index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
65,379
pandas.core.indexes.base
__nonzero__
null
@final def __nonzero__(self) -> NoReturn: raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." )
(self) -> NoReturn
65,380
pandas.core.indexes.category
__contains__
Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. Raises ------ TypeError If the key is not hashable. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False
@doc(Index.__contains__) def __contains__(self, key: Any) -> bool: # if key is a NaN, check if any NaN is in self. if is_valid_na_for_dtype(key, self.categories.dtype): return self.hasnans return contains(self, key, container=self._engine)
(self, key: Any) -> bool
65,381
pandas.core.indexes.base
__copy__
null
@final def __copy__(self, **kwargs) -> Self: return self.copy(**kwargs)
(self, **kwargs) -> NoneType
65,382
pandas.core.indexes.base
__deepcopy__
Parameters ---------- memo, default None Standard signature. Unused
@final def __deepcopy__(self, memo=None) -> Self: """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True)
(self, memo=None) -> NoneType
65,388
pandas.core.indexes.base
__getitem__
Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass.
def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ getitem = self._data.__getitem__ if is_integer(key) or is_float(key): # GH#44051 exclude bool, which would return a 2d ndarray key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization com.is_bool_indexer and ndim checks. return self._getitem_slice(key) if com.is_bool_indexer(key): # if we have list[bools, length=1e5] then doing this check+convert # takes 166 µs + 2.1 ms and cuts the ndarray.__getitem__ # time below from 3.8 ms to 496 µs # if we already have ndarray[bool], the overhead is 1.4 µs or .25% if isinstance(getattr(key, "dtype", None), ExtensionDtype): key = key.to_numpy(dtype=bool, na_value=False) else: key = np.asarray(key, dtype=bool) if not isinstance(self.dtype, ExtensionDtype): if len(key) == 0 and len(key) != len(self): warnings.warn( "Using a boolean indexer with length 0 on an Index with " "length greater than 0 is deprecated and will raise in a " "future version.", FutureWarning, stacklevel=find_stack_level(), ) result = getitem(key) # Because we ruled out integer above, we always get an arraylike here if result.ndim > 1: disallow_ndim_indexing(result) # NB: Using _constructor._simple_new would break if MultiIndex # didn't override __getitem__ return self._constructor._simple_new(result, name=self._name)
(self, key)
65,390
pandas.core.indexes.base
__iadd__
null
def __iadd__(self, other): # alias for __add__ return self + other
(self, other)
65,391
pandas.core.indexes.base
__invert__
null
def __invert__(self) -> Index: # GH#8875 return self._unary_method(operator.inv)
(self) -> pandas.core.indexes.base.Index
65,392
pandas.core.base
__iter__
Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- iterator Examples -------- >>> s = pd.Series([1, 2, 3]) >>> for x in s: ... print(x) 1 2 3
def __iter__(self) -> Iterator: """ Return an iterator of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns ------- iterator Examples -------- >>> s = pd.Series([1, 2, 3]) >>> for x in s: ... print(x) 1 2 3 """ # We are explicitly making element iterators. if not isinstance(self._values, np.ndarray): # Check type instead of dtype to catch DTA/TDA return iter(self._values) else: return map(self._values.item, range(self._values.size))
(self) -> 'Iterator'
65,394
pandas.core.indexes.base
__len__
Return the length of the Index.
def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data)
(self) -> int
65,399
pandas.core.indexes.base
__neg__
null
def __neg__(self) -> Index: return self._unary_method(operator.neg)
(self) -> pandas.core.indexes.base.Index
65,400
pandas.core.indexes.category
__new__
null
def __new__( cls, data=None, categories=None, ordered=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable | None = None, ) -> Self: name = maybe_extract_name(name, data, cls) if is_scalar(data): # GH#38944 include None here, which pre-2.0 subbed in [] cls._raise_scalar_data_error(data) data = Categorical( data, categories=categories, ordered=ordered, dtype=dtype, copy=copy ) return cls._simple_new(data, name=name)
(cls, data=None, categories=None, ordered=None, dtype: 'Dtype | None' = None, copy: 'bool' = False, name: 'Hashable | None' = None) -> 'Self'
65,403
pandas.core.indexes.base
__pos__
null
def __pos__(self) -> Index: return self._unary_method(operator.pos)
(self) -> pandas.core.indexes.base.Index
65,408
pandas.core.indexes.base
__reduce__
null
def __reduce__(self): d = {"data": self._data, "name": self.name} return _new_Index, (type(self), d), None
(self)
65,409
pandas.core.indexes.base
__repr__
Return a string representation for this object.
@final def __repr__(self) -> str_t: """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = ", ".join(attrs_str) return f"{klass_name}({data}{prepr})"
(self) -> str
65,418
pandas.core.indexes.base
__setitem__
null
@final def __setitem__(self, key, value) -> None: raise TypeError("Index does not support mutable operations")
(self, key, value) -> NoneType
65,423
pandas.core.indexes.base
_arith_method
null
def _arith_method(self, other, op): if ( isinstance(other, Index) and is_object_dtype(other.dtype) and type(other) is not Index ): # We return NotImplemented for object-dtype index *subclasses* so they have # a chance to implement ops before we unwrap them. # See https://github.com/pandas-dev/pandas/issues/31109 return NotImplemented return super()._arith_method(other, op)
(self, other, op)
65,424
pandas.core.indexes.base
_assert_can_do_setop
null
@final def _assert_can_do_setop(self, other) -> bool: if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True
(self, other) -> bool
65,425
pandas.core.indexes.base
_can_hold_identifiers_and_holds_name
Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764
@final def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if ( is_object_dtype(self.dtype) or is_string_dtype(self.dtype) or isinstance(self.dtype, CategoricalDtype) ): return name in self return False
(self, name) -> bool
65,426
pandas.core.indexes.base
_check_indexing_error
null
def _check_indexing_error(self, key): if not is_scalar(key): # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key)
(self, key)
65,427
pandas.core.indexes.base
_check_indexing_method
Raise if we have a get_indexer `method` that is not supported or valid.
@final def _check_indexing_method( self, method: str_t | None, limit: int | None = None, tolerance=None, ) -> None: """ Raise if we have a get_indexer `method` that is not supported or valid. """ if method not in [None, "bfill", "backfill", "pad", "ffill", "nearest"]: # in practice the clean_reindex_fill_method call would raise # before we get here raise ValueError("Invalid fill method") # pragma: no cover if self._is_multi: if method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet " "for MultiIndex; see GitHub issue 9365" ) if method in ("pad", "backfill"): if tolerance is not None: raise NotImplementedError( "tolerance not implemented yet for MultiIndex" ) if isinstance(self.dtype, (IntervalDtype, CategoricalDtype)): # GH#37871 for now this is only for IntervalIndex and CategoricalIndex if method is not None: raise NotImplementedError( f"method {method} not yet implemented for {type(self).__name__}" ) if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" )
(self, method: str | None, limit: Optional[int] = None, tolerance=None) -> NoneType
65,428
pandas.core.indexes.base
_cleanup
null
@final def _cleanup(self) -> None: self._engine.clear_mapping()
(self) -> NoneType
65,429
pandas.core.indexes.base
_cmp_method
Wrapper used to dispatch comparison operations.
def _cmp_method(self, other, op): """ Wrapper used to dispatch comparison operations. """ if self.is_(other): # fastpath if op in {operator.eq, operator.le, operator.ge}: arr = np.ones(len(self), dtype=bool) if self._can_hold_na and not isinstance(self, ABCMultiIndex): # TODO: should set MultiIndex._can_hold_na = False? arr[self.isna()] = False return arr elif op is operator.ne: arr = np.zeros(len(self), dtype=bool) if self._can_hold_na and not isinstance(self, ABCMultiIndex): arr[self.isna()] = True return arr if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)) and len( self ) != len(other): raise ValueError("Lengths must match to compare") if not isinstance(other, ABCMultiIndex): other = extract_array(other, extract_numpy=True) else: other = np.asarray(other) if is_object_dtype(self.dtype) and isinstance(other, ExtensionArray): # e.g. PeriodArray, Categorical result = op(self._values, other) elif isinstance(self._values, ExtensionArray): result = op(self._values, other) elif is_object_dtype(self.dtype) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex result = ops.comp_method_OBJECT_ARRAY(op, self._values, other) else: result = ops.comparison_op(self._values, other, op) return result
(self, other, op)
65,430
pandas.core.indexes.category
_concat
null
def _concat(self, to_concat: list[Index], name: Hashable) -> Index: # if calling index is category, don't check dtype of others try: cat = Categorical._concat_same_type( [self._is_dtype_compat(c) for c in to_concat] ) except TypeError: # not all to_concat elements are among our categories (or NA) res = concat_compat([x._values for x in to_concat]) return Index(res, name=name) else: return type(self)._simple_new(cat, name=name)
(self, to_concat: 'list[Index]', name: 'Hashable') -> 'Index'
65,431
pandas.core.indexes.base
_construct_result
null
@final def _construct_result(self, result, name): if isinstance(result, tuple): return ( Index(result[0], name=name, dtype=result[0].dtype), Index(result[1], name=name, dtype=result[1].dtype), ) return Index(result, name=name, dtype=result.dtype)
(self, result, name)
65,432
pandas.core.indexes.base
_convert_can_do_setop
null
def _convert_can_do_setop(self, other) -> tuple[Index, Hashable]: if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name
(self, other) -> 'tuple[Index, Hashable]'
65,433
pandas.core.indexes.base
_convert_slice_indexer
Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'}
def _convert_slice_indexer(self, key: slice, kind: Literal["loc", "getitem"]): """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'} """ # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer is_index_slice = is_valid_positional_slice(key) # TODO(GH#50617): once Series.__[gs]etitem__ is removed we should be able # to simplify this. if lib.is_np_dtype(self.dtype, "f"): # We always treat __getitem__ slicing as label-based # translate to locations if kind == "getitem" and is_index_slice and not start == stop and step != 0: # exclude step=0 from the warning because it will raise anyway # start/stop both None e.g. [:] or [::-1] won't change. # exclude start==stop since it will be empty either way, or # will be [:] or [::-1] which won't change warnings.warn( # GH#49612 "The behavior of obj[i:j] with a float-dtype index is " "deprecated. In a future version, this will be treated as " "positional instead of label-based. For label-based slicing, " "use obj.loc[i:j] instead", FutureWarning, stacklevel=find_stack_level(), ) return self.slice_indexer(start, stop, step) if kind == "getitem": # called from the getitem slicers, validate that we are in fact integers if is_index_slice: # In this case the _validate_indexer checks below are redundant return key elif self.dtype.kind in "iu": # Note: these checks are redundant if we know is_index_slice self._validate_indexer("slice", key.start, "getitem") self._validate_indexer("slice", key.stop, "getitem") self._validate_indexer("slice", key.step, "getitem") return key # convert the slice to an indexer here; checking that the user didn't # pass a positional slice to loc is_positional = is_index_slice and self._should_fallback_to_positional # if we are mixed and have integers if is_positional: try: # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: pass if com.is_null_slice(key): # It doesn't matter if we are positional or label based indexer = key elif is_positional: if kind == "loc": # GH#16121, GH#24612, GH#31810 raise TypeError( "Slicing a positional slice with .loc is not allowed, " "Use .loc with labels or .iloc with positions instead.", ) indexer = key else: indexer = self.slice_indexer(start, stop, step) return indexer
(self, key: slice, kind: Literal['loc', 'getitem'])
65,434
pandas.core.indexes.base
_convert_tolerance
null
def _convert_tolerance(self, tolerance, target: np.ndarray | Index) -> np.ndarray: # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") elif is_numeric_dtype(self) and not np.issubdtype(tolerance.dtype, np.number): if tolerance.ndim > 0: raise ValueError( f"tolerance argument for {type(self).__name__} with dtype " f"{self.dtype} must contain numeric elements if it is list type" ) raise ValueError( f"tolerance argument for {type(self).__name__} with dtype {self.dtype} " f"must be numeric if it is a scalar: {repr(tolerance)}" ) return tolerance
(self, tolerance, target: numpy.ndarray | pandas.core.indexes.base.Index) -> numpy.ndarray
65,435
pandas.core.indexes.base
_difference
null
def _difference(self, other, sort): # overridden by RangeIndex this = self if isinstance(self, ABCCategoricalIndex) and self.hasnans and other.hasnans: this = this.dropna() other = other.unique() the_diff = this[other.get_indexer_for(this) == -1] the_diff = the_diff if this.is_unique else the_diff.unique() the_diff = _maybe_try_sort(the_diff, sort) return the_diff
(self, other, sort)
65,436
pandas.core.indexes.base
_difference_compat
null
@final def _difference_compat( self, target: Index, indexer: npt.NDArray[np.intp] ) -> ArrayLike: # Compatibility for PeriodArray, for which __sub__ returns an ndarray[object] # of DateOffset objects, which do not support __abs__ (and would be slow # if they did) if isinstance(self.dtype, PeriodDtype): # Note: we only get here with matching dtypes own_values = cast("PeriodArray", self._data)._ndarray target_values = cast("PeriodArray", target._data)._ndarray diff = own_values[indexer] - target_values else: # error: Unsupported left operand type for - ("ExtensionArray") diff = self._values[indexer] - target._values # type: ignore[operator] return abs(diff)
(self, target: 'Index', indexer: 'npt.NDArray[np.intp]') -> 'ArrayLike'
65,439
pandas.core.indexes.base
_drop_level_numbers
Drop MultiIndex levels by level _number_, not name.
@final def _drop_level_numbers(self, levnums: list[int]): """ Drop MultiIndex levels by level _number_, not name. """ if not levnums and not isinstance(self, ABCMultiIndex): return self if len(levnums) >= self.nlevels: raise ValueError( f"Cannot remove {len(levnums)} levels from an index with " f"{self.nlevels} levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex self = cast("MultiIndex", self) new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: lev = new_levels[0] if len(lev) == 0: # If lev is empty, lev.take will fail GH#42055 if len(new_codes[0]) == 0: # GH#45230 preserve RangeIndex here # see test_reset_index_empty_rangeindex result = lev[:0] else: res_values = algos.take(lev._values, new_codes[0], allow_fill=True) # _constructor instead of type(lev) for RangeIndex compat GH#35230 result = lev._constructor._simple_new(res_values, name=new_names[0]) else: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result._name = new_names[0] return result else: from pandas.core.indexes.multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, )
(self, levnums: list[int])
65,440
pandas.core.indexes.base
_dti_setop_align_tzs
With mismatched timezones, cast both to UTC.
@final def _dti_setop_align_tzs(self, other: Index, setop: str_t) -> tuple[Index, Index]: """ With mismatched timezones, cast both to UTC. """ # Caller is responsibelf or checking # `self.dtype != other.dtype` if ( isinstance(self, ABCDatetimeIndex) and isinstance(other, ABCDatetimeIndex) and self.tz is not None and other.tz is not None ): # GH#39328, GH#45357 left = self.tz_convert("UTC") right = other.tz_convert("UTC") return left, right return self, other
(self, other: pandas.core.indexes.base.Index, setop: str) -> tuple[pandas.core.indexes.base.Index, pandas.core.indexes.base.Index]
65,441
pandas.core.base
_duplicated
null
@final def _duplicated(self, keep: DropKeep = "first") -> npt.NDArray[np.bool_]: arr = self._values if isinstance(arr, ExtensionArray): return arr.duplicated(keep=keep) return algorithms.duplicated(arr, keep=keep)
(self, keep: 'DropKeep' = 'first') -> 'npt.NDArray[np.bool_]'
65,442
pandas.core.indexes.base
_filter_indexer_tolerance
null
@final def _filter_indexer_tolerance( self, target: Index, indexer: npt.NDArray[np.intp], tolerance, ) -> npt.NDArray[np.intp]: distance = self._difference_compat(target, indexer) return np.where(distance <= tolerance, indexer, -1)
(self, target: 'Index', indexer: 'npt.NDArray[np.intp]', tolerance) -> 'npt.NDArray[np.intp]'
65,443
pandas.core.indexes.base
_find_common_type_compat
Implementation of find_common_type that adjusts for Index-specific special cases.
@final def _find_common_type_compat(self, target) -> DtypeObj: """ Implementation of find_common_type that adjusts for Index-specific special cases. """ target_dtype, _ = infer_dtype_from(target) # special case: if one dtype is uint64 and the other a signed int, return object # See https://github.com/pandas-dev/pandas/issues/26778 for discussion # Now it's: # * float | [u]int -> float # * uint64 | signed int -> object # We may change union(float | [u]int) to go to object. if self.dtype == "uint64" or target_dtype == "uint64": if is_signed_integer_dtype(self.dtype) or is_signed_integer_dtype( target_dtype ): return _dtype_obj dtype = find_result_type(self.dtype, target) dtype = common_dtype_categorical_compat([self, target], dtype) return dtype
(self, target) -> Union[numpy.dtype, pandas.core.dtypes.base.ExtensionDtype]
65,444
pandas.core.indexes.category
_format_attrs
Return a list of tuples of the (attr,formatted_value)
def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ attrs: list[tuple[str, str | int | bool | None]] attrs = [ ( "categories", f"[{', '.join(self._data._repr_categories())}]", ), ("ordered", self.ordered), ] extra = super()._format_attrs() return attrs + extra
(self)
65,445
pandas.core.indexes.base
_format_data
Return the formatted data as a unicode string.
@final def _format_data(self, name=None) -> str_t: """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = True if self.inferred_type == "string": is_justify = False elif isinstance(self.dtype, CategoricalDtype): self = cast("CategoricalIndex", self) if is_object_dtype(self.categories.dtype): is_justify = False elif isinstance(self, ABCRangeIndex): # We will do the relevant formatting via attrs return "" return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name, line_break_each_value=self._is_multi, )
(self, name=None) -> str
65,446
pandas.core.indexes.base
_format_duplicate_message
Construct the DataFrame for a DuplicateLabelError. This returns a DataFrame indicating the labels and positions of duplicates in an index. This should only be called when it's already known that duplicates are present. Examples -------- >>> idx = pd.Index(['a', 'b', 'a']) >>> idx._format_duplicate_message() positions label a [0, 2]
@final def _format_duplicate_message(self) -> DataFrame: """ Construct the DataFrame for a DuplicateLabelError. This returns a DataFrame indicating the labels and positions of duplicates in an index. This should only be called when it's already known that duplicates are present. Examples -------- >>> idx = pd.Index(['a', 'b', 'a']) >>> idx._format_duplicate_message() positions label a [0, 2] """ from pandas import Series duplicates = self[self.duplicated(keep="first")].unique() assert len(duplicates) out = ( Series(np.arange(len(self)), copy=False) .groupby(self, observed=False) .agg(list)[duplicates] ) if self._is_multi: # test_format_duplicate_labels_message_multi # error: "Type[Index]" has no attribute "from_tuples" [attr-defined] out.index = type(self).from_tuples(out.index) # type: ignore[attr-defined] if self.nlevels == 1: out = out.rename_axis("label") return out.to_frame(name="positions")
(self) -> 'DataFrame'
65,447
pandas.core.indexes.base
_format_flat
Render a string representation of the Index.
@final def _format_flat( self, *, include_name: bool, formatter: Callable | None = None, ) -> list[str_t]: """ Render a string representation of the Index. """ header = [] if include_name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header=header, na_rep=self._default_na_rep)
(self, *, include_name: bool, formatter: Optional[Callable] = None) -> list[str]
65,448
pandas.core.indexes.base
_format_with_header
null
def _format_with_header(self, *, header: list[str_t], na_rep: str_t) -> list[str_t]: from pandas.io.formats.format import format_array values = self._values if ( is_object_dtype(values.dtype) or is_string_dtype(values.dtype) or isinstance(self.dtype, (IntervalDtype, CategoricalDtype)) ): # TODO: why do we need different justify for these cases? justify = "all" else: justify = "left" # passing leading_space=False breaks test_format_missing, # test_index_repr_in_frame_with_nan, but would otherwise make # trim_front unnecessary formatted = format_array(values, None, justify=justify) result = trim_front(formatted) return header + result
(self, *, header: list[str], na_rep: str) -> list[str]
65,449
pandas.core.indexes.extension
_from_join_target
null
def _from_join_target(self, result: np.ndarray) -> ArrayLike: assert result.dtype == self._data._ndarray.dtype return self._data._from_backing_data(result)
(self, result: 'np.ndarray') -> 'ArrayLike'
65,450
pandas.core.indexes.base
_get_default_index_names
Get names of index. Parameters ---------- names : int, str or 1-dimensional list, default None Index names to set. default : str Default name of index. Raises ------ TypeError if names not str or list-like
def _get_default_index_names( self, names: Hashable | Sequence[Hashable] | None = None, default=None ) -> list[Hashable]: """ Get names of index. Parameters ---------- names : int, str or 1-dimensional list, default None Index names to set. default : str Default name of index. Raises ------ TypeError if names not str or list-like """ from pandas.core.indexes.multi import MultiIndex if names is not None: if isinstance(names, (int, str)): names = [names] if not isinstance(names, list) and names is not None: raise ValueError("Index names must be str or 1-dimensional list") if not names: if isinstance(self, MultiIndex): names = com.fill_missing_names(self.names) else: names = [default] if self.name is None else [self.name] return names
(self, names: 'Hashable | Sequence[Hashable] | None' = None, default=None) -> 'list[Hashable]'
65,451
pandas.core.indexes.extension
_get_engine_target
null
def _get_engine_target(self) -> np.ndarray: return self._data._ndarray
(self) -> 'np.ndarray'
65,452
pandas.core.indexes.base
_get_fill_indexer
null
@final def _get_fill_indexer( self, target: Index, method: str_t, limit: int | None = None, tolerance=None ) -> npt.NDArray[np.intp]: if self._is_multi: if not (self.is_monotonic_increasing or self.is_monotonic_decreasing): raise ValueError("index must be monotonic increasing or decreasing") encoded = self.append(target)._engine.values # type: ignore[union-attr] self_encoded = Index(encoded[: len(self)]) target_encoded = Index(encoded[len(self) :]) return self_encoded._get_fill_indexer( target_encoded, method, limit, tolerance ) if self.is_monotonic_increasing and target.is_monotonic_increasing: target_values = target._get_engine_target() own_values = self._get_engine_target() if not isinstance(target_values, np.ndarray) or not isinstance( own_values, np.ndarray ): raise NotImplementedError if method == "pad": indexer = libalgos.pad(own_values, target_values, limit=limit) else: # i.e. "backfill" indexer = libalgos.backfill(own_values, target_values, limit=limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None and len(self): indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer
(self, target: 'Index', method: 'str_t', limit: 'int | None' = None, tolerance=None) -> 'npt.NDArray[np.intp]'
65,453
pandas.core.indexes.base
_get_fill_indexer_searchsorted
Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets.
@final def _get_fill_indexer_searchsorted( self, target: Index, method: str_t, limit: int | None = None ) -> npt.NDArray[np.intp]: """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side: Literal["left", "right"] = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer
(self, target: 'Index', method: 'str_t', limit: 'int | None' = None) -> 'npt.NDArray[np.intp]'
65,454
pandas.core.indexes.base
_get_indexer
null
def _get_indexer( self, target: Index, method: str_t | None = None, limit: int | None = None, tolerance=None, ) -> npt.NDArray[np.intp]: if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) if method in ["pad", "backfill"]: indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if target._is_multi and self._is_multi: engine = self._engine # error: Item "IndexEngine" of "Union[IndexEngine, ExtensionEngine]" # has no attribute "_extract_level_codes" tgt_values = engine._extract_level_codes( # type: ignore[union-attr] target ) else: tgt_values = target._get_engine_target() indexer = self._engine.get_indexer(tgt_values) return ensure_platform_int(indexer)
(self, target: 'Index', method: 'str_t | None' = None, limit: 'int | None' = None, tolerance=None) -> 'npt.NDArray[np.intp]'
65,455
pandas.core.indexes.base
_get_indexer_non_comparable
Called from get_indexer or get_indexer_non_unique when the target is of a non-comparable dtype. For get_indexer lookups with method=None, get_indexer is an _equality_ check, so non-comparable dtypes mean we will always have no matches. For get_indexer lookups with a method, get_indexer is an _inequality_ check, so non-comparable dtypes mean we will always raise TypeError. Parameters ---------- target : Index method : str or None unique : bool, default True * True if called from get_indexer. * False if called from get_indexer_non_unique. Raises ------ TypeError If doing an inequality check, i.e. method is not None.
@final def _get_indexer_non_comparable( self, target: Index, method, unique: bool = True ) -> npt.NDArray[np.intp] | tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: """ Called from get_indexer or get_indexer_non_unique when the target is of a non-comparable dtype. For get_indexer lookups with method=None, get_indexer is an _equality_ check, so non-comparable dtypes mean we will always have no matches. For get_indexer lookups with a method, get_indexer is an _inequality_ check, so non-comparable dtypes mean we will always raise TypeError. Parameters ---------- target : Index method : str or None unique : bool, default True * True if called from get_indexer. * False if called from get_indexer_non_unique. Raises ------ TypeError If doing an inequality check, i.e. method is not None. """ if method is not None: other_dtype = _unpack_nested_dtype(target) raise TypeError(f"Cannot compare dtypes {self.dtype} and {other_dtype}") no_matches = -1 * np.ones(target.shape, dtype=np.intp) if unique: # This is for get_indexer return no_matches else: # This is for get_indexer_non_unique missing = np.arange(len(target), dtype=np.intp) return no_matches, missing
(self, target: 'Index', method, unique: 'bool' = True) -> 'npt.NDArray[np.intp] | tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]'
65,456
pandas.core.indexes.base
_get_indexer_strict
Analogue to get_indexer that raises if any elements are missing.
def _get_indexer_strict(self, key, axis_name: str_t) -> tuple[Index, np.ndarray]: """ Analogue to get_indexer that raises if any elements are missing. """ keyarr = key if not isinstance(keyarr, Index): keyarr = com.asarray_tuplesafe(keyarr) if self._index_as_unique: indexer = self.get_indexer_for(keyarr) keyarr = self.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = self._reindex_non_unique(keyarr) self._raise_if_missing(keyarr, indexer, axis_name) keyarr = self.take(indexer) if isinstance(key, Index): # GH 42790 - Preserve name from an Index keyarr.name = key.name if lib.is_np_dtype(keyarr.dtype, "mM") or isinstance( keyarr.dtype, DatetimeTZDtype ): # DTI/TDI.take can infer a freq in some cases when we dont want one if isinstance(key, list) or ( isinstance(key, type(self)) # "Index" has no attribute "freq" and key.freq is None # type: ignore[attr-defined] ): keyarr = keyarr._with_freq(None) return keyarr, indexer
(self, key, axis_name: str) -> tuple[pandas.core.indexes.base.Index, numpy.ndarray]
65,457
pandas.core.indexes.base
_get_join_target
Get the ndarray or ExtensionArray that we can pass to the join functions.
@final def _get_join_target(self) -> np.ndarray: """ Get the ndarray or ExtensionArray that we can pass to the join functions. """ if isinstance(self._values, BaseMaskedArray): # This is only used if our array is monotonic, so no NAs present return self._values._data elif isinstance(self._values, ArrowExtensionArray): # This is only used if our array is monotonic, so no missing values # present return self._values.to_numpy() # TODO: exclude ABCRangeIndex case here as it copies target = self._get_engine_target() if not isinstance(target, np.ndarray): raise ValueError("_can_use_libjoin should return False.") return target
(self) -> numpy.ndarray
65,458
pandas.core.indexes.base
_get_level_names
Return a name or list of names with None replaced by the level number.
@final def _get_level_names(self) -> Hashable | Sequence[Hashable]: """ Return a name or list of names with None replaced by the level number. """ if self._is_multi: return [ level if name is None else name for level, name in enumerate(self.names) ] else: return 0 if self.name is None else self.name
(self) -> 'Hashable | Sequence[Hashable]'
65,459
pandas.core.indexes.base
_get_level_number
null
def _get_level_number(self, level) -> int: self._validate_index_level(level) return 0
(self, level) -> int
65,460
pandas.core.indexes.base
_get_level_values
Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object')
def _get_level_values(self, level) -> Index: """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self
(self, level) -> pandas.core.indexes.base.Index
65,461
pandas.core.indexes.base
_get_names
null
def _get_names(self) -> FrozenList: return FrozenList((self.name,))
(self) -> pandas.core.indexes.frozen.FrozenList
65,462
pandas.core.indexes.base
_get_nearest_indexer
Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples).
@final def _get_nearest_indexer( self, target: Index, limit: int | None, tolerance ) -> npt.NDArray[np.intp]: """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ if not len(self): return self._get_fill_indexer(target, "pad") left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) left_distances = self._difference_compat(target, left_indexer) right_distances = self._difference_compat(target, right_indexer) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( # error: Argument 1&2 has incompatible type "Union[ExtensionArray, # ndarray[Any, Any]]"; expected "Union[SupportsDunderLE, # SupportsDunderGE, SupportsDunderGT, SupportsDunderLT]" op(left_distances, right_distances) # type: ignore[arg-type] | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer
(self, target: 'Index', limit: 'int | None', tolerance) -> 'npt.NDArray[np.intp]'
65,463
pandas.core.indexes.base
_get_reconciled_name_object
If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self.
def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name is not name: return self.rename(name) return self
(self, other)
65,464
pandas.core.indexes.base
_get_string_slice
null
def _get_string_slice(self, key: str_t): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError
(self, key: str)
65,465
pandas.core.indexes.base
_get_values_for_csv
null
def _get_values_for_csv( self, *, na_rep: str_t = "", decimal: str_t = ".", float_format=None, date_format=None, quoting=None, ) -> npt.NDArray[np.object_]: return get_values_for_csv( self._values, na_rep=na_rep, decimal=decimal, float_format=float_format, date_format=date_format, quoting=quoting, )
(self, *, na_rep: 'str_t' = '', decimal: 'str_t' = '.', float_format=None, date_format=None, quoting=None) -> 'npt.NDArray[np.object_]'
65,466
pandas.core.indexes.base
_getitem_slice
Fastpath for __getitem__ when we know we have a slice.
def _getitem_slice(self, slobj: slice) -> Self: """ Fastpath for __getitem__ when we know we have a slice. """ res = self._data[slobj] result = type(self)._simple_new(res, name=self._name, refs=self._references) if "_engine" in self._cache: reverse = slobj.step is not None and slobj.step < 0 result._engine._update_from_sliced(self._engine, reverse=reverse) # type: ignore[union-attr] return result
(self, slobj: slice) -> NoneType
65,467
pandas.core.indexes.base
_holds_integer
Whether the type is an integer type.
@final def _holds_integer(self) -> bool: """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"]
(self) -> bool
65,468
pandas.core.indexes.base
_inner_indexer
null
@final def _inner_indexer( self, other: Self ) -> tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]: # Caller is responsible for ensuring other.dtype == self.dtype sv = self._get_join_target() ov = other._get_join_target() joined_ndarray, lidx, ridx = libjoin.inner_join_indexer(sv, ov) joined = self._from_join_target(joined_ndarray) return joined, lidx, ridx
(self, other: 'Self') -> 'tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]'
65,469
pandas.core.indexes.base
_intersection
intersection specialized to the case with matching dtypes.
def _intersection(self, other: Index, sort: bool = False): """ intersection specialized to the case with matching dtypes. """ if ( self.is_monotonic_increasing and other.is_monotonic_increasing and self._can_use_libjoin and other._can_use_libjoin ): try: res_indexer, indexer, _ = self._inner_indexer(other) except TypeError: # non-comparable; should only be for object dtype pass else: # TODO: algos.unique1d should preserve DTA/TDA if is_numeric_dtype(self.dtype): # This is faster, because Index.unique() checks for uniqueness # before calculating the unique values. res = algos.unique1d(res_indexer) else: result = self.take(indexer) res = result.drop_duplicates() return ensure_wrapped_if_datetimelike(res) res_values = self._intersection_via_get_indexer(other, sort=sort) res_values = _maybe_try_sort(res_values, sort) return res_values
(self, other: pandas.core.indexes.base.Index, sort: bool = False)
65,470
pandas.core.indexes.base
_intersection_via_get_indexer
Find the intersection of two Indexes using get_indexer. Returns ------- np.ndarray or ExtensionArray or MultiIndex The returned array will be unique.
@final def _intersection_via_get_indexer( self, other: Index | MultiIndex, sort ) -> ArrayLike | MultiIndex: """ Find the intersection of two Indexes using get_indexer. Returns ------- np.ndarray or ExtensionArray or MultiIndex The returned array will be unique. """ left_unique = self.unique() right_unique = other.unique() # even though we are unique, we need get_indexer_for for IntervalIndex indexer = left_unique.get_indexer_for(right_unique) mask = indexer != -1 taker = indexer.take(mask.nonzero()[0]) if sort is False: # sort bc we want the elements in the same order they are in self # unnecessary in the case with sort=None bc we will sort later taker = np.sort(taker) result: MultiIndex | ExtensionArray | np.ndarray if isinstance(left_unique, ABCMultiIndex): result = left_unique.take(taker) else: result = left_unique.take(taker)._values return result
(self, other: 'Index | MultiIndex', sort) -> 'ArrayLike | MultiIndex'
65,471
pandas.core.indexes.category
_is_comparable_dtype
null
def _is_comparable_dtype(self, dtype: DtypeObj) -> bool: return self.categories._is_comparable_dtype(dtype)
(self, dtype: 'DtypeObj') -> 'bool'
65,472
pandas.core.indexes.category
_is_dtype_compat
*this is an internal non-public method* provide a comparison between the dtype of self and other (coercing if needed) Parameters ---------- other : Index Returns ------- Categorical Raises ------ TypeError if the dtypes are not compatible
def _is_dtype_compat(self, other: Index) -> Categorical: """ *this is an internal non-public method* provide a comparison between the dtype of self and other (coercing if needed) Parameters ---------- other : Index Returns ------- Categorical Raises ------ TypeError if the dtypes are not compatible """ if isinstance(other.dtype, CategoricalDtype): cat = extract_array(other) cat = cast(Categorical, cat) if not cat._categories_match_up_to_permutation(self._values): raise TypeError( "categories must match existing categories when appending" ) elif other._is_multi: # preempt raising NotImplementedError in isna call raise TypeError("MultiIndex is not dtype-compatible with CategoricalIndex") else: values = other cat = Categorical(other, dtype=self.dtype) other = CategoricalIndex(cat) if not other.isin(values).all(): raise TypeError( "cannot append a non-category item to a CategoricalIndex" ) cat = other._values if not ((cat == values) | (isna(cat) & isna(values))).all(): # GH#37667 see test_equals_non_category raise TypeError( "categories must match existing categories when appending" ) return cat
(self, other: pandas.core.indexes.base.Index) -> pandas.core.arrays.categorical.Categorical
65,473
pandas.core.indexes.base
_is_memory_usage_qualified
Return a boolean if we need a qualified .info display.
def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return is_object_dtype(self.dtype)
(self) -> bool
65,474
pandas.core.indexes.base
_join_empty
null
@final def _join_empty( self, other: Index, how: JoinHow, sort: bool ) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: assert len(self) == 0 or len(other) == 0 _validate_join_method(how) lidx: np.ndarray | None ridx: np.ndarray | None if len(other): how = cast(JoinHow, {"left": "right", "right": "left"}.get(how, how)) join_index, ridx, lidx = other._join_empty(self, how, sort) elif how in ["left", "outer"]: if sort and not self.is_monotonic_increasing: lidx = self.argsort() join_index = self.take(lidx) else: lidx = None join_index = self._view() ridx = np.broadcast_to(np.intp(-1), len(join_index)) else: join_index = other._view() lidx = np.array([], dtype=np.intp) ridx = None return join_index, lidx, ridx
(self, other: 'Index', how: 'JoinHow', sort: 'bool') -> 'tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]'
65,475
pandas.core.indexes.base
_join_level
The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`.
@final def _join_level( self, other: Index, level, how: JoinHow = "left", keep_order: bool = True ) -> tuple[MultiIndex, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from pandas.core.indexes.multi import MultiIndex def _get_leaf_sorter(labels: list[np.ndarray]) -> npt.NDArray[np.intp]: """ Returns sorter for the inner most level while preserving the order of higher levels. Parameters ---------- labels : list[np.ndarray] Each ndarray has signed integer dtype, not necessarily identical. Returns ------- np.ndarray[np.intp] """ if labels[0].size == 0: return np.empty(0, dtype=np.intp) if len(labels) == 1: return get_group_index_sorter(ensure_platform_int(labels[0])) # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_platform_int(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left flip: dict[JoinHow, JoinHow] = {"right": "left", "left": "right"} how = flip.get(how, how) assert isinstance(left, MultiIndex) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_platform_int(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) old_codes = left.codes[level] taker = old_codes[old_codes != -1] new_lev_codes = rev_indexer.take(taker) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) left_indexer = cast(np.ndarray, left_indexer) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route max_new_lev = 0 if len(new_lev_codes) == 0 else new_lev_codes.max() ngroups = 1 + max_new_lev left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = right_lev_indexer.take(join_index.codes[level]) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer
(self, other: 'Index', level, how: 'JoinHow' = 'left', keep_order: 'bool' = True) -> 'tuple[MultiIndex, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]'
65,476
pandas.core.indexes.base
_join_monotonic
null
@final def _join_monotonic( self, other: Index, how: JoinHow = "left" ) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: # We only get here with matching dtypes and both monotonic increasing assert other.dtype == self.dtype assert self._can_use_libjoin and other._can_use_libjoin if self.equals(other): # This is a convenient place for this check, but its correctness # does not depend on monotonicity, so it could go earlier # in the calling method. ret_index = other if how == "right" else self return ret_index, None, None ridx: npt.NDArray[np.intp] | None lidx: npt.NDArray[np.intp] | None if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(other) elif how == "right": join_index = other lidx = other._left_indexer_unique(self) ridx = None elif how == "inner": join_array, lidx, ridx = self._inner_indexer(other) join_index = self._wrap_joined_index(join_array, other, lidx, ridx) elif how == "outer": join_array, lidx, ridx = self._outer_indexer(other) join_index = self._wrap_joined_index(join_array, other, lidx, ridx) else: if how == "left": join_array, lidx, ridx = self._left_indexer(other) elif how == "right": join_array, ridx, lidx = other._left_indexer(self) elif how == "inner": join_array, lidx, ridx = self._inner_indexer(other) elif how == "outer": join_array, lidx, ridx = self._outer_indexer(other) assert lidx is not None assert ridx is not None join_index = self._wrap_joined_index(join_array, other, lidx, ridx) lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx
(self, other: 'Index', how: 'JoinHow' = 'left') -> 'tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]'
65,477
pandas.core.indexes.base
_join_multi
null
@final def _join_multi(self, other: Index, how: JoinHow): from pandas.core.indexes.multi import MultiIndex from pandas.core.reshape.merge import restore_dropped_levels_multijoin # figure out join names self_names_list = list(com.not_none(*self.names)) other_names_list = list(com.not_none(*other.names)) self_names_order = self_names_list.index other_names_order = other_names_list.index self_names = set(self_names_list) other_names = set(other_names_list) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): # Drop the non-matching levels from left and right respectively ldrop_names = sorted(self_names - overlap, key=self_names_order) rdrop_names = sorted(other_names - overlap, key=other_names_order) # if only the order differs if not len(ldrop_names + rdrop_names): self_jnlevels = self other_jnlevels = other.reorder_levels(self.names) else: self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how=how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names # error: Argument 5/6 to "restore_dropped_levels_multijoin" has # incompatible type "Optional[ndarray[Any, dtype[signedinteger[Any # ]]]]"; expected "ndarray[Any, dtype[signedinteger[Any]]]" levels, codes, names = restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, # type: ignore[arg-type] ridx, # type: ignore[arg-type] ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() # maintain the order of the index levels if how == "right": level_order = other_names_list + ldrop_names else: level_order = self_names_list + rdrop_names multi_join_idx = multi_join_idx.reorder_levels(level_order) return multi_join_idx, lidx, ridx jl = next(iter(overlap)) # Case where only one index is multi # make the indices into mi's that match flip_order = False if isinstance(self, MultiIndex): self, other = other, self flip_order = True # flip if join method is right or left flip: dict[JoinHow, JoinHow] = {"right": "left", "left": "right"} how = flip.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how) if flip_order: return result[0], result[2], result[1] return result
(self, other: pandas.core.indexes.base.Index, how: Literal['left', 'right', 'inner', 'outer'])
65,478
pandas.core.indexes.base
_join_non_unique
null
@final def _join_non_unique( self, other: Index, how: JoinHow = "left", sort: bool = False ) -> tuple[Index, npt.NDArray[np.intp], npt.NDArray[np.intp]]: from pandas.core.reshape.merge import get_join_indexers_non_unique # We only get here if dtypes match assert self.dtype == other.dtype left_idx, right_idx = get_join_indexers_non_unique( self._values, other._values, how=how, sort=sort ) mask = left_idx == -1 join_idx = self.take(left_idx) right = other.take(right_idx) join_index = join_idx.putmask(mask, right) if isinstance(join_index, ABCMultiIndex) and how == "outer": # test_join_index_levels join_index = join_index._sort_levels_monotonic() return join_index, left_idx, right_idx
(self, other: 'Index', how: 'JoinHow' = 'left', sort: 'bool' = False) -> 'tuple[Index, npt.NDArray[np.intp], npt.NDArray[np.intp]]'
65,479
pandas.core.indexes.base
_join_via_get_indexer
null
@final def _join_via_get_indexer( self, other: Index, how: JoinHow, sort: bool ) -> tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]: # Fallback if we do not have any fastpaths available based on # uniqueness/monotonicity # Note: at this point we have checked matching dtypes if how == "left": join_index = self.sort_values() if sort else self elif how == "right": join_index = other.sort_values() if sort else other elif how == "inner": join_index = self.intersection(other, sort=sort) elif how == "outer": try: join_index = self.union(other, sort=sort) except TypeError: join_index = self.union(other) try: join_index = _maybe_try_sort(join_index, sort) except TypeError: pass if join_index is self: lindexer = None else: lindexer = self.get_indexer_for(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer_for(join_index) return join_index, lindexer, rindexer
(self, other: 'Index', how: 'JoinHow', sort: 'bool') -> 'tuple[Index, npt.NDArray[np.intp] | None, npt.NDArray[np.intp] | None]'
65,480
pandas.core.indexes.base
_left_indexer
null
@final def _left_indexer( self, other: Self ) -> tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]: # Caller is responsible for ensuring other.dtype == self.dtype sv = self._get_join_target() ov = other._get_join_target() joined_ndarray, lidx, ridx = libjoin.left_join_indexer(sv, ov) joined = self._from_join_target(joined_ndarray) return joined, lidx, ridx
(self, other: 'Self') -> 'tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]'
65,481
pandas.core.indexes.base
_left_indexer_unique
null
@final def _left_indexer_unique(self, other: Self) -> npt.NDArray[np.intp]: # Caller is responsible for ensuring other.dtype == self.dtype sv = self._get_join_target() ov = other._get_join_target() # similar but not identical to ov.searchsorted(sv) return libjoin.left_join_indexer_unique(sv, ov)
(self, other: 'Self') -> 'npt.NDArray[np.intp]'
65,482
pandas.core.indexes.base
_logical_method
null
@final def _logical_method(self, other, op): res_name = ops.get_op_result_name(self, other) lvalues = self._values rvalues = extract_array(other, extract_numpy=True, extract_range=True) res_values = ops.logical_op(lvalues, rvalues, op) return self._construct_result(res_values, name=res_name)
(self, other, op)
65,483
pandas.core.base
_map_values
An internal function that maps values using the input correspondence (which can be a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping function convert : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical. Returns ------- Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned.
@final def _map_values(self, mapper, na_action=None, convert: bool = True): """ An internal function that maps values using the input correspondence (which can be a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series The input correspondence object na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping function convert : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. Note that the dtype is always preserved for some extension array dtypes, such as Categorical. Returns ------- Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ arr = self._values if isinstance(arr, ExtensionArray): return arr.map(mapper, na_action=na_action) return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)
(self, mapper, na_action=None, convert: bool = True)
65,484
pandas.core.indexes.category
_maybe_cast_indexer
null
def _maybe_cast_indexer(self, key) -> int: # GH#41933: we have to do this instead of self._data._validate_scalar # because this will correctly get partial-indexing on Interval categories try: return self._data._unbox_scalar(key) except KeyError: if is_valid_na_for_dtype(key, self.categories.dtype): return -1 raise
(self, key) -> int
65,485
pandas.core.indexes.category
_maybe_cast_listlike_indexer
null
def _maybe_cast_listlike_indexer(self, values) -> CategoricalIndex: if isinstance(values, CategoricalIndex): values = values._data if isinstance(values, Categorical): # Indexing on codes is more efficient if categories are the same, # so we can apply some optimizations based on the degree of # dtype-matching. cat = self._data._encode_with_my_categories(values) codes = cat._codes else: codes = self.categories.get_indexer(values) codes = codes.astype(self.codes.dtype, copy=False) cat = self._data._from_backing_data(codes) return type(self)._simple_new(cat)
(self, values) -> pandas.core.indexes.category.CategoricalIndex
65,486
pandas.core.indexes.base
_maybe_cast_slice_bound
This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller.
def _maybe_cast_slice_bound(self, label, side: str_t): """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. datetimelike Indexes if is_numeric_dtype(self.dtype): return self._maybe_cast_indexer(label) # reject them, if index does not contain label if (is_float(label) or is_integer(label)) and label not in self: self._raise_invalid_indexer("slice", label) return label
(self, label, side: str)
65,487
pandas.core.indexes.base
_maybe_check_unique
Check that an Index has no duplicates. This is typically only called via `NDFrame.flags.allows_duplicate_labels.setter` when it's set to True (duplicates aren't allowed). Raises ------ DuplicateLabelError When the index is not unique.
@final def _maybe_check_unique(self) -> None: """ Check that an Index has no duplicates. This is typically only called via `NDFrame.flags.allows_duplicate_labels.setter` when it's set to True (duplicates aren't allowed). Raises ------ DuplicateLabelError When the index is not unique. """ if not self.is_unique: msg = """Index has duplicates.""" duplicates = self._format_duplicate_message() msg += f"\n{duplicates}" raise DuplicateLabelError(msg)
(self) -> NoneType
65,488
pandas.core.indexes.base
_maybe_disable_logical_methods
raise if this Index subclass does not support any or all.
@final def _maybe_disable_logical_methods(self, opname: str_t) -> None: """ raise if this Index subclass does not support any or all. """ if ( isinstance(self, ABCMultiIndex) # TODO(3.0): PeriodArray and DatetimeArray any/all will raise, # so checking needs_i8_conversion will be unnecessary or (needs_i8_conversion(self.dtype) and self.dtype.kind != "m") ): # This call will raise make_invalid_op(opname)(self)
(self, opname: str) -> NoneType
65,489
pandas.core.indexes.base
_maybe_disallow_fill
We only use pandas-style take when allow_fill is True _and_ fill_value is not None.
@final def _maybe_disallow_fill(self, allow_fill: bool, fill_value, indices) -> bool: """ We only use pandas-style take when allow_fill is True _and_ fill_value is not None. """ if allow_fill and fill_value is not None: # only fill if we are passing a non-None fill_value if self._can_hold_na: if (indices < -1).any(): raise ValueError( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) else: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) else: allow_fill = False return allow_fill
(self, allow_fill: bool, fill_value, indices) -> bool
65,490
pandas.core.indexes.base
_maybe_downcast_for_indexing
When dealing with an object-dtype Index and a non-object Index, see if we can upcast the object-dtype one to improve performance.
@final def _maybe_downcast_for_indexing(self, other: Index) -> tuple[Index, Index]: """ When dealing with an object-dtype Index and a non-object Index, see if we can upcast the object-dtype one to improve performance. """ if isinstance(self, ABCDatetimeIndex) and isinstance(other, ABCDatetimeIndex): if ( self.tz is not None and other.tz is not None and not tz_compare(self.tz, other.tz) ): # standardize on UTC return self.tz_convert("UTC"), other.tz_convert("UTC") elif self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): try: return type(other)(self), other except OutOfBoundsDatetime: return self, other elif self.inferred_type == "timedelta" and isinstance(other, ABCTimedeltaIndex): # TODO: we dont have tests that get here return type(other)(self), other elif self.dtype.kind == "u" and other.dtype.kind == "i": # GH#41873 if other.min() >= 0: # lookup min as it may be cached # TODO: may need itemsize check if we have non-64-bit Indexes return self, other.astype(self.dtype) elif self._is_multi and not other._is_multi: try: # "Type[Index]" has no attribute "from_tuples" other = type(self).from_tuples(other) # type: ignore[attr-defined] except (TypeError, ValueError): # let's instead try with a straight Index self = Index(self._values) if not is_object_dtype(self.dtype) and is_object_dtype(other.dtype): # Reverse op so we dont need to re-implement on the subclasses other, self = other._maybe_downcast_for_indexing(self) return self, other
(self, other: pandas.core.indexes.base.Index) -> tuple[pandas.core.indexes.base.Index, pandas.core.indexes.base.Index]
65,491
pandas.core.indexes.base
_maybe_preserve_names
null
def _maybe_preserve_names(self, target: Index, preserve_names: bool): if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy(deep=False) target.name = self.name return target
(self, target: pandas.core.indexes.base.Index, preserve_names: bool)
65,492
pandas.core.base
_memory_usage
Memory usage of the values. Parameters ---------- deep : bool, default False Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption. Returns ------- bytes used See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx.memory_usage() 24
@final def _memory_usage(self, deep: bool = False) -> int: """ Memory usage of the values. Parameters ---------- deep : bool, default False Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption. Returns ------- bytes used See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx.memory_usage() 24 """ if hasattr(self.array, "memory_usage"): return self.array.memory_usage( # pyright: ignore[reportGeneralTypeIssues] deep=deep, ) v = self.array.nbytes if deep and is_object_dtype(self.dtype) and not PYPY: values = cast(np.ndarray, self._values) v += lib.memory_usage_of_objects(values) return v
(self, deep: bool = False) -> int
65,493
pandas.core.indexes.base
_mpl_repr
null
@final def _mpl_repr(self) -> np.ndarray: # how to represent ourselves to matplotlib if isinstance(self.dtype, np.dtype) and self.dtype.kind != "M": return cast(np.ndarray, self.values) return self.astype(object, copy=False)._values
(self) -> numpy.ndarray
65,494
pandas.core.indexes.base
_outer_indexer
null
@final def _outer_indexer( self, other: Self ) -> tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]: # Caller is responsible for ensuring other.dtype == self.dtype sv = self._get_join_target() ov = other._get_join_target() joined_ndarray, lidx, ridx = libjoin.outer_join_indexer(sv, ov) joined = self._from_join_target(joined_ndarray) return joined, lidx, ridx
(self, other: 'Self') -> 'tuple[ArrayLike, npt.NDArray[np.intp], npt.NDArray[np.intp]]'
65,495
pandas.core.indexes.base
_raise_if_missing
Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis_name : str Raises ------ KeyError If at least one key was requested but none was found.
def _raise_if_missing(self, key, indexer, axis_name: str_t) -> None: """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis_name : str Raises ------ KeyError If at least one key was requested but none was found. """ if len(key) == 0: return # Count missing values missing_mask = indexer < 0 nmissing = missing_mask.sum() if nmissing: if nmissing == len(indexer): raise KeyError(f"None of [{key}] are in the [{axis_name}]") not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique()) raise KeyError(f"{not_found} not in index")
(self, key, indexer, axis_name: str) -> NoneType
65,496
pandas.core.indexes.base
_raise_invalid_indexer
Raise consistent invalid indexer message.
@final def _raise_invalid_indexer( self, form: Literal["slice", "positional"], key, reraise: lib.NoDefault | None | Exception = lib.no_default, ) -> None: """ Raise consistent invalid indexer message. """ msg = ( f"cannot do {form} indexing on {type(self).__name__} with these " f"indexers [{key}] of type {type(key).__name__}" ) if reraise is not lib.no_default: raise TypeError(msg) from reraise raise TypeError(msg)
(self, form: Literal['slice', 'positional'], key, reraise: Union[Literal[<no_default>], NoneType, Exception] = <no_default>) -> NoneType
65,497
pandas.core.indexes.base
_reindex_non_unique
Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray[np.intp] Indices of output values in original index. new_indexer : np.ndarray[np.intp] or None
@final def _reindex_non_unique( self, target: Index ) -> tuple[Index, npt.NDArray[np.intp], npt.NDArray[np.intp] | None]: """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray[np.intp] Indices of output values in original index. new_indexer : np.ndarray[np.intp] or None """ target = ensure_index(target) if len(target) == 0: # GH#13691 return self[:0], np.array([], dtype=np.intp), None indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels: Index | np.ndarray = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer), dtype=np.intp) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = length[~check] cur_labels = self.take(indexer[check]).values cur_indexer = length[check] # Index constructor below will do inference new_labels = np.empty((len(indexer),), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # GH#38906 if not len(self): new_indexer = np.arange(0, dtype=np.intp) # a unique indexer elif target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer), dtype=np.intp) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer)), dtype=np.intp) new_indexer[~check] = -1 if not isinstance(self, ABCMultiIndex): new_index = Index(new_labels, name=self.name) else: new_index = type(self).from_tuples(new_labels, names=self.names) return new_index, indexer, new_indexer
(self, target: 'Index') -> 'tuple[Index, npt.NDArray[np.intp], npt.NDArray[np.intp] | None]'
65,498
pandas.core.indexes.base
_rename
fastpath for rename if new name is already validated.
@final def _rename(self, name: Hashable) -> Self: """ fastpath for rename if new name is already validated. """ result = self._view() result._name = name return result
(self, name: 'Hashable') -> 'Self'
65,500
pandas.core.indexes.base
_reset_identity
Initializes or resets ``_id`` attribute with new object.
@final def _reset_identity(self) -> None: """ Initializes or resets ``_id`` attribute with new object. """ self._id = object()
(self) -> NoneType
65,501
pandas.core.indexes.extension
_reverse_indexer
Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- Dict[Hashable, np.ndarray[np.intp]] dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c ['a', 'a', 'b', 'c', 'a'] Categories (3, object): ['a', 'b', 'c'] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])}
def _inherit_from_data( name: str, delegate: type, cache: bool = False, wrap: bool = False ): """ Make an alias for a method of the underlying ExtensionArray. Parameters ---------- name : str Name of an attribute the class should inherit from its EA parent. delegate : class cache : bool, default False Whether to convert wrapped properties into cache_readonly wrap : bool, default False Whether to wrap the inherited result in an Index. Returns ------- attribute, method, property, or cache_readonly """ attr = getattr(delegate, name) if isinstance(attr, property) or type(attr).__name__ == "getset_descriptor": # getset_descriptor i.e. property defined in cython class if cache: def cached(self): return getattr(self._data, name) cached.__name__ = name cached.__doc__ = attr.__doc__ method = cache_readonly(cached) else: def fget(self): result = getattr(self._data, name) if wrap: if isinstance(result, type(self._data)): return type(self)._simple_new(result, name=self.name) elif isinstance(result, ABCDataFrame): return result.set_index(self) return Index(result, name=self.name) return result def fset(self, value) -> None: setattr(self._data, name, value) fget.__name__ = name fget.__doc__ = attr.__doc__ method = property(fget, fset) elif not callable(attr): # just a normal attribute, no wrapping method = attr else: # error: Incompatible redefinition (redefinition with type "Callable[[Any, # VarArg(Any), KwArg(Any)], Any]", original type "property") def method(self, *args, **kwargs): # type: ignore[misc] if "inplace" in kwargs: raise ValueError(f"cannot use inplace with {type(self).__name__}") result = attr(self._data, *args, **kwargs) if wrap: if isinstance(result, type(self._data)): return type(self)._simple_new(result, name=self.name) elif isinstance(result, ABCDataFrame): return result.set_index(self) return Index(result, name=self.name) return result # error: "property" has no attribute "__name__" method.__name__ = name # type: ignore[attr-defined] method.__doc__ = attr.__doc__ return method
(self, *args, **kwargs)
65,502
pandas.core.indexes.base
_searchsorted_monotonic
null
def _searchsorted_monotonic(self, label, side: Literal["left", "right"] = "left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing")
(self, label, side: Literal['left', 'right'] = 'left')
65,503
pandas.core.indexes.base
_set_names
Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable.
def _set_names(self, values, *, level=None) -> None: """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: validate_all_hashable(*values, error_name=f"{type(self).__name__}.name") self._name = values[0]
(self, values, *, level=None) -> NoneType
65,504
pandas.core.indexes.base
_shallow_copy
Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional name : Label, defaults to self.name
def _shallow_copy(self, values, name: Hashable = no_default) -> Self: """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional name : Label, defaults to self.name """ name = self._name if name is no_default else name return self._simple_new(values, name=name, refs=self._references)
(self, values, name: 'Hashable' = <no_default>) -> 'Self'
65,505
pandas.core.indexes.base
_should_compare
Check if `self == other` can ever have non-False entries.
@final def _should_compare(self, other: Index) -> bool: """ Check if `self == other` can ever have non-False entries. """ # NB: we use inferred_type rather than is_bool_dtype to catch # object_dtype_of_bool and categorical[object_dtype_of_bool] cases if ( other.inferred_type == "boolean" and is_any_real_numeric_dtype(self.dtype) ) or ( self.inferred_type == "boolean" and is_any_real_numeric_dtype(other.dtype) ): # GH#16877 Treat boolean labels passed to a numeric index as not # found. Without this fix False and True would be treated as 0 and 1 # respectively. return False dtype = _unpack_nested_dtype(other) return self._is_comparable_dtype(dtype) or is_object_dtype(dtype)
(self, other: pandas.core.indexes.base.Index) -> bool
65,506
pandas.core.indexes.base
_should_partial_index
Should we attempt partial-matching indexing?
@final def _should_partial_index(self, target: Index) -> bool: """ Should we attempt partial-matching indexing? """ if isinstance(self.dtype, IntervalDtype): if isinstance(target.dtype, IntervalDtype): return False # "Index" has no attribute "left" return self.left._should_compare(target) # type: ignore[attr-defined] return False
(self, target: pandas.core.indexes.base.Index) -> bool
65,507
pandas.core.indexes.base
_sort_levels_monotonic
Compat with MultiIndex.
def _sort_levels_monotonic(self) -> Self: """ Compat with MultiIndex. """ return self
(self) -> NoneType
65,508
pandas.core.indexes.base
_summary
Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index
def _summary(self, name=None) -> str_t: """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() elif needs_i8_conversion(self.dtype): # e.g. Timedelta, display as values, not quoted head = self._formatter_func(head).replace("'", "") tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() elif needs_i8_conversion(self.dtype): # e.g. Timedelta, display as values, not quoted tail = self._formatter_func(tail).replace("'", "") index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}"
(self, name=None) -> str
65,509
pandas.core.indexes.base
_transform_index
Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified.
@final def _transform_index(self, func, *, level=None) -> Index: """ Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified. """ if isinstance(self, ABCMultiIndex): values = [ self.get_level_values(i).map(func) if i == level or level is None else self.get_level_values(i) for i in range(self.nlevels) ] return type(self).from_arrays(values) else: items = [func(x) for x in self] return Index(items, name=self.name, tupleize_cols=False)
(self, func, *, level=None) -> pandas.core.indexes.base.Index
65,510
pandas.core.indexes.base
_unary_method
null
@final def _unary_method(self, op): result = op(self._values) return Index(result, name=self.name)
(self, op)