTi=1``. This is the
behavior of `~astropy.wcs.WCS.to_header` method;
- ``'PC-SUM1'``: normalize ``PC`` matrix such that sum
of its squared elements is 1: :math:`\Sigma PC_{ij}^2=1`;
- ``'PC-DET1'``: normalize ``PC`` matrix such that :math:`|\det(PC)|=1`;
- ``'PC-SCALE'``: normalize ``PC`` matrix such that ``CDELTi``
are estimates of the linear pixel scales.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
|
def _to_fits_sip(self, celestial_group, keep_axis_position,
bounding_box, max_pix_error, degree,
max_inv_pix_error, inv_degree,
npoints, crpix, projection, matrix_type,
verbose):
r"""
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Below we describe only parameters additional to the ones explained for
`to_fits_sip`.
Other Parameters
----------------
frame : gwcs.coordinate_frames.CelestialFrame
A celestial frame.
celestial_group : list of ``_WorldAxisInfo``
A group of two celestial axes to be represented using standard
image FITS WCS and maybe ``-SIP`` polynomials.
keep_axis_position : bool
This parameter controls whether to keep/preserve output axes
indices in this WCS object when creating FITS WCS and create a FITS
header with ``CTYPE`` axes indices preserved from the ``frame``
object or whether to reset the indices of output celestial axes
to 1 and 2 with ``CTYPE1``, ``CTYPE2``. Default is `False`.
.. warning::
Returned header will have both ``NAXIS`` and ``WCSAXES`` set
to 2. If ``max(axes_mapping) > 2`` this will lead to an invalid
WCS. It is caller's responsibility to adjust NAXIS to a valid
value.
.. note::
The ``lon``/``lat`` order is still preserved regardless of this
setting.
matrix_type : {'CD', 'PC-CDELT1', 'PC-SUM1', 'PC-DET1', 'PC-SCALE'}
Specifies formalism (``PC`` or ``CD``) to be used for the linear
transformation matrix and normalization for the ``PC`` matrix
*when non-linear polynomial terms are not required to achieve
requested accuracy*.
.. note:: ``CD`` matrix is always used when requested SIP
approximation accuracy requires non-linear terms (when
``CTYPE`` ends in ``-SIP``). This parameter is ignored when
non-linear polynomial terms are used.
- ``'CD'``: use ``CD`` matrix;
- ``'PC-CDELT1'``: set ``PC=CD`` and ``CDELTi=1``. This is the
behavior of `~astropy.wcs.WCS.to_header` method;
- ``'PC-SUM1'``: normalize ``PC`` matrix such that sum
of its squared elements is 1: :math:`\Sigma PC_{ij}^2=1`;
- ``'PC-DET1'``: normalize ``PC`` matrix such that :math:`|\det(PC)|=1`;
- ``'PC-SCALE'``: normalize ``PC`` matrix such that ``CDELTi``
are estimates of the linear pixel scales.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
"""
if isinstance(matrix_type, str):
matrix_type = matrix_type.upper()
if matrix_type not in ['CD', 'PC-CDELT1', 'PC-SUM1', 'PC-DET1', 'PC-SCALE']:
raise ValueError(f"Unsupported 'matrix_type' value: {repr(matrix_type)}.")
if npoints < 8:
raise ValueError("Number of sampling points is too small. 'npoints' must be >= 8.")
if isinstance(projection, str):
projection = projection.upper()
try:
sky2pix_proj = getattr(projections, f'Sky2Pix_{projection}')(name=projection)
except AttributeError:
raise ValueError("Unsupported FITS WCS sky projection: {projection}")
elif isinstance(projection, projections.Sky2PixProjection):
sky2pix_proj = projection
projection = projection.name
if not projection or not isinstance(projection, str) or len(projection) != 3:
raise ValueError("Unsupported FITS WCS sky projection: {sky2pix_proj}")
try:
getattr(projections, f'Sky2Pix_{projection}')()
except AttributeError:
raise ValueError("Unsupported FITS WCS sky projection: {projection}")
else:
raise TypeError(
"'projection' must be either a FITS WCS string projection code "
"or an instance of astropy.modeling.projections.Pix2SkyProjection.")
frame = celestial_group[0].frame
lon_axis = frame.axes_order[0]
lat_axis = frame.axes_order[1]
# identify input axes:
input_axes = []
for wax in celestial_group:
input_axes.extend(wax.input_axes)
input_axes = sorted(set(input_axes))
if len(input_axes) != 2:
raise ValueError("Only CelestialFrame that correspond to two "
"input axes are supported.")
# Axis number for FITS axes.
# iax? - image axes; nlon, nlat - celestial axes:
if keep_axis_position:
nlon = lon_axis + 1
nlat = lat_axis + 1
iax1, iax2 = (i + 1 for i in input_axes)
else:
nlon, nlat = (1, 2) if lon_axis < lat_axis else (2, 1)
iax1 = 1
iax2 = 2
# Determine reference points.
if bounding_box is None and self.bounding_box is None:
raise ValueError("A bounding_box is needed to proceed.")
if bounding_box is None:
bounding_box = self.bounding_box
bb_center = np.mean(bounding_box, axis=1)
fixi_dict = {
k: bb_center[k] for k in set(range(self.pixel_n_dim)).difference(input_axes)
}
# transform = fix_inputs(self.forward_transform, fixi_dict)
# This is a workaround to the bug in https://github.com/astropy/astropy/issues/11360
# Once that bug is fixed, the code below can be replaced with fix_inputs
# statement commented out immediately above.
transform = _fix_transform_inputs(self.forward_transform, fixi_dict)
transform = transform | Mapping((lon_axis, lat_axis),
n_inputs=self.forward_transform.n_outputs)
(xmin, xmax) = bounding_box[input_axes[0]]
(ymin, ymax) = bounding_box[input_axes[1]]
# 0-based crpix:
if crpix is None:
crpix1 = round(bb_center[input_axes[0]], 1)
crpix2 = round(bb_center[input_axes[1]], 1)
else:
crpix1 = crpix[0] - 1
crpix2 = crpix[1] - 1
# check that the bounding box has some reasonable size:
if (xmax - xmin) < 1 or (ymax - ymin) < 1:
raise ValueError("Bounding box is too small for fitting a SIP polynomial")
lon, lat = transform(crpix1, crpix2)
# Now rotate to native system and deproject. Recall that transform
# expects pixels in the original coordinate system, but the SIP
# transform is relative to crpix coordinates, thus the initial shift.
ntransform = ((Shift(crpix1) & Shift(crpix2)) | transform
| RotateCelestial2Native(lon, lat, 180)
| sky2pix_proj)
# standard sampling:
u, v = _make_sampling_grid(
npoints,
tuple(bounding_box[k] for k in input_axes),
crpix=[crpix1, crpix2]
)
undist_x, undist_y = ntransform(u, v)
# Double sampling to check if sampling is sufficient.
ud, vd = _make_sampling_grid(
2 * npoints,
tuple(bounding_box[k] for k in input_axes),
crpix=[crpix1, crpix2]
)
undist_xd, undist_yd = ntransform(ud, vd)
# Determine approximate pixel scale in order to compute error threshold
# from the specified pixel error. Computed at the center of the array.
x0, y0 = ntransform(0, 0)
xx, xy = ntransform(1, 0)
yx, yy = ntransform(0, 1)
pixarea = np.abs((xx - x0) * (yy - y0) - (xy - y0) * (yx - x0))
plate_scale = np.sqrt(pixarea)
# The fitting section.
if verbose:
print("\nFitting forward SIP ...")
fit_poly_x, fit_poly_y, max_resid = _fit_2D_poly(
degree, max_pix_error, plate_scale,
u, v, undist_x, undist_y,
ud, vd, undist_xd, undist_yd,
verbose=verbose
)
# The following is necessary to put the fit into the SIP formalism.
cdmat, sip_poly_x, sip_poly_y = _reform_poly_coefficients(fit_poly_x, fit_poly_y)
# cdmat = np.array([[fit_poly_x.c1_0.value, fit_poly_x.c0_1.value],
# [fit_poly_y.c1_0.value, fit_poly_y.c0_1.value]])
det = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0]
U = ( cdmat[1][1] * undist_x - cdmat[0][1] * undist_y) / det
V = (-cdmat[1][0] * undist_x + cdmat[0][0] * undist_y) / det
detd = cdmat[0][0] * cdmat[1][1] - cdmat[0][1] * cdmat[1][0]
Ud = ( cdmat[1][1] * undist_xd - cdmat[0][1] * undist_yd) / detd
Vd = (-cdmat[1][0] * undist_xd + cdmat[0][0] * undist_yd) / detd
if max_inv_pix_error:
if verbose:
print("\nFitting inverse SIP ...")
fit_inv_poly_u, fit_inv_poly_v, max_inv_resid = _fit_2D_poly(
inv_degree,
max_inv_pix_error, 1,
U, V, u-U, v-V,
Ud, Vd, ud-Ud, vd-Vd,
verbose=verbose
)
# create header with WCS info:
w = celestial_frame_to_wcs(frame.reference_frame, projection=projection)
w.wcs.crval = [lon, lat]
w.wcs.crpix = [crpix1 + 1, crpix2 + 1]
w.wcs.pc = cdmat if nlon < nlat else cdmat[::-1]
w.wcs.set()
hdr = w.to_header(True)
# data array info:
hdr.insert(0, ('NAXIS', 2, 'number of array dimensions'))
hdr.insert(1, (f'NAXIS{iax1:d}', int(xmax) + 1))
hdr.insert(2, (f'NAXIS{iax2:d}', int(ymax) + 1))
assert len(hdr['NAXIS*']) == 3
# list of celestial axes related keywords:
cel_kwd = ['CRVAL', 'CTYPE', 'CUNIT']
# Add SIP info:
if fit_poly_x.degree > 1:
mat_kind = 'CD'
# CDELT is not used with CD matrix (PC->CD later):
del hdr['CDELT?']
hdr['CTYPE1'] = hdr['CTYPE1'].strip() + '-SIP'
hdr['CTYPE2'] = hdr['CTYPE2'].strip() + '-SIP'
hdr['A_ORDER'] = fit_poly_x.degree
hdr['B_ORDER'] = fit_poly_x.degree
_store_2D_coefficients(hdr, sip_poly_x, 'A')
_store_2D_coefficients(hdr, sip_poly_y, 'B')
hdr['sipmxerr'] = (max_resid, 'Max diff from GWCS (equiv pix).')
if max_inv_pix_error:
hdr['AP_ORDER'] = fit_inv_poly_u.degree
hdr['BP_ORDER'] = fit_inv_poly_u.degree
_store_2D_coefficients(hdr, fit_inv_poly_u, 'AP', keeplinear=True)
_store_2D_coefficients(hdr, fit_inv_poly_v, 'BP', keeplinear=True)
hdr['sipiverr'] = (max_inv_resid, 'Max diff for inverse (pixels)')
else:
if matrix_type.startswith('PC'):
mat_kind = 'PC'
cel_kwd.append('CDELT')
if matrix_type == 'PC-CDELT1':
cdelt = [1.0, 1.0]
elif matrix_type == 'PC-SUM1':
norm = np.sqrt(np.sum(w.wcs.pc**2))
cdelt = [norm, norm]
elif matrix_type == 'PC-DET1':
det_pc = np.linalg.det(w.wcs.pc)
norm = np.sqrt(np.abs(det_pc))
cdelt = [norm, np.sign(det_pc) * norm]
elif matrix_type == 'PC-SCALE':
cdelt = proj_plane_pixel_scales(w)
for i in range(1, 3):
s = cdelt[i - 1]
hdr[f'CDELT{i}'] = s
for j in range(1, 3):
pc_kwd = f'PC{i}_{j}'
if pc_kwd in hdr:
hdr[pc_kwd] = w.wcs.pc[i - 1, j - 1] / s
else:
mat_kind = 'CD'
del hdr['CDELT?']
hdr['sipmxerr'] = (max_resid, 'Max diff from GWCS (equiv pix).')
# Construct CD matrix while remapping input axes.
# We do not update comments to typical comments for CD matrix elements
# (such as 'partial of second axis coordinate w.r.t. y'), because
# when input frame has number of axes > 2, then imaging
# axes arbitrary.
old_nlon, old_nlat = (1, 2) if nlon < nlat else (2, 1)
# Remap input axes (CRPIX) and output axes-related parameters
# (CRVAL, CUNIT, CTYPE, CD/PC). This has to be done in two steps to avoid
# name conflicts (i.e., swapping CRPIX1<->CRPIX2).
# remap input axes:
axis_rename = {}
if iax1 != 1:
axis_rename['CRPIX1'] = f'CRPIX{iax1}'
if iax2 != 2:
axis_rename['CRPIX2'] = f'CRPIX{iax2}'
# CP/PC matrix:
axis_rename[f'PC{old_nlon}_1'] = f'{mat_kind}{nlon}_{iax1}'
axis_rename[f'PC{old_nlon}_2'] = f'{mat_kind}{nlon}_{iax2}'
axis_rename[f'PC{old_nlat}_1'] = f'{mat_kind}{nlat}_{iax1}'
axis_rename[f'PC{old_nlat}_2'] = f'{mat_kind}{nlat}_{iax2}'
# remap celestial axes keywords:
for kwd in cel_kwd:
for iold, inew in [(1, nlon), (2, nlat)]:
if iold != inew:
axis_rename[f'{kwd:s}{iold:d}'] = f'{kwd:s}{inew:d}'
# construct new header cards with remapped axes:
new_cards = []
for c in hdr.cards:
if c[0] in axis_rename:
c = fits.Card(keyword=axis_rename[c.keyword], value=c.value, comment=c.comment)
new_cards.append(c)
hdr = fits.Header(new_cards)
hdr['WCSAXES'] = 2
hdr.insert('WCSAXES', ('WCSNAME', f'{self.output_frame.name}'), after=True)
# for PC matrix formalism, set diagonal elements to 0 if necessary
# (by default, in PC formalism, diagonal matrix elements by default
# are 0):
if mat_kind == 'PC':
if nlon not in [iax1, iax2]:
hdr.insert(
f'{mat_kind}{nlon}_{iax2}',
(f'{mat_kind}{nlon}_{nlon}', 0.0,
'Coordinate transformation matrix element')
)
if nlat not in [iax1, iax2]:
hdr.insert(
f'{mat_kind}{nlat}_{iax2}',
(f'{mat_kind}{nlat}_{nlat}', 0.0,
'Coordinate transformation matrix element')
)
return hdr
|
(self, celestial_group, keep_axis_position, bounding_box, max_pix_error, degree, max_inv_pix_error, inv_degree, npoints, crpix, projection, matrix_type, verbose)
|
44,495 |
gwcs.wcs
|
_to_fits_tab
|
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Below we describe only parameters additional to the ones explained for
`to_fits_tab`.
.. warn::
For this helper function, parameters ``bounding_box`` and
``sampling`` (when provided as a tuple) are expected to have
the same length as the number of input axes in the *full* WCS
object. That is, the number of elements in ``bounding_box`` and
``sampling`` is not be affected by ``ignore_axes``.
Other Parameters
----------------
hdr : astropy.io.fits.Header, None
The first time this function is called, ``hdr`` should be set to
`None` or be an empty :py:class:`~astropy.io.fits.Header` object.
On subsequent calls, updated header from the previous iteration
should be provided.
world_axes_group : tuple of dict
A list of world axes to represent through FITS' -TAB convention.
This is a list of dictionaries with each dicti
axes_mapping : dict
A dictionary that maps output axis index to a tuple of input
axis indices. In a typical scenario of two input image axes
and two output celestial axes for a FITS-like WCS,
this dictionary would look like ``{0: (0, 1), 1: (0, 1)}``
with the two non-separable input axes.
fix_axes : dict
A dictionary containing as keys image axes' indices to be
fixed and as values - the values to which inputs should be kept
fixed. For example, this dictionary may be used to indicate the
celestial axes that should not be included into -TAB approximation
because they will be approximated using -SIP.
use_cd : bool
When `True` - CD-matrix formalism will be used instead of the
PC-matrix formalism.
bin_ext : str, tuple of str and int
Extension name and optionally version for the
`~astropy.io.fits.BinTableHDU` HDU. When only a string extension
name is provided, extension version will be set to 1.
When ``bin_ext`` is a tuple, first element should be extension
name and the second element is a positive integer extension version
number.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
ValueError
When extension version is smaller than 1.
TypeError
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
|
def _to_fits_tab(self, hdr, world_axes_group, use_cd, bounding_box,
bin_ext, coord_col_name, sampling):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Below we describe only parameters additional to the ones explained for
`to_fits_tab`.
.. warn::
For this helper function, parameters ``bounding_box`` and
``sampling`` (when provided as a tuple) are expected to have
the same length as the number of input axes in the *full* WCS
object. That is, the number of elements in ``bounding_box`` and
``sampling`` is not be affected by ``ignore_axes``.
Other Parameters
----------------
hdr : astropy.io.fits.Header, None
The first time this function is called, ``hdr`` should be set to
`None` or be an empty :py:class:`~astropy.io.fits.Header` object.
On subsequent calls, updated header from the previous iteration
should be provided.
world_axes_group : tuple of dict
A list of world axes to represent through FITS' -TAB convention.
This is a list of dictionaries with each dicti
axes_mapping : dict
A dictionary that maps output axis index to a tuple of input
axis indices. In a typical scenario of two input image axes
and two output celestial axes for a FITS-like WCS,
this dictionary would look like ``{0: (0, 1), 1: (0, 1)}``
with the two non-separable input axes.
fix_axes : dict
A dictionary containing as keys image axes' indices to be
fixed and as values - the values to which inputs should be kept
fixed. For example, this dictionary may be used to indicate the
celestial axes that should not be included into -TAB approximation
because they will be approximated using -SIP.
use_cd : bool
When `True` - CD-matrix formalism will be used instead of the
PC-matrix formalism.
bin_ext : str, tuple of str and int
Extension name and optionally version for the
`~astropy.io.fits.BinTableHDU` HDU. When only a string extension
name is provided, extension version will be set to 1.
When ``bin_ext`` is a tuple, first element should be extension
name and the second element is a positive integer extension version
number.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
ValueError
When extension version is smaller than 1.
TypeError
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if isinstance(bin_ext, str):
bin_ext = (bin_ext, 1)
if isinstance(bounding_box, Bbox):
bounding_box = bounding_box.bounding_box(order='F')
if isinstance(bounding_box, list):
for index, bbox in enumerate(bounding_box):
if isinstance(bbox, Bbox):
bounding_box[index] = bbox.bounding_box(order='F')
# identify input axes:
input_axes = []
world_axes_idx = []
for ax in world_axes_group:
world_axes_idx.append(ax.axis)
input_axes.extend(ax.input_axes)
input_axes = sorted(set(input_axes))
n_inputs = len(input_axes)
n_outputs = len(world_axes_group)
world_axes_idx.sort()
# Create initial header and deal with non-degenerate axes
if hdr is None:
hdr = fits.Header()
hdr['NAXIS'] = n_inputs, 'number of array dimensions'
hdr['WCSAXES'] = n_outputs
hdr.insert('WCSAXES', ('WCSNAME', f'{self.output_frame.name}'), after=True)
else:
hdr['NAXIS'] += n_inputs
hdr['WCSAXES'] += n_outputs
# see what axes have been already populated in the header:
used_hdr_axes = []
for v in hdr['naxis*'].keys():
try:
used_hdr_axes.append(int(v.split('NAXIS')[1]) - 1)
except ValueError:
continue
degenerate_axis_start = max(
self.pixel_n_dim + 1,
max(used_hdr_axes) + 1 if used_hdr_axes else 1
)
# Deal with non-degenerate axes and add NAXISi to the header:
offset = hdr.index('NAXIS')
for iax in input_axes:
iiax = int(np.searchsorted(used_hdr_axes, iax))
hdr.insert(iiax + offset + 1, (f'NAXIS{iax + 1:d}', int(max(bounding_box[iiax])) + 1))
# 1D grid coordinates:
gcrds = []
cdelt = []
bb = [bounding_box[k] for k in input_axes]
for (xmin, xmax), s in zip(bb, sampling):
npix = max(2, 1 + int(np.ceil(abs((xmax - xmin) / s))))
gcrds.append(np.linspace(xmin, xmax, npix))
cdelt.append((npix - 1) / (xmax - xmin) if xmin != xmax else 1)
# In the forward transformation, select only inputs and outputs
# that we need given world_axes_group parameter:
bb_center = np.mean(bounding_box, axis=1)
fixi_dict = {
k: bb_center[k] for k in set(range(self.pixel_n_dim)).difference(input_axes)
}
transform = _fix_transform_inputs(self.forward_transform, fixi_dict)
transform = transform | Mapping(world_axes_idx,
n_inputs=self.forward_transform.n_outputs)
xyz = np.meshgrid(*gcrds[::-1], indexing='ij')[::-1]
shape = xyz[0].shape
xyz = [v.ravel() for v in xyz]
coord = np.stack(
transform(*xyz),
axis=-1
)
coord = coord.reshape(shape + (len(world_axes_group), ))
# create header with WCS info:
if hdr is None:
hdr = fits.Header()
for m, axis_info in enumerate(world_axes_group):
k = axis_info.axis
widx = world_axes_idx.index(k)
k1 = k + 1
ct = cf.get_ctype_from_ucd(self.world_axis_physical_types[k])
if len(ct) > 4:
raise ValueError("Axis type name too long.")
hdr[f'CTYPE{k1:d}'] = ct + (4 - len(ct)) * '-' + '-TAB'
hdr[f'CUNIT{k1:d}'] = self.world_axis_units[k]
hdr[f'PS{k1:d}_0'] = bin_ext[0]
hdr[f'PV{k1:d}_1'] = bin_ext[1]
hdr[f'PS{k1:d}_1'] = coord_col_name
hdr[f'PV{k1:d}_3'] = widx + 1
hdr[f'CRVAL{k1:d}'] = 1
if widx < n_inputs:
m1 = input_axes[widx] + 1
hdr[f'CRPIX{m1:d}'] = gcrds[widx][0] + 1
if use_cd:
hdr[f'CD{k1:d}_{m1:d}'] = cdelt[widx]
else:
if k1 != m1:
hdr[f'PC{k1:d}_{k1:d}'] = 0.0
hdr[f'PC{k1:d}_{m1:d}'] = 1.0
hdr[f'CDELT{k1:d}'] = cdelt[widx]
else:
m1 = degenerate_axis_start
degenerate_axis_start += 1
hdr[f'CRPIX{m1:d}'] = 1
if use_cd:
hdr[f'CD{k1:d}_{m1:d}'] = 1.0
else:
if k1 != m1:
hdr[f'PC{k1:d}_{k1:d}'] = 0.0
hdr[f'PC{k1:d}_{m1:d}'] = 1.0
hdr[f'CDELT{k1:d}'] = 1
# Uncomment 3 lines below to enable use of degenerate axes:
# hdr['NAXIS'] = hdr['NAXIS'] + 1
# naxisi_max = max(int(k[5:]) for k in hdr['naxis*'] if k[5:].strip())
# hdr.insert(f'NAXIS{naxisi_max:d}', (f'NAXIS{m1:d}', 1), after=True)
# NOTE: in this case make sure NAXIS=WCSAXES
coord = coord[None, :]
# structured array (data) for binary table HDU:
arr = np.array(
[(coord, )],
dtype=[
(coord_col_name, np.float64, coord.shape),
]
)
# create binary table HDU:
bin_table_hdu = fits.BinTableHDU(arr, name=bin_ext[0], ver=bin_ext[1])
return hdr, bin_table_hdu
|
(self, hdr, world_axes_group, use_cd, bounding_box, bin_ext, coord_col_name, sampling)
|
44,496 |
gwcs.wcs
|
_vectorized_fixed_point
| null |
def _vectorized_fixed_point(self, pix0, world, tolerance, maxiter,
adaptive, detect_divergence, quiet,
with_bounding_box, fill_value):
# ############################################################
# # INITIALIZE ITERATIVE PROCESS: ##
# ############################################################
# make a copy of the initial approximation
pix0 = np.atleast_2d(np.array(pix0)) # 0-order solution
pix = np.array(pix0)
world0 = np.atleast_2d(np.array(world))
world = np.array(world0)
# estimate pixel scale using approximate algorithm
# from https://trs.jpl.nasa.gov/handle/2014/40409
if self.bounding_box is None:
crpix = np.ones(self.pixel_n_dim)
else:
crpix = np.mean(self.bounding_box, axis=-1)
l1, phi1 = np.deg2rad(self.__call__(*(crpix - 0.5)))
l2, phi2 = np.deg2rad(self.__call__(*(crpix + [-0.5, 0.5])))
l3, phi3 = np.deg2rad(self.__call__(*(crpix + 0.5)))
l4, phi4 = np.deg2rad(self.__call__(*(crpix + [0.5, -0.5])))
area = np.abs(0.5 * ((l4 - l2) * (np.sin(phi1) - np.sin(phi3)) +
(l1 - l3) * (np.sin(phi2) - np.sin(phi4))))
inv_pscale = 1 / np.rad2deg(np.sqrt(area))
# form equation:
def f(x):
w = np.array(self.__call__(*(x.T), with_bounding_box=False)).T
dw = np.mod(np.subtract(w, world) - 180.0, 360.0) - 180.0
return np.add(inv_pscale * dw, x)
def froot(x):
return np.mod(np.subtract(self.__call__(*x, with_bounding_box=False), worldi) - 180.0, 360.0) - 180.0
# compute correction:
def correction(pix):
p1 = f(pix)
p2 = f(p1)
d = p2 - 2.0 * p1 + pix
idx = np.where(d != 0)
corr = pix - p2
corr[idx] = np.square(p1[idx] - pix[idx]) / d[idx]
return corr
# initial iteration:
dpix = correction(pix)
# Update initial solution:
pix -= dpix
# Norm (L2) squared of the correction:
dn = np.sum(dpix * dpix, axis=1)
dnprev = dn.copy() # if adaptive else dn
tol2 = tolerance**2
# Prepare for iterative process
k = 1
ind = None
inddiv = None
# Turn off numpy runtime warnings for 'invalid' and 'over':
old_invalid = np.geterr()['invalid']
old_over = np.geterr()['over']
np.seterr(invalid='ignore', over='ignore')
# ############################################################
# # NON-ADAPTIVE ITERATIONS: ##
# ############################################################
if not adaptive:
# Fixed-point iterations:
while (np.nanmax(dn) >= tol2 and k < maxiter):
# Find correction to the previous solution:
dpix = correction(pix)
# Compute norm (L2) squared of the correction:
dn = np.sum(dpix * dpix, axis=1)
# Check for divergence (we do this in two stages
# to optimize performance for the most common
# scenario when successive approximations converge):
if detect_divergence:
divergent = (dn >= dnprev)
if np.any(divergent):
# Find solutions that have not yet converged:
slowconv = (dn >= tol2)
inddiv, = np.where(divergent & slowconv)
if inddiv.shape[0] > 0:
# Update indices of elements that
# still need correction:
conv = (dn < dnprev)
iconv = np.where(conv)
# Apply correction:
dpixgood = dpix[iconv]
pix[iconv] -= dpixgood
dpix[iconv] = dpixgood
# For the next iteration choose
# non-divergent points that have not yet
# converged to the requested accuracy:
ind, = np.where(slowconv & conv)
world = world[ind]
dnprev[ind] = dn[ind]
k += 1
# Switch to adaptive iterations:
adaptive = True
break
# Save current correction magnitudes for later:
dnprev = dn
# Apply correction:
pix -= dpix
k += 1
# ############################################################
# # ADAPTIVE ITERATIONS: ##
# ############################################################
if adaptive:
if ind is None:
ind, = np.where(np.isfinite(pix).all(axis=1))
world = world[ind]
# "Adaptive" fixed-point iterations:
while (ind.shape[0] > 0 and k < maxiter):
# Find correction to the previous solution:
dpixnew = correction(pix[ind])
# Compute norm (L2) of the correction:
dnnew = np.sum(np.square(dpixnew), axis=1)
# Bookkeeping of corrections:
dnprev[ind] = dn[ind].copy()
dn[ind] = dnnew
if detect_divergence:
# Find indices of pixels that are converging:
conv = np.logical_or(dnnew < dnprev[ind], dnnew < tol2)
if not np.all(conv):
conv = np.ones_like(dnnew, dtype=bool)
iconv = np.where(conv)
iiconv = ind[iconv]
# Apply correction:
dpixgood = dpixnew[iconv]
pix[iiconv] -= dpixgood
dpix[iiconv] = dpixgood
# Find indices of solutions that have not yet
# converged to the requested accuracy
# AND that do not diverge:
subind, = np.where((dnnew >= tol2) & conv)
else:
# Apply correction:
pix[ind] -= dpixnew
dpix[ind] = dpixnew
# Find indices of solutions that have not yet
# converged to the requested accuracy:
subind, = np.where(dnnew >= tol2)
# Choose solutions that need more iterations:
ind = ind[subind]
world = world[subind]
k += 1
# ############################################################
# # FINAL DETECTION OF INVALID, DIVERGING, ##
# # AND FAILED-TO-CONVERGE POINTS ##
# ############################################################
# Identify diverging and/or invalid points:
invalid = ((~np.all(np.isfinite(pix), axis=1)) &
(np.all(np.isfinite(world0), axis=1)))
# When detect_divergence is False, dnprev is outdated
# (it is the norm of the very first correction).
# Still better than nothing...
inddiv, = np.where(((dn >= tol2) & (dn >= dnprev)) | invalid)
if inddiv.shape[0] == 0:
inddiv = None
# If there are divergent points, attempt to find a solution using
# scipy's 'hybr' method:
if detect_divergence and inddiv is not None and inddiv.size:
bad = []
for idx in inddiv:
worldi = world0[idx]
result = optimize.root(
froot,
pix0[idx],
method='hybr',
tol=tolerance / (np.linalg.norm(pix0[idx]) + 1),
options={'maxfev': 2 * maxiter}
)
if result['success']:
pix[idx, :] = result['x']
invalid[idx] = False
else:
bad.append(idx)
if bad:
inddiv = np.array(bad, dtype=int)
else:
inddiv = None
# Identify points that did not converge within 'maxiter'
# iterations:
if k >= maxiter:
ind, = np.where((dn >= tol2) & (dn < dnprev) & (~invalid))
if ind.shape[0] == 0:
ind = None
else:
ind = None
# Restore previous numpy error settings:
np.seterr(invalid=old_invalid, over=old_over)
# ############################################################
# # RAISE EXCEPTION IF DIVERGING OR TOO SLOWLY CONVERGING ##
# # DATA POINTS HAVE BEEN DETECTED: ##
# ############################################################
if (ind is not None or inddiv is not None) and not quiet:
if inddiv is None:
raise NoConvergence(
"'WCS.numerical_inverse' failed to "
"converge to the requested accuracy after {:d} "
"iterations.".format(k), best_solution=pix,
accuracy=np.abs(dpix), niter=k,
slow_conv=ind, divergent=None)
else:
raise NoConvergence(
"'WCS.numerical_inverse' failed to "
"converge to the requested accuracy.\n"
"After {:d} iterations, the solution is diverging "
"at least for one input point."
.format(k), best_solution=pix,
accuracy=np.abs(dpix), niter=k,
slow_conv=ind, divergent=inddiv)
if with_bounding_box and self.bounding_box is not None:
# find points outside the bounding box and replace their values
# with fill_value
valid = np.logical_not(invalid)
in_bb = np.ones_like(invalid, dtype=np.bool_)
for c, (x1, x2) in zip(pix[valid].T, self.bounding_box):
in_bb[valid] &= (c >= x1) & (c <= x2)
pix[np.logical_not(in_bb)] = fill_value
return pix
|
(self, pix0, world, tolerance, maxiter, adaptive, detect_divergence, quiet, with_bounding_box, fill_value)
|
44,497 |
gwcs.api
|
array_index_to_world
|
Convert array indices to world coordinates (represented by Astropy
objects).
|
def array_index_to_world(self, *index_arrays):
"""
Convert array indices to world coordinates (represented by Astropy
objects).
"""
pixel_arrays = index_arrays[::-1]
pixels = self._sanitize_pixel_inputs(*pixel_arrays)
return self(*pixels, with_units=True)
|
(self, *index_arrays)
|
44,498 |
gwcs.api
|
array_index_to_world_values
|
Convert array indices to world coordinates.
This is the same as `~BaseLowLevelWCS.pixel_to_world_values` except that
the indices should be given in ``(i, j)`` order, where for an image
``i`` is the row and ``j`` is the column (i.e. the opposite order to
`~BaseLowLevelWCS.pixel_to_world_values`).
|
def array_index_to_world_values(self, *index_arrays):
"""
Convert array indices to world coordinates.
This is the same as `~BaseLowLevelWCS.pixel_to_world_values` except that
the indices should be given in ``(i, j)`` order, where for an image
``i`` is the row and ``j`` is the column (i.e. the opposite order to
`~BaseLowLevelWCS.pixel_to_world_values`).
"""
pixel_arrays = index_arrays[::-1]
return self.pixel_to_world_values(*pixel_arrays)
|
(self, *index_arrays)
|
44,499 |
gwcs.wcs
|
attach_compound_bounding_box
| null |
def attach_compound_bounding_box(self, cbbox, selector_args):
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
self.bounding_box = CompoundBoundingBox.validate(transform_0, cbbox, selector_args=selector_args,
order='F')
|
(self, cbbox, selector_args)
|
44,500 |
gwcs.wcs
|
fix_inputs
|
Return a new unique WCS by fixing inputs to constant values.
Parameters
----------
fixed : dict
Keyword arguments with fixed values corresponding to ``self.selector``.
Returns
-------
new_wcs : `WCS`
A new unique WCS corresponding to the values in ``fixed``.
Examples
--------
>>> w = WCS(pipeline, selector={"spectral_order": [1, 2]}) # doctest: +SKIP
>>> new_wcs = w.set_inputs(spectral_order=2) # doctest: +SKIP
>>> new_wcs.inputs # doctest: +SKIP
("x", "y")
|
def fix_inputs(self, fixed):
"""
Return a new unique WCS by fixing inputs to constant values.
Parameters
----------
fixed : dict
Keyword arguments with fixed values corresponding to ``self.selector``.
Returns
-------
new_wcs : `WCS`
A new unique WCS corresponding to the values in ``fixed``.
Examples
--------
>>> w = WCS(pipeline, selector={"spectral_order": [1, 2]}) # doctest: +SKIP
>>> new_wcs = w.set_inputs(spectral_order=2) # doctest: +SKIP
>>> new_wcs.inputs # doctest: +SKIP
("x", "y")
"""
new_pipeline = []
step0 = self.pipeline[0]
new_transform = fix_inputs(step0[1], fixed)
new_pipeline.append((step0[0], new_transform))
new_pipeline.extend(self.pipeline[1:])
return self.__class__(new_pipeline)
|
(self, fixed)
|
44,501 |
gwcs.wcs
|
footprint
|
Return the footprint in world coordinates.
Parameters
----------
bounding_box : tuple of floats: (start, stop)
``prop: bounding_box``
center : bool
If `True` use the center of the pixel, otherwise use the corner.
axis_type : str
A supported ``output_frame.axes_type`` or ``"all"`` (default).
One of [``'spatial'``, ``'spectral'``, ``'temporal'``] or a custom type.
Returns
-------
coord : ndarray
Array of coordinates in the output_frame mapping
corners to the output frame. For spatial coordinates the order
is clockwise, starting from the bottom left corner.
|
def footprint(self, bounding_box=None, center=False, axis_type="all"):
"""
Return the footprint in world coordinates.
Parameters
----------
bounding_box : tuple of floats: (start, stop)
``prop: bounding_box``
center : bool
If `True` use the center of the pixel, otherwise use the corner.
axis_type : str
A supported ``output_frame.axes_type`` or ``"all"`` (default).
One of [``'spatial'``, ``'spectral'``, ``'temporal'``] or a custom type.
Returns
-------
coord : ndarray
Array of coordinates in the output_frame mapping
corners to the output frame. For spatial coordinates the order
is clockwise, starting from the bottom left corner.
"""
def _order_clockwise(v):
return np.asarray([[v[0][0], v[1][0]], [v[0][0], v[1][1]],
[v[0][1], v[1][1]], [v[0][1], v[1][0]]]).T
if bounding_box is None:
if self.bounding_box is None:
raise TypeError("Need a valid bounding_box to compute the footprint.")
bb = self.bounding_box
else:
bb = bounding_box
all_spatial = all([t.lower() == "spatial" for t in self.output_frame.axes_type])
if all_spatial:
vertices = _order_clockwise(bb)
else:
vertices = np.array(list(itertools.product(*bb))).T
if center:
vertices = utils._toindex(vertices)
result = np.asarray(self.__call__(*vertices, **{'with_bounding_box': False}))
axis_type = axis_type.lower()
if axis_type == 'spatial' and all_spatial:
return result.T
if axis_type != "all":
axtyp_ind = np.array([t.lower() for t in self.output_frame.axes_type]) == axis_type
if not axtyp_ind.any():
raise ValueError('This WCS does not have axis of type "{}".'.format(axis_type))
result = np.asarray([(r.min(), r.max()) for r in result[axtyp_ind]])
if axis_type == "spatial":
result = _order_clockwise(result)
else:
result.sort()
result = np.squeeze(result)
return result.T
|
(self, bounding_box=None, center=False, axis_type='all')
|
44,502 |
gwcs.wcs
|
get_transform
|
Return a transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame name of object.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame name or object.
Returns
-------
transform : `~astropy.modeling.Model`
Transform between two frames.
|
def get_transform(self, from_frame, to_frame):
"""
Return a transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame name of object.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame name or object.
Returns
-------
transform : `~astropy.modeling.Model`
Transform between two frames.
"""
if not self._pipeline:
return None
from_ind = self._get_frame_index(from_frame)
to_ind = self._get_frame_index(to_frame)
if to_ind < from_ind:
transforms = [step.transform for step in self._pipeline[to_ind: from_ind]]
transforms = [tr.inverse for tr in transforms[::-1]]
elif to_ind == from_ind:
return None
else:
transforms = [step.transform for step in self._pipeline[from_ind: to_ind]]
return functools.reduce(lambda x, y: x | y, transforms)
|
(self, from_frame, to_frame)
|
44,503 |
gwcs.wcs
|
in_image
|
This method tests if one or more of the input world coordinates are
contained within forward transformation's image and that it maps to
the domain of definition of the forward transformation.
In practical terms, this function tests
that input world coordinate(s) can be converted to input frame and that
it is within the forward transformation's ``bounding_box`` when
defined.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or
`~astropy.units.Unit` coordinates to be inverted
kwargs : dict
keyword arguments to be passed either to ``backward_transform``
(when defined) or to the iterative invert method.
Returns
-------
result : bool, numpy.ndarray
A single boolean value or an array of boolean values with `True`
indicating that the WCS footprint contains the coordinate
and `False` if input is outside the footprint.
|
def in_image(self, *args, **kwargs):
"""
This method tests if one or more of the input world coordinates are
contained within forward transformation's image and that it maps to
the domain of definition of the forward transformation.
In practical terms, this function tests
that input world coordinate(s) can be converted to input frame and that
it is within the forward transformation's ``bounding_box`` when
defined.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or
`~astropy.units.Unit` coordinates to be inverted
kwargs : dict
keyword arguments to be passed either to ``backward_transform``
(when defined) or to the iterative invert method.
Returns
-------
result : bool, numpy.ndarray
A single boolean value or an array of boolean values with `True`
indicating that the WCS footprint contains the coordinate
and `False` if input is outside the footprint.
"""
kwargs['with_bounding_box'] = True
kwargs['fill_value'] = np.nan
coords = self.invert(*args, **kwargs)
result = np.isfinite(coords)
if self.input_frame.naxes > 1:
result = np.all(result, axis=0)
if self.bounding_box is None or not np.any(result):
return result
if self.input_frame.naxes == 1:
x1, x2 = self.bounding_box.bounding_box()
if len(np.shape(args[0])) > 0:
result[result] = (coords[result] >= x1) & (coords[result] <= x2)
elif result:
result = (coords >= x1) and (coords <= x2)
else:
if len(np.shape(args[0])) > 0:
for c, (x1, x2) in zip(coords, self.bounding_box):
result[result] = (c[result] >= x1) & (c[result] <= x2)
elif result:
result = all([(c >= x1) and (c <= x2) for c, (x1, x2) in zip(coords, self.bounding_box)])
return result
|
(self, *args, **kwargs)
|
44,504 |
gwcs.wcs
|
insert_frame
|
Insert a new frame into an existing pipeline. This frame must be
anchored to a frame already in the pipeline by a transform. This
existing frame is identified solely by its name, although an entire
`~gwcs.coordinate_frames.CoordinateFrame` can be passed (e.g., the
`input_frame` or `output_frame` attribute). This frame is never
modified.
Parameters
----------
input_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at start of new transform
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
output_frame: str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at end of new transform
|
def insert_frame(self, input_frame, transform, output_frame):
"""
Insert a new frame into an existing pipeline. This frame must be
anchored to a frame already in the pipeline by a transform. This
existing frame is identified solely by its name, although an entire
`~gwcs.coordinate_frames.CoordinateFrame` can be passed (e.g., the
`input_frame` or `output_frame` attribute). This frame is never
modified.
Parameters
----------
input_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at start of new transform
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
output_frame: str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame at end of new transform
"""
input_name, input_frame_obj = self._get_frame_name(input_frame)
output_name, output_frame_obj = self._get_frame_name(output_frame)
try:
input_index = self._get_frame_index(input_frame)
except CoordinateFrameError:
input_index = None
if input_frame_obj is None:
raise ValueError(f"New coordinate frame {input_name} must "
"be defined")
try:
output_index = self._get_frame_index(output_frame)
except CoordinateFrameError:
output_index = None
if output_frame_obj is None:
raise ValueError(f"New coordinate frame {output_name} must "
"be defined")
new_frames = [input_index, output_index].count(None)
if new_frames == 0:
raise ValueError("Could not insert frame as both frames "
f"{input_name} and {output_name} already exist")
elif new_frames == 2:
raise ValueError("Could not insert frame as neither frame "
f"{input_name} nor {output_name} exists")
if input_index is None:
self._pipeline = (self._pipeline[:output_index] +
[Step(input_frame_obj, transform)] +
self._pipeline[output_index:])
super(WCS, self).__setattr__(input_name, input_frame_obj)
else:
split_step = self._pipeline[input_index]
self._pipeline = (self._pipeline[:input_index] +
[Step(split_step.frame, transform),
Step(output_frame_obj, split_step.transform)] +
self._pipeline[input_index + 1:])
super(WCS, self).__setattr__(output_name, output_frame_obj)
|
(self, input_frame, transform, output_frame)
|
44,505 |
gwcs.wcs
|
insert_transform
|
Insert a transform before (default) or after a coordinate frame.
Append (or prepend) a transform to the transform connected to frame.
Parameters
----------
frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame which sets the point of insertion.
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
after : bool
If True, the new transform is inserted in the pipeline
immediately after ``frame``.
|
def insert_transform(self, frame, transform, after=False):
"""
Insert a transform before (default) or after a coordinate frame.
Append (or prepend) a transform to the transform connected to frame.
Parameters
----------
frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame which sets the point of insertion.
transform : `~astropy.modeling.Model`
New transform to be inserted in the pipeline
after : bool
If True, the new transform is inserted in the pipeline
immediately after ``frame``.
"""
name, _ = self._get_frame_name(frame)
frame_ind = self._get_frame_index(name)
if not after:
current_transform = self._pipeline[frame_ind - 1].transform
self._pipeline[frame_ind - 1].transform = current_transform | transform
else:
current_transform = self._pipeline[frame_ind].transform
self._pipeline[frame_ind].transform = transform | current_transform
|
(self, frame, transform, after=False)
|
44,506 |
gwcs.wcs
|
invert
|
Invert coordinates from output frame to input frame using analytical or
user-supplied inverse. When neither analytical nor user-supplied
inverses are defined, a numerical solution will be attempted using
:py:meth:`numerical_inverse`.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
Other Parameters
----------------
kwargs : dict
Keyword arguments to be passed to :py:meth:`numerical_inverse`
(when defined) or to the iterative invert method.
Returns
-------
result : tuple or value
Returns a tuple of scalar or array values for each axis. Unless
``input_frame.naxes == 1`` when it shall return the value.
|
def invert(self, *args, **kwargs):
"""
Invert coordinates from output frame to input frame using analytical or
user-supplied inverse. When neither analytical nor user-supplied
inverses are defined, a numerical solution will be attempted using
:py:meth:`numerical_inverse`.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
Other Parameters
----------------
kwargs : dict
Keyword arguments to be passed to :py:meth:`numerical_inverse`
(when defined) or to the iterative invert method.
Returns
-------
result : tuple or value
Returns a tuple of scalar or array values for each axis. Unless
``input_frame.naxes == 1`` when it shall return the value.
"""
with_units = kwargs.pop('with_units', False)
if not utils.isnumerical(args[0]):
args = self.output_frame.coordinate_to_quantity(*args)
if self.output_frame.naxes == 1:
args = [args]
try:
if not self.backward_transform.uses_quantity:
args = utils.get_values(self.output_frame.unit, *args)
except (NotImplementedError, KeyError):
args = utils.get_values(self.output_frame.unit, *args)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
try:
# remove iterative inverse-specific keyword arguments:
akwargs = {k: v for k, v in kwargs.items() if k not in _ITER_INV_KWARGS}
result = self.backward_transform(*args, **akwargs)
except (NotImplementedError, KeyError):
result = self.numerical_inverse(*args, **kwargs, with_units=with_units)
if with_units and self.input_frame:
if self.input_frame.naxes == 1:
return self.input_frame.coordinates(result)
else:
return self.input_frame.coordinates(*result)
else:
return result
|
(self, *args, **kwargs)
|
44,507 |
gwcs.wcs
|
numerical_inverse
|
Invert coordinates from output frame to input frame using numerical
inverse.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
.. note::
This method uses a combination of vectorized fixed-point
iterations algorithm and `scipy.optimize.root`. The later is used
for input coordinates for which vectorized algorithm diverges.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
tolerance : float, optional
*Absolute tolerance* of solution. Iteration terminates when the
iterative solver estimates that the "true solution" is
within this many pixels current estimate, more
specifically, when the correction to the solution found
during the previous iteration is smaller
(in the sense of the L2 norm) than ``tolerance``.
Default ``tolerance`` is 1.0e-5.
maxiter : int, optional
Maximum number of iterations allowed to reach a solution.
Default is 50.
quiet : bool, optional
Do not throw :py:class:`NoConvergence` exceptions when
the method does not converge to a solution with the
required accuracy within a specified number of maximum
iterations set by ``maxiter`` parameter. Instead,
simply return the found solution. Default is `True`.
adaptive : bool, optional
Specifies whether to adaptively select only points that
did not converge to a solution within the required
accuracy for the next iteration. Default (`True`) is recommended.
.. note::
The :py:meth:`numerical_inverse` uses a vectorized
implementation of the method of consecutive
approximations (see ``Notes`` section below) in which it
iterates over *all* input points *regardless* until
the required accuracy has been reached for *all* input
points. In some cases it may be possible that
*almost all* points have reached the required accuracy
but there are only a few of input data points for
which additional iterations may be needed (this
depends mostly on the characteristics of the geometric
distortions for a given instrument). In this situation
it may be advantageous to set ``adaptive`` = `True` in
which case :py:meth:`numerical_inverse` will continue
iterating *only* over the points that have not yet
converged to the required accuracy.
.. note::
When ``detect_divergence`` is `True`,
:py:meth:`numerical_inverse` will automatically switch
to the adaptive algorithm once divergence has been
detected.
detect_divergence : bool, optional
Specifies whether to perform a more detailed analysis
of the convergence to a solution. Normally
:py:meth:`numerical_inverse` may not achieve the required
accuracy if either the ``tolerance`` or ``maxiter`` arguments
are too low. However, it may happen that for some
geometric distortions the conditions of convergence for
the the method of consecutive approximations used by
:py:meth:`numerical_inverse` may not be satisfied, in which
case consecutive approximations to the solution will
diverge regardless of the ``tolerance`` or ``maxiter``
settings.
When ``detect_divergence`` is `False`, these divergent
points will be detected as not having achieved the
required accuracy (without further details). In addition,
if ``adaptive`` is `False` then the algorithm will not
know that the solution (for specific points) is diverging
and will continue iterating and trying to "improve"
diverging solutions. This may result in ``NaN`` or
``Inf`` values in the return results (in addition to a
performance penalties). Even when ``detect_divergence``
is `False`, :py:meth:`numerical_inverse`, at the end of the
iterative process, will identify invalid results
(``NaN`` or ``Inf``) as "diverging" solutions and will
raise :py:class:`NoConvergence` unless the ``quiet``
parameter is set to `True`.
When ``detect_divergence`` is `True` (default),
:py:meth:`numerical_inverse` will detect points for which
current correction to the coordinates is larger than
the correction applied during the previous iteration
**if** the requested accuracy **has not yet been
achieved**. In this case, if ``adaptive`` is `True`,
these points will be excluded from further iterations and
if ``adaptive`` is `False`, :py:meth:`numerical_inverse` will
automatically switch to the adaptive algorithm. Thus, the
reported divergent solution will be the latest converging
solution computed immediately *before* divergence
has been detected.
.. note::
When accuracy has been achieved, small increases in
current corrections may be possible due to rounding
errors (when ``adaptive`` is `False`) and such
increases will be ignored.
.. note::
Based on our testing using JWST NIRCAM images, setting
``detect_divergence`` to `True` will incur about 5-10%
performance penalty with the larger penalty
corresponding to ``adaptive`` set to `True`.
Because the benefits of enabling this
feature outweigh the small performance penalty,
especially when ``adaptive`` = `False`, it is
recommended to set ``detect_divergence`` to `True`,
unless extensive testing of the distortion models for
images from specific instruments show a good stability
of the numerical method for a wide range of
coordinates (even outside the image itself).
.. note::
Indices of the diverging inverse solutions will be
reported in the ``divergent`` attribute of the
raised :py:class:`NoConvergence` exception object.
Returns
-------
result : tuple
Returns a tuple of scalar or array values for each axis.
Raises
------
NoConvergence
The iterative method did not converge to a
solution to the required accuracy within a specified
number of maximum iterations set by the ``maxiter``
parameter. To turn off this exception, set ``quiet`` to
`True`. Indices of the points for which the requested
accuracy was not achieved (if any) will be listed in the
``slow_conv`` attribute of the
raised :py:class:`NoConvergence` exception object.
See :py:class:`NoConvergence` documentation for
more details.
NotImplementedError
Numerical inverse has not been implemented for this WCS.
ValueError
Invalid argument values.
Examples
--------
>>> from astropy.utils.data import get_pkg_data_filename
>>> from gwcs import NoConvergence
>>> import asdf
>>> import numpy as np
>>> filename = get_pkg_data_filename('data/nircamwcs.asdf', package='gwcs.tests')
>>> with asdf.open(filename, copy_arrays=True, lazy_load=False, ignore_missing_extensions=True) as af:
... w = af.tree['wcs']
>>> ra, dec = w([1,2,3], [1,1,1])
>>> assert np.allclose(ra, [5.927628, 5.92757069, 5.92751337]);
>>> assert np.allclose(dec, [-72.01341247, -72.01341273, -72.013413])
>>> x, y = w.numerical_inverse(ra, dec)
>>> assert np.allclose(x, [1.00000005, 2.00000005, 3.00000006]);
>>> assert np.allclose(y, [1.00000004, 0.99999979, 1.00000015]);
>>> x, y = w.numerical_inverse(ra, dec, maxiter=3, tolerance=1.0e-10, quiet=False)
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy after 3 iterations.
>>> w.numerical_inverse(
... *w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False),
... adaptive=False,
... detect_divergence=True,
... quiet=False,
... with_bounding_box=False
... )
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy. After 4 iterations, the solution is diverging at
least for one input point.
>>> # Now try to use some diverging data:
>>> divra, divdec = w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False)
>>> assert np.allclose(divra, [5.92762673, 148.21600848, 5.92750827])
>>> assert np.allclose(divdec, [-72.01339464, -7.80968079, -72.01334172])
>>> try: # doctest: +SKIP
... x, y = w.numerical_inverse(divra, divdec, maxiter=20,
... tolerance=1.0e-4, adaptive=True,
... detect_divergence=True,
... quiet=False)
... except NoConvergence as e:
... print(f"Indices of diverging points: {e.divergent}")
... print(f"Indices of poorly converging points: {e.slow_conv}")
... print(f"Best solution:\n{e.best_solution}")
... print(f"Achieved accuracy:\n{e.accuracy}")
Indices of diverging points: None
Indices of poorly converging points: [1]
Best solution:
[[1.00000040e+00 1.99999841e+00]
[6.33507833e+17 3.40118820e+17]
[3.00000038e+00 4.99999841e+00]]
Achieved accuracy:
[[2.75925982e-05 1.18471543e-05]
[3.65405005e+04 1.31364188e+04]
[2.76552923e-05 1.14789013e-05]]
|
def numerical_inverse(self, *args, tolerance=1e-5, maxiter=50, adaptive=True,
detect_divergence=True, quiet=True, with_bounding_box=True,
fill_value=np.nan, with_units=False, **kwargs):
"""
Invert coordinates from output frame to input frame using numerical
inverse.
.. note::
Currently numerical inverse is implemented only for 2D imaging WCS.
.. note::
This method uses a combination of vectorized fixed-point
iterations algorithm and `scipy.optimize.root`. The later is used
for input coordinates for which vectorized algorithm diverges.
Parameters
----------
args : float, array like, `~astropy.coordinates.SkyCoord` or `~astropy.units.Unit`
Coordinates to be inverted. The number of arguments must be equal
to the number of world coordinates given by ``world_n_dim``.
with_bounding_box : bool, optional
If `True` (default) values in the result which correspond to any
of the inputs being outside the bounding_box are set to
``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is ``np.nan``).
with_units : bool, optional
If ``True`` returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object, by using the units of
the output cooridnate frame. Default is `False`.
tolerance : float, optional
*Absolute tolerance* of solution. Iteration terminates when the
iterative solver estimates that the "true solution" is
within this many pixels current estimate, more
specifically, when the correction to the solution found
during the previous iteration is smaller
(in the sense of the L2 norm) than ``tolerance``.
Default ``tolerance`` is 1.0e-5.
maxiter : int, optional
Maximum number of iterations allowed to reach a solution.
Default is 50.
quiet : bool, optional
Do not throw :py:class:`NoConvergence` exceptions when
the method does not converge to a solution with the
required accuracy within a specified number of maximum
iterations set by ``maxiter`` parameter. Instead,
simply return the found solution. Default is `True`.
adaptive : bool, optional
Specifies whether to adaptively select only points that
did not converge to a solution within the required
accuracy for the next iteration. Default (`True`) is recommended.
.. note::
The :py:meth:`numerical_inverse` uses a vectorized
implementation of the method of consecutive
approximations (see ``Notes`` section below) in which it
iterates over *all* input points *regardless* until
the required accuracy has been reached for *all* input
points. In some cases it may be possible that
*almost all* points have reached the required accuracy
but there are only a few of input data points for
which additional iterations may be needed (this
depends mostly on the characteristics of the geometric
distortions for a given instrument). In this situation
it may be advantageous to set ``adaptive`` = `True` in
which case :py:meth:`numerical_inverse` will continue
iterating *only* over the points that have not yet
converged to the required accuracy.
.. note::
When ``detect_divergence`` is `True`,
:py:meth:`numerical_inverse` will automatically switch
to the adaptive algorithm once divergence has been
detected.
detect_divergence : bool, optional
Specifies whether to perform a more detailed analysis
of the convergence to a solution. Normally
:py:meth:`numerical_inverse` may not achieve the required
accuracy if either the ``tolerance`` or ``maxiter`` arguments
are too low. However, it may happen that for some
geometric distortions the conditions of convergence for
the the method of consecutive approximations used by
:py:meth:`numerical_inverse` may not be satisfied, in which
case consecutive approximations to the solution will
diverge regardless of the ``tolerance`` or ``maxiter``
settings.
When ``detect_divergence`` is `False`, these divergent
points will be detected as not having achieved the
required accuracy (without further details). In addition,
if ``adaptive`` is `False` then the algorithm will not
know that the solution (for specific points) is diverging
and will continue iterating and trying to "improve"
diverging solutions. This may result in ``NaN`` or
``Inf`` values in the return results (in addition to a
performance penalties). Even when ``detect_divergence``
is `False`, :py:meth:`numerical_inverse`, at the end of the
iterative process, will identify invalid results
(``NaN`` or ``Inf``) as "diverging" solutions and will
raise :py:class:`NoConvergence` unless the ``quiet``
parameter is set to `True`.
When ``detect_divergence`` is `True` (default),
:py:meth:`numerical_inverse` will detect points for which
current correction to the coordinates is larger than
the correction applied during the previous iteration
**if** the requested accuracy **has not yet been
achieved**. In this case, if ``adaptive`` is `True`,
these points will be excluded from further iterations and
if ``adaptive`` is `False`, :py:meth:`numerical_inverse` will
automatically switch to the adaptive algorithm. Thus, the
reported divergent solution will be the latest converging
solution computed immediately *before* divergence
has been detected.
.. note::
When accuracy has been achieved, small increases in
current corrections may be possible due to rounding
errors (when ``adaptive`` is `False`) and such
increases will be ignored.
.. note::
Based on our testing using JWST NIRCAM images, setting
``detect_divergence`` to `True` will incur about 5-10%
performance penalty with the larger penalty
corresponding to ``adaptive`` set to `True`.
Because the benefits of enabling this
feature outweigh the small performance penalty,
especially when ``adaptive`` = `False`, it is
recommended to set ``detect_divergence`` to `True`,
unless extensive testing of the distortion models for
images from specific instruments show a good stability
of the numerical method for a wide range of
coordinates (even outside the image itself).
.. note::
Indices of the diverging inverse solutions will be
reported in the ``divergent`` attribute of the
raised :py:class:`NoConvergence` exception object.
Returns
-------
result : tuple
Returns a tuple of scalar or array values for each axis.
Raises
------
NoConvergence
The iterative method did not converge to a
solution to the required accuracy within a specified
number of maximum iterations set by the ``maxiter``
parameter. To turn off this exception, set ``quiet`` to
`True`. Indices of the points for which the requested
accuracy was not achieved (if any) will be listed in the
``slow_conv`` attribute of the
raised :py:class:`NoConvergence` exception object.
See :py:class:`NoConvergence` documentation for
more details.
NotImplementedError
Numerical inverse has not been implemented for this WCS.
ValueError
Invalid argument values.
Examples
--------
>>> from astropy.utils.data import get_pkg_data_filename
>>> from gwcs import NoConvergence
>>> import asdf
>>> import numpy as np
>>> filename = get_pkg_data_filename('data/nircamwcs.asdf', package='gwcs.tests')
>>> with asdf.open(filename, copy_arrays=True, lazy_load=False, ignore_missing_extensions=True) as af:
... w = af.tree['wcs']
>>> ra, dec = w([1,2,3], [1,1,1])
>>> assert np.allclose(ra, [5.927628, 5.92757069, 5.92751337]);
>>> assert np.allclose(dec, [-72.01341247, -72.01341273, -72.013413])
>>> x, y = w.numerical_inverse(ra, dec)
>>> assert np.allclose(x, [1.00000005, 2.00000005, 3.00000006]);
>>> assert np.allclose(y, [1.00000004, 0.99999979, 1.00000015]);
>>> x, y = w.numerical_inverse(ra, dec, maxiter=3, tolerance=1.0e-10, quiet=False)
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy after 3 iterations.
>>> w.numerical_inverse(
... *w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False),
... adaptive=False,
... detect_divergence=True,
... quiet=False,
... with_bounding_box=False
... )
Traceback (most recent call last):
...
gwcs.wcs.NoConvergence: 'WCS.numerical_inverse' failed to converge to the
requested accuracy. After 4 iterations, the solution is diverging at
least for one input point.
>>> # Now try to use some diverging data:
>>> divra, divdec = w([1, 300000, 3], [2, 1000000, 5], with_bounding_box=False)
>>> assert np.allclose(divra, [5.92762673, 148.21600848, 5.92750827])
>>> assert np.allclose(divdec, [-72.01339464, -7.80968079, -72.01334172])
>>> try: # doctest: +SKIP
... x, y = w.numerical_inverse(divra, divdec, maxiter=20,
... tolerance=1.0e-4, adaptive=True,
... detect_divergence=True,
... quiet=False)
... except NoConvergence as e:
... print(f"Indices of diverging points: {e.divergent}")
... print(f"Indices of poorly converging points: {e.slow_conv}")
... print(f"Best solution:\\n{e.best_solution}")
... print(f"Achieved accuracy:\\n{e.accuracy}")
Indices of diverging points: None
Indices of poorly converging points: [1]
Best solution:
[[1.00000040e+00 1.99999841e+00]
[6.33507833e+17 3.40118820e+17]
[3.00000038e+00 4.99999841e+00]]
Achieved accuracy:
[[2.75925982e-05 1.18471543e-05]
[3.65405005e+04 1.31364188e+04]
[2.76552923e-05 1.14789013e-05]]
"""
if not utils.isnumerical(args[0]):
args = self.output_frame.coordinate_to_quantity(*args)
if self.output_frame.naxes == 1:
args = [args]
args = utils.get_values(self.output_frame.unit, *args)
args_shape = np.shape(args)
nargs = args_shape[0]
arg_dim = len(args_shape) - 1
if nargs != self.world_n_dim:
raise ValueError("Number of input coordinates is different from "
"the number of defined world coordinates in the "
f"WCS ({self.world_n_dim:d})")
if self.world_n_dim != self.pixel_n_dim:
raise NotImplementedError(
"Support for iterative inverse for transformations with "
"different number of inputs and outputs was not implemented."
)
# initial guess:
if nargs == 2 and self._approx_inverse is None:
self._calc_approx_inv(max_inv_pix_error=5, inv_degree=None)
if self._approx_inverse is None:
if self.bounding_box is None:
x0 = np.ones(self.pixel_n_dim)
else:
x0 = np.mean(self.bounding_box, axis=-1)
if arg_dim == 0:
argsi = args
if nargs == 2 and self._approx_inverse is not None:
x0 = self._approx_inverse(*argsi)
if not np.all(np.isfinite(x0)):
return [np.array(np.nan) for _ in range(nargs)]
result = tuple(self._vectorized_fixed_point(
x0, argsi,
tolerance=tolerance,
maxiter=maxiter,
adaptive=adaptive,
detect_divergence=detect_divergence,
quiet=quiet,
with_bounding_box=with_bounding_box,
fill_value=fill_value
).T.ravel().tolist())
else:
arg_shape = args_shape[1:]
nelem = np.prod(arg_shape)
args = np.reshape(args, (nargs, nelem))
if self._approx_inverse is None:
x0 = np.full((nelem, nargs), x0)
else:
x0 = np.array(self._approx_inverse(*args)).T
result = self._vectorized_fixed_point(
x0, args.T,
tolerance=tolerance,
maxiter=maxiter,
adaptive=adaptive,
detect_divergence=detect_divergence,
quiet=quiet,
with_bounding_box=with_bounding_box,
fill_value=fill_value
).T
result = tuple(np.reshape(result, args_shape))
if with_units and self.input_frame:
if self.input_frame.naxes == 1:
return self.input_frame.coordinates(result)
else:
return self.input_frame.coordinates(*result)
else:
return result
|
(self, *args, tolerance=1e-05, maxiter=50, adaptive=True, detect_divergence=True, quiet=True, with_bounding_box=True, fill_value=nan, with_units=False, **kwargs)
|
44,508 |
gwcs.api
|
pixel_to_world
|
Convert pixel values to world coordinates.
|
def pixel_to_world(self, *pixel_arrays):
"""
Convert pixel values to world coordinates.
"""
pixels = self._sanitize_pixel_inputs(*pixel_arrays)
return self(*pixels, with_units=True)
|
(self, *pixel_arrays)
|
44,509 |
gwcs.api
|
pixel_to_world_values
|
Convert pixel coordinates to world coordinates.
This method takes ``pixel_n_dim`` scalars or arrays as input, and pixel
coordinates should be zero-based. Returns ``world_n_dim`` scalars or
arrays in units given by ``world_axis_units``. Note that pixel
coordinates are assumed to be 0 at the center of the first pixel in each
dimension. If a pixel is in a region where the WCS is not defined, NaN
can be returned. The coordinates should be specified in the ``(x, y)``
order, where for an image, ``x`` is the horizontal coordinate and ``y``
is the vertical coordinate.
|
def pixel_to_world_values(self, *pixel_arrays):
"""
Convert pixel coordinates to world coordinates.
This method takes ``pixel_n_dim`` scalars or arrays as input, and pixel
coordinates should be zero-based. Returns ``world_n_dim`` scalars or
arrays in units given by ``world_axis_units``. Note that pixel
coordinates are assumed to be 0 at the center of the first pixel in each
dimension. If a pixel is in a region where the WCS is not defined, NaN
can be returned. The coordinates should be specified in the ``(x, y)``
order, where for an image, ``x`` is the horizontal coordinate and ``y``
is the vertical coordinate.
"""
pixel_arrays = self._add_units_input(pixel_arrays, self.forward_transform, self.input_frame)
result = self(*pixel_arrays, with_units=False)
return self._remove_quantity_output(result, self.output_frame)
|
(self, *pixel_arrays)
|
44,510 |
gwcs.wcs
|
set_transform
|
Set/replace the transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame.
transform : `~astropy.modeling.Model`
Transform between ``from_frame`` and ``to_frame``.
|
def set_transform(self, from_frame, to_frame, transform):
"""
Set/replace the transform between two coordinate frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
End coordinate frame.
transform : `~astropy.modeling.Model`
Transform between ``from_frame`` and ``to_frame``.
"""
from_name, from_obj = self._get_frame_name(from_frame)
to_name, to_obj = self._get_frame_name(to_frame)
if not self._pipeline:
if from_name != self._input_frame:
raise CoordinateFrameError(
"Expected 'from_frame' to be {0}".format(self._input_frame))
if to_frame != self._output_frame:
raise CoordinateFrameError(
"Expected 'to_frame' to be {0}".format(self._output_frame))
try:
from_ind = self._get_frame_index(from_name)
except ValueError:
raise CoordinateFrameError("Frame {0} is not in the available frames".format(from_name))
try:
to_ind = self._get_frame_index(to_name)
except ValueError:
raise CoordinateFrameError("Frame {0} is not in the available frames".format(to_name))
if from_ind + 1 != to_ind:
raise ValueError("Frames {0} and {1} are not in sequence".format(from_name, to_name))
self._pipeline[from_ind].transform = transform
|
(self, from_frame, to_frame, transform)
|
44,511 |
gwcs.wcs
|
to_fits
|
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ . If WCS contains
celestial frame, PC/CD formalism will be used for the celestial axes.
.. note::
SIP distortion fitting requires that the WCS object has only two
celestial axes. When WCS does not contain celestial axes,
SIP fitting parameters (``max_pix_error``, ``degree``,
``max_inv_pix_error``, ``inv_degree``, and ``projection``)
are ignored. When a WCS, in addition to celestial
frame, contains other types of axes, SIP distortion fitting is
disabled (ony linear terms are fitted for celestial frame).
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
.. note::
When WCS object has When ``degree`` is `None` and the WCS object has
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS <https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/ reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
verbose : bool, optional
Print progress of fits.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
hdulist : a list of `~astropy.io.fits.BinTableHDU`
A Python list of binary table extensions containing the coordinate
array for TAB extensions; one extension per separable axes group.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
|
def to_fits(self, bounding_box=None, max_pix_error=0.25, degree=None,
max_inv_pix_error=0.25, inv_degree=None, npoints=32,
crpix=None, projection='TAN', bin_ext_name='WCS-TABLE',
coord_col_name='coordinates', sampling=1, verbose=False):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ . If WCS contains
celestial frame, PC/CD formalism will be used for the celestial axes.
.. note::
SIP distortion fitting requires that the WCS object has only two
celestial axes. When WCS does not contain celestial axes,
SIP fitting parameters (``max_pix_error``, ``degree``,
``max_inv_pix_error``, ``inv_degree``, and ``projection``)
are ignored. When a WCS, in addition to celestial
frame, contains other types of axes, SIP distortion fitting is
disabled (ony linear terms are fitted for celestial frame).
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
.. note::
When WCS object has When ``degree`` is `None` and the WCS object has
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS \
<https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/\
reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
verbose : bool, optional
Print progress of fits.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
hdulist : a list of `~astropy.io.fits.BinTableHDU`
A Python list of binary table extensions containing the coordinate
array for TAB extensions; one extension per separable axes group.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if bounding_box is None:
if self.bounding_box is None:
raise ValueError(
"Need a valid bounding_box to compute the footprint."
)
bounding_box = self.bounding_box
else:
# validate user-supplied bounding box:
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
Bbox.validate(transform_0, bounding_box)
if self.forward_transform.n_inputs == 1:
bounding_box = [bounding_box]
if self.pixel_n_dim > self.world_n_dim:
raise RuntimeError(
"The case when the number of input axes is larger than the "
"number of output axes is not supported."
)
try:
sampling = np.broadcast_to(sampling, (self.pixel_n_dim, ))
except ValueError:
raise ValueError("Number of sampling values either must be 1 "
"or it must match the number of pixel axes.")
world_axes_groups, _, celestial_group = self._separable_groups(
detect_celestial=True
)
# Find celestial axes group and treat it separately from other axes:
if celestial_group:
# if world_axes_groups is empty, then we have only celestial axes
# and so we can allow arbitrary degree for SIP. When there are
# other axes types present, issue a warning and set 'degree' to 1
# because use of SIP when world_n_dim > 2 currently is not supported by
# astropy.wcs.WCS - see https://github.com/astropy/astropy/pull/11452
if world_axes_groups and (degree is None or np.max(degree) != 2):
if degree is not None:
warnings.warn(
"SIP distortion is not supported when the number\n"
"of axes in WCS is larger than 2. Setting 'degree'\n"
"to 1 and 'max_inv_pix_error' to None."
)
degree = 1
max_inv_pix_error = None
hdr = self._to_fits_sip(
celestial_group=celestial_group,
keep_axis_position=True,
bounding_box=bounding_box,
max_pix_error=max_pix_error,
degree=degree,
max_inv_pix_error=max_inv_pix_error,
inv_degree=inv_degree,
npoints=npoints,
crpix=crpix,
projection=projection,
matrix_type='PC-CDELT1',
verbose=verbose
)
use_cd = 'A_ORDER' in hdr
else:
use_cd = False
hdr = fits.Header()
hdr['NAXIS'] = 0
hdr['WCSAXES'] = 0
# now handle non-celestial axes using -TAB convention for each
# separable axes group:
hdulist = []
for extver0, world_axes_group in enumerate(world_axes_groups):
# For each subset of separable axes call _to_fits_tab to
# convert that group to a single Bin TableHDU with a
# coordinate array for this group of axes:
hdr, bin_table_hdu = self._to_fits_tab(
hdr=hdr,
world_axes_group=world_axes_group,
use_cd=use_cd,
bounding_box=bounding_box,
bin_ext=(bin_ext_name, extver0 + 1),
coord_col_name=coord_col_name,
sampling=sampling
)
hdulist.append(bin_table_hdu)
hdr.add_comment('FITS WCS created by approximating a gWCS')
return hdr, hdulist
|
(self, bounding_box=None, max_pix_error=0.25, degree=None, max_inv_pix_error=0.25, inv_degree=None, npoints=32, crpix=None, projection='TAN', bin_ext_name='WCS-TABLE', coord_col_name='coordinates', sampling=1, verbose=False)
|
44,512 |
gwcs.wcs
|
to_fits_sip
|
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Parameters
----------
bounding_box : tuple, optional
A pair of tuples, each consisting of two numbers
Represents the range of pixel values in both dimensions
((xmin, xmax), (ymin, ymax))
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale. Ignored when ``degree`` is an integer or
a list with a single degree.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated. Ignored when
``degree`` is an integer or a list with a single degree.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS <https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/ reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
verbose : bool, optional
Print progress of fits.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
Notes
-----
Use of this requires a judicious choice of required accuracies.
Attempts to use higher degrees (~7 or higher) will typically fail due
to floating point problems that arise with high powers.
|
def to_fits_sip(self, bounding_box=None, max_pix_error=0.25, degree=None,
max_inv_pix_error=0.25, inv_degree=None,
npoints=32, crpix=None, projection='TAN',
verbose=False):
"""
Construct a SIP-based approximation to the WCS for the axes
corresponding to the `~gwcs.coordinate_frames.CelestialFrame`
in the form of a FITS header.
The default mode in using this attempts to achieve roughly 0.25 pixel
accuracy over the whole image.
Parameters
----------
bounding_box : tuple, optional
A pair of tuples, each consisting of two numbers
Represents the range of pixel values in both dimensions
((xmin, xmax), (ymin, ymax))
max_pix_error : float, optional
Maximum allowed error over the domain of the pixel array. This
error is the equivalent pixel error that corresponds to the maximum
error in the output coordinate resulting from the fit based on
a nominal plate scale. Ignored when ``degree`` is an integer or
a list with a single degree.
degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_pixel_error`` is ignored.
max_inv_pix_error : float, optional
Maximum allowed inverse error over the domain of the pixel array
in pixel units. If None, no inverse is generated. Ignored when
``degree`` is an integer or a list with a single degree.
inv_degree : int, iterable, None, optional
Degree of the SIP polynomial. Default value `None` indicates that
all allowed degree values (``[1...9]``) will be considered and
the lowest degree that meets accuracy requerements set by
``max_pix_error`` will be returned. Alternatively, ``degree`` can be
an iterable containing allowed values for the SIP polynomial degree.
This option is similar to default `None` but it allows caller to
restrict the range of allowed SIP degrees used for fitting.
Finally, ``degree`` can be an integer indicating the exact SIP degree
to be fit to the WCS transformation. In this case
``max_inv_pixel_error`` is ignored.
npoints : int, optional
The number of points in each dimension to sample the bounding box
for use in the SIP fit. Minimum number of points is 3.
crpix : list of float, None, optional
Coordinates (1-based) of the reference point for the new FITS WCS.
When not provided, i.e., when set to `None` (default) the reference
pixel will be chosen near the center of the bounding box for axes
corresponding to the celestial frame.
projection : str, `~astropy.modeling.projections.Pix2SkyProjection`, optional
Projection to be used for the created FITS WCS. It can be specified
as a string of three characters specifying a FITS projection code
from Table 13 in
`Representations of World Coordinates in FITS \
<https://doi.org/10.1051/0004-6361:20021326>`_
(Paper I), Greisen, E. W., and Calabretta, M. R., A & A, 395,
1061-1075, 2002. Alternatively, it can be an instance of one of the
`astropy's Pix2Sky_* <https://docs.astropy.org/en/stable/modeling/\
reference_api.html#module-astropy.modeling.projections>`_
projection models inherited from
:py:class:`~astropy.modeling.projections.Pix2SkyProjection`.
verbose : bool, optional
Print progress of fits.
Returns
-------
FITS header with all SIP WCS keywords
Raises
------
ValueError
If the WCS is not at least 2D, an exception will be raised. If the
specified accuracy (both forward and inverse, both rms and maximum)
is not achieved an exception will be raised.
Notes
-----
Use of this requires a judicious choice of required accuracies.
Attempts to use higher degrees (~7 or higher) will typically fail due
to floating point problems that arise with high powers.
"""
_, _, celestial_group = self._separable_groups(detect_celestial=True)
if celestial_group is None:
raise ValueError("The to_fits_sip requires an output celestial frame.")
hdr = self._to_fits_sip(
celestial_group=celestial_group,
keep_axis_position=False,
bounding_box=bounding_box,
max_pix_error=max_pix_error,
degree=degree,
max_inv_pix_error=max_inv_pix_error,
inv_degree=inv_degree,
npoints=npoints,
crpix=crpix,
projection=projection,
matrix_type='CD',
verbose=verbose
)
return hdr
|
(self, bounding_box=None, max_pix_error=0.25, degree=None, max_inv_pix_error=0.25, inv_degree=None, npoints=32, crpix=None, projection='TAN', verbose=False)
|
44,513 |
gwcs.wcs
|
to_fits_tab
|
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
|
def to_fits_tab(self, bounding_box=None, bin_ext_name='WCS-TABLE',
coord_col_name='coordinates', sampling=1):
"""
Construct a FITS WCS ``-TAB``-based approximation to the WCS
in the form of a FITS header and a binary table extension. For the
description of the FITS WCS ``-TAB`` convention, see
"Representations of spectral coordinates in FITS" in
`Greisen, E. W. et al. A&A 446 (2) 747-771 (2006)
<https://doi.org/10.1051/0004-6361:20053818>`_ .
Parameters
----------
bounding_box : tuple, optional
Specifies the range of acceptable values for each input axis.
The order of the axes is
`~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two image axes ``bounding_box`` is of the form
``((xmin, xmax), (ymin, ymax))``.
bin_ext_name : str, optional
Extension name for the `~astropy.io.fits.BinTableHDU` HDU for those
axes groups that will be converted using FITW WCS' ``-TAB``
algorith. Extension version will be determined automatically
based on the number of separable group of axes.
coord_col_name : str, optional
Field name of the coordinate array in the structured array
stored in `~astropy.io.fits.BinTableHDU` data. This corresponds to
``TTYPEi`` field in the FITS header of the binary table extension.
sampling : float, tuple, optional
The target "density" of grid nodes per pixel to be used when
creating the coordinate array for the ``-TAB`` FITS WCS convention.
It is equal to ``1/step`` where ``step`` is the distance between
grid nodes in pixels. ``sampling`` can be specified as a single
number to be used for all axes or as a `tuple` of numbers
that specify the sampling for each image axis.
Returns
-------
hdr : `~astropy.io.fits.Header`
Header with WCS-TAB information associated (to be used) with image
data.
bin_table_hdu : `~astropy.io.fits.BinTableHDU`
Binary table extension containing the coordinate array.
Raises
------
ValueError
When ``bounding_box`` is not defined either through the input
``bounding_box`` parameter or this object's ``bounding_box``
property.
ValueError
When ``sampling`` is a `tuple` of length larger than 1 that
does not match the number of image axes.
RuntimeError
If the number of image axes (``~gwcs.WCS.pixel_n_dim``) is larger
than the number of world axes (``~gwcs.WCS.world_n_dim``).
"""
if bounding_box is None:
if self.bounding_box is None:
raise ValueError(
"Need a valid bounding_box to compute the footprint."
)
bounding_box = self.bounding_box
else:
# validate user-supplied bounding box:
frames = self.available_frames
transform_0 = self.get_transform(frames[0], frames[1])
Bbox.validate(transform_0, bounding_box)
if self.forward_transform.n_inputs == 1:
bounding_box = [bounding_box]
if self.pixel_n_dim > self.world_n_dim:
raise RuntimeError(
"The case when the number of input axes is larger than the "
"number of output axes is not supported."
)
try:
sampling = np.broadcast_to(sampling, (self.pixel_n_dim, ))
except ValueError:
raise ValueError("Number of sampling values either must be 1 "
"or it must match the number of pixel axes.")
_, world_axes = self._separable_groups(detect_celestial=False)
hdr, bin_table_hdu = self._to_fits_tab(
hdr=None,
world_axes_group=world_axes,
use_cd=False,
bounding_box=bounding_box,
bin_ext=bin_ext_name,
coord_col_name=coord_col_name,
sampling=sampling
)
return hdr, bin_table_hdu
|
(self, bounding_box=None, bin_ext_name='WCS-TABLE', coord_col_name='coordinates', sampling=1)
|
44,514 |
gwcs.wcs
|
transform
|
Transform positions between two frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame into which to transform.
args : float or array-like
Inputs in ``from_frame``, separate inputs for each dimension.
output_with_units : bool
If ``True`` - returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to any of the inputs being
outside the bounding_box are set to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is np.nan).
|
def transform(self, from_frame, to_frame, *args, **kwargs):
"""
Transform positions between two frames.
Parameters
----------
from_frame : str or `~gwcs.coordinate_frames.CoordinateFrame`
Initial coordinate frame.
to_frame : str, or instance of `~gwcs.coordinate_frames.CoordinateFrame`
Coordinate frame into which to transform.
args : float or array-like
Inputs in ``from_frame``, separate inputs for each dimension.
output_with_units : bool
If ``True`` - returns a `~astropy.coordinates.SkyCoord` or
`~astropy.coordinates.SpectralCoord` object.
with_bounding_box : bool, optional
If True(default) values in the result which correspond to any of the inputs being
outside the bounding_box are set to ``fill_value``.
fill_value : float, optional
Output value for inputs outside the bounding_box (default is np.nan).
"""
transform = self.get_transform(from_frame, to_frame)
if not utils.isnumerical(args[0]):
inp_frame = getattr(self, from_frame)
args = inp_frame.coordinate_to_quantity(*args)
if not transform.uses_quantity:
args = utils.get_values(inp_frame.unit, *args)
with_units = kwargs.pop("with_units", False)
if 'with_bounding_box' not in kwargs:
kwargs['with_bounding_box'] = True
if 'fill_value' not in kwargs:
kwargs['fill_value'] = np.nan
result = transform(*args, **kwargs)
if with_units:
to_frame_name, to_frame_obj = self._get_frame_name(to_frame)
if to_frame_obj is not None:
if to_frame_obj.naxes == 1:
result = to_frame_obj.coordinates(result)
else:
result = to_frame_obj.coordinates(*result)
else:
raise TypeError("Coordinate objects could not be created because"
"frame {0} is not defined.".format(to_frame_name))
return result
|
(self, from_frame, to_frame, *args, **kwargs)
|
44,515 |
gwcs.api
|
world_to_array_index
|
Convert world coordinates (represented by Astropy objects) to array
indices.
|
def world_to_array_index(self, *world_objects):
"""
Convert world coordinates (represented by Astropy objects) to array
indices.
"""
result = self.invert(*world_objects, with_units=True)[::-1]
return tuple([utils._toindex(r) for r in result])
|
(self, *world_objects)
|
44,516 |
gwcs.api
|
world_to_array_index_values
|
Convert world coordinates to array indices.
This is the same as `~BaseLowLevelWCS.world_to_pixel_values` except that
the indices should be returned in ``(i, j)`` order, where for an image
``i`` is the row and ``j`` is the column (i.e. the opposite order to
`~BaseLowLevelWCS.pixel_to_world_values`). The indices should be
returned as rounded integers.
|
def world_to_array_index_values(self, *world_arrays):
"""
Convert world coordinates to array indices.
This is the same as `~BaseLowLevelWCS.world_to_pixel_values` except that
the indices should be returned in ``(i, j)`` order, where for an image
``i`` is the row and ``j`` is the column (i.e. the opposite order to
`~BaseLowLevelWCS.pixel_to_world_values`). The indices should be
returned as rounded integers.
"""
result = self.world_to_pixel_values(*world_arrays)
if self.pixel_n_dim != 1:
result = result[::-1]
return result
|
(self, *world_arrays)
|
44,517 |
gwcs.api
|
world_to_pixel
|
Convert world coordinates to pixel values.
|
def world_to_pixel(self, *world_objects):
"""
Convert world coordinates to pixel values.
"""
result = self.invert(*world_objects, with_units=True)
if self.input_frame.naxes > 1:
first_res = result[0]
if not utils.isnumerical(first_res):
result = [i.value for i in result]
else:
if not utils.isnumerical(result):
result = result.value
return result
|
(self, *world_objects)
|
44,518 |
gwcs.api
|
world_to_pixel_values
|
Convert world coordinates to pixel coordinates.
This method takes ``world_n_dim`` scalars or arrays as input in units
given by ``world_axis_units``. Returns ``pixel_n_dim`` scalars or
arrays. Note that pixel coordinates are assumed to be 0 at the center of
the first pixel in each dimension. If a world coordinate does not have a
matching pixel coordinate, NaN can be returned. The coordinates should
be returned in the ``(x, y)`` order, where for an image, ``x`` is the
horizontal coordinate and ``y`` is the vertical coordinate.
|
def world_to_pixel_values(self, *world_arrays):
"""
Convert world coordinates to pixel coordinates.
This method takes ``world_n_dim`` scalars or arrays as input in units
given by ``world_axis_units``. Returns ``pixel_n_dim`` scalars or
arrays. Note that pixel coordinates are assumed to be 0 at the center of
the first pixel in each dimension. If a world coordinate does not have a
matching pixel coordinate, NaN can be returned. The coordinates should
be returned in the ``(x, y)`` order, where for an image, ``x`` is the
horizontal coordinate and ``y`` is the vertical coordinate.
"""
world_arrays = self._add_units_input(world_arrays, self.backward_transform, self.output_frame)
result = self.invert(*world_arrays, with_units=False)
return self._remove_quantity_output(result, self.input_frame)
|
(self, *world_arrays)
|
44,521 |
gwcs.wcstools
|
grid_from_bounding_box
|
Create a grid of input points from the WCS bounding_box.
Note: If ``bbox`` is a tuple describing the range of an axis in ``bounding_box``,
``x.5`` is considered part of the next pixel in ``bbox[0]``
and part of the previous pixel in ``bbox[1]``. In this way if
``bbox`` describes the edges of an image the indexing includes
only pixels within the image.
Parameters
----------
bounding_box : tuple
The bounding_box of a WCS object, `~gwcs.wcs.WCS.bounding_box`.
step : scalar or tuple
Step size for grid in each dimension. Scalar applies to all dimensions.
center : bool
The bounding_box is in order of X, Y [, Z] and the output will be in the
same order.
Examples
--------
>>> bb = ((-1, 2.9), (6, 7.5))
>>> grid_from_bounding_box(bb, step=(1, .5), center=False)
array([[[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ]],
[[ 6. , 6. , 6. , 6. , 6. ],
[ 6.5, 6.5, 6.5, 6.5, 6.5],
[ 7. , 7. , 7. , 7. , 7. ],
[ 7.5, 7.5, 7.5, 7.5, 7.5]]])
>>> bb = ((-1, 2.9), (6, 7.5))
>>> grid_from_bounding_box(bb)
array([[[-1., 0., 1., 2., 3.],
[-1., 0., 1., 2., 3.]],
[[ 6., 6., 6., 6., 6.],
[ 7., 7., 7., 7., 7.]]])
Returns
-------
x, y [, z]: ndarray
Grid of points.
|
def grid_from_bounding_box(bounding_box, step=1, center=True):
"""
Create a grid of input points from the WCS bounding_box.
Note: If ``bbox`` is a tuple describing the range of an axis in ``bounding_box``,
``x.5`` is considered part of the next pixel in ``bbox[0]``
and part of the previous pixel in ``bbox[1]``. In this way if
``bbox`` describes the edges of an image the indexing includes
only pixels within the image.
Parameters
----------
bounding_box : tuple
The bounding_box of a WCS object, `~gwcs.wcs.WCS.bounding_box`.
step : scalar or tuple
Step size for grid in each dimension. Scalar applies to all dimensions.
center : bool
The bounding_box is in order of X, Y [, Z] and the output will be in the
same order.
Examples
--------
>>> bb = ((-1, 2.9), (6, 7.5))
>>> grid_from_bounding_box(bb, step=(1, .5), center=False)
array([[[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ],
[-1. , 0. , 1. , 2. , 3. ]],
[[ 6. , 6. , 6. , 6. , 6. ],
[ 6.5, 6.5, 6.5, 6.5, 6.5],
[ 7. , 7. , 7. , 7. , 7. ],
[ 7.5, 7.5, 7.5, 7.5, 7.5]]])
>>> bb = ((-1, 2.9), (6, 7.5))
>>> grid_from_bounding_box(bb)
array([[[-1., 0., 1., 2., 3.],
[-1., 0., 1., 2., 3.]],
[[ 6., 6., 6., 6., 6.],
[ 7., 7., 7., 7., 7.]]])
Returns
-------
x, y [, z]: ndarray
Grid of points.
"""
def _bbox_to_pixel(bbox):
return (np.floor(bbox[0] + 0.5), np.ceil(bbox[1] - 0.5))
# 1D case
if np.isscalar(bounding_box[0]):
nd = 1
bounding_box = (bounding_box, )
else:
nd = len(bounding_box)
if center:
bb = tuple([_bbox_to_pixel(bb) for bb in bounding_box])
else:
bb = bounding_box
step = np.atleast_1d(step)
if nd > 1 and len(step) == 1:
step = np.repeat(step, nd)
if len(step) != len(bb):
raise ValueError('`step` must be a scalar, or tuple with length '
'matching `bounding_box`')
slices = []
for d, s in zip(bb, step):
slices.append(slice(d[0], d[1] + s, s))
grid = np.mgrid[slices[::-1]][::-1]
if nd == 1:
return grid[0]
return grid
|
(bounding_box, step=1, center=True)
|
44,527 |
gwcs.wcstools
|
wcs_from_fiducial
|
Create a WCS object from a fiducial point in a coordinate frame.
If an additional transform is supplied it is prepended to the projection.
Parameters
----------
fiducial : `~astropy.coordinates.SkyCoord` or tuple of float
One of:
A location on the sky in some standard coordinate system.
A Quantity with spectral units.
A list of the above.
coordinate_frame : ~gwcs.coordinate_frames.CoordinateFrame`
The output coordinate frame.
If fiducial is not an instance of `~astropy.coordinates.SkyCoord`,
``coordinate_frame`` is required.
projection : `~astropy.modeling.projections.Projection`
Projection instance - required if there is a celestial component in
the fiducial.
transform : `~astropy.modeling.Model` (optional)
An optional tranform to be prepended to the transform constructed by
the fiducial point. The number of outputs of this transform must equal
the number of axes in the coordinate frame.
name : str
Name of this WCS.
bounding_box : tuple
The bounding box over which the WCS is valid.
It is a tuple of tuples of size 2 where each tuple
represents a range of (low, high) values. The ``bounding_box`` is in the order of
the axes, `~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two inputs and axes_order(0, 1) the bounding box is ((xlow, xhigh), (ylow, yhigh)).
input_frame : ~gwcs.coordinate_frames.CoordinateFrame`
The input coordinate frame.
|
def wcs_from_fiducial(fiducial, coordinate_frame=None, projection=None,
transform=None, name='', bounding_box=None, input_frame=None):
"""
Create a WCS object from a fiducial point in a coordinate frame.
If an additional transform is supplied it is prepended to the projection.
Parameters
----------
fiducial : `~astropy.coordinates.SkyCoord` or tuple of float
One of:
A location on the sky in some standard coordinate system.
A Quantity with spectral units.
A list of the above.
coordinate_frame : ~gwcs.coordinate_frames.CoordinateFrame`
The output coordinate frame.
If fiducial is not an instance of `~astropy.coordinates.SkyCoord`,
``coordinate_frame`` is required.
projection : `~astropy.modeling.projections.Projection`
Projection instance - required if there is a celestial component in
the fiducial.
transform : `~astropy.modeling.Model` (optional)
An optional tranform to be prepended to the transform constructed by
the fiducial point. The number of outputs of this transform must equal
the number of axes in the coordinate frame.
name : str
Name of this WCS.
bounding_box : tuple
The bounding box over which the WCS is valid.
It is a tuple of tuples of size 2 where each tuple
represents a range of (low, high) values. The ``bounding_box`` is in the order of
the axes, `~gwcs.coordinate_frames.CoordinateFrame.axes_order`.
For two inputs and axes_order(0, 1) the bounding box is ((xlow, xhigh), (ylow, yhigh)).
input_frame : ~gwcs.coordinate_frames.CoordinateFrame`
The input coordinate frame.
"""
from .wcs import WCS
if transform is not None:
if not isinstance(transform, Model):
raise UnsupportedTransformError("Expected transform to be an instance"
"of astropy.modeling.Model")
# transform_outputs = transform.n_outputs
if isinstance(fiducial, coord.SkyCoord):
coordinate_frame = CelestialFrame(reference_frame=fiducial.frame,
unit=(fiducial.spherical.lon.unit,
fiducial.spherical.lat.unit))
fiducial_transform = _sky_transform(fiducial, projection)
elif isinstance(coordinate_frame, CompositeFrame):
trans_from_fiducial = []
for item in coordinate_frame.frames:
ind = coordinate_frame.frames.index(item)
try:
model = frame2transform[item.__class__](fiducial[ind], projection=projection)
except KeyError:
raise TypeError("Coordinate frame {0} is not supported".format(item))
trans_from_fiducial.append(model)
fiducial_transform = functools.reduce(lambda x, y: x & y,
[tr for tr in trans_from_fiducial])
else:
# The case of one coordinate frame with more than 1 axes.
try:
fiducial_transform = frame2transform[coordinate_frame.__class__](fiducial,
projection=projection)
except KeyError:
raise TypeError("Coordinate frame {0} is not supported".format(coordinate_frame))
if transform is not None:
forward_transform = transform | fiducial_transform
else:
forward_transform = fiducial_transform
if bounding_box is not None:
if len(bounding_box) != forward_transform.n_outputs:
raise ValueError("Expected the number of items in 'bounding_box' to be equal to the "
"number of outputs of the forawrd transform.")
forward_transform.bounding_box = bounding_box[::-1]
if input_frame is None:
input_frame = 'detector'
return WCS(output_frame=coordinate_frame, input_frame=input_frame,
forward_transform=forward_transform, name=name)
|
(fiducial, coordinate_frame=None, projection=None, transform=None, name='', bounding_box=None, input_frame=None)
|
44,528 |
gwcs.wcstools
|
wcs_from_points
|
Given two matching sets of coordinates on detector and sky, compute the WCS.
Notes
-----
This function implements the following algorithm:
``world_coords`` are transformed to a projection plane using the specified
projection. A polynomial fits ``xy`` and the projected coordinates.
The fitted polynomials and the projection transforms are combined into a
tranform from detector to sky. The input coordinate frame is set to
``detector``. The output coordinate frame is initialized based on the frame
in the fiducial.
Parameters
----------
xy : tuple of 2 ndarrays
Points in the input cooridnate frame - x, y inputs.
world_coords : `~astropy.coordinates.SkyCoord`
Points in the output coordinate frame.
The order matches the order of ``xy``.
proj_point : `~astropy.coordinates.SkyCoord`
A fiducial point in the output coordinate frame. If set to 'center'
(default), the geometric center of input world
coordinates will be used as the projection point. To specify an exact
point for the projection, a Skycoord object with a coordinate pair can
be passed in.
projection : `~astropy.modeling.projections.Projection`
A projection type. One of the projections in
`~astropy.modeling.projections.projcodes`. Defaults to TAN projection
(`astropy.modeling.projections.Sky2Pix_TAN`).
poly_degree : int
Degree of polynomial model to be fit to data. Defaults to 4.
polynomial_type : str
one of "polynomial", "chebyshev", "legendre". Defaults to "polynomial".
Returns
-------
wcsobj : `~gwcs.wcs.WCS`
a WCS object for this observation.
|
def wcs_from_points(xy, world_coords, proj_point='center',
projection=projections.Sky2Pix_TAN(), poly_degree=4,
polynomial_type='polynomial'):
"""
Given two matching sets of coordinates on detector and sky, compute the WCS.
Notes
-----
This function implements the following algorithm:
``world_coords`` are transformed to a projection plane using the specified
projection. A polynomial fits ``xy`` and the projected coordinates.
The fitted polynomials and the projection transforms are combined into a
tranform from detector to sky. The input coordinate frame is set to
``detector``. The output coordinate frame is initialized based on the frame
in the fiducial.
Parameters
----------
xy : tuple of 2 ndarrays
Points in the input cooridnate frame - x, y inputs.
world_coords : `~astropy.coordinates.SkyCoord`
Points in the output coordinate frame.
The order matches the order of ``xy``.
proj_point : `~astropy.coordinates.SkyCoord`
A fiducial point in the output coordinate frame. If set to 'center'
(default), the geometric center of input world
coordinates will be used as the projection point. To specify an exact
point for the projection, a Skycoord object with a coordinate pair can
be passed in.
projection : `~astropy.modeling.projections.Projection`
A projection type. One of the projections in
`~astropy.modeling.projections.projcodes`. Defaults to TAN projection
(`astropy.modeling.projections.Sky2Pix_TAN`).
poly_degree : int
Degree of polynomial model to be fit to data. Defaults to 4.
polynomial_type : str
one of "polynomial", "chebyshev", "legendre". Defaults to "polynomial".
Returns
-------
wcsobj : `~gwcs.wcs.WCS`
a WCS object for this observation.
"""
from .wcs import WCS
supported_poly_types = {"polynomial": models.Polynomial2D,
"chebyshev": models.Chebyshev2D,
"legendre": models.Legendre2D
}
x, y = xy
if not isinstance(world_coords, coord.SkyCoord):
raise TypeError('`world_coords` must be an `~astropy.coordinates.SkyCoord`')
try:
lon, lat = world_coords.data.lon.deg, world_coords.data.lat.deg
except AttributeError:
unit_sph = world_coords.unit_spherical
lon, lat = unit_sph.lon.deg, unit_sph.lat.deg
if isinstance(proj_point, coord.SkyCoord):
assert proj_point.size == 1
proj_point.transform_to(world_coords)
crval = (proj_point.data.lon, proj_point.data.lat)
frame = proj_point.frame
elif proj_point == 'center': # use center of input points
sc1 = coord.SkyCoord(lon.min()*u.deg, lat.max()*u.deg)
sc2 = coord.SkyCoord(lon.max()*u.deg, lat.min()*u.deg)
pa = sc1.position_angle(sc2)
sep = sc1.separation(sc2)
midpoint_sc = sc1.directional_offset_by(pa, sep/2)
crval = (midpoint_sc.data.lon, midpoint_sc.data.lat)
frame = sc1.frame
else:
raise ValueError("`proj_point` must be set to 'center', or an" +
"`~astropy.coordinates.SkyCoord` object with " +
"a pair of points.")
if not isinstance(projection, projections.Projection):
raise UnsupportedProjectionError("Unsupported projection code {0}".format(projection))
if polynomial_type not in supported_poly_types.keys():
raise ValueError("Unsupported polynomial_type: {}. "
"Only one of {} is supported.".format(polynomial_type,
supported_poly_types.keys()))
skyrot = models.RotateCelestial2Native(crval[0], crval[1], 180*u.deg)
trans = (skyrot | projection)
projection_x, projection_y = trans(lon, lat)
poly = supported_poly_types[polynomial_type](poly_degree)
fitter = fitting.LevMarLSQFitter()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
poly_x = fitter(poly, x, y, projection_x)
poly_y = fitter(poly, x, y, projection_y)
distortion = models.Mapping((0, 1, 0, 1)) | poly_x & poly_y
poly_x_inverse = fitter(poly, projection_x, projection_y, x)
poly_y_inverse = fitter(poly, projection_x, projection_y, y)
distortion.inverse = models.Mapping((0, 1, 0, 1)) | poly_x_inverse & poly_y_inverse
transform = distortion | projection.inverse | skyrot.inverse
skyframe = CelestialFrame(reference_frame=frame)
detector = Frame2D(name="detector")
pipeline = [(detector, transform),
(skyframe, None)]
return WCS(pipeline)
|
(xy, world_coords, proj_point='center', projection=<Sky2Pix_Gnomonic()>, poly_degree=4, polynomial_type='polynomial')
|
44,530 |
sock
|
AbstractPwnlibTubes
| null |
class AbstractPwnlibTubes(object):
def recvall(self, *args, **kwargs):
return self.read_all(*args, **kwargs)
def recvline(self, *args, **kwargs):
return self.read_line(*args, **kwargs)
def recvuntil(self, *args, **kwargs):
return self.read_until(*args, **kwargs)
def recvregex(self, *args, **kwargs):
return self.read_until_re(*args, **kwargs)
def sendline(self, *args, **kwargs):
return self.send_line(*args, **kwargs)
def readall(self, *args, **kwargs):
return self.recvall(*args, **kwargs)
def readline(self, *args, **kwargs):
return self.recvline(*args, **kwargs)
def readuntil(self, *args, **kwargs):
return self.recvuntil(*args, **kwargs)
def readregex(self, *args, **kwargs):
return self.recvregex(*args, **kwargs)
def interactive(self, *args, **kwargs):
return self.interact(*args, **kwargs)
|
()
|
44,531 |
sock
|
interactive
| null |
def interactive(self, *args, **kwargs):
return self.interact(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,532 |
sock
|
readall
| null |
def readall(self, *args, **kwargs):
return self.recvall(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,533 |
sock
|
readline
| null |
def readline(self, *args, **kwargs):
return self.recvline(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,534 |
sock
|
readregex
| null |
def readregex(self, *args, **kwargs):
return self.recvregex(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,535 |
sock
|
readuntil
| null |
def readuntil(self, *args, **kwargs):
return self.recvuntil(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,536 |
sock
|
recvall
| null |
def recvall(self, *args, **kwargs):
return self.read_all(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,537 |
sock
|
recvline
| null |
def recvline(self, *args, **kwargs):
return self.read_line(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,538 |
sock
|
recvregex
| null |
def recvregex(self, *args, **kwargs):
return self.read_until_re(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,539 |
sock
|
recvuntil
| null |
def recvuntil(self, *args, **kwargs):
return self.read_until(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,540 |
sock
|
sendline
| null |
def sendline(self, *args, **kwargs):
return self.send_line(*args, **kwargs)
|
(self, *args, **kwargs)
|
44,541 |
sock
|
AbstractSock
|
SomeSock("127.0.0.1", 3123, timeout=15)
- timeout should be given using explicit keyword
|
class AbstractSock(object):
"""
SomeSock("127.0.0.1", 3123, timeout=15)
- timeout should be given using explicit keyword
"""
SOCKET_FAMILY = NotImplemented
SOCKET_TYPE = NotImplemented
RECV_SIZE = 4096
def __init__(self, *addr, **timeout_dict):
self.addr = parse_addr(*addr)
# python2 does not allow (*args, timeout=None) :(
self.timeout = float(timeout_dict.pop("timeout", DEFAULT_TIMEOUT))
if timeout_dict:
raise TypeError("Only timeout should be given through keyword args")
self.buf = b""
self.eof = False
self._init_sock()
self._connect()
return
@classmethod
def from_socket(cls, sock, timeout=None):
self = object.__new__(cls)
self.addr = sock.getpeername()
self.sock = sock
assert self.SOCKET_TYPE == sock.type
if timeout is not None:
self.timeout = float(timeout)
self.sock.settimeout(self.timeout)
else:
self.timeout = self.sock.gettimeout()
self.buf = b""
self.eof = False
return self
def _init_sock(self):
self.sock = socket.socket(self.SOCKET_FAMILY, self.SOCKET_TYPE)
self.sock.settimeout(self.timeout)
def _connect(self):
return NotImplemented
def recv(self):
return NotImplemented
def send(self):
return NotImplemented
def send_line(self, line):
return self.send(Bytes(line) + b"\n")
def read_line(self, timeout=None):
return self.read_until(b"\n", timeout=timeout)
def read_one(self, timeout=None):
"""
Read something from socket
timeout = -1 - wait until something new in socket
timeout = 0 - return cached buffer + socket buffer immediately
timeout = N - wait N seconds until something new in socket, else raise TimeoutError
"""
self._fill_one(timeout)
if not self.buf and timeout != 0:
raise EOFError("Connection closed")
res = self.buf
self.buf = b""
return res
def read_all(self, timeout=None):
"""
Read everything from socket (the other side should close socket before timeout)
"""
self.read_cond(lambda x: x.eof, timeout)
res = self.buf
self.buf = b""
return res
def skip_until(self, s, timeout=None):
"""
Skip everything until first occurence of string @s, stop before occurence.
Return nothing.
"""
s = Bytes(s)
self.read_cond(lambda x: s in x.buf, timeout)
start = self.buf.find(s)
self.buf = self.buf[start:]
return
def skip_until_re(self, r, flags=0, timeout=None):
"""
Skip everything until first match of regexp @r, stop before match.
Return match.
"""
r = Bytes(r)
match = self.read_cond(
lambda x: re.search(r, x.buf, flags=flags), timeout)
self.buf = self.buf[match.start():]
return match if len(match.groups()) > 1 else match.group(len(match.groups()))
def read_until(self, s, timeout=None):
"""
Read everything until first occurence of string @s, stop after occurence.
Return everything before @s, and @s.
"""
s = Bytes(s)
self.read_cond(lambda x: s in x.buf, timeout)
end = self.buf.find(s) + len(s)
res = self.buf[:end]
self.buf = self.buf[end:]
return res
def read_until_re(self, r, flags=0, timeout=None):
"""
Read everything until first match of regexp @r, stop after match.
Return match.
Note: if you need the data before match, you can make group (.*?) for that:
r1 = r"(\d) coins"
r2 = r"(.*?)(\d coins)"
"""
r = Bytes(r)
match = self.read_cond(lambda x: re.search(r, x.buf, flags=flags), timeout)
self.buf = self.buf[match.end():]
return match if len(match.groups()) > 1 else match.group(len(match.groups()))
def read_nbytes(self, n, timeout=None):
self.read_cond(lambda x: len(x.buf) >= n, timeout)
self.buf, res = self.buf[n:], self.buf[:n]
return res
def read_cond(self, cond, timeout=None):
"""
Read bytes while @cond(self) is False. Return @cond return.
self.buf should be analyzed/cropped by caller, if needed
(this is rather low-level function, helper)
"""
time_start = time()
remaining = timeout
if timeout is None:
timeout = self.timeout
if self.eof and not self.buf:
raise EOFError("Connection closed")
res = cond(self)
while not res:
self._fill_one(remaining)
res = cond(self)
if res:
break
if self.eof:
raise EOFError("Connection closed")
if timeout == -1:
remaining = -1
elif timeout == 0:
raise Timeout("read_cond timeout")
else:
remaining = time_start + timeout - time()
if remaining <= 0:
raise Timeout("read_cond timeout")
return res
def _fill_one(self, timeout=None):
"""Read something from socket.
timeout = -1 - blocking until read
timeout = 0 - non-blocking
timeout = N - blocking until read or timeout
"""
if timeout is None:
timeout = self.timeout
if timeout == 0:
self.sock.setblocking(False)
try:
self.buf += self.recv(self.RECV_SIZE)
except SocketError:
# WHAT?
pass
return
if timeout == -1:
self.sock.settimeout(None) # blocking, infinity timeout
else:
self.sock.setblocking(True) # it's overriden by settimeout, but for clarity
self.sock.settimeout(timeout)
buf = self.recv(self.RECV_SIZE)
self.eof = (not buf)
self.buf += buf
return
@property
def socket(self):
return self.sock
@property
def fileno(self):
return self.sock.fileno()
def write(self, s):
return self.send(s)
def shut_wr(self):
self.sock.shutdown(socket.SHUT_WR)
def shut_rd(self):
self.sock.shutdown(socket.SHUT_RD)
def close(self):
return self.sock.close()
def __del__(self):
self.sock.close()
def interact_telnet(self):
sys.stdout.buffer.write(self.buf)
self.buf = b""
t = telnetlib.Telnet()
t.sock = self.sock
return t.interact()
def interact(self):
# copied from Telnetlib with minor fixes
import selectors
_TelnetSelector = selectors.SelectSelector
sys.stdout.buffer.write(self.buf)
self.buf = b""
with _TelnetSelector() as selector:
selector.register(self.sock, selectors.EVENT_READ)
selector.register(sys.stdin, selectors.EVENT_READ)
while True:
for key, events in selector.select():
if key.fileobj is self.sock:
try:
text = self.read_one()
except EOFError:
print('*** Connection closed by remote host ***')
return
if text:
sys.stdout.buffer.write(text)
sys.stdout.flush()
elif key.fileobj is sys.stdin:
line = sys.stdin.readline()
if not line:
return
self.send(line)
|
(*addr, **timeout_dict)
|
44,542 |
sock
|
__del__
| null |
def __del__(self):
self.sock.close()
|
(self)
|
44,543 |
sock
|
__init__
| null |
def __init__(self, *addr, **timeout_dict):
self.addr = parse_addr(*addr)
# python2 does not allow (*args, timeout=None) :(
self.timeout = float(timeout_dict.pop("timeout", DEFAULT_TIMEOUT))
if timeout_dict:
raise TypeError("Only timeout should be given through keyword args")
self.buf = b""
self.eof = False
self._init_sock()
self._connect()
return
|
(self, *addr, **timeout_dict)
|
44,544 |
sock
|
_connect
| null |
def _connect(self):
return NotImplemented
|
(self)
|
44,545 |
sock
|
_fill_one
|
Read something from socket.
timeout = -1 - blocking until read
timeout = 0 - non-blocking
timeout = N - blocking until read or timeout
|
def _fill_one(self, timeout=None):
"""Read something from socket.
timeout = -1 - blocking until read
timeout = 0 - non-blocking
timeout = N - blocking until read or timeout
"""
if timeout is None:
timeout = self.timeout
if timeout == 0:
self.sock.setblocking(False)
try:
self.buf += self.recv(self.RECV_SIZE)
except SocketError:
# WHAT?
pass
return
if timeout == -1:
self.sock.settimeout(None) # blocking, infinity timeout
else:
self.sock.setblocking(True) # it's overriden by settimeout, but for clarity
self.sock.settimeout(timeout)
buf = self.recv(self.RECV_SIZE)
self.eof = (not buf)
self.buf += buf
return
|
(self, timeout=None)
|
44,546 |
sock
|
_init_sock
| null |
def _init_sock(self):
self.sock = socket.socket(self.SOCKET_FAMILY, self.SOCKET_TYPE)
self.sock.settimeout(self.timeout)
|
(self)
|
44,547 |
sock
|
close
| null |
def close(self):
return self.sock.close()
|
(self)
|
44,548 |
sock
|
interact
| null |
def interact(self):
# copied from Telnetlib with minor fixes
import selectors
_TelnetSelector = selectors.SelectSelector
sys.stdout.buffer.write(self.buf)
self.buf = b""
with _TelnetSelector() as selector:
selector.register(self.sock, selectors.EVENT_READ)
selector.register(sys.stdin, selectors.EVENT_READ)
while True:
for key, events in selector.select():
if key.fileobj is self.sock:
try:
text = self.read_one()
except EOFError:
print('*** Connection closed by remote host ***')
return
if text:
sys.stdout.buffer.write(text)
sys.stdout.flush()
elif key.fileobj is sys.stdin:
line = sys.stdin.readline()
if not line:
return
self.send(line)
|
(self)
|
44,549 |
sock
|
interact_telnet
| null |
def interact_telnet(self):
sys.stdout.buffer.write(self.buf)
self.buf = b""
t = telnetlib.Telnet()
t.sock = self.sock
return t.interact()
|
(self)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.