index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
61,552
textile.core
fTextileList
null
def fTextileList(self, match): text = re.split(r'\n(?=[*#;:])', match.group(), flags=re.M) pt = '' result = [] ls = OrderedDict() for i, line in enumerate(text): try: nextline = text[i + 1] except IndexError: nextline = '' m = re.search(r"^(?P<tl>[#*;:]+)(?P<st>_|\d+)?(?P<atts>{0})[ .]" "(?P<content>.*)$".format(cls_re_s), line, re.S) if m: tl, start, atts, content = m.groups() content = content.strip() else: result.append(line) continue nl = '' ltype = list_type(tl) tl_tags = {';': 'dt', ':': 'dd'} litem = tl_tags.get(tl[0], 'li') showitem = len(content) > 0 # handle list continuation/start attribute on ordered lists if ltype == 'o': if not hasattr(self, 'olstarts'): self.olstarts = {tl: 1} # does the first line of this ol have a start attribute if len(tl) > len(pt): # no, set it to 1. if start is None: self.olstarts[tl] = 1 # yes, set it to the given number elif start != '_': self.olstarts[tl] = int(start) # we won't need to handle the '_' case, we'll just # print out the number when it's needed # put together the start attribute if needed if len(tl) > len(pt) and start is not None: start = ' start="{0}"'.format(self.olstarts[tl]) # This will only increment the count for list items, not # definition items if showitem: # Assume properly formatted input try: self.olstarts[tl] = self.olstarts[tl] + 1 # if we get here, we've got some poor textile formatting. # add this type of list to olstarts and assume we'll start # it at 1. expect screwy output. except KeyError: self.olstarts[tl] = 1 nm = re.match(r"^(?P<nextlistitem>[#\*;:]+)(_|[\d]+)?{0}" r"[ .].*".format(cls_re_s), nextline) if nm: nl = nm.group('nextlistitem') # We need to handle nested definition lists differently. If # the next tag is a dt (';') of a lower nested level than the # current dd (':'), if ';' in pt and ':' in tl: ls[tl] = 2 atts = pba(atts, restricted=self.restricted) tabs = '\t' * len(tl) # If start is still None, set it to '', else leave the value that # we've already formatted. start = start or '' # if this item tag isn't in the list, create a new list and # item, else just create the item if tl not in ls: ls[tl] = 1 itemtag = ("\n{0}\t<{1}>{2}".format(tabs, litem, content) if showitem else '') line = "<{0}l{1}{2}>{3}".format(ltype, atts, start, itemtag) else: line = ("\t<{0}{1}>{2}".format(litem, atts, content) if showitem else '') line = '{0}{1}'.format(tabs, line) if len(nl) <= len(tl): if showitem: line = "{0}</{1}>".format(line, litem) # work backward through the list closing nested lists/items for k, v in reversed(list(ls.items())): if len(k) > len(nl): if v != 2: line = "{0}\n{1}</{2}l>".format(line, tabs, list_type(k)) if len(k) > 1 and v != 2: line = "{0}</{1}>".format(line, litem) del ls[k] # Remember the current Textile tag: pt = tl # This else exists in the original php version. I'm not sure how # to come up with a case where the line would not match. I think # it may have been necessary due to the way php returns matches. # else: #line = "{0}\n".format(line) result.append(line) return self.doTagBr(litem, "\n".join(result))
(self, match)
61,553
textile.core
footnoteID
null
def footnoteID(self, m): fn_att = OrderedDict({'class': 'footnote'}) if m.group('id') not in self.fn: self.fn[m.group('id')] = '{0}{1}'.format(self.linkPrefix, self._increment_link_index()) fnid = self.fn[m.group('id')] fn_att['id'] = 'fnrev{0}'.format(fnid) fnid = self.fn[m.group('id')] footref = generate_tag('a', m.group('id'), {'href': '#fn{0}'.format( fnid)}) if '!' == m.group('nolink'): footref = m.group('id') footref = generate_tag('sup', footref, fn_att) return '{0}{1}'.format(footref, m.group('space'))
(self, m)
61,554
textile.core
footnoteRef
null
def footnoteRef(self, text): # somehow php-textile gets away with not capturing the space. return re.compile(r'(?<=\S)\[(?P<id>{0}+)(?P<nolink>!?)\]' r'(?P<space>{1}?)'.format(regex_snippets['digit'], regex_snippets['space']), re.U).sub(self.footnoteID, text)
(self, text)
61,555
textile.core
getHTMLComments
Search the string for HTML comments, e.g. <!-- comment text -->. We send the text that matches this to fParseHTMLComments.
def getHTMLComments(self, text): """Search the string for HTML comments, e.g. <!-- comment text -->. We send the text that matches this to fParseHTMLComments.""" return self.doSpecial(text, '<!--', '-->', self.fParseHTMLComments)
(self, text)
61,556
textile.core
getRefs
Capture and store URL references in self.urlrefs.
def getRefs(self, text): """Capture and store URL references in self.urlrefs.""" return self.url_ref_regex.sub(self.refs, text)
(self, text)
61,557
textile.core
glyphs
Because of the split command, the regular expressions are different for when the text at the beginning and the rest of the text. for example: let's say the raw text provided is "*Here*'s some textile" before it gets to this glyphs method, the text has been converted to "<strong>Here</strong>'s some textile" When run through the split, we end up with ["<strong>", "Here", "</strong>", "'s some textile"]. The re.search that follows tells it not to ignore html tags. If the single quote is the first character on the line, it's an open single quote. If it's the first character of one of those splits, it's an apostrophe or closed single quote, but the regex will bear that out. A similar situation occurs for double quotes as well. So, for the first pass, we use the glyph_search_initial set of regexes. For all remaining passes, we use glyph_search
def glyphs(self, text): """ Because of the split command, the regular expressions are different for when the text at the beginning and the rest of the text. for example: let's say the raw text provided is "*Here*'s some textile" before it gets to this glyphs method, the text has been converted to "<strong>Here</strong>'s some textile" When run through the split, we end up with ["<strong>", "Here", "</strong>", "'s some textile"]. The re.search that follows tells it not to ignore html tags. If the single quote is the first character on the line, it's an open single quote. If it's the first character of one of those splits, it's an apostrophe or closed single quote, but the regex will bear that out. A similar situation occurs for double quotes as well. So, for the first pass, we use the glyph_search_initial set of regexes. For all remaining passes, we use glyph_search """ text = text.rstrip('\n') result = [] searchlist = self.glyph_search_initial # split the text by any angle-bracketed tags for i, line in enumerate(re.compile(r'(<[\w\/!?].*?>)', re.U).split( text)): if not i % 2: for s, r in zip(searchlist, self.glyph_replace): line = s.sub(r, line) result.append(line) if i == 0: searchlist = self.glyph_search return ''.join(result)
(self, text)
61,558
textile.core
graf
null
def graf(self, text): if not self.lite: text = self.noTextile(text) text = self.code(text) text = self.getHTMLComments(text) text = self.getRefs(text) text = self.links(text) if not self.noimage: text = self.image(text) if not self.lite: text = self.table(text) text = self.redcloth_list(text) text = self.textileLists(text) text = self.span(text) text = self.footnoteRef(text) text = self.noteRef(text) text = self.glyphs(text) return text.rstrip('\n')
(self, text)
61,559
textile.core
image
null
def image(self, text): pattern = re.compile(r""" (?:[\[{{])? # pre \! # opening ! (\<|\=|\>)? # optional alignment atts ({0}) # optional style,class atts (?:\.\s)? # optional dot-space ([^\s(!]+) # presume this is the src \s? # optional space (?:\(([^\)]+)\))? # optional title \! # closing (?::(\S+))? # optional href (?:[\]}}]|(?=\s|$)) # lookahead: space or end of string """.format(cls_re_s), re.U | re.X) return pattern.sub(self.fImage, text)
(self, text)
61,560
textile.core
links
For some reason, the part of the regex below that matches the url does not match a trailing parenthesis. It gets caught by tail, and we check later to see if it should be included as part of the url.
def links(self, text): """For some reason, the part of the regex below that matches the url does not match a trailing parenthesis. It gets caught by tail, and we check later to see if it should be included as part of the url.""" text = self.markStartOfLinks(text) return self.replaceLinks(text)
(self, text)
61,561
textile.core
makeBackrefLink
Given the pieces of a back reference link, create an <a> tag.
def makeBackrefLink(self, info, g_links, i): """Given the pieces of a back reference link, create an <a> tag.""" atts, content, infoid, link = '', '', '', '' if 'def' in info: link = info['def']['link'] backlink_type = link or g_links i_ = encode_high(i) allow_inc = i not in syms_re_s i_ = int(i_) if backlink_type == "!": return '' elif backlink_type == '^': return """<sup><a href="#noteref{0}">{1}</a></sup>""".format( info['refids'][0], i) else: result = [] for refid in info['refids']: i_entity = decode_high(i_) sup = """<sup><a href="#noteref{0}">{1}</a></sup>""".format( refid, i_entity) if allow_inc: i_ = i_ + 1 result.append(sup) result = ' '.join(result) return result
(self, info, g_links, i)
61,562
textile.core
markStartOfLinks
Finds and marks the start of well formed links in the input text.
def markStartOfLinks(self, text): """Finds and marks the start of well formed links in the input text.""" # Slice text on '":<not space>' boundaries. These always occur in # inline links between the link text and the url part and are much more # infrequent than '"' characters so we have less possible links to # process. slice_re = re.compile(r'":(?={0})'.format(regex_snippets['char'])) slices = slice_re.split(text) output = [] if len(slices) > 1: # There are never any start of links in the last slice, so pop it # off (we'll glue it back later). last_slice = slices.pop() for s in slices: # If there is no possible start quote then this slice is not # a link if '"' not in s: output.append(s) continue # Cut this slice into possible starting points wherever we find # a '"' character. Any of these parts could represent the start # of the link text - we have to find which one. possible_start_quotes = s.split('"') # Start our search for the start of the link with the closest # prior quote mark. possibility = possible_start_quotes.pop() # Init the balanced count. If this is still zero at the end of # our do loop we'll mark the " that caused it to balance as the # start of the link and move on to the next slice. balanced = 0 linkparts = [] i = 0 while balanced != 0 or i == 0: # pragma: no branch # Starting at the end, pop off the previous part of the # slice's fragments. # Add this part to those parts that make up the link text. linkparts.append(possibility) if len(possibility) > 0: # did this part inc or dec the balanced count? if re.search(r'^\S|=$', possibility, flags=re.U): # pragma: no branch balanced = balanced - 1 if re.search(r'\S$', possibility, flags=re.U): # pragma: no branch balanced = balanced + 1 try: possibility = possible_start_quotes.pop() except IndexError: break else: # If quotes occur next to each other, we get zero # length strings. eg. ...""Open the door, # HAL!"":url... In this case we count a zero length in # the last position as a closing quote and others as # opening quotes. if i == 0: balanced = balanced + 1 else: balanced = balanced - 1 i = i + 1 try: possibility = possible_start_quotes.pop() except IndexError: # pragma: no cover # If out of possible starting segments we back the # last one from the linkparts array linkparts.pop() break # If the next possibility is empty or ends in a space # we have a closing ". if (possibility == '' or possibility.endswith(' ')): # force search exit balanced = 0; if balanced <= 0: possible_start_quotes.append(possibility) break # Rebuild the link's text by reversing the parts and sticking # them back together with quotes. linkparts.reverse() link_content = '"'.join(linkparts) # Rebuild the remaining stuff that goes before the link but # that's already in order. pre_link = '"'.join(possible_start_quotes) # Re-assemble the link starts with a specific marker for the # next regex. o = '{0}{1}linkStartMarker:"{2}'.format(pre_link, self.uid, link_content) output.append(o) # Add the last part back output.append(last_slice) # Re-assemble the full text with the start and end markers text = '":'.join(output) return text
(self, text)
61,563
textile.core
noTextile
null
def noTextile(self, text): text = self.doSpecial(text, '<notextile>', '</notextile>', self.fTextile) return self.doSpecial(text, '==', '==', self.fTextile)
(self, text)
61,564
textile.core
noteRef
Search the text looking for note references.
def noteRef(self, text): """Search the text looking for note references.""" text_re = re.compile(r""" \[ # start ({0}) # !atts \# ([^\]!]+) # !label ([!]?) # !nolink \]""".format(cls_re_s), re.X) text = text_re.sub(self.fParseNoteRefs, text) return text
(self, text)
61,565
textile.core
parse
Parse the input text as textile and return html output.
def parse(self, text, rel=None, sanitize=False): """Parse the input text as textile and return html output.""" self.notes = OrderedDict() self.unreferencedNotes = OrderedDict() self.notelist_cache = OrderedDict() if text.strip() == '': return text if self.restricted: text = encode_html(text, quotes=False) text = normalize_newlines(text) text = text.replace(self.uid, '') if self.block_tags: if self.lite: self.blocktag_whitelist = ['bq', 'p'] text = self.block(text) else: self.blocktag_whitelist = [ 'bq', 'p', 'bc', 'notextile', 'pre', 'h[1-6]', 'fn{0}+'.format(regex_snippets['digit']), '###'] text = self.block(text) text = self.placeNoteLists(text) else: # Inline markup (em, strong, sup, sub, del etc). text = self.span(text) # Glyph level substitutions (mainly typographic -- " & ' => curly # quotes, -- => em-dash etc. text = self.glyphs(text) if rel: self.rel = ' rel="{0}"'.format(rel) text = self.getRefs(text) if not self.lite: text = self.placeNoteLists(text) text = self.retrieve(text) text = text.replace('{0}:glyph:'.format(self.uid), '') if sanitize: text = sanitizer.sanitize(text) text = self.retrieveURLs(text) # if the text contains a break tag (<br> or <br />) not followed by # a newline, replace it with a new style break tag and a newline. text = re.sub(r'<br( /)?>(?!\n)', '<br />\n', text) text = text.rstrip('\n') return text
(self, text, rel=None, sanitize=False)
61,566
textile.core
placeNoteLists
Parse the text for endnotes.
def placeNoteLists(self, text): """Parse the text for endnotes.""" if self.notes: o = OrderedDict() for label, info in self.notes.items(): if 'seq' in info: i = info['seq'] info['seq'] = label o[i] = info else: self.unreferencedNotes[label] = info if o: # pragma: no branch # sort o by key o = OrderedDict(sorted(o.items(), key=lambda t: t[0])) self.notes = o text_re = re.compile(r'<p>notelist({0})(?:\:([\w|{1}]))?([\^!]?)(\+?)' r'\.?[\s]*</p>'.format(cls_re_s, syms_re_s), re.U) text = text_re.sub(self.fNoteLists, text) return text
(self, text)
61,567
textile.core
redcloth_list
Parse the text for definition lists and send them to be formatted.
def redcloth_list(self, text): """Parse the text for definition lists and send them to be formatted.""" pattern = re.compile(r"^([-]+{0}[ .].*:=.*)$(?![^-])".format(cls_re_s), re.M | re.U | re.S) return pattern.sub(self.fRCList, text)
(self, text)
61,568
textile.core
refs
null
def refs(self, match): flag, url = match.groups() self.urlrefs[flag] = url return ''
(self, match)
61,569
textile.core
relURL
null
def relURL(self, url): scheme = urlparse(url)[0] if scheme and scheme not in self.url_schemes: return '#' return url
(self, url)
61,570
textile.core
replaceLinks
Replaces links with tokens and stores them on the shelf.
def replaceLinks(self, text): """Replaces links with tokens and stores them on the shelf.""" stopchars = r"\s|^'\"*" pattern = r""" (?P<pre>\[)? # Optionally open with a square bracket eg. Look ["here":url] {0}linkStartMarker:" # marks start of the link (?P<inner>(?:.|\n)*?) # grab the content of the inner "..." part of the link, can be anything but # do not worry about matching class, id, lang or title yet ": # literal ": marks end of atts + text + title block (?P<urlx>[^{1}]*) # url upto a stopchar """.format(self.uid, stopchars) text = re.compile(pattern, flags=re.X | re.U).sub(self.fLink, text) return text
(self, text)
61,571
textile.core
retrieve
null
def retrieve(self, text): while True: old = text for k, v in self.shelf.items(): text = text.replace(k, v) if text == old: break return text
(self, text)
61,572
textile.core
retrieveURL
null
def retrieveURL(self, match): url = self.refCache.get(int(match.group('token')), '') if url == '': return url if url in self.urlrefs: url = self.urlrefs[url] return url
(self, match)
61,573
textile.core
retrieveURLs
null
def retrieveURLs(self, text): return re.sub(r'{0}(?P<token>[0-9]+):url'.format(self.uid), self.retrieveURL, text)
(self, text)
61,574
textile.core
shelve
null
def shelve(self, text): self.refIndex = self.refIndex + 1 itemID = '{0}{1}:shelve'.format(self.uid, self.refIndex) self.shelf[itemID] = text return itemID
(self, text)
61,575
textile.core
shelveURL
null
def shelveURL(self, text): if text == '': return '' self.refIndex = self.refIndex + 1 self.refCache[self.refIndex] = text output = '{0}{1}{2}'.format(self.uid, self.refIndex, ':url') return output
(self, text)
61,576
textile.core
span
null
def span(self, text): qtags = (r'\*\*', r'\*', r'\?\?', r'\-', r'__', r'_', r'%', r'\+', r'~', r'\^') pnct = r""".,"'?!;:‹›«»„“”‚‘’""" self.span_depth = self.span_depth + 1 if self.span_depth <= self.max_span_depth: for tag in qtags: pattern = re.compile(r""" (?P<pre>^|(?<=[\s>{pnct}\(])|[{{[]) (?P<tag>{tag})(?!{tag}) (?P<atts>{cls}) (?!{tag}) (?::(?P<cite>\S+[^{tag}]{space}))? (?P<content>[^{space}{tag}]+|\S.*?[^\s{tag}\n]) (?P<end>[{pnct}]*) {tag} (?P<tail>$|[\[\]}}<]|(?=[{pnct}]{{1,2}}[^0-9]|\s|\))) """.format(**{'tag': tag, 'cls': cls_re_s, 'pnct': pnct, 'space': regex_snippets['space']}), flags=re.X | re.U) text = pattern.sub(self.fSpan, text) self.span_depth = self.span_depth - 1 return text
(self, text)
61,577
textile.core
table
null
def table(self, text): text = "{0}\n\n".format(text) pattern = re.compile(r'^(?:table(?P<tatts>_?{s}{a}{c})\.' r'(?P<summary>.*?)\n)?^(?P<rows>{a}{c}\.? ?\|.*\|)' r'[\s]*\n\n'.format(**{'s': table_span_re_s, 'a': align_re_s, 'c': cls_re_s}), flags=re.S | re.M | re.U) match = pattern.search(text) if match: table = Table(self, **match.groupdict()) return table.process() return text
(self, text)
61,578
textile.core
textileLists
null
def textileLists(self, text): pattern = re.compile(r'^((?:[*;:]+|[*;:#]*#(?:_|\d+)?){0}[ .].*)$' r'(?![^#*;:])'.format(cls_re_s), re.U | re.M | re.S) return pattern.sub(self.fTextileList, text)
(self, text)
61,583
textile.core
textile
Apply Textile to a block of text. This function takes the following additional parameters: html_type - 'xhtml' or 'html5' style tags (default: 'xhtml')
def textile(text, html_type='xhtml'): """ Apply Textile to a block of text. This function takes the following additional parameters: html_type - 'xhtml' or 'html5' style tags (default: 'xhtml') """ return Textile(html_type=html_type).parse(text)
(text, html_type='xhtml')
61,584
textile.core
textile_restricted
Apply Textile to a block of text, with restrictions designed for weblog comments and other untrusted input. Raw HTML is escaped, style attributes are disabled, and rel='nofollow' is added to external links. This function takes the following additional parameters: html_type - 'xhtml' or 'html5' style tags (default: 'xhtml') lite - restrict block tags to p, bq, and bc, disable tables (default: True) noimage - disable image tags (default: True)
def textile_restricted(text, lite=True, noimage=True, html_type='xhtml'): """ Apply Textile to a block of text, with restrictions designed for weblog comments and other untrusted input. Raw HTML is escaped, style attributes are disabled, and rel='nofollow' is added to external links. This function takes the following additional parameters: html_type - 'xhtml' or 'html5' style tags (default: 'xhtml') lite - restrict block tags to p, bq, and bc, disable tables (default: True) noimage - disable image tags (default: True) """ return Textile(restricted=True, lite=lite, noimage=noimage, html_type=html_type, rel='nofollow').parse( text)
(text, lite=True, noimage=True, html_type='xhtml')
61,589
hyperopt.base
Ctrl
Control object for interruptible, checkpoint-able evaluation
class Ctrl: """Control object for interruptible, checkpoint-able evaluation""" info = logger.info warn = logger.warning error = logger.error debug = logger.debug def __init__(self, trials, current_trial=None): # -- attachments should be used like # attachments[key] # attachments[key] = value # where key and value are strings. Client code should not # expect any dictionary-like behaviour beyond that (no update) if trials is None: self.trials = Trials() else: self.trials = trials self.current_trial = current_trial def checkpoint(self, r=None): assert self.current_trial in self.trials._trials if r is not None: self.current_trial["result"] = r @property def attachments(self): """ Support syntax for load: self.attachments[name] Support syntax for store: self.attachments[name] = value """ return self.trials.trial_attachments(trial=self.current_trial) def inject_results(self, specs, results, miscs, new_tids=None): """Inject new results into self.trials Returns ??? XXX new_tids can be None, in which case new tids will be generated automatically """ trial = self.current_trial assert trial is not None num_news = len(specs) assert len(specs) == len(results) == len(miscs) if new_tids is None: new_tids = self.trials.new_trial_ids(num_news) new_trials = self.trials.source_trial_docs( tids=new_tids, specs=specs, results=results, miscs=miscs, sources=[trial] ) for t in new_trials: t["state"] = JOB_STATE_DONE return self.trials.insert_trial_docs(new_trials)
(trials, current_trial=None)
61,590
hyperopt.base
__init__
null
def __init__(self, trials, current_trial=None): # -- attachments should be used like # attachments[key] # attachments[key] = value # where key and value are strings. Client code should not # expect any dictionary-like behaviour beyond that (no update) if trials is None: self.trials = Trials() else: self.trials = trials self.current_trial = current_trial
(self, trials, current_trial=None)
61,591
hyperopt.base
checkpoint
null
def checkpoint(self, r=None): assert self.current_trial in self.trials._trials if r is not None: self.current_trial["result"] = r
(self, r=None)
61,592
hyperopt.base
inject_results
Inject new results into self.trials Returns ??? XXX new_tids can be None, in which case new tids will be generated automatically
def inject_results(self, specs, results, miscs, new_tids=None): """Inject new results into self.trials Returns ??? XXX new_tids can be None, in which case new tids will be generated automatically """ trial = self.current_trial assert trial is not None num_news = len(specs) assert len(specs) == len(results) == len(miscs) if new_tids is None: new_tids = self.trials.new_trial_ids(num_news) new_trials = self.trials.source_trial_docs( tids=new_tids, specs=specs, results=results, miscs=miscs, sources=[trial] ) for t in new_trials: t["state"] = JOB_STATE_DONE return self.trials.insert_trial_docs(new_trials)
(self, specs, results, miscs, new_tids=None)
61,593
hyperopt.base
Domain
Picklable representation of search space and evaluation function.
class Domain: """Picklable representation of search space and evaluation function.""" rec_eval_print_node_on_error = False # -- the Ctrl object is not used directly, but rather # a live Ctrl instance is inserted for the pyll_ctrl # in self.evaluate so that it can be accessed from within # the pyll graph describing the search space. pyll_ctrl = pyll.as_apply(Ctrl) def __init__( self, fn, expr, workdir=None, pass_expr_memo_ctrl=None, name=None, loss_target=None, ): """ Parameters ---------- fn : callable This stores the `fn` argument to `fmin`. (See `hyperopt.fmin.fmin`) expr : hyperopt.pyll.Apply This is the `space` argument to `fmin`. (See `hyperopt.fmin.fmin`) workdir : string (or None) If non-None, the current working directory will be `workdir`while `expr` and `fn` are evaluated. (XXX Currently only respected by jobs run via MongoWorker) pass_expr_memo_ctrl : bool If True, `fn` will be called like this: `fn(self.expr, memo, ctrl)`, where `memo` is a dictionary mapping `Apply` nodes to their computed values, and `ctrl` is a `Ctrl` instance for communicating with a Trials database. This lower-level calling convention is useful if you want to call e.g. `hyperopt.pyll.rec_eval` yourself in some customized way. name : string (or None) Label, used for pretty-printing. loss_target : float (or None) The actual or estimated minimum of `fn`. Some optimization algorithms may behave differently if their first objective is to find an input that achieves a certain value, rather than the more open-ended objective of pure minimization. XXX: Move this from Domain to be an fmin arg. """ self.fn = fn if pass_expr_memo_ctrl is None: self.pass_expr_memo_ctrl = getattr(fn, "fmin_pass_expr_memo_ctrl", False) else: self.pass_expr_memo_ctrl = pass_expr_memo_ctrl self.expr = pyll.as_apply(expr) self.params = {} for node in pyll.dfs(self.expr): if node.name == "hyperopt_param": label = node.arg["label"].obj if label in self.params: raise DuplicateLabel(label) self.params[label] = node.arg["obj"] self.loss_target = loss_target self.name = name self.workdir = workdir self.s_new_ids = pyll.Literal("new_ids") # -- list at eval-time before = pyll.dfs(self.expr) # -- raises exception if expr contains cycles pyll.toposort(self.expr) vh = self.vh = VectorizeHelper(self.expr, self.s_new_ids) # -- raises exception if v_expr contains cycles pyll.toposort(vh.v_expr) idxs_by_label = vh.idxs_by_label() vals_by_label = vh.vals_by_label() after = pyll.dfs(self.expr) # -- try to detect if VectorizeHelper screwed up anything inplace assert before == after assert set(idxs_by_label.keys()) == set(vals_by_label.keys()) assert set(idxs_by_label.keys()) == set(self.params.keys()) self.s_rng = pyll.Literal("rng-placeholder") # -- N.B. operates inplace: self.s_idxs_vals = recursive_set_rng_kwarg( pyll.scope.pos_args(idxs_by_label, vals_by_label), self.s_rng ) # -- raises an exception if no topological ordering exists pyll.toposort(self.s_idxs_vals) # -- Protocol for serialization. # self.cmd indicates to e.g. MongoWorker how this domain # should be [un]serialized. # XXX This mechanism deserves review as support for ipython # workers improves. self.cmd = ("domain_attachment", "FMinIter_Domain") def memo_from_config(self, config): memo = {} for node in pyll.dfs(self.expr): if node.name == "hyperopt_param": label = node.arg["label"].obj # -- hack because it's not really garbagecollected # this does have the desired effect of crashing the # function if rec_eval actually needs a value that # the the optimization algorithm thought to be unnecessary memo[node] = config.get(label, pyll.base.GarbageCollected) return memo def evaluate(self, config, ctrl, attach_attachments=True): memo = self.memo_from_config(config) use_obj_for_literal_in_memo(self.expr, ctrl, Ctrl, memo) if self.pass_expr_memo_ctrl: rval = self.fn(expr=self.expr, memo=memo, ctrl=ctrl) else: # -- the "work" of evaluating `config` can be written # either into the pyll part (self.expr) # or the normal Python part (self.fn) pyll_rval = pyll.rec_eval( self.expr, memo=memo, print_node_on_error=self.rec_eval_print_node_on_error, ) rval = self.fn(pyll_rval) if isinstance(rval, (float, int, np.number)): dict_rval = {"loss": float(rval), "status": STATUS_OK} else: dict_rval = dict(rval) status = dict_rval["status"] if status not in STATUS_STRINGS: raise InvalidResultStatus(dict_rval) if status == STATUS_OK: # -- make sure that the loss is present and valid try: dict_rval["loss"] = float(dict_rval["loss"]) except (TypeError, KeyError): raise InvalidLoss(dict_rval) if attach_attachments: attachments = dict_rval.pop("attachments", {}) for key, val in list(attachments.items()): ctrl.attachments[key] = val # -- don't do this here because SON-compatibility is only a requirement # for trials destined for a mongodb. In-memory rvals can contain # anything. return dict_rval def evaluate_async(self, config, ctrl, attach_attachments=True): """ this is the first part of async evaluation for ipython parallel engines (see ipy.py) This breaks evaluate into two parts to allow for the apply_async call to only pass the objective function and arguments. """ memo = self.memo_from_config(config) use_obj_for_literal_in_memo(self.expr, ctrl, Ctrl, memo) if self.pass_expr_memo_ctrl: pyll_rval = self.fn(expr=self.expr, memo=memo, ctrl=ctrl) else: # -- the "work" of evaluating `config` can be written # either into the pyll part (self.expr) # or the normal Python part (self.fn) pyll_rval = pyll.rec_eval( self.expr, memo=memo, print_node_on_error=self.rec_eval_print_node_on_error, ) return (self.fn, pyll_rval) def evaluate_async2(self, rval, ctrl, attach_attachments=True): """ this is the second part of async evaluation for ipython parallel engines (see ipy.py) """ if isinstance(rval, (float, int, np.number)): dict_rval = {"loss": float(rval), "status": STATUS_OK} else: dict_rval = dict(rval) status = dict_rval["status"] if status not in STATUS_STRINGS: raise InvalidResultStatus(dict_rval) if status == STATUS_OK: # -- make sure that the loss is present and valid try: dict_rval["loss"] = float(dict_rval["loss"]) except (TypeError, KeyError): raise InvalidLoss(dict_rval) if attach_attachments: attachments = dict_rval.pop("attachments", {}) for key, val in list(attachments.items()): ctrl.attachments[key] = val # -- don't do this here because SON-compatibility is only a requirement # for trials destined for a mongodb. In-memory rvals can contain # anything. return dict_rval def short_str(self): return "Domain{%s}" % str(self.fn) def loss(self, result, config=None): """Extract the scalar-valued loss from a result document""" return result.get("loss", None) def loss_variance(self, result, config=None): """Return the variance in the estimate of the loss""" return result.get("loss_variance", 0.0) def true_loss(self, result, config=None): """Return a true loss, in the case that the `loss` is a surrogate""" # N.B. don't use get() here, it evaluates self.loss un-necessarily try: return result["true_loss"] except KeyError: return self.loss(result, config=config) def true_loss_variance(self, config=None): """Return the variance in true loss, in the case that the `loss` is a surrogate. """ raise NotImplementedError() def status(self, result, config=None): """Extract the job status from a result document""" return result["status"] def new_result(self): """Return a JSON-encodable object to serve as the 'result' for new jobs. """ return {"status": STATUS_NEW}
(fn, expr, workdir=None, pass_expr_memo_ctrl=None, name=None, loss_target=None)
61,594
hyperopt.base
__init__
Parameters ---------- fn : callable This stores the `fn` argument to `fmin`. (See `hyperopt.fmin.fmin`) expr : hyperopt.pyll.Apply This is the `space` argument to `fmin`. (See `hyperopt.fmin.fmin`) workdir : string (or None) If non-None, the current working directory will be `workdir`while `expr` and `fn` are evaluated. (XXX Currently only respected by jobs run via MongoWorker) pass_expr_memo_ctrl : bool If True, `fn` will be called like this: `fn(self.expr, memo, ctrl)`, where `memo` is a dictionary mapping `Apply` nodes to their computed values, and `ctrl` is a `Ctrl` instance for communicating with a Trials database. This lower-level calling convention is useful if you want to call e.g. `hyperopt.pyll.rec_eval` yourself in some customized way. name : string (or None) Label, used for pretty-printing. loss_target : float (or None) The actual or estimated minimum of `fn`. Some optimization algorithms may behave differently if their first objective is to find an input that achieves a certain value, rather than the more open-ended objective of pure minimization. XXX: Move this from Domain to be an fmin arg.
def __init__( self, fn, expr, workdir=None, pass_expr_memo_ctrl=None, name=None, loss_target=None, ): """ Parameters ---------- fn : callable This stores the `fn` argument to `fmin`. (See `hyperopt.fmin.fmin`) expr : hyperopt.pyll.Apply This is the `space` argument to `fmin`. (See `hyperopt.fmin.fmin`) workdir : string (or None) If non-None, the current working directory will be `workdir`while `expr` and `fn` are evaluated. (XXX Currently only respected by jobs run via MongoWorker) pass_expr_memo_ctrl : bool If True, `fn` will be called like this: `fn(self.expr, memo, ctrl)`, where `memo` is a dictionary mapping `Apply` nodes to their computed values, and `ctrl` is a `Ctrl` instance for communicating with a Trials database. This lower-level calling convention is useful if you want to call e.g. `hyperopt.pyll.rec_eval` yourself in some customized way. name : string (or None) Label, used for pretty-printing. loss_target : float (or None) The actual or estimated minimum of `fn`. Some optimization algorithms may behave differently if their first objective is to find an input that achieves a certain value, rather than the more open-ended objective of pure minimization. XXX: Move this from Domain to be an fmin arg. """ self.fn = fn if pass_expr_memo_ctrl is None: self.pass_expr_memo_ctrl = getattr(fn, "fmin_pass_expr_memo_ctrl", False) else: self.pass_expr_memo_ctrl = pass_expr_memo_ctrl self.expr = pyll.as_apply(expr) self.params = {} for node in pyll.dfs(self.expr): if node.name == "hyperopt_param": label = node.arg["label"].obj if label in self.params: raise DuplicateLabel(label) self.params[label] = node.arg["obj"] self.loss_target = loss_target self.name = name self.workdir = workdir self.s_new_ids = pyll.Literal("new_ids") # -- list at eval-time before = pyll.dfs(self.expr) # -- raises exception if expr contains cycles pyll.toposort(self.expr) vh = self.vh = VectorizeHelper(self.expr, self.s_new_ids) # -- raises exception if v_expr contains cycles pyll.toposort(vh.v_expr) idxs_by_label = vh.idxs_by_label() vals_by_label = vh.vals_by_label() after = pyll.dfs(self.expr) # -- try to detect if VectorizeHelper screwed up anything inplace assert before == after assert set(idxs_by_label.keys()) == set(vals_by_label.keys()) assert set(idxs_by_label.keys()) == set(self.params.keys()) self.s_rng = pyll.Literal("rng-placeholder") # -- N.B. operates inplace: self.s_idxs_vals = recursive_set_rng_kwarg( pyll.scope.pos_args(idxs_by_label, vals_by_label), self.s_rng ) # -- raises an exception if no topological ordering exists pyll.toposort(self.s_idxs_vals) # -- Protocol for serialization. # self.cmd indicates to e.g. MongoWorker how this domain # should be [un]serialized. # XXX This mechanism deserves review as support for ipython # workers improves. self.cmd = ("domain_attachment", "FMinIter_Domain")
(self, fn, expr, workdir=None, pass_expr_memo_ctrl=None, name=None, loss_target=None)
61,595
hyperopt.base
evaluate
null
def evaluate(self, config, ctrl, attach_attachments=True): memo = self.memo_from_config(config) use_obj_for_literal_in_memo(self.expr, ctrl, Ctrl, memo) if self.pass_expr_memo_ctrl: rval = self.fn(expr=self.expr, memo=memo, ctrl=ctrl) else: # -- the "work" of evaluating `config` can be written # either into the pyll part (self.expr) # or the normal Python part (self.fn) pyll_rval = pyll.rec_eval( self.expr, memo=memo, print_node_on_error=self.rec_eval_print_node_on_error, ) rval = self.fn(pyll_rval) if isinstance(rval, (float, int, np.number)): dict_rval = {"loss": float(rval), "status": STATUS_OK} else: dict_rval = dict(rval) status = dict_rval["status"] if status not in STATUS_STRINGS: raise InvalidResultStatus(dict_rval) if status == STATUS_OK: # -- make sure that the loss is present and valid try: dict_rval["loss"] = float(dict_rval["loss"]) except (TypeError, KeyError): raise InvalidLoss(dict_rval) if attach_attachments: attachments = dict_rval.pop("attachments", {}) for key, val in list(attachments.items()): ctrl.attachments[key] = val # -- don't do this here because SON-compatibility is only a requirement # for trials destined for a mongodb. In-memory rvals can contain # anything. return dict_rval
(self, config, ctrl, attach_attachments=True)
61,596
hyperopt.base
evaluate_async
this is the first part of async evaluation for ipython parallel engines (see ipy.py) This breaks evaluate into two parts to allow for the apply_async call to only pass the objective function and arguments.
def evaluate_async(self, config, ctrl, attach_attachments=True): """ this is the first part of async evaluation for ipython parallel engines (see ipy.py) This breaks evaluate into two parts to allow for the apply_async call to only pass the objective function and arguments. """ memo = self.memo_from_config(config) use_obj_for_literal_in_memo(self.expr, ctrl, Ctrl, memo) if self.pass_expr_memo_ctrl: pyll_rval = self.fn(expr=self.expr, memo=memo, ctrl=ctrl) else: # -- the "work" of evaluating `config` can be written # either into the pyll part (self.expr) # or the normal Python part (self.fn) pyll_rval = pyll.rec_eval( self.expr, memo=memo, print_node_on_error=self.rec_eval_print_node_on_error, ) return (self.fn, pyll_rval)
(self, config, ctrl, attach_attachments=True)
61,597
hyperopt.base
evaluate_async2
this is the second part of async evaluation for ipython parallel engines (see ipy.py)
def evaluate_async2(self, rval, ctrl, attach_attachments=True): """ this is the second part of async evaluation for ipython parallel engines (see ipy.py) """ if isinstance(rval, (float, int, np.number)): dict_rval = {"loss": float(rval), "status": STATUS_OK} else: dict_rval = dict(rval) status = dict_rval["status"] if status not in STATUS_STRINGS: raise InvalidResultStatus(dict_rval) if status == STATUS_OK: # -- make sure that the loss is present and valid try: dict_rval["loss"] = float(dict_rval["loss"]) except (TypeError, KeyError): raise InvalidLoss(dict_rval) if attach_attachments: attachments = dict_rval.pop("attachments", {}) for key, val in list(attachments.items()): ctrl.attachments[key] = val # -- don't do this here because SON-compatibility is only a requirement # for trials destined for a mongodb. In-memory rvals can contain # anything. return dict_rval
(self, rval, ctrl, attach_attachments=True)
61,598
hyperopt.base
loss
Extract the scalar-valued loss from a result document
def loss(self, result, config=None): """Extract the scalar-valued loss from a result document""" return result.get("loss", None)
(self, result, config=None)
61,599
hyperopt.base
loss_variance
Return the variance in the estimate of the loss
def loss_variance(self, result, config=None): """Return the variance in the estimate of the loss""" return result.get("loss_variance", 0.0)
(self, result, config=None)
61,600
hyperopt.base
memo_from_config
null
def memo_from_config(self, config): memo = {} for node in pyll.dfs(self.expr): if node.name == "hyperopt_param": label = node.arg["label"].obj # -- hack because it's not really garbagecollected # this does have the desired effect of crashing the # function if rec_eval actually needs a value that # the the optimization algorithm thought to be unnecessary memo[node] = config.get(label, pyll.base.GarbageCollected) return memo
(self, config)
61,601
hyperopt.base
new_result
Return a JSON-encodable object to serve as the 'result' for new jobs.
def new_result(self): """Return a JSON-encodable object to serve as the 'result' for new jobs. """ return {"status": STATUS_NEW}
(self)
61,602
hyperopt.base
short_str
null
def short_str(self): return "Domain{%s}" % str(self.fn)
(self)
61,603
hyperopt.base
status
Extract the job status from a result document
def status(self, result, config=None): """Extract the job status from a result document""" return result["status"]
(self, result, config=None)
61,604
hyperopt.base
true_loss
Return a true loss, in the case that the `loss` is a surrogate
def true_loss(self, result, config=None): """Return a true loss, in the case that the `loss` is a surrogate""" # N.B. don't use get() here, it evaluates self.loss un-necessarily try: return result["true_loss"] except KeyError: return self.loss(result, config=config)
(self, result, config=None)
61,605
hyperopt.base
true_loss_variance
Return the variance in true loss, in the case that the `loss` is a surrogate.
def true_loss_variance(self, config=None): """Return the variance in true loss, in the case that the `loss` is a surrogate. """ raise NotImplementedError()
(self, config=None)
61,606
hyperopt.fmin
FMinIter
Object for conducting search experiments.
class FMinIter: """Object for conducting search experiments.""" catch_eval_exceptions = False pickle_protocol = -1 def __init__( self, algo, domain, trials, rstate, asynchronous=None, max_queue_len=1, poll_interval_secs=1.0, max_evals=sys.maxsize, timeout=None, loss_threshold=None, verbose=False, show_progressbar=True, early_stop_fn=None, trials_save_file="", ): self.algo = algo self.domain = domain self.trials = trials if not show_progressbar or not verbose: self.progress_callback = progress.no_progress_callback elif show_progressbar is True: self.progress_callback = progress.default_callback else: self.progress_callback = show_progressbar if asynchronous is None: self.asynchronous = trials.asynchronous else: self.asynchronous = asynchronous self.poll_interval_secs = poll_interval_secs self.max_queue_len = max_queue_len self.max_evals = max_evals self.early_stop_fn = early_stop_fn self.early_stop_args = [] self.trials_save_file = trials_save_file self.timeout = timeout self.loss_threshold = loss_threshold self.start_time = timer() self.rstate = rstate self.verbose = verbose if self.asynchronous: if "FMinIter_Domain" in trials.attachments: logger.warning("over-writing old domain trials attachment") msg = pickler.dumps(domain) # -- sanity check for unpickling pickler.loads(msg) trials.attachments["FMinIter_Domain"] = msg def serial_evaluate(self, N=-1): for trial in self.trials._dynamic_trials: if trial["state"] == base.JOB_STATE_NEW: trial["state"] = base.JOB_STATE_RUNNING now = coarse_utcnow() trial["book_time"] = now trial["refresh_time"] = now spec = base.spec_from_misc(trial["misc"]) ctrl = base.Ctrl(self.trials, current_trial=trial) try: result = self.domain.evaluate(spec, ctrl) except Exception as e: logger.error("job exception: %s" % str(e)) trial["state"] = base.JOB_STATE_ERROR trial["misc"]["error"] = (str(type(e)), str(e)) trial["refresh_time"] = coarse_utcnow() if not self.catch_eval_exceptions: # -- JOB_STATE_ERROR means this trial # will be removed from self.trials.trials # by this refresh call. self.trials.refresh() raise else: trial["state"] = base.JOB_STATE_DONE trial["result"] = result trial["refresh_time"] = coarse_utcnow() N -= 1 if N == 0: break self.trials.refresh() @property def is_cancelled(self): """ Indicates whether this fmin run has been cancelled. SparkTrials supports cancellation. """ if hasattr(self.trials, "_fmin_cancelled"): if self.trials._fmin_cancelled: return True return False def block_until_done(self): already_printed = False if self.asynchronous: unfinished_states = [base.JOB_STATE_NEW, base.JOB_STATE_RUNNING] def get_queue_len(): return self.trials.count_by_state_unsynced(unfinished_states) qlen = get_queue_len() while qlen > 0: if not already_printed and self.verbose: logger.info("Waiting for %d jobs to finish ..." % qlen) already_printed = True time.sleep(self.poll_interval_secs) qlen = get_queue_len() self.trials.refresh() else: self.serial_evaluate() def run(self, N, block_until_done=True): """ Run `self.algo` iteratively (use existing `self.trials` to produce the new ones), update, and repeat block_until_done means that the process blocks until ALL jobs in trials are not in running or new state """ trials = self.trials algo = self.algo n_queued = 0 def get_queue_len(): return self.trials.count_by_state_unsynced(base.JOB_STATE_NEW) def get_n_done(): return self.trials.count_by_state_unsynced(base.JOB_STATE_DONE) def get_n_unfinished(): unfinished_states = [base.JOB_STATE_NEW, base.JOB_STATE_RUNNING] return self.trials.count_by_state_unsynced(unfinished_states) stopped = False initial_n_done = get_n_done() with self.progress_callback( initial=initial_n_done, total=self.max_evals ) as progress_ctx: all_trials_complete = False best_loss = float("inf") while ( # more run to Q || ( block_flag & trials not done ) (n_queued < N or (block_until_done and not all_trials_complete)) # no timeout || < current last time and (self.timeout is None or (timer() - self.start_time) < self.timeout) # no loss_threshold || < current best_loss and (self.loss_threshold is None or best_loss >= self.loss_threshold) ): qlen = get_queue_len() while ( qlen < self.max_queue_len and n_queued < N and not self.is_cancelled ): n_to_enqueue = min(self.max_queue_len - qlen, N - n_queued) # get ids for next trials to enqueue new_ids = trials.new_trial_ids(n_to_enqueue) self.trials.refresh() # Based on existing trials and the domain, use `algo` to probe in # new hp points. Save the results of those inspections into # `new_trials`. This is the core of `run`, all the rest is just # processes orchestration new_trials = algo( new_ids, self.domain, trials, self.rstate.integers(2 ** 31 - 1) ) assert len(new_ids) >= len(new_trials) if len(new_trials): self.trials.insert_trial_docs(new_trials) self.trials.refresh() n_queued += len(new_trials) qlen = get_queue_len() else: stopped = True break if self.is_cancelled: break if self.asynchronous: # -- wait for workers to fill in the trials time.sleep(self.poll_interval_secs) else: # -- loop over trials and do the jobs directly self.serial_evaluate() self.trials.refresh() if self.trials_save_file != "": pickler.dump(self.trials, open(self.trials_save_file, "wb")) if self.early_stop_fn is not None: stop, kwargs = self.early_stop_fn( self.trials, *self.early_stop_args ) self.early_stop_args = kwargs if stop: logger.info( "Early stop triggered. Stopping iterations as condition is reach." ) stopped = True # update progress bar with the min loss among trials with status ok losses = [ loss for loss in self.trials.losses() if loss is not None and not np.isnan(loss) ] if losses: best_loss = min(losses) progress_ctx.postfix = "best loss: " + str(best_loss) n_unfinished = get_n_unfinished() if n_unfinished == 0: all_trials_complete = True n_done = get_n_done() n_done_this_iteration = n_done - initial_n_done if n_done_this_iteration > 0: progress_ctx.update(n_done_this_iteration) initial_n_done = n_done if stopped: break if block_until_done: self.block_until_done() self.trials.refresh() logger.info("Queue empty, exiting run.") else: qlen = get_queue_len() if qlen: msg = "Exiting run, not waiting for %d jobs." % qlen logger.info(msg) def __iter__(self): return self def __next__(self): self.run(1, block_until_done=self.asynchronous) if self.early_stop_fn is not None: stop, kwargs = self.early_stop_fn(self.trials, *self.early_stop_args) self.early_stop_args = kwargs if stop: raise StopIteration() if len(self.trials) >= self.max_evals: raise StopIteration() return self.trials def exhaust(self): n_done = len(self.trials) self.run(self.max_evals - n_done, block_until_done=self.asynchronous) self.trials.refresh() return self
(algo, domain, trials, rstate, asynchronous=None, max_queue_len=1, poll_interval_secs=1.0, max_evals=9223372036854775807, timeout=None, loss_threshold=None, verbose=False, show_progressbar=True, early_stop_fn=None, trials_save_file='')
61,607
hyperopt.fmin
__init__
null
def __init__( self, algo, domain, trials, rstate, asynchronous=None, max_queue_len=1, poll_interval_secs=1.0, max_evals=sys.maxsize, timeout=None, loss_threshold=None, verbose=False, show_progressbar=True, early_stop_fn=None, trials_save_file="", ): self.algo = algo self.domain = domain self.trials = trials if not show_progressbar or not verbose: self.progress_callback = progress.no_progress_callback elif show_progressbar is True: self.progress_callback = progress.default_callback else: self.progress_callback = show_progressbar if asynchronous is None: self.asynchronous = trials.asynchronous else: self.asynchronous = asynchronous self.poll_interval_secs = poll_interval_secs self.max_queue_len = max_queue_len self.max_evals = max_evals self.early_stop_fn = early_stop_fn self.early_stop_args = [] self.trials_save_file = trials_save_file self.timeout = timeout self.loss_threshold = loss_threshold self.start_time = timer() self.rstate = rstate self.verbose = verbose if self.asynchronous: if "FMinIter_Domain" in trials.attachments: logger.warning("over-writing old domain trials attachment") msg = pickler.dumps(domain) # -- sanity check for unpickling pickler.loads(msg) trials.attachments["FMinIter_Domain"] = msg
(self, algo, domain, trials, rstate, asynchronous=None, max_queue_len=1, poll_interval_secs=1.0, max_evals=9223372036854775807, timeout=None, loss_threshold=None, verbose=False, show_progressbar=True, early_stop_fn=None, trials_save_file='')
61,609
hyperopt.fmin
__next__
null
def __next__(self): self.run(1, block_until_done=self.asynchronous) if self.early_stop_fn is not None: stop, kwargs = self.early_stop_fn(self.trials, *self.early_stop_args) self.early_stop_args = kwargs if stop: raise StopIteration() if len(self.trials) >= self.max_evals: raise StopIteration() return self.trials
(self)
61,610
hyperopt.fmin
block_until_done
null
def block_until_done(self): already_printed = False if self.asynchronous: unfinished_states = [base.JOB_STATE_NEW, base.JOB_STATE_RUNNING] def get_queue_len(): return self.trials.count_by_state_unsynced(unfinished_states) qlen = get_queue_len() while qlen > 0: if not already_printed and self.verbose: logger.info("Waiting for %d jobs to finish ..." % qlen) already_printed = True time.sleep(self.poll_interval_secs) qlen = get_queue_len() self.trials.refresh() else: self.serial_evaluate()
(self)
61,611
hyperopt.fmin
exhaust
null
def exhaust(self): n_done = len(self.trials) self.run(self.max_evals - n_done, block_until_done=self.asynchronous) self.trials.refresh() return self
(self)
61,612
hyperopt.fmin
run
Run `self.algo` iteratively (use existing `self.trials` to produce the new ones), update, and repeat block_until_done means that the process blocks until ALL jobs in trials are not in running or new state
def run(self, N, block_until_done=True): """ Run `self.algo` iteratively (use existing `self.trials` to produce the new ones), update, and repeat block_until_done means that the process blocks until ALL jobs in trials are not in running or new state """ trials = self.trials algo = self.algo n_queued = 0 def get_queue_len(): return self.trials.count_by_state_unsynced(base.JOB_STATE_NEW) def get_n_done(): return self.trials.count_by_state_unsynced(base.JOB_STATE_DONE) def get_n_unfinished(): unfinished_states = [base.JOB_STATE_NEW, base.JOB_STATE_RUNNING] return self.trials.count_by_state_unsynced(unfinished_states) stopped = False initial_n_done = get_n_done() with self.progress_callback( initial=initial_n_done, total=self.max_evals ) as progress_ctx: all_trials_complete = False best_loss = float("inf") while ( # more run to Q || ( block_flag & trials not done ) (n_queued < N or (block_until_done and not all_trials_complete)) # no timeout || < current last time and (self.timeout is None or (timer() - self.start_time) < self.timeout) # no loss_threshold || < current best_loss and (self.loss_threshold is None or best_loss >= self.loss_threshold) ): qlen = get_queue_len() while ( qlen < self.max_queue_len and n_queued < N and not self.is_cancelled ): n_to_enqueue = min(self.max_queue_len - qlen, N - n_queued) # get ids for next trials to enqueue new_ids = trials.new_trial_ids(n_to_enqueue) self.trials.refresh() # Based on existing trials and the domain, use `algo` to probe in # new hp points. Save the results of those inspections into # `new_trials`. This is the core of `run`, all the rest is just # processes orchestration new_trials = algo( new_ids, self.domain, trials, self.rstate.integers(2 ** 31 - 1) ) assert len(new_ids) >= len(new_trials) if len(new_trials): self.trials.insert_trial_docs(new_trials) self.trials.refresh() n_queued += len(new_trials) qlen = get_queue_len() else: stopped = True break if self.is_cancelled: break if self.asynchronous: # -- wait for workers to fill in the trials time.sleep(self.poll_interval_secs) else: # -- loop over trials and do the jobs directly self.serial_evaluate() self.trials.refresh() if self.trials_save_file != "": pickler.dump(self.trials, open(self.trials_save_file, "wb")) if self.early_stop_fn is not None: stop, kwargs = self.early_stop_fn( self.trials, *self.early_stop_args ) self.early_stop_args = kwargs if stop: logger.info( "Early stop triggered. Stopping iterations as condition is reach." ) stopped = True # update progress bar with the min loss among trials with status ok losses = [ loss for loss in self.trials.losses() if loss is not None and not np.isnan(loss) ] if losses: best_loss = min(losses) progress_ctx.postfix = "best loss: " + str(best_loss) n_unfinished = get_n_unfinished() if n_unfinished == 0: all_trials_complete = True n_done = get_n_done() n_done_this_iteration = n_done - initial_n_done if n_done_this_iteration > 0: progress_ctx.update(n_done_this_iteration) initial_n_done = n_done if stopped: break if block_until_done: self.block_until_done() self.trials.refresh() logger.info("Queue empty, exiting run.") else: qlen = get_queue_len() if qlen: msg = "Exiting run, not waiting for %d jobs." % qlen logger.info(msg)
(self, N, block_until_done=True)
61,613
hyperopt.fmin
serial_evaluate
null
def serial_evaluate(self, N=-1): for trial in self.trials._dynamic_trials: if trial["state"] == base.JOB_STATE_NEW: trial["state"] = base.JOB_STATE_RUNNING now = coarse_utcnow() trial["book_time"] = now trial["refresh_time"] = now spec = base.spec_from_misc(trial["misc"]) ctrl = base.Ctrl(self.trials, current_trial=trial) try: result = self.domain.evaluate(spec, ctrl) except Exception as e: logger.error("job exception: %s" % str(e)) trial["state"] = base.JOB_STATE_ERROR trial["misc"]["error"] = (str(type(e)), str(e)) trial["refresh_time"] = coarse_utcnow() if not self.catch_eval_exceptions: # -- JOB_STATE_ERROR means this trial # will be removed from self.trials.trials # by this refresh call. self.trials.refresh() raise else: trial["state"] = base.JOB_STATE_DONE trial["result"] = result trial["refresh_time"] = coarse_utcnow() N -= 1 if N == 0: break self.trials.refresh()
(self, N=-1)
61,614
hyperopt.spark
SparkTrials
Implementation of hyperopt.Trials supporting distributed execution using Apache Spark clusters. This requires fmin to be run on a Spark cluster. Plugging SparkTrials into hyperopt.fmin() allows hyperopt to send model training and evaluation tasks to Spark workers, parallelizing hyperparameter search. Each trial (set of hyperparameter values) is handled within a single Spark task; i.e., each model will be fit and evaluated on a single worker machine. Trials are run asynchronously. See hyperopt.Trials docs for general information about Trials. The fields we store in our trial docs match the base Trials class. The fields include: - 'tid': trial ID - 'state': JOB_STATE_DONE, JOB_STATE_ERROR, etc. - 'result': evaluation result for completed trial run - 'refresh_time': timestamp for last status update - 'misc': includes: - 'error': (error type, error message) - 'book_time': timestamp for trial run start
class SparkTrials(Trials): """ Implementation of hyperopt.Trials supporting distributed execution using Apache Spark clusters. This requires fmin to be run on a Spark cluster. Plugging SparkTrials into hyperopt.fmin() allows hyperopt to send model training and evaluation tasks to Spark workers, parallelizing hyperparameter search. Each trial (set of hyperparameter values) is handled within a single Spark task; i.e., each model will be fit and evaluated on a single worker machine. Trials are run asynchronously. See hyperopt.Trials docs for general information about Trials. The fields we store in our trial docs match the base Trials class. The fields include: - 'tid': trial ID - 'state': JOB_STATE_DONE, JOB_STATE_ERROR, etc. - 'result': evaluation result for completed trial run - 'refresh_time': timestamp for last status update - 'misc': includes: - 'error': (error type, error message) - 'book_time': timestamp for trial run start """ asynchronous = True # Hard cap on the number of concurrent hyperopt tasks (Spark jobs) to run. Set at 128. MAX_CONCURRENT_JOBS_ALLOWED = 128 def __init__( self, parallelism=None, timeout=None, loss_threshold=None, spark_session=None ): """ :param parallelism: Maximum number of parallel trials to run, i.e., maximum number of concurrent Spark tasks. The actual parallelism is subject to available Spark task slots at runtime. If set to None (default) or a non-positive value, this will be set to Spark's default parallelism or `1`. We cap the value at `MAX_CONCURRENT_JOBS_ALLOWED=128`. :param timeout: Maximum time (in seconds) which fmin is allowed to take. If this timeout is hit, then fmin will cancel running and proposed trials. It will retain all completed trial runs and return the best result found so far. :param spark_session: A SparkSession object. If None is passed, SparkTrials will attempt to use an existing SparkSession or create a new one. SparkSession is the entry point for various facilities provided by Spark. For more information, visit the documentation for PySpark. """ super().__init__(exp_key=None, refresh=False) if not _have_spark: raise Exception( "SparkTrials cannot import pyspark classes. Make sure that PySpark " "is available in your environment. E.g., try running 'import pyspark'" ) validate_timeout(timeout) validate_loss_threshold(loss_threshold) self._spark = ( SparkSession.builder.getOrCreate() if spark_session is None else spark_session ) self._spark_context = self._spark.sparkContext self._spark_pinned_threads_enabled = isinstance( self._spark_context._gateway, ClientServer ) # The feature to support controlling jobGroupIds is in SPARK-22340 self._spark_supports_job_cancelling = ( self._spark_pinned_threads_enabled or hasattr(self._spark_context.parallelize([1]), "collectWithJobGroup") ) spark_default_parallelism = self._spark_context.defaultParallelism self.parallelism = self._decide_parallelism( requested_parallelism=parallelism, spark_default_parallelism=spark_default_parallelism, ) if not self._spark_supports_job_cancelling and timeout is not None: logger.warning( "SparkTrials was constructed with a timeout specified, but this Apache " "Spark version does not support job group-based cancellation. The " "timeout will be respected when starting new Spark jobs, but " "SparkTrials will not be able to cancel running Spark jobs which exceed" " the timeout." ) self.timeout = timeout self.loss_threshold = loss_threshold self._fmin_cancelled = False self._fmin_cancelled_reason = None self.refresh() @staticmethod def _decide_parallelism(requested_parallelism, spark_default_parallelism): """ Given the requested parallelism, return the max parallelism SparkTrials will actually use. See the docstring for `parallelism` in the constructor for expected behavior. """ if requested_parallelism is None or requested_parallelism <= 0: parallelism = max(spark_default_parallelism, 1) logger.warning( "Because the requested parallelism was None or a non-positive value, " "parallelism will be set to ({d}), which is Spark's default parallelism ({s}), " "or 1, whichever is greater. " "We recommend setting parallelism explicitly to a positive value because " "the total of Spark task slots is subject to cluster sizing.".format( d=parallelism, s=spark_default_parallelism ) ) else: parallelism = requested_parallelism if parallelism > SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED: logger.warning( "Parallelism ({p}) is capped at SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ({c}).".format( p=parallelism, c=SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ) ) parallelism = SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED return parallelism def count_successful_trials(self): """ Returns the current number of trials which ran successfully """ return self.count_by_state_unsynced(base.JOB_STATE_DONE) def count_failed_trials(self): """ Returns the current number of trial runs which failed """ return self.count_by_state_unsynced(base.JOB_STATE_ERROR) def count_cancelled_trials(self): """ Returns the current number of cancelled trial runs. This covers trials which are cancelled from exceeding the timeout. """ return self.count_by_state_unsynced(base.JOB_STATE_CANCEL) def count_total_trials(self): """ Returns the current number of all successful, failed, and cancelled trial runs """ total_states = [ base.JOB_STATE_DONE, base.JOB_STATE_ERROR, base.JOB_STATE_CANCEL, ] return self.count_by_state_unsynced(total_states) def delete_all(self): """ Reset the Trials to init state """ super().delete_all() self._fmin_cancelled = False self._fmin_cancelled_reason = None def trial_attachments(self, trial): raise NotImplementedError("SparkTrials does not support trial attachments.") def fmin( self, fn, space, algo, max_evals, timeout, loss_threshold, max_queue_len, rstate, verbose, pass_expr_memo_ctrl, catch_eval_exceptions, return_argmin, show_progressbar, early_stop_fn, trials_save_file="", ): """ This should not be called directly but is called via :func:`hyperopt.fmin` Refer to :func:`hyperopt.fmin` for docs on each argument """ if timeout is not None: if self.timeout is not None: logger.warning( "Timeout param was defined in Trials object, ignoring fmin definition" ) else: validate_timeout(timeout) self.timeout = timeout if loss_threshold is not None: validate_loss_threshold(loss_threshold) self.loss_threshold = loss_threshold assert ( not pass_expr_memo_ctrl ), "SparkTrials does not support `pass_expr_memo_ctrl`" assert ( not catch_eval_exceptions ), "SparkTrials does not support `catch_eval_exceptions`" state = _SparkFMinState(self._spark, fn, space, self) # Will launch a dispatcher thread which runs each trial task as one spark job. state.launch_dispatcher() try: res = fmin( fn, space, algo, max_evals, timeout=timeout, loss_threshold=loss_threshold, max_queue_len=max_queue_len, trials=self, allow_trials_fmin=False, # -- prevent recursion rstate=rstate, pass_expr_memo_ctrl=None, # not supported catch_eval_exceptions=catch_eval_exceptions, verbose=verbose, return_argmin=return_argmin, points_to_evaluate=None, # not supported show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file="", # not supported ) except BaseException as e: logger.debug("fmin thread exits with an exception raised.") raise e else: logger.debug("fmin thread exits normally.") return res finally: state.wait_for_all_threads() logger.info( "Total Trials: {t}: {s} succeeded, {f} failed, {c} cancelled.".format( t=self.count_total_trials(), s=self.count_successful_trials(), f=self.count_failed_trials(), c=self.count_cancelled_trials(), ) )
(parallelism=None, timeout=None, loss_threshold=None, spark_session=None)
61,615
hyperopt.base
__getitem__
null
def __getitem__(self, item): # -- how to make it obvious whether indexing is by _trials position # or by tid if both are integers? raise NotImplementedError("")
(self, item)
61,616
hyperopt.spark
__init__
:param parallelism: Maximum number of parallel trials to run, i.e., maximum number of concurrent Spark tasks. The actual parallelism is subject to available Spark task slots at runtime. If set to None (default) or a non-positive value, this will be set to Spark's default parallelism or `1`. We cap the value at `MAX_CONCURRENT_JOBS_ALLOWED=128`. :param timeout: Maximum time (in seconds) which fmin is allowed to take. If this timeout is hit, then fmin will cancel running and proposed trials. It will retain all completed trial runs and return the best result found so far. :param spark_session: A SparkSession object. If None is passed, SparkTrials will attempt to use an existing SparkSession or create a new one. SparkSession is the entry point for various facilities provided by Spark. For more information, visit the documentation for PySpark.
def __init__( self, parallelism=None, timeout=None, loss_threshold=None, spark_session=None ): """ :param parallelism: Maximum number of parallel trials to run, i.e., maximum number of concurrent Spark tasks. The actual parallelism is subject to available Spark task slots at runtime. If set to None (default) or a non-positive value, this will be set to Spark's default parallelism or `1`. We cap the value at `MAX_CONCURRENT_JOBS_ALLOWED=128`. :param timeout: Maximum time (in seconds) which fmin is allowed to take. If this timeout is hit, then fmin will cancel running and proposed trials. It will retain all completed trial runs and return the best result found so far. :param spark_session: A SparkSession object. If None is passed, SparkTrials will attempt to use an existing SparkSession or create a new one. SparkSession is the entry point for various facilities provided by Spark. For more information, visit the documentation for PySpark. """ super().__init__(exp_key=None, refresh=False) if not _have_spark: raise Exception( "SparkTrials cannot import pyspark classes. Make sure that PySpark " "is available in your environment. E.g., try running 'import pyspark'" ) validate_timeout(timeout) validate_loss_threshold(loss_threshold) self._spark = ( SparkSession.builder.getOrCreate() if spark_session is None else spark_session ) self._spark_context = self._spark.sparkContext self._spark_pinned_threads_enabled = isinstance( self._spark_context._gateway, ClientServer ) # The feature to support controlling jobGroupIds is in SPARK-22340 self._spark_supports_job_cancelling = ( self._spark_pinned_threads_enabled or hasattr(self._spark_context.parallelize([1]), "collectWithJobGroup") ) spark_default_parallelism = self._spark_context.defaultParallelism self.parallelism = self._decide_parallelism( requested_parallelism=parallelism, spark_default_parallelism=spark_default_parallelism, ) if not self._spark_supports_job_cancelling and timeout is not None: logger.warning( "SparkTrials was constructed with a timeout specified, but this Apache " "Spark version does not support job group-based cancellation. The " "timeout will be respected when starting new Spark jobs, but " "SparkTrials will not be able to cancel running Spark jobs which exceed" " the timeout." ) self.timeout = timeout self.loss_threshold = loss_threshold self._fmin_cancelled = False self._fmin_cancelled_reason = None self.refresh()
(self, parallelism=None, timeout=None, loss_threshold=None, spark_session=None)
61,617
hyperopt.base
__iter__
null
def __iter__(self): try: return iter(self._trials) except AttributeError: print("You have to refresh before you iterate", file=sys.stderr) raise
(self)
61,618
hyperopt.base
__len__
null
def __len__(self): try: return len(self._trials) except AttributeError: print("You have to refresh before you compute len", file=sys.stderr) raise
(self)
61,619
hyperopt.spark
_decide_parallelism
Given the requested parallelism, return the max parallelism SparkTrials will actually use. See the docstring for `parallelism` in the constructor for expected behavior.
@staticmethod def _decide_parallelism(requested_parallelism, spark_default_parallelism): """ Given the requested parallelism, return the max parallelism SparkTrials will actually use. See the docstring for `parallelism` in the constructor for expected behavior. """ if requested_parallelism is None or requested_parallelism <= 0: parallelism = max(spark_default_parallelism, 1) logger.warning( "Because the requested parallelism was None or a non-positive value, " "parallelism will be set to ({d}), which is Spark's default parallelism ({s}), " "or 1, whichever is greater. " "We recommend setting parallelism explicitly to a positive value because " "the total of Spark task slots is subject to cluster sizing.".format( d=parallelism, s=spark_default_parallelism ) ) else: parallelism = requested_parallelism if parallelism > SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED: logger.warning( "Parallelism ({p}) is capped at SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ({c}).".format( p=parallelism, c=SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED ) ) parallelism = SparkTrials.MAX_CONCURRENT_JOBS_ALLOWED return parallelism
(requested_parallelism, spark_default_parallelism)
61,620
hyperopt.base
_insert_trial_docs
insert with no error checking
def _insert_trial_docs(self, docs): """insert with no error checking""" rval = [doc["tid"] for doc in docs] self._dynamic_trials.extend(docs) return rval
(self, docs)
61,621
hyperopt.base
aname
null
def aname(self, trial, name): return "ATTACH::{}::{}".format(trial["tid"], name)
(self, trial, name)
61,622
hyperopt.base
assert_valid_trial
null
def assert_valid_trial(self, trial): if not (hasattr(trial, "keys") and hasattr(trial, "values")): raise InvalidTrial("trial should be dict-like", trial) for key in TRIAL_KEYS: if key not in trial: raise InvalidTrial("trial missing key %s", key) for key in TRIAL_MISC_KEYS: if key not in trial["misc"]: raise InvalidTrial('trial["misc"] missing key', key) if trial["tid"] != trial["misc"]["tid"]: raise InvalidTrial("tid mismatch between root and misc", trial) # -- check for SON-encodable if have_bson: try: bson.BSON.encode(trial) except: # TODO: save the trial object somewhere to inspect, fix, re-insert # so that precious data is not simply deallocated and lost. print("-" * 80) print("CAN'T ENCODE") print("-" * 80) raise if trial["exp_key"] != self._exp_key: raise InvalidTrial("wrong exp_key", (trial["exp_key"], self._exp_key)) # XXX how to assert that tids are unique? return trial
(self, trial)
61,623
hyperopt.base
average_best_error
Return the average best error of the experiment Average best error is defined as the average of bandit.true_loss, weighted by the probability that the corresponding bandit.loss is best. For domains with loss measurement variance of 0, this function simply returns the true_loss corresponding to the result with the lowest loss.
def average_best_error(self, bandit=None): """Return the average best error of the experiment Average best error is defined as the average of bandit.true_loss, weighted by the probability that the corresponding bandit.loss is best. For domains with loss measurement variance of 0, this function simply returns the true_loss corresponding to the result with the lowest loss. """ if bandit is None: results = self.results loss = [r["loss"] for r in results if r["status"] == STATUS_OK] loss_v = [ r.get("loss_variance", 0) for r in results if r["status"] == STATUS_OK ] true_loss = [ r.get("true_loss", r["loss"]) for r in results if r["status"] == STATUS_OK ] else: def fmap(f): rval = np.asarray( [ f(r, s) for (r, s) in zip(self.results, self.specs) if bandit.status(r) == STATUS_OK ] ).astype("float") if not np.all(np.isfinite(rval)): raise ValueError() return rval loss = fmap(bandit.loss) loss_v = fmap(bandit.loss_variance) true_loss = fmap(bandit.true_loss) loss3 = list(zip(loss, loss_v, true_loss)) if not loss3: raise ValueError("Empty loss vector") loss3.sort() loss3 = np.asarray(loss3) if np.all(loss3[:, 1] == 0): best_idx = np.argmin(loss3[:, 0]) return loss3[best_idx, 2] else: cutoff = 0 sigma = np.sqrt(loss3[0][1]) while cutoff < len(loss3) and loss3[cutoff][0] < loss3[0][0] + 3 * sigma: cutoff += 1 pmin = pmin_sampled(loss3[:cutoff, 0], loss3[:cutoff, 1]) avg_true_loss = (pmin * loss3[:cutoff, 2]).sum() return avg_true_loss
(self, bandit=None)
61,624
hyperopt.base
count_by_state_synced
Return trial counts by looking at self._trials
def count_by_state_synced(self, arg, trials=None): """ Return trial counts by looking at self._trials """ if trials is None: trials = self._trials if arg in JOB_STATES: queue = [doc for doc in trials if doc["state"] == arg] elif hasattr(arg, "__iter__"): states = set(arg) assert all([x in JOB_STATES for x in states]) queue = [doc for doc in trials if doc["state"] in states] else: raise TypeError(arg) rval = len(queue) return rval
(self, arg, trials=None)
61,625
hyperopt.base
count_by_state_unsynced
Return trial counts that count_by_state_synced would return if we called refresh() first.
def count_by_state_unsynced(self, arg): """ Return trial counts that count_by_state_synced would return if we called refresh() first. """ if self._exp_key is not None: exp_trials = [ tt for tt in self._dynamic_trials if tt["exp_key"] == self._exp_key ] else: exp_trials = self._dynamic_trials return self.count_by_state_synced(arg, trials=exp_trials)
(self, arg)
61,626
hyperopt.spark
count_cancelled_trials
Returns the current number of cancelled trial runs. This covers trials which are cancelled from exceeding the timeout.
def count_cancelled_trials(self): """ Returns the current number of cancelled trial runs. This covers trials which are cancelled from exceeding the timeout. """ return self.count_by_state_unsynced(base.JOB_STATE_CANCEL)
(self)
61,627
hyperopt.spark
count_failed_trials
Returns the current number of trial runs which failed
def count_failed_trials(self): """ Returns the current number of trial runs which failed """ return self.count_by_state_unsynced(base.JOB_STATE_ERROR)
(self)
61,628
hyperopt.spark
count_successful_trials
Returns the current number of trials which ran successfully
def count_successful_trials(self): """ Returns the current number of trials which ran successfully """ return self.count_by_state_unsynced(base.JOB_STATE_DONE)
(self)
61,629
hyperopt.spark
count_total_trials
Returns the current number of all successful, failed, and cancelled trial runs
def count_total_trials(self): """ Returns the current number of all successful, failed, and cancelled trial runs """ total_states = [ base.JOB_STATE_DONE, base.JOB_STATE_ERROR, base.JOB_STATE_CANCEL, ] return self.count_by_state_unsynced(total_states)
(self)
61,630
hyperopt.spark
delete_all
Reset the Trials to init state
def delete_all(self): """ Reset the Trials to init state """ super().delete_all() self._fmin_cancelled = False self._fmin_cancelled_reason = None
(self)
61,631
hyperopt.spark
fmin
This should not be called directly but is called via :func:`hyperopt.fmin` Refer to :func:`hyperopt.fmin` for docs on each argument
def fmin( self, fn, space, algo, max_evals, timeout, loss_threshold, max_queue_len, rstate, verbose, pass_expr_memo_ctrl, catch_eval_exceptions, return_argmin, show_progressbar, early_stop_fn, trials_save_file="", ): """ This should not be called directly but is called via :func:`hyperopt.fmin` Refer to :func:`hyperopt.fmin` for docs on each argument """ if timeout is not None: if self.timeout is not None: logger.warning( "Timeout param was defined in Trials object, ignoring fmin definition" ) else: validate_timeout(timeout) self.timeout = timeout if loss_threshold is not None: validate_loss_threshold(loss_threshold) self.loss_threshold = loss_threshold assert ( not pass_expr_memo_ctrl ), "SparkTrials does not support `pass_expr_memo_ctrl`" assert ( not catch_eval_exceptions ), "SparkTrials does not support `catch_eval_exceptions`" state = _SparkFMinState(self._spark, fn, space, self) # Will launch a dispatcher thread which runs each trial task as one spark job. state.launch_dispatcher() try: res = fmin( fn, space, algo, max_evals, timeout=timeout, loss_threshold=loss_threshold, max_queue_len=max_queue_len, trials=self, allow_trials_fmin=False, # -- prevent recursion rstate=rstate, pass_expr_memo_ctrl=None, # not supported catch_eval_exceptions=catch_eval_exceptions, verbose=verbose, return_argmin=return_argmin, points_to_evaluate=None, # not supported show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file="", # not supported ) except BaseException as e: logger.debug("fmin thread exits with an exception raised.") raise e else: logger.debug("fmin thread exits normally.") return res finally: state.wait_for_all_threads() logger.info( "Total Trials: {t}: {s} succeeded, {f} failed, {c} cancelled.".format( t=self.count_total_trials(), s=self.count_successful_trials(), f=self.count_failed_trials(), c=self.count_cancelled_trials(), ) )
(self, fn, space, algo, max_evals, timeout, loss_threshold, max_queue_len, rstate, verbose, pass_expr_memo_ctrl, catch_eval_exceptions, return_argmin, show_progressbar, early_stop_fn, trials_save_file='')
61,632
hyperopt.base
insert_trial_doc
insert trial after error checking Does not refresh. Call self.refresh() for the trial to appear in self.specs, self.results, etc.
def insert_trial_doc(self, doc): """insert trial after error checking Does not refresh. Call self.refresh() for the trial to appear in self.specs, self.results, etc. """ doc = self.assert_valid_trial(SONify(doc)) return self._insert_trial_docs([doc])[0] # refreshing could be done fast in this base implementation, but with # a real DB the steps should be separated.
(self, doc)
61,633
hyperopt.base
insert_trial_docs
trials - something like is returned by self.new_trial_docs()
def insert_trial_docs(self, docs): """trials - something like is returned by self.new_trial_docs()""" docs = [self.assert_valid_trial(SONify(doc)) for doc in docs] return self._insert_trial_docs(docs)
(self, docs)
61,634
hyperopt.base
losses
null
def losses(self, bandit=None): if bandit is None: return [r.get("loss") for r in self.results] return list(map(bandit.loss, self.results, self.specs))
(self, bandit=None)
61,635
hyperopt.base
new_trial_docs
null
def new_trial_docs(self, tids, specs, results, miscs): assert len(tids) == len(specs) == len(results) == len(miscs) trials_docs = [] for tid, spec, result, misc in zip(tids, specs, results, miscs): doc = { "state": JOB_STATE_NEW, "tid": tid, "spec": spec, "result": result, "misc": misc, "exp_key": self._exp_key, "owner": None, "version": 0, "book_time": None, "refresh_time": None, } trials_docs.append(doc) return trials_docs
(self, tids, specs, results, miscs)
61,636
hyperopt.base
new_trial_ids
null
def new_trial_ids(self, n): aa = len(self._ids) rval = list(range(aa, aa + n)) self._ids.update(rval) return rval
(self, n)
61,637
hyperopt.base
refresh
null
def refresh(self): # In MongoTrials, this method fetches from database if self._exp_key is None: self._trials = [ tt for tt in self._dynamic_trials if tt["state"] in JOB_VALID_STATES ] else: self._trials = [ tt for tt in self._dynamic_trials if (tt["state"] in JOB_VALID_STATES and tt["exp_key"] == self._exp_key) ] self._ids.update([tt["tid"] for tt in self._trials])
(self)
61,638
hyperopt.base
source_trial_docs
null
def source_trial_docs(self, tids, specs, results, miscs, sources): assert len(tids) == len(specs) == len(results) == len(miscs) == len(sources) rval = [] for tid, spec, result, misc, source in zip( tids, specs, results, miscs, sources ): doc = dict( version=0, tid=tid, spec=spec, result=result, misc=misc, state=source["state"], exp_key=source["exp_key"], owner=source["owner"], book_time=source["book_time"], refresh_time=source["refresh_time"], ) # -- ensure that misc has the following fields, # some of which may already by set correctly. assign = ("tid", tid), ("cmd", None), ("from_tid", source["tid"]) for k, v in assign: assert doc["misc"].setdefault(k, v) == v rval.append(doc) return rval
(self, tids, specs, results, miscs, sources)
61,639
hyperopt.base
statuses
null
def statuses(self, bandit=None): if bandit is None: return [r.get("status") for r in self.results] return list(map(bandit.status, self.results, self.specs))
(self, bandit=None)
61,640
hyperopt.spark
trial_attachments
null
def trial_attachments(self, trial): raise NotImplementedError("SparkTrials does not support trial attachments.")
(self, trial)
61,641
hyperopt.base
view
null
def view(self, exp_key=None, refresh=True): rval = object.__new__(self.__class__) rval._exp_key = exp_key rval._ids = self._ids rval._dynamic_trials = self._dynamic_trials rval.attachments = self.attachments if refresh: rval.refresh() return rval
(self, exp_key=None, refresh=True)
61,642
hyperopt.base
Trials
Database interface supporting data-driven model-based optimization. The model-based optimization algorithms used by hyperopt's fmin function work by analyzing samples of a response surface--a history of what points in the search space were tested, and what was discovered by those tests. A Trials instance stores that history and makes it available to fmin and to the various optimization algorithms. This class (`base.Trials`) is a pure-Python implementation of the database in terms of lists of dictionaries. Subclass `mongoexp.MongoTrials` implements the same API in terms of a mongodb database running in another process. Other subclasses may be implemented in future. The elements of `self.trials` represent all of the completed, in-progress, and scheduled evaluation points from an e.g. `fmin` call. Each element of `self.trials` is a dictionary with *at least* the following keys: * **tid**: a unique trial identification object within this Trials instance usually it is an integer, but it isn't obvious that other sortable, hashable objects couldn't be used at some point. * **result**: a sub-dictionary representing what was returned by the fmin evaluation function. This sub-dictionary has a key 'status' with a value from `STATUS_STRINGS` and the status is `STATUS_OK`, then there should be a 'loss' key as well with a floating-point value. Other special keys in this sub-dictionary may be used by optimization algorithms (see them for details). Other keys in this sub-dictionary can be used by the evaluation function to store miscellaneous diagnostics and debugging information. * **misc**: despite generic name, this is currently where the trial's hyperparameter assignments are stored. This sub-dictionary has two elements: `'idxs'` and `'vals'`. The `vals` dictionary is a sub-sub-dictionary mapping each hyperparameter to either `[]` (if the hyperparameter is inactive in this trial), or `[<val>]` (if the hyperparameter is active). The `idxs` dictionary is technically redundant -- it is the same as `vals` but it maps hyperparameter names to either `[]` or `[<tid>]`.
class Trials: """Database interface supporting data-driven model-based optimization. The model-based optimization algorithms used by hyperopt's fmin function work by analyzing samples of a response surface--a history of what points in the search space were tested, and what was discovered by those tests. A Trials instance stores that history and makes it available to fmin and to the various optimization algorithms. This class (`base.Trials`) is a pure-Python implementation of the database in terms of lists of dictionaries. Subclass `mongoexp.MongoTrials` implements the same API in terms of a mongodb database running in another process. Other subclasses may be implemented in future. The elements of `self.trials` represent all of the completed, in-progress, and scheduled evaluation points from an e.g. `fmin` call. Each element of `self.trials` is a dictionary with *at least* the following keys: * **tid**: a unique trial identification object within this Trials instance usually it is an integer, but it isn't obvious that other sortable, hashable objects couldn't be used at some point. * **result**: a sub-dictionary representing what was returned by the fmin evaluation function. This sub-dictionary has a key 'status' with a value from `STATUS_STRINGS` and the status is `STATUS_OK`, then there should be a 'loss' key as well with a floating-point value. Other special keys in this sub-dictionary may be used by optimization algorithms (see them for details). Other keys in this sub-dictionary can be used by the evaluation function to store miscellaneous diagnostics and debugging information. * **misc**: despite generic name, this is currently where the trial's hyperparameter assignments are stored. This sub-dictionary has two elements: `'idxs'` and `'vals'`. The `vals` dictionary is a sub-sub-dictionary mapping each hyperparameter to either `[]` (if the hyperparameter is inactive in this trial), or `[<val>]` (if the hyperparameter is active). The `idxs` dictionary is technically redundant -- it is the same as `vals` but it maps hyperparameter names to either `[]` or `[<tid>]`. """ asynchronous = False def __init__(self, exp_key=None, refresh=True): self._ids = set() self._dynamic_trials = [] self._exp_key = exp_key self.attachments = {} if refresh: self.refresh() def view(self, exp_key=None, refresh=True): rval = object.__new__(self.__class__) rval._exp_key = exp_key rval._ids = self._ids rval._dynamic_trials = self._dynamic_trials rval.attachments = self.attachments if refresh: rval.refresh() return rval def aname(self, trial, name): return "ATTACH::{}::{}".format(trial["tid"], name) def trial_attachments(self, trial): """ Support syntax for load: self.trial_attachments(doc)[name] # -- does this work syntactically? # (In any event a 2-stage store will work) Support syntax for store: self.trial_attachments(doc)[name] = value """ # don't offer more here than in MongoCtrl class Attachments: def __contains__(_self, name): return self.aname(trial, name) in self.attachments def __getitem__(_self, name): return self.attachments[self.aname(trial, name)] def __setitem__(_self, name, value): self.attachments[self.aname(trial, name)] = value def __delitem__(_self, name): del self.attachments[self.aname(trial, name)] return Attachments() def __iter__(self): try: return iter(self._trials) except AttributeError: print("You have to refresh before you iterate", file=sys.stderr) raise def __len__(self): try: return len(self._trials) except AttributeError: print("You have to refresh before you compute len", file=sys.stderr) raise def __getitem__(self, item): # -- how to make it obvious whether indexing is by _trials position # or by tid if both are integers? raise NotImplementedError("") def refresh(self): # In MongoTrials, this method fetches from database if self._exp_key is None: self._trials = [ tt for tt in self._dynamic_trials if tt["state"] in JOB_VALID_STATES ] else: self._trials = [ tt for tt in self._dynamic_trials if (tt["state"] in JOB_VALID_STATES and tt["exp_key"] == self._exp_key) ] self._ids.update([tt["tid"] for tt in self._trials]) @property def trials(self): return self._trials @property def tids(self): return [tt["tid"] for tt in self._trials] @property def specs(self): return [tt["spec"] for tt in self._trials] @property def results(self): return [tt["result"] for tt in self._trials] @property def miscs(self): return [tt["misc"] for tt in self._trials] @property def idxs_vals(self): return miscs_to_idxs_vals(self.miscs) @property def idxs(self): return self.idxs_vals[0] @property def vals(self): return self.idxs_vals[1] def assert_valid_trial(self, trial): if not (hasattr(trial, "keys") and hasattr(trial, "values")): raise InvalidTrial("trial should be dict-like", trial) for key in TRIAL_KEYS: if key not in trial: raise InvalidTrial("trial missing key %s", key) for key in TRIAL_MISC_KEYS: if key not in trial["misc"]: raise InvalidTrial('trial["misc"] missing key', key) if trial["tid"] != trial["misc"]["tid"]: raise InvalidTrial("tid mismatch between root and misc", trial) # -- check for SON-encodable if have_bson: try: bson.BSON.encode(trial) except: # TODO: save the trial object somewhere to inspect, fix, re-insert # so that precious data is not simply deallocated and lost. print("-" * 80) print("CAN'T ENCODE") print("-" * 80) raise if trial["exp_key"] != self._exp_key: raise InvalidTrial("wrong exp_key", (trial["exp_key"], self._exp_key)) # XXX how to assert that tids are unique? return trial def _insert_trial_docs(self, docs): """insert with no error checking""" rval = [doc["tid"] for doc in docs] self._dynamic_trials.extend(docs) return rval def insert_trial_doc(self, doc): """insert trial after error checking Does not refresh. Call self.refresh() for the trial to appear in self.specs, self.results, etc. """ doc = self.assert_valid_trial(SONify(doc)) return self._insert_trial_docs([doc])[0] # refreshing could be done fast in this base implementation, but with # a real DB the steps should be separated. def insert_trial_docs(self, docs): """trials - something like is returned by self.new_trial_docs()""" docs = [self.assert_valid_trial(SONify(doc)) for doc in docs] return self._insert_trial_docs(docs) def new_trial_ids(self, n): aa = len(self._ids) rval = list(range(aa, aa + n)) self._ids.update(rval) return rval def new_trial_docs(self, tids, specs, results, miscs): assert len(tids) == len(specs) == len(results) == len(miscs) trials_docs = [] for tid, spec, result, misc in zip(tids, specs, results, miscs): doc = { "state": JOB_STATE_NEW, "tid": tid, "spec": spec, "result": result, "misc": misc, "exp_key": self._exp_key, "owner": None, "version": 0, "book_time": None, "refresh_time": None, } trials_docs.append(doc) return trials_docs def source_trial_docs(self, tids, specs, results, miscs, sources): assert len(tids) == len(specs) == len(results) == len(miscs) == len(sources) rval = [] for tid, spec, result, misc, source in zip( tids, specs, results, miscs, sources ): doc = dict( version=0, tid=tid, spec=spec, result=result, misc=misc, state=source["state"], exp_key=source["exp_key"], owner=source["owner"], book_time=source["book_time"], refresh_time=source["refresh_time"], ) # -- ensure that misc has the following fields, # some of which may already by set correctly. assign = ("tid", tid), ("cmd", None), ("from_tid", source["tid"]) for k, v in assign: assert doc["misc"].setdefault(k, v) == v rval.append(doc) return rval def delete_all(self): self._dynamic_trials = [] self.attachments = {} self.refresh() def count_by_state_synced(self, arg, trials=None): """ Return trial counts by looking at self._trials """ if trials is None: trials = self._trials if arg in JOB_STATES: queue = [doc for doc in trials if doc["state"] == arg] elif hasattr(arg, "__iter__"): states = set(arg) assert all([x in JOB_STATES for x in states]) queue = [doc for doc in trials if doc["state"] in states] else: raise TypeError(arg) rval = len(queue) return rval def count_by_state_unsynced(self, arg): """ Return trial counts that count_by_state_synced would return if we called refresh() first. """ if self._exp_key is not None: exp_trials = [ tt for tt in self._dynamic_trials if tt["exp_key"] == self._exp_key ] else: exp_trials = self._dynamic_trials return self.count_by_state_synced(arg, trials=exp_trials) def losses(self, bandit=None): if bandit is None: return [r.get("loss") for r in self.results] return list(map(bandit.loss, self.results, self.specs)) def statuses(self, bandit=None): if bandit is None: return [r.get("status") for r in self.results] return list(map(bandit.status, self.results, self.specs)) def average_best_error(self, bandit=None): """Return the average best error of the experiment Average best error is defined as the average of bandit.true_loss, weighted by the probability that the corresponding bandit.loss is best. For domains with loss measurement variance of 0, this function simply returns the true_loss corresponding to the result with the lowest loss. """ if bandit is None: results = self.results loss = [r["loss"] for r in results if r["status"] == STATUS_OK] loss_v = [ r.get("loss_variance", 0) for r in results if r["status"] == STATUS_OK ] true_loss = [ r.get("true_loss", r["loss"]) for r in results if r["status"] == STATUS_OK ] else: def fmap(f): rval = np.asarray( [ f(r, s) for (r, s) in zip(self.results, self.specs) if bandit.status(r) == STATUS_OK ] ).astype("float") if not np.all(np.isfinite(rval)): raise ValueError() return rval loss = fmap(bandit.loss) loss_v = fmap(bandit.loss_variance) true_loss = fmap(bandit.true_loss) loss3 = list(zip(loss, loss_v, true_loss)) if not loss3: raise ValueError("Empty loss vector") loss3.sort() loss3 = np.asarray(loss3) if np.all(loss3[:, 1] == 0): best_idx = np.argmin(loss3[:, 0]) return loss3[best_idx, 2] else: cutoff = 0 sigma = np.sqrt(loss3[0][1]) while cutoff < len(loss3) and loss3[cutoff][0] < loss3[0][0] + 3 * sigma: cutoff += 1 pmin = pmin_sampled(loss3[:cutoff, 0], loss3[:cutoff, 1]) avg_true_loss = (pmin * loss3[:cutoff, 2]).sum() return avg_true_loss @property def best_trial(self): """ Trial with lowest non-NaN loss and status=STATUS_OK. If no such trial exists, returns None. """ candidates = [ t for t in self.trials if t["result"]["status"] == STATUS_OK and not np.isnan(t["result"]["loss"]) ] if not candidates: raise AllTrialsFailed losses = [float(t["result"]["loss"]) for t in candidates] if len(losses) == 0: return None best = np.nanargmin(losses) return candidates[best] @property def argmin(self): best_trial = self.best_trial vals = best_trial["misc"]["vals"] # unpack the one-element lists to values # and skip over the 0-element lists rval = {} for k, v in list(vals.items()): if v: rval[k] = v[0] return rval def fmin( self, fn, space, algo=None, max_evals=None, timeout=None, loss_threshold=None, max_queue_len=1, rstate=None, verbose=False, pass_expr_memo_ctrl=None, catch_eval_exceptions=False, return_argmin=True, show_progressbar=True, early_stop_fn=None, trials_save_file="", ): """Minimize a function over a hyperparameter space. For most parameters, see `hyperopt.fmin.fmin`. Parameters ---------- catch_eval_exceptions : bool, default False If set to True, exceptions raised by either the evaluation of the configuration space from hyperparameters or the execution of `fn` , will be caught by fmin, and recorded in self._dynamic_trials as error jobs (JOB_STATE_ERROR). If set to False, such exceptions will not be caught, and so they will propagate to calling code. show_progressbar : bool or context manager, default True. Show a progressbar. See `hyperopt.progress` for customizing progress reporting. """ # -- Stop-gap implementation! # fmin should have been a Trials method in the first place # but for now it's still sitting in another file. from .fmin import fmin return fmin( fn, space, algo=algo, max_evals=max_evals, timeout=timeout, loss_threshold=loss_threshold, trials=self, rstate=rstate, verbose=verbose, max_queue_len=max_queue_len, allow_trials_fmin=False, # -- prevent recursion pass_expr_memo_ctrl=pass_expr_memo_ctrl, catch_eval_exceptions=catch_eval_exceptions, return_argmin=return_argmin, show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file=trials_save_file, )
(exp_key=None, refresh=True)
61,644
hyperopt.base
__init__
null
def __init__(self, exp_key=None, refresh=True): self._ids = set() self._dynamic_trials = [] self._exp_key = exp_key self.attachments = {} if refresh: self.refresh()
(self, exp_key=None, refresh=True)
61,653
hyperopt.base
delete_all
null
def delete_all(self): self._dynamic_trials = [] self.attachments = {} self.refresh()
(self)
61,654
hyperopt.base
fmin
Minimize a function over a hyperparameter space. For most parameters, see `hyperopt.fmin.fmin`. Parameters ---------- catch_eval_exceptions : bool, default False If set to True, exceptions raised by either the evaluation of the configuration space from hyperparameters or the execution of `fn` , will be caught by fmin, and recorded in self._dynamic_trials as error jobs (JOB_STATE_ERROR). If set to False, such exceptions will not be caught, and so they will propagate to calling code. show_progressbar : bool or context manager, default True. Show a progressbar. See `hyperopt.progress` for customizing progress reporting.
def fmin( self, fn, space, algo=None, max_evals=None, timeout=None, loss_threshold=None, max_queue_len=1, rstate=None, verbose=False, pass_expr_memo_ctrl=None, catch_eval_exceptions=False, return_argmin=True, show_progressbar=True, early_stop_fn=None, trials_save_file="", ): """Minimize a function over a hyperparameter space. For most parameters, see `hyperopt.fmin.fmin`. Parameters ---------- catch_eval_exceptions : bool, default False If set to True, exceptions raised by either the evaluation of the configuration space from hyperparameters or the execution of `fn` , will be caught by fmin, and recorded in self._dynamic_trials as error jobs (JOB_STATE_ERROR). If set to False, such exceptions will not be caught, and so they will propagate to calling code. show_progressbar : bool or context manager, default True. Show a progressbar. See `hyperopt.progress` for customizing progress reporting. """ # -- Stop-gap implementation! # fmin should have been a Trials method in the first place # but for now it's still sitting in another file. from .fmin import fmin return fmin( fn, space, algo=algo, max_evals=max_evals, timeout=timeout, loss_threshold=loss_threshold, trials=self, rstate=rstate, verbose=verbose, max_queue_len=max_queue_len, allow_trials_fmin=False, # -- prevent recursion pass_expr_memo_ctrl=pass_expr_memo_ctrl, catch_eval_exceptions=catch_eval_exceptions, return_argmin=return_argmin, show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file=trials_save_file, )
(self, fn, space, algo=None, max_evals=None, timeout=None, loss_threshold=None, max_queue_len=1, rstate=None, verbose=False, pass_expr_memo_ctrl=None, catch_eval_exceptions=False, return_argmin=True, show_progressbar=True, early_stop_fn=None, trials_save_file='')
61,663
hyperopt.base
trial_attachments
Support syntax for load: self.trial_attachments(doc)[name] # -- does this work syntactically? # (In any event a 2-stage store will work) Support syntax for store: self.trial_attachments(doc)[name] = value
def trial_attachments(self, trial): """ Support syntax for load: self.trial_attachments(doc)[name] # -- does this work syntactically? # (In any event a 2-stage store will work) Support syntax for store: self.trial_attachments(doc)[name] = value """ # don't offer more here than in MongoCtrl class Attachments: def __contains__(_self, name): return self.aname(trial, name) in self.attachments def __getitem__(_self, name): return self.attachments[self.aname(trial, name)] def __setitem__(_self, name, value): self.attachments[self.aname(trial, name)] = value def __delitem__(_self, name): del self.attachments[self.aname(trial, name)] return Attachments()
(self, trial)
61,670
hyperopt.fmin
fmin
Minimize a function over a hyperparameter space. More realistically: *explore* a function over a hyperparameter space according to a given algorithm, allowing up to a certain number of function evaluations. As points are explored, they are accumulated in `trials` Parameters ---------- fn : callable (trial point -> loss) This function will be called with a value generated from `space` as the first and possibly only argument. It can return either a scalar-valued loss, or a dictionary. A returned dictionary must contain a 'status' key with a value from `STATUS_STRINGS`, must contain a 'loss' key if the status is `STATUS_OK`. Particular optimization algorithms may look for other keys as well. An optional sub-dictionary associated with an 'attachments' key will be removed by fmin its contents will be available via `trials.trial_attachments`. The rest (usually all) of the returned dictionary will be stored and available later as some 'result' sub-dictionary within `trials.trials`. space : hyperopt.pyll.Apply node or "annotated" The set of possible arguments to `fn` is the set of objects that could be created with non-zero probability by drawing randomly from this stochastic program involving involving hp_<xxx> nodes (see `hyperopt.hp` and `hyperopt.pyll_utils`). If set to "annotated", will read space using type hint in fn. Ex: (`def fn(x: hp.uniform("x", -1, 1)): return x`) algo : search algorithm This object, such as `hyperopt.rand.suggest` and `hyperopt.tpe.suggest` provides logic for sequential search of the hyperparameter space. max_evals : int Allow up to this many function evaluations before returning. timeout : None or int, default None Limits search time by parametrized number of seconds. If None, then the search process has no time constraint. loss_threshold : None or double, default None Limits search time when minimal loss reduced to certain amount. If None, then the search process has no constraint on the loss, and will stop based on other parameters, e.g. `max_evals`, `timeout` trials : None or base.Trials (or subclass) Storage for completed, ongoing, and scheduled evaluation points. If None, then a temporary `base.Trials` instance will be created. If a trials object, then that trials object will be affected by side-effect of this call. rstate : numpy.random.Generator, default numpy.random or `$HYPEROPT_FMIN_SEED` Each call to `algo` requires a seed value, which should be different on each call. This object is used to draw these seeds via `randint`. The default rstate is `numpy.random.default_rng(int(env['HYPEROPT_FMIN_SEED']))` if the `HYPEROPT_FMIN_SEED` environment variable is set to a non-empty string, otherwise np.random is used in whatever state it is in. verbose : bool Print out some information to stdout during search. If False, disable progress bar irrespectively of show_progressbar argument allow_trials_fmin : bool, default True If the `trials` argument pass_expr_memo_ctrl : bool, default False If set to True, `fn` will be called in a different more low-level way: it will receive raw hyperparameters, a partially-populated `memo`, and a Ctrl object for communication with this Trials object. return_argmin : bool, default True If set to False, this function returns nothing, which can be useful for example if it is expected that `len(trials)` may be zero after fmin, and therefore `trials.argmin` would be undefined. points_to_evaluate : list, default None Only works if trials=None. If points_to_evaluate equals None then the trials are evaluated normally. If list of dicts is passed then given points are evaluated before optimisation starts, so the overall number of optimisation steps is len(points_to_evaluate) + max_evals. Elements of this list must be in a form of a dictionary with variable names as keys and variable values as dict values. Example points_to_evaluate value is [{'x': 0.0, 'y': 0.0}, {'x': 1.0, 'y': 2.0}] max_queue_len : integer, default 1 Sets the queue length generated in the dictionary or trials. Increasing this value helps to slightly speed up parallel simulatulations which sometimes lag on suggesting a new trial. show_progressbar : bool or context manager, default True (or False is verbose is False). Show a progressbar. See `hyperopt.progress` for customizing progress reporting. early_stop_fn: callable ((result, *args) -> (Boolean, *args)). Called after every run with the result of the run and the values returned by the function previously. Stop the search if the function return true. Default None. trials_save_file: str, default "" Optional file name to save the trials object to every iteration. If specified and the file already exists, will load from this file when trials=None instead of creating a new base.Trials object Returns ------- argmin : dictionary If return_argmin is True returns `trials.argmin` which is a dictionary. Otherwise this function returns the result of `hyperopt.space_eval(space, trails.argmin)` if there were successfull trails. This object shares the same structure as the space passed. If there were no successfull trails, it returns None.
def fmin( fn, space, algo=None, max_evals=None, timeout=None, loss_threshold=None, trials=None, rstate=None, allow_trials_fmin=True, pass_expr_memo_ctrl=None, catch_eval_exceptions=False, verbose=True, return_argmin=True, points_to_evaluate=None, max_queue_len=1, show_progressbar=True, early_stop_fn=None, trials_save_file="", ): """Minimize a function over a hyperparameter space. More realistically: *explore* a function over a hyperparameter space according to a given algorithm, allowing up to a certain number of function evaluations. As points are explored, they are accumulated in `trials` Parameters ---------- fn : callable (trial point -> loss) This function will be called with a value generated from `space` as the first and possibly only argument. It can return either a scalar-valued loss, or a dictionary. A returned dictionary must contain a 'status' key with a value from `STATUS_STRINGS`, must contain a 'loss' key if the status is `STATUS_OK`. Particular optimization algorithms may look for other keys as well. An optional sub-dictionary associated with an 'attachments' key will be removed by fmin its contents will be available via `trials.trial_attachments`. The rest (usually all) of the returned dictionary will be stored and available later as some 'result' sub-dictionary within `trials.trials`. space : hyperopt.pyll.Apply node or "annotated" The set of possible arguments to `fn` is the set of objects that could be created with non-zero probability by drawing randomly from this stochastic program involving involving hp_<xxx> nodes (see `hyperopt.hp` and `hyperopt.pyll_utils`). If set to "annotated", will read space using type hint in fn. Ex: (`def fn(x: hp.uniform("x", -1, 1)): return x`) algo : search algorithm This object, such as `hyperopt.rand.suggest` and `hyperopt.tpe.suggest` provides logic for sequential search of the hyperparameter space. max_evals : int Allow up to this many function evaluations before returning. timeout : None or int, default None Limits search time by parametrized number of seconds. If None, then the search process has no time constraint. loss_threshold : None or double, default None Limits search time when minimal loss reduced to certain amount. If None, then the search process has no constraint on the loss, and will stop based on other parameters, e.g. `max_evals`, `timeout` trials : None or base.Trials (or subclass) Storage for completed, ongoing, and scheduled evaluation points. If None, then a temporary `base.Trials` instance will be created. If a trials object, then that trials object will be affected by side-effect of this call. rstate : numpy.random.Generator, default numpy.random or `$HYPEROPT_FMIN_SEED` Each call to `algo` requires a seed value, which should be different on each call. This object is used to draw these seeds via `randint`. The default rstate is `numpy.random.default_rng(int(env['HYPEROPT_FMIN_SEED']))` if the `HYPEROPT_FMIN_SEED` environment variable is set to a non-empty string, otherwise np.random is used in whatever state it is in. verbose : bool Print out some information to stdout during search. If False, disable progress bar irrespectively of show_progressbar argument allow_trials_fmin : bool, default True If the `trials` argument pass_expr_memo_ctrl : bool, default False If set to True, `fn` will be called in a different more low-level way: it will receive raw hyperparameters, a partially-populated `memo`, and a Ctrl object for communication with this Trials object. return_argmin : bool, default True If set to False, this function returns nothing, which can be useful for example if it is expected that `len(trials)` may be zero after fmin, and therefore `trials.argmin` would be undefined. points_to_evaluate : list, default None Only works if trials=None. If points_to_evaluate equals None then the trials are evaluated normally. If list of dicts is passed then given points are evaluated before optimisation starts, so the overall number of optimisation steps is len(points_to_evaluate) + max_evals. Elements of this list must be in a form of a dictionary with variable names as keys and variable values as dict values. Example points_to_evaluate value is [{'x': 0.0, 'y': 0.0}, {'x': 1.0, 'y': 2.0}] max_queue_len : integer, default 1 Sets the queue length generated in the dictionary or trials. Increasing this value helps to slightly speed up parallel simulatulations which sometimes lag on suggesting a new trial. show_progressbar : bool or context manager, default True (or False is verbose is False). Show a progressbar. See `hyperopt.progress` for customizing progress reporting. early_stop_fn: callable ((result, *args) -> (Boolean, *args)). Called after every run with the result of the run and the values returned by the function previously. Stop the search if the function return true. Default None. trials_save_file: str, default "" Optional file name to save the trials object to every iteration. If specified and the file already exists, will load from this file when trials=None instead of creating a new base.Trials object Returns ------- argmin : dictionary If return_argmin is True returns `trials.argmin` which is a dictionary. Otherwise this function returns the result of `hyperopt.space_eval(space, trails.argmin)` if there were successfull trails. This object shares the same structure as the space passed. If there were no successfull trails, it returns None. """ if algo is None: algo = tpe.suggest logger.warning("TPE is being used as the default algorithm.") if max_evals is None: max_evals = sys.maxsize if rstate is None: env_rseed = os.environ.get("HYPEROPT_FMIN_SEED", "") if env_rseed: rstate = np.random.default_rng(int(env_rseed)) else: rstate = np.random.default_rng() validate_timeout(timeout) validate_loss_threshold(loss_threshold) if space == "annotated": # Read space from objective fn space = inspect.getfullargspec(fn).annotations # Validate space for param, hp_func in space.items(): if not isinstance(hp_func, pyll.base.Apply): raise exceptions.InvalidAnnotatedParameter( 'When using `space="annotated"`, please annotate the ' "objective function arguments with a `pyll.base.Apply` " "subclass. See example in `fmin` docstring" ) # Change fn to accept a dict-like argument fn = __objective_fmin_wrapper(fn) if allow_trials_fmin and hasattr(trials, "fmin"): return trials.fmin( fn, space, algo=algo, max_evals=max_evals, timeout=timeout, loss_threshold=loss_threshold, max_queue_len=max_queue_len, rstate=rstate, pass_expr_memo_ctrl=pass_expr_memo_ctrl, verbose=verbose, catch_eval_exceptions=catch_eval_exceptions, return_argmin=return_argmin, show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file=trials_save_file, ) if trials is None: if os.path.exists(trials_save_file): trials = pickler.load(open(trials_save_file, "rb")) elif points_to_evaluate is None: trials = base.Trials() else: assert type(points_to_evaluate) == list trials = generate_trials_to_calculate(points_to_evaluate) domain = base.Domain(fn, space, pass_expr_memo_ctrl=pass_expr_memo_ctrl) rval = FMinIter( algo, domain, trials, max_evals=max_evals, timeout=timeout, loss_threshold=loss_threshold, rstate=rstate, verbose=verbose, max_queue_len=max_queue_len, show_progressbar=show_progressbar, early_stop_fn=early_stop_fn, trials_save_file=trials_save_file, ) rval.catch_eval_exceptions = catch_eval_exceptions # next line is where the fmin is actually executed rval.exhaust() if return_argmin: if len(trials.trials) == 0: raise Exception( "There are no evaluation tasks, cannot return argmin of task losses." ) return trials.argmin if len(trials) > 0: # Only if there are some successful trail runs, return the best point in # the evaluation space return space_eval(space, trials.argmin) return None
(fn, space, algo=None, max_evals=None, timeout=None, loss_threshold=None, trials=None, rstate=None, allow_trials_fmin=True, pass_expr_memo_ctrl=None, catch_eval_exceptions=False, verbose=True, return_argmin=True, points_to_evaluate=None, max_queue_len=1, show_progressbar=True, early_stop_fn=None, trials_save_file='')
61,671
hyperopt.fmin
fmin_pass_expr_memo_ctrl
Mark a function as expecting kwargs 'expr', 'memo' and 'ctrl' from hyperopt.fmin. expr - the pyll expression of the search space memo - a partially-filled memo dictionary such that `rec_eval(expr, memo=memo)` will build the proposed trial point. ctrl - the Experiment control object (see base.Ctrl)
def fmin_pass_expr_memo_ctrl(f): """ Mark a function as expecting kwargs 'expr', 'memo' and 'ctrl' from hyperopt.fmin. expr - the pyll expression of the search space memo - a partially-filled memo dictionary such that `rec_eval(expr, memo=memo)` will build the proposed trial point. ctrl - the Experiment control object (see base.Ctrl) """ f.fmin_pass_expr_memo_ctrl = True return f
(f)
61,674
hyperopt.fmin
partial
functools.partial work-alike for functions decorated with fmin_pass_expr_memo_ctrl
def partial(fn, **kwargs): """functools.partial work-alike for functions decorated with fmin_pass_expr_memo_ctrl """ rval = functools.partial(fn, **kwargs) if hasattr(fn, "fmin_pass_expr_memo_ctrl"): rval.fmin_pass_expr_memo_ctrl = fn.fmin_pass_expr_memo_ctrl return rval
(fn, **kwargs)
61,679
hyperopt.fmin
space_eval
Compute a point in a search space from a hyperparameter assignment. Parameters: ----------- space - a pyll graph involving hp nodes (see `pyll_utils`). hp_assignment - a dictionary mapping hp node labels to values.
def space_eval(space, hp_assignment): """Compute a point in a search space from a hyperparameter assignment. Parameters: ----------- space - a pyll graph involving hp nodes (see `pyll_utils`). hp_assignment - a dictionary mapping hp node labels to values. """ space = pyll.as_apply(space) nodes = pyll.toposort(space) memo = {} for node in nodes: if node.name == "hyperopt_param": label = node.arg["label"].eval() if label in hp_assignment: memo[node] = hp_assignment[label] rval = pyll.rec_eval(space, memo=memo) return rval
(space, hp_assignment)
61,683
hyperopt.base
trials_from_docs
Construct a Trials base class instance from a list of trials documents
def trials_from_docs(docs, validate=True, **kwargs): """Construct a Trials base class instance from a list of trials documents""" rval = Trials(**kwargs) if validate: rval.insert_trial_docs(docs) else: rval._insert_trial_docs(docs) rval.refresh() return rval
(docs, validate=True, **kwargs)
61,686
visaplan.plone.ajaxnavigation
AjaxnavTypeError
Some visaplan.plone.ajaxnavigation component has been used wrongly
class AjaxnavTypeError(TypeError, Error): """ Some visaplan.plone.ajaxnavigation component has been used wrongly """
null
61,687
visaplan.plone.ajaxnavigation
Error
Root exception class for the visaplan.plone.ajaxnavigation package
class Error(Exception): """ Root exception class for the visaplan.plone.ajaxnavigation package """
null
61,688
zope.i18nmessageid.message
MessageFactory
Factory for creating i18n messages.
class MessageFactory: """Factory for creating i18n messages.""" def __init__(self, domain): self._domain = domain def __call__(self, ustr, default=None, mapping=None, msgid_plural=None, default_plural=None, number=None): return Message(ustr, self._domain, default, mapping, msgid_plural, default_plural, number)
(domain)
61,689
zope.i18nmessageid.message
__call__
null
def __call__(self, ustr, default=None, mapping=None, msgid_plural=None, default_plural=None, number=None): return Message(ustr, self._domain, default, mapping, msgid_plural, default_plural, number)
(self, ustr, default=None, mapping=None, msgid_plural=None, default_plural=None, number=None)
61,690
zope.i18nmessageid.message
__init__
null
def __init__(self, domain): self._domain = domain
(self, domain)
61,691
visaplan.plone.ajaxnavigation
TemplateNotFound
null
class TemplateNotFound(Error): pass
null
61,692
visaplan.plone.ajaxnavigation
ToolNotFound
null
class ToolNotFound(Error): pass
null
61,693
eval_type_backport.eval_type_backport
ForwardRef
Like `typing.ForwardRef`, but lets older Python versions use newer typing features. Specifically, when evaluated, this transforms `X | Y` into `typing.Union[X, Y]` and `list[X]` into `typing.List[X]` etc. (for all the types made generic in PEP 585) if the original syntax is not supported in the current Python version.
class ForwardRef(typing.ForwardRef, _root=True): # type: ignore[call-arg,misc] """ Like `typing.ForwardRef`, but lets older Python versions use newer typing features. Specifically, when evaluated, this transforms `X | Y` into `typing.Union[X, Y]` and `list[X]` into `typing.List[X]` etc. (for all the types made generic in PEP 585) if the original syntax is not supported in the current Python version. """ def _evaluate( self, globalns: dict[str, Any] | None, localns: dict[str, Any] | None, recursive_guard: frozenset[str] | None = None, ) -> Any: try: return super()._evaluate( globalns, localns, # assume `recursive_guard` is provided by typing, # so if it's not None, it is supported in typing.ForwardRef *() if recursive_guard is None else (recursive_guard,), ) except TypeError as e: if not is_backport_fixable_error(e): raise return _eval_direct(self, globalns, localns)
(arg, is_argument=True, module=None, *, is_class=False)
61,698
eval_type_backport.eval_type_backport
_evaluate
null
def _evaluate( self, globalns: dict[str, Any] | None, localns: dict[str, Any] | None, recursive_guard: frozenset[str] | None = None, ) -> Any: try: return super()._evaluate( globalns, localns, # assume `recursive_guard` is provided by typing, # so if it's not None, it is supported in typing.ForwardRef *() if recursive_guard is None else (recursive_guard,), ) except TypeError as e: if not is_backport_fixable_error(e): raise return _eval_direct(self, globalns, localns)
(self, globalns: dict[str, typing.Any] | None, localns: dict[str, typing.Any] | None, recursive_guard: Optional[frozenset[str]] = None) -> Any