index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
55,399
distrax._src.distributions.beta
variance
Calculates the variance.
def variance(self) -> Array: """Calculates the variance.""" sum_alpha_beta = self._alpha + self._beta return self._alpha * self._beta / ( jnp.square(sum_alpha_beta) * (sum_alpha_beta + 1.))
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,400
distrax._src.bijectors.bijector
Bijector
Differentiable bijection that knows to compute its Jacobian determinant. A bijector implements a differentiable and bijective transformation `f`, whose inverse is also differentiable (`f` is called a "diffeomorphism"). A bijector can be used to transform a continuous random variable `X` to a continuous random variable `Y = f(X)` in the context of `TransformedDistribution`. Typically, a bijector subclass will implement the following methods: - `forward_and_log_det(x)` (required) - `inverse_and_log_det(y)` (optional) The remaining methods are defined in terms of the above by default. Subclass requirements: - Subclasses must ensure that `f` is differentiable and bijective, and that their methods correctly implement `f^{-1}`, `J(f)` and `J(f^{-1})`. Distrax will assume these properties hold, and will make no attempt to verify them. - Distrax assumes that `f` acts on array-valued variables called "events", and that the bijector operates on batched events. Specifically, Distrax assumes the following: * `f` acts on events of shape [M1, ..., Mn] and returns events of shape [L1, ..., Lq]. `n` is referred to as `event_ndims_in`, and `q` as `event_ndims_out`. `event_ndims_in` and `event_ndims_out` must be static properties of the bijector, and must be known to it at construction time. * The bijector acts on batched events of shape [N1, ..., Nk, M1, ..., Mn], where [N1, ..., Nk] are batch dimensions, and returns batched events of shape [K1, ..., Kp, L1, ..., Lq], where [K1, ..., Kp] are (possibly different) batch dimensions. Distrax requires that bijectors always broadcast against batched events, that is, that they apply `f` identically to each event. Distrax also allows for events to broadcast against batched bijectors, meaning that multiple instantiations of `f` are applied to the same event, although this is not a subclass requirement.
class Bijector(jittable.Jittable, metaclass=abc.ABCMeta): """Differentiable bijection that knows to compute its Jacobian determinant. A bijector implements a differentiable and bijective transformation `f`, whose inverse is also differentiable (`f` is called a "diffeomorphism"). A bijector can be used to transform a continuous random variable `X` to a continuous random variable `Y = f(X)` in the context of `TransformedDistribution`. Typically, a bijector subclass will implement the following methods: - `forward_and_log_det(x)` (required) - `inverse_and_log_det(y)` (optional) The remaining methods are defined in terms of the above by default. Subclass requirements: - Subclasses must ensure that `f` is differentiable and bijective, and that their methods correctly implement `f^{-1}`, `J(f)` and `J(f^{-1})`. Distrax will assume these properties hold, and will make no attempt to verify them. - Distrax assumes that `f` acts on array-valued variables called "events", and that the bijector operates on batched events. Specifically, Distrax assumes the following: * `f` acts on events of shape [M1, ..., Mn] and returns events of shape [L1, ..., Lq]. `n` is referred to as `event_ndims_in`, and `q` as `event_ndims_out`. `event_ndims_in` and `event_ndims_out` must be static properties of the bijector, and must be known to it at construction time. * The bijector acts on batched events of shape [N1, ..., Nk, M1, ..., Mn], where [N1, ..., Nk] are batch dimensions, and returns batched events of shape [K1, ..., Kp, L1, ..., Lq], where [K1, ..., Kp] are (possibly different) batch dimensions. Distrax requires that bijectors always broadcast against batched events, that is, that they apply `f` identically to each event. Distrax also allows for events to broadcast against batched bijectors, meaning that multiple instantiations of `f` are applied to the same event, although this is not a subclass requirement. """ def __init__(self, event_ndims_in: int, event_ndims_out: Optional[int] = None, is_constant_jacobian: bool = False, is_constant_log_det: Optional[bool] = None): """Initializes a Bijector. Args: event_ndims_in: Number of input event dimensions. The bijector acts on events of shape [M1, ..., Mn], where `n == event_ndims_in`. event_ndims_out: Number of output event dimensions. The bijector returns events of shape [L1, ..., Lq], where `q == event_ndims_out`. If None, it defaults to `event_ndims_in`. is_constant_jacobian: Whether the Jacobian is promised to be constant (which is the case if and only if the bijector is affine). A value of False will be interpreted as "we don't know whether the Jacobian is constant", rather than "the Jacobian is definitely not constant". Only set to True if you're absolutely sure the Jacobian is constant; if you're not sure, set to False. is_constant_log_det: Whether the Jacobian determinant is promised to be constant (which is the case for, e.g., volume-preserving bijectors). If None, it defaults to `is_constant_jacobian`. Note that the Jacobian determinant can be constant without the Jacobian itself being constant. Only set to True if you're absoltely sure the Jacobian determinant is constant; if you're not sure, set to None. """ if event_ndims_out is None: event_ndims_out = event_ndims_in if event_ndims_in < 0: raise ValueError( f"`event_ndims_in` can't be negative. Got {event_ndims_in}.") if event_ndims_out < 0: raise ValueError( f"`event_ndims_out` can't be negative. Got {event_ndims_out}.") if is_constant_log_det is None: is_constant_log_det = is_constant_jacobian if is_constant_jacobian and not is_constant_log_det: raise ValueError("The Jacobian is said to be constant, but its " "determinant is said not to be, which is impossible.") self._event_ndims_in = event_ndims_in self._event_ndims_out = event_ndims_out self._is_constant_jacobian = is_constant_jacobian self._is_constant_log_det = is_constant_log_det def forward(self, x: Array) -> Array: """Computes y = f(x).""" y, _ = self.forward_and_log_det(x) return y def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" x, _ = self.inverse_and_log_det(y) return x def forward_log_det_jacobian(self, x: Array) -> Array: """Computes log|det J(f)(x)|.""" _, logdet = self.forward_and_log_det(x) return logdet def inverse_log_det_jacobian(self, y: Array) -> Array: """Computes log|det J(f^{-1})(y)|.""" _, logdet = self.inverse_and_log_det(y) return logdet @abc.abstractmethod def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" raise NotImplementedError( f"Bijector {self.name} does not implement `inverse_and_log_det`.") @property def event_ndims_in(self) -> int: """Number of input event dimensions.""" return self._event_ndims_in @property def event_ndims_out(self) -> int: """Number of output event dimensions.""" return self._event_ndims_out @property def is_constant_jacobian(self) -> bool: """Whether the Jacobian is promised to be constant.""" return self._is_constant_jacobian @property def is_constant_log_det(self) -> bool: """Whether the Jacobian determinant is promised to be constant.""" return self._is_constant_log_det @property def name(self) -> str: """Name of the bijector.""" return self.__class__.__name__ def same_as(self, other: "Bijector") -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" del other return False def _check_forward_input_shape(self, x: Array) -> None: """Checks that the input `x` to a forward method has valid shape.""" x_ndims = len(jnp.shape(x)) if x_ndims < self.event_ndims_in: raise ValueError( f"Bijector {self.name} has `event_ndims_in=={self.event_ndims_in}`," f" but the input has only {x_ndims} array dimensions.") def _check_inverse_input_shape(self, y: Array) -> None: """Checks that the input `y` to an inverse method has valid shape.""" y_ndims = len(jnp.shape(y)) if y_ndims < self.event_ndims_out: raise ValueError( f"Bijector {self.name} has `event_ndims_out=={self.event_ndims_out}`," f" but the input has only {y_ndims} array dimensions.")
(event_ndims_in: int, event_ndims_out: Optional[int] = None, is_constant_jacobian: bool = False, is_constant_log_det: Optional[bool] = None)
55,401
distrax._src.bijectors.bijector
__init__
Initializes a Bijector. Args: event_ndims_in: Number of input event dimensions. The bijector acts on events of shape [M1, ..., Mn], where `n == event_ndims_in`. event_ndims_out: Number of output event dimensions. The bijector returns events of shape [L1, ..., Lq], where `q == event_ndims_out`. If None, it defaults to `event_ndims_in`. is_constant_jacobian: Whether the Jacobian is promised to be constant (which is the case if and only if the bijector is affine). A value of False will be interpreted as "we don't know whether the Jacobian is constant", rather than "the Jacobian is definitely not constant". Only set to True if you're absolutely sure the Jacobian is constant; if you're not sure, set to False. is_constant_log_det: Whether the Jacobian determinant is promised to be constant (which is the case for, e.g., volume-preserving bijectors). If None, it defaults to `is_constant_jacobian`. Note that the Jacobian determinant can be constant without the Jacobian itself being constant. Only set to True if you're absoltely sure the Jacobian determinant is constant; if you're not sure, set to None.
def __init__(self, event_ndims_in: int, event_ndims_out: Optional[int] = None, is_constant_jacobian: bool = False, is_constant_log_det: Optional[bool] = None): """Initializes a Bijector. Args: event_ndims_in: Number of input event dimensions. The bijector acts on events of shape [M1, ..., Mn], where `n == event_ndims_in`. event_ndims_out: Number of output event dimensions. The bijector returns events of shape [L1, ..., Lq], where `q == event_ndims_out`. If None, it defaults to `event_ndims_in`. is_constant_jacobian: Whether the Jacobian is promised to be constant (which is the case if and only if the bijector is affine). A value of False will be interpreted as "we don't know whether the Jacobian is constant", rather than "the Jacobian is definitely not constant". Only set to True if you're absolutely sure the Jacobian is constant; if you're not sure, set to False. is_constant_log_det: Whether the Jacobian determinant is promised to be constant (which is the case for, e.g., volume-preserving bijectors). If None, it defaults to `is_constant_jacobian`. Note that the Jacobian determinant can be constant without the Jacobian itself being constant. Only set to True if you're absoltely sure the Jacobian determinant is constant; if you're not sure, set to None. """ if event_ndims_out is None: event_ndims_out = event_ndims_in if event_ndims_in < 0: raise ValueError( f"`event_ndims_in` can't be negative. Got {event_ndims_in}.") if event_ndims_out < 0: raise ValueError( f"`event_ndims_out` can't be negative. Got {event_ndims_out}.") if is_constant_log_det is None: is_constant_log_det = is_constant_jacobian if is_constant_jacobian and not is_constant_log_det: raise ValueError("The Jacobian is said to be constant, but its " "determinant is said not to be, which is impossible.") self._event_ndims_in = event_ndims_in self._event_ndims_out = event_ndims_out self._is_constant_jacobian = is_constant_jacobian self._is_constant_log_det = is_constant_log_det
(self, event_ndims_in: int, event_ndims_out: Optional[int] = None, is_constant_jacobian: bool = False, is_constant_log_det: Optional[bool] = None)
55,403
distrax._src.bijectors.bijector
_check_forward_input_shape
Checks that the input `x` to a forward method has valid shape.
def _check_forward_input_shape(self, x: Array) -> None: """Checks that the input `x` to a forward method has valid shape.""" x_ndims = len(jnp.shape(x)) if x_ndims < self.event_ndims_in: raise ValueError( f"Bijector {self.name} has `event_ndims_in=={self.event_ndims_in}`," f" but the input has only {x_ndims} array dimensions.")
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> NoneType
55,404
distrax._src.bijectors.bijector
_check_inverse_input_shape
Checks that the input `y` to an inverse method has valid shape.
def _check_inverse_input_shape(self, y: Array) -> None: """Checks that the input `y` to an inverse method has valid shape.""" y_ndims = len(jnp.shape(y)) if y_ndims < self.event_ndims_out: raise ValueError( f"Bijector {self.name} has `event_ndims_out=={self.event_ndims_out}`," f" but the input has only {y_ndims} array dimensions.")
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> NoneType
55,405
distrax._src.bijectors.bijector
forward
Computes y = f(x).
def forward(self, x: Array) -> Array: """Computes y = f(x).""" y, _ = self.forward_and_log_det(x) return y
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,406
distrax._src.bijectors.bijector
forward_and_log_det
Computes y = f(x) and log|det J(f)(x)|.
@abc.abstractmethod def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|."""
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,407
distrax._src.bijectors.bijector
forward_log_det_jacobian
Computes log|det J(f)(x)|.
def forward_log_det_jacobian(self, x: Array) -> Array: """Computes log|det J(f)(x)|.""" _, logdet = self.forward_and_log_det(x) return logdet
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,408
distrax._src.bijectors.bijector
inverse
Computes x = f^{-1}(y).
def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" x, _ = self.inverse_and_log_det(y) return x
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,409
distrax._src.bijectors.bijector
inverse_and_log_det
Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.
def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" raise NotImplementedError( f"Bijector {self.name} does not implement `inverse_and_log_det`.")
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,410
distrax._src.bijectors.bijector
inverse_log_det_jacobian
Computes log|det J(f^{-1})(y)|.
def inverse_log_det_jacobian(self, y: Array) -> Array: """Computes log|det J(f^{-1})(y)|.""" _, logdet = self.inverse_and_log_det(y) return logdet
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,411
distrax._src.bijectors.bijector
same_as
Returns True if this bijector is guaranteed to be the same as `other`.
def same_as(self, other: "Bijector") -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" del other return False
(self, other: distrax._src.bijectors.bijector.Bijector) -> bool
55,413
distrax._src.bijectors.block
Block
A wrapper that promotes a bijector to a block bijector. A block bijector applies a bijector to a k-dimensional array of events, but considers that array of events to be a single event. In practical terms, this means that the log det Jacobian will be summed over its last k dimensions. For example, consider a scalar bijector (such as `Tanh`) that operates on scalar events. We may want to apply this bijector identically to a 4D array of shape [N, H, W, C] representing a sequence of N images. Doing so naively will produce a log det Jacobian of shape [N, H, W, C], because the scalar bijector will assume scalar events and so all 4 dimensions will be considered as batch. To promote the scalar bijector to a "block scalar" that operates on the 3D arrays can be done by `Block(bijector, ndims=3)`. Then, applying the block bijector will produce a log det Jacobian of shape [N] as desired. In general, suppose `bijector` operates on n-dimensional events. Then, `Block(bijector, k)` will promote `bijector` to a block bijector that operates on (k + n)-dimensional events, summing the log det Jacobian over its last k dimensions. In practice, this means that the last k batch dimensions will be turned into event dimensions.
class Block(base.Bijector): """A wrapper that promotes a bijector to a block bijector. A block bijector applies a bijector to a k-dimensional array of events, but considers that array of events to be a single event. In practical terms, this means that the log det Jacobian will be summed over its last k dimensions. For example, consider a scalar bijector (such as `Tanh`) that operates on scalar events. We may want to apply this bijector identically to a 4D array of shape [N, H, W, C] representing a sequence of N images. Doing so naively will produce a log det Jacobian of shape [N, H, W, C], because the scalar bijector will assume scalar events and so all 4 dimensions will be considered as batch. To promote the scalar bijector to a "block scalar" that operates on the 3D arrays can be done by `Block(bijector, ndims=3)`. Then, applying the block bijector will produce a log det Jacobian of shape [N] as desired. In general, suppose `bijector` operates on n-dimensional events. Then, `Block(bijector, k)` will promote `bijector` to a block bijector that operates on (k + n)-dimensional events, summing the log det Jacobian over its last k dimensions. In practice, this means that the last k batch dimensions will be turned into event dimensions. """ def __init__(self, bijector: BijectorLike, ndims: int): """Initializes a Block. Args: bijector: the bijector to be promoted to a block bijector. It can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. ndims: number of batch dimensions to promote to event dimensions. """ if ndims < 0: raise ValueError(f"`ndims` must be non-negative; got {ndims}.") self._bijector = conversion.as_bijector(bijector) self._ndims = ndims super().__init__( event_ndims_in=ndims + self._bijector.event_ndims_in, event_ndims_out=ndims + self._bijector.event_ndims_out, is_constant_jacobian=self._bijector.is_constant_jacobian, is_constant_log_det=self._bijector.is_constant_log_det) @property def bijector(self) -> BijectorT: """The base bijector, without promoting to a block bijector.""" return self._bijector @property def ndims(self) -> int: """The number of batch dimensions promoted to event dimensions.""" return self._ndims def forward(self, x: Array) -> Array: """Computes y = f(x).""" self._check_forward_input_shape(x) return self._bijector.forward(x) def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" self._check_inverse_input_shape(y) return self._bijector.inverse(y) def forward_log_det_jacobian(self, x: Array) -> Array: """Computes log|det J(f)(x)|.""" self._check_forward_input_shape(x) log_det = self._bijector.forward_log_det_jacobian(x) return math.sum_last(log_det, self._ndims) def inverse_log_det_jacobian(self, y: Array) -> Array: """Computes log|det J(f^{-1})(y)|.""" self._check_inverse_input_shape(y) log_det = self._bijector.inverse_log_det_jacobian(y) return math.sum_last(log_det, self._ndims) def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" self._check_forward_input_shape(x) y, log_det = self._bijector.forward_and_log_det(x) return y, math.sum_last(log_det, self._ndims) def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" self._check_inverse_input_shape(y) x, log_det = self._bijector.inverse_and_log_det(y) return x, math.sum_last(log_det, self._ndims) @property def name(self) -> str: """Name of the bijector.""" return self.__class__.__name__ + self._bijector.name def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is Block: # pylint: disable=unidiomatic-typecheck return self.bijector.same_as(other.bijector) and self.ndims == other.ndims return False
(bijector: Union[distrax._src.bijectors.bijector.Bijector, tensorflow_probability.substrates.jax.bijectors.bijector.Bijector, Callable[[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]], ndims: int)
55,414
distrax._src.bijectors.block
__init__
Initializes a Block. Args: bijector: the bijector to be promoted to a block bijector. It can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. ndims: number of batch dimensions to promote to event dimensions.
def __init__(self, bijector: BijectorLike, ndims: int): """Initializes a Block. Args: bijector: the bijector to be promoted to a block bijector. It can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. ndims: number of batch dimensions to promote to event dimensions. """ if ndims < 0: raise ValueError(f"`ndims` must be non-negative; got {ndims}.") self._bijector = conversion.as_bijector(bijector) self._ndims = ndims super().__init__( event_ndims_in=ndims + self._bijector.event_ndims_in, event_ndims_out=ndims + self._bijector.event_ndims_out, is_constant_jacobian=self._bijector.is_constant_jacobian, is_constant_log_det=self._bijector.is_constant_log_det)
(self, bijector: Union[distrax._src.bijectors.bijector.Bijector, tensorflow_probability.substrates.jax.bijectors.bijector.Bijector, Callable[[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]], ndims: int)
55,418
distrax._src.bijectors.block
forward
Computes y = f(x).
def forward(self, x: Array) -> Array: """Computes y = f(x).""" self._check_forward_input_shape(x) return self._bijector.forward(x)
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,419
distrax._src.bijectors.block
forward_and_log_det
Computes y = f(x) and log|det J(f)(x)|.
def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" self._check_forward_input_shape(x) y, log_det = self._bijector.forward_and_log_det(x) return y, math.sum_last(log_det, self._ndims)
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,420
distrax._src.bijectors.block
forward_log_det_jacobian
Computes log|det J(f)(x)|.
def forward_log_det_jacobian(self, x: Array) -> Array: """Computes log|det J(f)(x)|.""" self._check_forward_input_shape(x) log_det = self._bijector.forward_log_det_jacobian(x) return math.sum_last(log_det, self._ndims)
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,421
distrax._src.bijectors.block
inverse
Computes x = f^{-1}(y).
def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" self._check_inverse_input_shape(y) return self._bijector.inverse(y)
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,422
distrax._src.bijectors.block
inverse_and_log_det
Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.
def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" self._check_inverse_input_shape(y) x, log_det = self._bijector.inverse_and_log_det(y) return x, math.sum_last(log_det, self._ndims)
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,423
distrax._src.bijectors.block
inverse_log_det_jacobian
Computes log|det J(f^{-1})(y)|.
def inverse_log_det_jacobian(self, y: Array) -> Array: """Computes log|det J(f^{-1})(y)|.""" self._check_inverse_input_shape(y) log_det = self._bijector.inverse_log_det_jacobian(y) return math.sum_last(log_det, self._ndims)
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,424
distrax._src.bijectors.block
same_as
Returns True if this bijector is guaranteed to be the same as `other`.
def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is Block: # pylint: disable=unidiomatic-typecheck return self.bijector.same_as(other.bijector) and self.ndims == other.ndims return False
(self, other: distrax._src.bijectors.bijector.Bijector) -> bool
55,426
distrax._src.distributions.categorical
Categorical
Categorical distribution.
class Categorical(distribution.Distribution): """Categorical distribution.""" equiv_tfp_cls = tfd.Categorical def __init__(self, logits: Optional[Array] = None, probs: Optional[Array] = None, dtype: Union[jnp.dtype, type[Any]] = int): """Initializes a Categorical distribution. Args: logits: Logit transform of the probability of each category. Only one of `logits` or `probs` can be specified. probs: Probability of each category. Only one of `logits` or `probs` can be specified. dtype: The type of event samples. """ super().__init__() if (logits is None) == (probs is None): raise ValueError( f'One and exactly one of `logits` and `probs` should be `None`, ' f'but `logits` is {logits} and `probs` is {probs}.') if not (jnp.issubdtype(dtype, jnp.integer) or jnp.issubdtype(dtype, jnp.floating)): raise ValueError( f'The dtype of `{self.name}` must be integer or floating-point, ' f'instead got `{dtype}`.') self._probs = None if probs is None else math.normalize(probs=probs) self._logits = None if logits is None else math.normalize(logits=logits) self._dtype = dtype @property def event_shape(self) -> Tuple[int, ...]: """Shape of event of distribution samples.""" return () @property def logits(self) -> Array: """The logits for each event.""" if self._logits is not None: return self._logits return jnp.log(self._probs) @property def probs(self) -> Array: """The probabilities for each event.""" if self._probs is not None: return self._probs return jax.nn.softmax(self._logits, axis=-1) @property def num_categories(self) -> int: """Number of categories.""" if self._probs is not None: return self._probs.shape[-1] return self._logits.shape[-1] def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" new_shape = (n,) + self.logits.shape[:-1] is_valid = jnp.logical_and(jnp.all(jnp.isfinite(self.probs), axis=-1), jnp.all(self.probs >= 0, axis=-1)) draws = jax.random.categorical(key=key, logits=self.logits, axis=-1, shape=new_shape).astype(self._dtype) return jnp.where(is_valid, draws, jnp.ones_like(draws) * -1) def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.logits.dtype) mask_outside_domain = jnp.logical_or( value < 0, value > self.num_categories - 1) return jnp.where( mask_outside_domain, -jnp.inf, jnp.sum(math.multiply_no_nan(self.logits, value_one_hot), axis=-1)) def prob(self, value: EventT) -> Array: """See `Distribution.prob`.""" value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.probs.dtype) return jnp.sum(math.multiply_no_nan(self.probs, value_one_hot), axis=-1) def entropy(self) -> Array: """See `Distribution.entropy`.""" if self._logits is None: log_probs = jnp.log(self._probs) else: log_probs = jax.nn.log_softmax(self._logits) return -jnp.sum(math.mul_exp(log_probs, log_probs), axis=-1) def mode(self) -> Array: """See `Distribution.mode`.""" parameter = self._probs if self._logits is None else self._logits return jnp.argmax(parameter, axis=-1).astype(self._dtype) def cdf(self, value: EventT) -> Array: """See `Distribution.cdf`.""" # For value < 0 the output should be zero because support = {0, ..., K-1}. should_be_zero = value < 0 # For value >= K-1 the output should be one. Explicitly accounting for this # case addresses potential numerical issues that may arise when evaluating # derived methods (mainly, `log_survival_function`) for `value >= K-1`. should_be_one = value >= self.num_categories - 1 # Will use value as an index below, so clip it to {0, ..., K-1}. value = jnp.clip(value, 0, self.num_categories - 1) value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.probs.dtype) cdf = jnp.sum(math.multiply_no_nan( jnp.cumsum(self.probs, axis=-1), value_one_hot), axis=-1) return jnp.where(should_be_zero, 0., jnp.where(should_be_one, 1., cdf)) def log_cdf(self, value: EventT) -> Array: """See `Distribution.log_cdf`.""" return jnp.log(self.cdf(value)) def logits_parameter(self) -> Array: """Wrapper for `logits` property, for TFP API compatibility.""" return self.logits def __getitem__(self, index) -> 'Categorical': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) if self._logits is not None: return Categorical(logits=self.logits[index], dtype=self._dtype) return Categorical(probs=self.probs[index], dtype=self._dtype)
(logits: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, NoneType] = None, probs: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, NoneType] = None, dtype: Union[numpy.dtype, type[Any]] = <class 'int'>)
55,427
distrax._src.distributions.categorical
__getitem__
See `Distribution.__getitem__`.
def __getitem__(self, index) -> 'Categorical': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) if self._logits is not None: return Categorical(logits=self.logits[index], dtype=self._dtype) return Categorical(probs=self.probs[index], dtype=self._dtype)
(self, index) -> distrax._src.distributions.categorical.Categorical
55,428
distrax._src.distributions.categorical
__init__
Initializes a Categorical distribution. Args: logits: Logit transform of the probability of each category. Only one of `logits` or `probs` can be specified. probs: Probability of each category. Only one of `logits` or `probs` can be specified. dtype: The type of event samples.
def __init__(self, logits: Optional[Array] = None, probs: Optional[Array] = None, dtype: Union[jnp.dtype, type[Any]] = int): """Initializes a Categorical distribution. Args: logits: Logit transform of the probability of each category. Only one of `logits` or `probs` can be specified. probs: Probability of each category. Only one of `logits` or `probs` can be specified. dtype: The type of event samples. """ super().__init__() if (logits is None) == (probs is None): raise ValueError( f'One and exactly one of `logits` and `probs` should be `None`, ' f'but `logits` is {logits} and `probs` is {probs}.') if not (jnp.issubdtype(dtype, jnp.integer) or jnp.issubdtype(dtype, jnp.floating)): raise ValueError( f'The dtype of `{self.name}` must be integer or floating-point, ' f'instead got `{dtype}`.') self._probs = None if probs is None else math.normalize(probs=probs) self._logits = None if logits is None else math.normalize(logits=logits) self._dtype = dtype
(self, logits: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, NoneType] = None, probs: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, NoneType] = None, dtype: Union[numpy.dtype, type[Any]] = <class 'int'>)
55,431
distrax._src.distributions.categorical
_sample_n
See `Distribution._sample_n`.
def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" new_shape = (n,) + self.logits.shape[:-1] is_valid = jnp.logical_and(jnp.all(jnp.isfinite(self.probs), axis=-1), jnp.all(self.probs >= 0, axis=-1)) draws = jax.random.categorical(key=key, logits=self.logits, axis=-1, shape=new_shape).astype(self._dtype) return jnp.where(is_valid, draws, jnp.ones_like(draws) * -1)
(self, key: jax.Array, n: int) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,433
distrax._src.distributions.categorical
cdf
See `Distribution.cdf`.
def cdf(self, value: EventT) -> Array: """See `Distribution.cdf`.""" # For value < 0 the output should be zero because support = {0, ..., K-1}. should_be_zero = value < 0 # For value >= K-1 the output should be one. Explicitly accounting for this # case addresses potential numerical issues that may arise when evaluating # derived methods (mainly, `log_survival_function`) for `value >= K-1`. should_be_one = value >= self.num_categories - 1 # Will use value as an index below, so clip it to {0, ..., K-1}. value = jnp.clip(value, 0, self.num_categories - 1) value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.probs.dtype) cdf = jnp.sum(math.multiply_no_nan( jnp.cumsum(self.probs, axis=-1), value_one_hot), axis=-1) return jnp.where(should_be_zero, 0., jnp.where(should_be_one, 1., cdf))
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,435
distrax._src.distributions.categorical
entropy
See `Distribution.entropy`.
def entropy(self) -> Array: """See `Distribution.entropy`.""" if self._logits is None: log_probs = jnp.log(self._probs) else: log_probs = jax.nn.log_softmax(self._logits) return -jnp.sum(math.mul_exp(log_probs, log_probs), axis=-1)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,438
distrax._src.distributions.categorical
log_prob
See `Distribution.log_prob`.
def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.logits.dtype) mask_outside_domain = jnp.logical_or( value < 0, value > self.num_categories - 1) return jnp.where( mask_outside_domain, -jnp.inf, jnp.sum(math.multiply_no_nan(self.logits, value_one_hot), axis=-1))
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,440
distrax._src.distributions.categorical
logits_parameter
Wrapper for `logits` property, for TFP API compatibility.
def logits_parameter(self) -> Array: """Wrapper for `logits` property, for TFP API compatibility.""" return self.logits
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,441
distrax._src.distributions.distribution
mean
Calculates the mean.
def mean(self) -> EventT: """Calculates the mean.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `mean`.')
(self) -> ~EventT
55,443
distrax._src.distributions.categorical
mode
See `Distribution.mode`.
def mode(self) -> Array: """See `Distribution.mode`.""" parameter = self._probs if self._logits is None else self._logits return jnp.argmax(parameter, axis=-1).astype(self._dtype)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,444
distrax._src.distributions.categorical
prob
See `Distribution.prob`.
def prob(self, value: EventT) -> Array: """See `Distribution.prob`.""" value_one_hot = jax.nn.one_hot( value, self.num_categories, dtype=self.probs.dtype) return jnp.sum(math.multiply_no_nan(self.probs, value_one_hot), axis=-1)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,450
distrax._src.distributions.distribution
variance
Calculates the variance.
def variance(self) -> EventT: """Calculates the variance.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `variance`.')
(self) -> ~EventT
55,451
distrax._src.distributions.categorical_uniform
CategoricalUniform
Mixture Categorical-Uniform distribution. Given an interval `[a, b]` and a probability vector `p = [p_1, ..., p_K]`, a random variable `x` follows a Categorical-Uniform distribution if its PDF is `p(x) = p_k / C` if `(k-1)C <= x - a < kC` for any `k = 1, ..., K`, where `C = (b-a) / K`, and `p(x) = 0` otherwise. Equivalently, the Categorical-Uniform can be understood as a mixture of Uniform distributions, with mixture probabilities `p_k` and Uniform component distributions with support in `[a + (k-1)C, a + kC]`.
class CategoricalUniform(distribution.Distribution): """Mixture Categorical-Uniform distribution. Given an interval `[a, b]` and a probability vector `p = [p_1, ..., p_K]`, a random variable `x` follows a Categorical-Uniform distribution if its PDF is `p(x) = p_k / C` if `(k-1)C <= x - a < kC` for any `k = 1, ..., K`, where `C = (b-a) / K`, and `p(x) = 0` otherwise. Equivalently, the Categorical-Uniform can be understood as a mixture of Uniform distributions, with mixture probabilities `p_k` and Uniform component distributions with support in `[a + (k-1)C, a + kC]`. """ def __init__( self, *, low: Numeric, high: Numeric, logits: Array, ) -> None: """Initializes a CategoricalUniform distribution. Args: low: The lowest value of the support, denoted `a` in the class docstring. It can also be a batch of values. high: The highest value of the support, denoted `b` in the class docstring. It can also be a batch of values. logits: The unnormalized log-probabilities of the mixture. It must be an array of length `K`. Additional leading dimensions, if any, index batches. """ super().__init__() self._low = conversion.as_float_array(low) self._high = conversion.as_float_array(high) self._logits = conversion.as_float_array(logits) if self._logits.ndim < 1: raise ValueError( 'The parameter `logits` must have at least one dimension.') @property def event_shape(self) -> Tuple[int, ...]: """Shape of event of distribution samples.""" return () @property def batch_shape(self) -> Tuple[int, ...]: """Shape of batch of distribution samples.""" return jax.lax.broadcast_shapes( self._low.shape, self._high.shape, self._logits.shape[:-1]) def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" quantile = jax.random.uniform(key, (n,) + self.batch_shape) return self._inverse_cdf(quantile) def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return self._get_mixture().log_prob(value) def entropy(self) -> Array: """See `Distribution.entropy`.""" # The following holds because the components have non-overlapping domains. mixture = self._get_mixture() return mixture.mixture_distribution.entropy() + jnp.log( (self._high - self._low) / self.num_bins) def mean(self) -> Array: """Calculates the mean.""" return self._get_mixture().mean() def variance(self) -> Array: """Calculates the variance.""" return self._get_mixture().variance() def __getitem__(self, index) -> 'CategoricalUniform': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return CategoricalUniform( low=self.low[index], high=self.high[index], logits=self.logits[index]) def _get_category_limits(self) -> Array: """Gets limits for each category.""" return jnp.linspace(self.low, self.high, self.num_bins + 1, axis=-1) def _get_mixture(self) -> mixture_same_family.MixtureSameFamily: """Gets a mixture distribution.""" limits = self._get_category_limits() return mixture_same_family.MixtureSameFamily( components_distribution=uniform.Uniform( low=limits[..., :-1], high=limits[..., 1:]), mixture_distribution=categorical.Categorical(logits=self.logits), ) def _inverse_cdf(self, quantile): """Inverse cumulative density function.""" probs = jax.nn.softmax(self.logits, axis=-1) cum_probs = jnp.cumsum(probs, axis=-1) quantile_limits = jnp.concatenate( [jnp.zeros_like(cum_probs[..., :1]), cum_probs], axis=-1) limits = self._get_category_limits() domain_diff = jnp.diff(limits, axis=-1) quantile_diff = jnp.diff(quantile_limits, axis=-1) slopes = domain_diff / quantile_diff quantile_contributions = jnp.minimum( quantile_diff, jax.nn.relu(quantile[..., None] - quantile_limits[..., :-1]), ) return self.low + jnp.sum(slopes * quantile_contributions, axis=-1) @property def low(self) -> Array: # Broadcasted version of the argument passed in the initializer. return jnp.broadcast_to(self._low, self.batch_shape) @property def high(self) -> Array: # Broadcasted version of the argument passed in the initializer. return jnp.broadcast_to(self._high, self.batch_shape) @property def logits(self) -> Array: return jnp.broadcast_to(self._logits, self.batch_shape + (self.num_bins,)) @property def num_bins(self) -> int: return self._logits.shape[-1]
(*, low: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], high: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], logits: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> None
55,452
distrax._src.distributions.categorical_uniform
__getitem__
See `Distribution.__getitem__`.
def __getitem__(self, index) -> 'CategoricalUniform': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return CategoricalUniform( low=self.low[index], high=self.high[index], logits=self.logits[index])
(self, index) -> distrax._src.distributions.categorical_uniform.CategoricalUniform
55,453
distrax._src.distributions.categorical_uniform
__init__
Initializes a CategoricalUniform distribution. Args: low: The lowest value of the support, denoted `a` in the class docstring. It can also be a batch of values. high: The highest value of the support, denoted `b` in the class docstring. It can also be a batch of values. logits: The unnormalized log-probabilities of the mixture. It must be an array of length `K`. Additional leading dimensions, if any, index batches.
def __init__( self, *, low: Numeric, high: Numeric, logits: Array, ) -> None: """Initializes a CategoricalUniform distribution. Args: low: The lowest value of the support, denoted `a` in the class docstring. It can also be a batch of values. high: The highest value of the support, denoted `b` in the class docstring. It can also be a batch of values. logits: The unnormalized log-probabilities of the mixture. It must be an array of length `K`. Additional leading dimensions, if any, index batches. """ super().__init__() self._low = conversion.as_float_array(low) self._high = conversion.as_float_array(high) self._logits = conversion.as_float_array(logits) if self._logits.ndim < 1: raise ValueError( 'The parameter `logits` must have at least one dimension.')
(self, *, low: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], high: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], logits: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> NoneType
55,455
distrax._src.distributions.categorical_uniform
_get_category_limits
Gets limits for each category.
def _get_category_limits(self) -> Array: """Gets limits for each category.""" return jnp.linspace(self.low, self.high, self.num_bins + 1, axis=-1)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,456
distrax._src.distributions.categorical_uniform
_get_mixture
Gets a mixture distribution.
def _get_mixture(self) -> mixture_same_family.MixtureSameFamily: """Gets a mixture distribution.""" limits = self._get_category_limits() return mixture_same_family.MixtureSameFamily( components_distribution=uniform.Uniform( low=limits[..., :-1], high=limits[..., 1:]), mixture_distribution=categorical.Categorical(logits=self.logits), )
(self) -> distrax._src.distributions.mixture_same_family.MixtureSameFamily
55,457
distrax._src.distributions.categorical_uniform
_inverse_cdf
Inverse cumulative density function.
def _inverse_cdf(self, quantile): """Inverse cumulative density function.""" probs = jax.nn.softmax(self.logits, axis=-1) cum_probs = jnp.cumsum(probs, axis=-1) quantile_limits = jnp.concatenate( [jnp.zeros_like(cum_probs[..., :1]), cum_probs], axis=-1) limits = self._get_category_limits() domain_diff = jnp.diff(limits, axis=-1) quantile_diff = jnp.diff(quantile_limits, axis=-1) slopes = domain_diff / quantile_diff quantile_contributions = jnp.minimum( quantile_diff, jax.nn.relu(quantile[..., None] - quantile_limits[..., :-1]), ) return self.low + jnp.sum(slopes * quantile_contributions, axis=-1)
(self, quantile)
55,459
distrax._src.distributions.categorical_uniform
_sample_n
See `Distribution._sample_n`.
def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" quantile = jax.random.uniform(key, (n,) + self.batch_shape) return self._inverse_cdf(quantile)
(self, key: jax.Array, n: int) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,461
distrax._src.distributions.distribution
cdf
Evaluates the cumulative distribution function at `value`. Args: value: An event. Returns: The CDF evaluated at value, i.e. P[X <= value].
def cdf(self, value: EventT) -> Array: """Evaluates the cumulative distribution function at `value`. Args: value: An event. Returns: The CDF evaluated at value, i.e. P[X <= value]. """ return jnp.exp(self.log_cdf(value))
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,463
distrax._src.distributions.categorical_uniform
entropy
See `Distribution.entropy`.
def entropy(self) -> Array: """See `Distribution.entropy`.""" # The following holds because the components have non-overlapping domains. mixture = self._get_mixture() return mixture.mixture_distribution.entropy() + jnp.log( (self._high - self._low) / self.num_bins)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,465
distrax._src.distributions.distribution
log_cdf
Evaluates the log cumulative distribution function at `value`. Args: value: An event. Returns: The log CDF evaluated at value, i.e. log P[X <= value].
def log_cdf(self, value: EventT) -> Array: """Evaluates the log cumulative distribution function at `value`. Args: value: An event. Returns: The log CDF evaluated at value, i.e. log P[X <= value]. """ raise NotImplementedError( f'Distribution `{self.name}` does not implement `log_cdf`.')
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,466
distrax._src.distributions.categorical_uniform
log_prob
See `Distribution.log_prob`.
def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return self._get_mixture().log_prob(value)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,468
distrax._src.distributions.categorical_uniform
mean
Calculates the mean.
def mean(self) -> Array: """Calculates the mean.""" return self._get_mixture().mean()
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,470
distrax._src.distributions.distribution
mode
Calculates the mode.
def mode(self) -> EventT: """Calculates the mode.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `mode`.')
(self) -> ~EventT
55,477
distrax._src.distributions.categorical_uniform
variance
Calculates the variance.
def variance(self) -> Array: """Calculates the variance.""" return self._get_mixture().variance()
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,478
distrax._src.bijectors.chain
Chain
Composition of a sequence of bijectors into a single bijector. Bijectors are composable: if `f` and `g` are bijectors, then `g o f` is also a bijector. Given a sequence of bijectors `[f1, ..., fN]`, this class implements the bijector defined by `fN o ... o f1`. NOTE: the bijectors are applied in reverse order from the order they appear in the sequence. For example, consider the following code where `f` and `g` are two bijectors: ``` layers = [] layers.append(f) layers.append(g) bijector = distrax.Chain(layers) y = bijector.forward(x) ``` The above code will transform `x` by first applying `g`, then `f`, so that `y = f(g(x))`.
class Chain(base.Bijector): """Composition of a sequence of bijectors into a single bijector. Bijectors are composable: if `f` and `g` are bijectors, then `g o f` is also a bijector. Given a sequence of bijectors `[f1, ..., fN]`, this class implements the bijector defined by `fN o ... o f1`. NOTE: the bijectors are applied in reverse order from the order they appear in the sequence. For example, consider the following code where `f` and `g` are two bijectors: ``` layers = [] layers.append(f) layers.append(g) bijector = distrax.Chain(layers) y = bijector.forward(x) ``` The above code will transform `x` by first applying `g`, then `f`, so that `y = f(g(x))`. """ def __init__(self, bijectors: Sequence[BijectorLike]): """Initializes a Chain bijector. Args: bijectors: a sequence of bijectors to be composed into one. Each bijector can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. The sequence must contain at least one bijector. """ if not bijectors: raise ValueError("The sequence of bijectors cannot be empty.") self._bijectors = [conversion.as_bijector(b) for b in bijectors] # Check that neighboring bijectors in the chain have compatible dimensions for i, (outer, inner) in enumerate(zip(self._bijectors[:-1], self._bijectors[1:])): if outer.event_ndims_in != inner.event_ndims_out: raise ValueError( f"The chain of bijector event shapes are incompatible. Bijector " f"{i} ({outer.name}) expects events with {outer.event_ndims_in} " f"dimensions, while Bijector {i+1} ({inner.name}) produces events " f"with {inner.event_ndims_out} dimensions.") is_constant_jacobian = all(b.is_constant_jacobian for b in self._bijectors) is_constant_log_det = all(b.is_constant_log_det for b in self._bijectors) super().__init__( event_ndims_in=self._bijectors[-1].event_ndims_in, event_ndims_out=self._bijectors[0].event_ndims_out, is_constant_jacobian=is_constant_jacobian, is_constant_log_det=is_constant_log_det) @property def bijectors(self) -> List[BijectorT]: """The list of bijectors in the chain.""" return self._bijectors def forward(self, x: Array) -> Array: """Computes y = f(x).""" for bijector in reversed(self._bijectors): x = bijector.forward(x) return x def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" for bijector in self._bijectors: y = bijector.inverse(y) return y def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" x, log_det = self._bijectors[-1].forward_and_log_det(x) for bijector in reversed(self._bijectors[:-1]): x, ld = bijector.forward_and_log_det(x) log_det += ld return x, log_det def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" y, log_det = self._bijectors[0].inverse_and_log_det(y) for bijector in self._bijectors[1:]: y, ld = bijector.inverse_and_log_det(y) log_det += ld return y, log_det def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is Chain: # pylint: disable=unidiomatic-typecheck if len(self.bijectors) != len(other.bijectors): return False for bij1, bij2 in zip(self.bijectors, other.bijectors): if not bij1.same_as(bij2): return False return True elif len(self.bijectors) == 1: return self.bijectors[0].same_as(other) return False
(bijectors: Sequence[Union[distrax._src.bijectors.bijector.Bijector, tensorflow_probability.substrates.jax.bijectors.bijector.Bijector, Callable[[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]]])
55,479
distrax._src.bijectors.chain
__init__
Initializes a Chain bijector. Args: bijectors: a sequence of bijectors to be composed into one. Each bijector can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. The sequence must contain at least one bijector.
def __init__(self, bijectors: Sequence[BijectorLike]): """Initializes a Chain bijector. Args: bijectors: a sequence of bijectors to be composed into one. Each bijector can be a distrax bijector, a TFP bijector, or a callable to be wrapped by `Lambda`. The sequence must contain at least one bijector. """ if not bijectors: raise ValueError("The sequence of bijectors cannot be empty.") self._bijectors = [conversion.as_bijector(b) for b in bijectors] # Check that neighboring bijectors in the chain have compatible dimensions for i, (outer, inner) in enumerate(zip(self._bijectors[:-1], self._bijectors[1:])): if outer.event_ndims_in != inner.event_ndims_out: raise ValueError( f"The chain of bijector event shapes are incompatible. Bijector " f"{i} ({outer.name}) expects events with {outer.event_ndims_in} " f"dimensions, while Bijector {i+1} ({inner.name}) produces events " f"with {inner.event_ndims_out} dimensions.") is_constant_jacobian = all(b.is_constant_jacobian for b in self._bijectors) is_constant_log_det = all(b.is_constant_log_det for b in self._bijectors) super().__init__( event_ndims_in=self._bijectors[-1].event_ndims_in, event_ndims_out=self._bijectors[0].event_ndims_out, is_constant_jacobian=is_constant_jacobian, is_constant_log_det=is_constant_log_det)
(self, bijectors: Sequence[Union[distrax._src.bijectors.bijector.Bijector, tensorflow_probability.substrates.jax.bijectors.bijector.Bijector, Callable[[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]]])
55,483
distrax._src.bijectors.chain
forward
Computes y = f(x).
def forward(self, x: Array) -> Array: """Computes y = f(x).""" for bijector in reversed(self._bijectors): x = bijector.forward(x) return x
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,484
distrax._src.bijectors.chain
forward_and_log_det
Computes y = f(x) and log|det J(f)(x)|.
def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" x, log_det = self._bijectors[-1].forward_and_log_det(x) for bijector in reversed(self._bijectors[:-1]): x, ld = bijector.forward_and_log_det(x) log_det += ld return x, log_det
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,486
distrax._src.bijectors.chain
inverse
Computes x = f^{-1}(y).
def inverse(self, y: Array) -> Array: """Computes x = f^{-1}(y).""" for bijector in self._bijectors: y = bijector.inverse(y) return y
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,487
distrax._src.bijectors.chain
inverse_and_log_det
Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.
def inverse_and_log_det(self, y: Array) -> Tuple[Array, Array]: """Computes x = f^{-1}(y) and log|det J(f^{-1})(y)|.""" y, log_det = self._bijectors[0].inverse_and_log_det(y) for bijector in self._bijectors[1:]: y, ld = bijector.inverse_and_log_det(y) log_det += ld return y, log_det
(self, y: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,489
distrax._src.bijectors.chain
same_as
Returns True if this bijector is guaranteed to be the same as `other`.
def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is Chain: # pylint: disable=unidiomatic-typecheck if len(self.bijectors) != len(other.bijectors): return False for bij1, bij2 in zip(self.bijectors, other.bijectors): if not bij1.same_as(bij2): return False return True elif len(self.bijectors) == 1: return self.bijectors[0].same_as(other) return False
(self, other: distrax._src.bijectors.bijector.Bijector) -> bool
55,491
distrax._src.distributions.clipped
Clipped
A clipped distribution.
class Clipped(base_distribution.Distribution): """A clipped distribution.""" def __init__( self, distribution: DistributionLike, minimum: Numeric, maximum: Numeric): """Wraps a distribution clipping samples out of `[minimum, maximum]`. The samples outside of `[minimum, maximum]` are clipped to the boundary. The log probability of samples outside of this range is `-inf`. Args: distribution: a Distrax / TFP distribution to be wrapped. minimum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it. maximum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it. """ super().__init__() if distribution.event_shape: raise ValueError('The wrapped distribution must have event shape ().') if (jnp.array(minimum).ndim > len(distribution.batch_shape) or jnp.array(maximum).ndim > len(distribution.batch_shape)): raise ValueError( 'The minimum and maximum clipping boundaries must be scalars or' 'vectors with fewer dimensions as the batch_shape of distribution:' 'i.e. we can broadcast min/max to batch_shape but not viceversa.') self._distribution = conversion.as_distribution(distribution) self._minimum = jnp.broadcast_to(minimum, self._distribution.batch_shape) self._maximum = jnp.broadcast_to(maximum, self._distribution.batch_shape) self._log_prob_minimum = self._distribution.log_cdf(minimum) self._log_prob_maximum = self._distribution.log_survival_function(maximum) def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" raw_sample = self._distribution.sample(seed=key, sample_shape=[n]) return jnp.clip(raw_sample, self._minimum, self._maximum) def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """See `Distribution._sample_n_and_log_prob`.""" samples = self._sample_n(key, n) return samples, self.log_prob(samples) def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" # The log_prob can be used to compute expectations by explicitly integrating # over the discrete and continuous elements. # Info about mixed distributions: # http://www.randomservices.org/random/dist/Mixed.html log_prob = jnp.where( jnp.equal(value, self._minimum), self._log_prob_minimum, jnp.where(jnp.equal(value, self._maximum), self._log_prob_maximum, self._distribution.log_prob(value))) # Giving -inf log_prob outside the boundaries. return jnp.where( jnp.logical_or(value < self._minimum, value > self._maximum), -jnp.inf, log_prob) @property def minimum(self) -> Array: return self._minimum @property def maximum(self) -> Array: return self._maximum @property def distribution(self) -> DistributionLike: return self._distribution @property def event_shape(self) -> Tuple[int, ...]: return () @property def batch_shape(self) -> Tuple[int, ...]: return self._distribution.batch_shape def __getitem__(self, index) -> 'Clipped': """See `Distribution.__getitem__`.""" index = base_distribution.to_batch_shape_index(self.batch_shape, index) return Clipped( distribution=self.distribution[index], minimum=self.minimum[index], maximum=self.maximum[index])
(distribution: Union[distrax._src.distributions.distribution.Distribution, tensorflow_probability.substrates.jax.distributions.distribution.Distribution], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,492
distrax._src.distributions.clipped
__getitem__
See `Distribution.__getitem__`.
def __getitem__(self, index) -> 'Clipped': """See `Distribution.__getitem__`.""" index = base_distribution.to_batch_shape_index(self.batch_shape, index) return Clipped( distribution=self.distribution[index], minimum=self.minimum[index], maximum=self.maximum[index])
(self, index) -> distrax._src.distributions.clipped.Clipped
55,493
distrax._src.distributions.clipped
__init__
Wraps a distribution clipping samples out of `[minimum, maximum]`. The samples outside of `[minimum, maximum]` are clipped to the boundary. The log probability of samples outside of this range is `-inf`. Args: distribution: a Distrax / TFP distribution to be wrapped. minimum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it. maximum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it.
def __init__( self, distribution: DistributionLike, minimum: Numeric, maximum: Numeric): """Wraps a distribution clipping samples out of `[minimum, maximum]`. The samples outside of `[minimum, maximum]` are clipped to the boundary. The log probability of samples outside of this range is `-inf`. Args: distribution: a Distrax / TFP distribution to be wrapped. minimum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it. maximum: can be a `scalar` or `vector`; if a vector, must have fewer dims than `distribution.batch_shape` and must be broadcastable to it. """ super().__init__() if distribution.event_shape: raise ValueError('The wrapped distribution must have event shape ().') if (jnp.array(minimum).ndim > len(distribution.batch_shape) or jnp.array(maximum).ndim > len(distribution.batch_shape)): raise ValueError( 'The minimum and maximum clipping boundaries must be scalars or' 'vectors with fewer dimensions as the batch_shape of distribution:' 'i.e. we can broadcast min/max to batch_shape but not viceversa.') self._distribution = conversion.as_distribution(distribution) self._minimum = jnp.broadcast_to(minimum, self._distribution.batch_shape) self._maximum = jnp.broadcast_to(maximum, self._distribution.batch_shape) self._log_prob_minimum = self._distribution.log_cdf(minimum) self._log_prob_maximum = self._distribution.log_survival_function(maximum)
(self, distribution: Union[distrax._src.distributions.distribution.Distribution, tensorflow_probability.substrates.jax.distributions.distribution.Distribution], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,496
distrax._src.distributions.clipped
_sample_n
See `Distribution._sample_n`.
def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" raw_sample = self._distribution.sample(seed=key, sample_shape=[n]) return jnp.clip(raw_sample, self._minimum, self._maximum)
(self, key: jax.Array, n: int) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,497
distrax._src.distributions.clipped
_sample_n_and_log_prob
See `Distribution._sample_n_and_log_prob`.
def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """See `Distribution._sample_n_and_log_prob`.""" samples = self._sample_n(key, n) return samples, self.log_prob(samples)
(self, key: jax.Array, n: int) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,500
distrax._src.distributions.distribution
entropy
Calculates the Shannon entropy (in nats).
def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `entropy`.')
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,503
distrax._src.distributions.clipped
log_prob
See `Distribution.log_prob`.
def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" # The log_prob can be used to compute expectations by explicitly integrating # over the discrete and continuous elements. # Info about mixed distributions: # http://www.randomservices.org/random/dist/Mixed.html log_prob = jnp.where( jnp.equal(value, self._minimum), self._log_prob_minimum, jnp.where(jnp.equal(value, self._maximum), self._log_prob_maximum, self._distribution.log_prob(value))) # Giving -inf log_prob outside the boundaries. return jnp.where( jnp.logical_or(value < self._minimum, value > self._maximum), -jnp.inf, log_prob)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,515
distrax._src.distributions.clipped
ClippedLogistic
A clipped logistic distribution.
class ClippedLogistic(Clipped): """A clipped logistic distribution.""" def __init__( self, loc: Numeric, scale: Numeric, minimum: Numeric, maximum: Numeric): distribution = logistic.Logistic(loc=loc, scale=scale) super().__init__(distribution, minimum=minimum, maximum=maximum)
(loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], scale: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,517
distrax._src.distributions.clipped
__init__
null
def __init__( self, loc: Numeric, scale: Numeric, minimum: Numeric, maximum: Numeric): distribution = logistic.Logistic(loc=loc, scale=scale) super().__init__(distribution, minimum=minimum, maximum=maximum)
(self, loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], scale: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,539
distrax._src.distributions.clipped
ClippedNormal
A clipped normal distribution.
class ClippedNormal(Clipped): """A clipped normal distribution.""" def __init__( self, loc: Numeric, scale: Numeric, minimum: Numeric, maximum: Numeric): distribution = normal.Normal(loc=loc, scale=scale) super().__init__(distribution, minimum=minimum, maximum=maximum)
(loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], scale: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,541
distrax._src.distributions.clipped
__init__
null
def __init__( self, loc: Numeric, scale: Numeric, minimum: Numeric, maximum: Numeric): distribution = normal.Normal(loc=loc, scale=scale) super().__init__(distribution, minimum=minimum, maximum=maximum)
(self, loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], scale: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], minimum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], maximum: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int])
55,563
distrax._src.distributions.deterministic
Deterministic
Scalar Deterministic distribution on the real line.
class Deterministic(distribution.Distribution): """Scalar Deterministic distribution on the real line.""" equiv_tfp_cls = tfd.Deterministic def __init__(self, loc: Numeric, atol: Optional[Numeric] = None, rtol: Optional[Numeric] = None): """Initializes a Deterministic distribution. Args: loc: Batch of points on which the distribution is supported. atol: Absolute tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting. rtol: Relative tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting. """ super().__init__() self._loc = jnp.asarray(loc) self._atol = jnp.asarray(0. if atol is None else atol) self._rtol = jnp.asarray(0. if rtol is None else rtol) if len(self._rtol.shape) > len(self._loc.shape): raise ValueError(f'The parameter `rtol` cannot have more dimensions than ' f'`loc`, but their shapes are {self._rtol.shape} and ' f'{self._loc.shape}, respectively.') if len(self._atol.shape) > len(self._loc.shape): raise ValueError(f'The parameter `atol` cannot have more dimensions than ' f'`loc`, but their shapes are {self._atol.shape} and ' f'{self._loc.shape}, respectively.') @property def event_shape(self) -> Tuple[int, ...]: """Shape of the events.""" return () @property def batch_shape(self) -> Tuple[int, ...]: """Shape of batch of distribution samples.""" return self._loc.shape @property def loc(self) -> Array: """Point(s) on which this distribution is supported.""" return self._loc @property def atol(self) -> Array: """Absolute tolerance for comparing closeness to `loc`.""" return jnp.broadcast_to(self._atol, self.batch_shape) @property def rtol(self) -> Array: """Relative tolerance for comparing closeness to `loc`.""" return jnp.broadcast_to(self._rtol, self.batch_shape) @property def slack(self) -> Array: return jnp.where( self.rtol == 0, self.atol, self.atol + self.rtol * jnp.abs(self.loc)) def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" del key # unused loc = jnp.expand_dims(self.loc, axis=0) return jnp.repeat(loc, n, axis=0) def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """See `Distribution._sample_n_and_log_prob`.""" samples = self._sample_n(key, n) log_prob = jnp.zeros_like(samples) return samples, log_prob def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return jnp.log(self.prob(value)) def prob(self, value: EventT) -> Array: """See `Distribution.prob`.""" return jnp.where( jnp.abs(value - self.loc) <= self.slack, 1., 0.) def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" return jnp.zeros(self.batch_shape, jnp.float_) def mean(self) -> Array: """Calculates the mean.""" return self.loc def mode(self) -> Array: """Calculates the mode.""" return self.mean() def variance(self) -> Array: """Calculates the variance.""" return jnp.zeros(self.batch_shape, jnp.float_) def stddev(self) -> Array: """Calculates the standard deviation.""" return self.variance() def log_cdf(self, value: EventT) -> Array: """See `Distribution.log_cdf`.""" return jnp.log(self.cdf(value)) def cdf(self, value: EventT) -> Array: """See `Distribution.cdf`.""" return jnp.where(value >= self.loc - self.slack, 1., 0.) def __getitem__(self, index) -> 'Deterministic': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return Deterministic( loc=self.loc[index], atol=self.atol[index], rtol=self.rtol[index])
(loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], atol: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int, NoneType] = None, rtol: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int, NoneType] = None)
55,564
distrax._src.distributions.deterministic
__getitem__
See `Distribution.__getitem__`.
def __getitem__(self, index) -> 'Deterministic': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return Deterministic( loc=self.loc[index], atol=self.atol[index], rtol=self.rtol[index])
(self, index) -> distrax._src.distributions.deterministic.Deterministic
55,565
distrax._src.distributions.deterministic
__init__
Initializes a Deterministic distribution. Args: loc: Batch of points on which the distribution is supported. atol: Absolute tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting. rtol: Relative tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting.
def __init__(self, loc: Numeric, atol: Optional[Numeric] = None, rtol: Optional[Numeric] = None): """Initializes a Deterministic distribution. Args: loc: Batch of points on which the distribution is supported. atol: Absolute tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting. rtol: Relative tolerance for comparing closeness to `loc`. It must be broadcastable with `loc`, and it must not lead to additional batch dimensions after broadcasting. """ super().__init__() self._loc = jnp.asarray(loc) self._atol = jnp.asarray(0. if atol is None else atol) self._rtol = jnp.asarray(0. if rtol is None else rtol) if len(self._rtol.shape) > len(self._loc.shape): raise ValueError(f'The parameter `rtol` cannot have more dimensions than ' f'`loc`, but their shapes are {self._rtol.shape} and ' f'{self._loc.shape}, respectively.') if len(self._atol.shape) > len(self._loc.shape): raise ValueError(f'The parameter `atol` cannot have more dimensions than ' f'`loc`, but their shapes are {self._atol.shape} and ' f'{self._loc.shape}, respectively.')
(self, loc: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int], atol: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int, NoneType] = None, rtol: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number, float, int, NoneType] = None)
55,568
distrax._src.distributions.deterministic
_sample_n
See `Distribution._sample_n`.
def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" del key # unused loc = jnp.expand_dims(self.loc, axis=0) return jnp.repeat(loc, n, axis=0)
(self, key: jax.Array, n: int) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,569
distrax._src.distributions.deterministic
_sample_n_and_log_prob
See `Distribution._sample_n_and_log_prob`.
def _sample_n_and_log_prob(self, key: PRNGKey, n: int) -> Tuple[Array, Array]: """See `Distribution._sample_n_and_log_prob`.""" samples = self._sample_n(key, n) log_prob = jnp.zeros_like(samples) return samples, log_prob
(self, key: jax.Array, n: int) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,570
distrax._src.distributions.deterministic
cdf
See `Distribution.cdf`.
def cdf(self, value: EventT) -> Array: """See `Distribution.cdf`.""" return jnp.where(value >= self.loc - self.slack, 1., 0.)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,572
distrax._src.distributions.deterministic
entropy
Calculates the Shannon entropy (in nats).
def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" return jnp.zeros(self.batch_shape, jnp.float_)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,575
distrax._src.distributions.deterministic
log_prob
See `Distribution.log_prob`.
def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return jnp.log(self.prob(value))
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,577
distrax._src.distributions.deterministic
mean
Calculates the mean.
def mean(self) -> Array: """Calculates the mean.""" return self.loc
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,579
distrax._src.distributions.deterministic
mode
Calculates the mode.
def mode(self) -> Array: """Calculates the mode.""" return self.mean()
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,580
distrax._src.distributions.deterministic
prob
See `Distribution.prob`.
def prob(self, value: EventT) -> Array: """See `Distribution.prob`.""" return jnp.where( jnp.abs(value - self.loc) <= self.slack, 1., 0.)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,583
distrax._src.distributions.deterministic
stddev
Calculates the standard deviation.
def stddev(self) -> Array: """Calculates the standard deviation.""" return self.variance()
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,586
distrax._src.distributions.deterministic
variance
Calculates the variance.
def variance(self) -> Array: """Calculates the variance.""" return jnp.zeros(self.batch_shape, jnp.float_)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,587
distrax._src.bijectors.diag_linear
DiagLinear
Linear bijector with a diagonal weight matrix. The bijector is defined as `f(x) = Ax` where `A` is a `DxD` diagonal matrix. Additional dimensions, if any, index batches. The Jacobian determinant is trivially computed by taking the product of the diagonal entries in `A`. The inverse transformation `x = f^{-1}(y)` is computed element-wise. The bijector is invertible if and only if the diagonal entries of `A` are all non-zero. It is the responsibility of the user to make sure that this is the case; the class will make no attempt to verify that the bijector is invertible.
class DiagLinear(linear.Linear): """Linear bijector with a diagonal weight matrix. The bijector is defined as `f(x) = Ax` where `A` is a `DxD` diagonal matrix. Additional dimensions, if any, index batches. The Jacobian determinant is trivially computed by taking the product of the diagonal entries in `A`. The inverse transformation `x = f^{-1}(y)` is computed element-wise. The bijector is invertible if and only if the diagonal entries of `A` are all non-zero. It is the responsibility of the user to make sure that this is the case; the class will make no attempt to verify that the bijector is invertible. """ def __init__(self, diag: Array): """Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `A`. Can also be a batch of such vectors. """ if diag.ndim < 1: raise ValueError("`diag` must have at least one dimension.") self._bijector = block.Block( scalar_affine.ScalarAffine(shift=0., scale=diag), ndims=1) super().__init__( event_dims=diag.shape[-1], batch_shape=diag.shape[:-1], dtype=diag.dtype) self._diag = diag self.forward = self._bijector.forward self.forward_log_det_jacobian = self._bijector.forward_log_det_jacobian self.inverse = self._bijector.inverse self.inverse_log_det_jacobian = self._bijector.inverse_log_det_jacobian self.inverse_and_log_det = self._bijector.inverse_and_log_det @property def diag(self) -> Array: """Vector of length D, the diagonal of matrix `A`.""" return self._diag @property def matrix(self) -> Array: """The full matrix `A`.""" return jnp.vectorize(jnp.diag, signature="(k)->(k,k)")(self.diag) def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" return self._bijector.forward_and_log_det(x) def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is DiagLinear: # pylint: disable=unidiomatic-typecheck return self.diag is other.diag return False
(diag: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,588
distrax._src.bijectors.diag_linear
__init__
Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `A`. Can also be a batch of such vectors.
def __init__(self, diag: Array): """Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `A`. Can also be a batch of such vectors. """ if diag.ndim < 1: raise ValueError("`diag` must have at least one dimension.") self._bijector = block.Block( scalar_affine.ScalarAffine(shift=0., scale=diag), ndims=1) super().__init__( event_dims=diag.shape[-1], batch_shape=diag.shape[:-1], dtype=diag.dtype) self._diag = diag self.forward = self._bijector.forward self.forward_log_det_jacobian = self._bijector.forward_log_det_jacobian self.inverse = self._bijector.inverse self.inverse_log_det_jacobian = self._bijector.inverse_log_det_jacobian self.inverse_and_log_det = self._bijector.inverse_and_log_det
(self, diag: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,593
distrax._src.bijectors.diag_linear
forward_and_log_det
Computes y = f(x) and log|det J(f)(x)|.
def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" return self._bijector.forward_and_log_det(x)
(self, x: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]) -> Tuple[Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]]
55,598
distrax._src.bijectors.diag_linear
same_as
Returns True if this bijector is guaranteed to be the same as `other`.
def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is DiagLinear: # pylint: disable=unidiomatic-typecheck return self.diag is other.diag return False
(self, other: distrax._src.bijectors.bijector.Bijector) -> bool
55,600
distrax._src.bijectors.diag_plus_low_rank_linear
DiagPlusLowRankLinear
Linear bijector whose weights are a low-rank perturbation of a diagonal. The bijector is defined as `f(x) = Ax` where `A = S + UV^T` and: - `S` is a DxD diagonal matrix, - `U`, `V` are DxK matrices. When K < D, this bijector is computationally more efficient than an equivalent `UnconstrainedAffine` bijector. The Jacobian determinant is computed using the matrix determinant lemma: det J(x) = det A = det(S) det(I + V^T S^{-1} U) The matrix `I + V^T S^{-1} U` is KxK instead of DxD, so for K < D computing its determinant is faster than computing the determinant of `A`. The inverse is computed using the Woodbury matrix identity: A^{-1} = (I - S^{-1} U (I + V^T S^{-1} U)^{-1} V^T) S^{-1} As above, inverting the KxK matrix `I + V^T S^{-1} U` is faster than inverting `A` when K < D. The bijector is invertible if and only if both `S` and `I + V^T S^{-1} U` are invertible matrices. It is the responsibility of the user to make sure that this is the case; the class will make no attempt to verify that the bijector is invertible.
class DiagPlusLowRankLinear(linear.Linear): """Linear bijector whose weights are a low-rank perturbation of a diagonal. The bijector is defined as `f(x) = Ax` where `A = S + UV^T` and: - `S` is a DxD diagonal matrix, - `U`, `V` are DxK matrices. When K < D, this bijector is computationally more efficient than an equivalent `UnconstrainedAffine` bijector. The Jacobian determinant is computed using the matrix determinant lemma: det J(x) = det A = det(S) det(I + V^T S^{-1} U) The matrix `I + V^T S^{-1} U` is KxK instead of DxD, so for K < D computing its determinant is faster than computing the determinant of `A`. The inverse is computed using the Woodbury matrix identity: A^{-1} = (I - S^{-1} U (I + V^T S^{-1} U)^{-1} V^T) S^{-1} As above, inverting the KxK matrix `I + V^T S^{-1} U` is faster than inverting `A` when K < D. The bijector is invertible if and only if both `S` and `I + V^T S^{-1} U` are invertible matrices. It is the responsibility of the user to make sure that this is the case; the class will make no attempt to verify that the bijector is invertible. """ def __init__(self, diag: Array, u_matrix: Array, v_matrix: Array): """Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `S`. Can also be a batch of such vectors. u_matrix: a DxK matrix, the `U` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices. v_matrix: a DxK matrix, the `V` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices. """ _check_shapes_are_valid(diag, u_matrix, v_matrix) # Since `S + UV^T = S (I + WV^T)` where `W = S^{-1}U`, we can implement this # bijector by composing `_IdentityPlusLowRankLinear` with `DiagLinear`. id_plus_low_rank_linear = _IdentityPlusLowRankLinear( u_matrix=u_matrix / diag[..., None], v_matrix=v_matrix) self._bijector = chain.Chain( [diag_linear.DiagLinear(diag), id_plus_low_rank_linear]) batch_shape = jnp.broadcast_shapes( diag.shape[:-1], u_matrix.shape[:-2], v_matrix.shape[:-2]) dtype = jnp.result_type(diag, u_matrix, v_matrix) super().__init__( event_dims=diag.shape[-1], batch_shape=batch_shape, dtype=dtype) self._diag = diag self._u_matrix = u_matrix self._v_matrix = v_matrix self.forward = self._bijector.forward self.forward_log_det_jacobian = self._bijector.forward_log_det_jacobian self.inverse = self._bijector.inverse self.inverse_log_det_jacobian = self._bijector.inverse_log_det_jacobian self.inverse_and_log_det = self._bijector.inverse_and_log_det @property def diag(self) -> Array: """Vector of length D, the diagonal of matrix `S`.""" return self._diag @property def u_matrix(self) -> Array: """The `U` matrix in `A = S + UV^T`.""" return self._u_matrix @property def v_matrix(self) -> Array: """The `V` matrix in `A = S + UV^T`.""" return self._v_matrix @property def matrix(self) -> Array: """The matrix `A = S + UV^T` of the transformation.""" batched = jnp.vectorize( lambda s, u, v: jnp.diag(s) + u @ v.T, signature="(d),(d,k),(d,k)->(d,d)") return batched(self._diag, self._u_matrix, self._v_matrix) def forward_and_log_det(self, x: Array) -> Tuple[Array, Array]: """Computes y = f(x) and log|det J(f)(x)|.""" return self._bijector.forward_and_log_det(x) def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is DiagPlusLowRankLinear: # pylint: disable=unidiomatic-typecheck return all(( self.diag is other.diag, self.u_matrix is other.u_matrix, self.v_matrix is other.v_matrix, )) return False
(diag: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], u_matrix: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], v_matrix: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,601
distrax._src.bijectors.diag_plus_low_rank_linear
__init__
Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `S`. Can also be a batch of such vectors. u_matrix: a DxK matrix, the `U` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices. v_matrix: a DxK matrix, the `V` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices.
def __init__(self, diag: Array, u_matrix: Array, v_matrix: Array): """Initializes the bijector. Args: diag: a vector of length D, the diagonal of matrix `S`. Can also be a batch of such vectors. u_matrix: a DxK matrix, the `U` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices. v_matrix: a DxK matrix, the `V` matrix in `A = S + UV^T`. Can also be a batch of DxK matrices. """ _check_shapes_are_valid(diag, u_matrix, v_matrix) # Since `S + UV^T = S (I + WV^T)` where `W = S^{-1}U`, we can implement this # bijector by composing `_IdentityPlusLowRankLinear` with `DiagLinear`. id_plus_low_rank_linear = _IdentityPlusLowRankLinear( u_matrix=u_matrix / diag[..., None], v_matrix=v_matrix) self._bijector = chain.Chain( [diag_linear.DiagLinear(diag), id_plus_low_rank_linear]) batch_shape = jnp.broadcast_shapes( diag.shape[:-1], u_matrix.shape[:-2], v_matrix.shape[:-2]) dtype = jnp.result_type(diag, u_matrix, v_matrix) super().__init__( event_dims=diag.shape[-1], batch_shape=batch_shape, dtype=dtype) self._diag = diag self._u_matrix = u_matrix self._v_matrix = v_matrix self.forward = self._bijector.forward self.forward_log_det_jacobian = self._bijector.forward_log_det_jacobian self.inverse = self._bijector.inverse self.inverse_log_det_jacobian = self._bijector.inverse_log_det_jacobian self.inverse_and_log_det = self._bijector.inverse_and_log_det
(self, diag: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], u_matrix: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], v_matrix: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,611
distrax._src.bijectors.diag_plus_low_rank_linear
same_as
Returns True if this bijector is guaranteed to be the same as `other`.
def same_as(self, other: base.Bijector) -> bool: """Returns True if this bijector is guaranteed to be the same as `other`.""" if type(other) is DiagPlusLowRankLinear: # pylint: disable=unidiomatic-typecheck return all(( self.diag is other.diag, self.u_matrix is other.u_matrix, self.v_matrix is other.v_matrix, )) return False
(self, other: distrax._src.bijectors.bijector.Bijector) -> bool
55,613
distrax._src.distributions.dirichlet
Dirichlet
Dirichlet distribution with concentration parameter `alpha`. The PDF of a Dirichlet distributed random variable `X`, where `X` lives in the simplex `(0, 1)^K` with `sum_{k=1}^{K} X_k = 1`, is given by, ``` p(x; alpha) = ( prod_{k=1}^{K} x_k ** (alpha_k - 1) ) / B(alpha) ``` where `B(alpha)` is the multivariate beta function, and the concentration parameters `alpha_k > 0`. Note that the support of the distribution does not include `x_k = 0` nor `x_k = 1`.
class Dirichlet(distribution.Distribution): """Dirichlet distribution with concentration parameter `alpha`. The PDF of a Dirichlet distributed random variable `X`, where `X` lives in the simplex `(0, 1)^K` with `sum_{k=1}^{K} X_k = 1`, is given by, ``` p(x; alpha) = ( prod_{k=1}^{K} x_k ** (alpha_k - 1) ) / B(alpha) ``` where `B(alpha)` is the multivariate beta function, and the concentration parameters `alpha_k > 0`. Note that the support of the distribution does not include `x_k = 0` nor `x_k = 1`. """ equiv_tfp_cls = tfd.Dirichlet def __init__(self, concentration: Array): """Initializes a Dirichlet distribution. Args: concentration: Concentration parameter `alpha` of the distribution. It must be an array of length `K >= 2` containing positive values (additional dimensions index batches). """ super().__init__() self._concentration = conversion.as_float_array(concentration) if self._concentration.ndim < 1: raise ValueError( 'The concentration parameter must have at least one dimension.') if self._concentration.shape[-1] < 2: raise ValueError( 'The last dimension of the concentration parameter must be ' 'at least 2.') self._log_normalization_constant = math.log_beta_multivariate( self._concentration) @property def event_shape(self) -> Tuple[int, ...]: """Shape of event of distribution samples.""" return self._concentration.shape[-1:] @property def batch_shape(self) -> Tuple[int, ...]: """Shape of batch of distribution samples.""" return self._concentration.shape[:-1] @property def concentration(self) -> Array: """Concentration parameter `alpha` of the distribution.""" return self._concentration def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" out_shape = (n,) + self.batch_shape dtype = self._concentration.dtype rnd = jax.random.dirichlet( key, alpha=self._concentration, shape=out_shape, dtype=dtype) return rnd def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return (jnp.sum((self._concentration - 1.) * jnp.log(value), axis=-1) - self._log_normalization_constant) def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" sum_concentration = jnp.sum(self._concentration, axis=-1) return ( self._log_normalization_constant + ((sum_concentration - self._concentration.shape[-1]) * jax.lax.digamma(sum_concentration)) - jnp.sum((self._concentration - 1.) * jax.lax.digamma(self._concentration), axis=-1) ) def mean(self) -> Array: """Calculates the mean.""" return self._concentration / jnp.sum( self._concentration, axis=-1, keepdims=True) def mode(self) -> Array: """Calculates the mode. Returns: The mode, an array of shape `batch_shape + event_shape`. If any `alpha_k <= 1`, the returned value is `jnp.nan`. """ result_if_valid = (self._concentration - 1.) / jnp.sum( self._concentration - 1., axis=-1, keepdims=True) return jnp.where( jnp.all(self._concentration > 1., axis=-1, keepdims=True), result_if_valid, jnp.nan) def variance(self) -> Array: """Calculates the variance.""" sum_concentration = jnp.sum(self._concentration, axis=-1, keepdims=True) norm_concentration = self._concentration / sum_concentration return norm_concentration * (1. - norm_concentration) / ( sum_concentration + 1.) def covariance(self) -> Array: """Calculates the covariance. Returns: An array of shape `batch_shape + event_shape + event_shape` with the covariance of the distribution. """ sum_concentration = jnp.sum(self._concentration, axis=-1, keepdims=True) norm_concentration = self._concentration / sum_concentration norm_over_sum = norm_concentration / (sum_concentration + 1.) cov = - jnp.expand_dims(norm_over_sum, axis=-1) * jnp.expand_dims( norm_concentration, axis=-2) cov += jnp.vectorize(jnp.diag, signature='(k)->(k,k)')(norm_over_sum) return cov def __getitem__(self, index) -> 'Dirichlet': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return Dirichlet(concentration=self.concentration[index])
(concentration: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,614
distrax._src.distributions.dirichlet
__getitem__
See `Distribution.__getitem__`.
def __getitem__(self, index) -> 'Dirichlet': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return Dirichlet(concentration=self.concentration[index])
(self, index) -> distrax._src.distributions.dirichlet.Dirichlet
55,615
distrax._src.distributions.dirichlet
__init__
Initializes a Dirichlet distribution. Args: concentration: Concentration parameter `alpha` of the distribution. It must be an array of length `K >= 2` containing positive values (additional dimensions index batches).
def __init__(self, concentration: Array): """Initializes a Dirichlet distribution. Args: concentration: Concentration parameter `alpha` of the distribution. It must be an array of length `K >= 2` containing positive values (additional dimensions index batches). """ super().__init__() self._concentration = conversion.as_float_array(concentration) if self._concentration.ndim < 1: raise ValueError( 'The concentration parameter must have at least one dimension.') if self._concentration.shape[-1] < 2: raise ValueError( 'The last dimension of the concentration parameter must be ' 'at least 2.') self._log_normalization_constant = math.log_beta_multivariate( self._concentration)
(self, concentration: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number])
55,618
distrax._src.distributions.dirichlet
_sample_n
See `Distribution._sample_n`.
def _sample_n(self, key: PRNGKey, n: int) -> Array: """See `Distribution._sample_n`.""" out_shape = (n,) + self.batch_shape dtype = self._concentration.dtype rnd = jax.random.dirichlet( key, alpha=self._concentration, shape=out_shape, dtype=dtype) return rnd
(self, key: jax.Array, n: int) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,621
distrax._src.distributions.dirichlet
covariance
Calculates the covariance. Returns: An array of shape `batch_shape + event_shape + event_shape` with the covariance of the distribution.
def covariance(self) -> Array: """Calculates the covariance. Returns: An array of shape `batch_shape + event_shape + event_shape` with the covariance of the distribution. """ sum_concentration = jnp.sum(self._concentration, axis=-1, keepdims=True) norm_concentration = self._concentration / sum_concentration norm_over_sum = norm_concentration / (sum_concentration + 1.) cov = - jnp.expand_dims(norm_over_sum, axis=-1) * jnp.expand_dims( norm_concentration, axis=-2) cov += jnp.vectorize(jnp.diag, signature='(k)->(k,k)')(norm_over_sum) return cov
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,623
distrax._src.distributions.dirichlet
entropy
Calculates the Shannon entropy (in nats).
def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" sum_concentration = jnp.sum(self._concentration, axis=-1) return ( self._log_normalization_constant + ((sum_concentration - self._concentration.shape[-1]) * jax.lax.digamma(sum_concentration)) - jnp.sum((self._concentration - 1.) * jax.lax.digamma(self._concentration), axis=-1) )
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,626
distrax._src.distributions.dirichlet
log_prob
See `Distribution.log_prob`.
def log_prob(self, value: EventT) -> Array: """See `Distribution.log_prob`.""" return (jnp.sum((self._concentration - 1.) * jnp.log(value), axis=-1) - self._log_normalization_constant)
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,628
distrax._src.distributions.dirichlet
mean
Calculates the mean.
def mean(self) -> Array: """Calculates the mean.""" return self._concentration / jnp.sum( self._concentration, axis=-1, keepdims=True)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,630
distrax._src.distributions.dirichlet
mode
Calculates the mode. Returns: The mode, an array of shape `batch_shape + event_shape`. If any `alpha_k <= 1`, the returned value is `jnp.nan`.
def mode(self) -> Array: """Calculates the mode. Returns: The mode, an array of shape `batch_shape + event_shape`. If any `alpha_k <= 1`, the returned value is `jnp.nan`. """ result_if_valid = (self._concentration - 1.) / jnp.sum( self._concentration - 1., axis=-1, keepdims=True) return jnp.where( jnp.all(self._concentration > 1., axis=-1, keepdims=True), result_if_valid, jnp.nan)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,637
distrax._src.distributions.dirichlet
variance
Calculates the variance.
def variance(self) -> Array: """Calculates the variance.""" sum_concentration = jnp.sum(self._concentration, axis=-1, keepdims=True) norm_concentration = self._concentration / sum_concentration return norm_concentration * (1. - norm_concentration) / ( sum_concentration + 1.)
(self) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,638
distrax._src.distributions.distribution
Distribution
Jittable abstract base class for all Distrax distributions.
class Distribution( jittable.Jittable, Generic[EventT, ShapeT, DTypeT], metaclass=abc.ABCMeta): """Jittable abstract base class for all Distrax distributions.""" @abc.abstractmethod def _sample_n(self, key: PRNGKey, n: int) -> EventT: """Returns `n` samples.""" def _sample_n_and_log_prob( self, key: PRNGKey, n: int, ) -> Tuple[EventT, Array]: """Returns `n` samples and their log probs. By default, it just calls `log_prob` on the generated samples. However, for many distributions it's more efficient to compute the log prob of samples than of arbitrary events (for example, there's no need to check that a sample is within the distribution's domain). If that's the case, a subclass may override this method with a more efficient implementation. Args: key: PRNG key. n: Number of samples to generate. Returns: A tuple of `n` samples and their log probs. """ samples = self._sample_n(key, n) log_prob = self.log_prob(samples) return samples, log_prob @abc.abstractmethod def log_prob(self, value: EventT) -> Array: """Calculates the log probability of an event. Args: value: An event. Returns: The log probability log P(value). """ def prob(self, value: EventT) -> Array: """Calculates the probability of an event. Args: value: An event. Returns: The probability P(value). """ return jnp.exp(self.log_prob(value)) @property @abc.abstractmethod def event_shape(self) -> ShapeT: """Shape of event of distribution samples.""" @property def batch_shape(self) -> Tuple[int, ...]: """Shape of batch of distribution samples.""" sample_spec = jax.eval_shape( self.sample, seed=jax.random.PRNGKey(0), sample_shape=()) if not self.event_shape: batch_shapes = jax.tree_util.tree_map(lambda x: x.shape, sample_spec) else: batch_shapes = jax.tree_util.tree_map( lambda s, e: s.shape[:s.ndim - len(e)], sample_spec, self.event_shape) # Get flat batch shapes. batch_shapes = jax.tree_util.tree_structure(sample_spec).flatten_up_to( batch_shapes) if not batch_shapes: return () # Ensure batch shapes are consistent. batch_shape = batch_shapes[0] for i in range(1, len(batch_shapes)): np.testing.assert_equal(batch_shape, batch_shapes[i]) return batch_shape @property def name(self) -> str: """Distribution name.""" return type(self).__name__ @property def dtype(self) -> DTypeT: """The data type of the samples generated by the distribution.""" sample_spec = jax.eval_shape( self.sample, seed=jax.random.PRNGKey(0), sample_shape=()) return jax.tree_util.tree_map(lambda x: x.dtype, sample_spec) def sample(self, *, seed: Union[IntLike, PRNGKey], sample_shape: Union[IntLike, Sequence[IntLike]] = ()) -> EventT: """Samples an event. Args: seed: PRNG key or integer seed. sample_shape: Additional leading dimensions for sample. Returns: A sample of shape `sample_shape + self.batch_shape + self.event_shape`. """ rng, sample_shape = convert_seed_and_sample_shape(seed, sample_shape) num_samples = functools.reduce(operator.mul, sample_shape, 1) # product samples = self._sample_n(rng, num_samples) return jax.tree_util.tree_map( lambda t: t.reshape(sample_shape + t.shape[1:]), samples) def sample_and_log_prob( self, *, seed: Union[IntLike, PRNGKey], sample_shape: Union[IntLike, Sequence[IntLike]] = () ) -> Tuple[EventT, Array]: """Returns a sample and associated log probability. See `sample`.""" rng, sample_shape = convert_seed_and_sample_shape(seed, sample_shape) num_samples = functools.reduce(operator.mul, sample_shape, 1) # product samples, log_prob = self._sample_n_and_log_prob(rng, num_samples) samples, log_prob = jax.tree_util.tree_map( lambda t: t.reshape(sample_shape + t.shape[1:]), (samples, log_prob)) return samples, log_prob def kl_divergence(self, other_dist, **kwargs) -> Array: """Calculates the KL divergence to another distribution. Args: other_dist: A compatible Distax or TFP Distribution. **kwargs: Additional kwargs. Returns: The KL divergence `KL(self || other_dist)`. """ return tfd.kullback_leibler.kl_divergence(self, other_dist, **kwargs) def entropy(self) -> Array: """Calculates the Shannon entropy (in nats).""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `entropy`.') def log_cdf(self, value: EventT) -> Array: """Evaluates the log cumulative distribution function at `value`. Args: value: An event. Returns: The log CDF evaluated at value, i.e. log P[X <= value]. """ raise NotImplementedError( f'Distribution `{self.name}` does not implement `log_cdf`.') def cdf(self, value: EventT) -> Array: """Evaluates the cumulative distribution function at `value`. Args: value: An event. Returns: The CDF evaluated at value, i.e. P[X <= value]. """ return jnp.exp(self.log_cdf(value)) def survival_function(self, value: EventT) -> Array: """Evaluates the survival function at `value`. Note that by default we use a numerically not necessarily stable definition of the survival function in terms of the CDF. More stable definitions should be implemented in subclasses for distributions for which they exist. Args: value: An event. Returns: The survival function evaluated at `value`, i.e. P[X > value] """ if not self.event_shape: # Defined for univariate distributions only. return 1. - self.cdf(value) else: raise NotImplementedError('`survival_function` is not defined for ' f'distribution `{self.name}`.') def log_survival_function(self, value: EventT) -> Array: """Evaluates the log of the survival function at `value`. Note that by default we use a numerically not necessarily stable definition of the log of the survival function in terms of the CDF. More stable definitions should be implemented in subclasses for distributions for which they exist. Args: value: An event. Returns: The log of the survival function evaluated at `value`, i.e. log P[X > value] """ if not self.event_shape: # Defined for univariate distributions only. return jnp.log1p(-self.cdf(value)) else: raise NotImplementedError('`log_survival_function` is not defined for ' f'distribution `{self.name}`.') def mean(self) -> EventT: """Calculates the mean.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `mean`.') def median(self) -> EventT: """Calculates the median.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `median`.') def variance(self) -> EventT: """Calculates the variance.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `variance`.') def stddev(self) -> EventT: """Calculates the standard deviation.""" return jnp.sqrt(self.variance()) def mode(self) -> EventT: """Calculates the mode.""" raise NotImplementedError( f'Distribution `{self.name}` does not implement `mode`.') def cross_entropy(self, other_dist, **kwargs) -> Array: """Calculates the cross entropy to another distribution. Args: other_dist: A compatible Distax or TFP Distribution. **kwargs: Additional kwargs. Returns: The cross entropy `H(self || other_dist)`. """ return self.kl_divergence(other_dist, **kwargs) + self.entropy() @contextlib.contextmanager def _name_and_control_scope(self, *unused_a, **unused_k): yield def __getitem__(self, index) -> 'Distribution': """Returns a matching distribution obtained by indexing the batch shape. Args: index: An object, typically int or slice (or a tuple thereof), used for indexing the distribution. """ raise NotImplementedError(f'Indexing not implemented for `{self.name}`.')
(*args, **kwargs)
55,639
distrax._src.distributions.distribution
__getitem__
Returns a matching distribution obtained by indexing the batch shape. Args: index: An object, typically int or slice (or a tuple thereof), used for indexing the distribution.
def __getitem__(self, index) -> 'Distribution': """Returns a matching distribution obtained by indexing the batch shape. Args: index: An object, typically int or slice (or a tuple thereof), used for indexing the distribution. """ raise NotImplementedError(f'Indexing not implemented for `{self.name}`.')
(self, index) -> distrax._src.distributions.distribution.Distribution
55,642
distrax._src.distributions.distribution
_sample_n
Returns `n` samples.
@abc.abstractmethod def _sample_n(self, key: PRNGKey, n: int) -> EventT: """Returns `n` samples."""
(self, key: jax.Array, n: int) -> ~EventT
55,649
distrax._src.distributions.distribution
log_prob
Calculates the log probability of an event. Args: value: An event. Returns: The log probability log P(value).
@abc.abstractmethod def log_prob(self, value: EventT) -> Array: """Calculates the log probability of an event. Args: value: An event. Returns: The log probability log P(value). """
(self, value: ~EventT) -> Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number]
55,661
distrax._src.distributions.epsilon_greedy
EpsilonGreedy
A Categorical that is ε-greedy with respect to some preferences. Given a set of unnormalized preferences, the distribution is a mixture of the Greedy and Uniform distribution; with weight (1-ε) and ε, respectively.
class EpsilonGreedy(categorical.Categorical): """A Categorical that is ε-greedy with respect to some preferences. Given a set of unnormalized preferences, the distribution is a mixture of the Greedy and Uniform distribution; with weight (1-ε) and ε, respectively. """ def __init__(self, preferences: Array, epsilon: float, dtype: Union[jnp.dtype, type[Any]] = int): """Initializes an EpsilonGreedy distribution. Args: preferences: Unnormalized preferences. epsilon: Mixing parameter ε. dtype: The type of event samples. """ self._preferences = jnp.asarray(preferences) self._epsilon = epsilon greedy_probs = _argmax_with_random_tie_breaking(self._preferences) probs = _mix_probs_with_uniform(greedy_probs, epsilon) super().__init__(probs=probs, dtype=dtype) @property def epsilon(self) -> float: """Mixing parameters of the distribution.""" return self._epsilon @property def preferences(self) -> Array: """Unnormalized preferences.""" return self._preferences def __getitem__(self, index) -> 'EpsilonGreedy': """See `Distribution.__getitem__`.""" index = distribution.to_batch_shape_index(self.batch_shape, index) return EpsilonGreedy( preferences=self.preferences[index], epsilon=self.epsilon, dtype=self.dtype)
(preferences: Union[jax.Array, numpy.ndarray, numpy.bool_, numpy.number], epsilon: float, dtype: Union[numpy.dtype, type[Any]] = <class 'int'>)