index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
45,289 |
easul.visual.element.element
|
create
|
Create element container for output
:param form:
:return:
|
def create(self, **kwargs):
"""
Create element container for output
:param form:
:return:
"""
output = []
start = self.render_content_start()
if start:
output.append(start)
body = self.render_content_body(**kwargs)
if body:
output.append(body)
end = self.render_content_end()
if end:
output.append(end)
return "".join(output)
|
(self, **kwargs)
|
45,290 |
easul.visual.element.element
|
generate_context
| null |
def generate_context(self, algorithm, input_data, visual, **kwargs):
ctx = {}
for element in self.elements:
element_ctx = element.generate_context(algorithm=algorithm, input_data=input_data, visual=visual, **kwargs)
if not element_ctx:
continue
ctx.update(element_ctx)
return ctx
|
(self, algorithm, input_data, visual, **kwargs)
|
45,291 |
easul.visual.element.element
|
generate_metadata
| null |
def generate_metadata(self, algorithm, dataset, **kwargs):
metadata = {}
for child_element in self.elements:
child_metadata = child_element.generate_metadata(algorithm=algorithm, dataset=dataset, **kwargs)
if child_metadata:
metadata.update(child_metadata)
return metadata
|
(self, algorithm, dataset, **kwargs)
|
45,292 |
easul.visual.element.element
|
prepare_element
| null |
def prepare_element(self, **kwargs):
return
|
(self, **kwargs)
|
45,293 |
easul.visual.element.element
|
render_content_body
|
For each child element renders content using the classes'
before_add_child() the child's create function and
the classes' after_add_child()
:param html:
:param form:
:return:
|
def render_content_body(self, **kwargs):
"""
For each child element renders content using the classes'
before_add_child() the child's create function and
the classes' after_add_child()
:param html:
:param form:
:return:
"""
child_elements = self.elements
if child_elements is None:
return ""
content_list = []
for child_element in child_elements:
before = self.before_add_child(child_element)
if before:
content_list.append(before)
content = child_element.create(**kwargs)
if content:
content_list.append(content)
after = self.after_add_child(child_element)
if after:
content_list.append(after)
return "".join(content_list)
|
(self, **kwargs)
|
45,294 |
easul.visual.element.element
|
render_content_end
| null |
def render_content_end(self, **kwargs):
pass
|
(self, **kwargs)
|
45,295 |
easul.visual.element.element
|
render_content_start
| null |
def render_content_start(self, **kwargs):
pass
|
(self, **kwargs)
|
45,296 |
easul.error
|
ConversionError
|
Unable to convert the input data to the correct type due to another exception.
|
class ConversionError(InvalidData):
"""
Unable to convert the input data to the correct type due to another exception.
"""
def __init__(self, message, orig_exception, **kwargs):
self.orig_exception = orig_exception
kwargs["orig"] = orig_exception
super().__init__(message + " [" + ", ".join([k + "=" + str(v) for k,v in kwargs.items()]) + "]")
def __repr__(self):
return
|
(message, orig_exception, **kwargs)
|
45,297 |
easul.error
|
__init__
| null |
def __init__(self, message, orig_exception, **kwargs):
self.orig_exception = orig_exception
kwargs["orig"] = orig_exception
super().__init__(message + " [" + ", ".join([k + "=" + str(v) for k,v in kwargs.items()]) + "]")
|
(self, message, orig_exception, **kwargs)
|
45,298 |
easul.error
|
__repr__
| null |
def __repr__(self):
return
|
(self)
|
45,299 |
easul.process
|
ConvertRowsToDictionary
|
Converts list input to a dictionary containing the 'fields_to_extract' from the first row of the list
and puts the input list data into the 'output_field' of the dictionary.
If there are no 'fields_to_extract' it will output a dictionary containing just the input list data
in the 'output_field' of the dictionary.
|
class ConvertRowsToDictionary:
"""
Converts list input to a dictionary containing the 'fields_to_extract' from the first row of the list
and puts the input list data into the 'output_field' of the dictionary.
If there are no 'fields_to_extract' it will output a dictionary containing just the input list data
in the 'output_field' of the dictionary.
"""
output_field:str = field(default=None)
fields_to_extract:List[str] = field(factory=list)
def __call__(self, record):
if type(record) is not list:
raise AttributeError("Input data must be a list")
if self.fields_to_extract:
first_item = record[0] if len(record)>0 else {}
new_record = {field:first_item.get(field) for field in self.fields_to_extract}
else:
new_record = {}
new_record[self.output_field] = record
return new_record
|
(*, output_field: str = None, fields_to_extract: List[str] = NOTHING) -> None
|
45,300 |
easul.process
|
__call__
| null |
def __call__(self, record):
if type(record) is not list:
raise AttributeError("Input data must be a list")
if self.fields_to_extract:
first_item = record[0] if len(record)>0 else {}
new_record = {field:first_item.get(field) for field in self.fields_to_extract}
else:
new_record = {}
new_record[self.output_field] = record
return new_record
|
(self, record)
|
45,301 |
easul.process
|
__eq__
|
Method generated by attrs for class ConvertRowsToDictionary.
|
# processes are callables which receive a data structure and return a processed version of the data structure
# most of the processes defined here are classes but functions can work as well
from datetime import datetime, date, time
import logging
from typing import Callable, List, Dict, Optional
LOG = logging.getLogger(__name__)
from attrs import define, field
@define(kw_only=True)
class ExcludeFields:
"""
Exclude specified fields from the output data
"""
exclude_fields = field()
def __call__(self, record):
for exclude_field in self.exclude_fields:
if exclude_field in record.keys():
del record[exclude_field]
return record
|
(self, other)
|
45,304 |
easul.process
|
__ne__
|
Method generated by attrs for class ConvertRowsToDictionary.
| null |
(self, other)
|
45,307 |
easul.process
|
ConvertToFloat
|
Convert values in fields to float. If not possible will return None
|
class ConvertToFloat:
"""
Convert values in fields to float. If not possible will return None
"""
fields:List[str] = field()
def __call__(self, record):
for field in self.fields:
try:
record[field] = float(record[field])
except TypeError:
record[field] = None
except ValueError:
record[field] = None
except KeyError:
record[field] = None
return record
|
(*, fields: List[str]) -> None
|
45,308 |
easul.process
|
__call__
| null |
def __call__(self, record):
for field in self.fields:
try:
record[field] = float(record[field])
except TypeError:
record[field] = None
except ValueError:
record[field] = None
except KeyError:
record[field] = None
return record
|
(self, record)
|
45,309 |
easul.process
|
__eq__
|
Method generated by attrs for class ConvertToFloat.
|
# processes are callables which receive a data structure and return a processed version of the data structure
# most of the processes defined here are classes but functions can work as well
from datetime import datetime, date, time
import logging
from typing import Callable, List, Dict, Optional
LOG = logging.getLogger(__name__)
from attrs import define, field
@define(kw_only=True)
class ExcludeFields:
"""
Exclude specified fields from the output data
"""
exclude_fields = field()
def __call__(self, record):
for exclude_field in self.exclude_fields:
if exclude_field in record.keys():
del record[exclude_field]
return record
|
(self, other)
|
45,312 |
easul.process
|
__ne__
|
Method generated by attrs for class ConvertToFloat.
| null |
(self, other)
|
45,315 |
easul.process
|
ConvertToInt
|
Convert values in fields to int. If not possible will return None.
If value is a float it will be rounded to an int.
|
class ConvertToInt:
"""
Convert values in fields to int. If not possible will return None.
If value is a float it will be rounded to an int.
"""
fields:List[str] = field()
def __call__(self, record):
for field in self.fields:
try:
value = float(record[field])
except TypeError:
value = None
except ValueError:
value = None
if value is not None:
try:
value = round(value)
except ValueError:
value = None
record[field] = value
return record
|
(*, fields: List[str]) -> None
|
45,316 |
easul.process
|
__call__
| null |
def __call__(self, record):
for field in self.fields:
try:
value = float(record[field])
except TypeError:
value = None
except ValueError:
value = None
if value is not None:
try:
value = round(value)
except ValueError:
value = None
record[field] = value
return record
|
(self, record)
|
45,317 |
easul.process
|
__eq__
|
Method generated by attrs for class ConvertToInt.
|
# processes are callables which receive a data structure and return a processed version of the data structure
# most of the processes defined here are classes but functions can work as well
from datetime import datetime, date, time
import logging
from typing import Callable, List, Dict, Optional
LOG = logging.getLogger(__name__)
from attrs import define, field
@define(kw_only=True)
class ExcludeFields:
"""
Exclude specified fields from the output data
"""
exclude_fields = field()
def __call__(self, record):
for exclude_field in self.exclude_fields:
if exclude_field in record.keys():
del record[exclude_field]
return record
|
(self, other)
|
45,320 |
easul.process
|
__ne__
|
Method generated by attrs for class ConvertToInt.
| null |
(self, other)
|
45,323 |
easul.data
|
DFDataInput
|
Data input underpinned by pandas DataFrame inputs.
|
class DFDataInput(DataInput):
"""
Data input underpinned by pandas DataFrame inputs.
"""
convertors = {
"number": lambda x, y: x.astype("float"),
"float": lambda x,y: DFDataInput.to_float(x),
"date": lambda x, y: pd.to_datetime(x, format=y["format"]),
"datetime": lambda x, y: pd.to_datetime(x),
"category": lambda x, y: x.astype("category"),
"integer": lambda x, y: x.astype("int64"),
"list": lambda x, y: list(x),
"string": lambda x, y: x.astype("string"),
"boolean": lambda x,y: DFDataInput.to_boolean(x)
}
@classmethod
def to_boolean(cls,value):
if type(value[0]) is str:
if value[0] == "":
return [None]
value = value.astype("int64")
return value.astype("boolean")
@classmethod
def to_float(cls,value):
if type(value[0]) and value[0] == "" or value[0] is None:
return pd.Series(np.nan() * len(value))
return value.astype("float")
def _validate_data(self, data, fields):
if len(fields)==0:
return
for field_name, field_details in fields.items():
if not field_name in data:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
v = self.validator_cls(fields, allow_unknown=False)
for idx,row in data.iterrows():
if v.validate(row.to_dict()) is False:
raise error.ValidationError(v.errors)
def clean(self, data):
for column in data.columns:
if column in self.schema:
continue
del data[column]
return data
def _process_data(self, data):
return data
|
(data, schema: easul.data.DataSchema, convert: bool = True, validate: bool = True, encoded_with=None, encoder=None)
|
45,324 |
easul.data
|
__init__
| null |
def __init__(self, data, schema: DataSchema, convert:bool=True, validate:bool=True, encoded_with=None, encoder=None):
if encoded_with is not None and encoded_with != encoder:
raise AttributeError("Data input encoded with different encoder than the defined one")
self.schema = schema
self._convert = convert
self._validate = validate
self.encoded_with = encoded_with
self.encoder = encoder
self._data = None
self.data = data
|
(self, data, schema: easul.data.DataSchema, convert: bool = True, validate: bool = True, encoded_with=None, encoder=None)
|
45,325 |
easul.data
|
__repr__
| null |
def __repr__(self):
data = self.data.to_dict("records") if isinstance(self.data, pd.DataFrame) else self.data
return f"<{self.__class__.__name__} data={data}, schema={self.schema}>"
|
(self)
|
45,326 |
easul.data
|
_convert_data
| null |
def _convert_data(self, data, fields):
if type(data) is list:
return [self._convert_data(item, fields) for item in data]
for field_name, field_details in fields.items():
try:
if field_name not in data:
if "required" in field_details:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
else:
continue
prev_convert = field_details.get("pre_convert")
if prev_convert:
pre_convert_fn = self.convertors.get(prev_convert)
data[field_name] = pre_convert_fn(data[field_name], field_details)
field_type = field_details['type']
convert_fn = self.convertors.get(field_type)
if not convert_fn:
raise error.ConversionError(f"Field conversion function not available to convert '{field_name}' to type '{field_type}'", orig_exception=Exception, data=data)
data[field_name] = convert_fn(data[field_name], field_details)
except Exception as ex:
raise error.ConversionError(f"Unexpected error converting '{field_name}'", orig_exception=ex)
return data
|
(self, data, fields)
|
45,327 |
easul.data
|
_extract_data
| null |
def _extract_data(self, field_names):
data = self.data[field_names].to_numpy()
if self.encoder:
idx = 0
for field_name in field_names:
if self.encoder.is_field_encoded(field_name):
col = self.encoder.encode_field(field_name, self)
if len(col[0])>1:
data = np.concatenate((data[:,range(0,idx)], col, data[:,range(idx+1,data.shape[1])]), axis=1)
idx+=col.shape[1]
else:
data[:idx] = col
idx+=1
return data
|
(self, field_names)
|
45,328 |
easul.data
|
_init_data
| null |
def _init_data(self, data):
try:
if self._convert:
data = self.convert_data(data)
except BaseException as ex:
raise error.ConversionError(message="Unable to convert data", orig_exception=ex, data=data)
data = self.clean(data)
if self._validate:
self.validate(data)
self._data = self._process_data(data)
|
(self, data)
|
45,329 |
easul.data
|
_process_data
| null |
def _process_data(self, data):
return data
|
(self, data)
|
45,330 |
easul.data
|
_validate_data
| null |
def _validate_data(self, data, fields):
if len(fields)==0:
return
for field_name, field_details in fields.items():
if not field_name in data:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
v = self.validator_cls(fields, allow_unknown=False)
for idx,row in data.iterrows():
if v.validate(row.to_dict()) is False:
raise error.ValidationError(v.errors)
|
(self, data, fields)
|
45,331 |
easul.data
|
asdict
| null |
def asdict(self):
return self.data.to_dict("records") if isinstance(self.data, pd.DataFrame) else self.data
|
(self)
|
45,332 |
easul.data
|
clean
| null |
def clean(self, data):
for column in data.columns:
if column in self.schema:
continue
del data[column]
return data
|
(self, data)
|
45,333 |
easul.data
|
convert_data
| null |
def convert_data(self, data):
return self._convert_data(data, self.schema)
|
(self, data)
|
45,334 |
easul.data
|
is_matching_encoder
| null |
def is_matching_encoder(self, encoder):
return self.encoded_with == encoder
|
(self, encoder)
|
45,335 |
easul.data
|
train_test_split
| null |
def train_test_split(self, train_size=None, test_size=None, splitter=np_random_splitter, **kwargs):
if not train_size and not test_size:
raise AttributeError("train_size or test_size must be provided")
if not train_size:
train_size = 1-test_size
train, test = splitter(self.data, train_size, **kwargs)
data_cls = self.__class__
if isinstance(self.data, pd.DataFrame):
data_cls = DFDataInput
train_ds = data_cls(data=train,schema=self.schema, convert=False, validate=False)
test_ds = data_cls(data=test,schema=self.schema, convert=False, validate=False)
return train_ds, test_ds
|
(self, train_size=None, test_size=None, splitter=<function np_random_splitter at 0x7f4a18cb7d00>, **kwargs)
|
45,336 |
easul.data
|
validate
| null |
def validate(self, data):
if type(data) is list:
[self._validate_data(item, self.schema) for item in data]
else:
self._validate_data(data, self.schema)
|
(self, data)
|
45,337 |
easul.source
|
DataFrameSource
|
Source which gets 'data' from a pandas DataFrame utilising an appropriate 'reference_field'.
Also can use optional 'timestamp_field' if temporal in nature.
|
class DataFrameSource(Source):
"""
Source which gets 'data' from a pandas DataFrame utilising an appropriate 'reference_field'.
Also can use optional 'timestamp_field' if temporal in nature.
"""
data:pd.DataFrame = field(factory=pd.DataFrame)
reference_field = field()
timestamp_field = field(default=None)
def __attrs_post_init__(self):
if self.timestamp_field:
self.data.sort_values(by=[self.timestamp_field], inplace=True,ascending=False)
def _retrieve_raw_data(self, driver, step):
data = self.data.query(self.reference_field + " == '" + driver.journey["reference"] + "'")
if data.shape[0]==0:
raise StepDataNotAvailable(journey=driver.journey, step_name = step.name)
return data.to_dict("records")[0]
def __iter__(self):
for idx, adm in self.data.iterrows():
yield self._process_raw_data(adm)
|
(*, title: str, processes=NOTHING, data: pandas.core.frame.DataFrame = NOTHING, reference_field, timestamp_field=None) -> None
|
45,338 |
easul.source
|
__attrs_post_init__
| null |
def __attrs_post_init__(self):
if self.timestamp_field:
self.data.sort_values(by=[self.timestamp_field], inplace=True,ascending=False)
|
(self)
|
45,339 |
easul.source
|
__eq__
|
Method generated by attrs for class DataFrameSource.
|
import pandas as pd
from typing import List, Any, Dict
from easul.error import StepDataNotAvailable
import logging
from abc import abstractmethod
from attrs import define, field
from functools import partial
from easul.util import get_current_result
LOG = logging.getLogger(__name__)
@define(kw_only=True)
class Source:
"""
Base Source class. Sources provide access to raw data and processing which enables the creation of validated
InputData - which can be fed into algorithms.
"""
title: str = field()
processes = field(factory=list)
def retrieve(self, driver, step):
"""
Retrieve data in the form of a Python data structure.
Args:
driver:
step:
Returns:
"""
data = self._retrieve_final_data(driver, step)
if not data:
raise StepDataNotAvailable(driver.journey, step.name, retry=False, source_title=self.title)
return data
def _retrieve_final_data(self, driver, step):
raw_data = self._retrieve_raw_data(driver, step)
return self._process_raw_data(raw_data)
@abstractmethod
def _retrieve_raw_data(self, driver, step):
pass
@property
def source_titles(self):
return [self.title]
def describe(self):
return {
"title":self.title,
"type":self.__class__.__name__,
}
def _process_raw_data(self, raw_data):
if raw_data is None:
raw_data = {}
for process in self.processes:
raw_data = process(raw_data)
return raw_data
|
(self, other)
|
45,342 |
easul.source
|
__iter__
| null |
def __iter__(self):
for idx, adm in self.data.iterrows():
yield self._process_raw_data(adm)
|
(self)
|
45,343 |
easul.source
|
__ne__
|
Method generated by attrs for class DataFrameSource.
| null |
(self, other)
|
45,348 |
easul.source
|
_retrieve_raw_data
| null |
def _retrieve_raw_data(self, driver, step):
data = self.data.query(self.reference_field + " == '" + driver.journey["reference"] + "'")
if data.shape[0]==0:
raise StepDataNotAvailable(journey=driver.journey, step_name = step.name)
return data.to_dict("records")[0]
|
(self, driver, step)
|
45,351 |
easul.data
|
DataInput
|
Data and schema combined including automatic data conversion and access to data in particular forms.
Support for pandas DataFrames and list of dictionaries (which are internally converted).
|
class DataInput:
"""
Data and schema combined including automatic data conversion and access to data in particular forms.
Support for pandas DataFrames and list of dictionaries (which are internally converted).
"""
validator_cls = DataValidator
convertors = {
"number": to_float,
"float": to_float,
"date": lambda x, y: dt.datetime.strptime(x, y["format"]) if isinstance(x, str) else x,
"datetime": lambda x,y: DataInput.to_datetime(x, y) if isinstance(x,str) else x,
"time": lambda x, y: DataInput.to_datetime(x, y).time() if isinstance(x, str) else x,
"category": lambda x, y: x,
"integer": lambda x, y: np.int64(x),
"list": lambda x, y: list(x) if x else [],
"string": lambda x, y: str(x),
"boolean": to_boolean
}
@classmethod
def to_datetime(cls, value, config):
if type(value) is dt.datetime:
return value
return dt.datetime.strptime(value, config.get("format", "%Y-%m-%dT%H:%M:%S"))
def __init__(self, data, schema: DataSchema, convert:bool=True, validate:bool=True, encoded_with=None, encoder=None):
if encoded_with is not None and encoded_with != encoder:
raise AttributeError("Data input encoded with different encoder than the defined one")
self.schema = schema
self._convert = convert
self._validate = validate
self.encoded_with = encoded_with
self.encoder = encoder
self._data = None
self.data = data
@property
def is_encoded(self):
return self.encoded_with is not None
def is_matching_encoder(self, encoder):
return self.encoded_with == encoder
@property
def data(self):
return self._data
@data.setter
def data(self, value):
self._init_data(value)
def _init_data(self, data):
try:
if self._convert:
data = self.convert_data(data)
except BaseException as ex:
raise error.ConversionError(message="Unable to convert data", orig_exception=ex, data=data)
data = self.clean(data)
if self._validate:
self.validate(data)
self._data = self._process_data(data)
def convert_data(self, data):
return self._convert_data(data, self.schema)
def validate(self, data):
if type(data) is list:
[self._validate_data(item, self.schema) for item in data]
else:
self._validate_data(data, self.schema)
def clean(self, data):
return data
def _convert_data(self, data, fields):
if type(data) is list:
return [self._convert_data(item, fields) for item in data]
for field_name, field_details in fields.items():
try:
if field_name not in data:
if "required" in field_details:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
else:
continue
prev_convert = field_details.get("pre_convert")
if prev_convert:
pre_convert_fn = self.convertors.get(prev_convert)
data[field_name] = pre_convert_fn(data[field_name], field_details)
field_type = field_details['type']
convert_fn = self.convertors.get(field_type)
if not convert_fn:
raise error.ConversionError(f"Field conversion function not available to convert '{field_name}' to type '{field_type}'", orig_exception=Exception, data=data)
data[field_name] = convert_fn(data[field_name], field_details)
except Exception as ex:
raise error.ConversionError(f"Unexpected error converting '{field_name}'", orig_exception=ex)
return data
def _process_data(self, data):
if type(data) is dict:
return pd.DataFrame(data=[data])
if type(data) is list:
return pd.DataFrame(data=data)
return data
def _validate_data(self, data, fields):
if len(fields)==0:
return
for field_name, field_details in fields.items():
if not field_name in data:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
v = self.validator_cls(fields, allow_unknown=False)
if type(data) is list:
for row in data:
if v.validate(row) is False:
raise error.ValidationError(v.errors)
else:
if v.validate(data) is False:
raise error.ValidationError(v.errors)
@property
def Y_array(self):
"""
Returns: Y values in the form of an array of np.arrays
"""
return self.data[self.schema.y_names].to_numpy()
@property
def Y(self):
"""
Returns: Y values from the Y array (e.g. the first value) as an np.array
"""
data = self._extract_data(self.schema.y_names)
if self.schema.single_y:
return [item[0] for item in data]
return data
@property
def X(self):
return self._extract_data(self.schema.x_names)
def _extract_data(self, field_names):
data = self.data[field_names].to_numpy()
if self.encoder:
idx = 0
for field_name in field_names:
if self.encoder.is_field_encoded(field_name):
col = self.encoder.encode_field(field_name, self)
if len(col[0])>1:
data = np.concatenate((data[:,range(0,idx)], col, data[:,range(idx+1,data.shape[1])]), axis=1)
idx+=col.shape[1]
else:
data[:idx] = col
idx+=1
return data
@property
def X_data(self):
"""
Returns: A pandas DataFrame containing just X values.
"""
if len(self.schema.x_names)==0:
return []
return self.data[self.schema.x_names]
@property
def Y_data(self):
"""
Returns: A pandas DataFrame containing just Y values
"""
if len(self.schema.y_names)==0:
return []
return self.data.loc[:,self.schema.y_names]
def train_test_split(self, train_size=None, test_size=None, splitter=np_random_splitter, **kwargs):
if not train_size and not test_size:
raise AttributeError("train_size or test_size must be provided")
if not train_size:
train_size = 1-test_size
train, test = splitter(self.data, train_size, **kwargs)
data_cls = self.__class__
if isinstance(self.data, pd.DataFrame):
data_cls = DFDataInput
train_ds = data_cls(data=train,schema=self.schema, convert=False, validate=False)
test_ds = data_cls(data=test,schema=self.schema, convert=False, validate=False)
return train_ds, test_ds
def __repr__(self):
data = self.data.to_dict("records") if isinstance(self.data, pd.DataFrame) else self.data
return f"<{self.__class__.__name__} data={data}, schema={self.schema}>"
def asdict(self):
return self.data.to_dict("records") if isinstance(self.data, pd.DataFrame) else self.data
def clean(self, data):
new_data = []
for idx,row in enumerate(data):
new_row = {}
for column, value in row.items():
if column in self.schema:
new_row[column] = value
new_data.append(new_row)
return new_data
|
(data, schema: easul.data.DataSchema, convert: bool = True, validate: bool = True, encoded_with=None, encoder=None)
|
45,357 |
easul.data
|
_process_data
| null |
def _process_data(self, data):
if type(data) is dict:
return pd.DataFrame(data=[data])
if type(data) is list:
return pd.DataFrame(data=data)
return data
|
(self, data)
|
45,358 |
easul.data
|
_validate_data
| null |
def _validate_data(self, data, fields):
if len(fields)==0:
return
for field_name, field_details in fields.items():
if not field_name in data:
raise error.ValidationError(f"Field '{field_name}' is not present in the input data")
v = self.validator_cls(fields, allow_unknown=False)
if type(data) is list:
for row in data:
if v.validate(row) is False:
raise error.ValidationError(v.errors)
else:
if v.validate(data) is False:
raise error.ValidationError(v.errors)
|
(self, data, fields)
|
45,360 |
easul.data
|
clean
| null |
def clean(self, data):
new_data = []
for idx,row in enumerate(data):
new_row = {}
for column, value in row.items():
if column in self.schema:
new_row[column] = value
new_data.append(new_row)
return new_data
|
(self, data)
|
45,365 |
easul.data
|
DataSchema
|
Schema used by algorithms to define format of input data.
Field definitions utilise 'cerberus' library to validate input data.
|
class DataSchema(UserDict):
"""
Schema used by algorithms to define format of input data.
Field definitions utilise 'cerberus' library to validate input data.
"""
def __init__(self, schema:Dict[str,Dict], y_names=None):
if not y_names:
y_names = []
self.y_names:List[str] = y_names
if not all([name in schema for name in y_names]):
raise AttributeError(f"Not all y_names {y_names} are in schema definition {list(schema.keys())}")
super().__init__(schema)
self.refresh()
def refresh(self):
if self.filter({"type":"category","output":"onehot"},include_x=False,include_y=True):
self.single_y = False
else:
self.single_y = True if len(self.y_names) == 1 else False
category_fields = self.filter({"type": "category"}, include_x = True, include_y = True)
for category_field_name, category_details in category_fields.items():
if not category_details.get("options"):
raise error.ValidationError(f"Field '{category_field_name}' with 'category' type must have 'options' provided")
@property
def x(self):
return {name: self.data[name] for name in filter(lambda x: x in self.x_names, self.data.keys())}
@property
def y(self):
return {name: self.data[name] for name in filter(lambda x: x in self.y_names, self.data.keys())}
def to_x_values(self, field_values):
return to_np_values(field_values, self.x)
def to_y_values(self, field_values):
return to_np_values(field_values, self.y)
@property
def help(self):
help_lines = [self._help_line(k,v) for k,v in self.data.items()]
help_lines.extend(["* = required field","** = target y value"])
return help_lines
def _help_line(self, name, info):
return f"- {name}: {info.get('help')}" + ("*" if info.get("required") else " ") + "(" + info.get("type","any") + ")" + ("**" if name in self.y_names else "")
def filter(self, criteria=None, include_x=True, include_y=False):
filtered = {}
for name, info in self.items():
include = True
if include_x and include_y and name not in self.data:
continue
elif include_x and not include_y and name not in self.x_names:
continue
elif include_y and not include_x and name not in self.y_names:
continue
if criteria:
for filt_k, filt_v in criteria.items():
if filt_k in info and info[filt_k] != filt_v:
include = False
if include is True:
filtered[name] = info
return filtered
def filter_names(self, **kwargs):
filtered = self.filter(**kwargs)
return list(filtered.keys())
@property
def x_names(self):
return list(filter(lambda x: x not in self.y_names, self.data.keys()))
@property
def unique_digest(self):
return "X"
def is_categorical(self, name):
if self.get(name,{}).get("type") in ["category","list"]:
return True
return False
|
(schema: Dict[str, Dict], y_names=None)
|
45,366 |
collections
|
__contains__
| null |
def __contains__(self, key):
return key in self.data
|
(self, key)
|
45,367 |
collections
|
__copy__
| null |
def __copy__(self):
inst = self.__class__.__new__(self.__class__)
inst.__dict__.update(self.__dict__)
# Create a copy and avoid triggering descriptors
inst.__dict__["data"] = self.__dict__["data"].copy()
return inst
|
(self)
|
45,368 |
collections
|
__delitem__
| null |
def __delitem__(self, key):
del self.data[key]
|
(self, key)
|
45,370 |
collections
|
__getitem__
| null |
def __getitem__(self, key):
if key in self.data:
return self.data[key]
if hasattr(self.__class__, "__missing__"):
return self.__class__.__missing__(self, key)
raise KeyError(key)
|
(self, key)
|
45,371 |
easul.data
|
__init__
| null |
def __init__(self, schema:Dict[str,Dict], y_names=None):
if not y_names:
y_names = []
self.y_names:List[str] = y_names
if not all([name in schema for name in y_names]):
raise AttributeError(f"Not all y_names {y_names} are in schema definition {list(schema.keys())}")
super().__init__(schema)
self.refresh()
|
(self, schema: Dict[str, Dict], y_names=None)
|
45,372 |
collections
|
__ior__
| null |
def __ior__(self, other):
if isinstance(other, UserDict):
self.data |= other.data
else:
self.data |= other
return self
|
(self, other)
|
45,373 |
collections
|
__iter__
| null |
def __iter__(self):
return iter(self.data)
|
(self)
|
45,375 |
collections
|
__or__
| null |
def __or__(self, other):
if isinstance(other, UserDict):
return self.__class__(self.data | other.data)
if isinstance(other, dict):
return self.__class__(self.data | other)
return NotImplemented
|
(self, other)
|
45,376 |
collections
|
__repr__
| null |
def __repr__(self):
return repr(self.data)
|
(self)
|
45,377 |
collections
|
__ror__
| null |
def __ror__(self, other):
if isinstance(other, UserDict):
return self.__class__(other.data | self.data)
if isinstance(other, dict):
return self.__class__(other | self.data)
return NotImplemented
|
(self, other)
|
45,378 |
collections
|
__setitem__
| null |
def __setitem__(self, key, item):
self.data[key] = item
|
(self, key, item)
|
45,379 |
easul.data
|
_help_line
| null |
def _help_line(self, name, info):
return f"- {name}: {info.get('help')}" + ("*" if info.get("required") else " ") + "(" + info.get("type","any") + ")" + ("**" if name in self.y_names else "")
|
(self, name, info)
|
45,381 |
collections
|
copy
| null |
def copy(self):
if self.__class__ is UserDict:
return UserDict(self.data.copy())
import copy
data = self.data
try:
self.data = {}
c = copy.copy(self)
finally:
self.data = data
c.update(self)
return c
|
(self)
|
45,382 |
easul.data
|
filter
| null |
def filter(self, criteria=None, include_x=True, include_y=False):
filtered = {}
for name, info in self.items():
include = True
if include_x and include_y and name not in self.data:
continue
elif include_x and not include_y and name not in self.x_names:
continue
elif include_y and not include_x and name not in self.y_names:
continue
if criteria:
for filt_k, filt_v in criteria.items():
if filt_k in info and info[filt_k] != filt_v:
include = False
if include is True:
filtered[name] = info
return filtered
|
(self, criteria=None, include_x=True, include_y=False)
|
45,383 |
easul.data
|
filter_names
| null |
def filter_names(self, **kwargs):
filtered = self.filter(**kwargs)
return list(filtered.keys())
|
(self, **kwargs)
|
45,385 |
easul.data
|
is_categorical
| null |
def is_categorical(self, name):
if self.get(name,{}).get("type") in ["category","list"]:
return True
return False
|
(self, name)
|
45,390 |
easul.data
|
refresh
| null |
def refresh(self):
if self.filter({"type":"category","output":"onehot"},include_x=False,include_y=True):
self.single_y = False
else:
self.single_y = True if len(self.y_names) == 1 else False
category_fields = self.filter({"type": "category"}, include_x = True, include_y = True)
for category_field_name, category_details in category_fields.items():
if not category_details.get("options"):
raise error.ValidationError(f"Field '{category_field_name}' with 'category' type must have 'options' provided")
|
(self)
|
45,392 |
easul.data
|
to_x_values
| null |
def to_x_values(self, field_values):
return to_np_values(field_values, self.x)
|
(self, field_values)
|
45,393 |
easul.data
|
to_y_values
| null |
def to_y_values(self, field_values):
return to_np_values(field_values, self.y)
|
(self, field_values)
|
45,396 |
easul.data
|
DataValidator
|
Cerberus Validator for DataSet schema. Includes additional type mapping for 'time' and additional validation
parameters: 'help', 'options', 'output', 'label' and 'pre_convert'
|
class DataValidator(Validator):
"""
Cerberus Validator for DataSet schema. Includes additional type mapping for 'time' and additional validation
parameters: 'help', 'options', 'output', 'label' and 'pre_convert'
"""
types_mapping = Validator.types_mapping.copy()
types_mapping[CATEGORY_TYPE] = TypeDefinition(CATEGORY_TYPE, (object,), ())
types_mapping["time"] = TypeDefinition('time', (dt.time,), ())
def _validate_help(self, constraint, field, value):
"""{'type': 'string'}"""
pass
def _validate_options(self, constraint, field, value):
"""{'type': 'dict'}"""
if value not in constraint:
self._error(field, f"Value '" + str(value) + "' is not defined in options")
def _validate_output(self, constraint, field, value):
"""{'type': 'string'}"""
pass
def _validate_label(self, constraint, field, value):
"""{'type': 'string'}"""
pass
def _validate_pre_convert(self, constraint, field, value):
"""{'type': 'string'}"""
pass
|
(*args, **kwargs)
|
45,446 |
easul.data
|
_validate_help
|
{'type': 'string'}
|
def _validate_help(self, constraint, field, value):
"""{'type': 'string'}"""
pass
|
(self, constraint, field, value)
|
45,449 |
easul.data
|
_validate_label
|
{'type': 'string'}
|
def _validate_label(self, constraint, field, value):
"""{'type': 'string'}"""
pass
|
(self, constraint, field, value)
|
45,458 |
easul.data
|
_validate_options
|
{'type': 'dict'}
|
def _validate_options(self, constraint, field, value):
"""{'type': 'dict'}"""
if value not in constraint:
self._error(field, f"Value '" + str(value) + "' is not defined in options")
|
(self, constraint, field, value)
|
45,459 |
easul.data
|
_validate_output
|
{'type': 'string'}
|
def _validate_output(self, constraint, field, value):
"""{'type': 'string'}"""
pass
|
(self, constraint, field, value)
|
45,460 |
easul.data
|
_validate_pre_convert
|
{'type': 'string'}
|
def _validate_pre_convert(self, constraint, field, value):
"""{'type': 'string'}"""
pass
|
(self, constraint, field, value)
|
45,471 |
easul.source
|
DbSource
|
Source which retrieves data from a database. Currently only supports SQLite.
|
class DbSource(Source):
"""
Source which retrieves data from a database. Currently only supports SQLite.
"""
db:str = field()
table_name:str = field(default=None)
sql:str = field(default=None)
reference_field:str = field()
multiple_rows = field(default=False)
_cache = field(factory=dict)
_data_fn = field()
def __attrs_post_init__(self):
if self.table_name is None and self.sql is None:
raise AttributeError("You must specify 'table_name' or 'sql'")
@_data_fn.default
def _default_data_fn(self):
if self.table_name:
return partial(self.db.get_rows, table_name=self.table_name)
else:
return partial(self.db.get_rows_with_sql, sql=self.sql)
def _get_parameters(self, driver):
return {self.reference_field:driver.journey["reference"]}
def _retrieve_final_data(self, driver, step):
if driver.journey["reference"] in self._cache:
return self._cache[driver.journey["reference"]]
data = super()._retrieve_final_data(driver, step)
self._cache[driver.journey["reference"]] = data
return data
def _retrieve_raw_data(self, driver, step):
params = self._get_parameters(driver)
data = self._data_fn(values=params)
if self.multiple_rows is False and type(data) is list:
return data[0] if len(data) > 0 else None
return data
|
(*, title: str, processes=NOTHING, db: str, table_name: str = None, sql: str = None, reference_field: str, multiple_rows=False, cache=NOTHING, data_fn=NOTHING) -> None
|
45,472 |
easul.source
|
__attrs_post_init__
| null |
def __attrs_post_init__(self):
if self.table_name is None and self.sql is None:
raise AttributeError("You must specify 'table_name' or 'sql'")
|
(self)
|
45,473 |
easul.source
|
__eq__
|
Method generated by attrs for class DbSource.
|
import pandas as pd
from typing import List, Any, Dict
from easul.error import StepDataNotAvailable
import logging
from abc import abstractmethod
from attrs import define, field
from functools import partial
from easul.util import get_current_result
LOG = logging.getLogger(__name__)
@define(kw_only=True)
class Source:
"""
Base Source class. Sources provide access to raw data and processing which enables the creation of validated
InputData - which can be fed into algorithms.
"""
title: str = field()
processes = field(factory=list)
def retrieve(self, driver, step):
"""
Retrieve data in the form of a Python data structure.
Args:
driver:
step:
Returns:
"""
data = self._retrieve_final_data(driver, step)
if not data:
raise StepDataNotAvailable(driver.journey, step.name, retry=False, source_title=self.title)
return data
def _retrieve_final_data(self, driver, step):
raw_data = self._retrieve_raw_data(driver, step)
return self._process_raw_data(raw_data)
@abstractmethod
def _retrieve_raw_data(self, driver, step):
pass
@property
def source_titles(self):
return [self.title]
def describe(self):
return {
"title":self.title,
"type":self.__class__.__name__,
}
def _process_raw_data(self, raw_data):
if raw_data is None:
raw_data = {}
for process in self.processes:
raw_data = process(raw_data)
return raw_data
|
(self, other)
|
45,476 |
easul.source
|
__ne__
|
Method generated by attrs for class DbSource.
| null |
(self, other)
|
45,479 |
easul.source
|
_default_data_fn
| null |
@_data_fn.default
def _default_data_fn(self):
if self.table_name:
return partial(self.db.get_rows, table_name=self.table_name)
else:
return partial(self.db.get_rows_with_sql, sql=self.sql)
|
(self)
|
45,480 |
easul.source
|
_get_parameters
| null |
def _get_parameters(self, driver):
return {self.reference_field:driver.journey["reference"]}
|
(self, driver)
|
45,482 |
easul.source
|
_retrieve_final_data
| null |
def _retrieve_final_data(self, driver, step):
if driver.journey["reference"] in self._cache:
return self._cache[driver.journey["reference"]]
data = super()._retrieve_final_data(driver, step)
self._cache[driver.journey["reference"]] = data
return data
|
(self, driver, step)
|
45,483 |
easul.source
|
_retrieve_raw_data
| null |
def _retrieve_raw_data(self, driver, step):
params = self._get_parameters(driver)
data = self._data_fn(values=params)
if self.multiple_rows is False and type(data) is list:
return data[0] if len(data) > 0 else None
return data
|
(self, driver, step)
|
45,486 |
easul.decision
|
Decision
|
Decides the outcome based on the provided result and the type of decision. The outcome includes the next step,
the result and other contextual information.
|
class Decision:
"""
Decides the outcome based on the provided result and the type of decision. The outcome includes the next step,
the result and other contextual information.
"""
@abstractmethod
def decide_outcome(self, result, context, data, step):
pass
@property
def possible_links(self):
return {}
def describe(self):
return {
"type":self.__class__.__name__
}
|
() -> None
|
45,487 |
easul.decision
|
__eq__
|
Method generated by attrs for class Decision.
|
from abc import abstractmethod
from attrs import define, field
from easul.algorithm import Result
from easul.outcome import Outcome, ResultOutcome
from easul.expression import DecisionCase
@define(kw_only=True)
class Decision:
"""
Decides the outcome based on the provided result and the type of decision. The outcome includes the next step,
the result and other contextual information.
"""
@abstractmethod
def decide_outcome(self, result, context, data, step):
pass
@property
def possible_links(self):
return {}
def describe(self):
return {
"type":self.__class__.__name__
}
|
(self, other)
|
45,490 |
easul.decision
|
__ne__
|
Method generated by attrs for class Decision.
| null |
(self, other)
|
45,493 |
easul.decision
|
decide_outcome
| null |
@abstractmethod
def decide_outcome(self, result, context, data, step):
pass
|
(self, result, context, data, step)
|
45,495 |
easul.expression
|
DecisionCase
|
Case class used by Decision classes which instead of a value if true returns a Step.
|
class DecisionCase:
"""
Case class used by Decision classes which instead of a value if true returns a Step.
"""
expression = field()
true_step = field(default=None)
title = field(default=None)
def asdict(self):
return {
"expression":str(self.expression),
"true_step":str(self.true_step.name if self.true_step else "")
}
def test(self, dset):
return self.expression.evaluate(dset)
|
(*, expression, true_step=None, title=None) -> None
|
45,496 |
easul.expression
|
__eq__
|
Method generated by attrs for class DecisionCase.
|
import operator
import re
from abc import abstractmethod
from typing import Callable
from attrs import define, field
import numpy as np
import pandas as pd
from easul.error import MissingValue
import logging
LOG = logging.getLogger(__name__)
@define(kw_only=True)
class Expression:
"""
Base Expression class. Derived classes evaluate input data and return a True/False
"""
label = ""
empty_values = [None, np.nan]
@abstractmethod
def evaluate(self, data):
pass
@classmethod
def is_empty(cls, item):
if item in cls.empty_values:
return True
try:
if np.isnan(item):
return True
except TypeError:
pass
return False
|
(self, other)
|
45,499 |
easul.expression
|
__ne__
|
Method generated by attrs for class DecisionCase.
| null |
(self, other)
|
45,502 |
easul.expression
|
asdict
| null |
def asdict(self):
return {
"expression":str(self.expression),
"true_step":str(self.true_step.name if self.true_step else "")
}
|
(self)
|
45,504 |
easul.algorithm.result
|
DefaultResult
|
Result used when data is missing to output a default result
|
class DefaultResult(Result):
"""
Result used when data is missing to output a default result
"""
label = "Default result"
|
(*, value, data) -> None
|
45,505 |
easul.algorithm.result
|
__eq__
|
Method generated by attrs for class DefaultResult.
|
from collections import namedtuple
from typing import Optional
from attrs import define, field
import logging
LOG = logging.getLogger(__name__)
Probability = namedtuple("Probability",["probability","label","value"])
@define(kw_only=True, eq=False)
class Result:
"""
Base result class which at a simple level just returns a value.
"""
value = field()
data = field()
def asdict(self):
"""
Dictionary representation of the result used to store the object in databases etc.
Returns:
"""
return {
"value": self.value,
"data": self.data.asdict()
}
def __getitem__(self, item):
if not hasattr(self, item):
return None
return getattr(self, item)
def __eq__(self, other):
return self.asdict() == other.asdict()
|
(self, other)
|
45,509 |
easul.algorithm.result
|
__ne__
|
Method generated by attrs for class DefaultResult.
| null |
(self, other)
|
45,513 |
easul.process
|
DefaultValues
|
Replaces values in record with default 'values' if they are None.
If 'present_flag_field' is set, it will also update this field in the record with a 1 when default values have
been added.
|
class DefaultValues:
"""
Replaces values in record with default 'values' if they are None.
If 'present_flag_field' is set, it will also update this field in the record with a 1 when default values have
been added.
"""
values = field()
present_flag_field = field(default=None)
def __call__(self, record):
if record is None and self.present_flag_field is not None:
record = self.values
record[self.present_flag_field] = 0
return record
if self.present_flag_field is not None:
record[self.present_flag_field] = 0
for key, value in self.values.items():
if record.get(key):
if self.present_flag_field is not None:
record[self.present_flag_field] = 1
continue
record[key] = value
return record
|
(*, values, present_flag_field=None) -> None
|
45,514 |
easul.process
|
__call__
| null |
def __call__(self, record):
if record is None and self.present_flag_field is not None:
record = self.values
record[self.present_flag_field] = 0
return record
if self.present_flag_field is not None:
record[self.present_flag_field] = 0
for key, value in self.values.items():
if record.get(key):
if self.present_flag_field is not None:
record[self.present_flag_field] = 1
continue
record[key] = value
return record
|
(self, record)
|
45,515 |
easul.process
|
__eq__
|
Method generated by attrs for class DefaultValues.
|
# processes are callables which receive a data structure and return a processed version of the data structure
# most of the processes defined here are classes but functions can work as well
from datetime import datetime, date, time
import logging
from typing import Callable, List, Dict, Optional
LOG = logging.getLogger(__name__)
from attrs import define, field
@define(kw_only=True)
class ExcludeFields:
"""
Exclude specified fields from the output data
"""
exclude_fields = field()
def __call__(self, record):
for exclude_field in self.exclude_fields:
if exclude_field in record.keys():
del record[exclude_field]
return record
|
(self, other)
|
45,518 |
easul.process
|
__ne__
|
Method generated by attrs for class DefaultValues.
| null |
(self, other)
|
45,521 |
easul.util
|
DeferredCatalog
|
Extension of dictionary which returns a DeferredItem if
|
class DeferredCatalog(UserDict):
"""
Extension of dictionary which returns a DeferredItem if
"""
# def __getitem__(self, item):
# if item not in self.data:
# return DeferredItem(item, self)
#
# return super().__getitem__(item)
# def get(self, key):
# if key not in self.data:
# return DeferredItem(key, self)
#
# return super().get(key)
def update(self, __m, **kwargs):
for k,v in __m.items():
if hasattr(v, "name"):
v.name = k
super().update(__m)
def __setitem__(self, key ,value):
if hasattr(value, "name"):
value.name = key
super().__setitem__(key, value)
|
(dict=None, /, **kwargs)
|
45,527 |
collections
|
__init__
| null |
def __init__(self, dict=None, /, **kwargs):
self.data = {}
if dict is not None:
self.update(dict)
if kwargs:
self.update(kwargs)
|
(self, dict=None, /, **kwargs)
|
45,534 |
easul.util
|
__setitem__
| null |
def __setitem__(self, key ,value):
if hasattr(value, "name"):
value.name = key
super().__setitem__(key, value)
|
(self, key, value)
|
45,543 |
easul.util
|
update
| null |
def update(self, __m, **kwargs):
for k,v in __m.items():
if hasattr(v, "name"):
v.name = k
super().update(__m)
|
(self, _DeferredCatalog__m, **kwargs)
|
45,545 |
easul.util
|
DeferredItem
|
Used to refer to an item if it has not been instantiated yet or there is a circular reference between two items (potential for
recurrence.
|
class DeferredItem:
"""
Used to refer to an item if it has not been instantiated yet or there is a circular reference between two items (potential for
recurrence.
"""
def __init__(self, plan, property, name):
self.__dict__['plan'] = plan
self.__dict__['property'] = property
self.__dict__['name'] = name
def __repr__(self):
return f"<DeferredItem name={self.name} property={self.property}>"
def __getattr__(self, item):
return getattr(self.plan.get_property(self.property, self.name), item)
def __setattr__(self, key, value):
setattr(self.plan.get_property(self.property, self.name), key, value)
def __instancecheck__(self, instance):
return isinstance(self.plan.get_property(self.property, self.name), instance)
def __iter__(self):
return iter(self.plan.get_property(self.property))
def __eq__(self, other):
return self.plan.get_property(self.property, self.name) == other
def replace_plan(self, new_plan):
self.__dict__['plan'] = new_plan
|
(plan, property, name)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.