index
int64 0
731k
| package
stringlengths 2
98
⌀ | name
stringlengths 1
76
| docstring
stringlengths 0
281k
⌀ | code
stringlengths 4
1.07M
⌀ | signature
stringlengths 2
42.8k
⌀ |
---|---|---|---|---|---|
65,010 |
mdutils.mdutils
|
new_table
|
This method takes a list of strings and creates a table.
Using arguments ``columns`` and ``rows`` allows to create a table of *n* columns and *m* rows. The
``columns * rows`` operations has to correspond to the number of elements of ``text`` list argument.
Moreover, ``argument`` allows to place the table wherever you want from the file.
:param columns: this variable defines how many columns will have the table.
:type columns: int
:param rows: this variable defines how many rows will have the table.
:type rows: int
:param text: it is a list containing all the strings which will be placed in the table.
:type text: list
:param text_align: allows to align all the cells to the ``'right'``, ``'left'`` or ``'center'``.
By default: ``'center'``.
:type text_align: str
:param marker: using ``create_marker`` method can place the table anywhere of the markdown file.
:type marker: str
:return: can return the table created as a string.
:rtype: str
:Example:
>>> from mdutils import MdUtils
>>> md = MdUtils(file_name='Example')
>>> text_list = ['List of Items', 'Description', 'Result', 'Item 1', 'Description of item 1', '10', 'Item 2', 'Description of item 2', '0']
>>> table = md.new_table(columns=3, rows=3, text=text_list, text_align='center')
>>> print(repr(table))
'\n|List of Items|Description|Result|\n| :---: | :---: | :---: |\n|Item 1|Description of item 1|10|\n|Item 2|Description of item 2|0|\n'
.. csv-table:: **Table result on Markdown**
:header: "List of Items", "Description", "Results"
"Item 1", "Description of Item 1", 10
"Item 2", "Description of Item 2", 0
|
def new_table(
self,
columns: int,
rows: int,
text: List[str],
text_align: str = "center",
marker: str = "",
) -> str:
"""This method takes a list of strings and creates a table.
Using arguments ``columns`` and ``rows`` allows to create a table of *n* columns and *m* rows. The
``columns * rows`` operations has to correspond to the number of elements of ``text`` list argument.
Moreover, ``argument`` allows to place the table wherever you want from the file.
:param columns: this variable defines how many columns will have the table.
:type columns: int
:param rows: this variable defines how many rows will have the table.
:type rows: int
:param text: it is a list containing all the strings which will be placed in the table.
:type text: list
:param text_align: allows to align all the cells to the ``'right'``, ``'left'`` or ``'center'``.
By default: ``'center'``.
:type text_align: str
:param marker: using ``create_marker`` method can place the table anywhere of the markdown file.
:type marker: str
:return: can return the table created as a string.
:rtype: str
:Example:
>>> from mdutils import MdUtils
>>> md = MdUtils(file_name='Example')
>>> text_list = ['List of Items', 'Description', 'Result', 'Item 1', 'Description of item 1', '10', 'Item 2', 'Description of item 2', '0']
>>> table = md.new_table(columns=3, rows=3, text=text_list, text_align='center')
>>> print(repr(table))
'\\n|List of Items|Description|Result|\\n| :---: | :---: | :---: |\\n|Item 1|Description of item 1|10|\\n|Item 2|Description of item 2|0|\\n'
.. csv-table:: **Table result on Markdown**
:header: "List of Items", "Description", "Results"
"Item 1", "Description of Item 1", 10
"Item 2", "Description of Item 2", 0
"""
new_table = mdutils.tools.Table.Table()
text_table = new_table.create_table(columns, rows, text, text_align)
if marker:
self.file_data_text = self.place_text_using_marker(text_table, marker)
else:
self.___update_file_data(text_table)
return text_table
|
(self, columns: int, rows: int, text: List[str], text_align: str = 'center', marker: str = '') -> str
|
65,011 |
mdutils.mdutils
|
new_table_of_contents
|
Table of contents can be created if Headers of 'atx' style have been defined.
This method allows to create a table of contents and define a title for it. Moreover, `depth` allows user to
define how many levels of headers will be placed in the table of contents.
If no marker is defined, the table of contents will be placed automatically after the file's title.
:param table_title: The table content's title, by default "Table of contents"
:type table_title: str
:param depth: allows to include atx headers 1 through 6. Possible values: 1, 2, 3, 4, 5, or 6.
:type depth: int
:param marker: allows to place the table of contents using a marker.
:type marker: str
:return: a string with the data is returned.
:rtype: str
|
def new_table_of_contents(
self, table_title: str = "Table of contents", depth: int = 1, marker: str = ""
) -> str:
"""Table of contents can be created if Headers of 'atx' style have been defined.
This method allows to create a table of contents and define a title for it. Moreover, `depth` allows user to
define how many levels of headers will be placed in the table of contents.
If no marker is defined, the table of contents will be placed automatically after the file's title.
:param table_title: The table content's title, by default "Table of contents"
:type table_title: str
:param depth: allows to include atx headers 1 through 6. Possible values: 1, 2, 3, 4, 5, or 6.
:type depth: int
:param marker: allows to place the table of contents using a marker.
:type marker: str
:return: a string with the data is returned.
:rtype: str
"""
if marker:
self.table_of_contents = ""
marker_table_of_contents = self.header.choose_header(
level=1, title=table_title, style="setext"
)
marker_table_of_contents += mdutils.tools.TableOfContents.TableOfContents().create_table_of_contents(
self._table_titles, depth
)
self.file_data_text = self.place_text_using_marker(
marker_table_of_contents, marker
)
else:
marker_table_of_contents = ""
self.table_of_contents += self.header.choose_header(
level=1, title=table_title, style="setext"
)
self.table_of_contents += mdutils.tools.TableOfContents.TableOfContents().create_table_of_contents(
self._table_titles, depth
)
return self.table_of_contents + marker_table_of_contents
|
(self, table_title: str = 'Table of contents', depth: int = 1, marker: str = '') -> str
|
65,012 |
mdutils.mdutils
|
place_text_using_marker
|
It replace a previous marker created with ``create_marker`` with a text string.
This method is going to search for the ``marker`` argument, which has been created previously using
``create_marker`` method, in ``file_data_text`` string.
:param text: the new string that will replace the marker.
:type text: str
:param marker: the marker that has to be replaced.
:type marker: str
:return: return a new file_data_text with the replace marker.
:rtype: str
|
def place_text_using_marker(self, text: str, marker: str) -> str:
"""It replace a previous marker created with ``create_marker`` with a text string.
This method is going to search for the ``marker`` argument, which has been created previously using
``create_marker`` method, in ``file_data_text`` string.
:param text: the new string that will replace the marker.
:type text: str
:param marker: the marker that has to be replaced.
:type marker: str
:return: return a new file_data_text with the replace marker.
:rtype: str
"""
return self.file_data_text.replace(marker, text)
|
(self, text: str, marker: str) -> str
|
65,013 |
mdutils.mdutils
|
read_md_file
|
Reads a Markdown file and save it to global class `file_data_text`.
:param file_name: Markdown file's name that has to be read.
:type file_name: str
:return: optionally returns the file data content.
:rtype: str
|
def read_md_file(self, file_name: str) -> str:
"""Reads a Markdown file and save it to global class `file_data_text`.
:param file_name: Markdown file's name that has to be read.
:type file_name: str
:return: optionally returns the file data content.
:rtype: str
"""
file_data = MarkDownFile().read_file(file_name)
self.___update_file_data(file_data)
return file_data
|
(self, file_name: str) -> str
|
65,014 |
mdutils.mdutils
|
write
|
Write text in ``file_Data_text`` string.
:param text: a text a string.
:type text: str
:param bold_italics_code: using ``'b'``: **bold**, ``'i'``: *italics* and ``'c'``: ``inline_code``...
:type bold_italics_code: str
:param color: Can change text color. For example: ``'red'``, ``'green'``, ``'orange'``...
:type color: str
:param align: Using this parameter you can align text. For example ``'right'``, ``'left'`` or ``'center'``.
:type align: str
:param wrap_width: wraps text with designated width by number of characters. By default, long words are not
broken. Use width of 0 to disable wrapping.
:type wrap_width: int
:param marker: allows to replace a marker on some point of the file by the text.
:type marker: str
|
def write(
self,
text: str = "",
bold_italics_code: str = "",
color: str = "black",
align: str = "",
marker: str = "",
wrap_width: int = 0,
) -> str:
"""Write text in ``file_Data_text`` string.
:param text: a text a string.
:type text: str
:param bold_italics_code: using ``'b'``: **bold**, ``'i'``: *italics* and ``'c'``: ``inline_code``...
:type bold_italics_code: str
:param color: Can change text color. For example: ``'red'``, ``'green'``, ``'orange'``...
:type color: str
:param align: Using this parameter you can align text. For example ``'right'``, ``'left'`` or ``'center'``.
:type align: str
:param wrap_width: wraps text with designated width by number of characters. By default, long words are not
broken. Use width of 0 to disable wrapping.
:type wrap_width: int
:param marker: allows to replace a marker on some point of the file by the text.
:type marker: str
"""
if wrap_width > 0:
text = fill(
text,
wrap_width,
break_long_words=False,
replace_whitespace=False,
drop_whitespace=False,
)
if bold_italics_code or color or align:
new_text = self.textUtils.text_format(text, bold_italics_code, color, align)
else:
new_text = text
if marker:
self.file_data_text = self.place_text_using_marker(new_text, marker)
else:
self.___update_file_data(new_text)
return new_text
|
(self, text: str = '', bold_italics_code: str = '', color: str = 'black', align: str = '', marker: str = '', wrap_width: int = 0) -> str
|
65,017 |
mdutils.tools.TextUtils
|
TextUtils
|
This class helps to create bold, italics and change color text.
|
class TextUtils:
"""This class helps to create bold, italics and change color text."""
@staticmethod
def bold(text: str) -> str:
"""Bold text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'**text**'``
:rtype: str"""
return "**" + text + "**"
@staticmethod
def italics(text: str) -> str:
"""Italics text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'_text_'``
:rtype: str"""
return "*" + text + "*"
@staticmethod
def inline_code(text: str) -> str:
"""Inline code text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'``text``'``
:rtype: str"""
return "``" + text + "``"
@staticmethod
def center_text(text: str) -> str:
"""Place a text string to center.
:param text: a text string.
:type text: str
:return: a string like this exampple: ``'<center>text</center>'``
"""
return "<center>" + text + "</center>"
@staticmethod
def text_color(text: str, color: str = "black") -> str:
"""Change text color.
:param text: it is the text that will be changed its color.
:param color: it is the text color: ``'orange'``, ``'blue'``, ``'red'``...
or a **RGB** color such as ``'#ffce00'``.
:return: a string like this one: ``'<font color='color'>'text'</font>'``
:type text: str
:type color: str
:rtype: str
"""
return '<font color="' + color + '">' + text + "</font>"
@staticmethod
def text_external_link(text: str, link: str = "") -> str:
"""Using this method can be created an external link of a file or a web page.
:param text: Text to be displayed.
:type text: str
:param link: External Link.
:type link: str
:return: return a string like this: ``'[Text to be shown](https://write.link.com)'``
:rtype: str"""
return "[" + text + "](" + link + ")"
@staticmethod
def insert_code(code: str, language: str = "") -> str:
"""This method allows to insert a peace of code.
:param code: code string.
:type code:str
:param language: code language: python. c++, c#...
:type language: str
:return: markdown style.
:rtype: str
"""
if language == "":
return "```\n" + code + "\n```"
else:
return "```" + language + "\n" + code + "\n```"
@staticmethod
def text_format(
text: str, bold_italics_code: str = "", color: str = "black", align: str = ""
) -> str:
"""Text format helps to write multiple text format such as bold, italics and color.
:param text: it is a string in which will be added the mew format
:param bold_italics_code: using `'b'`: **bold**, `'i'`: _italics_ and `'c'`: `inline_code`.
:param color: Can change text color. For example: 'red', 'green, 'orange'...
:param align: Using this parameter you can align text.
:return: return a string with the new text format.
:type text: str
:type bold_italics_code: str
:type color: str
:type align: str
:rtype: str
:Example:
>>> from mdutils.tools.TextUtils import TextUtils
>>> TextUtils.text_format(text='Some Text Here', bold_italics_code='bi', color='red', align='center')
'***<center><font color="red">Some Text Here</font></center>***'
"""
new_text_format = text
if bold_italics_code:
if (
("c" in bold_italics_code)
or ("b" in bold_italics_code)
or ("i" in bold_italics_code)
):
if "c" in bold_italics_code:
new_text_format = TextUtils.inline_code(new_text_format)
else:
raise ValueError(
"unexpected bold_italics_code value, options available: 'b', 'c' or 'i'."
)
if color != "black":
new_text_format = TextUtils.text_color(new_text_format, color)
if align == "center":
new_text_format = TextUtils.center_text(new_text_format)
if bold_italics_code:
if (
("c" in bold_italics_code)
or ("b" in bold_italics_code)
or ("i" in bold_italics_code)
):
if "b" in bold_italics_code:
new_text_format = TextUtils.bold(new_text_format)
if "i" in bold_italics_code:
new_text_format = TextUtils.italics(new_text_format)
else:
raise ValueError(
"unexpected bold_italics_code value, options available: 'b', 'c' or 'i'."
)
return new_text_format
@staticmethod
def add_tooltip(link: str, tip: str) -> str:
"""
:param link:
:type link: str
:param tip:
:type tip: str
return: ``link + "'" + format + "'"``
"""
return link + " '{}'".format(tip)
|
()
|
65,018 |
mdutils.tools.TextUtils
|
add_tooltip
|
:param link:
:type link: str
:param tip:
:type tip: str
return: ``link + "'" + format + "'"``
|
@staticmethod
def add_tooltip(link: str, tip: str) -> str:
"""
:param link:
:type link: str
:param tip:
:type tip: str
return: ``link + "'" + format + "'"``
"""
return link + " '{}'".format(tip)
|
(link: str, tip: str) -> str
|
65,019 |
mdutils.tools.TextUtils
|
bold
|
Bold text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'**text**'``
:rtype: str
|
@staticmethod
def bold(text: str) -> str:
"""Bold text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'**text**'``
:rtype: str"""
return "**" + text + "**"
|
(text: str) -> str
|
65,020 |
mdutils.tools.TextUtils
|
center_text
|
Place a text string to center.
:param text: a text string.
:type text: str
:return: a string like this exampple: ``'<center>text</center>'``
|
@staticmethod
def center_text(text: str) -> str:
"""Place a text string to center.
:param text: a text string.
:type text: str
:return: a string like this exampple: ``'<center>text</center>'``
"""
return "<center>" + text + "</center>"
|
(text: str) -> str
|
65,021 |
mdutils.tools.TextUtils
|
inline_code
|
Inline code text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'``text``'``
:rtype: str
|
@staticmethod
def inline_code(text: str) -> str:
"""Inline code text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'``text``'``
:rtype: str"""
return "``" + text + "``"
|
(text: str) -> str
|
65,022 |
mdutils.tools.TextUtils
|
insert_code
|
This method allows to insert a peace of code.
:param code: code string.
:type code:str
:param language: code language: python. c++, c#...
:type language: str
:return: markdown style.
:rtype: str
|
@staticmethod
def insert_code(code: str, language: str = "") -> str:
"""This method allows to insert a peace of code.
:param code: code string.
:type code:str
:param language: code language: python. c++, c#...
:type language: str
:return: markdown style.
:rtype: str
"""
if language == "":
return "```\n" + code + "\n```"
else:
return "```" + language + "\n" + code + "\n```"
|
(code: str, language: str = '') -> str
|
65,023 |
mdutils.tools.TextUtils
|
italics
|
Italics text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'_text_'``
:rtype: str
|
@staticmethod
def italics(text: str) -> str:
"""Italics text converter.
:param text: a text string.
:type text: str
:return: a string like this example: ``'_text_'``
:rtype: str"""
return "*" + text + "*"
|
(text: str) -> str
|
65,024 |
mdutils.tools.TextUtils
|
text_color
|
Change text color.
:param text: it is the text that will be changed its color.
:param color: it is the text color: ``'orange'``, ``'blue'``, ``'red'``...
or a **RGB** color such as ``'#ffce00'``.
:return: a string like this one: ``'<font color='color'>'text'</font>'``
:type text: str
:type color: str
:rtype: str
|
@staticmethod
def text_color(text: str, color: str = "black") -> str:
"""Change text color.
:param text: it is the text that will be changed its color.
:param color: it is the text color: ``'orange'``, ``'blue'``, ``'red'``...
or a **RGB** color such as ``'#ffce00'``.
:return: a string like this one: ``'<font color='color'>'text'</font>'``
:type text: str
:type color: str
:rtype: str
"""
return '<font color="' + color + '">' + text + "</font>"
|
(text: str, color: str = 'black') -> str
|
65,025 |
mdutils.tools.TextUtils
|
text_external_link
|
Using this method can be created an external link of a file or a web page.
:param text: Text to be displayed.
:type text: str
:param link: External Link.
:type link: str
:return: return a string like this: ``'[Text to be shown](https://write.link.com)'``
:rtype: str
|
@staticmethod
def text_external_link(text: str, link: str = "") -> str:
"""Using this method can be created an external link of a file or a web page.
:param text: Text to be displayed.
:type text: str
:param link: External Link.
:type link: str
:return: return a string like this: ``'[Text to be shown](https://write.link.com)'``
:rtype: str"""
return "[" + text + "](" + link + ")"
|
(text: str, link: str = '') -> str
|
65,026 |
mdutils.tools.TextUtils
|
text_format
|
Text format helps to write multiple text format such as bold, italics and color.
:param text: it is a string in which will be added the mew format
:param bold_italics_code: using `'b'`: **bold**, `'i'`: _italics_ and `'c'`: `inline_code`.
:param color: Can change text color. For example: 'red', 'green, 'orange'...
:param align: Using this parameter you can align text.
:return: return a string with the new text format.
:type text: str
:type bold_italics_code: str
:type color: str
:type align: str
:rtype: str
:Example:
>>> from mdutils.tools.TextUtils import TextUtils
>>> TextUtils.text_format(text='Some Text Here', bold_italics_code='bi', color='red', align='center')
'***<center><font color="red">Some Text Here</font></center>***'
|
@staticmethod
def text_format(
text: str, bold_italics_code: str = "", color: str = "black", align: str = ""
) -> str:
"""Text format helps to write multiple text format such as bold, italics and color.
:param text: it is a string in which will be added the mew format
:param bold_italics_code: using `'b'`: **bold**, `'i'`: _italics_ and `'c'`: `inline_code`.
:param color: Can change text color. For example: 'red', 'green, 'orange'...
:param align: Using this parameter you can align text.
:return: return a string with the new text format.
:type text: str
:type bold_italics_code: str
:type color: str
:type align: str
:rtype: str
:Example:
>>> from mdutils.tools.TextUtils import TextUtils
>>> TextUtils.text_format(text='Some Text Here', bold_italics_code='bi', color='red', align='center')
'***<center><font color="red">Some Text Here</font></center>***'
"""
new_text_format = text
if bold_italics_code:
if (
("c" in bold_italics_code)
or ("b" in bold_italics_code)
or ("i" in bold_italics_code)
):
if "c" in bold_italics_code:
new_text_format = TextUtils.inline_code(new_text_format)
else:
raise ValueError(
"unexpected bold_italics_code value, options available: 'b', 'c' or 'i'."
)
if color != "black":
new_text_format = TextUtils.text_color(new_text_format, color)
if align == "center":
new_text_format = TextUtils.center_text(new_text_format)
if bold_italics_code:
if (
("c" in bold_italics_code)
or ("b" in bold_italics_code)
or ("i" in bold_italics_code)
):
if "b" in bold_italics_code:
new_text_format = TextUtils.bold(new_text_format)
if "i" in bold_italics_code:
new_text_format = TextUtils.italics(new_text_format)
else:
raise ValueError(
"unexpected bold_italics_code value, options available: 'b', 'c' or 'i'."
)
return new_text_format
|
(text: str, bold_italics_code: str = '', color: str = 'black', align: str = '') -> str
|
65,030 |
pylsqpack._binding
|
Decoder
|
Decoder(max_table_capacity: int, blocked_streams: int)
QPACK decoder.
:param max_table_capacity: the maximum size in bytes of the dynamic table
:param blocked_streams: the maximum number of streams that could be blocked
|
from pylsqpack._binding import Decoder
| null |
65,031 |
pylsqpack._binding
|
DecoderStreamError
| null |
from pylsqpack._binding import DecoderStreamError
| null |
65,032 |
pylsqpack._binding
|
DecompressionFailed
| null |
from pylsqpack._binding import DecompressionFailed
| null |
65,033 |
pylsqpack._binding
|
Encoder
|
Encoder()
QPACK encoder.
|
from pylsqpack._binding import Encoder
| null |
65,034 |
pylsqpack._binding
|
EncoderStreamError
| null |
from pylsqpack._binding import EncoderStreamError
| null |
65,035 |
pylsqpack._binding
|
StreamBlocked
| null |
from pylsqpack._binding import StreamBlocked
| null |
65,037 |
impedance.models.circuits.circuits
|
BaseCircuit
|
Base class for equivalent circuit models
|
class BaseCircuit:
""" Base class for equivalent circuit models """
def __init__(self, initial_guess=[], constants=None, name=None):
""" Base constructor for any equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name : str, optional
Name for the circuit
"""
# if supplied, check that initial_guess is valid and store
initial_guess = [x for x in initial_guess if x is not None]
for i in initial_guess:
if not isinstance(i, (float, int, np.int32, np.float64)):
raise TypeError(f'value {i} in initial_guess is not a number')
# initalize class attributes
self.initial_guess = initial_guess
if constants is not None:
self.constants = constants
else:
self.constants = {}
self.name = name
# initialize fit parameters and confidence intervals
self.parameters_ = None
self.conf_ = None
def __eq__(self, other):
if self.__class__ == other.__class__:
matches = []
for key, value in self.__dict__.items():
if isinstance(value, np.ndarray):
matches.append((value == other.__dict__[key]).all())
else:
matches.append(value == other.__dict__[key])
return np.array(matches).all()
else:
raise TypeError('Comparing object is not of the same type.')
def fit(self, frequencies, impedance, bounds=None,
weight_by_modulus=False, **kwargs):
""" Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
impedance: numpy array of dtype 'complex128'
Impedance values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
weight_by_modulus : bool, optional
Uses the modulus of each data (|Z|) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
"""
frequencies = np.array(frequencies, dtype=float)
impedance = np.array(impedance, dtype=complex)
if len(frequencies) != len(impedance):
raise TypeError('length of frequencies and impedance do not match')
if self.initial_guess != []:
parameters, conf = circuit_fit(frequencies, impedance,
self.circuit, self.initial_guess,
constants=self.constants,
bounds=bounds,
weight_by_modulus=weight_by_modulus,
**kwargs)
self.parameters_ = parameters
if conf is not None:
self.conf_ = conf
else:
raise ValueError('No initial guess supplied')
return self
def _is_fit(self):
""" check if model has been fit (parameters_ is not None) """
if self.parameters_ is not None:
return True
else:
return False
def predict(self, frequencies, use_initial=False):
""" Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
"""
frequencies = np.array(frequencies, dtype=float)
if self._is_fit() and not use_initial:
return eval(buildCircuit(self.circuit, frequencies,
*self.parameters_,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
else:
warnings.warn("Simulating circuit based on initial parameters")
return eval(buildCircuit(self.circuit, frequencies,
*self.initial_guess,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
def get_param_names(self):
""" Converts circuit string to names and units """
# parse the element names from the circuit string
names = self.circuit.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in self.constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in self.constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
def __str__(self):
""" Defines the pretty printing of the circuit"""
to_print = '\n'
if self.name is not None:
to_print += 'Name: {}\n'.format(self.name)
to_print += 'Circuit string: {}\n'.format(self.circuit)
to_print += "Fit: {}\n".format(self._is_fit())
if len(self.constants) > 0:
to_print += '\nConstants:\n'
for name, value in self.constants.items():
elem = get_element_from_name(name)
units = check_and_eval(elem).units
if '_' in name and len(units) > 1:
unit = units[int(name.split('_')[-1])]
else:
unit = units[0]
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, value, unit)
names, units = self.get_param_names()
to_print += '\nInitial guesses:\n'
for name, unit, param in zip(names, units, self.initial_guess):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
if self._is_fit():
params, confs = self.parameters_, self.conf_
to_print += '\nFit parameters:\n'
for name, unit, param, conf in zip(names, units, params, confs):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
return to_print
def plot(self, ax=None, f_data=None, Z_data=None, kind='altair', **kwargs):
""" visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax: matplotlib.axes
axes to plot on
f_data: np.array of type float
Frequencies of input data (for Bode plots)
Z_data: np.array of type complex
Impedance data to plot
kind: {'altair', 'nyquist', 'bode'}
type of plot to visualize
Other Parameters
----------------
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
Returns
-------
ax: matplotlib.axes
axes of the created nyquist plot
"""
if kind == 'nyquist':
if ax is None:
_, ax = plt.subplots(figsize=(5, 5))
if Z_data is not None:
ax = plot_nyquist(Z_data, ls='', marker='s', ax=ax, **kwargs)
if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
Z_fit = self.predict(f_pred)
ax = plot_nyquist(Z_fit, ls='-', marker='', ax=ax, **kwargs)
return ax
elif kind == 'bode':
if ax is None:
_, ax = plt.subplots(nrows=2, figsize=(5, 5))
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
ax = plot_bode(f_data, Z_data, ls='', marker='s',
axes=ax, **kwargs)
if self._is_fit():
Z_fit = self.predict(f_pred)
ax = plot_bode(f_pred, Z_fit, ls='-', marker='',
axes=ax, **kwargs)
return ax
elif kind == 'altair':
plot_dict = {}
if Z_data is not None and f_data is not None:
plot_dict['data'] = {'f': f_data, 'Z': Z_data}
if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
Z_fit = self.predict(f_pred)
if self.name is not None:
name = self.name
else:
name = 'fit'
plot_dict[name] = {'f': f_pred, 'Z': Z_fit, 'fmt': '-'}
chart = plot_altair(plot_dict, **kwargs)
return chart
else:
raise ValueError("Kind must be one of 'altair'," +
f"'nyquist', or 'bode' (received {kind})")
def save(self, filepath):
""" Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
"""
model_string = self.circuit
model_name = self.name
initial_guess = self.initial_guess
if self._is_fit():
parameters_ = list(self.parameters_)
model_conf_ = list(self.conf_)
data_dict = {"Name": model_name,
"Circuit String": model_string,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Fit": True,
"Parameters": parameters_,
"Confidence": model_conf_,
}
else:
data_dict = {"Name": model_name,
"Circuit String": model_string,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Fit": False}
with open(filepath, 'w') as f:
json.dump(data_dict, f)
def load(self, filepath, fitted_as_initial=False):
""" Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
"""
json_data_file = open(filepath, 'r')
json_data = json.load(json_data_file)
model_name = json_data["Name"]
model_string = json_data["Circuit String"]
model_initial_guess = json_data["Initial Guess"]
model_constants = json_data["Constants"]
self.initial_guess = model_initial_guess
self.circuit = model_string
print(self.circuit)
self.constants = model_constants
self.name = model_name
if json_data["Fit"]:
if fitted_as_initial:
self.initial_guess = np.array(json_data['Parameters'])
else:
self.parameters_ = np.array(json_data["Parameters"])
self.conf_ = np.array(json_data["Confidence"])
|
(initial_guess=[], constants=None, name=None)
|
65,038 |
impedance.models.circuits.circuits
|
__eq__
| null |
def __eq__(self, other):
if self.__class__ == other.__class__:
matches = []
for key, value in self.__dict__.items():
if isinstance(value, np.ndarray):
matches.append((value == other.__dict__[key]).all())
else:
matches.append(value == other.__dict__[key])
return np.array(matches).all()
else:
raise TypeError('Comparing object is not of the same type.')
|
(self, other)
|
65,039 |
impedance.models.circuits.circuits
|
__init__
|
Base constructor for any equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name : str, optional
Name for the circuit
|
def __init__(self, initial_guess=[], constants=None, name=None):
""" Base constructor for any equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name : str, optional
Name for the circuit
"""
# if supplied, check that initial_guess is valid and store
initial_guess = [x for x in initial_guess if x is not None]
for i in initial_guess:
if not isinstance(i, (float, int, np.int32, np.float64)):
raise TypeError(f'value {i} in initial_guess is not a number')
# initalize class attributes
self.initial_guess = initial_guess
if constants is not None:
self.constants = constants
else:
self.constants = {}
self.name = name
# initialize fit parameters and confidence intervals
self.parameters_ = None
self.conf_ = None
|
(self, initial_guess=[], constants=None, name=None)
|
65,040 |
impedance.models.circuits.circuits
|
__str__
|
Defines the pretty printing of the circuit
|
def __str__(self):
""" Defines the pretty printing of the circuit"""
to_print = '\n'
if self.name is not None:
to_print += 'Name: {}\n'.format(self.name)
to_print += 'Circuit string: {}\n'.format(self.circuit)
to_print += "Fit: {}\n".format(self._is_fit())
if len(self.constants) > 0:
to_print += '\nConstants:\n'
for name, value in self.constants.items():
elem = get_element_from_name(name)
units = check_and_eval(elem).units
if '_' in name and len(units) > 1:
unit = units[int(name.split('_')[-1])]
else:
unit = units[0]
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, value, unit)
names, units = self.get_param_names()
to_print += '\nInitial guesses:\n'
for name, unit, param in zip(names, units, self.initial_guess):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
if self._is_fit():
params, confs = self.parameters_, self.conf_
to_print += '\nFit parameters:\n'
for name, unit, param, conf in zip(names, units, params, confs):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
return to_print
|
(self)
|
65,041 |
impedance.models.circuits.circuits
|
_is_fit
|
check if model has been fit (parameters_ is not None)
|
def _is_fit(self):
""" check if model has been fit (parameters_ is not None) """
if self.parameters_ is not None:
return True
else:
return False
|
(self)
|
65,042 |
impedance.models.circuits.circuits
|
fit
|
Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
impedance: numpy array of dtype 'complex128'
Impedance values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
weight_by_modulus : bool, optional
Uses the modulus of each data (|Z|) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
|
def fit(self, frequencies, impedance, bounds=None,
weight_by_modulus=False, **kwargs):
""" Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
impedance: numpy array of dtype 'complex128'
Impedance values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
weight_by_modulus : bool, optional
Uses the modulus of each data (|Z|) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
"""
frequencies = np.array(frequencies, dtype=float)
impedance = np.array(impedance, dtype=complex)
if len(frequencies) != len(impedance):
raise TypeError('length of frequencies and impedance do not match')
if self.initial_guess != []:
parameters, conf = circuit_fit(frequencies, impedance,
self.circuit, self.initial_guess,
constants=self.constants,
bounds=bounds,
weight_by_modulus=weight_by_modulus,
**kwargs)
self.parameters_ = parameters
if conf is not None:
self.conf_ = conf
else:
raise ValueError('No initial guess supplied')
return self
|
(self, frequencies, impedance, bounds=None, weight_by_modulus=False, **kwargs)
|
65,043 |
impedance.models.circuits.circuits
|
get_param_names
|
Converts circuit string to names and units
|
def get_param_names(self):
""" Converts circuit string to names and units """
# parse the element names from the circuit string
names = self.circuit.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in self.constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in self.constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
|
(self)
|
65,044 |
impedance.models.circuits.circuits
|
load
|
Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
|
def load(self, filepath, fitted_as_initial=False):
""" Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
"""
json_data_file = open(filepath, 'r')
json_data = json.load(json_data_file)
model_name = json_data["Name"]
model_string = json_data["Circuit String"]
model_initial_guess = json_data["Initial Guess"]
model_constants = json_data["Constants"]
self.initial_guess = model_initial_guess
self.circuit = model_string
print(self.circuit)
self.constants = model_constants
self.name = model_name
if json_data["Fit"]:
if fitted_as_initial:
self.initial_guess = np.array(json_data['Parameters'])
else:
self.parameters_ = np.array(json_data["Parameters"])
self.conf_ = np.array(json_data["Confidence"])
|
(self, filepath, fitted_as_initial=False)
|
65,045 |
impedance.models.circuits.circuits
|
plot
|
visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax: matplotlib.axes
axes to plot on
f_data: np.array of type float
Frequencies of input data (for Bode plots)
Z_data: np.array of type complex
Impedance data to plot
kind: {'altair', 'nyquist', 'bode'}
type of plot to visualize
Other Parameters
----------------
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
Returns
-------
ax: matplotlib.axes
axes of the created nyquist plot
|
def plot(self, ax=None, f_data=None, Z_data=None, kind='altair', **kwargs):
""" visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax: matplotlib.axes
axes to plot on
f_data: np.array of type float
Frequencies of input data (for Bode plots)
Z_data: np.array of type complex
Impedance data to plot
kind: {'altair', 'nyquist', 'bode'}
type of plot to visualize
Other Parameters
----------------
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
Returns
-------
ax: matplotlib.axes
axes of the created nyquist plot
"""
if kind == 'nyquist':
if ax is None:
_, ax = plt.subplots(figsize=(5, 5))
if Z_data is not None:
ax = plot_nyquist(Z_data, ls='', marker='s', ax=ax, **kwargs)
if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
Z_fit = self.predict(f_pred)
ax = plot_nyquist(Z_fit, ls='-', marker='', ax=ax, **kwargs)
return ax
elif kind == 'bode':
if ax is None:
_, ax = plt.subplots(nrows=2, figsize=(5, 5))
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
ax = plot_bode(f_data, Z_data, ls='', marker='s',
axes=ax, **kwargs)
if self._is_fit():
Z_fit = self.predict(f_pred)
ax = plot_bode(f_pred, Z_fit, ls='-', marker='',
axes=ax, **kwargs)
return ax
elif kind == 'altair':
plot_dict = {}
if Z_data is not None and f_data is not None:
plot_dict['data'] = {'f': f_data, 'Z': Z_data}
if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
Z_fit = self.predict(f_pred)
if self.name is not None:
name = self.name
else:
name = 'fit'
plot_dict[name] = {'f': f_pred, 'Z': Z_fit, 'fmt': '-'}
chart = plot_altair(plot_dict, **kwargs)
return chart
else:
raise ValueError("Kind must be one of 'altair'," +
f"'nyquist', or 'bode' (received {kind})")
|
(self, ax=None, f_data=None, Z_data=None, kind='altair', **kwargs)
|
65,046 |
impedance.models.circuits.circuits
|
predict
|
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
|
def predict(self, frequencies, use_initial=False):
""" Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
"""
frequencies = np.array(frequencies, dtype=float)
if self._is_fit() and not use_initial:
return eval(buildCircuit(self.circuit, frequencies,
*self.parameters_,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
else:
warnings.warn("Simulating circuit based on initial parameters")
return eval(buildCircuit(self.circuit, frequencies,
*self.initial_guess,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
|
(self, frequencies, use_initial=False)
|
65,047 |
impedance.models.circuits.circuits
|
save
|
Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
|
def save(self, filepath):
""" Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
"""
model_string = self.circuit
model_name = self.name
initial_guess = self.initial_guess
if self._is_fit():
parameters_ = list(self.parameters_)
model_conf_ = list(self.conf_)
data_dict = {"Name": model_name,
"Circuit String": model_string,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Fit": True,
"Parameters": parameters_,
"Confidence": model_conf_,
}
else:
data_dict = {"Name": model_name,
"Circuit String": model_string,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Fit": False}
with open(filepath, 'w') as f:
json.dump(data_dict, f)
|
(self, filepath)
|
65,048 |
nleis.nleis
|
EISandNLEIS
| null |
class EISandNLEIS:
### ToDO: add SSO method and SO method
def __init__(self, circuit_1='',circuit_2='',initial_guess = []
,constants = None, name=None, **kwargs):
"""
Constructor for a customizable equivalent circuit model
Parameters
----------
circuit_1: string
A string that should be interpreted as an equivalent circuit for linear EIS
circuit_2: string
A string that should be interpreted as an equivalent circuit for NLEIS
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name: str, optional
Name for the model
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)) for EIS.
For NLEIS, the circuit should be grouped by d(cathode,anode)
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
A two electrode cell with sperical porous cathode and anode, resistor, and inductor is represents as,
EIS: circuit_1 = 'L0-R0-TDS0-TDS1'
NLEIS: circuit_2 = 'd(TDSn0-TDSn1)'
"""
# if supplied, check that initial_guess is valid and store
initial_guess = [x for x in initial_guess if x is not None]
for i in initial_guess:
if not isinstance(i, (float, int, np.int32, np.float64)):
raise TypeError(f'value {i} in initial_guess is not a number')
# initalize class attributes
# self.initial_guess = list(initial_guess)
self.initial_guess = initial_guess
self.circuit_1 = circuit_1
self.circuit_2 = circuit_2
elements_1 = extract_circuit_elements(circuit_1)
elements_2 = extract_circuit_elements(circuit_2)
for element in elements_2:
if element.replace('n', '') not in elements_1 or ('n' not in element and element != ''):
raise TypeError('The pairing of linear and nonlinear elements must be presented correctly for simultaneous fitting.'+ ' Double check the EIS circuit: ' + f'{circuit_1}' + ' and the NLEIS circuit: '+ f'{circuit_2}' +'. The parsed elements are '+f'{elements_1}'+' for circuit_1, and ' + f'{elements_2}'+ ' for circuit_2.')
input_elements = elements_1 + elements_2
if constants is not None:
self.constants = constants
self.constants_1 = {}
self.constants_2 = {}
## New code for constant separatation
## in the current development the differentiation between linear and nonlinear is separated by 'n'
## using get_element_from_name to get the raw element and adding n to the end
for elem in self.constants:
raw_elem = get_element_from_name(elem)
raw_circuit_elem = elem.split('_')[0]
if raw_circuit_elem not in input_elements:
raise ValueError(f'{raw_elem} not in ' +
f'input elements ({input_elements})')
raw_num_params = check_and_eval(raw_elem).num_params
if raw_num_params<=1:
## currently there is no single parameter nonlinear element,
## so this can work, but might be changed in the future
self.constants_1[elem]=self.constants[elem]
else:
param_num = int(elem.split('_')[-1])
if raw_elem[-1] != 'n':
if param_num>=raw_num_params:
raise ValueError(f'{elem} is out of the range of the maximum allowed ' +
f'number of parameters ({raw_num_params})')
self.constants_1[elem]=self.constants[elem]
len_elem = len(raw_elem)
nl_elem = elem[0:len_elem]+'n'+elem[len_elem:]
raw_nl_elem = get_element_from_name(nl_elem)
if raw_nl_elem in circuit_elements.keys():
self.constants_2[nl_elem]=self.constants[elem]
else:
self.constants_2[elem]=self.constants[elem]
if raw_elem[-1] == 'n':
if param_num>=raw_num_params:
raise ValueError(f'{elem} is out of the range of the maximum allowed ' +
f'number of parameters ({raw_num_params})')
num_params = check_and_eval(raw_elem[0:-1]).num_params
len_elem = len(raw_elem[0:-1])
if param_num<num_params:
self.constants_1[elem[0:len_elem]+elem[len_elem+1:]]=self.constants[elem]
self.constants_2[elem]=self.constants[elem]
else:
self.constants = {}
self.constants_1 = {}
self.constants_2 = {}
### new code for circuit length calculation using circuit element
### producing edited circuit
### i.e. circuit_1 = L0-R0-TDP0-TDS1; circuit_2 = TDPn0-TDSn1; edited_circuit = L0-R0-TDPn0-TDSn1
if elements_1 != [''] or elements_2 !=['']:
if elements_1 == [''] or elements_2 ==['']:
raise ValueError('Either circuit_1 or circuit_2 cannot be empty')
edited_circuit = ''
for elem in elements_1:
nl_elem = elem[0:-1]+'n'+elem[-1]
if nl_elem in elements_2:
edited_circuit += '-'+ nl_elem
else:
edited_circuit += '-'+ elem
self.edited_circuit = edited_circuit[1:]
else:
self.edited_circuit = ''
circuit_len = calculateCircuitLength(self.edited_circuit)
if len(self.initial_guess) + len(self.constants) != circuit_len:
raise ValueError('The number of initial guesses ' +
f'({len(self.initial_guess)}) + ' +
'the number of constants ' +
f'({len(self.constants)})' +
' must be equal to ' +
f'the circuit length ({circuit_len})')
self.name = name
# initialize fit parameters and confidence intervals
self.parameters_ = None
self.conf_ = None
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
def __eq__(self, other):
if self.__class__ == other.__class__:
matches = []
for key, value in self.__dict__.items():
if isinstance(value, np.ndarray):
matches.append((value == other.__dict__[key]).all())
else:
matches.append(value == other.__dict__[key])
return np.array(matches).all()
else:
raise TypeError('Comparing object is not of the same type.')
def fit(self, frequencies, Z1,Z2, bounds = None,
opt='max',max_f=10,cost = 0.5, **kwargs):
"""
Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
Z1: numpy array of dtype 'complex128'
EIS values to fit
Z1: numpy array of dtype 'complex128'
NLEIS values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. When bounds are provided, the input will normalized to stabilize the algorithm
Normalization : str, optional
Default is max normalization. Other normalization will be supported
in the future
max_f: int
The the maximum frequency of interest for NLEIS
kwargs :
Keyword arguments passed to simul_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
"""
# check that inputs are valid:
# frequencies: array of numbers
# impedance: array of complex numbers
# impedance and frequency match in length
frequencies = np.array(frequencies, dtype=float)
Z1 = np.array(Z1, dtype=complex)
Z2 = np.array(Z2, dtype=complex)
if len(frequencies) != len(Z1):
raise TypeError('length of frequencies and impedance do not match for EIS')
if self.initial_guess != []:
parameters, conf = simul_fit(frequencies, Z1,Z2,
self.circuit_1,self.circuit_2,self.edited_circuit, self.initial_guess,
constants_1=self.constants_1,constants_2=self.constants_2,
bounds=bounds,
opt=opt,cost = cost,max_f = max_f,
**kwargs)
# self.parameters_ = list(parameters)
self.parameters_ = parameters
if conf is not None:
# self.conf_ = list(conf)
self.conf_ = conf
self.conf1, self.conf2 = individual_parameters(self.circuit_1,self.conf_,self.constants_1,self.constants_2)
self.p1, self.p2 = individual_parameters(self.circuit_1,self.parameters_,self.constants_1,self.constants_2)
else:
raise ValueError('no initial guess supplied')
return self
def _is_fit(self):
"""
check if model has been fit (parameters_ is not None)
"""
if self.parameters_ is not None:
return True
else:
return False
def predict(self, frequencies, max_f=10, use_initial=False):
"""
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: ndarray of numeric dtype
max_f: int
The the maximum frequency of interest for NLEIS
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance
"""
if not isinstance(frequencies, np.ndarray):
raise TypeError('frequencies is not of type np.ndarray')
if not (np.issubdtype(frequencies.dtype, np.integer) or
np.issubdtype(frequencies.dtype, np.floating)):
raise TypeError('frequencies array should have a numeric ' +
f'dtype (currently {frequencies.dtype})')
f1 =frequencies
mask = np.array(frequencies)<max_f
f2 = frequencies[mask]
if self._is_fit() and not use_initial:
x1,x2 = wrappedImpedance(self.circuit_1, self.constants_1,self.circuit_2,self.constants_2,f1,f2,self.parameters_)
return x1,x2
else:
warnings.warn("Simulating circuit based on initial parameters")
x1,x2 = wrappedImpedance(self.circuit_1, self.constants_1,self.circuit_2,self.constants_2,f1,f2,self.initial_guess)
return(x1,x2)
def get_param_names(self,circuit,constants):
"""
Converts circuit string to names and units
"""
# parse the element names from the circuit string
names = circuit.replace('d', '').replace('(', '').replace(')', '')#edit for nleis.py
names = names.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
def __str__(self):
"""
Defines the pretty printing of the circuit
"""
to_print = '\n'
if self.name is not None:
to_print += 'Name: {}\n'.format(self.name)
to_print += 'EIS Circuit string: {}\n'.format(self.circuit_1)
to_print += 'NLEIS Circuit string: {}\n'.format(self.circuit_2)
to_print += "Fit: {}\n".format(self._is_fit())
if len(self.constants) > 0:
to_print += '\nConstants:\n'
for name, value in self.constants.items():
elem = get_element_from_name(name)
units = check_and_eval(elem).units
if '_' in name:
unit = units[int(name.split('_')[-1])]
else:
unit = units[0]
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, value, unit)
names1, units1= self.get_param_names(self.circuit_1,self.constants_1)
names2, units2 = self.get_param_names(self.circuit_2,self.constants_2)
to_print += '\nEIS Initial guesses:\n'
p1, p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
for name, unit, param in zip(names1, units1, p1):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
to_print += '\nNLEIS Initial guesses:\n'
for name, unit, param in zip(names2, units2, p2):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
if self._is_fit():
params1, confs1 = self.p1, self.conf1
to_print += '\nEIS Fit parameters:\n'
for name, unit, param, conf in zip(names1, units1, params1, confs1):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
params2, confs2 = self.p2, self.conf2
to_print += '\nNLEIS Fit parameters:\n'
for name, unit, param, conf in zip(names2, units2, params2, confs2):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
return to_print
def extract(self):
"""
extract the printing of the circuit in a dictionary
"""
names1, units1 = self.get_param_names(self.circuit_1,self.constants_1)
dic1={}
if self._is_fit():
params1 = self.p1
for names, param in zip(names1, params1):
dic1[names] = param
names2, units2 = self.get_param_names(self.circuit_2,self.constants_2)
dic2={}
if self._is_fit():
params2 = self.p2
for names, param in zip(names2, params2):
dic2[names] = param
return dic1,dic2
def plot(self, ax=None, f_data=None, Z1_data =None, Z2_data= None, kind='nyquist', max_f = 10, **kwargs):
'''
visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax : matplotlib.axes,
axes to plot on
f_data : np.array of type float
Frequencies of input data (for Bode plots)
Z1_data : np.array of type complex
DESCRIPTION. The default is None.
Z2_data : np.array of type complex
DESCRIPTION. The default is None.
kind : {'altair', 'nyquist', 'bode'}
type of plot to visualize
max_f : TYPE, optional
DESCRIPTION. The default is 10.
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
'''
if kind == 'nyquist':
if ax is None:
_, ax = plt.subplots(1,2,figsize=(10, 5))
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z1_data is not None:
ax[0] = plot_first(ax[0], Z1_data, scale=1, fmt='s', **kwargs)
## impedance.py style
# plot_nyquist(Z1_data, ls='', marker='s', ax=ax[0], **kwargs)
if Z2_data is not None:
mask = mask =np.array(f_pred)<max_f
ax[1] = plot_second(ax[1], Z2_data[mask], scale=1, fmt='s', **kwargs)
## impedance.py style
# plot_nyquist(Z2_data, units='Ohms/A', ls='', marker='s', ax=ax[1], **kwargs)
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
ax[0] = plot_first(ax[0], Z1_fit, scale=1, fmt='-', **kwargs)
# plot_nyquist(Z1_fit, ls='-', marker='', ax=ax[0], **kwargs)
ax[1] = plot_second(ax[1], Z2_fit, scale=1, fmt='-', **kwargs)
# plot_nyquist(Z2_fit,units='Ohms/A', ls='-', marker='', ax=ax[1], **kwargs)
ax[0].legend(['data','fit'])
ax[1].legend(['data','fit'])
return ax
elif kind == 'bode':
if ax is None:
_, ax = plt.subplots(2,2, figsize=(8, 8))
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z1_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
ax[:,0] = plot_bode(f_data, Z1_data, ls='', marker='s',
axes=ax[:,0], **kwargs)
if Z2_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
mask =np.array(f_pred)<max_f
f2 = f_data[mask]
Z2 = Z2_data[mask]
ax[:,1] = plot_bode(f2,Z2, units='Ohms/A', ls='', marker='s',
axes=ax[:,1], **kwargs)
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
f1 = f_data
f2 = f_data[np.array(f_data)<max_f]
ax[:,0] = plot_bode(f1, Z1_fit, ls='-', marker='o',
axes=ax[:,0], **kwargs)
ax[:,1] = plot_bode(f2, Z2_fit,units='Ohms/A', ls='-', marker='o',
axes=ax[:,1], **kwargs)
ax[0,0].set_ylabel(r'$|Z_{1}(\omega)|$ ' +
'$[{}]$'.format('Ohms'), fontsize=20)
ax[1,0].set_ylabel(r'$-\phi_{Z_{1}}(\omega)$ ' + r'$[^o]$', fontsize=20)
ax[0,1].set_ylabel(r'$|Z_{2}(\omega)|$ ' +
'$[{}]$'.format('Ohms/A'), fontsize=20)
ax[1,1].set_ylabel(r'$-\phi_{Z_{2}}(\omega)$ ' + r'$[^o]$', fontsize=20)
ax[0,0].legend(['Data','Fit'],fontsize=20)
ax[0,1].legend(['Data','Fit'],fontsize=20)
ax[1,0].legend(['Data','Fit'],fontsize=20)
ax[1,1].legend(['Data','Fit'],fontsize=20)
return ax
elif kind == 'altair':
plot_dict_1 = {}
plot_dict_2 = {}
if Z1_data is not None and Z2_data is not None and f_data is not None:
plot_dict_1['data'] = {'f': f_data, 'Z': Z1_data}
mask = np.array(f_data)<max_f
plot_dict_2['data'] = {'f': f_data[mask], 'Z': Z2_data[mask]}
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if self.name is not None:
name = self.name
else:
name = 'fit'
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
mask = np.array(f_pred)<max_f
plot_dict_1[name] = {'f': f_pred, 'Z': Z1_fit, 'fmt': '-'}
plot_dict_2[name] = {'f': f_pred[mask], 'Z': Z2_fit, 'fmt': '-'}
chart1 = plot_altair(plot_dict_1,k=1,units = 'Ω', **kwargs)
chart2 = plot_altair(plot_dict_2,k=2,units = 'Ω/A', **kwargs)
return chart1,chart2
else:
raise ValueError("Kind must be one of 'altair'," +
f"'nyquist', or 'bode' (received {kind})")
def save(self, filepath):
"""
Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
"""
model_string_1 = self.circuit_1
model_string_2 = self.circuit_2
edited_circuit_str = self.edited_circuit
model_name = self.name
initial_guess = self.initial_guess
if self._is_fit():
parameters_ = list(self.parameters_)
model_conf_ = list(self.conf_)
# parameters_ = self.parameters_
# model_conf_ = self.conf_
data_dict = {"Name": model_name,
"Circuit String 1": model_string_1,
"Circuit String 2": model_string_2,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Constants 1": self.constants_1,
"Constants 2": self.constants_2,
"Fit": True,
"Parameters": parameters_,
"Confidence": model_conf_,
"Edited Circuit Str": edited_circuit_str
}
else:
data_dict = {"Name": model_name,
"Circuit String 1": model_string_1,
"Circuit String 2": model_string_2,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Constants 1": self.constants_1,
"Constants 2": self.constants_2,
"Edited Circuit Str": edited_circuit_str,
"Fit": False}
with open(filepath, 'w') as f:
json.dump(data_dict, f)
def load(self, filepath, fitted_as_initial=False):
"""
Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
"""
json_data_file = open(filepath, 'r')
json_data = json.load(json_data_file)
model_name = json_data["Name"]
model_string_1 = json_data["Circuit String 1"]
model_string_2 = json_data["Circuit String 2"]
model_initial_guess = json_data["Initial Guess"]
model_constants = json_data["Constants"]
self.initial_guess = model_initial_guess
self.circuit_1 = model_string_1
self.circuit_2 = model_string_2
self.edited_circuit = json_data["Edited Circuit Str"]
self.constants = model_constants
self.constants_1 =json_data["Constants 1"]
self.constants_2 =json_data["Constants 2"]
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
self.name = model_name
if json_data["Fit"]:
if fitted_as_initial:
self.initial_guess = json_data['Parameters']
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
else:
self.parameters_ = np.array(json_data["Parameters"])
self.conf_ = np.array(json_data["Confidence"])
self.conf1, self.conf2 = individual_parameters(self.circuit_1,self.conf_,self.constants_1,self.constants_2)
self.p1, self.p2 = individual_parameters(self.circuit_1,self.parameters_,self.constants_1,self.constants_2)
|
(circuit_1='', circuit_2='', initial_guess=[], constants=None, name=None, **kwargs)
|
65,050 |
nleis.nleis
|
__init__
|
Constructor for a customizable equivalent circuit model
Parameters
----------
circuit_1: string
A string that should be interpreted as an equivalent circuit for linear EIS
circuit_2: string
A string that should be interpreted as an equivalent circuit for NLEIS
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name: str, optional
Name for the model
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)) for EIS.
For NLEIS, the circuit should be grouped by d(cathode,anode)
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
A two electrode cell with sperical porous cathode and anode, resistor, and inductor is represents as,
EIS: circuit_1 = 'L0-R0-TDS0-TDS1'
NLEIS: circuit_2 = 'd(TDSn0-TDSn1)'
|
def __init__(self, circuit_1='',circuit_2='',initial_guess = []
,constants = None, name=None, **kwargs):
"""
Constructor for a customizable equivalent circuit model
Parameters
----------
circuit_1: string
A string that should be interpreted as an equivalent circuit for linear EIS
circuit_2: string
A string that should be interpreted as an equivalent circuit for NLEIS
initial_guess: numpy array
Initial guess of the circuit values
constants : dict, optional
Parameters and values to hold constant during fitting
(e.g. {"R0": 0.1})
name: str, optional
Name for the model
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)) for EIS.
For NLEIS, the circuit should be grouped by d(cathode,anode)
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
A two electrode cell with sperical porous cathode and anode, resistor, and inductor is represents as,
EIS: circuit_1 = 'L0-R0-TDS0-TDS1'
NLEIS: circuit_2 = 'd(TDSn0-TDSn1)'
"""
# if supplied, check that initial_guess is valid and store
initial_guess = [x for x in initial_guess if x is not None]
for i in initial_guess:
if not isinstance(i, (float, int, np.int32, np.float64)):
raise TypeError(f'value {i} in initial_guess is not a number')
# initalize class attributes
# self.initial_guess = list(initial_guess)
self.initial_guess = initial_guess
self.circuit_1 = circuit_1
self.circuit_2 = circuit_2
elements_1 = extract_circuit_elements(circuit_1)
elements_2 = extract_circuit_elements(circuit_2)
for element in elements_2:
if element.replace('n', '') not in elements_1 or ('n' not in element and element != ''):
raise TypeError('The pairing of linear and nonlinear elements must be presented correctly for simultaneous fitting.'+ ' Double check the EIS circuit: ' + f'{circuit_1}' + ' and the NLEIS circuit: '+ f'{circuit_2}' +'. The parsed elements are '+f'{elements_1}'+' for circuit_1, and ' + f'{elements_2}'+ ' for circuit_2.')
input_elements = elements_1 + elements_2
if constants is not None:
self.constants = constants
self.constants_1 = {}
self.constants_2 = {}
## New code for constant separatation
## in the current development the differentiation between linear and nonlinear is separated by 'n'
## using get_element_from_name to get the raw element and adding n to the end
for elem in self.constants:
raw_elem = get_element_from_name(elem)
raw_circuit_elem = elem.split('_')[0]
if raw_circuit_elem not in input_elements:
raise ValueError(f'{raw_elem} not in ' +
f'input elements ({input_elements})')
raw_num_params = check_and_eval(raw_elem).num_params
if raw_num_params<=1:
## currently there is no single parameter nonlinear element,
## so this can work, but might be changed in the future
self.constants_1[elem]=self.constants[elem]
else:
param_num = int(elem.split('_')[-1])
if raw_elem[-1] != 'n':
if param_num>=raw_num_params:
raise ValueError(f'{elem} is out of the range of the maximum allowed ' +
f'number of parameters ({raw_num_params})')
self.constants_1[elem]=self.constants[elem]
len_elem = len(raw_elem)
nl_elem = elem[0:len_elem]+'n'+elem[len_elem:]
raw_nl_elem = get_element_from_name(nl_elem)
if raw_nl_elem in circuit_elements.keys():
self.constants_2[nl_elem]=self.constants[elem]
else:
self.constants_2[elem]=self.constants[elem]
if raw_elem[-1] == 'n':
if param_num>=raw_num_params:
raise ValueError(f'{elem} is out of the range of the maximum allowed ' +
f'number of parameters ({raw_num_params})')
num_params = check_and_eval(raw_elem[0:-1]).num_params
len_elem = len(raw_elem[0:-1])
if param_num<num_params:
self.constants_1[elem[0:len_elem]+elem[len_elem+1:]]=self.constants[elem]
self.constants_2[elem]=self.constants[elem]
else:
self.constants = {}
self.constants_1 = {}
self.constants_2 = {}
### new code for circuit length calculation using circuit element
### producing edited circuit
### i.e. circuit_1 = L0-R0-TDP0-TDS1; circuit_2 = TDPn0-TDSn1; edited_circuit = L0-R0-TDPn0-TDSn1
if elements_1 != [''] or elements_2 !=['']:
if elements_1 == [''] or elements_2 ==['']:
raise ValueError('Either circuit_1 or circuit_2 cannot be empty')
edited_circuit = ''
for elem in elements_1:
nl_elem = elem[0:-1]+'n'+elem[-1]
if nl_elem in elements_2:
edited_circuit += '-'+ nl_elem
else:
edited_circuit += '-'+ elem
self.edited_circuit = edited_circuit[1:]
else:
self.edited_circuit = ''
circuit_len = calculateCircuitLength(self.edited_circuit)
if len(self.initial_guess) + len(self.constants) != circuit_len:
raise ValueError('The number of initial guesses ' +
f'({len(self.initial_guess)}) + ' +
'the number of constants ' +
f'({len(self.constants)})' +
' must be equal to ' +
f'the circuit length ({circuit_len})')
self.name = name
# initialize fit parameters and confidence intervals
self.parameters_ = None
self.conf_ = None
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
|
(self, circuit_1='', circuit_2='', initial_guess=[], constants=None, name=None, **kwargs)
|
65,051 |
nleis.nleis
|
__str__
|
Defines the pretty printing of the circuit
|
def __str__(self):
"""
Defines the pretty printing of the circuit
"""
to_print = '\n'
if self.name is not None:
to_print += 'Name: {}\n'.format(self.name)
to_print += 'EIS Circuit string: {}\n'.format(self.circuit_1)
to_print += 'NLEIS Circuit string: {}\n'.format(self.circuit_2)
to_print += "Fit: {}\n".format(self._is_fit())
if len(self.constants) > 0:
to_print += '\nConstants:\n'
for name, value in self.constants.items():
elem = get_element_from_name(name)
units = check_and_eval(elem).units
if '_' in name:
unit = units[int(name.split('_')[-1])]
else:
unit = units[0]
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, value, unit)
names1, units1= self.get_param_names(self.circuit_1,self.constants_1)
names2, units2 = self.get_param_names(self.circuit_2,self.constants_2)
to_print += '\nEIS Initial guesses:\n'
p1, p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
for name, unit, param in zip(names1, units1, p1):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
to_print += '\nNLEIS Initial guesses:\n'
for name, unit, param in zip(names2, units2, p2):
to_print += ' {:>5} = {:.2e} [{}]\n'.format(name, param, unit)
if self._is_fit():
params1, confs1 = self.p1, self.conf1
to_print += '\nEIS Fit parameters:\n'
for name, unit, param, conf in zip(names1, units1, params1, confs1):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
params2, confs2 = self.p2, self.conf2
to_print += '\nNLEIS Fit parameters:\n'
for name, unit, param, conf in zip(names2, units2, params2, confs2):
to_print += ' {:>5} = {:.2e}'.format(name, param)
to_print += ' (+/- {:.2e}) [{}]\n'.format(conf, unit)
return to_print
|
(self)
|
65,052 |
nleis.nleis
|
_is_fit
|
check if model has been fit (parameters_ is not None)
|
def _is_fit(self):
"""
check if model has been fit (parameters_ is not None)
"""
if self.parameters_ is not None:
return True
else:
return False
|
(self)
|
65,053 |
nleis.nleis
|
extract
|
extract the printing of the circuit in a dictionary
|
def extract(self):
"""
extract the printing of the circuit in a dictionary
"""
names1, units1 = self.get_param_names(self.circuit_1,self.constants_1)
dic1={}
if self._is_fit():
params1 = self.p1
for names, param in zip(names1, params1):
dic1[names] = param
names2, units2 = self.get_param_names(self.circuit_2,self.constants_2)
dic2={}
if self._is_fit():
params2 = self.p2
for names, param in zip(names2, params2):
dic2[names] = param
return dic1,dic2
|
(self)
|
65,054 |
nleis.nleis
|
fit
|
Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
Z1: numpy array of dtype 'complex128'
EIS values to fit
Z1: numpy array of dtype 'complex128'
NLEIS values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. When bounds are provided, the input will normalized to stabilize the algorithm
Normalization : str, optional
Default is max normalization. Other normalization will be supported
in the future
max_f: int
The the maximum frequency of interest for NLEIS
kwargs :
Keyword arguments passed to simul_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
|
def fit(self, frequencies, Z1,Z2, bounds = None,
opt='max',max_f=10,cost = 0.5, **kwargs):
"""
Fit the circuit model
Parameters
----------
frequencies: numpy array
Frequencies
Z1: numpy array of dtype 'complex128'
EIS values to fit
Z1: numpy array of dtype 'complex128'
NLEIS values to fit
bounds: 2-tuple of array_like, optional
Lower and upper bounds on parameters. When bounds are provided, the input will normalized to stabilize the algorithm
Normalization : str, optional
Default is max normalization. Other normalization will be supported
in the future
max_f: int
The the maximum frequency of interest for NLEIS
kwargs :
Keyword arguments passed to simul_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping
Returns
-------
self: returns an instance of self
"""
# check that inputs are valid:
# frequencies: array of numbers
# impedance: array of complex numbers
# impedance and frequency match in length
frequencies = np.array(frequencies, dtype=float)
Z1 = np.array(Z1, dtype=complex)
Z2 = np.array(Z2, dtype=complex)
if len(frequencies) != len(Z1):
raise TypeError('length of frequencies and impedance do not match for EIS')
if self.initial_guess != []:
parameters, conf = simul_fit(frequencies, Z1,Z2,
self.circuit_1,self.circuit_2,self.edited_circuit, self.initial_guess,
constants_1=self.constants_1,constants_2=self.constants_2,
bounds=bounds,
opt=opt,cost = cost,max_f = max_f,
**kwargs)
# self.parameters_ = list(parameters)
self.parameters_ = parameters
if conf is not None:
# self.conf_ = list(conf)
self.conf_ = conf
self.conf1, self.conf2 = individual_parameters(self.circuit_1,self.conf_,self.constants_1,self.constants_2)
self.p1, self.p2 = individual_parameters(self.circuit_1,self.parameters_,self.constants_1,self.constants_2)
else:
raise ValueError('no initial guess supplied')
return self
|
(self, frequencies, Z1, Z2, bounds=None, opt='max', max_f=10, cost=0.5, **kwargs)
|
65,055 |
nleis.nleis
|
get_param_names
|
Converts circuit string to names and units
|
def get_param_names(self,circuit,constants):
"""
Converts circuit string to names and units
"""
# parse the element names from the circuit string
names = circuit.replace('d', '').replace('(', '').replace(')', '')#edit for nleis.py
names = names.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
|
(self, circuit, constants)
|
65,056 |
nleis.nleis
|
load
|
Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
|
def load(self, filepath, fitted_as_initial=False):
"""
Imports a model from JSON
Parameters
----------
filepath: str
filepath to JSON file to load model from
fitted_as_initial: bool
If true, loads the model's fitted parameters
as initial guesses
Otherwise, loads the model's initial and
fitted parameters as a completed model
"""
json_data_file = open(filepath, 'r')
json_data = json.load(json_data_file)
model_name = json_data["Name"]
model_string_1 = json_data["Circuit String 1"]
model_string_2 = json_data["Circuit String 2"]
model_initial_guess = json_data["Initial Guess"]
model_constants = json_data["Constants"]
self.initial_guess = model_initial_guess
self.circuit_1 = model_string_1
self.circuit_2 = model_string_2
self.edited_circuit = json_data["Edited Circuit Str"]
self.constants = model_constants
self.constants_1 =json_data["Constants 1"]
self.constants_2 =json_data["Constants 2"]
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
self.name = model_name
if json_data["Fit"]:
if fitted_as_initial:
self.initial_guess = json_data['Parameters']
self.p1, self.p2 = individual_parameters(self.circuit_1,self.initial_guess,self.constants_1,self.constants_2)
else:
self.parameters_ = np.array(json_data["Parameters"])
self.conf_ = np.array(json_data["Confidence"])
self.conf1, self.conf2 = individual_parameters(self.circuit_1,self.conf_,self.constants_1,self.constants_2)
self.p1, self.p2 = individual_parameters(self.circuit_1,self.parameters_,self.constants_1,self.constants_2)
|
(self, filepath, fitted_as_initial=False)
|
65,057 |
nleis.nleis
|
plot
|
visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax : matplotlib.axes,
axes to plot on
f_data : np.array of type float
Frequencies of input data (for Bode plots)
Z1_data : np.array of type complex
DESCRIPTION. The default is None.
Z2_data : np.array of type complex
DESCRIPTION. The default is None.
kind : {'altair', 'nyquist', 'bode'}
type of plot to visualize
max_f : TYPE, optional
DESCRIPTION. The default is 10.
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
|
def plot(self, ax=None, f_data=None, Z1_data =None, Z2_data= None, kind='nyquist', max_f = 10, **kwargs):
'''
visualizes the model and optional data as a nyquist,
bode, or altair (interactive) plots
Parameters
----------
ax : matplotlib.axes,
axes to plot on
f_data : np.array of type float
Frequencies of input data (for Bode plots)
Z1_data : np.array of type complex
DESCRIPTION. The default is None.
Z2_data : np.array of type complex
DESCRIPTION. The default is None.
kind : {'altair', 'nyquist', 'bode'}
type of plot to visualize
max_f : TYPE, optional
DESCRIPTION. The default is 10.
**kwargs : optional
If kind is 'nyquist' or 'bode', used to specify additional
`matplotlib.pyplot.Line2D` properties like linewidth,
line color, marker color, and labels.
If kind is 'altair', used to specify nyquist height as `size`
'''
if kind == 'nyquist':
if ax is None:
_, ax = plt.subplots(1,2,figsize=(10, 5))
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z1_data is not None:
ax[0] = plot_first(ax[0], Z1_data, scale=1, fmt='s', **kwargs)
## impedance.py style
# plot_nyquist(Z1_data, ls='', marker='s', ax=ax[0], **kwargs)
if Z2_data is not None:
mask = mask =np.array(f_pred)<max_f
ax[1] = plot_second(ax[1], Z2_data[mask], scale=1, fmt='s', **kwargs)
## impedance.py style
# plot_nyquist(Z2_data, units='Ohms/A', ls='', marker='s', ax=ax[1], **kwargs)
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
ax[0] = plot_first(ax[0], Z1_fit, scale=1, fmt='-', **kwargs)
# plot_nyquist(Z1_fit, ls='-', marker='', ax=ax[0], **kwargs)
ax[1] = plot_second(ax[1], Z2_fit, scale=1, fmt='-', **kwargs)
# plot_nyquist(Z2_fit,units='Ohms/A', ls='-', marker='', ax=ax[1], **kwargs)
ax[0].legend(['data','fit'])
ax[1].legend(['data','fit'])
return ax
elif kind == 'bode':
if ax is None:
_, ax = plt.subplots(2,2, figsize=(8, 8))
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if Z1_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
ax[:,0] = plot_bode(f_data, Z1_data, ls='', marker='s',
axes=ax[:,0], **kwargs)
if Z2_data is not None:
if f_data is None:
raise ValueError('f_data must be specified if' +
' Z_data for a Bode plot')
mask =np.array(f_pred)<max_f
f2 = f_data[mask]
Z2 = Z2_data[mask]
ax[:,1] = plot_bode(f2,Z2, units='Ohms/A', ls='', marker='s',
axes=ax[:,1], **kwargs)
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
f1 = f_data
f2 = f_data[np.array(f_data)<max_f]
ax[:,0] = plot_bode(f1, Z1_fit, ls='-', marker='o',
axes=ax[:,0], **kwargs)
ax[:,1] = plot_bode(f2, Z2_fit,units='Ohms/A', ls='-', marker='o',
axes=ax[:,1], **kwargs)
ax[0,0].set_ylabel(r'$|Z_{1}(\omega)|$ ' +
'$[{}]$'.format('Ohms'), fontsize=20)
ax[1,0].set_ylabel(r'$-\phi_{Z_{1}}(\omega)$ ' + r'$[^o]$', fontsize=20)
ax[0,1].set_ylabel(r'$|Z_{2}(\omega)|$ ' +
'$[{}]$'.format('Ohms/A'), fontsize=20)
ax[1,1].set_ylabel(r'$-\phi_{Z_{2}}(\omega)$ ' + r'$[^o]$', fontsize=20)
ax[0,0].legend(['Data','Fit'],fontsize=20)
ax[0,1].legend(['Data','Fit'],fontsize=20)
ax[1,0].legend(['Data','Fit'],fontsize=20)
ax[1,1].legend(['Data','Fit'],fontsize=20)
return ax
elif kind == 'altair':
plot_dict_1 = {}
plot_dict_2 = {}
if Z1_data is not None and Z2_data is not None and f_data is not None:
plot_dict_1['data'] = {'f': f_data, 'Z': Z1_data}
mask = np.array(f_data)<max_f
plot_dict_2['data'] = {'f': f_data[mask], 'Z': Z2_data[mask]}
## we don't need the if else statement if we want to enable plot without fit
# if self._is_fit():
if f_data is not None:
f_pred = f_data
else:
f_pred = np.logspace(5, -3)
if self.name is not None:
name = self.name
else:
name = 'fit'
Z1_fit,Z2_fit = self.predict(f_pred,max_f=max_f)
mask = np.array(f_pred)<max_f
plot_dict_1[name] = {'f': f_pred, 'Z': Z1_fit, 'fmt': '-'}
plot_dict_2[name] = {'f': f_pred[mask], 'Z': Z2_fit, 'fmt': '-'}
chart1 = plot_altair(plot_dict_1,k=1,units = 'Ω', **kwargs)
chart2 = plot_altair(plot_dict_2,k=2,units = 'Ω/A', **kwargs)
return chart1,chart2
else:
raise ValueError("Kind must be one of 'altair'," +
f"'nyquist', or 'bode' (received {kind})")
|
(self, ax=None, f_data=None, Z1_data=None, Z2_data=None, kind='nyquist', max_f=10, **kwargs)
|
65,058 |
nleis.nleis
|
predict
|
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: ndarray of numeric dtype
max_f: int
The the maximum frequency of interest for NLEIS
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance
|
def predict(self, frequencies, max_f=10, use_initial=False):
"""
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: ndarray of numeric dtype
max_f: int
The the maximum frequency of interest for NLEIS
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance
"""
if not isinstance(frequencies, np.ndarray):
raise TypeError('frequencies is not of type np.ndarray')
if not (np.issubdtype(frequencies.dtype, np.integer) or
np.issubdtype(frequencies.dtype, np.floating)):
raise TypeError('frequencies array should have a numeric ' +
f'dtype (currently {frequencies.dtype})')
f1 =frequencies
mask = np.array(frequencies)<max_f
f2 = frequencies[mask]
if self._is_fit() and not use_initial:
x1,x2 = wrappedImpedance(self.circuit_1, self.constants_1,self.circuit_2,self.constants_2,f1,f2,self.parameters_)
return x1,x2
else:
warnings.warn("Simulating circuit based on initial parameters")
x1,x2 = wrappedImpedance(self.circuit_1, self.constants_1,self.circuit_2,self.constants_2,f1,f2,self.initial_guess)
return(x1,x2)
|
(self, frequencies, max_f=10, use_initial=False)
|
65,059 |
nleis.nleis
|
save
|
Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
|
def save(self, filepath):
"""
Exports a model to JSON
Parameters
----------
filepath: str
Destination for exporting model object
"""
model_string_1 = self.circuit_1
model_string_2 = self.circuit_2
edited_circuit_str = self.edited_circuit
model_name = self.name
initial_guess = self.initial_guess
if self._is_fit():
parameters_ = list(self.parameters_)
model_conf_ = list(self.conf_)
# parameters_ = self.parameters_
# model_conf_ = self.conf_
data_dict = {"Name": model_name,
"Circuit String 1": model_string_1,
"Circuit String 2": model_string_2,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Constants 1": self.constants_1,
"Constants 2": self.constants_2,
"Fit": True,
"Parameters": parameters_,
"Confidence": model_conf_,
"Edited Circuit Str": edited_circuit_str
}
else:
data_dict = {"Name": model_name,
"Circuit String 1": model_string_1,
"Circuit String 2": model_string_2,
"Initial Guess": initial_guess,
"Constants": self.constants,
"Constants 1": self.constants_1,
"Constants 2": self.constants_2,
"Edited Circuit Str": edited_circuit_str,
"Fit": False}
with open(filepath, 'w') as f:
json.dump(data_dict, f)
|
(self, filepath)
|
65,060 |
impedance.models.circuits.elements
|
ElementError
| null |
class ElementError(Exception):
...
| null |
65,061 |
nleis.nleis
|
NLEISCustomCircuit
| null |
class NLEISCustomCircuit(BaseCircuit):
### this class can be fully integrated into CustomCircuit in the future
### , but for the stable performance of nleis.py, we overwrite it here
def __init__(self, circuit='', **kwargs):
"""
Constructor for a customizable equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
circuit: string
A string that should be interpreted as an equivalent circuit
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)).
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
Randles circuit is given by 'R0-p(R1-Wo1,C1)'
"""
super().__init__(**kwargs)
self.circuit = circuit.replace(" ", "")
circuit_len = calculateCircuitLength(self.circuit)
if len(self.initial_guess) + len(self.constants) != circuit_len:
raise ValueError('The number of initial guesses ' +
f'({len(self.initial_guess)}) + ' +
'the number of constants ' +
f'({len(self.constants)})' +
' must be equal to ' +
f'the circuit length ({circuit_len})')
def fit(self, frequencies, impedance, bounds=None,
weight_by_modulus=False, max_f =10, **kwargs):
'''
Fit the circuit model
Parameters
----------
frequencies : numpy array
Frequencies.
impedance : numpy array of dtype 'complex128'
Impedance values to fit.
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters.
weight_by_modulus : bool, optional
Uses the modulus of each data (`|Z|`) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
max_f : float , 10
Truncation for 2nd-NLEIS based on previous experiments. The default is 10.
**kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping.
Raises
------
TypeError
DESCRIPTION.
ValueError
DESCRIPTION.
Returns
-------
self: returns an instance of self
'''
frequencies = np.array(frequencies, dtype=float)
impedance = np.array(impedance, dtype=complex)
if len(frequencies) != len(impedance):
raise TypeError('length of frequencies and impedance do not match')
mask = np.array(frequencies)<max_f
frequencies = frequencies[mask]
impedance = impedance[mask]
if self.initial_guess != []:
parameters, conf = circuit_fit(frequencies, impedance,
self.circuit, self.initial_guess,
constants=self.constants,
bounds=bounds,
weight_by_modulus=weight_by_modulus,
**kwargs)
self.parameters_ = parameters
if conf is not None:
self.conf_ = conf
else:
raise ValueError('No initial guess supplied')
return self
def predict(self, frequencies, use_initial=False):
"""
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
"""
frequencies = np.array(frequencies, dtype=float)
if self._is_fit() and not use_initial:
return eval(buildCircuit(self.circuit, frequencies,
*self.parameters_,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
else:
warnings.warn("Simulating circuit based on initial parameters")
return eval(buildCircuit(self.circuit, frequencies,
*self.initial_guess,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
def get_param_names(self):
"""
Converts circuit string to names and units
"""
# parse the element names from the circuit string
names = self.circuit.replace('d', '').replace('(', '').replace(')', '')#edited for nleis.py
names = names.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in self.constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in self.constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
def extract(self):
"""
extract the printing of the circuit
"""
names, units = self.get_param_names()
dic={}
if self._is_fit():
params, confs = self.parameters_, self.conf_
for name, unit, param, conf in zip(names, units, params, confs):
dic[name] = param
return dic
|
(circuit='', **kwargs)
|
65,063 |
nleis.nleis
|
__init__
|
Constructor for a customizable equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
circuit: string
A string that should be interpreted as an equivalent circuit
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)).
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
Randles circuit is given by 'R0-p(R1-Wo1,C1)'
|
def __init__(self, circuit='', **kwargs):
"""
Constructor for a customizable equivalent circuit model
Parameters
----------
initial_guess: numpy array
Initial guess of the circuit values
circuit: string
A string that should be interpreted as an equivalent circuit
Notes
-----
A custom circuit is defined as a string comprised of elements in series
(separated by a `-`) and elements in parallel (grouped as (x,y)).
Each element can be appended with an integer (e.g. R0) or an underscore
and an integer (e.g. CPE_1) to make keeping track of multiple elements
of the same type easier.
Example:
Randles circuit is given by 'R0-p(R1-Wo1,C1)'
"""
super().__init__(**kwargs)
self.circuit = circuit.replace(" ", "")
circuit_len = calculateCircuitLength(self.circuit)
if len(self.initial_guess) + len(self.constants) != circuit_len:
raise ValueError('The number of initial guesses ' +
f'({len(self.initial_guess)}) + ' +
'the number of constants ' +
f'({len(self.constants)})' +
' must be equal to ' +
f'the circuit length ({circuit_len})')
|
(self, circuit='', **kwargs)
|
65,066 |
nleis.nleis
|
extract
|
extract the printing of the circuit
|
def extract(self):
"""
extract the printing of the circuit
"""
names, units = self.get_param_names()
dic={}
if self._is_fit():
params, confs = self.parameters_, self.conf_
for name, unit, param, conf in zip(names, units, params, confs):
dic[name] = param
return dic
|
(self)
|
65,067 |
nleis.nleis
|
fit
|
Fit the circuit model
Parameters
----------
frequencies : numpy array
Frequencies.
impedance : numpy array of dtype 'complex128'
Impedance values to fit.
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters.
weight_by_modulus : bool, optional
Uses the modulus of each data (`|Z|`) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
max_f : float , 10
Truncation for 2nd-NLEIS based on previous experiments. The default is 10.
**kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping.
Raises
------
TypeError
DESCRIPTION.
ValueError
DESCRIPTION.
Returns
-------
self: returns an instance of self
|
def fit(self, frequencies, impedance, bounds=None,
weight_by_modulus=False, max_f =10, **kwargs):
'''
Fit the circuit model
Parameters
----------
frequencies : numpy array
Frequencies.
impedance : numpy array of dtype 'complex128'
Impedance values to fit.
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters.
weight_by_modulus : bool, optional
Uses the modulus of each data (`|Z|`) as the weighting factor.
Standard weighting scheme when experimental variances are
unavailable. Only applicable when global_opt = False
max_f : float , 10
Truncation for 2nd-NLEIS based on previous experiments. The default is 10.
**kwargs :
Keyword arguments passed to
impedance.models.circuits.fitting.circuit_fit,
and subsequently to scipy.optimize.curve_fit
or scipy.optimize.basinhopping.
Raises
------
TypeError
DESCRIPTION.
ValueError
DESCRIPTION.
Returns
-------
self: returns an instance of self
'''
frequencies = np.array(frequencies, dtype=float)
impedance = np.array(impedance, dtype=complex)
if len(frequencies) != len(impedance):
raise TypeError('length of frequencies and impedance do not match')
mask = np.array(frequencies)<max_f
frequencies = frequencies[mask]
impedance = impedance[mask]
if self.initial_guess != []:
parameters, conf = circuit_fit(frequencies, impedance,
self.circuit, self.initial_guess,
constants=self.constants,
bounds=bounds,
weight_by_modulus=weight_by_modulus,
**kwargs)
self.parameters_ = parameters
if conf is not None:
self.conf_ = conf
else:
raise ValueError('No initial guess supplied')
return self
|
(self, frequencies, impedance, bounds=None, weight_by_modulus=False, max_f=10, **kwargs)
|
65,068 |
nleis.nleis
|
get_param_names
|
Converts circuit string to names and units
|
def get_param_names(self):
"""
Converts circuit string to names and units
"""
# parse the element names from the circuit string
names = self.circuit.replace('d', '').replace('(', '').replace(')', '')#edited for nleis.py
names = names.replace('p', '').replace('(', '').replace(')', '')
names = names.replace(',', '-').replace(' ', '').split('-')
full_names, all_units = [], []
for name in names:
elem = get_element_from_name(name)
num_params = check_and_eval(elem).num_params
units = check_and_eval(elem).units
if num_params > 1:
for j in range(num_params):
full_name = '{}_{}'.format(name, j)
if full_name not in self.constants.keys():
full_names.append(full_name)
all_units.append(units[j])
else:
if name not in self.constants.keys():
full_names.append(name)
all_units.append(units[0])
return full_names, all_units
|
(self)
|
65,071 |
nleis.nleis
|
predict
|
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
|
def predict(self, frequencies, use_initial=False):
"""
Predict impedance using an equivalent circuit model
Parameters
----------
frequencies: array-like of numeric type
use_initial: boolean
If true and the model was previously fit use the initial
parameters instead
Returns
-------
impedance: ndarray of dtype 'complex128'
Predicted impedance at each frequency
"""
frequencies = np.array(frequencies, dtype=float)
if self._is_fit() and not use_initial:
return eval(buildCircuit(self.circuit, frequencies,
*self.parameters_,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
else:
warnings.warn("Simulating circuit based on initial parameters")
return eval(buildCircuit(self.circuit, frequencies,
*self.initial_guess,
constants=self.constants, eval_string='',
index=0)[0],
circuit_elements)
|
(self, frequencies, use_initial=False)
|
65,073 |
impedance.models.circuits.elements
|
OverwriteError
| null |
class OverwriteError(ElementError):
...
| null |
65,074 |
nleis.nleis_elements_pair
|
RCD
|
EIS: Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
p2 = Aw
p3 = τd
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,075 |
nleis.nleis_elements_pair
|
RCDn
|
2nd-NLEIS: Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
p2 = Aw
p3 = τd
p4 = κ
p5 = ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,076 |
nleis.nleis_elements_pair
|
RCO
|
EIS: Randles circuit
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,077 |
nleis.nleis_elements_pair
|
RCOn
|
2nd-NLEIS: Randles circuit from Ji et al. [1]
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
p2 = ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,078 |
nleis.nleis_elements_pair
|
RCS
|
EIS: Randles circuit with spherical diffusion from Ji et al. [1]
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
p2 = Aw
p3 = τd
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,079 |
nleis.nleis_elements_pair
|
RCSn
|
2nd-NLEIS: Randles circuit with spherical diffusion from Ji et al. [1]
Notes
-----
.. math::
p0 = Rct
p1 = Cdl
p2 = Aw
p3 = τd
p4 = κ
p5 = ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,080 |
nleis.nleis_elements_pair
|
TDC
|
EIS: A macrohomogeneous porous electrode model with cylindrical diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0=Rpore
p1=Rct
p2=Cdl
p3=Aw
p4=τd
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,081 |
nleis.nleis_elements_pair
|
TDCn
|
2nd-NLEIS: A macrohomogeneous porous electrode model with cylindrical diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0=Rpore
p1=Rct
p2=Cdl
p3=Aw
p4=τd
p5=κ
p6=ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,082 |
nleis.nleis_elements_pair
|
TDP
|
EIS: A macrohomogeneous porous electrode model with planar diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0 = Rpore
p1 = Rct
p2 = Cdl
p3 = Aw
p4 = τd
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,083 |
nleis.nleis_elements_pair
|
TDPn
|
2nd-NLEIS: A macrohomogeneous porous electrode model with planar diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0 = Rpore
p1 = Rct
p2 = Cdl
p3 = Aw
p4 = τd
p5 = κ
p6 = ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,084 |
nleis.nleis_elements_pair
|
TDS
|
EIS: A macrohomogeneous porous electrode model with spherical diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0=Rpore
p1=Rct
p2=Cdl
p3=Aw
p4=τd
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,085 |
nleis.nleis_elements_pair
|
TDSn
|
2nd-NLEIS: A macrohomogeneous porous electrode model with spherical diffusion
and zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0=Rpore
p1=Rct
p2=Cdl
p3=Aw
p4=τd
p5=κ
p6=ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,086 |
nleis.nleis_elements_pair
|
TLM
|
EIS: General discrete transmission line model built Randles circuit
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Rct,surface
p4: Cdl,surface
p5: N (number of circuit element)
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,087 |
nleis.nleis_elements_pair
|
TLMD
|
EIS: general discrete transmission line model
built based on the Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,088 |
nleis.nleis_elements_pair
|
TLMDn
|
2nd-NLEIS: Second harmonic nonlinear discrete transmission line model
built based on the Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
p8: κ,bulk
p9: ε,bulk
p10: ε,surface
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,089 |
nleis.nleis_elements_pair
|
TLMS
|
EIS: General discrete transmission line model
built based on the Randles circuit with spherical diffusion from Ji et al.[1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,090 |
nleis.nleis_elements_pair
|
TLMSn
|
2nd-NLEIS: Second harmonic nonlinear discrete transmission line model
built based on the Randles circuit with spherical diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
p8: κ,bulk
p9: ε,bulk
p10: ε,surface
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,091 |
nleis.nleis_elements_pair
|
TLMn
|
2nd-NLEIS: Second harmonic nonlinear discrete transmission line model
built based on the nonlinear Randles circuit from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Rct,surface
p4: Cdl,surface
p5: N (number of circuit element)
p6: ε,bulk
p7: ε,surface
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,092 |
nleis.nleis_elements_pair
|
TPO
|
EIS: A macrohomogeneous porous electrode model with zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0=Rpore
p1=Rct
p2=Cdl
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,093 |
nleis.nleis_elements_pair
|
TPOn
|
2nd-NLEIS: A macrohomogeneous porous electrode model with zero solid resistivity from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct
p2: Cdl
p3: ε
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,094 |
nleis.fitting
|
buildCircuit
|
recursive function that transforms a circuit, parameters, and
frequencies into a string that can be evaluated
Parameters
----------
circuit: str
frequencies: list/tuple/array of floats
parameters: list/tuple/array of floats
constants: dict
Returns
-------
eval_string: str
Python expression for calculating the resulting fit
index: int
Tracks parameter index through recursive calling of the function
|
def buildCircuit(circuit, frequencies, *parameters,
constants=None, eval_string='', index=0):
""" recursive function that transforms a circuit, parameters, and
frequencies into a string that can be evaluated
Parameters
----------
circuit: str
frequencies: list/tuple/array of floats
parameters: list/tuple/array of floats
constants: dict
Returns
-------
eval_string: str
Python expression for calculating the resulting fit
index: int
Tracks parameter index through recursive calling of the function
"""
parameters = np.array(parameters).tolist()
frequencies = np.array(frequencies).tolist()
circuit = circuit.replace(' ', '')
def parse_circuit(circuit, parallel=False, series=False,difference=False):
""" Splits a circuit string by either dashes (series) or commas
(parallel) outside of any paranthesis. Removes any leading 'p('
or trailing ')' when in parallel mode or 'd('or trailing ')' when in difference mode '' """
assert parallel != series or series != difference or difference != parallel, \
'Exactly one of parallel or series or difference must be True'
def count_parens(string):
return string.count('('), string.count(')')
if parallel:
special = ','
if circuit.endswith(')') and circuit.startswith('p('):
circuit = circuit[2:-1]
if difference:
special = ','
if circuit.endswith(')') and circuit.startswith('d('):
circuit = circuit[2:-1]
if series:
special = '-'
split = circuit.split(special)
result = []
skipped = []
for i, sub_str in enumerate(split):
if i not in skipped:
if '(' not in sub_str and ')' not in sub_str:
result.append(sub_str)
else:
open_parens, closed_parens = count_parens(sub_str)
if open_parens == closed_parens:
result.append(sub_str)
else:
uneven = True
while i < len(split) - 1 and uneven:
sub_str += special + split[i+1]
open_parens, closed_parens = count_parens(sub_str)
uneven = open_parens != closed_parens
i += 1
skipped.append(i)
result.append(sub_str)
return result
parallel = parse_circuit(circuit, parallel=True)
series = parse_circuit(circuit, series=True)
difference = parse_circuit(circuit, difference=True)
if series is not None and len(series) > 1:
eval_string += "s(["
split = series
elif parallel is not None and len(parallel) > 1:
eval_string += "p(["
split = parallel
## added for nleis.py
elif difference is not None and len(difference) > 1:
eval_string += "d(["
split = difference
elif series == parallel == difference : # only single element
split = series
for i, elem in enumerate(split):
if ',' in elem or '-' in elem :
eval_string, index = buildCircuit(elem, frequencies,
*parameters,
constants=constants,
eval_string=eval_string,
index=index)
else:
param_string = ""
raw_elem = get_element_from_name(elem)
elem_number = check_and_eval(raw_elem).num_params
param_list = []
for j in range(elem_number):
if elem_number > 1:
current_elem = elem + '_{}'.format(j)
else:
current_elem = elem
if current_elem in constants.keys():
param_list.append(constants[current_elem])
else:
param_list.append(parameters[index])
index += 1
param_string += str(param_list)
new = raw_elem + '(' + param_string + ',' + str(frequencies) + ')'
eval_string += new
if i == len(split) - 1:
if len(split) > 1: # do not add closing brackets if single element
eval_string += '])'
else:
eval_string += ','
return eval_string, index
|
(circuit, frequencies, *parameters, constants=None, eval_string='', index=0)
|
65,095 |
nleis.fitting
|
calculateCircuitLength
|
Calculates the number of elements in the circuit.
Parameters
----------
circuit : str
Circuit string.
Returns
-------
length : int
Length of circuit.
|
def calculateCircuitLength(circuit):
""" Calculates the number of elements in the circuit.
Parameters
----------
circuit : str
Circuit string.
Returns
-------
length : int
Length of circuit.
"""
length = 0
if circuit:
extracted_elements = extract_circuit_elements(circuit)
for elem in extracted_elements:
raw_element = get_element_from_name(elem)
num_params = check_and_eval(raw_element).num_params
length += num_params
return length
|
(circuit)
|
65,096 |
impedance.models.circuits.fitting
|
check_and_eval
|
Checks if an element is valid, then evaluates it.
Parameters
----------
element : str
Circuit element.
Raises
------
ValueError
Raised if an element is not in the list of allowed elements.
Returns
-------
Evaluated element.
|
def check_and_eval(element):
""" Checks if an element is valid, then evaluates it.
Parameters
----------
element : str
Circuit element.
Raises
------
ValueError
Raised if an element is not in the list of allowed elements.
Returns
-------
Evaluated element.
"""
allowed_elements = circuit_elements.keys()
if element not in allowed_elements:
raise ValueError(f'{element} not in ' +
f'allowed elements ({allowed_elements})')
else:
return eval(element, circuit_elements)
|
(element)
|
65,097 |
nleis.fitting
|
circuit_fit
|
Main function for fitting an equivalent circuit to data.
By default, this function uses `scipy.optimize.curve_fit
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html>`_
to fit the equivalent circuit. This function generally works well for
simple circuits. However, the final results may be sensitive to
the initial conditions for more complex circuits. In these cases,
the `scipy.optimize.basinhopping
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html>`_
global optimization algorithm can be used to attempt a better fit.
Parameters
----------
frequencies : numpy array
Frequencies
impedances : numpy array of dtype 'complex128'
Impedances
circuit : string
String defining the equivalent circuit to be fit
initial_guess : list of floats
Initial guesses for the fit parameters
constants : dictionary, optional
Parameters and their values to hold constant during fitting
(e.g. {"RO": 0.1}). Defaults to {}
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
weight_by_modulus : bool, optional
Uses the modulus of each data (`|Z|`) as the weighting factor.
Standard weighting scheme when experimental variances are unavailable.
Only applicable when global_opt = False
global_opt : bool, optional
If global optimization should be used (uses the basinhopping
algorithm). Defaults to False
kwargs :
Keyword arguments passed to scipy.optimize.curve_fit or
scipy.optimize.basinhopping
Returns
-------
p_values : list of floats
best fit parameters for specified equivalent circuit
p_errors : list of floats
one standard deviation error estimates for fit parameters
Notes
-----
Need to do a better job of handling errors in fitting.
Currently, an error of -1 is returned.
|
def circuit_fit(frequencies, impedances, circuit, initial_guess, constants={},
bounds=None, weight_by_modulus=False, global_opt=False,
**kwargs):
""" Main function for fitting an equivalent circuit to data.
By default, this function uses `scipy.optimize.curve_fit
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html>`_
to fit the equivalent circuit. This function generally works well for
simple circuits. However, the final results may be sensitive to
the initial conditions for more complex circuits. In these cases,
the `scipy.optimize.basinhopping
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html>`_
global optimization algorithm can be used to attempt a better fit.
Parameters
----------
frequencies : numpy array
Frequencies
impedances : numpy array of dtype 'complex128'
Impedances
circuit : string
String defining the equivalent circuit to be fit
initial_guess : list of floats
Initial guesses for the fit parameters
constants : dictionary, optional
Parameters and their values to hold constant during fitting
(e.g. {"RO": 0.1}). Defaults to {}
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
weight_by_modulus : bool, optional
Uses the modulus of each data (`|Z|`) as the weighting factor.
Standard weighting scheme when experimental variances are unavailable.
Only applicable when global_opt = False
global_opt : bool, optional
If global optimization should be used (uses the basinhopping
algorithm). Defaults to False
kwargs :
Keyword arguments passed to scipy.optimize.curve_fit or
scipy.optimize.basinhopping
Returns
-------
p_values : list of floats
best fit parameters for specified equivalent circuit
p_errors : list of floats
one standard deviation error estimates for fit parameters
Notes
-----
Need to do a better job of handling errors in fitting.
Currently, an error of -1 is returned.
"""
f = np.array(frequencies, dtype=float)
Z = np.array(impedances, dtype=complex)
# set upper and lower bounds on a per-element basis
if bounds is None:
bounds = set_default_bounds(circuit, constants=constants)
if not global_opt:
if 'maxfev' not in kwargs:
kwargs['maxfev'] = int(1e5)
if 'ftol' not in kwargs:
kwargs['ftol'] = 1e-13
# weighting scheme for fitting
if weight_by_modulus:
abs_Z = np.abs(Z)
kwargs['sigma'] = np.hstack([abs_Z, abs_Z])
popt, pcov = curve_fit(wrapCircuit(circuit, constants), f,
np.hstack([Z.real, Z.imag]),
p0=initial_guess, bounds=bounds, **kwargs)
# Calculate one standard deviation error estimates for fit parameters,
# defined as the square root of the diagonal of the covariance matrix.
# https://stackoverflow.com/a/52275674/5144795
perror = np.sqrt(np.diag(pcov))
else:
if 'seed' not in kwargs:
kwargs['seed'] = 0
def opt_function(x):
""" Short function for basinhopping to optimize over.
We want to minimize the RMSE between the fit and the data.
Parameters
----------
x : args
Parameters for optimization.
Returns
-------
function
Returns a function (RMSE as a function of parameters).
"""
return rmse(wrapCircuit(circuit, constants)(f, *x),
np.hstack([Z.real, Z.imag]))
class BasinhoppingBounds(object):
""" Adapted from the basinhopping documetation
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
"""
def __init__(self, xmin, xmax):
self.xmin = np.array(xmin)
self.xmax = np.array(xmax)
def __call__(self, **kwargs):
x = kwargs['x_new']
tmax = bool(np.all(x <= self.xmax))
tmin = bool(np.all(x >= self.xmin))
return tmax and tmin
basinhopping_bounds = BasinhoppingBounds(xmin=bounds[0],
xmax=bounds[1])
results = basinhopping(opt_function, x0=initial_guess,
accept_test=basinhopping_bounds, **kwargs)
popt = results.x
# Calculate perror
jac = results.lowest_optimization_result['jac'][np.newaxis]
try:
# jacobian -> covariance
# https://stats.stackexchange.com/q/231868
pcov = inv(np.dot(jac.T, jac)) * opt_function(popt) ** 2
# covariance -> perror (one standard deviation
# error estimates for fit parameters)
perror = np.sqrt(np.diag(pcov))
except (ValueError, np.linalg.LinAlgError):
warnings.warn('Failed to compute perror')
perror = None
return popt, perror
|
(frequencies, impedances, circuit, initial_guess, constants={}, bounds=None, weight_by_modulus=False, global_opt=False, **kwargs)
|
65,098 |
nleis.nleis_elements_pair
|
d
|
Subtract the second electrode from the first electrode in 2nd-NLEIS
Notes
-----
.. math::
|
def d(difference):
'''
Subtract the second electrode from the first electrode in 2nd-NLEIS
Notes
-----
.. math::
'''
z = len(difference[0])*[0 + 0*1j]
z += difference[0]
z += -difference[-1]
return z
|
(difference)
|
65,099 |
nleis.nleis_elements_pair
|
element
|
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(num_params, units, overwrite=False)
|
65,100 |
nleis.fitting
|
extract_circuit_elements
|
Extracts circuit elements from a circuit string.
Parameters
----------
circuit : str
Circuit string.
Returns
-------
extracted_elements : list
list of extracted elements.
|
def extract_circuit_elements(circuit):
""" Extracts circuit elements from a circuit string.
Parameters
----------
circuit : str
Circuit string.
Returns
-------
extracted_elements : list
list of extracted elements.
"""
p_string = [x for x in circuit if x not in 'p(),-,d()']
extracted_elements = []
current_element = []
length = len(p_string)
for i, char in enumerate(p_string):
if char not in ints:
current_element.append(char)
else:
# min to prevent looking ahead past end of list
if p_string[min(i+1, length-1)] not in ints:
current_element.append(char)
extracted_elements.append(''.join(current_element))
current_element = []
else:
current_element.append(char)
extracted_elements.append(''.join(current_element))
return extracted_elements
|
(circuit)
|
65,102 |
impedance.models.circuits.elements
|
get_element_from_name
| null |
def get_element_from_name(name):
excluded_chars = "0123456789_"
return "".join(char for char in name if char not in excluded_chars)
|
(name)
|
65,103 |
nleis.nleis_fitting
|
individual_parameters
|
Parameters
----------
circuit : string
DESCRIPTION.
parameters : list of floats
DESCRIPTION.
constants_1 : dict
DESCRIPTION.
constants_2 : dict
DESCRIPTION.
Returns
-------
TYPE
DESCRIPTION.
TYPE
DESCRIPTION.
|
def individual_parameters(circuit,parameters,constants_1,constants_2):
'''
Parameters
----------
circuit : string
DESCRIPTION.
parameters : list of floats
DESCRIPTION.
constants_1 : dict
DESCRIPTION.
constants_2 : dict
DESCRIPTION.
Returns
-------
TYPE
DESCRIPTION.
TYPE
DESCRIPTION.
'''
if circuit == '':
return [],[]
parameters = list(parameters)
elements_1 = extract_circuit_elements(circuit)
p1 = []
p2 = []
index = 0
for elem in elements_1:
raw_elem = get_element_from_name(elem)
elem_number_1 = check_and_eval(raw_elem).num_params
if elem[0]=='T' or elem[0:2] =='RC' : ### this might be improvable, but depends on how we want to define the name
## check for nonlinear element
elem_number_2 = check_and_eval(raw_elem+'n').num_params
else:
elem_number_2 = elem_number_1
for j in range(elem_number_2):
if elem_number_1 > 1:
if j<elem_number_1:
current_elem_1 = elem + '_{}'.format(j)
else:
current_elem_1 = None
len_elem = len(raw_elem)
current_elem_2 = elem[0:len_elem]+'n'+elem[len_elem:] + '_{}'.format(j)
else:
current_elem_1 = elem
current_elem_2 = elem
if current_elem_1 in constants_1.keys() :
continue
elif current_elem_2 in constants_2.keys() and current_elem_1 not in constants_1.keys():
continue
else:
if elem_number_1 ==1:
p1.append(parameters[index])
elif elem_number_1>1 and j<elem_number_1:
p1.append(parameters[index])
p2.append(parameters[index])
else:
p2.append(parameters[index])
index += 1
return p1,p2
|
(circuit, parameters, constants_1, constants_2)
|
65,105 |
nleis.nleis_elements_pair
|
mTi
|
EIS: current distribution of discrete transmission line model
built based on the Randles circuit from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Rct,surface
p4: Cdl,surface
p5: N (number of circuit element)
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,106 |
nleis.nleis_elements_pair
|
mTiD
|
EIS: current distribution of discrete transmission line model
built based on the Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,107 |
nleis.nleis_elements_pair
|
mTiDn
|
2nd-NLEIS: current distribution of Second harmonic nonlinear discrete transmission line model
built based on the Randles circuit with planar diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
p8: κ,bulk
p9: ε,bulk
p10: ε,surface
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,108 |
nleis.nleis_elements_pair
|
mTiS
|
EIS: current distribution of nonlinear discrete transmission line model
built based on the Randles circuit with spherical diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
[1] Y. Ji, D.T. Schwartz,
Second-Harmonic Nonlinear Electrochemical Impedance Spectroscopy:
I. Analytical theory and equivalent circuit representations for planar and porous electrodes.
J. Electrochem. Soc. (2023). `doi: 10.1149/1945-7111/ad15ca
<https://doi.org/10.1149/1945-7111/ad15ca>`_.
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,109 |
nleis.nleis_elements_pair
|
mTiSn
|
2nd-NLEIS: nonlinear current distribution of nonlinear discrete transmission line model
built based on the Randles circuit with spherical diffusion from Ji et al. [1]
Notes
-----
.. math::
p0: Rpore
p1: Rct,bulk
p2: Cdl,bulk
p3: Aw,bulk
p4: τ,bulk
p5: Rct,surface
p6: Cdl,surface
p7: N (number of circuit element)
p8: κ,bulk
p9: ε,bulk
p10: ε,surface
|
def element(num_params, units, overwrite=False):
"""
decorator to store metadata for a circuit element
Parameters
----------
num_params : int
number of parameters for an element
units : list of str
list of units for the element parameters
overwrite : bool (default False)
if true, overwrites any existing element; if false,
raises OverwriteError if element name already exists.
"""
def decorator(func):
def wrapper(p, f):
typeChecker(p, f, func.__name__, num_params)
return func(p, f)
wrapper.num_params = num_params
wrapper.units = units
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
global circuit_elements
if func.__name__ in ["s", "p"]:
raise ElementError("cannot redefine elements 's' (series)" +
"or 'p' (parallel)")
elif func.__name__ in circuit_elements and not overwrite:
raise OverwriteError(
f"element {func.__name__} already exists. " +
"If you want to overwrite the existing element," +
"use `overwrite=True`."
)
else:
circuit_elements[func.__name__] = wrapper
return wrapper
return decorator
|
(p, f)
|
65,114 |
nleis.visualization
|
plot_altair
|
Plots impedance as an interactive Nyquist/Bode plot using altair
Parameters
----------
data_dict: dict
dictionary with keys
'f': frequencies
'Z': impedance
'fmt': {'-' for a line, else circles}
size: int
size in pixels of Nyquist height/width
background: str
hex color string for chart background (default = '#FFFFFF')
Returns
-------
chart: altair.Chart
|
def plot_altair(data_dict,k = 1, units = 'Ω', size=400, background='#FFFFFF'):
""" Plots impedance as an interactive Nyquist/Bode plot using altair
Parameters
----------
data_dict: dict
dictionary with keys
'f': frequencies
'Z': impedance
'fmt': {'-' for a line, else circles}
size: int
size in pixels of Nyquist height/width
background: str
hex color string for chart background (default = '#FFFFFF')
Returns
-------
chart: altair.Chart
"""
Z_df = pd.DataFrame(columns=['f', 'z_real', 'z_imag', 'kind', 'fmt'])
for kind in data_dict.keys():
f = data_dict[kind]['f']
Z = data_dict[kind]['Z']
fmt = data_dict[kind].get('fmt', 'o')
df = pd.DataFrame({'f': f, 'z_real': Z.real, 'z_imag': Z.imag,
'kind': kind, 'fmt': fmt})
Z_df = pd.concat([Z_df,df])
# Z_df.append(df)
range_x = max(Z_df['z_real']) - min(Z_df['z_real'])
range_y = max(-Z_df['z_imag']) - min(-Z_df['z_imag'])
rng = max(range_x, range_y)
min_x = min(Z_df['z_real'])
max_x = min(Z_df['z_real']) + rng
min_y = min(-Z_df['z_imag'])
max_y = min(-Z_df['z_imag']) + rng
nearest = alt.selection_single(on='mouseover', nearest=True,
empty='none', fields=['f'])
## potential future improvement
# nearest = alt.selection_point(on='mouseover', nearest=True,
# empty='none', fields=['f'])
fmts = Z_df['fmt'].unique()
nyquists, bode_mags, bode_phss = [], [], []
if '-' in fmts:
df = Z_df.groupby('fmt').get_group('-')
##### These are changed to introduce harmonics and units
nyquist = alt.Chart(df).mark_line().encode(
x=alt.X('z_real:Q', axis=alt.Axis(title="Z{}' [{}]".format(k, units)),
scale=alt.Scale(domain=[min_x, max_x],
nice=False, padding=5),sort=None),
y=alt.Y('neg_z_imag:Q', axis=alt.Axis(title="-Z{}'' [{}]".format(k, units)),
scale=alt.Scale(domain=[min_y, max_y],
nice=False, padding=5),sort=None),
color='kind:N'
).properties(
height=size,
width=size
).transform_calculate(
neg_z_imag='-datum.z_imag'
)
bode = alt.Chart(df).mark_line().encode(
alt.X('f:Q', axis=alt.Axis(title="f [Hz]"),
scale=alt.Scale(type='log', nice=False),sort=None),
color='kind:N'
).properties(
width=size,
height=size/2 - 25
).transform_calculate(
mag="sqrt(pow(datum.z_real,2) + pow(datum.z_imag,2))",
neg_phase="-(180/PI)*atan2(datum.z_imag,datum.z_real)"
)
bode_mag = bode.encode(y=alt.Y('mag:Q',
axis=alt.Axis(title="|Z{}|' [{}]".format(k, units)),sort=None))
bode_phs = bode.encode(y=alt.Y('neg_phase:Q',
axis=alt.Axis(title="-ϕ [°]"),sort=None))
nyquists.append(nyquist)
bode_mags.append(bode_mag)
bode_phss.append(bode_phs)
nyquists
if 'o' in fmts:
df = Z_df.groupby('fmt').get_group('o')
nyquist = alt.Chart(df).mark_circle().encode(
x=alt.X('z_real:Q', axis=alt.Axis(title="Z{}' [{}]".format(k, units)),
scale=alt.Scale(domain=[min_x, max_x],
nice=False, padding=5),sort=None),
y=alt.Y('neg_z_imag:Q', axis=alt.Axis(title="-Z{}'' [{}]".format(k, units)),
scale=alt.Scale(domain=[min_y, max_y],
nice=False, padding=5),sort=None),
size=alt.condition(nearest, alt.value(80), alt.value(30)),
color=alt.Color('kind:N', legend=alt.Legend(title='Legend'))
).add_selection(
nearest
).properties(
height=size,
width=size
).transform_calculate(
neg_z_imag='-datum.z_imag'
).interactive()
bode = alt.Chart(df).mark_circle().encode(
alt.X('f:Q', axis=alt.Axis(title="f [Hz]"),
scale=alt.Scale(type='log', nice=False),sort=None),
size=alt.condition(nearest, alt.value(80), alt.value(30)),
color='kind:N'
).add_selection(
nearest
).properties(
width=size,
height=size/2 - 25
).transform_calculate(
mag="sqrt(pow(datum.z_real,2) + pow(datum.z_imag,2))",
neg_phase="-(180/PI)*atan2(datum.z_imag,datum.z_real)"
).interactive()
bode_mag = bode.encode(y=alt.Y('mag:Q',
axis=alt.Axis(title="|Z{}|' [{}]".format(k, units)),sort=None))
bode_phs = bode.encode(y=alt.Y('neg_phase:Q',
axis=alt.Axis(title="-ϕ [°]"),sort=None))
nyquists.append(nyquist)
bode_mags.append(bode_mag)
bode_phss.append(bode_phs)
full_bode = alt.layer(*bode_mags) & alt.layer(*bode_phss)
return (full_bode | alt.layer(*nyquists)).configure(background=background)
|
(data_dict, k=1, units='Ω', size=400, background='#FFFFFF')
|
65,115 |
impedance.visualization
|
plot_bode
|
Plots impedance as a Bode plot using matplotlib
Parameters
----------
f: np.array of floats
frequencies
Z: np.array of complex numbers
impedance data
scale: float
scale for the magnitude y-axis
units: string
units for :math:`|Z(\omega)|`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
axes: list of 2 matplotlib.axes.Axes (optional)
axes on which to plot the bode plot
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
|
def plot_bode(f, Z, scale=1, units='Ohms', fmt='.-', axes=None, labelsize=20,
ticksize=14, **kwargs):
""" Plots impedance as a Bode plot using matplotlib
Parameters
----------
f: np.array of floats
frequencies
Z: np.array of complex numbers
impedance data
scale: float
scale for the magnitude y-axis
units: string
units for :math:`|Z(\\omega)|`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
axes: list of 2 matplotlib.axes.Axes (optional)
axes on which to plot the bode plot
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
"""
Z = np.array(Z, dtype=complex)
if axes is None:
_, axes = plt.subplots(nrows=2)
ax_mag, ax_phs = axes
ax_mag.plot(f, np.abs(Z), fmt, **kwargs)
ax_phs.plot(f, -np.angle(Z, deg=True), fmt, **kwargs)
# Set the y-axis labels
ax_mag.set_ylabel(r'$|Z(\omega)|$ ' +
'$[{}]$'.format(units), fontsize=labelsize)
ax_phs.set_ylabel(r'$-\phi_Z(\omega)$ ' + r'$[^o]$', fontsize=labelsize)
for ax in axes:
# Set the frequency axes title and make log scale
ax.set_xlabel('f [Hz]', fontsize=labelsize)
ax.set_xscale('log')
# Make the tick labels larger
ax.tick_params(axis='both', which='major', labelsize=ticksize)
# Change the number of labels on each axis to five
ax.locator_params(axis='y', nbins=5, tight=True)
# Add a light grid
ax.grid(visible=True, which='major', axis='both', alpha=.5)
# Change axis units to 10**log10(scale) and resize the offset text
limits = -np.log10(scale)
if limits != 0:
ax_mag.ticklabel_format(style='sci', axis='y',
scilimits=(limits, limits))
y_offset = ax_mag.yaxis.get_offset_text()
y_offset.set_size(18)
return axes
|
(f, Z, scale=1, units='Ohms', fmt='.-', axes=None, labelsize=20, ticksize=14, **kwargs)
|
65,116 |
nleis.visualization
|
plot_first
|
Plots impedance as a Nyquist plot using matplotlib
Parameters
----------
ax: matplotlib.axes.Axes
axes on which to plot the nyquist plot
Z: np.array of complex numbers
impedance data
scale: float
the scale for the axes
units: string
units for :math:`Z(\omega)`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
|
def plot_first(ax, Z, scale=1, fmt='.-', **kwargs):
""" Plots impedance as a Nyquist plot using matplotlib
Parameters
----------
ax: matplotlib.axes.Axes
axes on which to plot the nyquist plot
Z: np.array of complex numbers
impedance data
scale: float
the scale for the axes
units: string
units for :math:`Z(\\omega)`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
"""
ax.plot(np.real(Z), -np.imag(Z), fmt, **kwargs)
# Make the axes square
ax.set_aspect(aspect = 1 ,anchor='C',adjustable='datalim')
# Set the labels to -imaginary vs real
ax.set_xlabel(r'$\tilde{Z}_{1}^{\prime}(\omega)$' +
' [$\Omega$]', fontsize=20)
ax.set_ylabel(r'$-\tilde{Z}_{1}^{\prime\prime}(\omega)$' +
' [$\Omega$]', fontsize=20)
# Make the tick labels larger
ax.tick_params(axis='both', which='major', labelsize=20)
# Change the number of labels on each axis to five
ax.locator_params(axis='x', nbins=5, tight=True)
ax.locator_params(axis='y', nbins=5, tight=True)
# Add a light grid
ax.grid(visible=True, which='major', axis='both', alpha=.5)
# Change axis units to 10**log10(scale) and resize the offset text
#ax.ticklabel_format(style='sci', axis='both')
formatter = ticker.ScalarFormatter(useMathText=True)
formatter.set_scientific(True)
formatter.set_powerlimits((-1,1))
ax.yaxis.set_major_formatter(formatter)
ax.xaxis.set_major_formatter(formatter)
limits = -np.log10(scale)
if limits != 0:
ax.ticklabel_format(style='sci', axis='both',
scilimits=(limits, limits))
y_offset = ax.yaxis.get_offset_text()
y_offset.set_size(18)
t = ax.xaxis.get_offset_text()
t.set_size(18)
return ax
|
(ax, Z, scale=1, fmt='.-', **kwargs)
|
65,117 |
nleis.visualization
|
plot_second
|
Plots impedance as a Nyquist plot using matplotlib
Parameters
----------
ax: matplotlib.axes.Axes
axes on which to plot the nyquist plot
Z: np.array of complex numbers
impedance data
scale: float
the scale for the axes
units: string
units for :math:`Z(\omega)`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
|
def plot_second(ax, Z, scale=1, fmt='.-', **kwargs):
""" Plots impedance as a Nyquist plot using matplotlib
Parameters
----------
ax: matplotlib.axes.Axes
axes on which to plot the nyquist plot
Z: np.array of complex numbers
impedance data
scale: float
the scale for the axes
units: string
units for :math:`Z(\\omega)`
fmt: string
format string passed to matplotlib (e.g. '.-' or 'o')
Other Parameters
----------------
**kwargs : `matplotlib.pyplot.Line2D` properties, optional
Used to specify line properties like linewidth, line color,
marker color, and line labels.
Returns
-------
ax: matplotlib.axes.Axes
"""
ax.plot(np.real(Z), -np.imag(Z), fmt, **kwargs)
# Make the axes square
ax.set_aspect(aspect = 1 ,anchor='C',adjustable='datalim')
# Set the labels to -imaginary vs real
ax.set_xlabel(r'$\tilde{Z}_{2}^{\prime}(\omega)$' +
' [$\Omega / A$]', fontsize=20)
ax.set_ylabel(r'$-\tilde{Z}_{2}^{\prime\prime}(\omega)$' +
' [$\Omega / A$]', fontsize=20)
# Make the tick labels larger
ax.tick_params(axis='both', which='major', labelsize=20)
# Change the number of labels on each axis to five
ax.locator_params(axis='x', nbins=5, tight=True)
ax.locator_params(axis='y', nbins=5, tight=True)
# Add a light grid
ax.grid(visible=True, which='major', axis='both', alpha=.5)
# Change axis units to 10**log10(scale) and resize the offset text
formatter = ticker.ScalarFormatter(useMathText=True)
formatter.set_scientific(True)
formatter.set_powerlimits((-1,1))
ax.yaxis.set_major_formatter(formatter)
ax.xaxis.set_major_formatter(formatter)
limits = -np.log10(scale)
if limits != 0:
ax.ticklabel_format(style='scientific', axis='both',
scilimits=(limits, limits))
y_offset = ax.yaxis.get_offset_text()
y_offset.set_size(18)
t = ax.xaxis.get_offset_text()
t.set_size(18)
return ax
|
(ax, Z, scale=1, fmt='.-', **kwargs)
|
65,119 |
nleis.nleis_fitting
|
simul_fit
|
Main function for the simultaneous fitting of EIS and NLEIS edata.
By default, this function uses `scipy.optimize.curve_fit
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html>`_
to fit the equivalent circuit.
Parameters
----------
frequencies : numpy array
Frequencies
Z1 : numpy array of dtype 'complex128'
EIS
Z1 : numpy array of dtype 'complex128'
NLEIS
circuit_1 : string
String defining the EIS equivalent circuit to be fit
circuit_2 : string
String defining the NLEIS equivalent circuit to be fit
initial_guess : list of floats
Initial guesses for the fit parameters
constants : dictionary, optional
Parameters and their values to hold constant during fitting
(e.g. {"RO": 0.1}). Defaults to {}
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
opt : str, optional
Default is max normalization. Other normalization will be supported
in the future
cost : float, default = 0.5
cost function: cost > 0.5 means more weight on EIS while cost < 0.5 means more weight on NLEIS
max_f: int
The the maximum frequency of interest for NLEIS
positive : bool, optional
Defaults to True for only positive nyquist plot
param_norm : bool, optional
Defaults to True for better convergence
kwargs :
Keyword arguments passed to scipy.optimize.curve_fit or
scipy.optimize.basinhopping
Returns
-------
p_values : list of floats
best fit parameters for EIS and NLEIS data
p_errors : list of floats
one standard deviation error estimates for fit parameters
|
def simul_fit(frequencies, Z1, Z2, circuit_1,circuit_2, edited_circuit, initial_guess, constants_1={},constants_2={},
bounds = None, opt='max',cost = 0.5,max_f=10,param_norm = True,positive = True,
**kwargs):
""" Main function for the simultaneous fitting of EIS and NLEIS edata.
By default, this function uses `scipy.optimize.curve_fit
<https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html>`_
to fit the equivalent circuit.
Parameters
----------
frequencies : numpy array
Frequencies
Z1 : numpy array of dtype 'complex128'
EIS
Z1 : numpy array of dtype 'complex128'
NLEIS
circuit_1 : string
String defining the EIS equivalent circuit to be fit
circuit_2 : string
String defining the NLEIS equivalent circuit to be fit
initial_guess : list of floats
Initial guesses for the fit parameters
constants : dictionary, optional
Parameters and their values to hold constant during fitting
(e.g. {"RO": 0.1}). Defaults to {}
bounds : 2-tuple of array_like, optional
Lower and upper bounds on parameters. Defaults to bounds on all
parameters of 0 and np.inf, except the CPE alpha
which has an upper bound of 1
opt : str, optional
Default is max normalization. Other normalization will be supported
in the future
cost : float, default = 0.5
cost function: cost > 0.5 means more weight on EIS while cost < 0.5 means more weight on NLEIS
max_f: int
The the maximum frequency of interest for NLEIS
positive : bool, optional
Defaults to True for only positive nyquist plot
param_norm : bool, optional
Defaults to True for better convergence
kwargs :
Keyword arguments passed to scipy.optimize.curve_fit or
scipy.optimize.basinhopping
Returns
-------
p_values : list of floats
best fit parameters for EIS and NLEIS data
p_errors : list of floats
one standard deviation error estimates for fit parameters
"""
### Todo fix the negtive loglikelihood
### set upper and lower bounds on a per-element basis
if bounds is None:
combined_constant = constants_2.copy()
combined_constant.update(constants_1)
bounds = set_default_bounds(edited_circuit, constants=combined_constant)
ub = np.ones(len(bounds[1]))
else:
if param_norm:
ub = bounds[1]
bounds = bounds/ub
else:
ub = np.ones(len(bounds[1]))
initial_guess = initial_guess/ub
if positive:
mask1 = np.array(Z1.imag)<0
frequencies = frequencies[mask1]
Z1 = Z1[mask1]
Z2 = Z2[mask1]
mask2 = np.array(frequencies)<max_f
Z2 = Z2[mask2]
else:
mask2 = np.array(frequencies)<max_f
Z2 = Z2[mask2]
Z1stack = np.hstack([Z1.real, Z1.imag])
Z2stack = np.hstack([Z2.real, Z2.imag])
Zstack = np.hstack([Z1stack,Z2stack])
# weighting scheme for fitting
if opt == 'max':
if 'maxfev' not in kwargs:
kwargs['maxfev'] = 1e5
if 'ftol' not in kwargs:
kwargs['ftol'] = 1e-13
Z1max = max(np.abs(Z1))
Z2max = max(np.abs(Z2))
sigma1 = np.ones(len(Z1stack))*Z1max/(cost**0.5)
sigma2 = np.ones(len(Z2stack))*Z2max/((1-cost)**0.5)
kwargs['sigma'] = np.hstack([sigma1, sigma2])
popt, pcov = curve_fit(wrapCircuit_simul(circuit_1, constants_1,circuit_2,constants_2,ub,max_f), frequencies,
Zstack,
p0=initial_guess, bounds=bounds, **kwargs)
# Calculate one standard deviation error estimates for fit parameters,
# defined as the square root of the diagonal of the covariance matrix.
# https://stackoverflow.com/a/52275674/5144795
# and the following for the bounded and normalized case
# https://stackoverflow.com/questions/14854339/in-scipy-how-and-why-does-curve-fit-calculate-the-covariance-of-the-parameter-es
perror = np.sqrt(np.diag(ub*pcov*ub.T))
return popt*ub, perror
if opt == 'neg':
### This method does not provides converge solution at current development
bounds = tuple(tuple((bounds[0][i], bounds[1][i])) for i in range(len(bounds[0])))
res = minimize(wrapNeg_log_likelihood(frequencies,Z1,Z2,circuit_1, constants_1,circuit_2,constants_2,ub,max_f,cost = cost), x0=initial_guess,bounds=bounds, **kwargs)
return (res.x*ub,None)
|
(frequencies, Z1, Z2, circuit_1, circuit_2, edited_circuit, initial_guess, constants_1={}, constants_2={}, bounds=None, opt='max', cost=0.5, max_f=10, param_norm=True, positive=True, **kwargs)
|
65,120 |
nleis.nleis_elements_pair
|
typeChecker
| null |
def typeChecker(p, f, name, length):
assert isinstance(p, list), \
'in {}, input must be of type list'.format(name)
for i in p:
assert isinstance(i, (float, int, np.int32, np.float64)), \
'in {}, value {} in {} is not a number'.format(name, i, p)
for i in f:
assert isinstance(i, (float, int, np.int32, np.float64)), \
'in {}, value {} in {} is not a number'.format(name, i, f)
assert len(p) == length, \
'in {}, input list must be length {}'.format(name, length)
return
|
(p, f, name, length)
|
65,123 |
nleis.nleis_fitting
|
wrappedImpedance
|
Parameters
----------
circuit_1 : string
constants_1 : dict
circuit_2 : string
constants_2 : dict
f1 : list of floats
f2 : list of floats
parameters : list of floats
Returns
-------
Z1 and Z2
|
def wrappedImpedance(circuit_1, constants_1,circuit_2,constants_2,f1,f2,parameters):
'''
Parameters
----------
circuit_1 : string
constants_1 : dict
circuit_2 : string
constants_2 : dict
f1 : list of floats
f2 : list of floats
parameters : list of floats
Returns
-------
Z1 and Z2
'''
p1,p2 = individual_parameters(circuit_1,parameters,constants_1,constants_2)
x1 = eval(buildCircuit(circuit_1, f1, *p1,
constants=constants_1, eval_string='',
index=0)[0],
circuit_elements)
x2 = eval(buildCircuit(circuit_2, f2, *p2,
constants=constants_2, eval_string='',
index=0)[0],
circuit_elements)
return(x1,x2)
|
(circuit_1, constants_1, circuit_2, constants_2, f1, f2, parameters)
|
65,127 |
pantab._reader
|
frame_from_hyper
|
See api.rst for documentation
|
def frame_from_hyper(
source: Union[str, pathlib.Path],
*,
table: pantab_types.TableNameType,
return_type: Literal["pandas", "polars", "pyarrow"] = "pandas",
):
"""See api.rst for documentation"""
if isinstance(table, (str, tab_api.Name)) or not table.schema_name:
table = tab_api.TableName("public", table)
query = f"SELECT * FROM {table}"
return frame_from_hyper_query(source, query, return_type=return_type)
|
(source: Union[str, pathlib.Path], *, table: Union[str, tableauhyperapi.name.Name, tableauhyperapi.tablename.TableName], return_type: Literal['pandas', 'polars', 'pyarrow'] = 'pandas')
|
65,128 |
pantab._reader
|
frame_from_hyper_query
|
See api.rst for documentation.
|
def frame_from_hyper_query(
source: Union[str, pathlib.Path],
query: str,
*,
return_type: Literal["pandas", "polars", "pyarrow"] = "pandas",
):
"""See api.rst for documentation."""
# Call native library to read tuples from result set
capsule = libpantab.read_from_hyper_query(str(source), query)
stream = pa.RecordBatchReader._import_from_c_capsule(capsule)
tbl = stream.read_all()
if return_type == "pyarrow":
return tbl
elif return_type == "polars":
import polars as pl
return pl.from_arrow(tbl)
elif return_type == "pandas":
import pandas as pd
return tbl.to_pandas(types_mapper=pd.ArrowDtype)
raise NotImplementedError("Please choose an appropriate 'return_type' value")
|
(source: Union[str, pathlib.Path], query: str, *, return_type: Literal['pandas', 'polars', 'pyarrow'] = 'pandas')
|
65,129 |
pantab._writer
|
frame_to_hyper
|
See api.rst for documentation
|
def frame_to_hyper(
df,
database: Union[str, pathlib.Path],
*,
table: pantab_types.TableNameType,
table_mode: Literal["a", "w"] = "w",
not_null_columns: Optional[set[str]] = None,
json_columns: Optional[set[str]] = None,
geo_columns: Optional[set[str]] = None,
) -> None:
"""See api.rst for documentation"""
frames_to_hyper(
{table: df},
database,
table_mode=table_mode,
not_null_columns=not_null_columns,
json_columns=json_columns,
geo_columns=geo_columns,
)
|
(df, database: Union[str, pathlib.Path], *, table: Union[str, tableauhyperapi.name.Name, tableauhyperapi.tablename.TableName], table_mode: Literal['a', 'w'] = 'w', not_null_columns: Optional[set[str]] = None, json_columns: Optional[set[str]] = None, geo_columns: Optional[set[str]] = None) -> NoneType
|
65,130 |
pantab._reader
|
frames_from_hyper
|
See api.rst for documentation.
|
def frames_from_hyper(
source: Union[str, pathlib.Path],
return_type: Literal["pandas", "polars", "pyarrow"] = "pandas",
):
"""See api.rst for documentation."""
result = {}
table_names = []
with tempfile.TemporaryDirectory() as tmp_dir, tab_api.HyperProcess(
tab_api.Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU
) as hpe:
tmp_db = shutil.copy(source, tmp_dir)
with tab_api.Connection(hpe.endpoint, tmp_db) as connection:
for schema in connection.catalog.get_schema_names():
for table in connection.catalog.get_table_names(schema=schema):
table_names.append(table)
for table in table_names:
result[table] = frame_from_hyper(
source=source,
table=table,
return_type=return_type,
)
return result
|
(source: Union[str, pathlib.Path], return_type: Literal['pandas', 'polars', 'pyarrow'] = 'pandas')
|
65,131 |
pantab._writer
|
frames_to_hyper
|
See api.rst for documentation.
|
def frames_to_hyper(
dict_of_frames: dict[pantab_types.TableNameType, Any],
database: Union[str, pathlib.Path],
*,
table_mode: Literal["a", "w"] = "w",
not_null_columns: Optional[set[str]] = None,
json_columns: Optional[set[str]] = None,
geo_columns: Optional[set[str]] = None,
) -> None:
"""See api.rst for documentation."""
_validate_table_mode(table_mode)
if not_null_columns is None:
not_null_columns = set()
if json_columns is None:
json_columns = set()
if geo_columns is None:
geo_columns = set()
tmp_db = pathlib.Path(tempfile.gettempdir()) / f"{uuid.uuid4()}.hyper"
if table_mode == "a" and pathlib.Path(database).exists():
shutil.copy(database, tmp_db)
def convert_to_table_name(table: pantab_types.TableNameType):
# nanobind expects a tuple of (schema, table) strings
if isinstance(table, (str, tab_api.Name)) or not table.schema_name:
table = tab_api.TableName("public", table)
return (table.schema_name.name.unescaped, table.name.unescaped)
data = {
convert_to_table_name(key): _get_capsule_from_obj(val)
for key, val in dict_of_frames.items()
}
libpantab.write_to_hyper(
data,
path=str(tmp_db),
table_mode=table_mode,
not_null_columns=not_null_columns,
json_columns=json_columns,
geo_columns=geo_columns,
)
# In Python 3.9+ we can just pass the path object, but due to bpo 32689
# and subsequent typeshed changes it is easier to just pass as str for now
shutil.move(str(tmp_db), database)
|
(dict_of_frames: dict[typing.Union[str, tableauhyperapi.name.Name, tableauhyperapi.tablename.TableName], typing.Any], database: Union[str, pathlib.Path], *, table_mode: Literal['a', 'w'] = 'w', not_null_columns: Optional[set[str]] = None, json_columns: Optional[set[str]] = None, geo_columns: Optional[set[str]] = None) -> NoneType
|
65,133 |
xvfbwrapper
|
Xvfb
| null |
class Xvfb(object):
# Maximum value to use for a display. 32-bit maxint is the
# highest Xvfb currently supports
MAX_DISPLAY = 2147483647
SLEEP_TIME_BEFORE_START = 0.1
def __init__(self, width=800, height=680, colordepth=24, tempdir=None,
**kwargs):
self.width = width
self.height = height
self.colordepth = colordepth
self._tempdir = tempdir or tempfile.gettempdir()
if not self.xvfb_exists():
msg = 'Can not find Xvfb. Please install it and try again.'
raise EnvironmentError(msg)
self.extra_xvfb_args = ['-screen', '0', '{}x{}x{}'.format(
self.width, self.height, self.colordepth)]
for key, value in kwargs.items():
self.extra_xvfb_args += ['-{}'.format(key), value]
if 'DISPLAY' in os.environ:
self.orig_display = os.environ['DISPLAY'].split(':')[1]
else:
self.orig_display = None
self.proc = None
def __enter__(self):
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop()
def start(self):
self.new_display = self._get_next_unused_display()
display_var = ':{}'.format(self.new_display)
self.xvfb_cmd = ['Xvfb', display_var] + self.extra_xvfb_args
with open(os.devnull, 'w') as fnull:
self.proc = subprocess.Popen(self.xvfb_cmd,
stdout=fnull,
stderr=fnull,
close_fds=True)
# give Xvfb time to start
time.sleep(self.__class__.SLEEP_TIME_BEFORE_START)
ret_code = self.proc.poll()
if ret_code is None:
self._set_display_var(self.new_display)
else:
self._cleanup_lock_file()
raise RuntimeError('Xvfb did not start')
def stop(self):
try:
if self.orig_display is None:
del os.environ['DISPLAY']
else:
self._set_display_var(self.orig_display)
if self.proc is not None:
try:
self.proc.terminate()
self.proc.wait()
except OSError:
pass
self.proc = None
finally:
self._cleanup_lock_file()
def _cleanup_lock_file(self):
'''
This should always get called if the process exits safely
with Xvfb.stop() (whether called explicitly, or by __exit__).
If you are ending up with /tmp/X123-lock files when Xvfb is not
running, then Xvfb is not exiting cleanly. Always either call
Xvfb.stop() in a finally block, or use Xvfb as a context manager
to ensure lock files are purged.
'''
self._lock_display_file.close()
try:
os.remove(self._lock_display_file.name)
except OSError:
pass
def _get_next_unused_display(self):
'''
In order to ensure multi-process safety, this method attempts
to acquire an exclusive lock on a temporary file whose name
contains the display number for Xvfb.
'''
tempfile_path = os.path.join(self._tempdir, '.X{0}-lock')
while True:
rand = randint(1, self.__class__.MAX_DISPLAY)
self._lock_display_file = open(tempfile_path.format(rand), 'w')
try:
fcntl.flock(self._lock_display_file,
fcntl.LOCK_EX | fcntl.LOCK_NB)
except BlockingIOError:
continue
else:
return rand
def _set_display_var(self, display):
os.environ['DISPLAY'] = ':{}'.format(display)
def xvfb_exists(self):
"""Check that Xvfb is available on PATH and is executable."""
paths = os.environ['PATH'].split(os.pathsep)
return any(os.access(os.path.join(path, 'Xvfb'), os.X_OK)
for path in paths)
|
(width=800, height=680, colordepth=24, tempdir=None, **kwargs)
|
65,134 |
xvfbwrapper
|
__enter__
| null |
def __enter__(self):
self.start()
return self
|
(self)
|
65,135 |
xvfbwrapper
|
__exit__
| null |
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop()
|
(self, exc_type, exc_val, exc_tb)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.