index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
57,069 |
nibabel.spm99analyze
|
Spm99AnalyzeHeader
|
Class for SPM99 variant of basic Analyze header
SPM99 variant adds the following to basic Analyze format:
* voxel origin;
* slope scaling of data.
|
class Spm99AnalyzeHeader(SpmAnalyzeHeader):
"""Class for SPM99 variant of basic Analyze header
SPM99 variant adds the following to basic Analyze format:
* voxel origin;
* slope scaling of data.
"""
def get_origin_affine(self):
"""Get affine from header, using SPM origin field if sensible
The default translations are got from the ``origin``
field, if set, or from the center of the image otherwise.
Examples
--------
>>> hdr = Spm99AnalyzeHeader()
>>> hdr.set_data_shape((3, 5, 7))
>>> hdr.set_zooms((3, 2, 1))
>>> hdr.default_x_flip
True
>>> hdr.get_origin_affine() # from center of image
array([[-3., 0., 0., 3.],
[ 0., 2., 0., -4.],
[ 0., 0., 1., -3.],
[ 0., 0., 0., 1.]])
>>> hdr['origin'][:3] = [3,4,5]
>>> hdr.get_origin_affine() # using origin
array([[-3., 0., 0., 6.],
[ 0., 2., 0., -6.],
[ 0., 0., 1., -4.],
[ 0., 0., 0., 1.]])
>>> hdr['origin'] = 0 # unset origin
>>> hdr.set_data_shape((3, 5, 7))
>>> hdr.get_origin_affine() # from center of image
array([[-3., 0., 0., 3.],
[ 0., 2., 0., -4.],
[ 0., 0., 1., -3.],
[ 0., 0., 0., 1.]])
"""
hdr = self._structarr
zooms = hdr['pixdim'][1:4].copy()
if self.default_x_flip:
zooms[0] *= -1
# Get translations from origin, or center of image
# Remember that the origin is for matlab (1-based indexing)
origin = hdr['origin'][:3]
dims = hdr['dim'][1:4]
if np.any(origin) and np.all(origin > -dims) and np.all(origin < dims * 2):
origin = origin - 1
else:
origin = (dims - 1) / 2.0
aff = np.eye(4)
aff[:3, :3] = np.diag(zooms)
aff[:3, -1] = -origin * zooms
return aff
get_best_affine = get_origin_affine
def set_origin_from_affine(self, affine):
"""Set SPM origin to header from affine matrix.
The ``origin`` field was read but not written by SPM99 and 2. It was
used for storing a central voxel coordinate, that could be used in
aligning the image to some standard position - a proxy for a full
translation vector that was usually stored in a separate matlab .mat
file.
Nifti uses the space occupied by the SPM ``origin`` field for important
other information (the transform codes), so writing the origin will
make the header a confusing Nifti file. If you work with both Analyze
and Nifti, you should probably avoid doing this.
Parameters
----------
affine : array-like, shape (4,4)
Affine matrix to set
Returns
-------
None
Examples
--------
>>> hdr = Spm99AnalyzeHeader()
>>> hdr.set_data_shape((3, 5, 7))
>>> hdr.set_zooms((3,2,1))
>>> hdr.get_origin_affine()
array([[-3., 0., 0., 3.],
[ 0., 2., 0., -4.],
[ 0., 0., 1., -3.],
[ 0., 0., 0., 1.]])
>>> affine = np.diag([3,2,1,1])
>>> affine[:3,3] = [-6, -6, -4]
>>> hdr.set_origin_from_affine(affine)
>>> np.all(hdr['origin'][:3] == [3,4,5])
True
>>> hdr.get_origin_affine()
array([[-3., 0., 0., 6.],
[ 0., 2., 0., -6.],
[ 0., 0., 1., -4.],
[ 0., 0., 0., 1.]])
"""
if affine.shape != (4, 4):
raise ValueError('Need 4x4 affine to set')
hdr = self._structarr
RZS = affine[:3, :3]
Z = np.sqrt(np.sum(RZS * RZS, axis=0))
T = affine[:3, 3]
# Remember that the origin is for matlab (1-based) indexing
hdr['origin'][:3] = -T / Z + 1
@classmethod
def _get_checks(klass):
checks = super()._get_checks()
return checks + (klass._chk_origin,)
@staticmethod
def _chk_origin(hdr, fix=False):
rep = Report(HeaderDataError)
origin = hdr['origin'][0:3]
dims = hdr['dim'][1:4]
if not np.any(origin) or (np.all(origin > -dims) and np.all(origin < dims * 2)):
return hdr, rep
rep.problem_level = 20
rep.problem_msg = 'very large origin values relative to dims'
if fix:
rep.fix_msg = 'leaving as set, ignoring for affine'
return hdr, rep
|
(binaryblock=None, endianness=None, check=True)
|
57,094 |
nibabel.spm99analyze
|
get_slope_inter
|
Get scalefactor and intercept
If scalefactor is 0.0 return None to indicate no scalefactor.
Intercept is always None because SPM99 analyze cannot store intercepts.
|
def get_slope_inter(self):
"""Get scalefactor and intercept
If scalefactor is 0.0 return None to indicate no scalefactor.
Intercept is always None because SPM99 analyze cannot store intercepts.
"""
slope = self._structarr['scl_slope']
# Return invalid slopes as None
if np.isnan(slope) or slope in (0, -np.inf, np.inf):
return None, None
return slope, None
|
(self)
|
57,108 |
nibabel.spm99analyze
|
Spm99AnalyzeImage
|
Class for SPM99 variant of basic Analyze image
|
class Spm99AnalyzeImage(analyze.AnalyzeImage):
"""Class for SPM99 variant of basic Analyze image"""
header_class = Spm99AnalyzeHeader
header: Spm99AnalyzeHeader
files_types = (('image', '.img'), ('header', '.hdr'), ('mat', '.mat'))
has_affine = True
makeable = True
rw = have_scipy
@classmethod
def from_file_map(klass, file_map, *, mmap=True, keep_file_open=None):
"""Class method to create image from mapping in ``file_map``
Parameters
----------
file_map : dict
Mapping with (kay, value) pairs of (``file_type``, FileHolder
instance giving file-likes for each file needed for this image
type.
mmap : {True, False, 'c', 'r'}, optional, keyword only
`mmap` controls the use of numpy memory mapping for reading image
array data. If False, do not try numpy ``memmap`` for data array.
If one of {'c', 'r'}, try numpy memmap with ``mode=mmap``. A
`mmap` value of True gives the same behavior as ``mmap='c'``. If
image data file cannot be memory-mapped, ignore `mmap` value and
read array from file.
keep_file_open : { None, True, False }, optional, keyword only
`keep_file_open` controls whether a new file handle is created
every time the image is accessed, or a single file handle is
created and used for the lifetime of this ``ArrayProxy``. If
``True``, a single file handle is created and used. If ``False``,
a new file handle is created every time the image is accessed.
If ``file_map`` refers to an open file handle, this setting has no
effect. The default value (``None``) will result in the value of
``nibabel.arrayproxy.KEEP_FILE_OPEN_DEFAULT`` being used.
Returns
-------
img : Spm99AnalyzeImage instance
"""
ret = super().from_file_map(file_map, mmap=mmap, keep_file_open=keep_file_open)
try:
matf = file_map['mat'].get_prepare_fileobj()
except OSError:
return ret
# Allow for possibility of empty file -> no update to affine
with matf:
contents = matf.read()
if len(contents) == 0:
return ret
import scipy.io as sio # type: ignore
mats = sio.loadmat(BytesIO(contents))
if 'mat' in mats: # this overrides a 'M', and includes any flip
mat = mats['mat']
if mat.ndim > 2:
warnings.warn('More than one affine in "mat" matrix, using first')
mat = mat[:, :, 0]
ret._affine = mat
elif 'M' in mats: # the 'M' matrix does not include flips
hdr = ret._header
if hdr.default_x_flip:
ret._affine = np.dot(np.diag([-1, 1, 1, 1]), mats['M'])
else:
ret._affine = mats['M']
else:
raise ValueError('mat file found but no "mat" or "M" in it')
# Adjust for matlab 1,1,1 voxel origin
to_111 = np.eye(4)
to_111[:3, 3] = 1
ret._affine = np.dot(ret._affine, to_111)
return ret
def to_file_map(self, file_map=None, dtype=None):
"""Write image to `file_map` or contained ``self.file_map``
Extends Analyze ``to_file_map`` method by writing ``mat`` file
Parameters
----------
file_map : None or mapping, optional
files mapping. If None (default) use object's ``file_map``
attribute instead
"""
if file_map is None:
file_map = self.file_map
super().to_file_map(file_map, dtype=dtype)
mat = self._affine
if mat is None:
return
import scipy.io as sio
hdr = self._header
if hdr.default_x_flip:
M = np.dot(np.diag([-1, 1, 1, 1]), mat)
else:
M = mat
# Adjust for matlab 1,1,1 voxel origin
from_111 = np.eye(4)
from_111[:3, 3] = -1
M = np.dot(M, from_111)
mat = np.dot(mat, from_111)
# use matlab 4 format to allow gzipped write without error
with file_map['mat'].get_prepare_fileobj(mode='wb') as mfobj:
sio.savemat(mfobj, {'M': M, 'mat': mat}, format='4')
|
(dataobj, affine, header=None, extra=None, file_map=None, dtype=None)
|
57,127 |
nibabel.pkg_info
|
get_pkg_info
|
Return dict describing the context of this package
Parameters
----------
pkg_path : str
path containing __init__.py for package
Returns
-------
context : dict
with named parameters of interest
|
def get_pkg_info(pkg_path: str) -> dict[str, str]:
"""Return dict describing the context of this package
Parameters
----------
pkg_path : str
path containing __init__.py for package
Returns
-------
context : dict
with named parameters of interest
"""
src, hsh = pkg_commit_hash(pkg_path)
import numpy
return dict(
pkg_path=pkg_path,
commit_source=src,
commit_hash=hsh,
sys_version=sys.version,
sys_executable=sys.executable,
sys_platform=sys.platform,
np_version=numpy.__version__,
)
|
(pkg_path: str) -> dict[str, str]
|
57,129 |
nibabel.orientations
|
aff2axcodes
|
axis direction codes for affine `aff`
Parameters
----------
aff : (N,M) array-like
affine transformation matrix
labels : optional, None or sequence of (2,) sequences
Labels for negative and positive ends of output axes of `aff`. See
docstring for ``ornt2axcodes`` for more detail
tol : None or float
Tolerance for SVD of affine - see ``io_orientation`` for more detail.
Returns
-------
axcodes : (N,) tuple
labels for positive end of voxel axes. Dropped axes get a label of
None.
Examples
--------
>>> aff = [[0,1,0,10],[-1,0,0,20],[0,0,1,30],[0,0,0,1]]
>>> aff2axcodes(aff, (('L','R'),('B','F'),('D','U')))
('B', 'R', 'U')
|
def aff2axcodes(aff, labels=None, tol=None):
"""axis direction codes for affine `aff`
Parameters
----------
aff : (N,M) array-like
affine transformation matrix
labels : optional, None or sequence of (2,) sequences
Labels for negative and positive ends of output axes of `aff`. See
docstring for ``ornt2axcodes`` for more detail
tol : None or float
Tolerance for SVD of affine - see ``io_orientation`` for more detail.
Returns
-------
axcodes : (N,) tuple
labels for positive end of voxel axes. Dropped axes get a label of
None.
Examples
--------
>>> aff = [[0,1,0,10],[-1,0,0,20],[0,0,1,30],[0,0,0,1]]
>>> aff2axcodes(aff, (('L','R'),('B','F'),('D','U')))
('B', 'R', 'U')
"""
ornt = io_orientation(aff, tol)
return ornt2axcodes(ornt, labels)
|
(aff, labels=None, tol=None)
|
57,133 |
nibabel.orientations
|
apply_orientation
|
Apply transformations implied by `ornt` to the first
n axes of the array `arr`
Parameters
----------
arr : array-like of data with ndim >= n
ornt : (n,2) orientation array
orientation transform. ``ornt[N,1]` is flip of axis N of the
array implied by `shape`, where 1 means no flip and -1 means
flip. For example, if ``N==0`` and ``ornt[0,1] == -1``, and
there's an array ``arr`` of shape `shape`, the flip would
correspond to the effect of ``np.flipud(arr)``. ``ornt[:,0]`` is
the transpose that needs to be done to the implied array, as in
``arr.transpose(ornt[:,0])``
Returns
-------
t_arr : ndarray
data array `arr` transformed according to ornt
|
def apply_orientation(arr, ornt):
"""Apply transformations implied by `ornt` to the first
n axes of the array `arr`
Parameters
----------
arr : array-like of data with ndim >= n
ornt : (n,2) orientation array
orientation transform. ``ornt[N,1]` is flip of axis N of the
array implied by `shape`, where 1 means no flip and -1 means
flip. For example, if ``N==0`` and ``ornt[0,1] == -1``, and
there's an array ``arr`` of shape `shape`, the flip would
correspond to the effect of ``np.flipud(arr)``. ``ornt[:,0]`` is
the transpose that needs to be done to the implied array, as in
``arr.transpose(ornt[:,0])``
Returns
-------
t_arr : ndarray
data array `arr` transformed according to ornt
"""
t_arr = np.asarray(arr)
ornt = np.asarray(ornt)
n = ornt.shape[0]
if t_arr.ndim < n:
raise OrientationError('Data array has fewer dimensions than orientation')
# no coordinates can be dropped for applying the orientations
if np.any(np.isnan(ornt[:, 0])):
raise OrientationError('Cannot drop coordinates when applying orientation to data')
# apply ornt transformations
for ax, flip in enumerate(ornt[:, 1]):
if flip == -1:
t_arr = np.flip(t_arr, axis=ax)
full_transpose = np.arange(t_arr.ndim)
# ornt indicates the transpose that has occurred - we reverse it
full_transpose[:n] = np.argsort(ornt[:, 0])
t_arr = t_arr.transpose(full_transpose)
return t_arr
|
(arr, ornt)
|
57,136 |
nibabel.funcs
|
as_closest_canonical
|
Return `img` with data reordered to be closest to canonical
Canonical order is the ordering of the output axes.
Parameters
----------
img : ``spatialimage``
enforce_diag : {False, True}, optional
If True, before transforming image, check if the resulting image
affine will be close to diagonal, and if not, raise an error
Returns
-------
canonical_img : ``spatialimage``
Version of `img` where the underlying array may have been
reordered and / or flipped so that axes 0,1,2 are those axes in
the input data that are, respectively, closest to the output axis
orientation. We modify the affine accordingly. If `img` is
already has the correct data ordering, we just return `img`
unmodified.
|
def as_closest_canonical(img, enforce_diag=False):
"""Return `img` with data reordered to be closest to canonical
Canonical order is the ordering of the output axes.
Parameters
----------
img : ``spatialimage``
enforce_diag : {False, True}, optional
If True, before transforming image, check if the resulting image
affine will be close to diagonal, and if not, raise an error
Returns
-------
canonical_img : ``spatialimage``
Version of `img` where the underlying array may have been
reordered and / or flipped so that axes 0,1,2 are those axes in
the input data that are, respectively, closest to the output axis
orientation. We modify the affine accordingly. If `img` is
already has the correct data ordering, we just return `img`
unmodified.
"""
# Get the image class to transform the data for us
img = img.as_reoriented(io_orientation(img.affine))
# however, the affine may not be diagonal
if enforce_diag and not _aff_is_diag(img.affine):
raise OrientationError('Transformed affine is not diagonal')
return img
|
(img, enforce_diag=False)
|
57,138 |
nibabel
|
bench
|
Run benchmarks for nibabel using pytest
The protocol mimics the ``numpy.testing.NoseTester.bench()``.
Not all features are currently implemented.
Parameters
----------
label : None
Unused.
verbose: int, optional
Verbosity value for test outputs. Positive values increase verbosity, and
negative values decrease it. Default is 1.
extra_argv : list, optional
List with any extra arguments to pass to pytest.
Returns
-------
code : ExitCode
Returns the result of running the tests as a ``pytest.ExitCode`` enum
|
def bench(label=None, verbose=1, extra_argv=None):
"""
Run benchmarks for nibabel using pytest
The protocol mimics the ``numpy.testing.NoseTester.bench()``.
Not all features are currently implemented.
Parameters
----------
label : None
Unused.
verbose: int, optional
Verbosity value for test outputs. Positive values increase verbosity, and
negative values decrease it. Default is 1.
extra_argv : list, optional
List with any extra arguments to pass to pytest.
Returns
-------
code : ExitCode
Returns the result of running the tests as a ``pytest.ExitCode`` enum
"""
try:
from importlib.resources import as_file, files
except ImportError:
from importlib_resources import as_file, files
args = []
if extra_argv is not None:
args.extend(extra_argv)
config_path = files('nibabel') / 'benchmarks/pytest.benchmark.ini'
with as_file(config_path) as config:
args.extend(['-c', str(config)])
return test(label, verbose, extra_argv=args)
|
(label=None, verbose=1, extra_argv=None)
|
57,143 |
nibabel.funcs
|
concat_images
|
Concatenate images in list to single image, along specified dimension
Parameters
----------
images : sequence
sequence of ``SpatialImage`` or filenames of the same dimensionality\s
check_affines : {True, False}, optional
If True, then check that all the affines for `images` are nearly
the same, raising a ``ValueError`` otherwise. Default is True
axis : None or int, optional
If None, concatenates on a new dimension. This requires all images to
be the same shape. If not None, concatenates on the specified
dimension. This requires all images to be the same shape, except on
the specified dimension.
Returns
-------
concat_img : ``SpatialImage``
New image resulting from concatenating `images` across last
dimension
|
def concat_images(images, check_affines=True, axis=None):
r"""Concatenate images in list to single image, along specified dimension
Parameters
----------
images : sequence
sequence of ``SpatialImage`` or filenames of the same dimensionality\s
check_affines : {True, False}, optional
If True, then check that all the affines for `images` are nearly
the same, raising a ``ValueError`` otherwise. Default is True
axis : None or int, optional
If None, concatenates on a new dimension. This requires all images to
be the same shape. If not None, concatenates on the specified
dimension. This requires all images to be the same shape, except on
the specified dimension.
Returns
-------
concat_img : ``SpatialImage``
New image resulting from concatenating `images` across last
dimension
"""
images = [load(img) if not hasattr(img, 'get_data') else img for img in images]
n_imgs = len(images)
if n_imgs == 0:
raise ValueError('Cannot concatenate an empty list of images.')
img0 = images[0]
affine = img0.affine
header = img0.header
klass = img0.__class__
shape0 = img0.shape
n_dim = len(shape0)
if axis is None:
# collect images in output array for efficiency
out_shape = (n_imgs,) + shape0
out_data = np.empty(out_shape)
else:
# collect images in list for use with np.concatenate
out_data = [None] * n_imgs
# Get part of shape we need to check inside loop
idx_mask = np.ones((n_dim,), dtype=bool)
if axis is not None:
idx_mask[axis] = False
masked_shape = np.array(shape0)[idx_mask]
for i, img in enumerate(images):
if len(img.shape) != n_dim:
raise ValueError(f'Image {i} has {len(img.shape)} dimensions, image 0 has {n_dim}')
if not np.all(np.array(img.shape)[idx_mask] == masked_shape):
raise ValueError(
f'shape {img.shape} for image {i} not compatible with '
f'first image shape {shape0} with axis == {axis}'
)
if check_affines and not np.all(img.affine == affine):
raise ValueError(f'Affine for image {i} does not match affine for first image')
# Do not fill cache in image if it is empty
out_data[i] = np.asanyarray(img.dataobj)
if axis is None:
out_data = np.rollaxis(out_data, 0, out_data.ndim)
else:
out_data = np.concatenate(out_data, axis=axis)
return klass(out_data, affine, header)
|
(images, check_affines=True, axis=None)
|
57,154 |
nibabel.orientations
|
flip_axis
|
Flip contents of `axis` in array `arr`
flip_axis is deprecated. Please use numpy.flip instead.
* deprecated from version: 3.2
* Raises <class 'nibabel.deprecator.ExpiredDeprecationError'> as of version: 5.0
|
def inv_ornt_aff(ornt, shape):
"""Affine transform reversing transforms implied in `ornt`
Imagine you have an array ``arr`` of shape `shape`, and you apply the
transforms implied by `ornt` (more below), to get ``tarr``.
``tarr`` may have a different shape ``shape_prime``. This routine
returns the affine that will take a array coordinate for ``tarr``
and give you the corresponding array coordinate in ``arr``.
Parameters
----------
ornt : (p, 2) ndarray
orientation transform. ``ornt[P, 1]` is flip of axis N of the array
implied by `shape`, where 1 means no flip and -1 means flip. For
example, if ``P==0`` and ``ornt[0, 1] == -1``, and there's an array
``arr`` of shape `shape`, the flip would correspond to the effect of
``np.flipud(arr)``. ``ornt[:,0]`` gives us the (reverse of the)
transpose that has been done to ``arr``. If there are any NaNs in
`ornt`, we raise an ``OrientationError`` (see notes)
shape : length p sequence
shape of array you may transform with `ornt`
Returns
-------
transform_affine : (p + 1, p + 1) ndarray
An array ``arr`` (shape `shape`) might be transformed according to
`ornt`, resulting in a transformed array ``tarr``. `transformed_affine`
is the transform that takes you from array coordinates in ``tarr`` to
array coordinates in ``arr``.
Notes
-----
If a row in `ornt` contains NaN, this means that the input row does not
influence the output space, and is thus effectively dropped from the output
space. In that case one ``tarr`` coordinate maps to many ``arr``
coordinates, we can't invert the transform, and we raise an error
"""
ornt = np.asarray(ornt)
if np.any(np.isnan(ornt)):
raise OrientationError('We cannot invert orientation transform')
p = ornt.shape[0]
shape = np.array(shape)[:p]
# ornt implies a flip, followed by a transpose. We need the affine
# that inverts these. Thus we need the affine that first undoes the
# effect of the transpose, then undoes the effects of the flip.
# ornt indicates the transpose that has occurred to get the current
# ordering, relative to canonical, so we just use that.
# undo_reorder is a row permutatation matrix
axis_transpose = [int(v) for v in ornt[:, 0]]
undo_reorder = np.eye(p + 1)[axis_transpose + [p], :]
undo_flip = np.diag(list(ornt[:, 1]) + [1.0])
center_trans = -(shape - 1) / 2.0
undo_flip[:p, p] = (ornt[:, 1] * center_trans) - center_trans
return np.dot(undo_flip, undo_reorder)
|
(arr, axis=0)
|
57,155 |
nibabel.funcs
|
four_to_three
|
Create 3D images from 4D image by slicing over last axis
Parameters
----------
img : image
4D image instance of some class with methods ``get_data``,
``header`` and ``affine``, and a class constructor
allowing klass(data, affine, header)
Returns
-------
imgs : list
list of 3D images
|
def four_to_three(img):
"""Create 3D images from 4D image by slicing over last axis
Parameters
----------
img : image
4D image instance of some class with methods ``get_data``,
``header`` and ``affine``, and a class constructor
allowing klass(data, affine, header)
Returns
-------
imgs : list
list of 3D images
"""
arr = np.asanyarray(img.dataobj)
header = img.header
affine = img.affine
image_maker = img.__class__
if arr.ndim != 4:
raise ValueError('Expecting four dimensions')
imgs = []
for i in range(arr.shape[3]):
arr3d = arr[..., i]
img3d = image_maker(arr3d, affine, header)
imgs.append(img3d)
return imgs
|
(img)
|
57,158 |
nibabel
|
get_info
| null |
def get_info():
return _get_pkg_info(os.path.dirname(__file__))
|
()
|
57,164 |
nibabel.orientations
|
io_orientation
|
Orientation of input axes in terms of output axes for `affine`
Valid for an affine transformation from ``p`` dimensions to ``q``
dimensions (``affine.shape == (q + 1, p + 1)``).
The calculated orientations can be used to transform associated
arrays to best match the output orientations. If ``p`` > ``q``, then
some of the output axes should be considered dropped in this
orientation.
Parameters
----------
affine : (q+1, p+1) ndarray-like
Transformation affine from ``p`` inputs to ``q`` outputs. Usually this
will be a shape (4,4) matrix, transforming 3 inputs to 3 outputs, but
the code also handles the more general case
tol : {None, float}, optional
threshold below which SVD values of the affine are considered zero. If
`tol` is None, and ``S`` is an array with singular values for `affine`,
and ``eps`` is the epsilon value for datatype of ``S``, then `tol` set
to ``S.max() * max((q, p)) * eps``
Returns
-------
orientations : (p, 2) ndarray
one row per input axis, where the first value in each row is the closest
corresponding output axis. The second value in each row is 1 if the
input axis is in the same direction as the corresponding output axis and
-1 if it is in the opposite direction. If a row is [np.nan, np.nan],
which can happen when p > q, then this row should be considered dropped.
|
def io_orientation(affine, tol=None):
"""Orientation of input axes in terms of output axes for `affine`
Valid for an affine transformation from ``p`` dimensions to ``q``
dimensions (``affine.shape == (q + 1, p + 1)``).
The calculated orientations can be used to transform associated
arrays to best match the output orientations. If ``p`` > ``q``, then
some of the output axes should be considered dropped in this
orientation.
Parameters
----------
affine : (q+1, p+1) ndarray-like
Transformation affine from ``p`` inputs to ``q`` outputs. Usually this
will be a shape (4,4) matrix, transforming 3 inputs to 3 outputs, but
the code also handles the more general case
tol : {None, float}, optional
threshold below which SVD values of the affine are considered zero. If
`tol` is None, and ``S`` is an array with singular values for `affine`,
and ``eps`` is the epsilon value for datatype of ``S``, then `tol` set
to ``S.max() * max((q, p)) * eps``
Returns
-------
orientations : (p, 2) ndarray
one row per input axis, where the first value in each row is the closest
corresponding output axis. The second value in each row is 1 if the
input axis is in the same direction as the corresponding output axis and
-1 if it is in the opposite direction. If a row is [np.nan, np.nan],
which can happen when p > q, then this row should be considered dropped.
"""
affine = np.asarray(affine)
q, p = affine.shape[0] - 1, affine.shape[1] - 1
# extract the underlying rotation, zoom, shear matrix
RZS = affine[:q, :p]
zooms = np.sqrt(np.sum(RZS * RZS, axis=0))
# Zooms can be zero, in which case all elements in the column are zero, and
# we can leave them as they are
zooms[zooms == 0] = 1
RS = RZS / zooms
# Transform below is polar decomposition, returning the closest
# shearless matrix R to RS
P, S, Qs = npl.svd(RS, full_matrices=False)
# Threshold the singular values to determine the rank.
if tol is None:
tol = S.max() * max(RS.shape) * np.finfo(S.dtype).eps
keep = S > tol
R = np.dot(P[:, keep], Qs[keep])
# the matrix R is such that np.dot(R,R.T) is projection onto the
# columns of P[:,keep] and np.dot(R.T,R) is projection onto the rows
# of Qs[keep]. R (== np.dot(R, np.eye(p))) gives rotation of the
# unit input vectors to output coordinates. Therefore, the row
# index of abs max R[:,N], is the output axis changing most as input
# axis N changes. In case there are ties, we choose the axes
# iteratively, removing used axes from consideration as we go
ornt = np.ones((p, 2), dtype=np.int8) * np.nan
for in_ax in range(p):
col = R[:, in_ax]
if not np.allclose(col, 0):
out_ax = np.argmax(np.abs(col))
ornt[in_ax, 0] = out_ax
assert col[out_ax] != 0
if col[out_ax] < 0:
ornt[in_ax, 1] = -1
else:
ornt[in_ax, 1] = 1
# remove the identified axis from further consideration, by
# zeroing out the corresponding row in R
R[out_ax, :] = 0
return ornt
|
(affine, tol=None)
|
57,165 |
nibabel.arrayproxy
|
is_proxy
|
Return True if `obj` is an array proxy
|
def is_proxy(obj):
"""Return True if `obj` is an array proxy"""
try:
return obj.is_proxy
except AttributeError:
return False
|
(obj)
|
57,166 |
nibabel.loadsave
|
load
|
Load file given filename, guessing at file type
Parameters
----------
filename : str or os.PathLike
specification of file to load
\*\*kwargs : keyword arguments
Keyword arguments to format-specific load
Returns
-------
img : ``SpatialImage``
Image of guessed type
|
def load(filename: FileSpec, **kwargs) -> FileBasedImage:
r"""Load file given filename, guessing at file type
Parameters
----------
filename : str or os.PathLike
specification of file to load
\*\*kwargs : keyword arguments
Keyword arguments to format-specific load
Returns
-------
img : ``SpatialImage``
Image of guessed type
"""
filename = _stringify_path(filename)
# Check file exists and is not empty
try:
stat_result = os.stat(filename)
except OSError:
raise FileNotFoundError(f"No such file or no access: '{filename}'")
if stat_result.st_size <= 0:
raise ImageFileError(f"Empty file: '{filename}'")
sniff = None
for image_klass in all_image_classes:
is_valid, sniff = image_klass.path_maybe_image(filename, sniff)
if is_valid:
img = image_klass.from_filename(filename, **kwargs)
return img
matches, msg = _signature_matches_extension(filename)
if not matches:
raise ImageFileError(msg)
raise ImageFileError(f'Cannot work out file type of "{filename}"')
|
(filename: 'FileSpec', **kwargs) -> 'FileBasedImage'
|
57,181 |
nibabel.loadsave
|
save
|
Save an image to file adapting format to `filename`
Parameters
----------
img : ``SpatialImage``
image to save
filename : str or os.PathLike
filename (often implying filenames) to which to save `img`.
\*\*kwargs : keyword arguments
Keyword arguments to format-specific save
Returns
-------
None
|
def save(img: FileBasedImage, filename: FileSpec, **kwargs) -> None:
r"""Save an image to file adapting format to `filename`
Parameters
----------
img : ``SpatialImage``
image to save
filename : str or os.PathLike
filename (often implying filenames) to which to save `img`.
\*\*kwargs : keyword arguments
Keyword arguments to format-specific save
Returns
-------
None
"""
filename = _stringify_path(filename)
# Save the type as expected
try:
img.to_filename(filename, **kwargs)
except ImageFileError:
pass
else:
return
# Be nice to users by making common implicit conversions
froot, ext, trailing = splitext_addext(filename, _compressed_suffixes)
lext = ext.lower()
# Special-case Nifti singles and Pairs
# Inline imports, as this module really shouldn't reference any image type
from .nifti1 import Nifti1Image, Nifti1Pair
from .nifti2 import Nifti2Image, Nifti2Pair
converted: FileBasedImage
if type(img) == Nifti1Image and lext in ('.img', '.hdr'):
converted = Nifti1Pair.from_image(img)
elif type(img) == Nifti2Image and lext in ('.img', '.hdr'):
converted = Nifti2Pair.from_image(img)
elif type(img) == Nifti1Pair and lext == '.nii':
converted = Nifti1Image.from_image(img)
elif type(img) == Nifti2Pair and lext == '.nii':
converted = Nifti2Image.from_image(img)
else: # arbitrary conversion
valid_klasses = [klass for klass in all_image_classes if lext in klass.valid_exts]
if not valid_klasses: # if list is empty
raise ImageFileError(f'Cannot work out file type of "{filename}"')
# Got a list of valid extensions, but that's no guarantee
# the file conversion will work. So, try each image
# in order...
for klass in valid_klasses:
try:
converted = klass.from_image(img)
break
except Exception as e:
err = e
else:
raise err
converted.to_filename(filename, **kwargs)
|
(img: 'FileBasedImage', filename: 'FileSpec', **kwargs) -> 'None'
|
57,187 |
nibabel.funcs
|
squeeze_image
|
Return image, remove axes length 1 at end of image shape
For example, an image may have shape (10,20,30,1,1). In this case
squeeze will result in an image with shape (10,20,30). See doctests
for further description of behavior.
Parameters
----------
img : ``SpatialImage``
Returns
-------
squeezed_img : ``SpatialImage``
Copy of img, such that data, and data shape have been squeezed,
for dimensions > 3rd, and at the end of the shape list
Examples
--------
>>> import nibabel as nf
>>> shape = (10,20,30,1,1)
>>> data = np.arange(np.prod(shape), dtype='int32').reshape(shape)
>>> affine = np.eye(4)
>>> img = nf.Nifti1Image(data, affine)
>>> img.shape == (10, 20, 30, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 20, 30)
True
If the data are 3D then last dimensions of 1 are ignored
>>> shape = (10,1,1)
>>> data = np.arange(np.prod(shape), dtype='int32').reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (10, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 1, 1)
True
Only *final* dimensions of 1 are squeezed
>>> shape = (1, 1, 5, 1, 2, 1, 1)
>>> data = data.reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (1, 1, 5, 1, 2, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (1, 1, 5, 1, 2)
True
|
def squeeze_image(img):
"""Return image, remove axes length 1 at end of image shape
For example, an image may have shape (10,20,30,1,1). In this case
squeeze will result in an image with shape (10,20,30). See doctests
for further description of behavior.
Parameters
----------
img : ``SpatialImage``
Returns
-------
squeezed_img : ``SpatialImage``
Copy of img, such that data, and data shape have been squeezed,
for dimensions > 3rd, and at the end of the shape list
Examples
--------
>>> import nibabel as nf
>>> shape = (10,20,30,1,1)
>>> data = np.arange(np.prod(shape), dtype='int32').reshape(shape)
>>> affine = np.eye(4)
>>> img = nf.Nifti1Image(data, affine)
>>> img.shape == (10, 20, 30, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 20, 30)
True
If the data are 3D then last dimensions of 1 are ignored
>>> shape = (10,1,1)
>>> data = np.arange(np.prod(shape), dtype='int32').reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (10, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (10, 1, 1)
True
Only *final* dimensions of 1 are squeezed
>>> shape = (1, 1, 5, 1, 2, 1, 1)
>>> data = data.reshape(shape)
>>> img = nf.ni1.Nifti1Image(data, affine)
>>> img.shape == (1, 1, 5, 1, 2, 1, 1)
True
>>> img2 = squeeze_image(img)
>>> img2.shape == (1, 1, 5, 1, 2)
True
"""
klass = img.__class__
shape = img.shape
slen = len(shape)
if slen < 4:
return klass.from_image(img)
for bdim in shape[3::][::-1]:
if bdim == 1:
slen -= 1
else:
break
if slen == len(shape):
return klass.from_image(img)
shape = shape[:slen]
data = np.asanyarray(img.dataobj).reshape(shape)
return klass(data, img.affine, img.header, img.extra)
|
(img)
|
57,189 |
nibabel
|
test
|
Run tests for nibabel using pytest
The protocol mimics the ``numpy.testing.NoseTester.test()``.
Not all features are currently implemented.
Parameters
----------
label : None
Unused.
verbose: int, optional
Verbosity value for test outputs. Positive values increase verbosity, and
negative values decrease it. Default is 1.
extra_argv : list, optional
List with any extra arguments to pass to pytest.
doctests: bool, optional
If True, run doctests in module. Default is False.
coverage: bool, optional
If True, report coverage of NumPy code. Default is False.
(This requires the
`coverage module <https://nedbatchelder.com/code/modules/coveragehtml>`_).
raise_warnings : None
Unused.
timer : False
Unused.
Returns
-------
code : ExitCode
Returns the result of running the tests as a ``pytest.ExitCode`` enum
|
def test(
label=None,
verbose=1,
extra_argv=None,
doctests=False,
coverage=False,
raise_warnings=None,
timer=False,
):
"""
Run tests for nibabel using pytest
The protocol mimics the ``numpy.testing.NoseTester.test()``.
Not all features are currently implemented.
Parameters
----------
label : None
Unused.
verbose: int, optional
Verbosity value for test outputs. Positive values increase verbosity, and
negative values decrease it. Default is 1.
extra_argv : list, optional
List with any extra arguments to pass to pytest.
doctests: bool, optional
If True, run doctests in module. Default is False.
coverage: bool, optional
If True, report coverage of NumPy code. Default is False.
(This requires the
`coverage module <https://nedbatchelder.com/code/modules/coveragehtml>`_).
raise_warnings : None
Unused.
timer : False
Unused.
Returns
-------
code : ExitCode
Returns the result of running the tests as a ``pytest.ExitCode`` enum
"""
import pytest
args = []
if label is not None:
raise NotImplementedError('Labels cannot be set at present')
verbose = int(verbose)
if verbose > 0:
args.append('-' + 'v' * verbose)
elif verbose < 0:
args.append('-' + 'q' * -verbose)
if extra_argv:
args.extend(extra_argv)
if doctests:
args.append('--doctest-modules')
if coverage:
args.extend(['--cov', 'nibabel'])
if raise_warnings is not None:
raise NotImplementedError('Warning filters are not implemented')
if timer:
raise NotImplementedError('Timing is not implemented')
args.extend(['--pyargs', 'nibabel'])
return pytest.main(args=args)
|
(label=None, verbose=1, extra_argv=None, doctests=False, coverage=False, raise_warnings=None, timer=False)
|
57,195 |
scooby.report
|
AutoReport
|
Auto-generate a scooby.Report for a package.
This will generate a report based on the distribution requirements of the package.
|
class AutoReport(Report):
"""Auto-generate a scooby.Report for a package.
This will generate a report based on the distribution requirements of the package.
"""
def __init__(self, module, additional=None, ncol=3, text_width=80, sort=False):
"""Initialize."""
if not isinstance(module, (str, ModuleType)):
raise TypeError("Cannot generate report for type " "({})".format(type(module)))
if isinstance(module, ModuleType):
module = module.__name__
# Autogenerate from distribution requirements
core = [module, *get_distribution_dependencies(module)]
Report.__init__(
self,
additional=additional,
core=core,
optional=[],
ncol=ncol,
text_width=text_width,
sort=sort,
)
|
(module, additional=None, ncol=3, text_width=80, sort=False)
|
57,196 |
scooby.report
|
__init__
|
Initialize.
|
def __init__(self, module, additional=None, ncol=3, text_width=80, sort=False):
"""Initialize."""
if not isinstance(module, (str, ModuleType)):
raise TypeError("Cannot generate report for type " "({})".format(type(module)))
if isinstance(module, ModuleType):
module = module.__name__
# Autogenerate from distribution requirements
core = [module, *get_distribution_dependencies(module)]
Report.__init__(
self,
additional=additional,
core=core,
optional=[],
ncol=ncol,
text_width=text_width,
sort=sort,
)
|
(self, module, additional=None, ncol=3, text_width=80, sort=False)
|
57,197 |
scooby.report
|
__repr__
|
Return Plain-text version information.
|
def __repr__(self) -> str:
"""Return Plain-text version information."""
import textwrap # lazy-load see PR#85
# Width for text-version
text = '\n' + self.text_width * '-' + '\n'
# Date and time info as title
date_text = ' Date: '
mult = 0
indent = len(date_text)
for txt in textwrap.wrap(self.date, self.text_width - indent):
date_text += ' ' * mult + txt + '\n'
mult = indent
text += date_text + '\n'
# Get length of longest package: min of 18 and max of 40
if self._packages:
row_width = min(40, max(18, len(max(self._packages.keys(), key=len))))
else:
row_width = 18
# Platform/OS details
repr_dict = self.to_dict()
for key in ['OS', 'CPU(s)', 'Machine', 'Architecture', 'RAM', 'Environment', 'File system']:
if key in repr_dict:
text += f'{key:>{row_width}} : {repr_dict[key]}\n'
for key, value in self._extra_meta:
text += f'{key:>{row_width}} : {value}\n'
# Python details
text += '\n'
for txt in textwrap.wrap('Python ' + self.sys_version, self.text_width - 4):
text += ' ' + txt + '\n'
if self._packages:
text += '\n'
# Loop over packages
for name, version in self._packages.items():
text += f'{name:>{row_width}} : {version}\n'
# MKL details
if self.mkl_info:
text += '\n'
for txt in textwrap.wrap(self.mkl_info, self.text_width - 4):
text += ' ' + txt + '\n'
# Finish
text += self.text_width * '-'
return text
|
(self) -> str
|
57,198 |
scooby.report
|
_add_packages
|
Add all packages to list; optional ones only if available.
|
def _add_packages(
self, packages: Optional[List[Union[str, ModuleType]]], optional: bool = False
):
"""Add all packages to list; optional ones only if available."""
# Ensure arguments are a list
if isinstance(packages, (str, ModuleType)):
pckgs: List[Union[str, ModuleType]] = [
packages,
]
elif packages is None or len(packages) < 1:
pckgs = list()
else:
pckgs = list(packages)
# Loop over packages
for pckg in pckgs:
name, version = get_version(pckg)
if not (version == MODULE_NOT_FOUND and optional):
self._packages[name] = version
|
(self, packages: Optional[List[Union[str, module]]], optional: bool = False)
|
57,199 |
scooby.report
|
_repr_html_
|
Return HTML-rendered version information.
|
def _repr_html_(self) -> str:
"""Return HTML-rendered version information."""
# Define html-styles
border = "border: 1px solid;'"
def colspan(html: str, txt: str, ncol: int, nrow: int) -> str:
r"""Print txt in a row spanning whole table."""
html += " <tr>\n"
html += " <td style='"
if ncol == 1:
html += "text-align: left; "
else:
html += "text-align: center; "
if nrow == 0:
html += "font-weight: bold; font-size: 1.2em; "
html += border + " colspan='"
html += f"{2 * ncol}'>{txt}</td>\n"
html += " </tr>\n"
return html
def cols(html: str, version: str, name: str, ncol: int, i: int) -> Tuple[str, int]:
r"""Print package information in two cells."""
# Check if we have to start a new row
if i > 0 and i % ncol == 0:
html += " </tr>\n"
html += " <tr>\n"
align = "left" if ncol == 1 else "right"
html += f" <td style='text-align: {align};"
html += " " + border + ">%s</td>\n" % name
html += " <td style='text-align: left; "
html += border + ">%s</td>\n" % version
return html, i + 1
# Start html-table
html = "<table style='border: 1.5px solid;"
if self.max_width:
html += f" max-width: {self.max_width}px;"
html += "'>\n"
# Date and time info as title
html = colspan(html, self.date, self.ncol, 0)
# Platform/OS details
html += " <tr>\n"
repr_dict = self.to_dict()
i = 0
for key in ['OS', 'CPU(s)', 'Machine', 'Architecture', 'RAM', 'Environment', "File system"]:
if key in repr_dict:
html, i = cols(html, repr_dict[key], key, self.ncol, i)
for meta in self._extra_meta:
html, i = cols(html, meta[1], meta[0], self.ncol, i)
# Finish row
html += " </tr>\n"
# Python details
html = colspan(html, 'Python ' + self.sys_version, self.ncol, 1)
html += " <tr>\n"
# Loop over packages
i = 0 # Reset count for rows.
for name, version in self.packages.items():
html, i = cols(html, version, name, self.ncol, i)
# Fill up the row
while i % self.ncol != 0:
html += " <td style= " + border + "></td>\n"
html += " <td style= " + border + "></td>\n"
i += 1
# Finish row
html += " </tr>\n"
# MKL details
if self.mkl_info:
html = colspan(html, self.mkl_info, self.ncol, 2)
# Finish
html += "</table>"
return html
|
(self) -> str
|
57,200 |
scooby.report
|
to_dict
|
Return report as dict for storage.
|
def to_dict(self) -> Dict[str, str]:
"""Return report as dict for storage."""
out: Dict[str, str] = {}
# Date and time info
out['Date'] = self.date
# Platform/OS details
out['OS'] = self.system
out['CPU(s)'] = str(self.cpu_count)
out['Machine'] = self.machine
out['Architecture'] = self.architecture
if self.filesystem:
out['File system'] = self.filesystem
if self.total_ram != 'unknown':
out['RAM'] = self.total_ram
out['Environment'] = self.python_environment
for meta in self._extra_meta:
out[meta[1]] = meta[0]
# Python details
out['Python'] = self.sys_version
# Loop over packages
for name, version in self._packages.items():
out[name] = version
# MKL details
if self.mkl_info:
out['MKL'] = self.mkl_info
return out
|
(self) -> Dict[str, str]
|
57,201 |
scooby.report
|
Report
|
Have Scooby report the active Python environment.
Displays the system information when a ``__repr__`` method is called
(through outputting or printing).
Parameters
----------
additional : list(ModuleType), list(str)
List of packages or package names to add to output information.
core : list(ModuleType), list(str)
The core packages to list first.
optional : list(ModuleType), list(str)
A list of packages to list if they are available. If not available,
no warnings or error will be thrown.
Defaults to ``['numpy', 'scipy', 'IPython', 'matplotlib', 'scooby']``
ncol : int, optional
Number of package-columns in html table (no effect in text-version);
Defaults to 3.
text_width : int, optional
The text width for non-HTML display modes.
sort : bool, optional
Sort the packages when the report is shown.
extra_meta : tuple(tuple(str, str), ...), optional
Additional two component pairs of meta information to display.
max_width : int, optional
Max-width of html-table. By default None.
|
class Report(PlatformInfo, PythonInfo):
"""Have Scooby report the active Python environment.
Displays the system information when a ``__repr__`` method is called
(through outputting or printing).
Parameters
----------
additional : list(ModuleType), list(str)
List of packages or package names to add to output information.
core : list(ModuleType), list(str)
The core packages to list first.
optional : list(ModuleType), list(str)
A list of packages to list if they are available. If not available,
no warnings or error will be thrown.
Defaults to ``['numpy', 'scipy', 'IPython', 'matplotlib', 'scooby']``
ncol : int, optional
Number of package-columns in html table (no effect in text-version);
Defaults to 3.
text_width : int, optional
The text width for non-HTML display modes.
sort : bool, optional
Sort the packages when the report is shown.
extra_meta : tuple(tuple(str, str), ...), optional
Additional two component pairs of meta information to display.
max_width : int, optional
Max-width of html-table. By default None.
"""
def __init__(
self,
additional: Optional[List[Union[str, ModuleType]]] = None,
core: Optional[List[Union[str, ModuleType]]] = None,
optional: Optional[List[Union[str, ModuleType]]] = None,
ncol: int = 4,
text_width: int = 80,
sort: bool = False,
extra_meta: Optional[Union[Tuple[Tuple[str, str], ...], List[Tuple[str, str]]]] = None,
max_width: Optional[int] = None,
) -> None:
"""Initialize report."""
# Set default optional packages to investigate
if optional is None:
optional = ['numpy', 'scipy', 'IPython', 'matplotlib', 'scooby']
PythonInfo.__init__(self, additional=additional, core=core, optional=optional, sort=sort)
self.ncol = int(ncol)
self.text_width = int(text_width)
self.max_width = max_width
if extra_meta is not None:
if not isinstance(extra_meta, (list, tuple)):
raise TypeError("`extra_meta` must be a list/tuple of " "key-value pairs.")
if len(extra_meta) == 2 and isinstance(extra_meta[0], str):
extra_meta = [extra_meta]
for meta in extra_meta:
if not isinstance(meta, (list, tuple)) or len(meta) != 2:
raise TypeError("Each chunk of meta info must have two values.")
else:
extra_meta = []
self._extra_meta = extra_meta
def __repr__(self) -> str:
"""Return Plain-text version information."""
import textwrap # lazy-load see PR#85
# Width for text-version
text = '\n' + self.text_width * '-' + '\n'
# Date and time info as title
date_text = ' Date: '
mult = 0
indent = len(date_text)
for txt in textwrap.wrap(self.date, self.text_width - indent):
date_text += ' ' * mult + txt + '\n'
mult = indent
text += date_text + '\n'
# Get length of longest package: min of 18 and max of 40
if self._packages:
row_width = min(40, max(18, len(max(self._packages.keys(), key=len))))
else:
row_width = 18
# Platform/OS details
repr_dict = self.to_dict()
for key in ['OS', 'CPU(s)', 'Machine', 'Architecture', 'RAM', 'Environment', 'File system']:
if key in repr_dict:
text += f'{key:>{row_width}} : {repr_dict[key]}\n'
for key, value in self._extra_meta:
text += f'{key:>{row_width}} : {value}\n'
# Python details
text += '\n'
for txt in textwrap.wrap('Python ' + self.sys_version, self.text_width - 4):
text += ' ' + txt + '\n'
if self._packages:
text += '\n'
# Loop over packages
for name, version in self._packages.items():
text += f'{name:>{row_width}} : {version}\n'
# MKL details
if self.mkl_info:
text += '\n'
for txt in textwrap.wrap(self.mkl_info, self.text_width - 4):
text += ' ' + txt + '\n'
# Finish
text += self.text_width * '-'
return text
def _repr_html_(self) -> str:
"""Return HTML-rendered version information."""
# Define html-styles
border = "border: 1px solid;'"
def colspan(html: str, txt: str, ncol: int, nrow: int) -> str:
r"""Print txt in a row spanning whole table."""
html += " <tr>\n"
html += " <td style='"
if ncol == 1:
html += "text-align: left; "
else:
html += "text-align: center; "
if nrow == 0:
html += "font-weight: bold; font-size: 1.2em; "
html += border + " colspan='"
html += f"{2 * ncol}'>{txt}</td>\n"
html += " </tr>\n"
return html
def cols(html: str, version: str, name: str, ncol: int, i: int) -> Tuple[str, int]:
r"""Print package information in two cells."""
# Check if we have to start a new row
if i > 0 and i % ncol == 0:
html += " </tr>\n"
html += " <tr>\n"
align = "left" if ncol == 1 else "right"
html += f" <td style='text-align: {align};"
html += " " + border + ">%s</td>\n" % name
html += " <td style='text-align: left; "
html += border + ">%s</td>\n" % version
return html, i + 1
# Start html-table
html = "<table style='border: 1.5px solid;"
if self.max_width:
html += f" max-width: {self.max_width}px;"
html += "'>\n"
# Date and time info as title
html = colspan(html, self.date, self.ncol, 0)
# Platform/OS details
html += " <tr>\n"
repr_dict = self.to_dict()
i = 0
for key in ['OS', 'CPU(s)', 'Machine', 'Architecture', 'RAM', 'Environment', "File system"]:
if key in repr_dict:
html, i = cols(html, repr_dict[key], key, self.ncol, i)
for meta in self._extra_meta:
html, i = cols(html, meta[1], meta[0], self.ncol, i)
# Finish row
html += " </tr>\n"
# Python details
html = colspan(html, 'Python ' + self.sys_version, self.ncol, 1)
html += " <tr>\n"
# Loop over packages
i = 0 # Reset count for rows.
for name, version in self.packages.items():
html, i = cols(html, version, name, self.ncol, i)
# Fill up the row
while i % self.ncol != 0:
html += " <td style= " + border + "></td>\n"
html += " <td style= " + border + "></td>\n"
i += 1
# Finish row
html += " </tr>\n"
# MKL details
if self.mkl_info:
html = colspan(html, self.mkl_info, self.ncol, 2)
# Finish
html += "</table>"
return html
def to_dict(self) -> Dict[str, str]:
"""Return report as dict for storage."""
out: Dict[str, str] = {}
# Date and time info
out['Date'] = self.date
# Platform/OS details
out['OS'] = self.system
out['CPU(s)'] = str(self.cpu_count)
out['Machine'] = self.machine
out['Architecture'] = self.architecture
if self.filesystem:
out['File system'] = self.filesystem
if self.total_ram != 'unknown':
out['RAM'] = self.total_ram
out['Environment'] = self.python_environment
for meta in self._extra_meta:
out[meta[1]] = meta[0]
# Python details
out['Python'] = self.sys_version
# Loop over packages
for name, version in self._packages.items():
out[name] = version
# MKL details
if self.mkl_info:
out['MKL'] = self.mkl_info
return out
|
(additional: Optional[List[Union[str, module]]] = None, core: Optional[List[Union[str, module]]] = None, optional: Optional[List[Union[str, module]]] = None, ncol: int = 4, text_width: int = 80, sort: bool = False, extra_meta: Union[Tuple[Tuple[str, str], ...], List[Tuple[str, str]], NoneType] = None, max_width: Optional[int] = None) -> None
|
57,202 |
scooby.report
|
__init__
|
Initialize report.
|
def __init__(
self,
additional: Optional[List[Union[str, ModuleType]]] = None,
core: Optional[List[Union[str, ModuleType]]] = None,
optional: Optional[List[Union[str, ModuleType]]] = None,
ncol: int = 4,
text_width: int = 80,
sort: bool = False,
extra_meta: Optional[Union[Tuple[Tuple[str, str], ...], List[Tuple[str, str]]]] = None,
max_width: Optional[int] = None,
) -> None:
"""Initialize report."""
# Set default optional packages to investigate
if optional is None:
optional = ['numpy', 'scipy', 'IPython', 'matplotlib', 'scooby']
PythonInfo.__init__(self, additional=additional, core=core, optional=optional, sort=sort)
self.ncol = int(ncol)
self.text_width = int(text_width)
self.max_width = max_width
if extra_meta is not None:
if not isinstance(extra_meta, (list, tuple)):
raise TypeError("`extra_meta` must be a list/tuple of " "key-value pairs.")
if len(extra_meta) == 2 and isinstance(extra_meta[0], str):
extra_meta = [extra_meta]
for meta in extra_meta:
if not isinstance(meta, (list, tuple)) or len(meta) != 2:
raise TypeError("Each chunk of meta info must have two values.")
else:
extra_meta = []
self._extra_meta = extra_meta
|
(self, additional: Optional[List[Union[str, module]]] = None, core: Optional[List[Union[str, module]]] = None, optional: Optional[List[Union[str, module]]] = None, ncol: int = 4, text_width: int = 80, sort: bool = False, extra_meta: Union[Tuple[Tuple[str, str], ...], List[Tuple[str, str]], NoneType] = None, max_width: Optional[int] = None) -> NoneType
|
57,207 |
scooby.tracker
|
TrackedReport
|
A class to inspect the active environment and generate a report.
Generates a report based on all imported modules. Simply pass the
``globals()`` dictionary.
|
class TrackedReport(Report):
"""A class to inspect the active environment and generate a report.
Generates a report based on all imported modules. Simply pass the
``globals()`` dictionary.
"""
def __init__(
self,
additional: Optional[List[Union[str, ModuleType]]] = None,
ncol: int = 3,
text_width: int = 80,
sort: bool = False,
):
"""Initialize."""
if not TRACKING_SUPPORTED:
raise RuntimeError(SUPPORT_MESSAGE)
if len(TRACKED_IMPORTS) < 2:
raise RuntimeError(
"There are no tracked imports, please use "
"`scooby.track_imports()` before running your "
"code."
)
Report.__init__(
self,
additional=additional,
core=TRACKED_IMPORTS,
ncol=ncol,
text_width=text_width,
sort=sort,
optional=[],
)
|
(additional: Optional[List[Union[str, module]]] = None, ncol: int = 3, text_width: int = 80, sort: bool = False)
|
57,208 |
scooby.tracker
|
__init__
|
Initialize.
|
def __init__(
self,
additional: Optional[List[Union[str, ModuleType]]] = None,
ncol: int = 3,
text_width: int = 80,
sort: bool = False,
):
"""Initialize."""
if not TRACKING_SUPPORTED:
raise RuntimeError(SUPPORT_MESSAGE)
if len(TRACKED_IMPORTS) < 2:
raise RuntimeError(
"There are no tracked imports, please use "
"`scooby.track_imports()` before running your "
"code."
)
Report.__init__(
self,
additional=additional,
core=TRACKED_IMPORTS,
ncol=ncol,
text_width=text_width,
sort=sort,
optional=[],
)
|
(self, additional: Optional[List[Union[str, module]]] = None, ncol: int = 3, text_width: int = 80, sort: bool = False)
|
57,219 |
scooby.knowledge
|
get_standard_lib_modules
|
Return a set of the names of all modules in the standard library.
|
def get_standard_lib_modules() -> Set[str]:
"""Return a set of the names of all modules in the standard library."""
site_path = sysconfig.get_path('stdlib')
if getattr(sys, 'frozen', False): # within pyinstaller
lib_path = os.path.join(site_path, '..')
if os.path.isdir(lib_path):
names = os.listdir(lib_path)
else:
names = []
stdlib_pkgs = {name[:-3] for name in names if name.endswith(".py")}
else:
names = os.listdir(site_path)
stdlib_pkgs = set([name if not name.endswith(".py") else name[:-3] for name in names])
stdlib_pkgs = {
"python",
"sys",
"__builtin__",
"__builtins__",
"builtins",
"session",
"math",
"itertools",
"binascii",
"array",
"atexit",
"fcntl",
"errno",
"gc",
"time",
"unicodedata",
"mmap",
}.union(stdlib_pkgs)
return stdlib_pkgs
|
() -> Set[str]
|
57,220 |
scooby.report
|
get_version
|
Get the version of ``module`` by passing the package or it's name.
Parameters
----------
module : str or module
Name of a module to import or the module itself.
Returns
-------
name : str
Package name
version : str or None
Version of module.
|
def get_version(module: Union[str, ModuleType]) -> Tuple[str, Optional[str]]:
"""Get the version of ``module`` by passing the package or it's name.
Parameters
----------
module : str or module
Name of a module to import or the module itself.
Returns
-------
name : str
Package name
version : str or None
Version of module.
"""
# module is (1) a module or (2) a string.
if not isinstance(module, (str, ModuleType)):
raise TypeError("Cannot fetch version from type " "({})".format(type(module)))
# module is module; get name
if isinstance(module, ModuleType):
name = module.__name__
else:
name = module
module = None
# Check aliased names
if name in PACKAGE_ALIASES:
name = PACKAGE_ALIASES[name]
# try importlib.metadata before loading the module
try:
return name, importlib_version(name)
except PackageNotFoundError:
module = None
# importlib could not find the package, try to load it
if module is None:
try:
module = importlib.import_module(name)
except ImportError:
return name, MODULE_NOT_FOUND
except Exception:
return name, MODULE_TROUBLE
# Try common version names on loaded module
for v_string in ('__version__', 'version'):
try:
return name, getattr(module, v_string)
except AttributeError:
pass
# Try the VERSION_ATTRIBUTES library
try:
attr = VERSION_ATTRIBUTES[name]
return name, getattr(module, attr)
except (KeyError, AttributeError):
pass
# Try the VERSION_METHODS library
try:
method = VERSION_METHODS[name]
return name, method()
except (KeyError, ImportError):
pass
# If still not found, return VERSION_NOT_FOUND
return name, VERSION_NOT_FOUND
|
(module: Union[str, module]) -> Tuple[str, Optional[str]]
|
57,221 |
scooby.knowledge
|
in_ipykernel
|
Check if in a ipykernel (most likely Jupyter) environment.
Warning
-------
There is no way to tell if the code is being executed in a notebook
(Jupyter Notebook or Jupyter Lab) or a kernel is used but executed in a
QtConsole, or in an IPython console, or any other frontend GUI. However, if
`in_ipykernel` returns True, you are most likely in a Jupyter Notebook/Lab,
just keep it in mind that there are other possibilities.
Returns
-------
bool : True if using an ipykernel
|
def in_ipykernel() -> bool:
"""Check if in a ipykernel (most likely Jupyter) environment.
Warning
-------
There is no way to tell if the code is being executed in a notebook
(Jupyter Notebook or Jupyter Lab) or a kernel is used but executed in a
QtConsole, or in an IPython console, or any other frontend GUI. However, if
`in_ipykernel` returns True, you are most likely in a Jupyter Notebook/Lab,
just keep it in mind that there are other possibilities.
Returns
-------
bool : True if using an ipykernel
"""
ipykernel = False
if in_ipython():
try:
ipykernel: bool = type(get_ipython()).__module__.startswith('ipykernel.')
except NameError:
pass
return ipykernel
|
() -> bool
|
57,222 |
scooby.knowledge
|
in_ipython
|
Check if we are in a IPython environment.
Returns
-------
bool : True
``True`` when in an IPython environment.
|
def in_ipython() -> bool:
"""Check if we are in a IPython environment.
Returns
-------
bool : True
``True`` when in an IPython environment.
"""
try:
__IPYTHON__
return True
except NameError:
return False
|
() -> bool
|
57,224 |
scooby.knowledge
|
meets_version
|
Check if a version string meets a minimum version.
This is a simplified way to compare version strings. For a more robust
tool, please check out the ``packaging`` library:
https://github.com/pypa/packaging
Parameters
----------
version : str
Version string. For example ``'0.25.1'``.
meets : str
Version string. For example ``'0.25.2'``.
Returns
-------
newer : bool
True if version ``version`` is greater or equal to version ``meets``.
Examples
--------
>>> meets_version('0.25.1', '0.25.2')
False
>>> meets_version('0.26.0', '0.25.2')
True
|
def meets_version(version: str, meets: str) -> bool:
"""Check if a version string meets a minimum version.
This is a simplified way to compare version strings. For a more robust
tool, please check out the ``packaging`` library:
https://github.com/pypa/packaging
Parameters
----------
version : str
Version string. For example ``'0.25.1'``.
meets : str
Version string. For example ``'0.25.2'``.
Returns
-------
newer : bool
True if version ``version`` is greater or equal to version ``meets``.
Examples
--------
>>> meets_version('0.25.1', '0.25.2')
False
>>> meets_version('0.26.0', '0.25.2')
True
"""
va = version_tuple(version)
vb = version_tuple(meets)
if len(va) != len(vb):
raise AssertionError("Versions are not comparable.")
for i in range(len(va)):
if va[i] > vb[i]:
return True
elif va[i] < vb[i]:
return False
# Arrived here if same version
return True
|
(version: str, meets: str) -> bool
|
57,226 |
scooby.tracker
|
track_imports
|
Track all imported modules for the remainder of this session.
|
def track_imports() -> None:
"""Track all imported modules for the remainder of this session."""
if not TRACKING_SUPPORTED:
raise RuntimeError(SUPPORT_MESSAGE)
global STDLIB_PKGS
STDLIB_PKGS = get_standard_lib_modules()
builtins.__import__ = scooby_import
return
|
() -> NoneType
|
57,228 |
scooby.tracker
|
untrack_imports
|
Stop tracking imports and return to the builtin import method.
This will also clear the tracked imports.
|
def untrack_imports() -> None:
"""Stop tracking imports and return to the builtin import method.
This will also clear the tracked imports.
"""
if not TRACKING_SUPPORTED:
raise RuntimeError(SUPPORT_MESSAGE)
builtins.__import__ = CLASSIC_IMPORT
TRACKED_IMPORTS.clear()
TRACKED_IMPORTS.append("scooby")
return
|
() -> NoneType
|
57,230 |
scooby.knowledge
|
version_tuple
|
Convert a version string to a tuple containing ints.
Non-numeric version strings will be converted to 0. For example:
``'0.28.0dev0'`` will be converted to ``'0.28.0'``
Returns
-------
ver_tuple : tuple
Length 3 tuple representing the major, minor, and patch
version.
|
def version_tuple(v: str) -> Tuple[int, ...]:
"""Convert a version string to a tuple containing ints.
Non-numeric version strings will be converted to 0. For example:
``'0.28.0dev0'`` will be converted to ``'0.28.0'``
Returns
-------
ver_tuple : tuple
Length 3 tuple representing the major, minor, and patch
version.
"""
split_v = v.split(".")
while len(split_v) < 3:
split_v.append('0')
if len(split_v) > 3:
raise ValueError('Version strings containing more than three parts ' 'cannot be parsed')
vals: List[int] = []
for item in split_v:
if item.isnumeric():
vals.append(int(item))
else:
vals.append(0)
return tuple(vals)
|
(v: str) -> Tuple[int, ...]
|
57,231 |
estnltk_core.layer.annotation
|
Annotation
|
Mapping for Span attribute values.
Annotation is the object that contains information about the attribute values. Annotations are
tied to a Span which hold the information about the location of the annotation. The attributes
of an Annotation are formatted as a dictionary and they can be passed as arguments to the
Annotation.
Once the Annotation has a Span, it can not be changed.
|
class Annotation(Mapping):
"""Mapping for Span attribute values.
Annotation is the object that contains information about the attribute values. Annotations are
tied to a Span which hold the information about the location of the annotation. The attributes
of an Annotation are formatted as a dictionary and they can be passed as arguments to the
Annotation.
Once the Annotation has a Span, it can not be changed.
"""
__slots__ = ['__dict__', '_span']
def __init__(self, span: 'Span', attributes: Dict[str, Any]={}, **attributes_kwargs):
"""Initiates a new Annotation object tied to the given span.
Note that there are two parameters for assigning attributes
to the annotation: `attributes` and `attributes_kwargs`.
`attributes` supports a dictionary-based assignment,
for example:
Annotation( span, {'attr1': ..., 'attr2': ...} )
`attributes_kwargs` supports keyword argument assignments,
for example:
Annotation( span, attr1=..., attr2=... )
While keyword arguments can only be valid Python keywords
(excluding the keyword 'span'), using `attributes` dictionary
enables to bypass these restrictions while making the attribute
assignments.
Note that you can use both `attributes` and `attributes_kwargs`
simultaneously. In that case, if there are overlapping
argument assignments, then keyword arguments will override
dictionary-based assignments.
"""
self._span = span
merged_attributes = { **attributes, **attributes_kwargs }
self.__dict__ = merged_attributes
def __deepcopy__(self, memo=None):
"""
Makes a deep copy of all annotation attributes but detaches annotation from span.
RATIONALE: One copies an annotation only to attach the copy to a different span.
Based on:
https://github.com/estnltk/estnltk/blob/974c666b2da3e89dc42d570aad4b66ef060a6742/estnltk/layer/annotation.py#L44
"""
memo = memo or {}
result = self.__class__(span=None)
# Add newly created valid mutable objects to memo
memo[id(self)] = result
# Perform deep copy with a valid memo dict
result.__dict__ = deepcopy(self.__dict__, memo)
return result
@property
def span(self):
return self._span
@property
def start(self) -> int:
if self._span:
return self._span.start
@property
def end(self) -> int:
if self._span:
return self._span.end
@property
def layer(self):
if self._span:
return self._span.layer
@property
def legal_attribute_names(self) -> Sequence[str]:
if self.layer is not None:
return self.layer.attributes
@property
def text_object(self):
if self._span is not None:
return self._span.text_object
@property
def text(self):
if self._span:
return self._span.text
def __setattr__(self, key, value):
if key in self.__slots__:
super().__setattr__(key, value)
elif key == 'span':
if self._span is None:
super().__setattr__('_span', value)
else:
raise AttributeError('this Annotation object already has a span')
else:
self.__dict__[key] = value
def __contains__(self, item):
return item in self.__dict__
def __len__(self):
return len(self.__dict__)
def __setitem__(self, key, value):
self.__dict__[key] = value
def __getitem__(self, item):
if isinstance(item, str):
return self.__dict__[item]
if isinstance(item, tuple):
return tuple(self.__dict__[i] for i in item)
raise TypeError(item)
def __iter__(self):
yield from self.__dict__
def __delitem__(self, key):
del self.__dict__[key]
def __delattr__(self, item):
try:
del self[item]
except KeyError as key_error:
raise AttributeError(key_error.args[0]) from key_error
def __eq__(self, other: Any) -> bool:
if isinstance(other, Annotation):
self_dict = self.__dict__
other_dict = other.__dict__
if self.layer is not None and len(self.layer.secondary_attributes) > 0:
# skip the comparison of the secondary attributes
secondary_attributes = self.layer.secondary_attributes
self_dict = {k:v for k,v in self_dict.items() if k not in secondary_attributes}
other_dict = {k:v for k,v in other_dict.items() if k not in secondary_attributes}
return self_dict == other_dict
else:
return False
@recursive_repr()
def __repr__(self):
# Output key-value pairs in an ordered way
# (to assure a consistent output, e.g. for automated testing)
if self.legal_attribute_names is None:
attribute_names = sorted(self.__dict__)
else:
attribute_names = self.legal_attribute_names
attr_val_repr = _create_attr_val_repr( [(k, self.__dict__[k]) for k in attribute_names] )
return '{class_name}({text!r}, {attributes})'.format(class_name=self.__class__.__name__,
text=self.text,
attributes=attr_val_repr)
|
(span: 'Span', attributes: Dict[str, Any] = {}, **attributes_kwargs)
|
57,232 |
estnltk_core.layer.annotation
|
__contains__
| null |
def __contains__(self, item):
return item in self.__dict__
|
(self, item)
|
57,233 |
estnltk_core.layer.annotation
|
__deepcopy__
|
Makes a deep copy of all annotation attributes but detaches annotation from span.
RATIONALE: One copies an annotation only to attach the copy to a different span.
Based on:
https://github.com/estnltk/estnltk/blob/974c666b2da3e89dc42d570aad4b66ef060a6742/estnltk/layer/annotation.py#L44
|
def __deepcopy__(self, memo=None):
"""
Makes a deep copy of all annotation attributes but detaches annotation from span.
RATIONALE: One copies an annotation only to attach the copy to a different span.
Based on:
https://github.com/estnltk/estnltk/blob/974c666b2da3e89dc42d570aad4b66ef060a6742/estnltk/layer/annotation.py#L44
"""
memo = memo or {}
result = self.__class__(span=None)
# Add newly created valid mutable objects to memo
memo[id(self)] = result
# Perform deep copy with a valid memo dict
result.__dict__ = deepcopy(self.__dict__, memo)
return result
|
(self, memo=None)
|
57,234 |
estnltk_core.layer.annotation
|
__delattr__
| null |
def __delattr__(self, item):
try:
del self[item]
except KeyError as key_error:
raise AttributeError(key_error.args[0]) from key_error
|
(self, item)
|
57,235 |
estnltk_core.layer.annotation
|
__delitem__
| null |
def __delitem__(self, key):
del self.__dict__[key]
|
(self, key)
|
57,236 |
estnltk_core.layer.annotation
|
__eq__
| null |
def __eq__(self, other: Any) -> bool:
if isinstance(other, Annotation):
self_dict = self.__dict__
other_dict = other.__dict__
if self.layer is not None and len(self.layer.secondary_attributes) > 0:
# skip the comparison of the secondary attributes
secondary_attributes = self.layer.secondary_attributes
self_dict = {k:v for k,v in self_dict.items() if k not in secondary_attributes}
other_dict = {k:v for k,v in other_dict.items() if k not in secondary_attributes}
return self_dict == other_dict
else:
return False
|
(self, other: Any) -> bool
|
57,237 |
estnltk_core.layer.annotation
|
__getitem__
| null |
def __getitem__(self, item):
if isinstance(item, str):
return self.__dict__[item]
if isinstance(item, tuple):
return tuple(self.__dict__[i] for i in item)
raise TypeError(item)
|
(self, item)
|
57,238 |
estnltk_core.layer.annotation
|
__init__
|
Initiates a new Annotation object tied to the given span.
Note that there are two parameters for assigning attributes
to the annotation: `attributes` and `attributes_kwargs`.
`attributes` supports a dictionary-based assignment,
for example:
Annotation( span, {'attr1': ..., 'attr2': ...} )
`attributes_kwargs` supports keyword argument assignments,
for example:
Annotation( span, attr1=..., attr2=... )
While keyword arguments can only be valid Python keywords
(excluding the keyword 'span'), using `attributes` dictionary
enables to bypass these restrictions while making the attribute
assignments.
Note that you can use both `attributes` and `attributes_kwargs`
simultaneously. In that case, if there are overlapping
argument assignments, then keyword arguments will override
dictionary-based assignments.
|
def __init__(self, span: 'Span', attributes: Dict[str, Any]={}, **attributes_kwargs):
"""Initiates a new Annotation object tied to the given span.
Note that there are two parameters for assigning attributes
to the annotation: `attributes` and `attributes_kwargs`.
`attributes` supports a dictionary-based assignment,
for example:
Annotation( span, {'attr1': ..., 'attr2': ...} )
`attributes_kwargs` supports keyword argument assignments,
for example:
Annotation( span, attr1=..., attr2=... )
While keyword arguments can only be valid Python keywords
(excluding the keyword 'span'), using `attributes` dictionary
enables to bypass these restrictions while making the attribute
assignments.
Note that you can use both `attributes` and `attributes_kwargs`
simultaneously. In that case, if there are overlapping
argument assignments, then keyword arguments will override
dictionary-based assignments.
"""
self._span = span
merged_attributes = { **attributes, **attributes_kwargs }
self.__dict__ = merged_attributes
|
(self, span: 'Span', attributes: Dict[str, Any] = {}, **attributes_kwargs)
|
57,239 |
estnltk_core.layer.annotation
|
__iter__
| null |
def __iter__(self):
yield from self.__dict__
|
(self)
|
57,240 |
estnltk_core.layer.annotation
|
__len__
| null |
def __len__(self):
return len(self.__dict__)
|
(self)
|
57,241 |
estnltk_core.layer.annotation
|
__repr__
| null |
from copy import deepcopy
from reprlib import recursive_repr
from typing import Any, Mapping, Sequence, Dict
from estnltk_core.common import _create_attr_val_repr
class Annotation(Mapping):
"""Mapping for Span attribute values.
Annotation is the object that contains information about the attribute values. Annotations are
tied to a Span which hold the information about the location of the annotation. The attributes
of an Annotation are formatted as a dictionary and they can be passed as arguments to the
Annotation.
Once the Annotation has a Span, it can not be changed.
"""
__slots__ = ['__dict__', '_span']
def __init__(self, span: 'Span', attributes: Dict[str, Any]={}, **attributes_kwargs):
"""Initiates a new Annotation object tied to the given span.
Note that there are two parameters for assigning attributes
to the annotation: `attributes` and `attributes_kwargs`.
`attributes` supports a dictionary-based assignment,
for example:
Annotation( span, {'attr1': ..., 'attr2': ...} )
`attributes_kwargs` supports keyword argument assignments,
for example:
Annotation( span, attr1=..., attr2=... )
While keyword arguments can only be valid Python keywords
(excluding the keyword 'span'), using `attributes` dictionary
enables to bypass these restrictions while making the attribute
assignments.
Note that you can use both `attributes` and `attributes_kwargs`
simultaneously. In that case, if there are overlapping
argument assignments, then keyword arguments will override
dictionary-based assignments.
"""
self._span = span
merged_attributes = { **attributes, **attributes_kwargs }
self.__dict__ = merged_attributes
def __deepcopy__(self, memo=None):
"""
Makes a deep copy of all annotation attributes but detaches annotation from span.
RATIONALE: One copies an annotation only to attach the copy to a different span.
Based on:
https://github.com/estnltk/estnltk/blob/974c666b2da3e89dc42d570aad4b66ef060a6742/estnltk/layer/annotation.py#L44
"""
memo = memo or {}
result = self.__class__(span=None)
# Add newly created valid mutable objects to memo
memo[id(self)] = result
# Perform deep copy with a valid memo dict
result.__dict__ = deepcopy(self.__dict__, memo)
return result
@property
def span(self):
return self._span
@property
def start(self) -> int:
if self._span:
return self._span.start
@property
def end(self) -> int:
if self._span:
return self._span.end
@property
def layer(self):
if self._span:
return self._span.layer
@property
def legal_attribute_names(self) -> Sequence[str]:
if self.layer is not None:
return self.layer.attributes
@property
def text_object(self):
if self._span is not None:
return self._span.text_object
@property
def text(self):
if self._span:
return self._span.text
def __setattr__(self, key, value):
if key in self.__slots__:
super().__setattr__(key, value)
elif key == 'span':
if self._span is None:
super().__setattr__('_span', value)
else:
raise AttributeError('this Annotation object already has a span')
else:
self.__dict__[key] = value
def __contains__(self, item):
return item in self.__dict__
def __len__(self):
return len(self.__dict__)
def __setitem__(self, key, value):
self.__dict__[key] = value
def __getitem__(self, item):
if isinstance(item, str):
return self.__dict__[item]
if isinstance(item, tuple):
return tuple(self.__dict__[i] for i in item)
raise TypeError(item)
def __iter__(self):
yield from self.__dict__
def __delitem__(self, key):
del self.__dict__[key]
def __delattr__(self, item):
try:
del self[item]
except KeyError as key_error:
raise AttributeError(key_error.args[0]) from key_error
def __eq__(self, other: Any) -> bool:
if isinstance(other, Annotation):
self_dict = self.__dict__
other_dict = other.__dict__
if self.layer is not None and len(self.layer.secondary_attributes) > 0:
# skip the comparison of the secondary attributes
secondary_attributes = self.layer.secondary_attributes
self_dict = {k:v for k,v in self_dict.items() if k not in secondary_attributes}
other_dict = {k:v for k,v in other_dict.items() if k not in secondary_attributes}
return self_dict == other_dict
else:
return False
@recursive_repr()
def __repr__(self):
# Output key-value pairs in an ordered way
# (to assure a consistent output, e.g. for automated testing)
if self.legal_attribute_names is None:
attribute_names = sorted(self.__dict__)
else:
attribute_names = self.legal_attribute_names
attr_val_repr = _create_attr_val_repr( [(k, self.__dict__[k]) for k in attribute_names] )
return '{class_name}({text!r}, {attributes})'.format(class_name=self.__class__.__name__,
text=self.text,
attributes=attr_val_repr)
|
(self)
|
57,242 |
estnltk_core.layer.annotation
|
__setattr__
| null |
def __setattr__(self, key, value):
if key in self.__slots__:
super().__setattr__(key, value)
elif key == 'span':
if self._span is None:
super().__setattr__('_span', value)
else:
raise AttributeError('this Annotation object already has a span')
else:
self.__dict__[key] = value
|
(self, key, value)
|
57,248 |
estnltk_core.layer.base_span
|
BaseSpan
|
BaseSpan is class that defines meta information about a Span and is used when creating a Span.
A BaseSpan can be given a level, start and end of a Span which then make sure that the Span is
in the right position in a Layer.
Level of a BaseSpan determines its positional structure: whether it is a raw text position
or is enveloping around sequences of smaller level text positions.
*) ElementaryBaseSpan has level = 0, and it corresponds to a raw text position:
(start, end);
*) EnvelopingBaseSpan at level = 1 corresponds to a sequence of ElementaryBaseSpan-s:
[(start_1, end_1), ..., (start_N, end_N)]
*) EnvelopingBaseSpan at level = 2 corresponds to a sequence of level 1 EnvelopingBaseSpans:
[((start_11, end_11), ... ), ... ((start_N1, end_N1), ...)]
And so forth.
Note #1: In case of layers in parent-child relation, a child span has the same level as
the parent span. So, if the parent layer is made of level 0 spans (ElementaryBaseSpan-s),
then the child layer also has level 0 spans.
Note #2: BaseSpans are immutable: once initialized, they cannot be changed anymore.
|
class BaseSpan:
'''
BaseSpan is class that defines meta information about a Span and is used when creating a Span.
A BaseSpan can be given a level, start and end of a Span which then make sure that the Span is
in the right position in a Layer.
Level of a BaseSpan determines its positional structure: whether it is a raw text position
or is enveloping around sequences of smaller level text positions.
*) ElementaryBaseSpan has level = 0, and it corresponds to a raw text position:
(start, end);
*) EnvelopingBaseSpan at level = 1 corresponds to a sequence of ElementaryBaseSpan-s:
[(start_1, end_1), ..., (start_N, end_N)]
*) EnvelopingBaseSpan at level = 2 corresponds to a sequence of level 1 EnvelopingBaseSpans:
[((start_11, end_11), ... ), ... ((start_N1, end_N1), ...)]
And so forth.
Note #1: In case of layers in parent-child relation, a child span has the same level as
the parent span. So, if the parent layer is made of level 0 spans (ElementaryBaseSpan-s),
then the child layer also has level 0 spans.
Note #2: BaseSpans are immutable: once initialized, they cannot be changed anymore.
'''
__slots__ = ['_raw', '_hash', 'start', 'end', 'level']
def __init__(self, raw, level: int, start: int, end: int):
super().__setattr__('_raw', raw)
super().__setattr__('_hash', hash(raw))
super().__setattr__('level', level)
super().__setattr__('start', start)
super().__setattr__('end', end)
def __getstate__(self):
return dict( _raw=self._raw, level=self.level,
start=self.start, end=self.end )
def __setstate__(self, state):
super().__setattr__('_raw', state['_raw'])
super().__setattr__('_hash', hash(state['_raw']))
super().__setattr__('level', state['level'])
super().__setattr__('start', state['start'])
super().__setattr__('end', state['end'])
def __setattr__(self, *ignored):
raise AttributeError('Basespans are immutable')
def __delattr__(self, *ignored):
raise AttributeError('Basespans are immutable')
def flatten(self):
"""Returns this basespan flattened to a tuple of raw text positions.
For ElementaryBaseSpan, returns ((start, end),).
For EnvelopingBaseSpan at any level, returns
((start1, end1), ..., (startN, endN)).
"""
raise NotImplementedError
def reduce(self, level):
"""Returns this basespan reduced down to a tuple of basespans on a given level.
A higher level basespan is a tree of lower-level basespans.
This function returns all basespans in the requested level.
Parameter `level` must be smaller than or equal to the
level of this basespan.
"""
raise NotImplementedError
def raw(self):
return self._raw
def __eq__(self, other):
if self is other:
return True
if isinstance(other, self.__class__):
return self.raw() == other.raw()
return False
def __lt__(self, other):
if isinstance(other, self.__class__):
return (self.start, self.end, self.raw()) < (other.start, other.end, other.raw())
raise TypeError('unorderable types: {}<={}'.format(type(self), type(other)))
def __le__(self, other):
return self == other or self < other
|
(raw, level: int, start: int, end: int)
|
57,249 |
estnltk_core.layer.base_span
|
__delattr__
| null |
def __delattr__(self, *ignored):
raise AttributeError('Basespans are immutable')
|
(self, *ignored)
|
57,250 |
estnltk_core.layer.base_span
|
__eq__
| null |
def __eq__(self, other):
if self is other:
return True
if isinstance(other, self.__class__):
return self.raw() == other.raw()
return False
|
(self, other)
|
57,251 |
estnltk_core.layer.base_span
|
__getstate__
| null |
def __getstate__(self):
return dict( _raw=self._raw, level=self.level,
start=self.start, end=self.end )
|
(self)
|
57,252 |
estnltk_core.layer.base_span
|
__init__
| null |
def __init__(self, raw, level: int, start: int, end: int):
super().__setattr__('_raw', raw)
super().__setattr__('_hash', hash(raw))
super().__setattr__('level', level)
super().__setattr__('start', start)
super().__setattr__('end', end)
|
(self, raw, level: int, start: int, end: int)
|
57,253 |
estnltk_core.layer.base_span
|
__le__
| null |
def __le__(self, other):
return self == other or self < other
|
(self, other)
|
57,254 |
estnltk_core.layer.base_span
|
__lt__
| null |
def __lt__(self, other):
if isinstance(other, self.__class__):
return (self.start, self.end, self.raw()) < (other.start, other.end, other.raw())
raise TypeError('unorderable types: {}<={}'.format(type(self), type(other)))
|
(self, other)
|
57,255 |
estnltk_core.layer.base_span
|
__setattr__
| null |
def __setattr__(self, *ignored):
raise AttributeError('Basespans are immutable')
|
(self, *ignored)
|
57,256 |
estnltk_core.layer.base_span
|
__setstate__
| null |
def __setstate__(self, state):
super().__setattr__('_raw', state['_raw'])
super().__setattr__('_hash', hash(state['_raw']))
super().__setattr__('level', state['level'])
super().__setattr__('start', state['start'])
super().__setattr__('end', state['end'])
|
(self, state)
|
57,257 |
estnltk_core.layer.base_span
|
flatten
|
Returns this basespan flattened to a tuple of raw text positions.
For ElementaryBaseSpan, returns ((start, end),).
For EnvelopingBaseSpan at any level, returns
((start1, end1), ..., (startN, endN)).
|
def flatten(self):
"""Returns this basespan flattened to a tuple of raw text positions.
For ElementaryBaseSpan, returns ((start, end),).
For EnvelopingBaseSpan at any level, returns
((start1, end1), ..., (startN, endN)).
"""
raise NotImplementedError
|
(self)
|
57,258 |
estnltk_core.layer.base_span
|
raw
| null |
def raw(self):
return self._raw
|
(self)
|
57,259 |
estnltk_core.layer.base_span
|
reduce
|
Returns this basespan reduced down to a tuple of basespans on a given level.
A higher level basespan is a tree of lower-level basespans.
This function returns all basespans in the requested level.
Parameter `level` must be smaller than or equal to the
level of this basespan.
|
def reduce(self, level):
"""Returns this basespan reduced down to a tuple of basespans on a given level.
A higher level basespan is a tree of lower-level basespans.
This function returns all basespans in the requested level.
Parameter `level` must be smaller than or equal to the
level of this basespan.
"""
raise NotImplementedError
|
(self, level)
|
57,260 |
estnltk_core.layer.base_span
|
ElementaryBaseSpan
|
An ElementaryBaseSpan is a BaseSpan which has level 0.
It corresponds to a raw text position: (start, end).
|
class ElementaryBaseSpan(BaseSpan):
'''An ElementaryBaseSpan is a BaseSpan which has level 0.
It corresponds to a raw text position: (start, end).
'''
__slots__ = []
def __init__(self, start: int, end: int):
if not isinstance(start, int):
raise TypeError('expected int, got', type(start))
if not isinstance(end, int):
raise TypeError('expected int, got', type(end))
if not 0 <= start <= end:
raise ValueError('0 <= {} <= {} not satisfied'.format(start, end))
raw = (start, end)
super().__init__(raw=raw, level=0, start=start, end=end)
def flatten(self):
return (self.start, self.end),
def reduce(self, level):
if level == 0:
return self
raise ValueError(level)
def __len__(self):
return self.end - self.start
def __hash__(self):
return self._hash
def __repr__(self):
return '{}{}'.format(self.__class__.__name__, (self.start, self.end))
|
(start: int, end: int)
|
57,264 |
estnltk_core.layer.base_span
|
__hash__
| null |
def __hash__(self):
return self._hash
|
(self)
|
57,265 |
estnltk_core.layer.base_span
|
__init__
| null |
def __init__(self, start: int, end: int):
if not isinstance(start, int):
raise TypeError('expected int, got', type(start))
if not isinstance(end, int):
raise TypeError('expected int, got', type(end))
if not 0 <= start <= end:
raise ValueError('0 <= {} <= {} not satisfied'.format(start, end))
raw = (start, end)
super().__init__(raw=raw, level=0, start=start, end=end)
|
(self, start: int, end: int)
|
57,267 |
estnltk_core.layer.base_span
|
__len__
| null |
def __len__(self):
return self.end - self.start
|
(self)
|
57,269 |
estnltk_core.layer.base_span
|
__repr__
| null |
def __repr__(self):
return '{}{}'.format(self.__class__.__name__, (self.start, self.end))
|
(self)
|
57,272 |
estnltk_core.layer.base_span
|
flatten
| null |
def flatten(self):
return (self.start, self.end),
|
(self)
|
57,274 |
estnltk_core.layer.base_span
|
reduce
| null |
def reduce(self, level):
if level == 0:
return self
raise ValueError(level)
|
(self, level)
|
57,275 |
estnltk_core.layer.base_span
|
EnvelopingBaseSpan
|
An EnvelopingBaseSpan is a BaseSpan that is made up of other BaseSpans.
Its level determines the depth of its nested structure:
*) EnvelopingBaseSpan at level = 1 corresponds to a sequence of ElementaryBaseSpan-s:
[(start_1, end_1), ..., (start_N, end_N)]
*) EnvelopingBaseSpan at level = 2 corresponds to a sequence of level 1 EnvelopingBaseSpans:
[((start_11, end_11), ... ), ... ((start_N1, end_N1), ...)]
And so on.
|
class EnvelopingBaseSpan(BaseSpan):
'''An EnvelopingBaseSpan is a BaseSpan that is made up of other BaseSpans.
Its level determines the depth of its nested structure:
*) EnvelopingBaseSpan at level = 1 corresponds to a sequence of ElementaryBaseSpan-s:
[(start_1, end_1), ..., (start_N, end_N)]
*) EnvelopingBaseSpan at level = 2 corresponds to a sequence of level 1 EnvelopingBaseSpans:
[((start_11, end_11), ... ), ... ((start_N1, end_N1), ...)]
And so on.
'''
__slots__ = ['_spans']
def __init__(self, spans: Iterable[BaseSpan]):
spans = tuple(spans)
if len(spans) == 0:
raise ValueError('spans is empty')
if not all(isinstance(span, BaseSpan) for span in spans):
raise TypeError('spans must be of type BaseSpan')
for i in range(len(spans) - 1):
if spans[i].end > spans[i + 1].start:
raise ValueError('enveloped components must be sorted and must not overlap: {}, {}'.format(
spans[i], spans[i+1]))
base_level = spans[0].level
if any(span.level != base_level for span in spans):
raise ValueError('enveloped components must have the same levels: {}'.format(
[span.level for span in spans]))
raw = tuple(span.raw() for span in spans)
object.__setattr__(self, '_spans', spans)
super().__init__(raw=raw, level=base_level+1, start=spans[0].start, end=spans[-1].end)
def __getstate__(self):
state = super().__getstate__()
state['_spans'] = self._spans
return state
def __setstate__(self, state):
object.__setattr__(self, '_spans', state['_spans'])
super().__setstate__(state)
def flatten(self):
return tuple(sp for span in self._spans for sp in span.flatten())
def reduce(self, level):
if self.level == level:
return self
if self.level == level + 1:
return self._spans
if self.level > level:
return tuple(sp for span in self._spans for sp in span.reduce(level))
raise ValueError(level)
def __len__(self):
return len(self._spans)
def __getitem__(self, item):
return self._spans[item]
def __iter__(self):
return iter(self._spans)
def __hash__(self):
return self._hash
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, self._spans)
|
(spans: Iterable[estnltk_core.layer.base_span.BaseSpan])
|
57,278 |
estnltk_core.layer.base_span
|
__getitem__
| null |
def __getitem__(self, item):
return self._spans[item]
|
(self, item)
|
57,279 |
estnltk_core.layer.base_span
|
__getstate__
| null |
def __getstate__(self):
state = super().__getstate__()
state['_spans'] = self._spans
return state
|
(self)
|
57,281 |
estnltk_core.layer.base_span
|
__init__
| null |
def __init__(self, spans: Iterable[BaseSpan]):
spans = tuple(spans)
if len(spans) == 0:
raise ValueError('spans is empty')
if not all(isinstance(span, BaseSpan) for span in spans):
raise TypeError('spans must be of type BaseSpan')
for i in range(len(spans) - 1):
if spans[i].end > spans[i + 1].start:
raise ValueError('enveloped components must be sorted and must not overlap: {}, {}'.format(
spans[i], spans[i+1]))
base_level = spans[0].level
if any(span.level != base_level for span in spans):
raise ValueError('enveloped components must have the same levels: {}'.format(
[span.level for span in spans]))
raw = tuple(span.raw() for span in spans)
object.__setattr__(self, '_spans', spans)
super().__init__(raw=raw, level=base_level+1, start=spans[0].start, end=spans[-1].end)
|
(self, spans: Iterable[estnltk_core.layer.base_span.BaseSpan])
|
57,282 |
estnltk_core.layer.base_span
|
__iter__
| null |
def __iter__(self):
return iter(self._spans)
|
(self)
|
57,284 |
estnltk_core.layer.base_span
|
__len__
| null |
def __len__(self):
return len(self._spans)
|
(self)
|
57,286 |
estnltk_core.layer.base_span
|
__repr__
| null |
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, self._spans)
|
(self)
|
57,288 |
estnltk_core.layer.base_span
|
__setstate__
| null |
def __setstate__(self, state):
object.__setattr__(self, '_spans', state['_spans'])
super().__setstate__(state)
|
(self, state)
|
57,289 |
estnltk_core.layer.base_span
|
flatten
| null |
def flatten(self):
return tuple(sp for span in self._spans for sp in span.flatten())
|
(self)
|
57,291 |
estnltk_core.layer.base_span
|
reduce
| null |
def reduce(self, level):
if self.level == level:
return self
if self.level == level + 1:
return self._spans
if self.level > level:
return tuple(sp for span in self._spans for sp in span.reduce(level))
raise ValueError(level)
|
(self, level)
|
57,292 |
estnltk_core.layer.enveloping_span
|
EnvelopingSpan
|
EnvelopingSpan is a Span which envelops around lower level spans.
It is used to convey text annotations that build upon other, lower
level annotations. For instance, a sentence is an EnvelopingSpan
built from word spans, and a paragraph is an EnvelopingSpan built
from sentence spans.
|
class EnvelopingSpan(Span):
'''
EnvelopingSpan is a Span which envelops around lower level spans.
It is used to convey text annotations that build upon other, lower
level annotations. For instance, a sentence is an EnvelopingSpan
built from word spans, and a paragraph is an EnvelopingSpan built
from sentence spans.
'''
__slots__ = ['_spans']
def __init__(self, base_span: BaseSpan, layer):
self._spans = None
super().__init__(base_span, layer)
@classmethod
def from_spans(cls, spans: Iterable[Span], layer, records):
span = cls(base_span=EnvelopingBaseSpan(s.base_span for s in spans), layer=layer)
for record in records:
span.add_annotation(Annotation(span, **record))
return span
@property
def spans(self):
if self._spans is None:
get_from_enveloped = self._layer.text_object[self._layer.enveloping].get
self._spans = tuple(get_from_enveloped(base) for base in self._base_span)
return self._spans
@property
def _html_text(self):
rt = self.raw_text
result = []
for a, b in zip(self.spans, self.spans[1:]):
result.extend(('<b>', rt[a.start:a.end], '</b>', rt[a.end:b.start]))
result.extend(('<b>', rt[self.spans[-1].start:self.spans[-1].end], '</b>'))
return ''.join(result)
def __iter__(self):
yield from self.spans
def __len__(self) -> int:
return len(self._base_span)
def __contains__(self, item: Any) -> bool:
return item in self.spans
def __setattr__(self, key, value):
if key == '_spans':
object.__setattr__(self, key, value)
else:
super().__setattr__(key, value)
def resolve_attribute(self, item):
"""Resolves and returns values of foreign attribute `item`,
or resolves and returns a foreign span from layer `item`.
More specifically:
1) If `item` is a name of a foreign attribute which
is listed in the mapping from attribute names to
foreign layer names
(`attribute_mapping_for_enveloping_layers`),
attempts to find foreign span with the same base
span as this span from the foreign layer & returns
value(s) of the attribute `item` from that foreign
span.
(raises KeyError if base span is missing in the
foreign layer);
Note: this is only available when this span belongs to
estnltk's `Text` object. The step will be skipped if
the span belongs to `BaseText`;
2) If `item` is a layer attached to span's the text_object,
and the layer has `span_level` equal to or lower than this
enveloping span (meaning: spans of this layer could envelop
around spans of the target layer), then attempts to get &
return span or spans from the target layer that match the
base span of this span
(raises KeyError if base span is missing);
"""
if self.text_object is not None:
if hasattr(self.text_object, 'attribute_mapping_for_enveloping_layers'):
# Attempt to get the foreign attribute of
# the same base span of a different attached
# layer, based on the mapping of attributes-layers
# (only available if we have estnltk.text.Text object)
attribute_mapping = self.text_object.attribute_mapping_for_enveloping_layers
if item in attribute_mapping:
return self._layer.text_object[attribute_mapping[item]].get(self.base_span)[item]
if item in self.text_object.layers:
# Attempt to get spans with same base
# span(s) from a different attached
# layer that has appropriate span_level
target_layer = self.text_object[item]
if len(target_layer) == 0:
return
if target_layer.span_level >= self._base_span.level:
raise AttributeError('target layer span_level {} should be lower than {}'.format(
target_layer.span_level, self._base_span.level))
return target_layer.get(self.base_span)
else:
raise AttributeError(("Unable to resolve foreign attribute {!r}: "+\
"the layer is not attached to Text object.").format(item) )
raise AttributeError("Unable to resolve foreign attribute {!r}.".format(item))
def __getitem__(self, idx):
if isinstance(idx, int):
return self.spans[idx]
return super().__getitem__(idx)
|
(base_span: estnltk_core.layer.base_span.BaseSpan, layer)
|
57,293 |
estnltk_core.layer.enveloping_span
|
__contains__
| null |
def __contains__(self, item: Any) -> bool:
return item in self.spans
|
(self, item: Any) -> bool
|
57,294 |
estnltk_core.layer.span
|
__deepcopy__
|
Makes a deep copy from the span.
Loosely based on:
https://github.com/estnltk/estnltk/blob/5bacff50072f9415814aee4f369c28db0e8d7789/estnltk/layer/span.py#L60
|
def __deepcopy__(self, memo=None):
"""
Makes a deep copy from the span.
Loosely based on:
https://github.com/estnltk/estnltk/blob/5bacff50072f9415814aee4f369c28db0e8d7789/estnltk/layer/span.py#L60
"""
memo = memo or {}
# Create new valid instance
# _base_span: Immutable
result = self.__class__(base_span=self.base_span, \
layer=None)
# Add self to memo
memo[id(self)] = result
# _annotations: List[Mutable]
for annotation in self._annotations:
deepcopy_annotation = deepcopy(annotation, memo)
deepcopy_annotation.span = result
result._annotations.append( deepcopy_annotation )
# _parent: Mutable
result._parent = deepcopy(self._parent, memo)
# _layer: Mutable
result._layer = deepcopy(self._layer, memo)
return result
|
(self, memo=None)
|
57,295 |
estnltk_core.layer.span
|
__eq__
| null |
def __eq__(self, other: Any) -> bool:
return isinstance(other, Span) \
and self.base_span == other.base_span \
and len(self.annotations) == len(other.annotations) \
and all(s in other.annotations for s in self.annotations)
|
(self, other: Any) -> bool
|
57,296 |
estnltk_core.layer.span
|
__getattr__
| null |
def __getattr__(self, item):
if item in self.__getattribute__('_layer').attributes:
return self[item]
try:
return self.resolve_attribute(item)
except KeyError as key_error:
raise AttributeError(key_error.args[0]) from key_error
|
(self, item)
|
57,297 |
estnltk_core.layer.enveloping_span
|
__getitem__
| null |
def __getitem__(self, idx):
if isinstance(idx, int):
return self.spans[idx]
return super().__getitem__(idx)
|
(self, idx)
|
57,298 |
estnltk_core.layer.enveloping_span
|
__init__
| null |
def __init__(self, base_span: BaseSpan, layer):
self._spans = None
super().__init__(base_span, layer)
|
(self, base_span: estnltk_core.layer.base_span.BaseSpan, layer)
|
57,299 |
estnltk_core.layer.enveloping_span
|
__iter__
| null |
def __iter__(self):
yield from self.spans
|
(self)
|
57,300 |
estnltk_core.layer.enveloping_span
|
__len__
| null |
def __len__(self) -> int:
return len(self._base_span)
|
(self) -> int
|
57,301 |
estnltk_core.layer.span
|
__lt__
| null |
def __lt__(self, other: Any) -> bool:
return self.base_span < other.base_span
|
(self, other: Any) -> bool
|
57,302 |
estnltk_core.layer.span
|
__repr__
| null |
from copy import deepcopy
from reprlib import recursive_repr
from typing import Any, Sequence, Union, Dict
from estnltk_core.common import _create_attr_val_repr
from estnltk_core.layer.base_span import BaseSpan, ElementaryBaseSpan
from estnltk_core.layer.annotation import Annotation
from estnltk_core.layer import AttributeList, AttributeTupleList
from .to_html import html_table
class Span:
"""Basic element of an EstNLTK layer.
A span is a container for a fragment of text that is meaningful in the analyzed context.
There can be several spans in one layer and each span can have many annotations which contain the
information about the span. However, if the layer is not ambiguous, a span can have only one
annotation.
When creating a span, it must be given two arguments: BaseSpan which defines the mandatory attributes
for a span (the exact attributes depend which kind of BaseSpan is given but minimally these are
start and end of the span) and the layer that the span is attached to.
Each annotation can have only one span.
Span can exist without annotations. It is the responsibility of a programmer to remove such spans.
"""
__slots__ = ['_base_span', '_layer', '_annotations', '_parent']
def __init__(self, base_span: BaseSpan, layer):
assert isinstance(base_span, BaseSpan), base_span
self._base_span = base_span
self._layer = layer # type: Layer
self._annotations = []
self._parent = None # type: Span
def __deepcopy__(self, memo=None):
"""
Makes a deep copy from the span.
Loosely based on:
https://github.com/estnltk/estnltk/blob/5bacff50072f9415814aee4f369c28db0e8d7789/estnltk/layer/span.py#L60
"""
memo = memo or {}
# Create new valid instance
# _base_span: Immutable
result = self.__class__(base_span=self.base_span, \
layer=None)
# Add self to memo
memo[id(self)] = result
# _annotations: List[Mutable]
for annotation in self._annotations:
deepcopy_annotation = deepcopy(annotation, memo)
deepcopy_annotation.span = result
result._annotations.append( deepcopy_annotation )
# _parent: Mutable
result._parent = deepcopy(self._parent, memo)
# _layer: Mutable
result._layer = deepcopy(self._layer, memo)
return result
def add_annotation(self, annotation: Union[Dict[str, Any], Annotation]={}, **annotation_kwargs) -> Annotation:
"""Adds new annotation (from `annotation` / `annotation_kwargs`) to this span.
`annotation` can be either an Annotation object initiated with this span. For example::
span.add_annotation(Annotation(span, {'attr1': ..., 'attr2': ...}))
Or it can be a dictionary of attributes and values::
span.add_annotation( {'attr1': ..., 'attr2': ...} )
Missing attributes will be filled in with span layer's default_values
(None values, if defaults have not been explicitly set).
Redundant attributes (attributes not in `span.layer.attributes`)
will be discarded.
Optionally, you can leave `annotation` unspecified and pass keyword
arguments to the method via `annotation_kwargs`, for example::
span.add_annotation( attr1=..., attr2=... )
Note that keyword arguments can only be valid Python keywords
(excluding the keyword 'annotation'), and using `annotation`
dictionary enables to bypass these restrictions.
Note that you cannot pass Annotation object and keyword arguments
simultaneously, this will result in TypeError.
However, you can pass annotation dictionary and keyword arguments
simultaneously. In that case, keyword arguments override annotation
dictionary in case of an overlap in attributes. Overall, the
priority order in setting value of an attribute is:
`annotation_kwargs` > `annotation(dict)` > `default attributes`.
The method returns added Annotation object.
Note: you can add two or more annotations to this span only if
the layer is ambiguous.
"""
if isinstance(annotation, Annotation):
# Annotation object
if annotation.span is not self:
raise ValueError('the annotation has a different span {}'.format(annotation.span))
if set(annotation) != set(self.layer.attributes):
raise ValueError('the annotation has unexpected or missing attributes {}!={}'.format(
set(annotation), set(self.layer.attributes)))
if len(annotation_kwargs.items()) > 0:
# If Annotation object is already provided, cannot add additional keywords
raise TypeError(('cannot add keyword arguments {!r} to an existing Annotation object.'+\
'please pass keywords as a dict instead of Annotation object.').format(annotation_kwargs))
elif isinstance(annotation, dict):
# annotation dict
annotation_dict = {**self.layer.default_values, \
**{k: v for k, v in annotation.items() if k in self.layer.attributes}, \
**{k: v for k, v in annotation_kwargs.items() if k in self.layer.attributes}}
annotation = Annotation(self, annotation_dict)
else:
raise TypeError('expected Annotation object or dict, but got {}'.format(type(annotation)))
if annotation not in self._annotations:
if self.layer.ambiguous or len(self._annotations) == 0:
self._annotations.append(annotation)
return annotation
raise ValueError('The layer is not ambiguous and this span already has a different annotation.')
def del_annotation(self, idx):
"""Deletes annotation by index `idx`.
"""
del self._annotations[idx]
def clear_annotations(self):
"""Removes all annotations from this span.
Warning: Span without any annotations is dysfunctional.
It is the responsibility of a programmer to either add new annotations
to span after clearing it, or to remove the span from the layer
altogether.
"""
self._annotations.clear()
@property
def annotations(self):
return self._annotations
def __getitem__(self, item):
if isinstance(item, str):
if self._layer.ambiguous:
return AttributeList(self, item, index_type='annotations')
return self._annotations[0][item]
if isinstance(item, tuple):
if self._layer.ambiguous:
return AttributeTupleList(self, item, index_type='annotations')
return self._annotations[0][item]
raise KeyError(item)
@property
def parent(self):
if self._parent is None:
if self._layer is None or self._layer.parent is None:
return self._parent
text_obj = self._layer.text_object
if text_obj is None or self._layer.parent not in text_obj.layers:
return self._parent
self._parent = self._layer.text_object[self._layer.parent].get(self.base_span)
return self._parent
@property
def layer(self):
return self._layer
@property
def legal_attribute_names(self) -> Sequence[str]:
return self._layer.attributes
@property
def start(self) -> int:
return self._base_span.start
@property
def end(self) -> int:
return self._base_span.end
@property
def base_span(self):
return self._base_span
@property
def base_spans(self):
return [(self.start, self.end)]
@property
def text(self):
if self.text_object is None:
return
text = self.text_object.text
base_span = self.base_span
if isinstance(base_span, ElementaryBaseSpan):
return text[base_span.start:base_span.end]
return [text[start:end] for start, end in base_span.flatten()]
@property
def enclosing_text(self):
if self.text_object is None:
return
return self._layer.text_object.text[self.start:self.end]
@property
def text_object(self):
if self._layer is not None:
return self._layer.text_object
@property
def raw_text(self):
return self.text_object.text
def __setattr__(self, key, value):
if key in {'_base_span', '_layer', '_annotations', '_parent'}:
super().__setattr__(key, value)
elif key in self.legal_attribute_names:
for annotation in self._annotations:
setattr(annotation, key, value)
else:
raise AttributeError(key)
def resolve_attribute(self, item):
"""Resolves and returns values of foreign attribute `item`,
or resolves and returns a foreign span from layer `item`.
More specifically:
1) If `item` is a name of a foreign attribute which
is listed in the mapping from attribute names to
foreign layer names
(`attribute_mapping_for_elementary_layers`),
attempts to find foreign span with the same base
span as this span from the foreign layer & returns
value(s) of the attribute `item` from that foreign
span.
(raises KeyError if base span is missing in the
foreign layer);
Note: this is only available when this span belongs to
estnltk's `Text` object. The step will be skipped if
the span belongs to `BaseText`;
2) If `item` is a layer attached to span's the text_object,
attempts to get & return span with the same base span
from that layer (raises KeyError if base span is missing);
"""
if self.text_object is not None:
if hasattr(self.text_object, 'attribute_mapping_for_elementary_layers'):
# Attempt to get the foreign attribute of
# the same base span of a different attached
# layer, based on the mapping of attributes-layers
# (only available if we have estnltk.text.Text object)
attribute_mapping = self.text_object.attribute_mapping_for_elementary_layers
if item in attribute_mapping:
return self._layer.text_object[attribute_mapping[item]].get(self.base_span)[item]
if item in self.text_object.layers:
# Attempt to get the same base span from
# a different attached layer
# (e.g parent or child span)
return self.text_object[item].get(self.base_span)
else:
raise AttributeError(("Unable to resolve foreign attribute {!r}: "+\
"the layer is not attached to Text object.").format(item) )
raise AttributeError("Unable to resolve foreign attribute {!r}.".format(item))
def __getattr__(self, item):
if item in self.__getattribute__('_layer').attributes:
return self[item]
try:
return self.resolve_attribute(item)
except KeyError as key_error:
raise AttributeError(key_error.args[0]) from key_error
def __lt__(self, other: Any) -> bool:
return self.base_span < other.base_span
def __eq__(self, other: Any) -> bool:
return isinstance(other, Span) \
and self.base_span == other.base_span \
and len(self.annotations) == len(other.annotations) \
and all(s in other.annotations for s in self.annotations)
@recursive_repr()
def __repr__(self):
try:
text = self.text
except:
text = None
try:
attribute_names = self._layer.attributes
annotation_strings = []
for annotation in self._annotations:
attr_val_repr = _create_attr_val_repr( [(attr, annotation[attr]) for attr in attribute_names] )
annotation_strings.append( attr_val_repr )
annotations = '[{}]'.format(', '.join(annotation_strings))
except:
annotations = None
return '{class_name}({text!r}, {annotations})'.format(class_name=self.__class__.__name__, text=text,
annotations=annotations)
def _to_html(self, margin=0) -> str:
return '<b>{}</b>\n{}'.format(
self.__class__.__name__,
html_table(spans=[self], attributes=self._layer.attributes, margin=margin, index=False))
def _repr_html_(self):
return self._to_html()
|
(self)
|
57,303 |
estnltk_core.layer.enveloping_span
|
__setattr__
| null |
def __setattr__(self, key, value):
if key == '_spans':
object.__setattr__(self, key, value)
else:
super().__setattr__(key, value)
|
(self, key, value)
|
57,304 |
estnltk_core.layer.span
|
_repr_html_
| null |
def _repr_html_(self):
return self._to_html()
|
(self)
|
57,305 |
estnltk_core.layer.span
|
_to_html
| null |
def _to_html(self, margin=0) -> str:
return '<b>{}</b>\n{}'.format(
self.__class__.__name__,
html_table(spans=[self], attributes=self._layer.attributes, margin=margin, index=False))
|
(self, margin=0) -> str
|
57,306 |
estnltk_core.layer.span
|
add_annotation
|
Adds new annotation (from `annotation` / `annotation_kwargs`) to this span.
`annotation` can be either an Annotation object initiated with this span. For example::
span.add_annotation(Annotation(span, {'attr1': ..., 'attr2': ...}))
Or it can be a dictionary of attributes and values::
span.add_annotation( {'attr1': ..., 'attr2': ...} )
Missing attributes will be filled in with span layer's default_values
(None values, if defaults have not been explicitly set).
Redundant attributes (attributes not in `span.layer.attributes`)
will be discarded.
Optionally, you can leave `annotation` unspecified and pass keyword
arguments to the method via `annotation_kwargs`, for example::
span.add_annotation( attr1=..., attr2=... )
Note that keyword arguments can only be valid Python keywords
(excluding the keyword 'annotation'), and using `annotation`
dictionary enables to bypass these restrictions.
Note that you cannot pass Annotation object and keyword arguments
simultaneously, this will result in TypeError.
However, you can pass annotation dictionary and keyword arguments
simultaneously. In that case, keyword arguments override annotation
dictionary in case of an overlap in attributes. Overall, the
priority order in setting value of an attribute is:
`annotation_kwargs` > `annotation(dict)` > `default attributes`.
The method returns added Annotation object.
Note: you can add two or more annotations to this span only if
the layer is ambiguous.
|
def add_annotation(self, annotation: Union[Dict[str, Any], Annotation]={}, **annotation_kwargs) -> Annotation:
"""Adds new annotation (from `annotation` / `annotation_kwargs`) to this span.
`annotation` can be either an Annotation object initiated with this span. For example::
span.add_annotation(Annotation(span, {'attr1': ..., 'attr2': ...}))
Or it can be a dictionary of attributes and values::
span.add_annotation( {'attr1': ..., 'attr2': ...} )
Missing attributes will be filled in with span layer's default_values
(None values, if defaults have not been explicitly set).
Redundant attributes (attributes not in `span.layer.attributes`)
will be discarded.
Optionally, you can leave `annotation` unspecified and pass keyword
arguments to the method via `annotation_kwargs`, for example::
span.add_annotation( attr1=..., attr2=... )
Note that keyword arguments can only be valid Python keywords
(excluding the keyword 'annotation'), and using `annotation`
dictionary enables to bypass these restrictions.
Note that you cannot pass Annotation object and keyword arguments
simultaneously, this will result in TypeError.
However, you can pass annotation dictionary and keyword arguments
simultaneously. In that case, keyword arguments override annotation
dictionary in case of an overlap in attributes. Overall, the
priority order in setting value of an attribute is:
`annotation_kwargs` > `annotation(dict)` > `default attributes`.
The method returns added Annotation object.
Note: you can add two or more annotations to this span only if
the layer is ambiguous.
"""
if isinstance(annotation, Annotation):
# Annotation object
if annotation.span is not self:
raise ValueError('the annotation has a different span {}'.format(annotation.span))
if set(annotation) != set(self.layer.attributes):
raise ValueError('the annotation has unexpected or missing attributes {}!={}'.format(
set(annotation), set(self.layer.attributes)))
if len(annotation_kwargs.items()) > 0:
# If Annotation object is already provided, cannot add additional keywords
raise TypeError(('cannot add keyword arguments {!r} to an existing Annotation object.'+\
'please pass keywords as a dict instead of Annotation object.').format(annotation_kwargs))
elif isinstance(annotation, dict):
# annotation dict
annotation_dict = {**self.layer.default_values, \
**{k: v for k, v in annotation.items() if k in self.layer.attributes}, \
**{k: v for k, v in annotation_kwargs.items() if k in self.layer.attributes}}
annotation = Annotation(self, annotation_dict)
else:
raise TypeError('expected Annotation object or dict, but got {}'.format(type(annotation)))
if annotation not in self._annotations:
if self.layer.ambiguous or len(self._annotations) == 0:
self._annotations.append(annotation)
return annotation
raise ValueError('The layer is not ambiguous and this span already has a different annotation.')
|
(self, annotation: Union[Dict[str, Any], estnltk_core.layer.annotation.Annotation] = {}, **annotation_kwargs) -> estnltk_core.layer.annotation.Annotation
|
57,307 |
estnltk_core.layer.span
|
clear_annotations
|
Removes all annotations from this span.
Warning: Span without any annotations is dysfunctional.
It is the responsibility of a programmer to either add new annotations
to span after clearing it, or to remove the span from the layer
altogether.
|
def clear_annotations(self):
"""Removes all annotations from this span.
Warning: Span without any annotations is dysfunctional.
It is the responsibility of a programmer to either add new annotations
to span after clearing it, or to remove the span from the layer
altogether.
"""
self._annotations.clear()
|
(self)
|
57,308 |
estnltk_core.layer.span
|
del_annotation
|
Deletes annotation by index `idx`.
|
def del_annotation(self, idx):
"""Deletes annotation by index `idx`.
"""
del self._annotations[idx]
|
(self, idx)
|
57,309 |
estnltk_core.layer.enveloping_span
|
resolve_attribute
|
Resolves and returns values of foreign attribute `item`,
or resolves and returns a foreign span from layer `item`.
More specifically:
1) If `item` is a name of a foreign attribute which
is listed in the mapping from attribute names to
foreign layer names
(`attribute_mapping_for_enveloping_layers`),
attempts to find foreign span with the same base
span as this span from the foreign layer & returns
value(s) of the attribute `item` from that foreign
span.
(raises KeyError if base span is missing in the
foreign layer);
Note: this is only available when this span belongs to
estnltk's `Text` object. The step will be skipped if
the span belongs to `BaseText`;
2) If `item` is a layer attached to span's the text_object,
and the layer has `span_level` equal to or lower than this
enveloping span (meaning: spans of this layer could envelop
around spans of the target layer), then attempts to get &
return span or spans from the target layer that match the
base span of this span
(raises KeyError if base span is missing);
|
def resolve_attribute(self, item):
"""Resolves and returns values of foreign attribute `item`,
or resolves and returns a foreign span from layer `item`.
More specifically:
1) If `item` is a name of a foreign attribute which
is listed in the mapping from attribute names to
foreign layer names
(`attribute_mapping_for_enveloping_layers`),
attempts to find foreign span with the same base
span as this span from the foreign layer & returns
value(s) of the attribute `item` from that foreign
span.
(raises KeyError if base span is missing in the
foreign layer);
Note: this is only available when this span belongs to
estnltk's `Text` object. The step will be skipped if
the span belongs to `BaseText`;
2) If `item` is a layer attached to span's the text_object,
and the layer has `span_level` equal to or lower than this
enveloping span (meaning: spans of this layer could envelop
around spans of the target layer), then attempts to get &
return span or spans from the target layer that match the
base span of this span
(raises KeyError if base span is missing);
"""
if self.text_object is not None:
if hasattr(self.text_object, 'attribute_mapping_for_enveloping_layers'):
# Attempt to get the foreign attribute of
# the same base span of a different attached
# layer, based on the mapping of attributes-layers
# (only available if we have estnltk.text.Text object)
attribute_mapping = self.text_object.attribute_mapping_for_enveloping_layers
if item in attribute_mapping:
return self._layer.text_object[attribute_mapping[item]].get(self.base_span)[item]
if item in self.text_object.layers:
# Attempt to get spans with same base
# span(s) from a different attached
# layer that has appropriate span_level
target_layer = self.text_object[item]
if len(target_layer) == 0:
return
if target_layer.span_level >= self._base_span.level:
raise AttributeError('target layer span_level {} should be lower than {}'.format(
target_layer.span_level, self._base_span.level))
return target_layer.get(self.base_span)
else:
raise AttributeError(("Unable to resolve foreign attribute {!r}: "+\
"the layer is not attached to Text object.").format(item) )
raise AttributeError("Unable to resolve foreign attribute {!r}.".format(item))
|
(self, item)
|
57,310 |
estnltk_core.layer.layer
|
Layer
|
Layer extends BaseLayer with attribute resolving functionality and adds layer operations.
Available layer operations:
* Find descendant / ancestor layers of the given layer;
* Count attribute values;
* group spans or annotations of the layer, either by attributes or by another layer;
* get rolling window over spans (generate n-grams);
* visualise markup in text (only available with the full estnltk);
|
class Layer(BaseLayer):
"""Layer extends BaseLayer with attribute resolving functionality and adds layer operations.
Available layer operations:
* Find descendant / ancestor layers of the given layer;
* Count attribute values;
* group spans or annotations of the layer, either by attributes or by another layer;
* get rolling window over spans (generate n-grams);
* visualise markup in text (only available with the full estnltk);
"""
def __setattr__(self, key, value):
if key == 'attributes':
# check attributes: add userwarnings in case of
# problematic attribute names
attributes = value
if isinstance(attributes, (list, tuple)) and all([isinstance(attr,str) for attr in attributes]):
# Warn if user wants to use non-identifiers as argument names
nonidentifiers = [attr for attr in attributes if not attr.isidentifier()]
if nonidentifiers:
warnings.warn(('Attribute names {!r} are not valid Python identifiers. '+\
'This can hinder setting and accessing attribute values.'+\
'').format(nonidentifiers))
# Warn if user wants to use 'text', 'start', 'end' as attribute names
overlapping_props = [attr for attr in attributes if attr in ['text', 'start', 'end']]
if overlapping_props:
warnings.warn(('Attribute names {!r} overlap with Span/Annotation property names. '+\
'This can hinder setting and accessing attribute values.'+\
'').format(overlapping_props))
super().__setattr__(key, value)
def ancestor_layers(self) -> List[str]:
"""Finds all layers that given layer depends on (ancestor layers).
Returns names of ancestor layers in alphabetical order.
"""
if self.text_object is None:
raise Exception('(!) Cannot find ancestor layers: the layer is detached from Text object.')
ancestors = find_layer_dependencies(self.text_object, self.name, reverse=False)
return sorted(ancestors)
def descendant_layers(self) -> List[str]:
"""Finds all layers that are depending on the given layer (descendant layers).
Returns names of descendant layers in alphabetical order.
"""
if self.text_object is None:
raise Exception('(!) Cannot find descendant layers: the layer is detached from Text object.')
descendants = find_layer_dependencies(self.text_object, self.name, reverse=True)
return sorted(descendants)
def count_values(self, attribute: str) -> collections.Counter:
"""Counts attribute values and returns frequency table (collections.Counter).
Note: you can also use 'text' as the attribute name to count corresponding
surface text strings.
"""
if self.ambiguous:
return collections.Counter(annotation[attribute] if attribute != 'text' else annotation.text \
for span in self.spans for annotation in span.annotations)
return collections.Counter( span.annotations[0][attribute] if attribute != 'text' else span.text \
for span in self.spans)
def groupby(self, by: Union[str, Sequence[str], 'Layer'], return_type: str = 'spans') -> GroupBy:
"""Groups layer by attribute values of annotations or by an enveloping layer.
Parameters
-----------
by: Union[str, Sequence[str], 'Layer']
specifies basis for grouping, which can be either
matching attribute values or containment in an
enveloping span. More specifically, the parameter
`by` can be::
1) name of an attribute of this layer,
2) list of attribute names of this layer,
3) name of a Layer enveloping around this layer, or
4) Layer object which is a layer enveloping around this layer.
Note: you can also use 'text' as an attribute name; in that
case, spans / annotations are grouped by their surface text
strings.
return_type: str (default: 'spans')
specifies layer's units which will be grouped.
Possible values: "spans" or "annotations".
Returns
--------
estnltk_core.layer_operations.GroupBy
estnltk_core.layer_operations.GroupBy object.
"""
if isinstance(by, str):
if by in self.attributes:
# Group by a single attribute of this Layer
return GroupBy(layer=self, by=[ by ], return_type=return_type)
elif self.text_object is not None and by in self.text_object.layers:
# Group by a Layer (using given layer name)
return GroupBy(layer=self, by = self.text_object[by], return_type=return_type)
raise ValueError(by)
elif isinstance(by, Sequence) and all(isinstance(b, str) for b in by):
# Group by multiple attributes of this Layer
return GroupBy(layer=self, by=by, return_type=return_type)
elif isinstance(by, Layer):
# Group by a Layer
return GroupBy(layer=self, by=by, return_type=return_type)
raise ValueError( ('Unexpected grouping parameter by={!r}. The parameter '+\
'should be either an enveloping Layer (layer name or object) '+\
'or attribute(s) of this layer (a single attribute name '+\
'or a list of names).').format(by) )
def rolling(self, window: int, min_periods: int = None, inside: str = None) -> Rolling:
"""Creates an iterable object yielding span sequences from a window rolling over the layer.
Parameters
-----------
window
length of the window (in spans);
min_periods
the minimal length of the window for borderline cases;
allows to shrink the window to meet this minimal length. If not specified,
then `min_periods == window`, which means that the shrinking is not allowed,
and contexts smaller than the `window` will be discarded.
Note: `0 < min_periods <= window` must hold;
inside
an enveloping layer to be used for constraining the rolling window.
The rolling window is applied on each span of the enveloping layer separately,
thus ensuring that the window does not exceed boundaries of enveloping spans.
For instance, if you create a rolling window over 'words', you can specify
inside='sentences', ensuring that the generated word N-grams do not exceed
sentence boundaries;
Returns
--------
estnltk_core.layer_operations.Rolling
estnltk_core.layer_operations.Rolling object.
"""
return Rolling(self, window=window, min_periods=min_periods, inside=inside)
def resolve_attribute(self, item) -> Union[AmbiguousAttributeList, AttributeList]:
"""Resolves and returns values of foreign attribute `item`.
Values of the attribute will be sought from a foreign layer,
which must either:
a) share the same base spans with this layer (be a parent or a child), or
b) share the same base spans with smaller span level, which means that
this layer should envelop around the foreign layer.
Note: this method relies on a mapping from attribute names to
foreign layer names (`attribute_mapping_for_elementary_layers`),
which is defined estnltk's `Text` object. If this layer is attached
to estnltk-core's `BaseText` instead, then the method always raises
AttributeError.
"""
if len(self) == 0:
raise AttributeError(item, 'layer is empty')
attribute_mapping = {}
if self.text_object is not None:
if hasattr(self.text_object, 'attribute_mapping_for_elementary_layers'):
# Attribute mapping for elementary layers is only
# defined in Text object, it is missing in BaseText
if self.span_level == 0:
attribute_mapping = self.text_object.attribute_mapping_for_elementary_layers
else:
attribute_mapping = self.text_object.attribute_mapping_for_enveloping_layers
else:
raise AttributeError(item, "Foreign attribute resolving is only available "+\
"if the layer is attached to estnltk.text.Text object.")
else:
raise AttributeError(item, \
"Unable to resolve foreign attribute: the layer is not attached to Text object." )
if item not in attribute_mapping:
raise AttributeError(item, \
"Attribute not defined in attribute_mapping_for_elementary_layers.")
target_layer = self.text_object[attribute_mapping[item]]
if len(target_layer) == 0:
return AttributeList([], item)
result = [target_layer.get(span.base_span) for span in self]
target_level = target_layer.span_level
self_level = self.span_level
if target_level > self_level:
raise AttributeError(item, \
("Unable to resolve foreign attribute: target layer {!r} has higher "+\
"span level than this layer.").format( target_layer.name ) )
if target_level == self_level and target_layer.ambiguous:
assert all([isinstance(s, Span) for s in result])
return AmbiguousAttributeList(result, item)
assert all([isinstance(l, BaseLayer) for l in result])
return AttributeList(result, item, index_type='layers')
def __getattr__(self, item):
if item in self.__getattribute__('attributes'):
return self.__getitem__(item)
return self.resolve_attribute(item)
def display(self, **kwargs):
if check_if_estnltk_is_available():
from estnltk.visualisation import DisplaySpans
display_spans = DisplaySpans(**kwargs)
display_spans(self)
else:
raise NotImplementedError("Layer display is not available in estnltk-core. Please use the full EstNLTK package for that.")
|
(name: str, attributes: Sequence[str] = (), secondary_attributes: Sequence[str] = (), text_object: Union[ForwardRef('BaseText'), ForwardRef('Text')] = None, parent: str = None, enveloping: str = None, ambiguous: bool = False, default_values: dict = None, serialisation_module=None) -> None
|
57,311 |
estnltk_core.layer.base_layer
|
__copy__
|
Creates a new Layer object with the same content.
TODO: this functionality will be deprecated in the future.
Normally, you won't need to copy the layer. If you want to
use copying for safely deleting spans, copy layer.spans
instead:
for span in copy(layer.spans):
layer.remove_span(span)
|
def __copy__(self):
"""
Creates a new Layer object with the same content.
TODO: this functionality will be deprecated in the future.
Normally, you won't need to copy the layer. If you want to
use copying for safely deleting spans, copy layer.spans
instead:
for span in copy(layer.spans):
layer.remove_span(span)
"""
result = self.__class__(
name=self.name,
attributes=self.attributes,
secondary_attributes=self.secondary_attributes,
text_object=self.text_object,
parent=self.parent,
enveloping=self.enveloping,
ambiguous=self.ambiguous,
default_values=self.default_values,
serialisation_module=self.serialisation_module)
result.meta = copy(self.meta)
result._span_list = copy(self._span_list)
# TODO: fix the span level ?
return result
|
(self)
|
57,312 |
estnltk_core.layer.base_layer
|
__deepcopy__
|
Makes a deep copy from the layer. Essential for deep copying of Text objects.
Layer's inner components -- spans and annotations -- are also deep-copied,
along with the Text object of the layer.
|
def __deepcopy__(self, memo=None):
"""
Makes a deep copy from the layer. Essential for deep copying of Text objects.
Layer's inner components -- spans and annotations -- are also deep-copied,
along with the Text object of the layer.
"""
memo = memo or {}
result = self.__class__( name=self.name,
attributes=deepcopy(self.attributes, memo),
secondary_attributes=deepcopy(self.secondary_attributes, memo),
text_object=None,
parent=self.parent,
enveloping=self.enveloping,
ambiguous=self.ambiguous,
default_values=deepcopy(self.default_values, memo),
serialisation_module=self.serialisation_module )
memo[id(self)] = result
result.meta = deepcopy(self.meta, memo)
for span in self:
deepcopy_span = deepcopy( span, memo )
deepcopy_span._layer = result
result._span_list.add_span( deepcopy_span )
result.text_object = deepcopy( self.text_object, memo )
return result
|
(self, memo=None)
|
57,313 |
estnltk_core.layer.base_layer
|
__delitem__
| null |
def __delitem__(self, key):
self._span_list.remove_span(self[key])
|
(self, key)
|
57,314 |
estnltk_core.layer.base_layer
|
__eq__
| null |
def __eq__(self, other):
return self.diff(other) is None
|
(self, other)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.