index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
68,365
pandas.io.orc
read_orc
Load an ORC object from the file path, returning a DataFrame. Parameters ---------- path : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.orc``. columns : list, default None If not None, only these columns will be read from the file. Output always follows the ordering of the file and not the columns list. This mirrors the original behaviour of :external+pyarrow:py:meth:`pyarrow.orc.ORCFile.read`. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 filesystem : fsspec or pyarrow filesystem, default None Filesystem object to use when reading the parquet file. .. versionadded:: 2.1.0 **kwargs Any additional kwargs are passed to pyarrow. Returns ------- DataFrame Notes ----- Before using this function you should read the :ref:`user guide about ORC <io.orc>` and :ref:`install optional dependencies <install.warn_orc>`. If ``path`` is a URI scheme pointing to a local or remote file (e.g. "s3://"), a ``pyarrow.fs`` filesystem will be attempted to read the file. You can also pass a pyarrow or fsspec filesystem object into the filesystem keyword to override this behavior. Examples -------- >>> result = pd.read_orc("example_pa.orc") # doctest: +SKIP
def read_orc( path: FilePath | ReadBuffer[bytes], columns: list[str] | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, filesystem: pyarrow.fs.FileSystem | fsspec.spec.AbstractFileSystem | None = None, **kwargs: Any, ) -> DataFrame: """ Load an ORC object from the file path, returning a DataFrame. Parameters ---------- path : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.orc``. columns : list, default None If not None, only these columns will be read from the file. Output always follows the ordering of the file and not the columns list. This mirrors the original behaviour of :external+pyarrow:py:meth:`pyarrow.orc.ORCFile.read`. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 filesystem : fsspec or pyarrow filesystem, default None Filesystem object to use when reading the parquet file. .. versionadded:: 2.1.0 **kwargs Any additional kwargs are passed to pyarrow. Returns ------- DataFrame Notes ----- Before using this function you should read the :ref:`user guide about ORC <io.orc>` and :ref:`install optional dependencies <install.warn_orc>`. If ``path`` is a URI scheme pointing to a local or remote file (e.g. "s3://"), a ``pyarrow.fs`` filesystem will be attempted to read the file. You can also pass a pyarrow or fsspec filesystem object into the filesystem keyword to override this behavior. Examples -------- >>> result = pd.read_orc("example_pa.orc") # doctest: +SKIP """ # we require a newer version of pyarrow than we support for parquet orc = import_optional_dependency("pyarrow.orc") check_dtype_backend(dtype_backend) with get_handle(path, "rb", is_text=False) as handles: source = handles.handle if is_fsspec_url(path) and filesystem is None: pa = import_optional_dependency("pyarrow") pa_fs = import_optional_dependency("pyarrow.fs") try: filesystem, source = pa_fs.FileSystem.from_uri(path) except (TypeError, pa.ArrowInvalid): pass pa_table = orc.read_table( source=source, columns=columns, filesystem=filesystem, **kwargs ) if dtype_backend is not lib.no_default: if dtype_backend == "pyarrow": df = pa_table.to_pandas(types_mapper=pd.ArrowDtype) else: from pandas.io._util import _arrow_dtype_mapping mapping = _arrow_dtype_mapping() df = pa_table.to_pandas(types_mapper=mapping.get) return df else: if using_pyarrow_string_dtype(): types_mapper = arrow_string_types_mapper() else: types_mapper = None return pa_table.to_pandas(types_mapper=types_mapper)
(path: 'FilePath | ReadBuffer[bytes]', columns: 'list[str] | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>, filesystem: 'pyarrow.fs.FileSystem | fsspec.spec.AbstractFileSystem | None' = None, **kwargs: 'Any') -> 'DataFrame'
68,366
pandas.io.parquet
read_parquet
Load a parquet object from the file path, returning a DataFrame. Parameters ---------- path : str, path object or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.parquet``. A file URL can also be a path to a directory that contains multiple partitioned parquet files. Both pyarrow and fastparquet support paths to directories as well as file URLs. A directory path could be: ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``. engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. When using the ``'pyarrow'`` engine and no storage options are provided and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec`` (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first. Use the filesystem keyword with an instantiated fsspec filesystem if you wish to use its implementation. columns : list, default=None If not None, only these columns will be read from the file. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. .. versionadded:: 1.3.0 use_nullable_dtypes : bool, default False If True, use dtypes that use ``pd.NA`` as missing value indicator for the resulting DataFrame. (only applicable for the ``pyarrow`` engine) As new dtypes are added that support ``pd.NA`` in the future, the output with this option will change to use those dtypes. Note: this is an experimental option, and behaviour (e.g. additional support dtypes) may change without notice. .. deprecated:: 2.0 dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 filesystem : fsspec or pyarrow filesystem, default None Filesystem object to use when reading the parquet file. Only implemented for ``engine="pyarrow"``. .. versionadded:: 2.1.0 filters : List[Tuple] or List[List[Tuple]], default None To filter out data. Filter syntax: [[(column, op, val), ...],...] where op is [==, =, >, >=, <, <=, !=, in, not in] The innermost tuples are transposed into a set of filters applied through an `AND` operation. The outer list combines these sets of filters through an `OR` operation. A single list of tuples can also be used, meaning that no `OR` operation between set of filters is to be conducted. Using this argument will NOT result in row-wise filtering of the final partitions unless ``engine="pyarrow"`` is also specified. For other engines, filtering is only performed at the partition level, that is, to prevent the loading of some row-groups and/or files. .. versionadded:: 2.1.0 **kwargs Any additional kwargs are passed to the engine. Returns ------- DataFrame See Also -------- DataFrame.to_parquet : Create a parquet object that serializes a DataFrame. Examples -------- >>> original_df = pd.DataFrame( ... {"foo": range(5), "bar": range(5, 10)} ... ) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> df_parquet_bytes = original_df.to_parquet() >>> from io import BytesIO >>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes)) >>> restored_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> restored_df.equals(original_df) True >>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"]) >>> restored_bar bar 0 5 1 6 2 7 3 8 4 9 >>> restored_bar.equals(original_df[['bar']]) True The function uses `kwargs` that are passed directly to the engine. In the following example, we use the `filters` argument of the pyarrow engine to filter the rows of the DataFrame. Since `pyarrow` is the default engine, we can omit the `engine` argument. Note that the `filters` argument is implemented by the `pyarrow` engine, which can benefit from multithreading and also potentially be more economical in terms of memory. >>> sel = [("foo", ">", 2)] >>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel) >>> restored_part foo bar 0 3 8 1 4 9
@doc(storage_options=_shared_docs["storage_options"]) def read_parquet( path: FilePath | ReadBuffer[bytes], engine: str = "auto", columns: list[str] | None = None, storage_options: StorageOptions | None = None, use_nullable_dtypes: bool | lib.NoDefault = lib.no_default, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, filesystem: Any = None, filters: list[tuple] | list[list[tuple]] | None = None, **kwargs, ) -> DataFrame: """ Load a parquet object from the file path, returning a DataFrame. Parameters ---------- path : str, path object or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.parquet``. A file URL can also be a path to a directory that contains multiple partitioned parquet files. Both pyarrow and fastparquet support paths to directories as well as file URLs. A directory path could be: ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``. engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. When using the ``'pyarrow'`` engine and no storage options are provided and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec`` (e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first. Use the filesystem keyword with an instantiated fsspec filesystem if you wish to use its implementation. columns : list, default=None If not None, only these columns will be read from the file. {storage_options} .. versionadded:: 1.3.0 use_nullable_dtypes : bool, default False If True, use dtypes that use ``pd.NA`` as missing value indicator for the resulting DataFrame. (only applicable for the ``pyarrow`` engine) As new dtypes are added that support ``pd.NA`` in the future, the output with this option will change to use those dtypes. Note: this is an experimental option, and behaviour (e.g. additional support dtypes) may change without notice. .. deprecated:: 2.0 dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 filesystem : fsspec or pyarrow filesystem, default None Filesystem object to use when reading the parquet file. Only implemented for ``engine="pyarrow"``. .. versionadded:: 2.1.0 filters : List[Tuple] or List[List[Tuple]], default None To filter out data. Filter syntax: [[(column, op, val), ...],...] where op is [==, =, >, >=, <, <=, !=, in, not in] The innermost tuples are transposed into a set of filters applied through an `AND` operation. The outer list combines these sets of filters through an `OR` operation. A single list of tuples can also be used, meaning that no `OR` operation between set of filters is to be conducted. Using this argument will NOT result in row-wise filtering of the final partitions unless ``engine="pyarrow"`` is also specified. For other engines, filtering is only performed at the partition level, that is, to prevent the loading of some row-groups and/or files. .. versionadded:: 2.1.0 **kwargs Any additional kwargs are passed to the engine. Returns ------- DataFrame See Also -------- DataFrame.to_parquet : Create a parquet object that serializes a DataFrame. Examples -------- >>> original_df = pd.DataFrame( ... {{"foo": range(5), "bar": range(5, 10)}} ... ) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> df_parquet_bytes = original_df.to_parquet() >>> from io import BytesIO >>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes)) >>> restored_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> restored_df.equals(original_df) True >>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"]) >>> restored_bar bar 0 5 1 6 2 7 3 8 4 9 >>> restored_bar.equals(original_df[['bar']]) True The function uses `kwargs` that are passed directly to the engine. In the following example, we use the `filters` argument of the pyarrow engine to filter the rows of the DataFrame. Since `pyarrow` is the default engine, we can omit the `engine` argument. Note that the `filters` argument is implemented by the `pyarrow` engine, which can benefit from multithreading and also potentially be more economical in terms of memory. >>> sel = [("foo", ">", 2)] >>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel) >>> restored_part foo bar 0 3 8 1 4 9 """ impl = get_engine(engine) if use_nullable_dtypes is not lib.no_default: msg = ( "The argument 'use_nullable_dtypes' is deprecated and will be removed " "in a future version." ) if use_nullable_dtypes is True: msg += ( "Use dtype_backend='numpy_nullable' instead of use_nullable_dtype=True." ) warnings.warn(msg, FutureWarning, stacklevel=find_stack_level()) else: use_nullable_dtypes = False check_dtype_backend(dtype_backend) return impl.read( path, columns=columns, filters=filters, storage_options=storage_options, use_nullable_dtypes=use_nullable_dtypes, dtype_backend=dtype_backend, filesystem=filesystem, **kwargs, )
(path: 'FilePath | ReadBuffer[bytes]', engine: 'str' = 'auto', columns: 'list[str] | None' = None, storage_options: 'StorageOptions | None' = None, use_nullable_dtypes: 'bool | lib.NoDefault' = <no_default>, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>, filesystem: 'Any' = None, filters: 'list[tuple] | list[list[tuple]] | None' = None, **kwargs) -> 'DataFrame'
68,367
pandas.io.pickle
read_pickle
Load pickled pandas object (or any object) from file. .. warning:: Loading pickled data received from untrusted sources can be unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``readlines()`` function. Also accepts URL. URL is not limited to S3 and GCS. compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files. .. versionchanged:: 1.4.0 Zstandard support. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. Returns ------- same type as object stored in file See Also -------- DataFrame.to_pickle : Pickle (serialize) DataFrame object to file. Series.to_pickle : Pickle (serialize) Series object to file. read_hdf : Read HDF5 file into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. read_parquet : Load a parquet object, returning a DataFrame. Notes ----- read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3 provided the object was serialized with to_pickle. Examples -------- >>> original_df = pd.DataFrame( ... {"foo": range(5), "bar": range(5, 10)} ... ) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9
@doc( storage_options=_shared_docs["storage_options"], decompression_options=_shared_docs["decompression_options"] % "filepath_or_buffer", ) def read_pickle( filepath_or_buffer: FilePath | ReadPickleBuffer, compression: CompressionOptions = "infer", storage_options: StorageOptions | None = None, ) -> DataFrame | Series: """ Load pickled pandas object (or any object) from file. .. warning:: Loading pickled data received from untrusted sources can be unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``readlines()`` function. Also accepts URL. URL is not limited to S3 and GCS. {decompression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} Returns ------- same type as object stored in file See Also -------- DataFrame.to_pickle : Pickle (serialize) DataFrame object to file. Series.to_pickle : Pickle (serialize) Series object to file. read_hdf : Read HDF5 file into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. read_parquet : Load a parquet object, returning a DataFrame. Notes ----- read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3 provided the object was serialized with to_pickle. Examples -------- >>> original_df = pd.DataFrame( ... {{"foo": range(5), "bar": range(5, 10)}} ... ) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 """ excs_to_catch = (AttributeError, ImportError, ModuleNotFoundError, TypeError) with get_handle( filepath_or_buffer, "rb", compression=compression, is_text=False, storage_options=storage_options, ) as handles: # 1) try standard library Pickle # 2) try pickle_compat (older pandas version) to handle subclass changes # 3) try pickle_compat with latin-1 encoding upon a UnicodeDecodeError try: # TypeError for Cython complaints about object.__new__ vs Tick.__new__ try: with warnings.catch_warnings(record=True): # We want to silence any warnings about, e.g. moved modules. warnings.simplefilter("ignore", Warning) return pickle.load(handles.handle) except excs_to_catch: # e.g. # "No module named 'pandas.core.sparse.series'" # "Can't get attribute '__nat_unpickle' on <module 'pandas._libs.tslib" return pc.load(handles.handle, encoding=None) except UnicodeDecodeError: # e.g. can occur for files written in py27; see GH#28645 and GH#31988 return pc.load(handles.handle, encoding="latin-1")
(filepath_or_buffer: 'FilePath | ReadPickleBuffer', compression: 'CompressionOptions' = 'infer', storage_options: 'StorageOptions | None' = None) -> 'DataFrame | Series'
68,368
pandas.io.sas.sasreader
read_sas
Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.sas7bdat``. format : str {'xport', 'sas7bdat'} or None If None, file format is inferred from file extension. If 'xport' or 'sas7bdat', uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be used as index of the DataFrame. encoding : str, default is None Encoding for text data. If None, text data are stored as raw bytes. chunksize : int Read file `chunksize` lines at a time, returns iterator. iterator : bool, defaults to False If True, returns an iterator for reading the file incrementally. compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files. Returns ------- DataFrame if iterator=False and chunksize=None, else SAS7BDATReader or XportReader Examples -------- >>> df = pd.read_sas("sas_data.sas7bdat") # doctest: +SKIP
@doc(decompression_options=_shared_docs["decompression_options"] % "filepath_or_buffer") def read_sas( filepath_or_buffer: FilePath | ReadBuffer[bytes], *, format: str | None = None, index: Hashable | None = None, encoding: str | None = None, chunksize: int | None = None, iterator: bool = False, compression: CompressionOptions = "infer", ) -> DataFrame | ReaderBase: """ Read SAS files stored as either XPORT or SAS7BDAT format files. Parameters ---------- filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.sas7bdat``. format : str {{'xport', 'sas7bdat'}} or None If None, file format is inferred from file extension. If 'xport' or 'sas7bdat', uses the corresponding format. index : identifier of index column, defaults to None Identifier of column that should be used as index of the DataFrame. encoding : str, default is None Encoding for text data. If None, text data are stored as raw bytes. chunksize : int Read file `chunksize` lines at a time, returns iterator. iterator : bool, defaults to False If True, returns an iterator for reading the file incrementally. {decompression_options} Returns ------- DataFrame if iterator=False and chunksize=None, else SAS7BDATReader or XportReader Examples -------- >>> df = pd.read_sas("sas_data.sas7bdat") # doctest: +SKIP """ if format is None: buffer_error_msg = ( "If this is a buffer object rather " "than a string name, you must specify a format string" ) filepath_or_buffer = stringify_path(filepath_or_buffer) if not isinstance(filepath_or_buffer, str): raise ValueError(buffer_error_msg) fname = filepath_or_buffer.lower() if ".xpt" in fname: format = "xport" elif ".sas7bdat" in fname: format = "sas7bdat" else: raise ValueError( f"unable to infer format of SAS file from filename: {repr(fname)}" ) reader: ReaderBase if format.lower() == "xport": from pandas.io.sas.sas_xport import XportReader reader = XportReader( filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize, compression=compression, ) elif format.lower() == "sas7bdat": from pandas.io.sas.sas7bdat import SAS7BDATReader reader = SAS7BDATReader( filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize, compression=compression, ) else: raise ValueError("unknown SAS format") if iterator or chunksize: return reader with reader: return reader.read()
(filepath_or_buffer: 'FilePath | ReadBuffer[bytes]', *, format: 'str | None' = None, index: 'Hashable | None' = None, encoding: 'str | None' = None, chunksize: 'int | None' = None, iterator: 'bool' = False, compression: 'CompressionOptions' = 'infer') -> 'DataFrame | ReaderBase'
68,369
pandas.io.spss
read_spss
Load an SPSS file from the file path, returning a DataFrame. Parameters ---------- path : str or Path File path. usecols : list-like, optional Return a subset of the columns. If None, return all columns. convert_categoricals : bool, default is True Convert categorical columns into pd.Categorical. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame Examples -------- >>> df = pd.read_spss("spss_data.sav") # doctest: +SKIP
def read_spss( path: str | Path, usecols: Sequence[str] | None = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame: """ Load an SPSS file from the file path, returning a DataFrame. Parameters ---------- path : str or Path File path. usecols : list-like, optional Return a subset of the columns. If None, return all columns. convert_categoricals : bool, default is True Convert categorical columns into pd.Categorical. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame Examples -------- >>> df = pd.read_spss("spss_data.sav") # doctest: +SKIP """ pyreadstat = import_optional_dependency("pyreadstat") check_dtype_backend(dtype_backend) if usecols is not None: if not is_list_like(usecols): raise TypeError("usecols must be list-like.") usecols = list(usecols) # pyreadstat requires a list df, metadata = pyreadstat.read_sav( stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals ) df.attrs = metadata.__dict__ if dtype_backend is not lib.no_default: df = df.convert_dtypes(dtype_backend=dtype_backend) return df
(path: 'str | Path', usecols: 'Sequence[str] | None' = None, convert_categoricals: 'bool' = True, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame'
68,370
pandas.io.sql
read_sql
Read SQL query or database table into a DataFrame. This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (for backward compatibility). It will delegate to the specific function depending on the provided input. A SQL query will be routed to ``read_sql_query``, while a database table name will be routed to ``read_sql_table``. Note that the delegated function might have more specific notes about their functionality not listed here. Parameters ---------- sql : str or SQLAlchemy Selectable (select or text object) SQL query to be executed or a table name. con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection ADBC provides high performance I/O with native type support, where available. Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible for engine disposal and connection closure for the ADBC connection and SQLAlchemy connectable; str connections are closed automatically. See `here <https://docs.sqlalchemy.org/en/20/core/connections.html>`_. index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. parse_dates : list or dict, default: None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. columns : list, default: None List of column names to select from SQL table (only used when reading a table). chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 dtype : Type name or dict of columns Data type for data or columns. E.g. np.float64 or {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. The argument is ignored if a table is passed instead of a query. .. versionadded:: 2.0.0 Returns ------- DataFrame or Iterator[DataFrame] See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql_query : Read SQL query into a DataFrame. Examples -------- Read data from SQL via either a SQL query or a SQL tablename. When using a SQLite database only SQL queries are accepted, providing only the SQL tablename will result in an error. >>> from sqlite3 import connect >>> conn = connect(':memory:') >>> df = pd.DataFrame(data=[[0, '10/11/12'], [1, '12/11/10']], ... columns=['int_column', 'date_column']) >>> df.to_sql(name='test_data', con=conn) 2 >>> pd.read_sql('SELECT int_column, date_column FROM test_data', conn) int_column date_column 0 0 10/11/12 1 1 12/11/10 >>> pd.read_sql('test_data', 'postgres:///db_name') # doctest:+SKIP Apply date parsing to columns through the ``parse_dates`` argument The ``parse_dates`` argument calls ``pd.to_datetime`` on the provided columns. Custom argument values for applying ``pd.to_datetime`` on a column are specified via a dictionary format: >>> pd.read_sql('SELECT int_column, date_column FROM test_data', ... conn, ... parse_dates={"date_column": {"format": "%d/%m/%y"}}) int_column date_column 0 0 2012-11-10 1 1 2010-11-12 .. versionadded:: 2.2.0 pandas now supports reading via ADBC drivers >>> from adbc_driver_postgresql import dbapi # doctest:+SKIP >>> with dbapi.connect('postgres:///db_name') as conn: # doctest:+SKIP ... pd.read_sql('SELECT int_column FROM test_data', conn) int_column 0 0 1 1
def read_sql( sql, con, index_col: str | list[str] | None = None, coerce_float: bool = True, params=None, parse_dates=None, columns: list[str] | None = None, chunksize: int | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, dtype: DtypeArg | None = None, ) -> DataFrame | Iterator[DataFrame]: """ Read SQL query or database table into a DataFrame. This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (for backward compatibility). It will delegate to the specific function depending on the provided input. A SQL query will be routed to ``read_sql_query``, while a database table name will be routed to ``read_sql_table``. Note that the delegated function might have more specific notes about their functionality not listed here. Parameters ---------- sql : str or SQLAlchemy Selectable (select or text object) SQL query to be executed or a table name. con : ADBC Connection, SQLAlchemy connectable, str, or sqlite3 connection ADBC provides high performance I/O with native type support, where available. Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. The user is responsible for engine disposal and connection closure for the ADBC connection and SQLAlchemy connectable; str connections are closed automatically. See `here <https://docs.sqlalchemy.org/en/20/core/connections.html>`_. index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. parse_dates : list or dict, default: None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. columns : list, default: None List of column names to select from SQL table (only used when reading a table). chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 dtype : Type name or dict of columns Data type for data or columns. E.g. np.float64 or {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. The argument is ignored if a table is passed instead of a query. .. versionadded:: 2.0.0 Returns ------- DataFrame or Iterator[DataFrame] See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql_query : Read SQL query into a DataFrame. Examples -------- Read data from SQL via either a SQL query or a SQL tablename. When using a SQLite database only SQL queries are accepted, providing only the SQL tablename will result in an error. >>> from sqlite3 import connect >>> conn = connect(':memory:') >>> df = pd.DataFrame(data=[[0, '10/11/12'], [1, '12/11/10']], ... columns=['int_column', 'date_column']) >>> df.to_sql(name='test_data', con=conn) 2 >>> pd.read_sql('SELECT int_column, date_column FROM test_data', conn) int_column date_column 0 0 10/11/12 1 1 12/11/10 >>> pd.read_sql('test_data', 'postgres:///db_name') # doctest:+SKIP Apply date parsing to columns through the ``parse_dates`` argument The ``parse_dates`` argument calls ``pd.to_datetime`` on the provided columns. Custom argument values for applying ``pd.to_datetime`` on a column are specified via a dictionary format: >>> pd.read_sql('SELECT int_column, date_column FROM test_data', ... conn, ... parse_dates={"date_column": {"format": "%d/%m/%y"}}) int_column date_column 0 0 2012-11-10 1 1 2010-11-12 .. versionadded:: 2.2.0 pandas now supports reading via ADBC drivers >>> from adbc_driver_postgresql import dbapi # doctest:+SKIP >>> with dbapi.connect('postgres:///db_name') as conn: # doctest:+SKIP ... pd.read_sql('SELECT int_column FROM test_data', conn) int_column 0 0 1 1 """ check_dtype_backend(dtype_backend) if dtype_backend is lib.no_default: dtype_backend = "numpy" # type: ignore[assignment] assert dtype_backend is not lib.no_default with pandasSQL_builder(con) as pandas_sql: if isinstance(pandas_sql, SQLiteDatabase): return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize, dtype_backend=dtype_backend, dtype=dtype, ) try: _is_table_name = pandas_sql.has_table(sql) except Exception: # using generic exception to catch errors from sql drivers (GH24988) _is_table_name = False if _is_table_name: return pandas_sql.read_table( sql, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize, dtype_backend=dtype_backend, ) else: return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize, dtype_backend=dtype_backend, dtype=dtype, )
(sql, con, index_col: 'str | list[str] | None' = None, coerce_float: 'bool' = True, params=None, parse_dates=None, columns: 'list[str] | None' = None, chunksize: 'int | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>, dtype: 'DtypeArg | None' = None) -> 'DataFrame | Iterator[DataFrame]'
68,371
pandas.io.sql
read_sql_query
Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : str SQL query or SQLAlchemy Selectable (select or text object) SQL query to be executed. con : SQLAlchemy connectable, str, or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Useful for SQL result sets. params : list, tuple or mapping, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. parse_dates : list or dict, default: None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. dtype : Type name or dict of columns Data type for data or columns. E.g. np.float64 or {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. .. versionadded:: 1.3.0 dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or Iterator[DataFrame] See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. Notes ----- Any datetime values with time zone information parsed via the `parse_dates` parameter will be converted to UTC. Examples -------- >>> from sqlalchemy import create_engine # doctest: +SKIP >>> engine = create_engine("sqlite:///database.db") # doctest: +SKIP >>> with engine.connect() as conn, conn.begin(): # doctest: +SKIP ... data = pd.read_sql_table("data", conn) # doctest: +SKIP
def read_sql_query( sql, con, index_col: str | list[str] | None = None, coerce_float: bool = True, params: list[Any] | Mapping[str, Any] | None = None, parse_dates: list[str] | dict[str, str] | None = None, chunksize: int | None = None, dtype: DtypeArg | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame | Iterator[DataFrame]: """ Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used. Parameters ---------- sql : str SQL query or SQLAlchemy Selectable (select or text object) SQL query to be executed. con : SQLAlchemy connectable, str, or sqlite3 connection Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported. index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Useful for SQL result sets. params : list, tuple or mapping, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}. parse_dates : list or dict, default: None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times, or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. chunksize : int, default None If specified, return an iterator where `chunksize` is the number of rows to include in each chunk. dtype : Type name or dict of columns Data type for data or columns. E.g. np.float64 or {'a': np.float64, 'b': np.int32, 'c': 'Int64'}. .. versionadded:: 1.3.0 dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or Iterator[DataFrame] See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. Notes ----- Any datetime values with time zone information parsed via the `parse_dates` parameter will be converted to UTC. Examples -------- >>> from sqlalchemy import create_engine # doctest: +SKIP >>> engine = create_engine("sqlite:///database.db") # doctest: +SKIP >>> with engine.connect() as conn, conn.begin(): # doctest: +SKIP ... data = pd.read_sql_table("data", conn) # doctest: +SKIP """ check_dtype_backend(dtype_backend) if dtype_backend is lib.no_default: dtype_backend = "numpy" # type: ignore[assignment] assert dtype_backend is not lib.no_default with pandasSQL_builder(con) as pandas_sql: return pandas_sql.read_query( sql, index_col=index_col, params=params, coerce_float=coerce_float, parse_dates=parse_dates, chunksize=chunksize, dtype=dtype, dtype_backend=dtype_backend, )
(sql, con, index_col: 'str | list[str] | None' = None, coerce_float: 'bool' = True, params: 'list[Any] | Mapping[str, Any] | None' = None, parse_dates: 'list[str] | dict[str, str] | None' = None, chunksize: 'int | None' = None, dtype: 'DtypeArg | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame | Iterator[DataFrame]'
68,372
pandas.io.sql
read_sql_table
Read SQL database table into a DataFrame. Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : str Name of SQL table in database. con : SQLAlchemy connectable or str A database URI could be provided as str. SQLite DBAPI connection mode not supported. schema : str, default None Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict, default None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. columns : list, default None List of column names to select from SQL table. chunksize : int, default None If specified, returns an iterator where `chunksize` is the number of rows to include in each chunk. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or Iterator[DataFrame] A SQL table is returned as two-dimensional data structure with labeled axes. See Also -------- read_sql_query : Read SQL query into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. Notes ----- Any datetime values with time zone information will be converted to UTC. Examples -------- >>> pd.read_sql_table('table_name', 'postgres:///db_name') # doctest:+SKIP
def read_sql_table( table_name: str, con, schema: str | None = None, index_col: str | list[str] | None = None, coerce_float: bool = True, parse_dates: list[str] | dict[str, str] | None = None, columns: list[str] | None = None, chunksize: int | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame | Iterator[DataFrame]: """ Read SQL database table into a DataFrame. Given a table name and a SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections. Parameters ---------- table_name : str Name of SQL table in database. con : SQLAlchemy connectable or str A database URI could be provided as str. SQLite DBAPI connection mode not supported. schema : str, default None Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). coerce_float : bool, default True Attempts to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision. parse_dates : list or dict, default None - List of column names to parse as dates. - Dict of ``{column_name: format string}`` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps. - Dict of ``{column_name: arg dict}``, where the arg dict corresponds to the keyword arguments of :func:`pandas.to_datetime` Especially useful with databases without native Datetime support, such as SQLite. columns : list, default None List of column names to select from SQL table. chunksize : int, default None If specified, returns an iterator where `chunksize` is the number of rows to include in each chunk. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or Iterator[DataFrame] A SQL table is returned as two-dimensional data structure with labeled axes. See Also -------- read_sql_query : Read SQL query into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. Notes ----- Any datetime values with time zone information will be converted to UTC. Examples -------- >>> pd.read_sql_table('table_name', 'postgres:///db_name') # doctest:+SKIP """ check_dtype_backend(dtype_backend) if dtype_backend is lib.no_default: dtype_backend = "numpy" # type: ignore[assignment] assert dtype_backend is not lib.no_default with pandasSQL_builder(con, schema=schema, need_transaction=True) as pandas_sql: if not pandas_sql.has_table(table_name): raise ValueError(f"Table {table_name} not found") table = pandas_sql.read_table( table_name, index_col=index_col, coerce_float=coerce_float, parse_dates=parse_dates, columns=columns, chunksize=chunksize, dtype_backend=dtype_backend, ) if table is not None: return table else: raise ValueError(f"Table {table_name} not found", con)
(table_name: 'str', con, schema: 'str | None' = None, index_col: 'str | list[str] | None' = None, coerce_float: 'bool' = True, parse_dates: 'list[str] | dict[str, str] | None' = None, columns: 'list[str] | None' = None, chunksize: 'int | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame | Iterator[DataFrame]'
68,373
pandas.io.stata
read_stata
Read Stata file into DataFrame. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.dta``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. convert_dates : bool, default True Convert date variables to DataFrame time values. convert_categoricals : bool, default True Read value labels and convert columns to Categorical/Factor variables. index_col : str, optional Column to set as index. convert_missing : bool, default False Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nan. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects. preserve_dtypes : bool, default True Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64). columns : list or None Columns to retain. Columns will be returned in the given order. None returns all columns. order_categoricals : bool, default True Flag indicating whether converted categorical data are ordered. chunksize : int, default None Return StataReader object for iterations, returns chunks with given number of lines. iterator : bool, default False Return StataReader object. compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. Returns ------- DataFrame or pandas.api.typing.StataReader See Also -------- io.stata.StataReader : Low-level reader for Stata data files. DataFrame.to_stata: Export Stata data files. Notes ----- Categorical variables read through an iterator may not have the same categories and dtype. This occurs when a variable stored in a DTA file is associated to an incomplete set of value labels that only label a strict subset of the values. Examples -------- Creating a dummy stata for this example >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) # doctest: +SKIP >>> df.to_stata('animals.dta') # doctest: +SKIP Read a Stata dta file: >>> df = pd.read_stata('animals.dta') # doctest: +SKIP Read a Stata dta file in 10,000 line chunks: >>> values = np.random.randint(0, 10, size=(20_000, 1), dtype="uint8") # doctest: +SKIP >>> df = pd.DataFrame(values, columns=["i"]) # doctest: +SKIP >>> df.to_stata('filename.dta') # doctest: +SKIP >>> with pd.read_stata('filename.dta', chunksize=10000) as itr: # doctest: +SKIP >>> for chunk in itr: ... # Operate on a single chunk, e.g., chunk.mean() ... pass # doctest: +SKIP
@Appender(_read_stata_doc) def read_stata( filepath_or_buffer: FilePath | ReadBuffer[bytes], *, convert_dates: bool = True, convert_categoricals: bool = True, index_col: str | None = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Sequence[str] | None = None, order_categoricals: bool = True, chunksize: int | None = None, iterator: bool = False, compression: CompressionOptions = "infer", storage_options: StorageOptions | None = None, ) -> DataFrame | StataReader: reader = StataReader( filepath_or_buffer, convert_dates=convert_dates, convert_categoricals=convert_categoricals, index_col=index_col, convert_missing=convert_missing, preserve_dtypes=preserve_dtypes, columns=columns, order_categoricals=order_categoricals, chunksize=chunksize, storage_options=storage_options, compression=compression, ) if iterator or chunksize: return reader with reader: return reader.read()
(filepath_or_buffer: 'FilePath | ReadBuffer[bytes]', *, convert_dates: 'bool' = True, convert_categoricals: 'bool' = True, index_col: 'str | None' = None, convert_missing: 'bool' = False, preserve_dtypes: 'bool' = True, columns: 'Sequence[str] | None' = None, order_categoricals: 'bool' = True, chunksize: 'int | None' = None, iterator: 'bool' = False, compression: 'CompressionOptions' = 'infer', storage_options: 'StorageOptions | None' = None) -> 'DataFrame | StataReader'
68,374
pandas.io.parsers.readers
read_table
Read general delimited file into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default '\\t' (tab-stop) Character or regex pattern to treat as the delimiter. If ``sep=None``, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator from only the first valid row of the file by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, optional Alias for ``sep``. header : int, Sequence of int, 'infer' or None, default 'infer' Row number(s) containing column labels and marking the start of the data (zero-indexed). Default behavior is to infer the column names: if no ``names`` are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly to ``names`` then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a :class:`~pandas.MultiIndex` on the columns e.g. ``[0, 1, 3]``. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : Sequence of Hashable, optional Sequence of column labels to apply. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : Hashable, Sequence of Hashable or False, optional Column(s) to use as row label(s), denoted either by column labels or column indices. If a sequence of labels or indices is given, :class:`~pandas.MultiIndex` will be formed for the row labels. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g., when you have a malformed file with delimiters at the end of each line. usecols : Sequence of Hashable or Callable, optional Subset of columns to select, denoted either by column labels or column indices. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in ``names`` or inferred from the document header row(s). If ``names`` are given, the document header row(s) are not taken into account. For example, a valid list-like ``usecols`` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a :class:`~pandas.DataFrame` from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to ``True``. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. dtype : dtype or dict of {Hashable : dtype}, optional Data type(s) to apply to either the whole dataset or individual columns. E.g., ``{'a': np.float64, 'b': np.int32, 'c': 'Int64'}`` Use ``str`` or ``object`` together with suitable ``na_values`` settings to preserve and not interpret ``dtype``. If ``converters`` are specified, they will be applied INSTEAD of ``dtype`` conversion. .. versionadded:: 1.5.0 Support for ``defaultdict`` was added. Specify a ``defaultdict`` as input where the default determines the ``dtype`` of the columns which are not explicitly listed. engine : {'c', 'python', 'pyarrow'}, optional Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine. .. versionadded:: 1.4.0 The 'pyarrow' engine was added as an *experimental* engine, and some features are unsupported, or may not work correctly, with this engine. converters : dict of {Hashable : Callable}, optional Functions for converting values in specified columns. Keys can either be column labels or column indices. true_values : list, optional Values to consider as ``True`` in addition to case-insensitive variants of 'True'. false_values : list, optional Values to consider as ``False`` in addition to case-insensitive variants of 'False'. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : int, list of int or Callable, optional Line numbers to skip (0-indexed) or number of lines to skip (``int``) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning ``True`` if the row should be skipped and ``False`` otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with ``engine='c'``). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : Hashable, Iterable of Hashable or dict of {Hashable : Iterable}, optional Additional strings to recognize as ``NA``/``NaN``. If ``dict`` passed, specific per-column ``NA`` values. By default the following values are interpreted as ``NaN``: " ", "#N/A", "#N/A N/A", "#NA", "-1.#IND", "-1.#QNAN", "-NaN", "-nan", "1.#IND", "1.#QNAN", "<NA>", "N/A", "NA", "NULL", "NaN", "None", "n/a", "nan", "null ". keep_default_na : bool, default True Whether or not to include the default ``NaN`` values when parsing the data. Depending on whether ``na_values`` is passed in, the behavior is as follows: * If ``keep_default_na`` is ``True``, and ``na_values`` are specified, ``na_values`` is appended to the default ``NaN`` values used for parsing. * If ``keep_default_na`` is ``True``, and ``na_values`` are not specified, only the default ``NaN`` values are used for parsing. * If ``keep_default_na`` is ``False``, and ``na_values`` are specified, only the ``NaN`` values specified ``na_values`` are used for parsing. * If ``keep_default_na`` is ``False``, and ``na_values`` are not specified, no strings will be parsed as ``NaN``. Note that if ``na_filter`` is passed in as ``False``, the ``keep_default_na`` and ``na_values`` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of ``na_values``). In data without any ``NA`` values, passing ``na_filter=False`` can improve the performance of reading a large file. verbose : bool, default False Indicate number of ``NA`` values placed in non-numeric columns. .. deprecated:: 2.2.0 skip_blank_lines : bool, default True If ``True``, skip over blank lines rather than interpreting as ``NaN`` values. parse_dates : bool, list of Hashable, list of lists or dict of {Hashable : list}, default False The behavior is as follows: * ``bool``. If ``True`` -> try parsing the index. Note: Automatically set to ``True`` if ``date_format`` or ``date_parser`` arguments have been passed. * ``list`` of ``int`` or names. e.g. If ``[1, 2, 3]`` -> try parsing columns 1, 2, 3 each as a separate date column. * ``list`` of ``list``. e.g. If ``[[1, 3]]`` -> combine columns 1 and 3 and parse as a single date column. Values are joined with a space before parsing. * ``dict``, e.g. ``{'foo' : [1, 3]}`` -> parse columns 1, 3 as date and call result 'foo'. Values are joined with a space before parsing. If a column or index cannot be represented as an array of ``datetime``, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an ``object`` data type. For non-standard ``datetime`` parsing, use :func:`~pandas.to_datetime` after :func:`~pandas.read_csv`. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If ``True`` and ``parse_dates`` is enabled, pandas will attempt to infer the format of the ``datetime`` strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. .. deprecated:: 2.0.0 A strict version of this argument is now the default, passing it has no effect. keep_date_col : bool, default False If ``True`` and ``parse_dates`` specifies combining multiple columns then keep the original columns. date_parser : Callable, optional Function to use for converting a sequence of string columns to an array of ``datetime`` instances. The default uses ``dateutil.parser.parser`` to do the conversion. pandas will try to call ``date_parser`` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by ``parse_dates``) as arguments; 2) concatenate (row-wise) the string values from the columns defined by ``parse_dates`` into a single array and pass that; and 3) call ``date_parser`` once for each row using one or more strings (corresponding to the columns defined by ``parse_dates``) as arguments. .. deprecated:: 2.0.0 Use ``date_format`` instead, or read in as ``object`` and then apply :func:`~pandas.to_datetime` as-needed. date_format : str or dict of column -> format, optional Format to use for parsing dates when used in conjunction with ``parse_dates``. The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See `strftime documentation <https://docs.python.org/3/library/datetime.html #strftime-and-strptime-behavior>`_ for more information on choices, though note that :const:`"%f"` will parse all the way up to nanoseconds. You can also pass: - "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_ time string (not necessarily in exactly the same format); - "mixed", to infer the format for each element individually. This is risky, and you should probably use it along with `dayfirst`. .. versionadded:: 2.0.0 dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If ``True``, use a cache of unique, converted dates to apply the ``datetime`` conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. iterator : bool, default False Return ``TextFileReader`` object for iteration or getting chunks with ``get_chunk()``. chunksize : int, optional Number of lines to read from the file per chunk. Passing a value will cause the function to return a ``TextFileReader`` object for iteration. See the `IO Tools docs <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files. .. versionchanged:: 1.4.0 Zstandard support. thousands : str (length 1), optional Character acting as the thousands separator in numerical values. decimal : str (length 1), default '.' Character to recognize as decimal point (e.g., use ',' for European data). lineterminator : str (length 1), optional Character used to denote a line break. Only valid with C parser. quotechar : str (length 1), optional Character used to denote the start and end of a quoted item. Quoted items can include the ``delimiter`` and it will be ignored. quoting : {0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL, 2 or csv.QUOTE_NONNUMERIC, 3 or csv.QUOTE_NONE}, default csv.QUOTE_MINIMAL Control field quoting behavior per ``csv.QUOTE_*`` constants. Default is ``csv.QUOTE_MINIMAL`` (i.e., 0) which implies that only fields containing special characters are quoted (e.g., characters defined in ``quotechar``, ``delimiter``, or ``lineterminator``. doublequote : bool, default True When ``quotechar`` is specified and ``quoting`` is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive ``quotechar`` elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional Character used to escape other characters. comment : str (length 1), optional Character indicating that the remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter ``header`` but not by ``skiprows``. For example, if ``comment='#'``, parsing ``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in ``'a,b,c'`` being treated as the header. encoding : str, optional, default 'utf-8' Encoding to use for UTF when reading/writing (ex. ``'utf-8'``). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . encoding_errors : str, optional, default 'strict' How encoding errors are treated. `List of possible values <https://docs.python.org/3/library/codecs.html#error-handlers>`_ . .. versionadded:: 1.3.0 dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: ``delimiter``, ``doublequote``, ``escapechar``, ``skipinitialspace``, ``quotechar``, and ``quoting``. If it is necessary to override values, a ``ParserWarning`` will be issued. See ``csv.Dialect`` documentation for more details. on_bad_lines : {'error', 'warn', 'skip'} or Callable, default 'error' Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are : - ``'error'``, raise an Exception when a bad line is encountered. - ``'warn'``, raise a warning when a bad line is encountered and skip that line. - ``'skip'``, skip bad lines without raising or warning when they are encountered. .. versionadded:: 1.3.0 .. versionadded:: 1.4.0 - Callable, function with signature ``(bad_line: list[str]) -> list[str] | None`` that will process a single bad line. ``bad_line`` is a list of strings split by the ``sep``. If the function returns ``None``, the bad line will be ignored. If the function returns a new ``list`` of strings with more elements than expected, a ``ParserWarning`` will be emitted while dropping extra elements. Only supported when ``engine='python'`` .. versionchanged:: 2.2.0 - Callable, function with signature as described in `pyarrow documentation <https://arrow.apache.org/docs/python/generated/pyarrow.csv.ParseOptions.html #pyarrow.csv.ParseOptions.invalid_row_handler>`_ when ``engine='pyarrow'`` delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the ``sep`` delimiter. Equivalent to setting ``sep='\s+'``. If this option is set to ``True``, nothing should be passed in for the ``delimiter`` parameter. .. deprecated:: 2.2.0 Use ``sep="\s+"`` instead. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set ``False``, or specify the type with the ``dtype`` parameter. Note that the entire file is read into a single :class:`~pandas.DataFrame` regardless, use the ``chunksize`` or ``iterator`` parameter to return the data in chunks. (Only valid with C parser). memory_map : bool, default False If a filepath is provided for ``filepath_or_buffer``, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precision : {'high', 'legacy', 'round_trip'}, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or ``'high'`` for the ordinary converter, ``'legacy'`` for the original lower precision pandas converter, and ``'round_trip'`` for the round-trip converter. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- DataFrame or TextFileReader A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- >>> pd.read_table('data.csv') # doctest: +SKIP
@Appender( _doc_read_csv_and_table.format( func_name="read_table", summary="Read general delimited file into DataFrame.", see_also_func_name="read_csv", see_also_func_summary=( "Read a comma-separated values (csv) file into DataFrame." ), _default_sep=r"'\\t' (tab-stop)", storage_options=_shared_docs["storage_options"], decompression_options=_shared_docs["decompression_options"] % "filepath_or_buffer", ) ) def read_table( filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], *, sep: str | None | lib.NoDefault = lib.no_default, delimiter: str | None | lib.NoDefault = None, # Column and Index Locations and Names header: int | Sequence[int] | None | Literal["infer"] = "infer", names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default, index_col: IndexLabel | Literal[False] | None = None, usecols: UsecolsArgType = None, # General Parsing Configuration dtype: DtypeArg | None = None, engine: CSVEngine | None = None, converters: Mapping[Hashable, Callable] | None = None, true_values: list | None = None, false_values: list | None = None, skipinitialspace: bool = False, skiprows: list[int] | int | Callable[[Hashable], bool] | None = None, skipfooter: int = 0, nrows: int | None = None, # NA and Missing Data Handling na_values: Sequence[str] | Mapping[str, Sequence[str]] | None = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool | lib.NoDefault = lib.no_default, skip_blank_lines: bool = True, # Datetime Handling parse_dates: bool | Sequence[Hashable] = False, infer_datetime_format: bool | lib.NoDefault = lib.no_default, keep_date_col: bool | lib.NoDefault = lib.no_default, date_parser: Callable | lib.NoDefault = lib.no_default, date_format: str | dict[Hashable, str] | None = None, dayfirst: bool = False, cache_dates: bool = True, # Iteration iterator: bool = False, chunksize: int | None = None, # Quoting, Compression, and File Format compression: CompressionOptions = "infer", thousands: str | None = None, decimal: str = ".", lineterminator: str | None = None, quotechar: str = '"', quoting: int = csv.QUOTE_MINIMAL, doublequote: bool = True, escapechar: str | None = None, comment: str | None = None, encoding: str | None = None, encoding_errors: str | None = "strict", dialect: str | csv.Dialect | None = None, # Error Handling on_bad_lines: str = "error", # Internal delim_whitespace: bool | lib.NoDefault = lib.no_default, low_memory: bool = _c_parser_defaults["low_memory"], memory_map: bool = False, float_precision: str | None = None, storage_options: StorageOptions | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame | TextFileReader: if keep_date_col is not lib.no_default: # GH#55569 warnings.warn( "The 'keep_date_col' keyword in pd.read_table is deprecated and " "will be removed in a future version. Explicitly remove unwanted " "columns after parsing instead.", FutureWarning, stacklevel=find_stack_level(), ) else: keep_date_col = False # error: Item "bool" of "bool | Sequence[Hashable]" has no attribute "__iter__" if lib.is_list_like(parse_dates) and not all(is_hashable(x) for x in parse_dates): # type: ignore[union-attr] # GH#55569 warnings.warn( "Support for nested sequences for 'parse_dates' in pd.read_table " "is deprecated. Combine the desired columns with pd.to_datetime " "after parsing instead.", FutureWarning, stacklevel=find_stack_level(), ) if infer_datetime_format is not lib.no_default: warnings.warn( "The argument 'infer_datetime_format' is deprecated and will " "be removed in a future version. " "A strict version of it is now the default, see " "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. " "You can safely remove this argument.", FutureWarning, stacklevel=find_stack_level(), ) if delim_whitespace is not lib.no_default: # GH#55569 warnings.warn( "The 'delim_whitespace' keyword in pd.read_table is deprecated and " "will be removed in a future version. Use ``sep='\\s+'`` instead", FutureWarning, stacklevel=find_stack_level(), ) else: delim_whitespace = False if verbose is not lib.no_default: # GH#55569 warnings.warn( "The 'verbose' keyword in pd.read_table is deprecated and " "will be removed in a future version.", FutureWarning, stacklevel=find_stack_level(), ) else: verbose = False # locals() should never be modified kwds = locals().copy() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, on_bad_lines, names, defaults={"delimiter": "\t"}, dtype_backend=dtype_backend, ) kwds.update(kwds_defaults) return _read(filepath_or_buffer, kwds)
(filepath_or_buffer: 'FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]', *, sep: 'str | None | lib.NoDefault' = <no_default>, delimiter: 'str | None | lib.NoDefault' = None, header: "int | Sequence[int] | None | Literal['infer']" = 'infer', names: 'Sequence[Hashable] | None | lib.NoDefault' = <no_default>, index_col: 'IndexLabel | Literal[False] | None' = None, usecols: 'UsecolsArgType' = None, dtype: 'DtypeArg | None' = None, engine: 'CSVEngine | None' = None, converters: 'Mapping[Hashable, Callable] | None' = None, true_values: 'list | None' = None, false_values: 'list | None' = None, skipinitialspace: 'bool' = False, skiprows: 'list[int] | int | Callable[[Hashable], bool] | None' = None, skipfooter: 'int' = 0, nrows: 'int | None' = None, na_values: 'Sequence[str] | Mapping[str, Sequence[str]] | None' = None, keep_default_na: 'bool' = True, na_filter: 'bool' = True, verbose: 'bool | lib.NoDefault' = <no_default>, skip_blank_lines: 'bool' = True, parse_dates: 'bool | Sequence[Hashable]' = False, infer_datetime_format: 'bool | lib.NoDefault' = <no_default>, keep_date_col: 'bool | lib.NoDefault' = <no_default>, date_parser: 'Callable | lib.NoDefault' = <no_default>, date_format: 'str | dict[Hashable, str] | None' = None, dayfirst: 'bool' = False, cache_dates: 'bool' = True, iterator: 'bool' = False, chunksize: 'int | None' = None, compression: 'CompressionOptions' = 'infer', thousands: 'str | None' = None, decimal: 'str' = '.', lineterminator: 'str | None' = None, quotechar: 'str' = '"', quoting: 'int' = 0, doublequote: 'bool' = True, escapechar: 'str | None' = None, comment: 'str | None' = None, encoding: 'str | None' = None, encoding_errors: 'str | None' = 'strict', dialect: 'str | csv.Dialect | None' = None, on_bad_lines: 'str' = 'error', delim_whitespace: 'bool | lib.NoDefault' = <no_default>, low_memory: 'bool' = True, memory_map: 'bool' = False, float_precision: 'str | None' = None, storage_options: 'StorageOptions | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame | TextFileReader'
68,375
pandas.io.xml
read_xml
Read XML document into a :class:`~pandas.DataFrame` object. .. versionadded:: 1.3.0 Parameters ---------- path_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a ``read()`` function. The string can be any valid XML string or a path. The string can further be a URL. Valid URL schemes include http, ftp, s3, and file. .. deprecated:: 2.1.0 Passing xml literal strings is deprecated. Wrap literal xml input in ``io.StringIO`` or ``io.BytesIO`` instead. xpath : str, optional, default './\*' The ``XPath`` to parse required set of nodes for migration to :class:`~pandas.DataFrame`.``XPath`` should return a collection of elements and not a single element. Note: The ``etree`` parser supports limited ``XPath`` expressions. For more complex ``XPath``, use ``lxml`` which requires installation. namespaces : dict, optional The namespaces defined in XML document as dicts with key being namespace prefix and value the URI. There is no need to include all namespaces in XML, only the ones used in ``xpath`` expression. Note: if XML document uses default namespace denoted as `xmlns='<URI>'` without a prefix, you must assign any temporary namespace prefix such as 'doc' to the URI in order to parse underlying nodes and/or attributes. For example, :: namespaces = {"doc": "https://example.com"} elems_only : bool, optional, default False Parse only the child elements at the specified ``xpath``. By default, all child elements and non-empty text nodes are returned. attrs_only : bool, optional, default False Parse only the attributes at the specified ``xpath``. By default, all attributes are returned. names : list-like, optional Column names for DataFrame of parsed XML data. Use this parameter to rename original element names and distinguish same named elements and attributes. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32, 'c': 'Int64'} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 1.5.0 converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. .. versionadded:: 1.5.0 parse_dates : bool or list of int or names or list of lists or dict, default False Identifiers to parse index or columns to datetime. The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' .. versionadded:: 1.5.0 encoding : str, optional, default 'utf-8' Encoding of XML document. parser : {'lxml','etree'}, default 'lxml' Parser module to use for retrieval of data. Only 'lxml' and 'etree' are supported. With 'lxml' more complex ``XPath`` searches and ability to use XSLT stylesheet are supported. stylesheet : str, path object or file-like object A URL, file-like object, or a raw string containing an XSLT script. This stylesheet should flatten complex, deeply nested XML documents for easier parsing. To use this feature you must have ``lxml`` module installed and specify 'lxml' as ``parser``. The ``xpath`` must reference nodes of transformed XML document generated after XSLT transformation and not the original XML document. Only XSLT 1.0 scripts and not later versions is currently supported. iterparse : dict, optional The nodes or attributes to retrieve in iterparsing of XML document as a dict with key being the name of repeating element and value being list of elements or attribute names that are descendants of the repeated element. Note: If this option is used, it will replace ``xpath`` parsing and unlike ``xpath``, descendants do not need to relate to each other but can exist any where in document under the repeating element. This memory- efficient method should be used for very large XML files (500MB, 1GB, or 5GB+). For example, :: iterparse = {"row_element": ["child_elem", "attr", "grandchild_elem"]} .. versionadded:: 1.5.0 compression : str or dict, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and 'path_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to ``None`` for no decompression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdDecompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: ``compression={'method': 'zstd', 'dict_data': my_compression_dict}``. .. versionadded:: 1.5.0 Added support for `.tar` files. .. versionchanged:: 1.4.0 Zstandard support. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- df A DataFrame. See Also -------- read_json : Convert a JSON string to pandas object. read_html : Read HTML tables into a list of DataFrame objects. Notes ----- This method is best designed to import shallow XML documents in following format which is the ideal fit for the two-dimensions of a ``DataFrame`` (row by column). :: <root> <row> <column1>data</column1> <column2>data</column2> <column3>data</column3> ... </row> <row> ... </row> ... </root> As a file format, XML documents can be designed any way including layout of elements and attributes as long as it conforms to W3C specifications. Therefore, this method is a convenience handler for a specific flatter design and not all possible XML structures. However, for more complex XML documents, ``stylesheet`` allows you to temporarily redesign original document with XSLT (a special purpose language) for a flatter version for migration to a DataFrame. This function will *always* return a single :class:`DataFrame` or raise exceptions due to issues with XML document, ``xpath``, or other parameters. See the :ref:`read_xml documentation in the IO section of the docs <io.read_xml>` for more information in using this method to parse XML files to DataFrames. Examples -------- >>> from io import StringIO >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data xmlns="http://example.com"> ... <row> ... <shape>square</shape> ... <degrees>360</degrees> ... <sides>4.0</sides> ... </row> ... <row> ... <shape>circle</shape> ... <degrees>360</degrees> ... <sides/> ... </row> ... <row> ... <shape>triangle</shape> ... <degrees>180</degrees> ... <sides>3.0</sides> ... </row> ... </data>''' >>> df = pd.read_xml(StringIO(xml)) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data> ... <row shape="square" degrees="360" sides="4.0"/> ... <row shape="circle" degrees="360"/> ... <row shape="triangle" degrees="180" sides="3.0"/> ... </data>''' >>> df = pd.read_xml(StringIO(xml), xpath=".//row") >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <doc:data xmlns:doc="https://example.com"> ... <doc:row> ... <doc:shape>square</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides>4.0</doc:sides> ... </doc:row> ... <doc:row> ... <doc:shape>circle</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides/> ... </doc:row> ... <doc:row> ... <doc:shape>triangle</doc:shape> ... <doc:degrees>180</doc:degrees> ... <doc:sides>3.0</doc:sides> ... </doc:row> ... </doc:data>''' >>> df = pd.read_xml(StringIO(xml), ... xpath="//doc:row", ... namespaces={"doc": "https://example.com"}) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml_data = ''' ... <data> ... <row> ... <index>0</index> ... <a>1</a> ... <b>2.5</b> ... <c>True</c> ... <d>a</d> ... <e>2019-12-31 00:00:00</e> ... </row> ... <row> ... <index>1</index> ... <b>4.5</b> ... <c>False</c> ... <d>b</d> ... <e>2019-12-31 00:00:00</e> ... </row> ... </data> ... ''' >>> df = pd.read_xml(StringIO(xml_data), ... dtype_backend="numpy_nullable", ... parse_dates=["e"]) >>> df index a b c d e 0 0 1 2.5 True a 2019-12-31 1 1 <NA> 4.5 False b 2019-12-31
@doc( storage_options=_shared_docs["storage_options"], decompression_options=_shared_docs["decompression_options"] % "path_or_buffer", ) def read_xml( path_or_buffer: FilePath | ReadBuffer[bytes] | ReadBuffer[str], *, xpath: str = "./*", namespaces: dict[str, str] | None = None, elems_only: bool = False, attrs_only: bool = False, names: Sequence[str] | None = None, dtype: DtypeArg | None = None, converters: ConvertersArg | None = None, parse_dates: ParseDatesArg | None = None, # encoding can not be None for lxml and StringIO input encoding: str | None = "utf-8", parser: XMLParsers = "lxml", stylesheet: FilePath | ReadBuffer[bytes] | ReadBuffer[str] | None = None, iterparse: dict[str, list[str]] | None = None, compression: CompressionOptions = "infer", storage_options: StorageOptions | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ) -> DataFrame: r""" Read XML document into a :class:`~pandas.DataFrame` object. .. versionadded:: 1.3.0 Parameters ---------- path_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a ``read()`` function. The string can be any valid XML string or a path. The string can further be a URL. Valid URL schemes include http, ftp, s3, and file. .. deprecated:: 2.1.0 Passing xml literal strings is deprecated. Wrap literal xml input in ``io.StringIO`` or ``io.BytesIO`` instead. xpath : str, optional, default './\*' The ``XPath`` to parse required set of nodes for migration to :class:`~pandas.DataFrame`.``XPath`` should return a collection of elements and not a single element. Note: The ``etree`` parser supports limited ``XPath`` expressions. For more complex ``XPath``, use ``lxml`` which requires installation. namespaces : dict, optional The namespaces defined in XML document as dicts with key being namespace prefix and value the URI. There is no need to include all namespaces in XML, only the ones used in ``xpath`` expression. Note: if XML document uses default namespace denoted as `xmlns='<URI>'` without a prefix, you must assign any temporary namespace prefix such as 'doc' to the URI in order to parse underlying nodes and/or attributes. For example, :: namespaces = {{"doc": "https://example.com"}} elems_only : bool, optional, default False Parse only the child elements at the specified ``xpath``. By default, all child elements and non-empty text nodes are returned. attrs_only : bool, optional, default False Parse only the attributes at the specified ``xpath``. By default, all attributes are returned. names : list-like, optional Column names for DataFrame of parsed XML data. Use this parameter to rename original element names and distinguish same named elements and attributes. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 1.5.0 converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. .. versionadded:: 1.5.0 parse_dates : bool or list of int or names or list of lists or dict, default False Identifiers to parse index or columns to datetime. The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' .. versionadded:: 1.5.0 encoding : str, optional, default 'utf-8' Encoding of XML document. parser : {{'lxml','etree'}}, default 'lxml' Parser module to use for retrieval of data. Only 'lxml' and 'etree' are supported. With 'lxml' more complex ``XPath`` searches and ability to use XSLT stylesheet are supported. stylesheet : str, path object or file-like object A URL, file-like object, or a raw string containing an XSLT script. This stylesheet should flatten complex, deeply nested XML documents for easier parsing. To use this feature you must have ``lxml`` module installed and specify 'lxml' as ``parser``. The ``xpath`` must reference nodes of transformed XML document generated after XSLT transformation and not the original XML document. Only XSLT 1.0 scripts and not later versions is currently supported. iterparse : dict, optional The nodes or attributes to retrieve in iterparsing of XML document as a dict with key being the name of repeating element and value being list of elements or attribute names that are descendants of the repeated element. Note: If this option is used, it will replace ``xpath`` parsing and unlike ``xpath``, descendants do not need to relate to each other but can exist any where in document under the repeating element. This memory- efficient method should be used for very large XML files (500MB, 1GB, or 5GB+). For example, :: iterparse = {{"row_element": ["child_elem", "attr", "grandchild_elem"]}} .. versionadded:: 1.5.0 {decompression_options} .. versionchanged:: 1.4.0 Zstandard support. {storage_options} dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- df A DataFrame. See Also -------- read_json : Convert a JSON string to pandas object. read_html : Read HTML tables into a list of DataFrame objects. Notes ----- This method is best designed to import shallow XML documents in following format which is the ideal fit for the two-dimensions of a ``DataFrame`` (row by column). :: <root> <row> <column1>data</column1> <column2>data</column2> <column3>data</column3> ... </row> <row> ... </row> ... </root> As a file format, XML documents can be designed any way including layout of elements and attributes as long as it conforms to W3C specifications. Therefore, this method is a convenience handler for a specific flatter design and not all possible XML structures. However, for more complex XML documents, ``stylesheet`` allows you to temporarily redesign original document with XSLT (a special purpose language) for a flatter version for migration to a DataFrame. This function will *always* return a single :class:`DataFrame` or raise exceptions due to issues with XML document, ``xpath``, or other parameters. See the :ref:`read_xml documentation in the IO section of the docs <io.read_xml>` for more information in using this method to parse XML files to DataFrames. Examples -------- >>> from io import StringIO >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data xmlns="http://example.com"> ... <row> ... <shape>square</shape> ... <degrees>360</degrees> ... <sides>4.0</sides> ... </row> ... <row> ... <shape>circle</shape> ... <degrees>360</degrees> ... <sides/> ... </row> ... <row> ... <shape>triangle</shape> ... <degrees>180</degrees> ... <sides>3.0</sides> ... </row> ... </data>''' >>> df = pd.read_xml(StringIO(xml)) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <data> ... <row shape="square" degrees="360" sides="4.0"/> ... <row shape="circle" degrees="360"/> ... <row shape="triangle" degrees="180" sides="3.0"/> ... </data>''' >>> df = pd.read_xml(StringIO(xml), xpath=".//row") >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml = '''<?xml version='1.0' encoding='utf-8'?> ... <doc:data xmlns:doc="https://example.com"> ... <doc:row> ... <doc:shape>square</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides>4.0</doc:sides> ... </doc:row> ... <doc:row> ... <doc:shape>circle</doc:shape> ... <doc:degrees>360</doc:degrees> ... <doc:sides/> ... </doc:row> ... <doc:row> ... <doc:shape>triangle</doc:shape> ... <doc:degrees>180</doc:degrees> ... <doc:sides>3.0</doc:sides> ... </doc:row> ... </doc:data>''' >>> df = pd.read_xml(StringIO(xml), ... xpath="//doc:row", ... namespaces={{"doc": "https://example.com"}}) >>> df shape degrees sides 0 square 360 4.0 1 circle 360 NaN 2 triangle 180 3.0 >>> xml_data = ''' ... <data> ... <row> ... <index>0</index> ... <a>1</a> ... <b>2.5</b> ... <c>True</c> ... <d>a</d> ... <e>2019-12-31 00:00:00</e> ... </row> ... <row> ... <index>1</index> ... <b>4.5</b> ... <c>False</c> ... <d>b</d> ... <e>2019-12-31 00:00:00</e> ... </row> ... </data> ... ''' >>> df = pd.read_xml(StringIO(xml_data), ... dtype_backend="numpy_nullable", ... parse_dates=["e"]) >>> df index a b c d e 0 0 1 2.5 True a 2019-12-31 1 1 <NA> 4.5 False b 2019-12-31 """ check_dtype_backend(dtype_backend) return _parse( path_or_buffer=path_or_buffer, xpath=xpath, namespaces=namespaces, elems_only=elems_only, attrs_only=attrs_only, names=names, dtype=dtype, converters=converters, parse_dates=parse_dates, encoding=encoding, parser=parser, stylesheet=stylesheet, iterparse=iterparse, compression=compression, storage_options=storage_options, dtype_backend=dtype_backend, )
(path_or_buffer: 'FilePath | ReadBuffer[bytes] | ReadBuffer[str]', *, xpath: 'str' = './*', namespaces: 'dict[str, str] | None' = None, elems_only: 'bool' = False, attrs_only: 'bool' = False, names: 'Sequence[str] | None' = None, dtype: 'DtypeArg | None' = None, converters: 'ConvertersArg | None' = None, parse_dates: 'ParseDatesArg | None' = None, encoding: 'str | None' = 'utf-8', parser: 'XMLParsers' = 'lxml', stylesheet: 'FilePath | ReadBuffer[bytes] | ReadBuffer[str] | None' = None, iterparse: 'dict[str, list[str]] | None' = None, compression: 'CompressionOptions' = 'infer', storage_options: 'StorageOptions | None' = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>) -> 'DataFrame'
68,376
pandas.io.formats.format
set_eng_float_format
Format float representation in DataFrame with SI notation. Parameters ---------- accuracy : int, default 3 Number of decimal digits after the floating point. use_eng_prefix : bool, default False Whether to represent a value with SI prefixes. Returns ------- None Examples -------- >>> df = pd.DataFrame([1e-9, 1e-3, 1, 1e3, 1e6]) >>> df 0 0 1.000000e-09 1 1.000000e-03 2 1.000000e+00 3 1.000000e+03 4 1.000000e+06 >>> pd.set_eng_float_format(accuracy=1) >>> df 0 0 1.0E-09 1 1.0E-03 2 1.0E+00 3 1.0E+03 4 1.0E+06 >>> pd.set_eng_float_format(use_eng_prefix=True) >>> df 0 0 1.000n 1 1.000m 2 1.000 3 1.000k 4 1.000M >>> pd.set_eng_float_format(accuracy=1, use_eng_prefix=True) >>> df 0 0 1.0n 1 1.0m 2 1.0 3 1.0k 4 1.0M >>> pd.set_option("display.float_format", None) # unset option
def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None: """ Format float representation in DataFrame with SI notation. Parameters ---------- accuracy : int, default 3 Number of decimal digits after the floating point. use_eng_prefix : bool, default False Whether to represent a value with SI prefixes. Returns ------- None Examples -------- >>> df = pd.DataFrame([1e-9, 1e-3, 1, 1e3, 1e6]) >>> df 0 0 1.000000e-09 1 1.000000e-03 2 1.000000e+00 3 1.000000e+03 4 1.000000e+06 >>> pd.set_eng_float_format(accuracy=1) >>> df 0 0 1.0E-09 1 1.0E-03 2 1.0E+00 3 1.0E+03 4 1.0E+06 >>> pd.set_eng_float_format(use_eng_prefix=True) >>> df 0 0 1.000n 1 1.000m 2 1.000 3 1.000k 4 1.000M >>> pd.set_eng_float_format(accuracy=1, use_eng_prefix=True) >>> df 0 0 1.0n 1 1.0m 2 1.0 3 1.0k 4 1.0M >>> pd.set_option("display.float_format", None) # unset option """ set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix))
(accuracy: int = 3, use_eng_prefix: bool = False) -> NoneType
68,377
pandas.util._print_versions
show_versions
Provide useful information, important for bug reports. It comprises info about hosting operation system, pandas version, and versions of other installed relative packages. Parameters ---------- as_json : str or bool, default False * If False, outputs info in a human readable form to the console. * If str, it will be considered as a path to a file. Info will be written to that file in JSON format. * If True, outputs info in JSON format to the console. Examples -------- >>> pd.show_versions() # doctest: +SKIP Your output may look something like this: INSTALLED VERSIONS ------------------ commit : 37ea63d540fd27274cad6585082c91b1283f963d python : 3.10.6.final.0 python-bits : 64 OS : Linux OS-release : 5.10.102.1-microsoft-standard-WSL2 Version : #1 SMP Wed Mar 2 00:30:59 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8 pandas : 2.0.1 numpy : 1.24.3 ...
def show_versions(as_json: str | bool = False) -> None: """ Provide useful information, important for bug reports. It comprises info about hosting operation system, pandas version, and versions of other installed relative packages. Parameters ---------- as_json : str or bool, default False * If False, outputs info in a human readable form to the console. * If str, it will be considered as a path to a file. Info will be written to that file in JSON format. * If True, outputs info in JSON format to the console. Examples -------- >>> pd.show_versions() # doctest: +SKIP Your output may look something like this: INSTALLED VERSIONS ------------------ commit : 37ea63d540fd27274cad6585082c91b1283f963d python : 3.10.6.final.0 python-bits : 64 OS : Linux OS-release : 5.10.102.1-microsoft-standard-WSL2 Version : #1 SMP Wed Mar 2 00:30:59 UTC 2022 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_GB.UTF-8 LOCALE : en_GB.UTF-8 pandas : 2.0.1 numpy : 1.24.3 ... """ sys_info = _get_sys_info() deps = _get_dependency_info() if as_json: j = {"system": sys_info, "dependencies": deps} if as_json is True: sys.stdout.writelines(json.dumps(j, indent=2)) else: assert isinstance(as_json, str) # needed for mypy with codecs.open(as_json, "wb", encoding="utf8") as f: json.dump(j, f, indent=2) else: assert isinstance(sys_info["LOCALE"], dict) # needed for mypy language_code = sys_info["LOCALE"]["language-code"] encoding = sys_info["LOCALE"]["encoding"] sys_info["LOCALE"] = f"{language_code}.{encoding}" maxlen = max(len(x) for x in deps) print("\nINSTALLED VERSIONS") print("------------------") for k, v in sys_info.items(): print(f"{k:<{maxlen}}: {v}") print("") for k, v in deps.items(): print(f"{k:<{maxlen}}: {v}")
(as_json: str | bool = False) -> NoneType
68,378
pandas.util._tester
test
Run the pandas test suite using pytest. By default, runs with the marks -m "not slow and not network and not db" Parameters ---------- extra_args : list[str], default None Extra marks to run the tests. run_doctests : bool, default False Whether to only run the Python and Cython doctests. If you would like to run both doctests/regular tests, just append "--doctest-modules"/"--doctest-cython" to extra_args. Examples -------- >>> pd.test() # doctest: +SKIP running: pytest...
def test(extra_args: list[str] | None = None, run_doctests: bool = False) -> None: """ Run the pandas test suite using pytest. By default, runs with the marks -m "not slow and not network and not db" Parameters ---------- extra_args : list[str], default None Extra marks to run the tests. run_doctests : bool, default False Whether to only run the Python and Cython doctests. If you would like to run both doctests/regular tests, just append "--doctest-modules"/"--doctest-cython" to extra_args. Examples -------- >>> pd.test() # doctest: +SKIP running: pytest... """ pytest = import_optional_dependency("pytest") import_optional_dependency("hypothesis") cmd = ["-m not slow and not network and not db"] if extra_args: if not isinstance(extra_args, list): extra_args = [extra_args] cmd = extra_args if run_doctests: cmd = [ "--doctest-modules", "--doctest-cython", f"--ignore={os.path.join(PKG, 'tests')}", ] cmd += [PKG] joined = " ".join(cmd) print(f"running: pytest {joined}") sys.exit(pytest.main(cmd))
(extra_args: Optional[list[str]] = None, run_doctests: bool = False) -> NoneType
68,380
pandas.core.indexes.timedeltas
timedelta_range
Return a fixed frequency TimedeltaIndex with day as the default. Parameters ---------- start : str or timedelta-like, default None Left bound for generating timedeltas. end : str or timedelta-like, default None Right bound for generating timedeltas. periods : int, default None Number of periods to generate. freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5h'. name : str, default None Name of the resulting TimedeltaIndex. closed : str, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None). unit : str, default None Specify the desired resolution of the result. .. versionadded:: 2.0.0 Returns ------- TimedeltaIndex Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.timedelta_range(start='1 day', periods=4) TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``closed`` parameter specifies which endpoint is included. The default behavior is to include both endpoints. >>> pd.timedelta_range(start='1 day', periods=4, closed='right') TimedeltaIndex(['2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``freq`` parameter specifies the frequency of the TimedeltaIndex. Only fixed frequencies can be passed, non-fixed frequencies such as 'M' (month end) will raise. >>> pd.timedelta_range(start='1 day', end='2 days', freq='6h') TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00'], dtype='timedelta64[ns]', freq='6h') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.timedelta_range(start='1 day', end='5 days', periods=4) TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00', '5 days 00:00:00'], dtype='timedelta64[ns]', freq=None) **Specify a unit** >>> pd.timedelta_range("1 Day", periods=3, freq="100000D", unit="s") TimedeltaIndex(['1 days', '100001 days', '200001 days'], dtype='timedelta64[s]', freq='100000D')
def timedelta_range( start=None, end=None, periods: int | None = None, freq=None, name=None, closed=None, *, unit: str | None = None, ) -> TimedeltaIndex: """ Return a fixed frequency TimedeltaIndex with day as the default. Parameters ---------- start : str or timedelta-like, default None Left bound for generating timedeltas. end : str or timedelta-like, default None Right bound for generating timedeltas. periods : int, default None Number of periods to generate. freq : str, Timedelta, datetime.timedelta, or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5h'. name : str, default None Name of the resulting TimedeltaIndex. closed : str, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None). unit : str, default None Specify the desired resolution of the result. .. versionadded:: 2.0.0 Returns ------- TimedeltaIndex Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.timedelta_range(start='1 day', periods=4) TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``closed`` parameter specifies which endpoint is included. The default behavior is to include both endpoints. >>> pd.timedelta_range(start='1 day', periods=4, closed='right') TimedeltaIndex(['2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``freq`` parameter specifies the frequency of the TimedeltaIndex. Only fixed frequencies can be passed, non-fixed frequencies such as 'M' (month end) will raise. >>> pd.timedelta_range(start='1 day', end='2 days', freq='6h') TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00'], dtype='timedelta64[ns]', freq='6h') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.timedelta_range(start='1 day', end='5 days', periods=4) TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00', '5 days 00:00:00'], dtype='timedelta64[ns]', freq=None) **Specify a unit** >>> pd.timedelta_range("1 Day", periods=3, freq="100000D", unit="s") TimedeltaIndex(['1 days', '100001 days', '200001 days'], dtype='timedelta64[s]', freq='100000D') """ if freq is None and com.any_none(periods, start, end): freq = "D" freq = to_offset(freq) tdarr = TimedeltaArray._generate_range( start, end, periods, freq, closed=closed, unit=unit ) return TimedeltaIndex._simple_new(tdarr, name=name)
(start=None, end=None, periods: Optional[int] = None, freq=None, name=None, closed=None, *, unit: Optional[str] = None) -> pandas.core.indexes.timedeltas.TimedeltaIndex
68,381
pandas.core.tools.datetimes
to_datetime
Convert argument to datetime. This function converts a scalar, array-like, :class:`Series` or :class:`DataFrame`/dict-like to a pandas datetime object. Parameters ---------- arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like The object to convert to a datetime. If a :class:`DataFrame` is provided, the method expects minimally the following columns: :const:`"year"`, :const:`"month"`, :const:`"day"`. The column "year" must be specified in 4-digit format. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If :const:`'raise'`, then invalid parsing will raise an exception. - If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`. - If :const:`'ignore'`, then invalid parsing will return the input. dayfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. If :const:`True`, parses dates with the day first, e.g. :const:`"10/11/12"` is parsed as :const:`2012-11-10`. .. warning:: ``dayfirst=True`` is not strict, but will prefer to parse with day first. yearfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. - If :const:`True` parses dates with the year first, e.g. :const:`"10/11/12"` is parsed as :const:`2010-11-12`. - If both `dayfirst` and `yearfirst` are :const:`True`, `yearfirst` is preceded (same as :mod:`dateutil`). .. warning:: ``yearfirst=True`` is not strict, but will prefer to parse with year first. utc : bool, default False Control timezone-related parsing, localization and conversion. - If :const:`True`, the function *always* returns a timezone-aware UTC-localized :class:`Timestamp`, :class:`Series` or :class:`DatetimeIndex`. To do this, timezone-naive inputs are *localized* as UTC, while timezone-aware inputs are *converted* to UTC. - If :const:`False` (default), inputs will not be coerced to UTC. Timezone-naive inputs will remain naive, while timezone-aware ones will keep their time offsets. Limitations exist for mixed offsets (typically, daylight savings), see :ref:`Examples <to_datetime_tz_examples>` section for details. .. warning:: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. See also: pandas general documentation about `timezone conversion and localization <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #time-zone-handling>`_. format : str, default None The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See `strftime documentation <https://docs.python.org/3/library/datetime.html #strftime-and-strptime-behavior>`_ for more information on choices, though note that :const:`"%f"` will parse all the way up to nanoseconds. You can also pass: - "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_ time string (not necessarily in exactly the same format); - "mixed", to infer the format for each element individually. This is risky, and you should probably use it along with `dayfirst`. .. note:: If a :class:`DataFrame` is passed, then `format` has no effect. exact : bool, default True Control how `format` is used: - If :const:`True`, require an exact `format` match. - If :const:`False`, allow the `format` to match anywhere in the target string. Cannot be used alongside ``format='ISO8601'`` or ``format='mixed'``. unit : str, default 'ns' The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with ``unit='ms'`` and ``origin='unix'``, this would calculate the number of milliseconds to the unix epoch start. infer_datetime_format : bool, default False If :const:`True` and no `format` is given, attempt to infer the format of the datetime strings based on the first non-NaN element, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. .. deprecated:: 2.0.0 A strict version of this argument is now the default, passing it has no effect. origin : scalar, default 'unix' Define the reference date. The numeric values would be parsed as number of units (defined by `unit`) since this reference date. - If :const:`'unix'` (or POSIX) time; origin is set to 1970-01-01. - If :const:`'julian'`, unit must be :const:`'D'`, and origin is set to beginning of Julian Calendar. Julian day number :const:`0` is assigned to the day starting at noon on January 1, 4713 BC. - If Timestamp convertible (Timestamp, dt.datetime, np.datetimt64 or date string), origin is set to Timestamp identified by origin. - If a float or integer, origin is the difference (in units determined by the ``unit`` argument) relative to 1970-01-01. cache : bool, default True If :const:`True`, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. The cache is only used when there are at least 50 values. The presence of out-of-bounds values will render the cache unusable and may slow down parsing. Returns ------- datetime If parsing succeeded. Return type depends on input (types in parenthesis correspond to fallback in case of unsuccessful timezone or out-of-range timestamp parsing): - scalar: :class:`Timestamp` (or :class:`datetime.datetime`) - array-like: :class:`DatetimeIndex` (or :class:`Series` with :class:`object` dtype containing :class:`datetime.datetime`) - Series: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) - DataFrame: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) Raises ------ ParserError When parsing a date from string fails. ValueError When another datetime conversion error happens. For example when one of 'year', 'month', day' columns is missing in a :class:`DataFrame`, or when a Timezone-aware :class:`datetime.datetime` is found in an array-like of mixed time offsets, and ``utc=False``. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_timedelta : Convert argument to timedelta. convert_dtypes : Convert dtypes. Notes ----- Many input types are supported, and lead to different output types: - **scalars** can be int, float, str, datetime object (from stdlib :mod:`datetime` module or :mod:`numpy`). They are converted to :class:`Timestamp` when possible, otherwise they are converted to :class:`datetime.datetime`. None/NaN/null scalars are converted to :const:`NaT`. - **array-like** can contain int, float, str, datetime objects. They are converted to :class:`DatetimeIndex` when possible, otherwise they are converted to :class:`Index` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **Series** are converted to :class:`Series` with :class:`datetime64` dtype when possible, otherwise they are converted to :class:`Series` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **DataFrame/dict-like** are converted to :class:`Series` with :class:`datetime64` dtype. For each row a datetime is created from assembling the various dataframe columns. Column keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same. The following causes are responsible for :class:`datetime.datetime` objects being returned (possibly inside an :class:`Index` or a :class:`Series` with :class:`object` dtype) instead of a proper pandas designated type (:class:`Timestamp`, :class:`DatetimeIndex` or :class:`Series` with :class:`datetime64` dtype): - when any input element is before :const:`Timestamp.min` or after :const:`Timestamp.max`, see `timestamp limitations <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #timeseries-timestamp-limits>`_. - when ``utc=False`` (default) and the input is an array-like or :class:`Series` containing mixed naive/aware datetime, or aware with mixed time offsets. Note that this happens in the (quite frequent) situation when the timezone has a daylight savings policy. In that case you may wish to use ``utc=True``. Examples -------- **Handling various input formats** Assembling a datetime from multiple columns of a :class:`DataFrame`. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same >>> df = pd.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] Using a unix epoch time >>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') .. warning:: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type. Using a non-unix epoch origin >>> pd.to_datetime([1, 2, 3], unit='D', ... origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None) **Differences with strptime behavior** :const:`"%f"` will parse all the way up to nanoseconds. >>> pd.to_datetime('2018-10-26 12:00:00.0000000011', ... format='%Y-%m-%d %H:%M:%S.%f') Timestamp('2018-10-26 12:00:00.000000001') **Non-convertible date/times** Passing ``errors='coerce'`` will force an out-of-bounds date to :const:`NaT`, in addition to forcing non-dates (or non-parseable dates) to :const:`NaT`. >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT .. _to_datetime_tz_examples: **Timezones and time offsets** The default behaviour (``utc=False``) is as follows: - Timezone-naive inputs are converted to timezone-naive :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None) - Timezone-aware inputs *with constant time offset* are converted to timezone-aware :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500']) DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, UTC-05:00]', freq=None) - However, timezone-aware inputs *with mixed time offsets* (for example issued from a timezone with daylight savings, such as Europe/Paris) are **not successfully converted** to a :class:`DatetimeIndex`. Parsing datetimes with mixed time zones will show a warning unless `utc=True`. If you specify `utc=False` the warning below will be shown and a simple :class:`Index` containing :class:`datetime.datetime` objects will be returned: >>> pd.to_datetime(['2020-10-25 02:00 +0200', ... '2020-10-25 04:00 +0100']) # doctest: +SKIP FutureWarning: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object') - A mix of timezone-aware and timezone-naive inputs is also converted to a simple :class:`Index` containing :class:`datetime.datetime` objects: >>> from datetime import datetime >>> pd.to_datetime(["2020-01-01 01:00:00-01:00", ... datetime(2020, 1, 1, 3, 0)]) # doctest: +SKIP FutureWarning: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. Index([2020-01-01 01:00:00-01:00, 2020-01-01 03:00:00], dtype='object') | Setting ``utc=True`` solves most of the above issues: - Timezone-naive inputs are *localized* as UTC >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Timezone-aware inputs are *converted* to UTC (the output represents the exact same datetime, but viewed from the UTC time offset `+00:00`). >>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'], ... utc=True) DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Inputs can contain both string or datetime, the above rules still apply >>> pd.to_datetime(['2018-10-26 12:00', datetime(2020, 1, 1, 18)], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2020-01-01 18:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
def to_datetime( arg: DatetimeScalarOrArrayConvertible | DictConvertible, errors: DateTimeErrorChoices = "raise", dayfirst: bool = False, yearfirst: bool = False, utc: bool = False, format: str | None = None, exact: bool | lib.NoDefault = lib.no_default, unit: str | None = None, infer_datetime_format: lib.NoDefault | bool = lib.no_default, origin: str = "unix", cache: bool = True, ) -> DatetimeIndex | Series | DatetimeScalar | NaTType | None: """ Convert argument to datetime. This function converts a scalar, array-like, :class:`Series` or :class:`DataFrame`/dict-like to a pandas datetime object. Parameters ---------- arg : int, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like The object to convert to a datetime. If a :class:`DataFrame` is provided, the method expects minimally the following columns: :const:`"year"`, :const:`"month"`, :const:`"day"`. The column "year" must be specified in 4-digit format. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If :const:`'raise'`, then invalid parsing will raise an exception. - If :const:`'coerce'`, then invalid parsing will be set as :const:`NaT`. - If :const:`'ignore'`, then invalid parsing will return the input. dayfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. If :const:`True`, parses dates with the day first, e.g. :const:`"10/11/12"` is parsed as :const:`2012-11-10`. .. warning:: ``dayfirst=True`` is not strict, but will prefer to parse with day first. yearfirst : bool, default False Specify a date parse order if `arg` is str or is list-like. - If :const:`True` parses dates with the year first, e.g. :const:`"10/11/12"` is parsed as :const:`2010-11-12`. - If both `dayfirst` and `yearfirst` are :const:`True`, `yearfirst` is preceded (same as :mod:`dateutil`). .. warning:: ``yearfirst=True`` is not strict, but will prefer to parse with year first. utc : bool, default False Control timezone-related parsing, localization and conversion. - If :const:`True`, the function *always* returns a timezone-aware UTC-localized :class:`Timestamp`, :class:`Series` or :class:`DatetimeIndex`. To do this, timezone-naive inputs are *localized* as UTC, while timezone-aware inputs are *converted* to UTC. - If :const:`False` (default), inputs will not be coerced to UTC. Timezone-naive inputs will remain naive, while timezone-aware ones will keep their time offsets. Limitations exist for mixed offsets (typically, daylight savings), see :ref:`Examples <to_datetime_tz_examples>` section for details. .. warning:: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. See also: pandas general documentation about `timezone conversion and localization <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #time-zone-handling>`_. format : str, default None The strftime to parse time, e.g. :const:`"%d/%m/%Y"`. See `strftime documentation <https://docs.python.org/3/library/datetime.html #strftime-and-strptime-behavior>`_ for more information on choices, though note that :const:`"%f"` will parse all the way up to nanoseconds. You can also pass: - "ISO8601", to parse any `ISO8601 <https://en.wikipedia.org/wiki/ISO_8601>`_ time string (not necessarily in exactly the same format); - "mixed", to infer the format for each element individually. This is risky, and you should probably use it along with `dayfirst`. .. note:: If a :class:`DataFrame` is passed, then `format` has no effect. exact : bool, default True Control how `format` is used: - If :const:`True`, require an exact `format` match. - If :const:`False`, allow the `format` to match anywhere in the target string. Cannot be used alongside ``format='ISO8601'`` or ``format='mixed'``. unit : str, default 'ns' The unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with ``unit='ms'`` and ``origin='unix'``, this would calculate the number of milliseconds to the unix epoch start. infer_datetime_format : bool, default False If :const:`True` and no `format` is given, attempt to infer the format of the datetime strings based on the first non-NaN element, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. .. deprecated:: 2.0.0 A strict version of this argument is now the default, passing it has no effect. origin : scalar, default 'unix' Define the reference date. The numeric values would be parsed as number of units (defined by `unit`) since this reference date. - If :const:`'unix'` (or POSIX) time; origin is set to 1970-01-01. - If :const:`'julian'`, unit must be :const:`'D'`, and origin is set to beginning of Julian Calendar. Julian day number :const:`0` is assigned to the day starting at noon on January 1, 4713 BC. - If Timestamp convertible (Timestamp, dt.datetime, np.datetimt64 or date string), origin is set to Timestamp identified by origin. - If a float or integer, origin is the difference (in units determined by the ``unit`` argument) relative to 1970-01-01. cache : bool, default True If :const:`True`, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. The cache is only used when there are at least 50 values. The presence of out-of-bounds values will render the cache unusable and may slow down parsing. Returns ------- datetime If parsing succeeded. Return type depends on input (types in parenthesis correspond to fallback in case of unsuccessful timezone or out-of-range timestamp parsing): - scalar: :class:`Timestamp` (or :class:`datetime.datetime`) - array-like: :class:`DatetimeIndex` (or :class:`Series` with :class:`object` dtype containing :class:`datetime.datetime`) - Series: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) - DataFrame: :class:`Series` of :class:`datetime64` dtype (or :class:`Series` of :class:`object` dtype containing :class:`datetime.datetime`) Raises ------ ParserError When parsing a date from string fails. ValueError When another datetime conversion error happens. For example when one of 'year', 'month', day' columns is missing in a :class:`DataFrame`, or when a Timezone-aware :class:`datetime.datetime` is found in an array-like of mixed time offsets, and ``utc=False``. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_timedelta : Convert argument to timedelta. convert_dtypes : Convert dtypes. Notes ----- Many input types are supported, and lead to different output types: - **scalars** can be int, float, str, datetime object (from stdlib :mod:`datetime` module or :mod:`numpy`). They are converted to :class:`Timestamp` when possible, otherwise they are converted to :class:`datetime.datetime`. None/NaN/null scalars are converted to :const:`NaT`. - **array-like** can contain int, float, str, datetime objects. They are converted to :class:`DatetimeIndex` when possible, otherwise they are converted to :class:`Index` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **Series** are converted to :class:`Series` with :class:`datetime64` dtype when possible, otherwise they are converted to :class:`Series` with :class:`object` dtype, containing :class:`datetime.datetime`. None/NaN/null entries are converted to :const:`NaT` in both cases. - **DataFrame/dict-like** are converted to :class:`Series` with :class:`datetime64` dtype. For each row a datetime is created from assembling the various dataframe columns. Column keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same. The following causes are responsible for :class:`datetime.datetime` objects being returned (possibly inside an :class:`Index` or a :class:`Series` with :class:`object` dtype) instead of a proper pandas designated type (:class:`Timestamp`, :class:`DatetimeIndex` or :class:`Series` with :class:`datetime64` dtype): - when any input element is before :const:`Timestamp.min` or after :const:`Timestamp.max`, see `timestamp limitations <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html #timeseries-timestamp-limits>`_. - when ``utc=False`` (default) and the input is an array-like or :class:`Series` containing mixed naive/aware datetime, or aware with mixed time offsets. Note that this happens in the (quite frequent) situation when the timezone has a daylight savings policy. In that case you may wish to use ``utc=True``. Examples -------- **Handling various input formats** Assembling a datetime from multiple columns of a :class:`DataFrame`. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same >>> df = pd.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> pd.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] Using a unix epoch time >>> pd.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pd.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') .. warning:: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-width exact type. Using a non-unix epoch origin >>> pd.to_datetime([1, 2, 3], unit='D', ... origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None) **Differences with strptime behavior** :const:`"%f"` will parse all the way up to nanoseconds. >>> pd.to_datetime('2018-10-26 12:00:00.0000000011', ... format='%Y-%m-%d %H:%M:%S.%f') Timestamp('2018-10-26 12:00:00.000000001') **Non-convertible date/times** Passing ``errors='coerce'`` will force an out-of-bounds date to :const:`NaT`, in addition to forcing non-dates (or non-parseable dates) to :const:`NaT`. >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT .. _to_datetime_tz_examples: **Timezones and time offsets** The default behaviour (``utc=False``) is as follows: - Timezone-naive inputs are converted to timezone-naive :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None) - Timezone-aware inputs *with constant time offset* are converted to timezone-aware :class:`DatetimeIndex`: >>> pd.to_datetime(['2018-10-26 12:00 -0500', '2018-10-26 13:00 -0500']) DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, UTC-05:00]', freq=None) - However, timezone-aware inputs *with mixed time offsets* (for example issued from a timezone with daylight savings, such as Europe/Paris) are **not successfully converted** to a :class:`DatetimeIndex`. Parsing datetimes with mixed time zones will show a warning unless `utc=True`. If you specify `utc=False` the warning below will be shown and a simple :class:`Index` containing :class:`datetime.datetime` objects will be returned: >>> pd.to_datetime(['2020-10-25 02:00 +0200', ... '2020-10-25 04:00 +0100']) # doctest: +SKIP FutureWarning: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object') - A mix of timezone-aware and timezone-naive inputs is also converted to a simple :class:`Index` containing :class:`datetime.datetime` objects: >>> from datetime import datetime >>> pd.to_datetime(["2020-01-01 01:00:00-01:00", ... datetime(2020, 1, 1, 3, 0)]) # doctest: +SKIP FutureWarning: In a future version of pandas, parsing datetimes with mixed time zones will raise an error unless `utc=True`. Please specify `utc=True` to opt in to the new behaviour and silence this warning. To create a `Series` with mixed offsets and `object` dtype, please use `apply` and `datetime.datetime.strptime`. Index([2020-01-01 01:00:00-01:00, 2020-01-01 03:00:00], dtype='object') | Setting ``utc=True`` solves most of the above issues: - Timezone-naive inputs are *localized* as UTC >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Timezone-aware inputs are *converted* to UTC (the output represents the exact same datetime, but viewed from the UTC time offset `+00:00`). >>> pd.to_datetime(['2018-10-26 12:00 -0530', '2018-10-26 12:00 -0500'], ... utc=True) DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) - Inputs can contain both string or datetime, the above rules still apply >>> pd.to_datetime(['2018-10-26 12:00', datetime(2020, 1, 1, 18)], utc=True) DatetimeIndex(['2018-10-26 12:00:00+00:00', '2020-01-01 18:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None) """ if exact is not lib.no_default and format in {"mixed", "ISO8601"}: raise ValueError("Cannot use 'exact' when 'format' is 'mixed' or 'ISO8601'") if infer_datetime_format is not lib.no_default: warnings.warn( "The argument 'infer_datetime_format' is deprecated and will " "be removed in a future version. " "A strict version of it is now the default, see " "https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. " "You can safely remove this argument.", stacklevel=find_stack_level(), ) if errors == "ignore": # GH#54467 warnings.warn( "errors='ignore' is deprecated and will raise in a future version. " "Use to_datetime without passing `errors` and catch exceptions " "explicitly instead", FutureWarning, stacklevel=find_stack_level(), ) if arg is None: return None if origin != "unix": arg = _adjust_to_origin(arg, origin, unit) convert_listlike = partial( _convert_listlike_datetimes, utc=utc, unit=unit, dayfirst=dayfirst, yearfirst=yearfirst, errors=errors, exact=exact, ) # pylint: disable-next=used-before-assignment result: Timestamp | NaTType | Series | Index if isinstance(arg, Timestamp): result = arg if utc: if arg.tz is not None: result = arg.tz_convert("utc") else: result = arg.tz_localize("utc") elif isinstance(arg, ABCSeries): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = arg.map(cache_array) else: values = convert_listlike(arg._values, format) result = arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, (ABCDataFrame, abc.MutableMapping)): result = _assemble_from_unit_mappings(arg, errors, utc) elif isinstance(arg, Index): cache_array = _maybe_cache(arg, format, cache, convert_listlike) if not cache_array.empty: result = _convert_and_box_cache(arg, cache_array, name=arg.name) else: result = convert_listlike(arg, format, name=arg.name) elif is_list_like(arg): try: # error: Argument 1 to "_maybe_cache" has incompatible type # "Union[float, str, datetime, List[Any], Tuple[Any, ...], ExtensionArray, # ndarray[Any, Any], Series]"; expected "Union[List[Any], Tuple[Any, ...], # Union[Union[ExtensionArray, ndarray[Any, Any]], Index, Series], Series]" argc = cast( Union[list, tuple, ExtensionArray, np.ndarray, "Series", Index], arg ) cache_array = _maybe_cache(argc, format, cache, convert_listlike) except OutOfBoundsDatetime: # caching attempts to create a DatetimeIndex, which may raise # an OOB. If that's the desired behavior, then just reraise... if errors == "raise": raise # ... otherwise, continue without the cache. from pandas import Series cache_array = Series([], dtype=object) # just an empty array if not cache_array.empty: result = _convert_and_box_cache(argc, cache_array) else: result = convert_listlike(argc, format) else: result = convert_listlike(np.array([arg]), format)[0] if isinstance(arg, bool) and isinstance(result, np.bool_): result = bool(result) # TODO: avoid this kludge. # error: Incompatible return value type (got "Union[Timestamp, NaTType, # Series, Index]", expected "Union[DatetimeIndex, Series, float, str, # NaTType, None]") return result # type: ignore[return-value]
(arg: 'DatetimeScalarOrArrayConvertible | DictConvertible', errors: 'DateTimeErrorChoices' = 'raise', dayfirst: 'bool' = False, yearfirst: 'bool' = False, utc: 'bool' = False, format: 'str | None' = None, exact: 'bool | lib.NoDefault' = <no_default>, unit: 'str | None' = None, infer_datetime_format: 'lib.NoDefault | bool' = <no_default>, origin: 'str' = 'unix', cache: 'bool' = True) -> 'DatetimeIndex | Series | DatetimeScalar | NaTType | None'
68,382
pandas.core.tools.numeric
to_numeric
Convert argument to a numeric type. The default return dtype is `float64` or `int64` depending on the data supplied. Use the `downcast` parameter to obtain other dtypes. Please note that precision loss may occur if really large numbers are passed in. Due to the internal limitations of `ndarray`, if numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min) or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are passed in, it is very likely they will be converted to float so that they can be stored in an `ndarray`. These warnings apply similarly to `Series` since it internally leverages `ndarray`. Parameters ---------- arg : scalar, list, tuple, 1-d array, or Series Argument to be converted. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaN. - If 'ignore', then invalid parsing will return the input. .. versionchanged:: 2.2 "ignore" is deprecated. Catch exceptions explicitly instead. downcast : str, default None Can be 'integer', 'signed', 'unsigned', or 'float'. If not None, and if the data has been successfully cast to a numerical dtype (or if the data was numeric to begin with), downcast that resulting data to the smallest numerical dtype possible according to the following rules: - 'integer' or 'signed': smallest signed int dtype (min.: np.int8) - 'unsigned': smallest unsigned int dtype (min.: np.uint8) - 'float': smallest float dtype (min.: np.float32) As this behaviour is separate from the core conversion to numeric values, any errors raised during the downcasting will be surfaced regardless of the value of the 'errors' input. In addition, downcasting will only occur if the size of the resulting data's dtype is strictly larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that specification, no downcasting will be performed on the data. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- ret Numeric if parsing succeeded. Return type depends on input. Series if Series, otherwise ndarray. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. numpy.ndarray.astype : Cast a numpy array to a specified type. DataFrame.convert_dtypes : Convert dtypes. Examples -------- Take separate series and convert to numeric, coercing when told to >>> s = pd.Series(['1.0', '2', -3]) >>> pd.to_numeric(s) 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> pd.to_numeric(s, downcast='float') 0 1.0 1 2.0 2 -3.0 dtype: float32 >>> pd.to_numeric(s, downcast='signed') 0 1 1 2 2 -3 dtype: int8 >>> s = pd.Series(['apple', '1.0', '2', -3]) >>> pd.to_numeric(s, errors='coerce') 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float64 Downcasting of nullable integer and floating dtypes is supported: >>> s = pd.Series([1, 2, 3], dtype="Int64") >>> pd.to_numeric(s, downcast="integer") 0 1 1 2 2 3 dtype: Int8 >>> s = pd.Series([1.0, 2.1, 3.0], dtype="Float64") >>> pd.to_numeric(s, downcast="float") 0 1.0 1 2.1 2 3.0 dtype: Float32
def to_numeric( arg, errors: DateTimeErrorChoices = "raise", downcast: Literal["integer", "signed", "unsigned", "float"] | None = None, dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default, ): """ Convert argument to a numeric type. The default return dtype is `float64` or `int64` depending on the data supplied. Use the `downcast` parameter to obtain other dtypes. Please note that precision loss may occur if really large numbers are passed in. Due to the internal limitations of `ndarray`, if numbers smaller than `-9223372036854775808` (np.iinfo(np.int64).min) or larger than `18446744073709551615` (np.iinfo(np.uint64).max) are passed in, it is very likely they will be converted to float so that they can be stored in an `ndarray`. These warnings apply similarly to `Series` since it internally leverages `ndarray`. Parameters ---------- arg : scalar, list, tuple, 1-d array, or Series Argument to be converted. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaN. - If 'ignore', then invalid parsing will return the input. .. versionchanged:: 2.2 "ignore" is deprecated. Catch exceptions explicitly instead. downcast : str, default None Can be 'integer', 'signed', 'unsigned', or 'float'. If not None, and if the data has been successfully cast to a numerical dtype (or if the data was numeric to begin with), downcast that resulting data to the smallest numerical dtype possible according to the following rules: - 'integer' or 'signed': smallest signed int dtype (min.: np.int8) - 'unsigned': smallest unsigned int dtype (min.: np.uint8) - 'float': smallest float dtype (min.: np.float32) As this behaviour is separate from the core conversion to numeric values, any errors raised during the downcasting will be surfaced regardless of the value of the 'errors' input. In addition, downcasting will only occur if the size of the resulting data's dtype is strictly larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that specification, no downcasting will be performed on the data. dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable' Back-end data type applied to the resultant :class:`DataFrame` (still experimental). Behaviour is as follows: * ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame` (default). * ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype` DataFrame. .. versionadded:: 2.0 Returns ------- ret Numeric if parsing succeeded. Return type depends on input. Series if Series, otherwise ndarray. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. numpy.ndarray.astype : Cast a numpy array to a specified type. DataFrame.convert_dtypes : Convert dtypes. Examples -------- Take separate series and convert to numeric, coercing when told to >>> s = pd.Series(['1.0', '2', -3]) >>> pd.to_numeric(s) 0 1.0 1 2.0 2 -3.0 dtype: float64 >>> pd.to_numeric(s, downcast='float') 0 1.0 1 2.0 2 -3.0 dtype: float32 >>> pd.to_numeric(s, downcast='signed') 0 1 1 2 2 -3 dtype: int8 >>> s = pd.Series(['apple', '1.0', '2', -3]) >>> pd.to_numeric(s, errors='coerce') 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float64 Downcasting of nullable integer and floating dtypes is supported: >>> s = pd.Series([1, 2, 3], dtype="Int64") >>> pd.to_numeric(s, downcast="integer") 0 1 1 2 2 3 dtype: Int8 >>> s = pd.Series([1.0, 2.1, 3.0], dtype="Float64") >>> pd.to_numeric(s, downcast="float") 0 1.0 1 2.1 2 3.0 dtype: Float32 """ if downcast not in (None, "integer", "signed", "unsigned", "float"): raise ValueError("invalid downcasting method provided") if errors not in ("ignore", "raise", "coerce"): raise ValueError("invalid error value specified") if errors == "ignore": # GH#54467 warnings.warn( "errors='ignore' is deprecated and will raise in a future version. " "Use to_numeric without passing `errors` and catch exceptions " "explicitly instead", FutureWarning, stacklevel=find_stack_level(), ) check_dtype_backend(dtype_backend) is_series = False is_index = False is_scalars = False if isinstance(arg, ABCSeries): is_series = True values = arg.values elif isinstance(arg, ABCIndex): is_index = True if needs_i8_conversion(arg.dtype): values = arg.view("i8") else: values = arg.values elif isinstance(arg, (list, tuple)): values = np.array(arg, dtype="O") elif is_scalar(arg): if is_decimal(arg): return float(arg) if is_number(arg): return arg is_scalars = True values = np.array([arg], dtype="O") elif getattr(arg, "ndim", 1) > 1: raise TypeError("arg must be a list, tuple, 1-d array, or Series") else: values = arg orig_values = values # GH33013: for IntegerArray & FloatingArray extract non-null values for casting # save mask to reconstruct the full array after casting mask: npt.NDArray[np.bool_] | None = None if isinstance(values, BaseMaskedArray): mask = values._mask values = values._data[~mask] values_dtype = getattr(values, "dtype", None) if isinstance(values_dtype, ArrowDtype): mask = values.isna() values = values.dropna().to_numpy() new_mask: np.ndarray | None = None if is_numeric_dtype(values_dtype): pass elif lib.is_np_dtype(values_dtype, "mM"): values = values.view(np.int64) else: values = ensure_object(values) coerce_numeric = errors not in ("ignore", "raise") try: values, new_mask = lib.maybe_convert_numeric( # type: ignore[call-overload] values, set(), coerce_numeric=coerce_numeric, convert_to_masked_nullable=dtype_backend is not lib.no_default or isinstance(values_dtype, StringDtype) and not values_dtype.storage == "pyarrow_numpy", ) except (ValueError, TypeError): if errors == "raise": raise values = orig_values if new_mask is not None: # Remove unnecessary values, is expected later anyway and enables # downcasting values = values[~new_mask] elif ( dtype_backend is not lib.no_default and new_mask is None or isinstance(values_dtype, StringDtype) and not values_dtype.storage == "pyarrow_numpy" ): new_mask = np.zeros(values.shape, dtype=np.bool_) # attempt downcast only if the data has been successfully converted # to a numerical dtype and if a downcast method has been specified if downcast is not None and is_numeric_dtype(values.dtype): typecodes: str | None = None if downcast in ("integer", "signed"): typecodes = np.typecodes["Integer"] elif downcast == "unsigned" and (not len(values) or np.min(values) >= 0): typecodes = np.typecodes["UnsignedInteger"] elif downcast == "float": typecodes = np.typecodes["Float"] # pandas support goes only to np.float32, # as float dtypes smaller than that are # extremely rare and not well supported float_32_char = np.dtype(np.float32).char float_32_ind = typecodes.index(float_32_char) typecodes = typecodes[float_32_ind:] if typecodes is not None: # from smallest to largest for typecode in typecodes: dtype = np.dtype(typecode) if dtype.itemsize <= values.dtype.itemsize: values = maybe_downcast_numeric(values, dtype) # successful conversion if values.dtype == dtype: break # GH33013: for IntegerArray, BooleanArray & FloatingArray need to reconstruct # masked array if (mask is not None or new_mask is not None) and not is_string_dtype(values.dtype): if mask is None or (new_mask is not None and new_mask.shape == mask.shape): # GH 52588 mask = new_mask else: mask = mask.copy() assert isinstance(mask, np.ndarray) data = np.zeros(mask.shape, dtype=values.dtype) data[~mask] = values from pandas.core.arrays import ( ArrowExtensionArray, BooleanArray, FloatingArray, IntegerArray, ) klass: type[IntegerArray | BooleanArray | FloatingArray] if is_integer_dtype(data.dtype): klass = IntegerArray elif is_bool_dtype(data.dtype): klass = BooleanArray else: klass = FloatingArray values = klass(data, mask) if dtype_backend == "pyarrow" or isinstance(values_dtype, ArrowDtype): values = ArrowExtensionArray(values.__arrow_array__()) if is_series: return arg._constructor(values, index=arg.index, name=arg.name) elif is_index: # because we want to coerce to numeric if possible, # do not use _shallow_copy from pandas import Index return Index(values, name=arg.name) elif is_scalars: return values[0] else: return values
(arg, errors: 'DateTimeErrorChoices' = 'raise', downcast: "Literal['integer', 'signed', 'unsigned', 'float'] | None" = None, dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>)
68,383
pandas.io.pickle
to_pickle
Pickle (serialize) object to file. Parameters ---------- obj : any object Any python object. filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. Also accepts URL. URL has to be of S3 or GCS. compression : str or dict, default 'infer' For on-the-fly compression of the output data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). Set to ``None`` for no compression. Can also be a dict with key ``'method'`` set to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'xz'``, ``'tar'``} and other key-value pairs are forwarded to ``zipfile.ZipFile``, ``gzip.GzipFile``, ``bz2.BZ2File``, ``zstandard.ZstdCompressor``, ``lzma.LZMAFile`` or ``tarfile.TarFile``, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: ``compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}``. .. versionadded:: 1.5.0 Added support for `.tar` files. .. versionchanged:: 1.4.0 Zstandard support. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible values for this parameter depend on the version of Python. For Python 2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to ``urllib.request.Request`` as header options. For other URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more details, and for more examples on storage options refer `here <https://pandas.pydata.org/docs/user_guide/io.html? highlight=storage_options#reading-writing-remote-files>`_. .. [1] https://docs.python.org/3/library/pickle.html See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9
@doc( storage_options=_shared_docs["storage_options"], compression_options=_shared_docs["compression_options"] % "filepath_or_buffer", ) def to_pickle( obj: Any, filepath_or_buffer: FilePath | WriteBuffer[bytes], compression: CompressionOptions = "infer", protocol: int = pickle.HIGHEST_PROTOCOL, storage_options: StorageOptions | None = None, ) -> None: """ Pickle (serialize) object to file. Parameters ---------- obj : any object Any python object. filepath_or_buffer : str, path object, or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. Also accepts URL. URL has to be of S3 or GCS. {compression_options} .. versionchanged:: 1.4.0 Zstandard support. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible values for this parameter depend on the version of Python. For Python 2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value. For Python >= 3.4, 4 is a valid value. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. {storage_options} .. [1] https://docs.python.org/3/library/pickle.html See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({{"foo": range(5), "bar": range(5, 10)}}) # doctest: +SKIP >>> original_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP >>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP >>> unpickled_df # doctest: +SKIP foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 """ # noqa: E501 if protocol < 0: protocol = pickle.HIGHEST_PROTOCOL with get_handle( filepath_or_buffer, "wb", compression=compression, is_text=False, storage_options=storage_options, ) as handles: # letting pickle write directly to the buffer is more memory-efficient pickle.dump(obj, handles.handle, protocol=protocol)
(obj: 'Any', filepath_or_buffer: 'FilePath | WriteBuffer[bytes]', compression: 'CompressionOptions' = 'infer', protocol: 'int' = 5, storage_options: 'StorageOptions | None' = None) -> 'None'
68,384
pandas.core.tools.timedeltas
to_timedelta
Convert argument to timedelta. Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type. Parameters ---------- arg : str, timedelta, list-like or Series The data to be converted to timedelta. .. versionchanged:: 2.0 Strings with units 'M', 'Y' and 'y' do not represent unambiguous timedelta values and will raise an exception. unit : str, optional Denotes the unit of the arg for numeric `arg`. Defaults to ``"ns"``. Possible values: * 'W' * 'D' / 'days' / 'day' * 'hours' / 'hour' / 'hr' / 'h' / 'H' * 'm' / 'minute' / 'min' / 'minutes' / 'T' * 's' / 'seconds' / 'sec' / 'second' / 'S' * 'ms' / 'milliseconds' / 'millisecond' / 'milli' / 'millis' / 'L' * 'us' / 'microseconds' / 'microsecond' / 'micro' / 'micros' / 'U' * 'ns' / 'nanoseconds' / 'nano' / 'nanos' / 'nanosecond' / 'N' Must not be specified when `arg` contains strings and ``errors="raise"``. .. deprecated:: 2.2.0 Units 'H', 'T', 'S', 'L', 'U' and 'N' are deprecated and will be removed in a future version. Please use 'h', 'min', 's', 'ms', 'us', and 'ns' instead of 'H', 'T', 'S', 'L', 'U' and 'N'. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaT. - If 'ignore', then invalid parsing will return the input. Returns ------- timedelta If parsing succeeded. Return type depends on input: - list-like: TimedeltaIndex of timedelta64 dtype - Series: Series of timedelta64 dtype - scalar: Timedelta See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. convert_dtypes : Convert dtypes. Notes ----- If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs. Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)
def to_timedelta( arg: str | int | float | timedelta | list | tuple | range | ArrayLike | Index | Series, unit: UnitChoices | None = None, errors: DateTimeErrorChoices = "raise", ) -> Timedelta | TimedeltaIndex | Series: """ Convert argument to timedelta. Timedeltas are absolute differences in times, expressed in difference units (e.g. days, hours, minutes, seconds). This method converts an argument from a recognized timedelta format / value into a Timedelta type. Parameters ---------- arg : str, timedelta, list-like or Series The data to be converted to timedelta. .. versionchanged:: 2.0 Strings with units 'M', 'Y' and 'y' do not represent unambiguous timedelta values and will raise an exception. unit : str, optional Denotes the unit of the arg for numeric `arg`. Defaults to ``"ns"``. Possible values: * 'W' * 'D' / 'days' / 'day' * 'hours' / 'hour' / 'hr' / 'h' / 'H' * 'm' / 'minute' / 'min' / 'minutes' / 'T' * 's' / 'seconds' / 'sec' / 'second' / 'S' * 'ms' / 'milliseconds' / 'millisecond' / 'milli' / 'millis' / 'L' * 'us' / 'microseconds' / 'microsecond' / 'micro' / 'micros' / 'U' * 'ns' / 'nanoseconds' / 'nano' / 'nanos' / 'nanosecond' / 'N' Must not be specified when `arg` contains strings and ``errors="raise"``. .. deprecated:: 2.2.0 Units 'H', 'T', 'S', 'L', 'U' and 'N' are deprecated and will be removed in a future version. Please use 'h', 'min', 's', 'ms', 'us', and 'ns' instead of 'H', 'T', 'S', 'L', 'U' and 'N'. errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception. - If 'coerce', then invalid parsing will be set as NaT. - If 'ignore', then invalid parsing will return the input. Returns ------- timedelta If parsing succeeded. Return type depends on input: - list-like: TimedeltaIndex of timedelta64 dtype - Series: Series of timedelta64 dtype - scalar: Timedelta See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. convert_dtypes : Convert dtypes. Notes ----- If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs. Examples -------- Parsing a single string to a Timedelta: >>> pd.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> pd.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500') Parsing a list or array of strings: >>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None) Converting numbers by specifying the `unit` keyword argument: >>> pd.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> pd.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None) """ if unit is not None: unit = parse_timedelta_unit(unit) disallow_ambiguous_unit(unit) if errors not in ("ignore", "raise", "coerce"): raise ValueError("errors must be one of 'ignore', 'raise', or 'coerce'.") if errors == "ignore": # GH#54467 warnings.warn( "errors='ignore' is deprecated and will raise in a future version. " "Use to_timedelta without passing `errors` and catch exceptions " "explicitly instead", FutureWarning, stacklevel=find_stack_level(), ) if arg is None: return arg elif isinstance(arg, ABCSeries): values = _convert_listlike(arg._values, unit=unit, errors=errors) return arg._constructor(values, index=arg.index, name=arg.name) elif isinstance(arg, ABCIndex): return _convert_listlike(arg, unit=unit, errors=errors, name=arg.name) elif isinstance(arg, np.ndarray) and arg.ndim == 0: # extract array scalar and process below # error: Incompatible types in assignment (expression has type "object", # variable has type "Union[str, int, float, timedelta, List[Any], # Tuple[Any, ...], Union[Union[ExtensionArray, ndarray[Any, Any]], Index, # Series]]") [assignment] arg = lib.item_from_zerodim(arg) # type: ignore[assignment] elif is_list_like(arg) and getattr(arg, "ndim", 1) == 1: return _convert_listlike(arg, unit=unit, errors=errors) elif getattr(arg, "ndim", 1) > 1: raise TypeError( "arg must be a string, timedelta, list, tuple, 1-d array, or Series" ) if isinstance(arg, str) and unit is not None: raise ValueError("unit must not be specified if the input is/contains a str") # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, errors=errors)
(arg: 'str | int | float | timedelta | list | tuple | range | ArrayLike | Index | Series', unit: 'UnitChoices | None' = None, errors: 'DateTimeErrorChoices' = 'raise') -> 'Timedelta | TimedeltaIndex | Series'
68,386
pandas.core.algorithms
unique
Return unique values based on a hash table. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(np.array(list("baabc"), dtype="O")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique(pd.Series([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]).values) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object)
def unique(values): """ Return unique values based on a hash table. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(np.array(list("baabc"), dtype="O")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique(pd.Series([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]).values) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) """ return unique_with_mask(values)
(values)
68,388
pandas.core.algorithms
value_counts
Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series
def value_counts( values, sort: bool = True, ascending: bool = False, normalize: bool = False, bins=None, dropna: bool = True, ) -> Series: """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series """ warnings.warn( # GH#53493 "pandas.value_counts is deprecated and will be removed in a " "future version. Use pd.Series(obj).value_counts() instead.", FutureWarning, stacklevel=find_stack_level(), ) return value_counts_internal( values, sort=sort, ascending=ascending, normalize=normalize, bins=bins, dropna=dropna, )
(values, sort: 'bool' = True, ascending: 'bool' = False, normalize: 'bool' = False, bins=None, dropna: 'bool' = True) -> 'Series'
68,389
pandas.core.reshape.melt
wide_to_long
Unpivot a DataFrame from wide to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). See Also -------- melt : Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot : Create a spreadsheet-style pivot table as a DataFrame. DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix=r'\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9
def wide_to_long( df: DataFrame, stubnames, i, j, sep: str = "", suffix: str = r"\d+" ) -> DataFrame: r""" Unpivot a DataFrame from wide to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). See Also -------- melt : Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot : Create a spreadsheet-style pivot table as a DataFrame. DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix=r'\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9 """ def get_var_names(df, stub: str, sep: str, suffix: str): regex = rf"^{re.escape(stub)}{re.escape(sep)}{suffix}$" return df.columns[df.columns.str.match(regex)] def melt_stub(df, stub: str, i, j, value_vars, sep: str): newdf = melt( df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j, ) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "", regex=True) # GH17627 Cast numerics suffixes to int/float try: newdf[j] = to_numeric(newdf[j]) except (TypeError, ValueError, OverflowError): # TODO: anything else to catch? pass return newdf.set_index(i + [j]) if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if df.columns.isin(stubnames).any(): raise ValueError("stubname can't be identical to a column name") if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") _melted = [] value_vars_flattened = [] for stub in stubnames: value_var = get_var_names(df, stub, sep, suffix) value_vars_flattened.extend(value_var) _melted.append(melt_stub(df, stub, i, j, value_var, sep)) melted = concat(_melted, axis=1) id_vars = df.columns.difference(value_vars_flattened) new = df[id_vars] if len(i) == 1: return new.set_index(i).join(melted) else: return new.merge(melted.reset_index(), on=i).set_index(i + [j])
(df: 'DataFrame', stubnames, i, j, sep: 'str' = '', suffix: 'str' = '\\d+') -> 'DataFrame'
68,390
recommonmark
setup
Initialize Sphinx extension.
def setup(app): """Initialize Sphinx extension.""" import sphinx from .parser import CommonMarkParser if sphinx.version_info >= (1, 8): app.add_source_suffix('.md', 'markdown') app.add_source_parser(CommonMarkParser) elif sphinx.version_info >= (1, 4): app.add_source_parser('.md', CommonMarkParser) return {'version': __version__, 'parallel_read_safe': True}
(app)
68,391
svgwrite.drawing
Drawing
This is the SVG drawing represented by the top level *svg* element. A drawing consists of any number of SVG elements contained within the drawing element, stored in the *elements* attribute. A drawing can range from an empty drawing (i.e., no content inside of the drawing), to a very simple drawing containing a single SVG element such as a *rect*, to a complex, deeply nested collection of container elements and graphics elements.
class Drawing(SVG, ElementFactory): """ This is the SVG drawing represented by the top level *svg* element. A drawing consists of any number of SVG elements contained within the drawing element, stored in the *elements* attribute. A drawing can range from an empty drawing (i.e., no content inside of the drawing), to a very simple drawing containing a single SVG element such as a *rect*, to a complex, deeply nested collection of container elements and graphics elements. """ def __init__(self, filename="noname.svg", size=('100%', '100%'), **extra): """ :param string filename: filesystem filename valid for :func:`open` :param 2-tuple size: width, height :param keywords extra: additional svg-attributes for the *SVG* object Important (and not SVG Attributes) **extra** parameters: :param string profile: ``'tiny | full'`` - define the SVG baseProfile :param bool debug: switch validation on/off """ super(Drawing, self).__init__(size=size, **extra) self.filename = filename self._stylesheets = [] # list of stylesheets appended def get_xml(self): """ Get the XML representation as `ElementTree` object. :return: XML `ElementTree` of this object and all its subelements """ profile = self.profile version = self.version self.attribs['xmlns'] = "http://www.w3.org/2000/svg" self.attribs['xmlns:xlink'] = "http://www.w3.org/1999/xlink" self.attribs['xmlns:ev'] = "http://www.w3.org/2001/xml-events" self.attribs['baseProfile'] = profile self.attribs['version'] = version return super(Drawing, self).get_xml() def add_stylesheet(self, href, title, alternate="no", media="screen"): """ Add a stylesheet reference. :param string href: link to stylesheet <URI> :param string title: name of stylesheet :param string alternate: ``'yes'|'no'`` :param string media: ``'all | aureal | braille | embossed | handheld | print | projection | screen | tty | tv'`` """ self._stylesheets.append((href, title, alternate, media)) def write(self, fileobj, pretty=False, indent=2): """ Write XML string to `fileobj`. :param fileobj: a file-like object :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces Python 3.x - set encoding at the open command:: open('filename', 'w', encoding='utf-8') """ # write xml header fileobj.write('<?xml version="1.0" encoding="utf-8" ?>\n') # don't use DOCTYPE. It's useless. see also: # http://tech.groups.yahoo.com/group/svg-developers/message/48562 # write stylesheets stylesheet_template = '<?xml-stylesheet href="%s" type="text/css" ' \ 'title="%s" alternate="%s" media="%s"?>\n' # removed map(), does not work with Python 3 for stylesheet in self._stylesheets: fileobj.write(stylesheet_template % stylesheet) xml_string = self.tostring() if pretty: # write easy readable XML file xml_string = pretty_xml(xml_string, indent=indent) fileobj.write(xml_string) def save(self, pretty=False, indent=2): """ Write the XML string to `self.filename`. :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces """ fileobj = io.open(self.filename, mode='w', encoding='utf-8') self.write(fileobj, pretty=pretty, indent=indent) fileobj.close() def saveas(self, filename, pretty=False, indent=2): """ Write the XML string to `filename`. :param string filename: filesystem filename valid for :func:`open` :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces """ self.filename = filename self.save(pretty=pretty, indent=indent) def _repr_svg_(self): """ Show SVG in IPython, Jupyter Notebook, and Jupyter Lab :return: unicode XML string of this object and all its subelements """ return self.tostring()
(filename='noname.svg', size=('100%', '100%'), **extra)
68,392
svgwrite.elementfactory
__getattr__
null
def __getattr__(self, name): if name in factoryelements: return ElementBuilder(factoryelements[name], self) else: raise AttributeError("'%s' has no attribute '%s'" % (self.__class__.__name__, name))
(self, name)
68,393
svgwrite.base
__getitem__
Get SVG attribute by `key`. :param string key: SVG attribute name :return: SVG attribute value
def __getitem__(self, key): """ Get SVG attribute by `key`. :param string key: SVG attribute name :return: SVG attribute value """ return self.attribs[key]
(self, key)
68,394
svgwrite.drawing
__init__
:param string filename: filesystem filename valid for :func:`open` :param 2-tuple size: width, height :param keywords extra: additional svg-attributes for the *SVG* object Important (and not SVG Attributes) **extra** parameters: :param string profile: ``'tiny | full'`` - define the SVG baseProfile :param bool debug: switch validation on/off
def __init__(self, filename="noname.svg", size=('100%', '100%'), **extra): """ :param string filename: filesystem filename valid for :func:`open` :param 2-tuple size: width, height :param keywords extra: additional svg-attributes for the *SVG* object Important (and not SVG Attributes) **extra** parameters: :param string profile: ``'tiny | full'`` - define the SVG baseProfile :param bool debug: switch validation on/off """ super(Drawing, self).__init__(size=size, **extra) self.filename = filename self._stylesheets = [] # list of stylesheets appended
(self, filename='noname.svg', size=('100%', '100%'), **extra)
68,395
svgwrite.base
__setitem__
Set SVG attribute by `key` to `value`. :param string key: SVG attribute name :param object value: SVG attribute value
def __setitem__(self, key, value): """ Set SVG attribute by `key` to `value`. :param string key: SVG attribute name :param object value: SVG attribute value """ # Attribute checking is only done by using the __setitem__() method or # by self['attribute'] = value if self.debug: self.validator.check_svg_attribute_value(self.elementname, key, value) self.attribs[key] = value
(self, key, value)
68,396
svgwrite.container
_embed_font_data
null
def _embed_font_data(self, name, data, mimetype): content = FONT_TEMPLATE.format(name=name, data=base64_data(data, mimetype)) self.embed_stylesheet(content)
(self, name, data, mimetype)
68,397
svgwrite.drawing
_repr_svg_
Show SVG in IPython, Jupyter Notebook, and Jupyter Lab :return: unicode XML string of this object and all its subelements
def _repr_svg_(self): """ Show SVG in IPython, Jupyter Notebook, and Jupyter Lab :return: unicode XML string of this object and all its subelements """ return self.tostring()
(self)
68,398
svgwrite.base
add
Add an SVG element as subelement. :param element: append this SVG element :returns: the added element
def add(self, element): """ Add an SVG element as subelement. :param element: append this SVG element :returns: the added element """ if self.debug: self.validator.check_valid_children(self.elementname, element.elementname) self.elements.append(element) return element
(self, element)
68,399
svgwrite.drawing
add_stylesheet
Add a stylesheet reference. :param string href: link to stylesheet <URI> :param string title: name of stylesheet :param string alternate: ``'yes'|'no'`` :param string media: ``'all | aureal | braille | embossed | handheld | print | projection | screen | tty | tv'``
def add_stylesheet(self, href, title, alternate="no", media="screen"): """ Add a stylesheet reference. :param string href: link to stylesheet <URI> :param string title: name of stylesheet :param string alternate: ``'yes'|'no'`` :param string media: ``'all | aureal | braille | embossed | handheld | print | projection | screen | tty | tv'`` """ self._stylesheets.append((href, title, alternate, media))
(self, href, title, alternate='no', media='screen')
68,400
svgwrite.mixins
clip_rect
Set SVG Property **clip**.
def clip_rect(self, top='auto', right='auto', bottom='auto', left='auto'): """ Set SVG Property **clip**. """ self['clip'] = "rect(%s,%s,%s,%s)" % (top, right, bottom, left)
(self, top='auto', right='auto', bottom='auto', left='auto')
68,401
svgwrite.base
copy
null
def copy(self): newobj = copy.copy(self) # shallow copy of object newobj.attribs = copy.copy(self.attribs) # shallow copy of attributes newobj.elements = copy.copy(self.elements) # shallow copy of subelements if 'id' in newobj.attribs: # create a new 'id' newobj['id'] = newobj.next_id() return newobj
(self)
68,402
svgwrite.mixins
dasharray
Set SVG Properties **stroke-dashoffset** and **stroke-dasharray**. Where *dasharray* specify the lengths of alternating dashes and gaps as <list> of <int> or <float> values or a <string> of comma and/or white space separated <lengths> or <percentages>. (e.g. as <list> dasharray=[1, 0.5] or as <string> dasharray='1 0.5')
def dasharray(self, dasharray=None, offset=None): """ Set SVG Properties **stroke-dashoffset** and **stroke-dasharray**. Where *dasharray* specify the lengths of alternating dashes and gaps as <list> of <int> or <float> values or a <string> of comma and/or white space separated <lengths> or <percentages>. (e.g. as <list> dasharray=[1, 0.5] or as <string> dasharray='1 0.5') """ if dasharray is not None: self['stroke-dasharray'] = strlist(dasharray, ' ') if offset is not None: self['stroke-dashoffset'] = offset return self
(self, dasharray=None, offset=None)
68,403
svgwrite.container
embed_font
Embed font as base64 encoded data from font file. :param name: font name :param filename: file name of local stored font
def embed_font(self, name, filename): """ Embed font as base64 encoded data from font file. :param name: font name :param filename: file name of local stored font """ data = open(filename, 'rb').read() self._embed_font_data(name, data, font_mimetype(filename))
(self, name, filename)
68,404
svgwrite.container
embed_google_web_font
Embed font as base64 encoded data acquired from google fonts. :param name: font name :param uri: google fonts request uri like 'http://fonts.googleapis.com/css?family=Indie+Flower'
def embed_google_web_font(self, name, uri): """ Embed font as base64 encoded data acquired from google fonts. :param name: font name :param uri: google fonts request uri like 'http://fonts.googleapis.com/css?family=Indie+Flower' """ font_info = urlopen(uri).read() font_url = find_first_url(font_info.decode()) if font_url is None: raise ValueError("Got no font data from uri: '{}'".format(uri)) else: data = urlopen(font_url).read() self._embed_font_data(name, data, font_mimetype(font_url))
(self, name, uri)
68,405
svgwrite.container
embed_stylesheet
Add <style> tag to the defs section. :param content: style sheet content as string :return: :class:`~svgwrite.container.Style` object
def embed_stylesheet(self, content): """ Add <style> tag to the defs section. :param content: style sheet content as string :return: :class:`~svgwrite.container.Style` object """ return self.defs.add(Style(content))
(self, content)
68,406
svgwrite.mixins
fill
Set SVG Properties **fill**, **fill-rule** and **fill-opacity**.
def fill(self, color=None, rule=None, opacity=None): """ Set SVG Properties **fill**, **fill-rule** and **fill-opacity**. """ if color is not None: if is_string(color): self['fill'] = color else: self['fill'] = color.get_paint_server() if rule is not None: self['fill-rule'] = rule if opacity is not None: self['fill-opacity'] = opacity return self
(self, color=None, rule=None, opacity=None)
68,407
svgwrite.mixins
fit
Set the **preserveAspectRatio** attribute. :param string horiz: horizontal alignment ``'left | center | right'`` :param string vert: vertical alignment ``'top | middle | bottom'`` :param string scale: scale method ``'meet | slice'`` ============= ======================================================= Scale methods Description ============= ======================================================= ``'meet'`` preserve aspect ration and zoom to limits of viewBox ``'slice'`` preserve aspect ration and viewBox touch viewport on all bounds, viewBox will extend beyond the bounds of the viewport ============= =======================================================
def fit(self, horiz="center", vert="middle", scale="meet"): """ Set the **preserveAspectRatio** attribute. :param string horiz: horizontal alignment ``'left | center | right'`` :param string vert: vertical alignment ``'top | middle | bottom'`` :param string scale: scale method ``'meet | slice'`` ============= ======================================================= Scale methods Description ============= ======================================================= ``'meet'`` preserve aspect ration and zoom to limits of viewBox ``'slice'`` preserve aspect ration and viewBox touch viewport on all bounds, viewBox will extend beyond the bounds of the viewport ============= ======================================================= """ if self.debug and scale not in ('meet', 'slice'): raise ValueError("Invalid scale parameter '%s'" % scale) self['preserveAspectRatio'] = "%s%s %s" % (_horiz[horiz],_vert[vert], scale)
(self, horiz='center', vert='middle', scale='meet')
68,408
svgwrite.base
get_funciri
Get the `FuncIRI` reference string of the object. (i.e. ``'url(#id)'``). :returns: `string`
def get_funciri(self): """ Get the `FuncIRI` reference string of the object. (i.e. ``'url(#id)'``). :returns: `string` """ return "url(%s)" % self.get_iri()
(self)
68,409
svgwrite.base
get_id
Get the object `id` string, if the object does not have an `id`, a new `id` will be created. :returns: `string`
def get_id(self): """ Get the object `id` string, if the object does not have an `id`, a new `id` will be created. :returns: `string` """ if 'id' not in self.attribs: self.attribs['id'] = self.next_id() return self.attribs['id']
(self)
68,410
svgwrite.base
get_iri
Get the `IRI` reference string of the object. (i.e., ``'#id'``). :returns: `string`
def get_iri(self): """ Get the `IRI` reference string of the object. (i.e., ``'#id'``). :returns: `string` """ return "#%s" % self.get_id()
(self)
68,411
svgwrite.drawing
get_xml
Get the XML representation as `ElementTree` object. :return: XML `ElementTree` of this object and all its subelements
def get_xml(self): """ Get the XML representation as `ElementTree` object. :return: XML `ElementTree` of this object and all its subelements """ profile = self.profile version = self.version self.attribs['xmlns'] = "http://www.w3.org/2000/svg" self.attribs['xmlns:xlink'] = "http://www.w3.org/1999/xlink" self.attribs['xmlns:ev'] = "http://www.w3.org/2001/xml-events" self.attribs['baseProfile'] = profile self.attribs['version'] = version return super(Drawing, self).get_xml()
(self)
68,412
svgwrite.base
next_id
null
def next_id(self, value=None): return AutoID.next_id(value)
(self, value=None)
68,413
svgwrite.drawing
save
Write the XML string to `self.filename`. :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces
def save(self, pretty=False, indent=2): """ Write the XML string to `self.filename`. :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces """ fileobj = io.open(self.filename, mode='w', encoding='utf-8') self.write(fileobj, pretty=pretty, indent=indent) fileobj.close()
(self, pretty=False, indent=2)
68,414
svgwrite.drawing
saveas
Write the XML string to `filename`. :param string filename: filesystem filename valid for :func:`open` :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces
def saveas(self, filename, pretty=False, indent=2): """ Write the XML string to `filename`. :param string filename: filesystem filename valid for :func:`open` :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces """ self.filename = filename self.save(pretty=pretty, indent=indent)
(self, filename, pretty=False, indent=2)
68,415
svgwrite.base
set_desc
Insert a **title** and/or a **desc** element as first subelement.
def set_desc(self, title=None, desc=None): """ Insert a **title** and/or a **desc** element as first subelement. """ if desc is not None: self.elements.insert(0, Desc(desc)) if title is not None: self.elements.insert(0, Title(title))
(self, title=None, desc=None)
68,416
svgwrite.base
set_metadata
:param xmldata: an xml.etree.ElementTree - Element() object.
def set_metadata(self, xmldata): """ :param xmldata: an xml.etree.ElementTree - Element() object. """ metadata = Metadata(xmldata) if len(self.elements) == 0: self.elements.append(metadata) else: pos = 0 while self.elements[pos].elementname in ('title', 'desc'): pos += 1 if pos == len(self.elements): self.elements.append(metadata) return if self.elements[pos].elementname == 'metadata': self.elements[pos].xml.append(xmldata) else: self.elements.insert(pos, metadata)
(self, xmldata)
68,417
svgwrite.base
set_parameter
null
def set_parameter(self, parameter): self._parameter = parameter
(self, parameter)
68,418
svgwrite.mixins
stretch
Stretch viewBox in x and y direction to fill viewport, does not preserve aspect ratio.
def stretch(self): """ Stretch viewBox in x and y direction to fill viewport, does not preserve aspect ratio. """ self['preserveAspectRatio'] = 'none'
(self)
68,419
svgwrite.mixins
stroke
Set SVG Properties **stroke**, **stroke-width**, **stroke-opacity**, **stroke-linecap** and **stroke-miterlimit**.
def stroke(self, color=None, width=None, opacity=None, linecap=None, linejoin=None, miterlimit=None): """ Set SVG Properties **stroke**, **stroke-width**, **stroke-opacity**, **stroke-linecap** and **stroke-miterlimit**. """ if color is not None: if is_string(color): self['stroke'] = color else: self['stroke'] = color.get_paint_server() if width is not None: self['stroke-width'] = width if opacity is not None: self['stroke-opacity'] = opacity if linecap is not None: self['stroke-linecap'] = linecap if linejoin is not None: self['stroke-linejoin'] = linejoin if miterlimit is not None: self['stroke-miterlimit'] = miterlimit return self
(self, color=None, width=None, opacity=None, linecap=None, linejoin=None, miterlimit=None)
68,420
svgwrite.base
tostring
Get the XML representation as unicode `string`. :return: unicode XML string of this object and all its subelements
def tostring(self): """ Get the XML representation as unicode `string`. :return: unicode XML string of this object and all its subelements """ xml = self.get_xml() # required for Python 2 support xml_utf8_str = etree.tostring(xml, encoding='utf-8') return xml_utf8_str.decode('utf-8') # just Python 3: return etree.tostring(xml, encoding='unicode')
(self)
68,421
svgwrite.base
update
Update SVG Attributes from `dict` attribs. Rules for keys: 1. trailing '_' will be removed (``'class_'`` -> ``'class'``) 2. inner '_' will be replaced by '-' (``'stroke_width'`` -> ``'stroke-width'``)
def update(self, attribs): """ Update SVG Attributes from `dict` attribs. Rules for keys: 1. trailing '_' will be removed (``'class_'`` -> ``'class'``) 2. inner '_' will be replaced by '-' (``'stroke_width'`` -> ``'stroke-width'``) """ for key, value in attribs.items(): # remove trailing underscores # and replace inner underscores key = key.rstrip('_').replace('_', '-') self.__setitem__(key, value)
(self, attribs)
68,422
svgwrite.base
value_to_string
Converts *value* into a <string> includes a value check, depending on :attr:`self.debug` and :attr:`self.profile`.
def value_to_string(self, value): """ Converts *value* into a <string> includes a value check, depending on :attr:`self.debug` and :attr:`self.profile`. """ if isinstance(value, (int, float)): if self.debug: self.validator.check_svg_type(value, 'number') if isinstance(value, float) and self.profile == 'tiny': value = round(value, 4) return str(value)
(self, value)
68,423
svgwrite.mixins
viewbox
Specify a rectangle in **user space** (no units allowed) which should be mapped to the bounds of the viewport established by the given element. :param number minx: left border of the viewBox :param number miny: top border of the viewBox :param number width: width of the viewBox :param number height: height of the viewBox
def viewbox(self, minx=0, miny=0, width=0, height=0): """ Specify a rectangle in **user space** (no units allowed) which should be mapped to the bounds of the viewport established by the given element. :param number minx: left border of the viewBox :param number miny: top border of the viewBox :param number width: width of the viewBox :param number height: height of the viewBox """ self['viewBox'] = strlist( [minx, miny, width, height] )
(self, minx=0, miny=0, width=0, height=0)
68,424
svgwrite.drawing
write
Write XML string to `fileobj`. :param fileobj: a file-like object :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces Python 3.x - set encoding at the open command:: open('filename', 'w', encoding='utf-8')
def write(self, fileobj, pretty=False, indent=2): """ Write XML string to `fileobj`. :param fileobj: a file-like object :param pretty: True for easy readable output :param indent: how much to indent if pretty is enabled, by default 2 spaces Python 3.x - set encoding at the open command:: open('filename', 'w', encoding='utf-8') """ # write xml header fileobj.write('<?xml version="1.0" encoding="utf-8" ?>\n') # don't use DOCTYPE. It's useless. see also: # http://tech.groups.yahoo.com/group/svg-developers/message/48562 # write stylesheets stylesheet_template = '<?xml-stylesheet href="%s" type="text/css" ' \ 'title="%s" alternate="%s" media="%s"?>\n' # removed map(), does not work with Python 3 for stylesheet in self._stylesheets: fileobj.write(stylesheet_template % stylesheet) xml_string = self.tostring() if pretty: # write easy readable XML file xml_string = pretty_xml(xml_string, indent=indent) fileobj.write(xml_string)
(self, fileobj, pretty=False, indent=2)
68,425
svgwrite
Unit
Add units to values.
class Unit(object): """ Add units to values. """ def __init__(self, unit='cm'): """ Unit constructor :param str unit: specify the unit string """ self._unit = unit def __rmul__(self, other): """ add unit-string to 'other'. (e.g. 5*cm => '5cm') """ return "%s%s" % (other, self._unit) def __call__(self, *args): """ Add unit-strings to all arguments. :param args: list of values e.g.: cm(1,2,3) => '1cm,2cm,3cm' """ return ','.join(["%s%s" % (arg, self._unit) for arg in args])
(unit='cm')
68,426
svgwrite
__call__
Add unit-strings to all arguments. :param args: list of values e.g.: cm(1,2,3) => '1cm,2cm,3cm'
def __call__(self, *args): """ Add unit-strings to all arguments. :param args: list of values e.g.: cm(1,2,3) => '1cm,2cm,3cm' """ return ','.join(["%s%s" % (arg, self._unit) for arg in args])
(self, *args)
68,427
svgwrite
__init__
Unit constructor :param str unit: specify the unit string
def __init__(self, unit='cm'): """ Unit constructor :param str unit: specify the unit string """ self._unit = unit
(self, unit='cm')
68,428
svgwrite
__rmul__
add unit-string to 'other'. (e.g. 5*cm => '5cm')
def __rmul__(self, other): """ add unit-string to 'other'. (e.g. 5*cm => '5cm') """ return "%s%s" % (other, self._unit)
(self, other)
68,444
svgwrite.utils
rgb
Convert **r**, **g**, **b** values to a `string`. :param r: red part :param g: green part :param b: blue part :param string mode: ``'RGB | %'`` :rtype: string ========= ============================================================= mode Description ========= ============================================================= ``'RGB'`` returns a rgb-string format: ``'rgb(r, g, b)'`` ``'%'`` returns percent-values as rgb-string format: ``'rgb(r%, g%, b%)'`` ========= =============================================================
def rgb(r=0, g=0, b=0, mode='RGB'): """ Convert **r**, **g**, **b** values to a `string`. :param r: red part :param g: green part :param b: blue part :param string mode: ``'RGB | %'`` :rtype: string ========= ============================================================= mode Description ========= ============================================================= ``'RGB'`` returns a rgb-string format: ``'rgb(r, g, b)'`` ``'%'`` returns percent-values as rgb-string format: ``'rgb(r%, g%, b%)'`` ========= ============================================================= """ def percent(value): value = float(value) if value < 0: value = 0 if value > 100: value = 100 return value if mode.upper() == 'RGB': return "rgb(%d,%d,%d)" % (int(r) & 255, int(g) & 255, int(b) & 255) elif mode == "%": # see http://www.w3.org/TR/SVG11/types.html#DataTypeColor # percentage is an 'number' value return "rgb(%d%%,%d%%,%d%%)" % (percent(r), percent(g), percent(b)) else: raise ValueError("Invalid mode '%s'" % mode)
(r=0, g=0, b=0, mode='RGB')
68,453
heroku3.core
from_key
Returns an authenticated Heroku instance, via API Key.
def from_key(api_key, session=None, **kwargs): """Returns an authenticated Heroku instance, via API Key.""" if not session: session = requests.session() # If I'm being passed an API key then I should use only this api key # if trust_env=True then Heroku will silently fallback to netrc authentication session.trust_env = False h = Heroku(session=session, **kwargs) # Login. h.authenticate(api_key) return h
(api_key, session=None, **kwargs)
68,459
detect_secrets.core.secrets_collection
SecretsCollection
null
class SecretsCollection: def __init__(self, root: str = '') -> None: """ :param root: if specified, will scan as if the root was the value provided, rather than the current working directory. We still store results as if relative to root, since we're running as if it was in a different directory, rather than scanning a different directory. """ self.data: Dict[str, Set[PotentialSecret]] = defaultdict(set) self.root = root @classmethod def load_from_baseline(cls, baseline: Dict[str, Any]) -> 'SecretsCollection': output = cls() for filename in baseline['results']: for item in baseline['results'][filename]: secret = PotentialSecret.load_secret_from_dict({'filename': filename, **item}) output[convert_local_os_path(filename)].add(secret) return output @property def files(self) -> Set[str]: return set(self.data.keys()) def scan_files(self, *filenames: str, num_processors: Optional[int] = None) -> None: """Just like scan_file, but optimized through parallel processing.""" if len(filenames) == 1: self.scan_file(filenames[0]) return if not num_processors: num_processors = mp.cpu_count() child_process_settings = get_settings().json() with mp.Pool( processes=num_processors, initializer=configure_settings_from_baseline, initargs=(child_process_settings,), ) as p: for secrets in p.imap_unordered( _scan_file_and_serialize, [os.path.join(self.root, filename) for filename in filenames], ): for secret in secrets: self[os.path.relpath(secret.filename, self.root)].add(secret) def scan_file(self, filename: str) -> None: for secret in scan.scan_file(os.path.join(self.root, convert_local_os_path(filename))): self[convert_local_os_path(filename)].add(secret) def scan_diff(self, diff: str) -> None: """ :raises: UnidiffParseError """ try: for secret in scan.scan_diff(diff): self[secret.filename].add(secret) except ImportError: # pragma: no cover raise NotImplementedError( 'SecretsCollection.scan_diff requires `unidiff` to work. Try pip ' 'installing that package, and try again.', ) def merge(self, old_results: 'SecretsCollection') -> None: """ We operate under an assumption that the latest results are always more accurate, assuming that the baseline is created on the same repository. However, we cannot merely discard the old results in favor of the new, since there is valuable information that ought to be preserved: verification of secrets, both automated and manual. Therefore, this function serves to extract this information from the old results, and amend the new results with it. """ for filename in old_results.files: if filename not in self.files: continue # This allows us to obtain the same secret, by accessing the hash. mapping = { secret: secret for secret in self.data[filename] } for old_secret in old_results.data[filename]: if old_secret not in mapping: continue # Only override if there's no newer value. if mapping[old_secret].is_secret is None: mapping[old_secret].is_secret = old_secret.is_secret # If the old value is false, it won't make a difference. if not mapping[old_secret].is_verified: mapping[old_secret].is_verified = old_secret.is_verified def trim( self, scanned_results: Optional['SecretsCollection'] = None, filelist: Optional[List[str]] = None, ) -> None: """ Removes invalid entries in the current SecretsCollection. This behaves *kinda* like set intersection and left-join. That is, for matching files, a set intersection is performed. For non-matching files, only the files in `self` will be kept. This is because we may not be constructing the other SecretsCollection with the same information as we are with the current SecretsCollection, and we cannot infer based on incomplete information. As such, we will keep the status quo. Assumptions: 1. Both `scanned_results` and the current SecretsCollection are constructed using the same settings (otherwise, we can't determine whether a missing secret is due to newly filtered secrets, or actually removed). :param scanned_results: if None, will just clear out non-existent files. :param filelist: files without secrets are not present in `scanned_results`. Therefore, by supplying this additional filelist, we can assert that if an entry is missing in `scanned_results`, it must not have secrets in it. """ if scanned_results is None: scanned_results = SecretsCollection() filelist = [ filename for filename in self.files if not os.path.exists(filename) ] if not filelist: fileset = set() else: fileset = set(filelist) # Unfortunately, we can't merely do a set intersection since we want to update the line # numbers (if applicable). Therefore, this does it manually. result: Dict[str, Set[PotentialSecret]] = defaultdict(set) for filename in scanned_results.files: if filename not in self.files: continue # We construct this so we can get O(1) retrieval of secrets. existing_secret_map = {secret: secret for secret in self[filename]} for secret in scanned_results[filename]: if secret not in existing_secret_map: continue # Currently, we assume that the `scanned_results` have no labelled data, so # we only want to obtain the latest line number from it. existing_secret = existing_secret_map[secret] if existing_secret.line_number: # Only update line numbers if we're tracking them. existing_secret.line_number = secret.line_number result[filename].add(existing_secret) for filename in self.files: # If this is already populated by scanned_results, then the set intersection # is already completed. if filename in result: continue # All secrets relating to that file was removed. # We know this because: # 1. It's a file that was scanned (in filelist) # 2. It would have been in the baseline, if there were secrets... # 3. ...but it isn't. if filename in fileset: continue result[filename] = self[filename] self.data = result def json(self) -> Dict[str, Any]: """Custom JSON encoder""" output = defaultdict(list) for filename, secret in self: output[filename].append(secret.json()) return dict(output) def exactly_equals(self, other: Any) -> bool: return self.__eq__(other, strict=True) # type: ignore def __getitem__(self, filename: str) -> Set[PotentialSecret]: return self.data[filename] def __setitem__(self, filename: str, value: Set[PotentialSecret]) -> None: self.data[filename] = value def __iter__(self) -> Generator[Tuple[str, PotentialSecret], None, None]: for filename in sorted(self.files): secrets = self[filename] # NOTE: If line numbers aren't supplied, they are supposed to default to 0. for secret in sorted( secrets, key=lambda secret: ( getattr(secret, 'line_number', 0), secret.secret_hash, secret.type, ), ): yield filename, secret def __bool__(self) -> bool: # This checks whether there are secrets, rather than just empty files. # Empty files can occur with SecretsCollection subtraction. return bool(list(self)) def __eq__(self, other: Any, strict: bool = False) -> bool: """ :param strict: if strict, will return False even if secrets match (e.g. if line numbers are different) """ if not isinstance(other, SecretsCollection): raise NotImplementedError if self.files != other.files: return False for filename in self.files: self_mapping = { (secret.secret_hash, secret.type): secret for secret in self[filename] } other_mapping = { (secret.secret_hash, secret.type): secret for secret in other[filename] } # Since PotentialSecret is hashable, we compare their identities through this. if set(self_mapping.values()) != set(other_mapping.values()): return False if not strict: continue for secretA in self_mapping.values(): secretB = other_mapping[(secretA.secret_hash, secretA.type)] valuesA = vars(secretA) valuesA.pop('secret_value') valuesB = vars(secretB) valuesB.pop('secret_value') if valuesA['line_number'] == 0 or valuesB['line_number'] == 0: # If line numbers are not provided (for either one), then don't compare # line numbers. valuesA.pop('line_number') valuesB.pop('line_number') if valuesA != valuesB: return False return True def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def __sub__(self, other: Any) -> 'SecretsCollection': """This behaves like set subtraction.""" if not isinstance(other, SecretsCollection): raise NotImplementedError # We want to create a copy to follow convention and adhere to the principle # of least surprise. output = SecretsCollection() for filename in other.files: if filename not in self.files: continue output[filename] = self[filename] - other[filename] for filename in self.files: if filename in other.files: continue output[filename] = self[filename] return output
(root: str = '') -> None
68,460
detect_secrets.core.secrets_collection
__bool__
null
def __bool__(self) -> bool: # This checks whether there are secrets, rather than just empty files. # Empty files can occur with SecretsCollection subtraction. return bool(list(self))
(self) -> bool
68,461
detect_secrets.core.secrets_collection
__eq__
:param strict: if strict, will return False even if secrets match (e.g. if line numbers are different)
def __eq__(self, other: Any, strict: bool = False) -> bool: """ :param strict: if strict, will return False even if secrets match (e.g. if line numbers are different) """ if not isinstance(other, SecretsCollection): raise NotImplementedError if self.files != other.files: return False for filename in self.files: self_mapping = { (secret.secret_hash, secret.type): secret for secret in self[filename] } other_mapping = { (secret.secret_hash, secret.type): secret for secret in other[filename] } # Since PotentialSecret is hashable, we compare their identities through this. if set(self_mapping.values()) != set(other_mapping.values()): return False if not strict: continue for secretA in self_mapping.values(): secretB = other_mapping[(secretA.secret_hash, secretA.type)] valuesA = vars(secretA) valuesA.pop('secret_value') valuesB = vars(secretB) valuesB.pop('secret_value') if valuesA['line_number'] == 0 or valuesB['line_number'] == 0: # If line numbers are not provided (for either one), then don't compare # line numbers. valuesA.pop('line_number') valuesB.pop('line_number') if valuesA != valuesB: return False return True
(self, other: Any, strict: bool = False) -> bool
68,462
detect_secrets.core.secrets_collection
__getitem__
null
def __getitem__(self, filename: str) -> Set[PotentialSecret]: return self.data[filename]
(self, filename: str) -> Set[detect_secrets.core.potential_secret.PotentialSecret]
68,463
detect_secrets.core.secrets_collection
__init__
:param root: if specified, will scan as if the root was the value provided, rather than the current working directory. We still store results as if relative to root, since we're running as if it was in a different directory, rather than scanning a different directory.
def __init__(self, root: str = '') -> None: """ :param root: if specified, will scan as if the root was the value provided, rather than the current working directory. We still store results as if relative to root, since we're running as if it was in a different directory, rather than scanning a different directory. """ self.data: Dict[str, Set[PotentialSecret]] = defaultdict(set) self.root = root
(self, root: str = '') -> NoneType
68,464
detect_secrets.core.secrets_collection
__iter__
null
def __iter__(self) -> Generator[Tuple[str, PotentialSecret], None, None]: for filename in sorted(self.files): secrets = self[filename] # NOTE: If line numbers aren't supplied, they are supposed to default to 0. for secret in sorted( secrets, key=lambda secret: ( getattr(secret, 'line_number', 0), secret.secret_hash, secret.type, ), ): yield filename, secret
(self) -> Generator[Tuple[str, detect_secrets.core.potential_secret.PotentialSecret], NoneType, NoneType]
68,466
detect_secrets.core.secrets_collection
__setitem__
null
def __setitem__(self, filename: str, value: Set[PotentialSecret]) -> None: self.data[filename] = value
(self, filename: str, value: Set[detect_secrets.core.potential_secret.PotentialSecret]) -> NoneType
68,467
detect_secrets.core.secrets_collection
__sub__
This behaves like set subtraction.
def __sub__(self, other: Any) -> 'SecretsCollection': """This behaves like set subtraction.""" if not isinstance(other, SecretsCollection): raise NotImplementedError # We want to create a copy to follow convention and adhere to the principle # of least surprise. output = SecretsCollection() for filename in other.files: if filename not in self.files: continue output[filename] = self[filename] - other[filename] for filename in self.files: if filename in other.files: continue output[filename] = self[filename] return output
(self, other: Any) -> detect_secrets.core.secrets_collection.SecretsCollection
68,468
detect_secrets.core.secrets_collection
exactly_equals
null
def exactly_equals(self, other: Any) -> bool: return self.__eq__(other, strict=True) # type: ignore
(self, other: Any) -> bool
68,469
detect_secrets.core.secrets_collection
json
Custom JSON encoder
def json(self) -> Dict[str, Any]: """Custom JSON encoder""" output = defaultdict(list) for filename, secret in self: output[filename].append(secret.json()) return dict(output)
(self) -> Dict[str, Any]
68,470
detect_secrets.core.secrets_collection
merge
We operate under an assumption that the latest results are always more accurate, assuming that the baseline is created on the same repository. However, we cannot merely discard the old results in favor of the new, since there is valuable information that ought to be preserved: verification of secrets, both automated and manual. Therefore, this function serves to extract this information from the old results, and amend the new results with it.
def merge(self, old_results: 'SecretsCollection') -> None: """ We operate under an assumption that the latest results are always more accurate, assuming that the baseline is created on the same repository. However, we cannot merely discard the old results in favor of the new, since there is valuable information that ought to be preserved: verification of secrets, both automated and manual. Therefore, this function serves to extract this information from the old results, and amend the new results with it. """ for filename in old_results.files: if filename not in self.files: continue # This allows us to obtain the same secret, by accessing the hash. mapping = { secret: secret for secret in self.data[filename] } for old_secret in old_results.data[filename]: if old_secret not in mapping: continue # Only override if there's no newer value. if mapping[old_secret].is_secret is None: mapping[old_secret].is_secret = old_secret.is_secret # If the old value is false, it won't make a difference. if not mapping[old_secret].is_verified: mapping[old_secret].is_verified = old_secret.is_verified
(self, old_results: detect_secrets.core.secrets_collection.SecretsCollection) -> NoneType
68,471
detect_secrets.core.secrets_collection
scan_diff
:raises: UnidiffParseError
def scan_diff(self, diff: str) -> None: """ :raises: UnidiffParseError """ try: for secret in scan.scan_diff(diff): self[secret.filename].add(secret) except ImportError: # pragma: no cover raise NotImplementedError( 'SecretsCollection.scan_diff requires `unidiff` to work. Try pip ' 'installing that package, and try again.', )
(self, diff: str) -> NoneType
68,472
detect_secrets.core.secrets_collection
scan_file
null
def scan_file(self, filename: str) -> None: for secret in scan.scan_file(os.path.join(self.root, convert_local_os_path(filename))): self[convert_local_os_path(filename)].add(secret)
(self, filename: str) -> NoneType
68,473
detect_secrets.core.secrets_collection
scan_files
Just like scan_file, but optimized through parallel processing.
def scan_files(self, *filenames: str, num_processors: Optional[int] = None) -> None: """Just like scan_file, but optimized through parallel processing.""" if len(filenames) == 1: self.scan_file(filenames[0]) return if not num_processors: num_processors = mp.cpu_count() child_process_settings = get_settings().json() with mp.Pool( processes=num_processors, initializer=configure_settings_from_baseline, initargs=(child_process_settings,), ) as p: for secrets in p.imap_unordered( _scan_file_and_serialize, [os.path.join(self.root, filename) for filename in filenames], ): for secret in secrets: self[os.path.relpath(secret.filename, self.root)].add(secret)
(self, *filenames: str, num_processors: Optional[int] = None) -> NoneType
68,474
detect_secrets.core.secrets_collection
trim
Removes invalid entries in the current SecretsCollection. This behaves *kinda* like set intersection and left-join. That is, for matching files, a set intersection is performed. For non-matching files, only the files in `self` will be kept. This is because we may not be constructing the other SecretsCollection with the same information as we are with the current SecretsCollection, and we cannot infer based on incomplete information. As such, we will keep the status quo. Assumptions: 1. Both `scanned_results` and the current SecretsCollection are constructed using the same settings (otherwise, we can't determine whether a missing secret is due to newly filtered secrets, or actually removed). :param scanned_results: if None, will just clear out non-existent files. :param filelist: files without secrets are not present in `scanned_results`. Therefore, by supplying this additional filelist, we can assert that if an entry is missing in `scanned_results`, it must not have secrets in it.
def trim( self, scanned_results: Optional['SecretsCollection'] = None, filelist: Optional[List[str]] = None, ) -> None: """ Removes invalid entries in the current SecretsCollection. This behaves *kinda* like set intersection and left-join. That is, for matching files, a set intersection is performed. For non-matching files, only the files in `self` will be kept. This is because we may not be constructing the other SecretsCollection with the same information as we are with the current SecretsCollection, and we cannot infer based on incomplete information. As such, we will keep the status quo. Assumptions: 1. Both `scanned_results` and the current SecretsCollection are constructed using the same settings (otherwise, we can't determine whether a missing secret is due to newly filtered secrets, or actually removed). :param scanned_results: if None, will just clear out non-existent files. :param filelist: files without secrets are not present in `scanned_results`. Therefore, by supplying this additional filelist, we can assert that if an entry is missing in `scanned_results`, it must not have secrets in it. """ if scanned_results is None: scanned_results = SecretsCollection() filelist = [ filename for filename in self.files if not os.path.exists(filename) ] if not filelist: fileset = set() else: fileset = set(filelist) # Unfortunately, we can't merely do a set intersection since we want to update the line # numbers (if applicable). Therefore, this does it manually. result: Dict[str, Set[PotentialSecret]] = defaultdict(set) for filename in scanned_results.files: if filename not in self.files: continue # We construct this so we can get O(1) retrieval of secrets. existing_secret_map = {secret: secret for secret in self[filename]} for secret in scanned_results[filename]: if secret not in existing_secret_map: continue # Currently, we assume that the `scanned_results` have no labelled data, so # we only want to obtain the latest line number from it. existing_secret = existing_secret_map[secret] if existing_secret.line_number: # Only update line numbers if we're tracking them. existing_secret.line_number = secret.line_number result[filename].add(existing_secret) for filename in self.files: # If this is already populated by scanned_results, then the set intersection # is already completed. if filename in result: continue # All secrets relating to that file was removed. # We know this because: # 1. It's a file that was scanned (in filelist) # 2. It would have been in the baseline, if there were secrets... # 3. ...but it isn't. if filename in fileset: continue result[filename] = self[filename] self.data = result
(self, scanned_results: Optional[detect_secrets.core.secrets_collection.SecretsCollection] = None, filelist: Optional[List[str]] = None) -> NoneType
68,484
exe_kg_lib.classes.exe_kg
ExeKG
null
class ExeKG: def __init__(self, input_exe_kg_path: str = None): """ Args: input_exe_kg_path: path of KG to be executed acts as switch for KG execution mode (if filled, mode is on) """ self.top_level_schema = KGSchema.from_schema_info(KG_SCHEMAS["Data Science"]) # top-level KG schema self.bottom_level_schemata = {} # top-level KG schema entities self.atomic_task = Entity(self.top_level_schema.namespace.AtomicTask) self.atomic_method = Entity(self.top_level_schema.namespace.AtomicMethod) self.data_entity = Entity(self.top_level_schema.namespace.DataEntity) self.pipeline = Entity(self.top_level_schema.namespace.Pipeline) self.data = Entity(self.top_level_schema.namespace.Data) self.data_semantics = Entity(self.top_level_schema.namespace.DataSemantics) self.data_structure = Entity(self.top_level_schema.namespace.DataStructure) # self.input_kg: KG eventually filled with 3 KG schemas and the input executable KG in case of KG execution self.input_kg = Graph(bind_namespaces="rdflib") if input_exe_kg_path: # KG execution mode self.input_kg.parse(input_exe_kg_path, format="n3") # parse input executable KG check_kg_executability(self.input_kg) all_ns = [n for n in self.input_kg.namespace_manager.namespaces()] bottom_level_schema_info_set = False # flag indicating that a bottom-level schema was found for schema_name, schema_info in KG_SCHEMAS.items(): # search for used bottom-level schema if ( schema_name == "Data Science" # or schema_name == "Visualization" ): # skip top-level KG schema and Visualization schema that is always used continue if (schema_info["namespace_prefix"], URIRef(schema_info["namespace"])) in all_ns: # bottom-level schema found self.bottom_level_schemata[schema_info["namespace_prefix"]] = KGSchema.from_schema_info(schema_info) bottom_level_schema_info_set = True if not bottom_level_schema_info_set: # no bottom-level schema found, input executable KG is invalid print("Input executable KG did not have any bottom level KG schemas") exit(1) else: # KG construction mode for schema_name, schema_info in KG_SCHEMAS.items(): # search for used bottom-level schema if ( schema_name == "Data Science" # or schema_name == "Visualization" ): # skip top-level KG schema and Visualization schema that is always used continue self.bottom_level_schemata[schema_info["namespace_prefix"]] = KGSchema.from_schema_info(schema_info) bottom_level_schemata_kgs = [kg_schema.kg for kg_schema in self.bottom_level_schemata.values()] self.input_kg += self.top_level_schema.kg # + self.visu_schema.kg # combine all KG schemas in input KG for bottom_level_schema_kg in bottom_level_schemata_kgs: self.input_kg += bottom_level_schema_kg self.output_kg = Graph(bind_namespaces="rdflib") # KG to be filled while constructing executable KG self._bind_used_namespaces([self.input_kg, self.output_kg]) # below variables are filled in self._parse_kgs() self.task_type_dict = {} # dict for uniquely naming each new pipeline task self.method_type_dict = {} # dict for uniquely naming each new pipeline method self.atomic_task_list = [] # list for storing the available sub-classes of ds:AtomicTask self.atomic_method_list = [] # list for storing the available sub-classes of ds:AtomicMethod self.data_type_list = [] # list for storing the available sub-classes of ds:DataEntity self.data_semantics_list = [] # list for storing the available sub-classes of ds:DataSemantics self.data_structure_list = [] # list for storing the available sub-classes of ds:DataStructure self.existing_data_entity_list = ( [] ) # contains existing data entities that are output entities of previous tasks during KG construction self.last_created_task = ( None # last created pipeline task, for connecting consecutive pipeline tasks during KG construction ) self.canvas_task_created = False # indicates if canvas task was created during KG construction, and used for hiding the other Visualization tasks in CLI self._parse_kgs() def _bind_used_namespaces(self, kgs: List[Graph]): """ Binds top-level, bottom-level and Visualization KG schemas' namespaces with their prefixes Adds these bindings to the Graphs of kgs list Args: kgs: list of Graph objects to which the namespace bindings are added """ for kg in kgs: kg.bind(self.top_level_schema.namespace_prefix, self.top_level_schema.namespace) for bottom_level_kg_schema in self.bottom_level_schemata.values(): kg.bind( bottom_level_kg_schema.namespace_prefix, bottom_level_kg_schema.namespace, ) def _parse_kgs(self) -> None: """ Fills lists with subclasses of top-level KG schema classes and initializes dicts used for unique naming """ atomic_task_subclasses = get_subclasses_of(self.atomic_task.iri, self.input_kg) for t in list(atomic_task_subclasses): task = Entity(t[0], self.atomic_task) self.atomic_task_list.append(task) self.task_type_dict[task.name] = 1 atomic_method_subclasses = get_subclasses_of(self.atomic_method.iri, self.input_kg) for m in list(atomic_method_subclasses): method = Entity(m[0], self.atomic_method) self.atomic_method_list.append(method) self.method_type_dict[method.name] = 1 data_type_subclasses = get_subclasses_of(self.data_entity.iri, self.input_kg) for d in list(data_type_subclasses): data_type = Entity(d[0], self.data_entity) self.data_type_list.append(data_type) data_semantics_subclasses = get_subclasses_of(self.data_semantics.iri, self.top_level_schema.kg) for d in list(data_semantics_subclasses): if d[0] == self.data_entity.iri: continue data_semantics = Entity(d[0], self.data_semantics) self.data_semantics_list.append(data_semantics) data_structure_subclasses = get_subclasses_of(self.data_structure.iri, self.top_level_schema.kg) for d in list(data_structure_subclasses): if d[0] == self.data_entity.iri: continue data_structure = Entity(d[0], self.data_structure) self.data_structure_list.append(data_structure) def create_pipeline_task(self, pipeline_name: str, input_data_path: str) -> Task: """ Instantiates and adds a new pipeline task entity to self.output_kg Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks Returns: Task: created pipeline """ pipeline = create_pipeline_task( self.top_level_schema.namespace, self.pipeline, self.output_kg, pipeline_name, input_data_path, ) self.last_created_task = pipeline return pipeline def create_data_entity( self, name: str, source_value: str, data_semantics_name: str, data_structure_name: str, ) -> DataEntity: """ Creates a DataEntity object Args: name: name of the data entity source_value: name of the data source corresponding to a column of the data data_semantics_name: name of the data semantics entity data_structure_name: name of the data structure entity Returns: DataEntity: object initialized with the given parameter values """ return DataEntity( self.top_level_schema.namespace + name, self.data_entity, source_value, self.top_level_schema.namespace + data_semantics_name, self.top_level_schema.namespace + data_structure_name, ) def add_task( self, kg_schema_short: str, task: str, input_data_entity_dict: Dict[str, List[DataEntity]], method: str, properties_dict: Dict[str, Union[str, int, float]], ) -> Task: """ Instantiates and adds a new task entity to self.output_kg Components attached to the task during creation: input and output data entities, and a method with properties Args: kg_schema_short: abbreviated name of the KG schema in which the task and method belong task: task name input_data_entity_dict: keys -> input names of the specified task values -> lists of DataEntity objects to be added as input to the task method: method name properties_dict: keys -> property names of the specified method values -> values to be added as parameters to the method Returns: Task: object of the created task """ kg_schema_to_use = self.bottom_level_schemata[kg_schema_short] relation_iri = ( self.top_level_schema.namespace.hasNextTask if self.last_created_task.type != "Pipeline" else self.top_level_schema.namespace.hasStartTask ) # use relation depending on the previous task # instantiate task and link it with the previous one parent_task = Task(kg_schema_to_use.namespace + task, self.atomic_task) added_entity = add_instance_from_parent_with_relation( kg_schema_to_use.namespace, self.output_kg, parent_task, relation_iri, self.last_created_task, name_instance(self.task_type_dict, self.method_type_dict, parent_task), ) next_task = Task.from_entity(added_entity) # create Task object from Entity object # instantiate and add given input data entities to the task self._add_inputs_to_task(kg_schema_to_use.namespace, next_task, input_data_entity_dict) # instantiate and add output data entities to the task, as specified in the KG schema self._add_outputs_to_task(next_task) method_parent = Entity(kg_schema_to_use.namespace + method, self.atomic_method) # fetch compatible methods and their properties from KG schema results = list( get_method_properties_and_methods( self.input_kg, self.top_level_schema.namespace_prefix, next_task.parent_entity.iri, ) ) chosen_property_method = next( filter(lambda pair: pair[1].split("#")[1] == method, results), None ) # match given method_type with query result if chosen_property_method is None: print(f"Property connecting task of type {task} with method of type {method} not found") exit(1) # instantiate method and link it with the task using the appropriate chosen_property_method[0] relation method_entity = add_instance_from_parent_with_relation( kg_schema_to_use.namespace, self.output_kg, method_parent, chosen_property_method[0], next_task, name_instance(self.task_type_dict, self.method_type_dict, method_parent), ) # fetch compatible data properties from KG schema property_list = get_data_properties_plus_inherited_by_class_iri(self.input_kg, method_parent.iri) # add data properties to the task with given values for pair in property_list: property_iri = pair[0] property_name = property_iri.split("#")[1] range_iri = pair[1] input_property = Literal( lexical_or_value=properties_dict[property_name], datatype=range_iri, ) add_literal(self.output_kg, method_entity, property_iri, input_property) self.last_created_task = next_task # store created task return next_task def _add_inputs_to_task( self, namespace: Namespace, task_entity: Task, input_data_entity_dict: Dict[str, List[DataEntity]] = None, ) -> None: """ Instantiates and adds given input data entities to the given task of self.output_kg if input_data_entity_dict is None, user is asked to specify input data entities Args: task_entity: the task to add the input to input_data_entity_dict: keys -> input entity names corresponding to the given task as defined in the chosen bottom-level KG schema values -> list of corresponding data entities to be added as input to the task """ use_cli = input_data_entity_dict is None # fetch compatible inputs from KG schema results = list( get_input_properties_and_inputs( self.input_kg, self.top_level_schema.namespace_prefix, task_entity.parent_entity.iri, ) ) # task_type_index was incremented when creating the task entity # reset the index to match the currently created task's index task_type_index = self.task_type_dict[task_entity.type] - 1 for _, input_entity_iri, data_structure_iri in results: input_entity_name = input_entity_iri.split("#")[1] if not use_cli: input_data_entity_list = input_data_entity_dict[input_entity_name] else: # use CLI print(f"Specify input corresponding to {input_entity_name}") input_data_entity_list = get_input_for_existing_data_entities(self.existing_data_entity_list) input_data_entity_list += get_input_for_new_data_entities( self.data_semantics_list, self.data_structure_list, namespace, self.data_entity, ) same_input_index = 1 for input_data_entity in input_data_entity_list: # instantiate data entity corresponding to the found input_entity_name data_entity_iri = input_entity_iri + str(task_type_index) + "_" + str(same_input_index) # instantiate given data entity add_data_entity_instance( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, input_data_entity, ) # instantiate and attach data entity with reference to the given data entity data_entity = DataEntity( data_entity_iri, DataEntity(input_entity_iri, self.data_entity), has_reference=input_data_entity.iri, has_data_structure_iri=data_structure_iri, ) add_and_attach_data_entity( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, data_entity, self.top_level_schema.namespace.hasInput, task_entity, ) task_entity.input_dict[input_entity_name] = data_entity same_input_index += 1 if use_cli: check_kg_executability(self.output_kg) def _add_outputs_to_task(self, task_entity: Task) -> None: """ Instantiates and adds output data entities to the given task of self.output_kg, based on the task's definition in the KG schema Args: task_entity: the task to add the output to """ # fetch compatible outputs from KG schema results = list( get_output_properties_and_outputs( self.input_kg, self.top_level_schema.namespace_prefix, task_entity.parent_entity.iri, ) ) # task_type_index was incremented when creating the task entity # reset the index to match the currently created task's index task_type_index = self.task_type_dict[task_entity.type] - 1 for output_property, output_parent_entity_iri, data_structure_iri in results: # instantiate and add data entity output_data_entity_iri = output_parent_entity_iri + str(task_type_index) output_data_entity = DataEntity( output_data_entity_iri, DataEntity(output_parent_entity_iri, self.data_entity), has_data_structure_iri=data_structure_iri, ) add_and_attach_data_entity( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, output_data_entity, self.top_level_schema.namespace.hasOutput, task_entity, ) task_entity.output_dict[output_parent_entity_iri.split("#")[1]] = output_data_entity self.existing_data_entity_list.append(output_data_entity) def _create_next_task_cli(self) -> Union[None, Task]: """ Instantiates and adds task (without method) based on user input to self.output_kg Adds task's output data entities to self.existing_data_entity_list Returns: None: in case user wants to end the pipeline creation Task: object of the created task """ print("Please choose the next task") for i, t in enumerate(self.atomic_task_list): if not self.canvas_task_created and t.name == "PlotTask": continue if self.canvas_task_created and t.name == "CanvasTask": continue print(f"\t{str(i)}. {t.name}") print(f"\t{str(-1)}. End pipeline") next_task_id = int(input()) if next_task_id == -1: return None next_task_parent = self.atomic_task_list[next_task_id] relation_iri = ( self.top_level_schema.namespace.hasNextTask if self.last_created_task.type != "Pipeline" else self.top_level_schema.namespace.hasStartTask ) # use relation depending on the previous task # instantiate task and link it with the previous one task_entity = add_instance_from_parent_with_relation( next_task_parent.namespace, self.output_kg, next_task_parent, relation_iri, self.last_created_task, name_instance(self.task_type_dict, self.method_type_dict, next_task_parent), ) task_entity = Task(task_entity.iri, task_entity.parent_entity) # create Task object from Entity object's info # instantiate and add input data entities to the task based on user input self._add_inputs_to_task(next_task_parent.namespace, task_entity) # instantiate and add output data entities to the task, as specified in the KG schema self._add_outputs_to_task(task_entity) self.last_created_task = task_entity if task_entity.type == "CanvasTask": self.canvas_task_created = True return task_entity def _create_method(self, task_to_attach_to: Entity) -> None: """ Instantiate and attach method to task of self.output_kg Args: task_to_attach_to: the task to attach the created method to """ print(f"Please choose a method for {task_to_attach_to.type}:") # fetch compatible methods and their properties from KG schema results = list( get_method_properties_and_methods( self.input_kg, self.top_level_schema.namespace_prefix, task_to_attach_to.parent_entity.iri, ) ) for i, pair in enumerate(results): tmp_method = pair[1].split("#")[1] print(f"\t{str(i)}. {tmp_method}") method_id = int(input()) selected_property_and_method = results[method_id] method_parent = next( filter( lambda m: m.iri == selected_property_and_method[1], self.atomic_method_list, ), None, ) # instantiate method and link it with the task using the appropriate selected_property_and_method[0] relation add_instance_from_parent_with_relation( task_to_attach_to.namespace, self.output_kg, method_parent, selected_property_and_method[0], task_to_attach_to, name_instance(self.task_type_dict, self.method_type_dict, method_parent), ) # fetch compatible data properties from KG schema property_list = get_data_properties_plus_inherited_by_class_iri(self.input_kg, method_parent.iri) if property_list: print(f"Please enter requested properties for {method_parent.name}:") # add data properties to the task with given values for pair in property_list: property_instance = URIRef(pair[0]) range = pair[1].split("#")[1] range_iri = pair[1] input_property = Literal( lexical_or_value=input("\t{} in range({}): ".format(pair[0].split("#")[1], range)), datatype=range_iri, ) add_literal(self.output_kg, task_to_attach_to, property_instance, input_property) check_kg_executability(self.output_kg) def start_pipeline_creation(self, pipeline_name: str, input_data_path: str) -> None: """ Handles the pipeline creation through CLI Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks """ pipeline = create_pipeline_task( self.top_level_schema.namespace, self.pipeline, self.output_kg, pipeline_name, input_data_path, ) self.last_created_task = pipeline while True: next_task = self._create_next_task_cli() if next_task is None: break self._create_method(next_task) def save_created_kg(self, file_path: str) -> None: """ Saves self.output_kg to a file Args: file_path: path of the output file """ check_kg_executability(self.output_kg) dir_path = os.path.dirname(file_path) os.makedirs(dir_path, exist_ok=True) self.output_kg.serialize(destination=file_path) print(f"Executable KG saved in {file_path}") def _property_value_to_field_value(self, property_value: str) -> Union[str, DataEntity]: """ Converts property value to Python class field value If property_value is not a data entity's IRI, it is returned as is Else, its property values are converted recursively and stored in a DataEntity object Args: property_value: value of the property as found in KG Returns: str: property_value parameter as is DataEntity: object containing parsed data entity properties """ if "#" in property_value: data_entity = self._parse_data_entity_by_iri(property_value) if data_entity is None: return property_value return data_entity return property_value def _parse_data_entity_by_iri(self, in_out_data_entity_iri: str) -> Optional[DataEntity]: """ Parses an input or output data entity of self.input_kg and stores the parsed info in a Python object Args: in_out_data_entity_iri: IRI of the KG entity to parse Returns: None: if given IRI does not belong to an instance of a sub-class of self.top_level_schema.namespace.DataEntity DataEntity: object with data entity's parsed properties """ # fetch type of entity with given IRI query_result = get_first_query_result_if_exists( query_entity_parent_iri, self.input_kg, in_out_data_entity_iri, self.top_level_schema.namespace.DataEntity, ) if query_result is None: return None data_entity_parent_iri = str(query_result[0]) # fetch IRI of data entity that is referenced by the given entity query_result = get_first_query_result_if_exists( query_data_entity_reference_iri, self.input_kg, self.top_level_schema.namespace_prefix, in_out_data_entity_iri, ) if query_result is None: # no referenced data entity found data_entity_ref_iri = in_out_data_entity_iri else: data_entity_ref_iri = str(query_result[0]) # create DataEntity object to store all the parsed properties data_entity = DataEntity(in_out_data_entity_iri, Entity(data_entity_parent_iri)) data_entity.has_reference = data_entity_ref_iri.split("#")[1] for s, p, o in self.input_kg.triples((URIRef(data_entity_ref_iri), None, None)): # parse property name and value field_name = property_name_to_field_name(str(p)) if not hasattr(data_entity, field_name) or field_name == "type": continue field_value = self._property_value_to_field_value(str(o)) setattr(data_entity, field_name, field_value) # set field value dynamically return data_entity def _parse_task_by_iri(self, task_iri: str, canvas_method: visual_tasks.CanvasTaskCanvasMethod = None) -> Task: """ Parses a task of self.input_kg and stores the info in an object of a sub-class of Task The sub-class name and the object's fields are mapped dynamically based on the found KG components Args: task_iri: IRI of the task to be parsed canvas_method: optional object to pass as argument for task object initialization Returns: Task: object of a sub-class of Task, containing all the parsed info """ # fetch type of entity with given IRI query_result = get_first_query_result_if_exists( query_entity_parent_iri, self.input_kg, task_iri, self.top_level_schema.namespace.AtomicTask, ) if ( query_result is None ): # given IRI does not belong to an instance of a sub-class of self.top_level_schema.namespace.AtomicTask print(f"Cannot retrieve parent of task with iri {task_iri}. Exiting...") exit(1) task_parent_iri = str(query_result[0]) task = Task(task_iri, Task(task_parent_iri)) method = get_method_by_task_iri( self.input_kg, self.top_level_schema.namespace_prefix, self.top_level_schema.namespace, task_iri, ) if method is None: print(f"Cannot retrieve method for task with iri: {task_iri}") # perform automatic mapping of KG task class to Python sub-class class_name = task.type + method.type Class = getattr(visual_tasks, class_name, None) if Class is None: Class = getattr(statistic_tasks, class_name, None) if Class is None: Class = getattr(ml_tasks, class_name, None) # create Task sub-class object if canvas_method: task = Class(task_iri, Task(task_parent_iri), canvas_method) else: task = Class(task_iri, Task(task_parent_iri)) task_related_triples = self.input_kg.triples((URIRef(task_iri), None, None)) method_related_triples = self.input_kg.triples((URIRef(method.iri), None, None)) for s, p, o in itertools.chain(task_related_triples, method_related_triples): # parse property name and value field_name = property_name_to_field_name(str(p)) if not hasattr(task, field_name) or field_name == "type": continue field_value = self._property_value_to_field_value(str(o)) # set field value dynamically if field_name == "has_input" or field_name == "has_output": getattr(task, field_name).append(field_value) else: setattr(task, field_name, field_value) return task def execute_pipeline(self): """ Retrieves and executes pipeline by parsing self.input_kg """ pipeline_iri, input_data_path, next_task_iri = get_pipeline_and_first_task_iri( self.input_kg, self.top_level_schema.namespace_prefix ) input_data = pd.read_csv(input_data_path, delimiter=",", encoding="ISO-8859-1") canvas_method = None # stores Task object that corresponds to a task of type CanvasTask task_output_dict = {} # gradually filled with outputs of executed tasks while next_task_iri is not None: next_task = self._parse_task_by_iri(next_task_iri, canvas_method) output = next_task.run_method(task_output_dict, input_data) if output: task_output_dict.update(output) if next_task.type == "CanvasTask": canvas_method = next_task next_task_iri = next_task.has_next_task
(input_exe_kg_path: str = None)
68,485
exe_kg_lib.classes.exe_kg
__init__
Args: input_exe_kg_path: path of KG to be executed acts as switch for KG execution mode (if filled, mode is on)
def __init__(self, input_exe_kg_path: str = None): """ Args: input_exe_kg_path: path of KG to be executed acts as switch for KG execution mode (if filled, mode is on) """ self.top_level_schema = KGSchema.from_schema_info(KG_SCHEMAS["Data Science"]) # top-level KG schema self.bottom_level_schemata = {} # top-level KG schema entities self.atomic_task = Entity(self.top_level_schema.namespace.AtomicTask) self.atomic_method = Entity(self.top_level_schema.namespace.AtomicMethod) self.data_entity = Entity(self.top_level_schema.namespace.DataEntity) self.pipeline = Entity(self.top_level_schema.namespace.Pipeline) self.data = Entity(self.top_level_schema.namespace.Data) self.data_semantics = Entity(self.top_level_schema.namespace.DataSemantics) self.data_structure = Entity(self.top_level_schema.namespace.DataStructure) # self.input_kg: KG eventually filled with 3 KG schemas and the input executable KG in case of KG execution self.input_kg = Graph(bind_namespaces="rdflib") if input_exe_kg_path: # KG execution mode self.input_kg.parse(input_exe_kg_path, format="n3") # parse input executable KG check_kg_executability(self.input_kg) all_ns = [n for n in self.input_kg.namespace_manager.namespaces()] bottom_level_schema_info_set = False # flag indicating that a bottom-level schema was found for schema_name, schema_info in KG_SCHEMAS.items(): # search for used bottom-level schema if ( schema_name == "Data Science" # or schema_name == "Visualization" ): # skip top-level KG schema and Visualization schema that is always used continue if (schema_info["namespace_prefix"], URIRef(schema_info["namespace"])) in all_ns: # bottom-level schema found self.bottom_level_schemata[schema_info["namespace_prefix"]] = KGSchema.from_schema_info(schema_info) bottom_level_schema_info_set = True if not bottom_level_schema_info_set: # no bottom-level schema found, input executable KG is invalid print("Input executable KG did not have any bottom level KG schemas") exit(1) else: # KG construction mode for schema_name, schema_info in KG_SCHEMAS.items(): # search for used bottom-level schema if ( schema_name == "Data Science" # or schema_name == "Visualization" ): # skip top-level KG schema and Visualization schema that is always used continue self.bottom_level_schemata[schema_info["namespace_prefix"]] = KGSchema.from_schema_info(schema_info) bottom_level_schemata_kgs = [kg_schema.kg for kg_schema in self.bottom_level_schemata.values()] self.input_kg += self.top_level_schema.kg # + self.visu_schema.kg # combine all KG schemas in input KG for bottom_level_schema_kg in bottom_level_schemata_kgs: self.input_kg += bottom_level_schema_kg self.output_kg = Graph(bind_namespaces="rdflib") # KG to be filled while constructing executable KG self._bind_used_namespaces([self.input_kg, self.output_kg]) # below variables are filled in self._parse_kgs() self.task_type_dict = {} # dict for uniquely naming each new pipeline task self.method_type_dict = {} # dict for uniquely naming each new pipeline method self.atomic_task_list = [] # list for storing the available sub-classes of ds:AtomicTask self.atomic_method_list = [] # list for storing the available sub-classes of ds:AtomicMethod self.data_type_list = [] # list for storing the available sub-classes of ds:DataEntity self.data_semantics_list = [] # list for storing the available sub-classes of ds:DataSemantics self.data_structure_list = [] # list for storing the available sub-classes of ds:DataStructure self.existing_data_entity_list = ( [] ) # contains existing data entities that are output entities of previous tasks during KG construction self.last_created_task = ( None # last created pipeline task, for connecting consecutive pipeline tasks during KG construction ) self.canvas_task_created = False # indicates if canvas task was created during KG construction, and used for hiding the other Visualization tasks in CLI self._parse_kgs()
(self, input_exe_kg_path: Optional[str] = None)
68,486
exe_kg_lib.classes.exe_kg
_add_inputs_to_task
Instantiates and adds given input data entities to the given task of self.output_kg if input_data_entity_dict is None, user is asked to specify input data entities Args: task_entity: the task to add the input to input_data_entity_dict: keys -> input entity names corresponding to the given task as defined in the chosen bottom-level KG schema values -> list of corresponding data entities to be added as input to the task
def _add_inputs_to_task( self, namespace: Namespace, task_entity: Task, input_data_entity_dict: Dict[str, List[DataEntity]] = None, ) -> None: """ Instantiates and adds given input data entities to the given task of self.output_kg if input_data_entity_dict is None, user is asked to specify input data entities Args: task_entity: the task to add the input to input_data_entity_dict: keys -> input entity names corresponding to the given task as defined in the chosen bottom-level KG schema values -> list of corresponding data entities to be added as input to the task """ use_cli = input_data_entity_dict is None # fetch compatible inputs from KG schema results = list( get_input_properties_and_inputs( self.input_kg, self.top_level_schema.namespace_prefix, task_entity.parent_entity.iri, ) ) # task_type_index was incremented when creating the task entity # reset the index to match the currently created task's index task_type_index = self.task_type_dict[task_entity.type] - 1 for _, input_entity_iri, data_structure_iri in results: input_entity_name = input_entity_iri.split("#")[1] if not use_cli: input_data_entity_list = input_data_entity_dict[input_entity_name] else: # use CLI print(f"Specify input corresponding to {input_entity_name}") input_data_entity_list = get_input_for_existing_data_entities(self.existing_data_entity_list) input_data_entity_list += get_input_for_new_data_entities( self.data_semantics_list, self.data_structure_list, namespace, self.data_entity, ) same_input_index = 1 for input_data_entity in input_data_entity_list: # instantiate data entity corresponding to the found input_entity_name data_entity_iri = input_entity_iri + str(task_type_index) + "_" + str(same_input_index) # instantiate given data entity add_data_entity_instance( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, input_data_entity, ) # instantiate and attach data entity with reference to the given data entity data_entity = DataEntity( data_entity_iri, DataEntity(input_entity_iri, self.data_entity), has_reference=input_data_entity.iri, has_data_structure_iri=data_structure_iri, ) add_and_attach_data_entity( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, data_entity, self.top_level_schema.namespace.hasInput, task_entity, ) task_entity.input_dict[input_entity_name] = data_entity same_input_index += 1 if use_cli: check_kg_executability(self.output_kg)
(self, namespace: rdflib.namespace.Namespace, task_entity: exe_kg_lib.classes.task.Task, input_data_entity_dict: Optional[Dict[str, List[exe_kg_lib.classes.data_entity.DataEntity]]] = None) -> NoneType
68,487
exe_kg_lib.classes.exe_kg
_add_outputs_to_task
Instantiates and adds output data entities to the given task of self.output_kg, based on the task's definition in the KG schema Args: task_entity: the task to add the output to
def _add_outputs_to_task(self, task_entity: Task) -> None: """ Instantiates and adds output data entities to the given task of self.output_kg, based on the task's definition in the KG schema Args: task_entity: the task to add the output to """ # fetch compatible outputs from KG schema results = list( get_output_properties_and_outputs( self.input_kg, self.top_level_schema.namespace_prefix, task_entity.parent_entity.iri, ) ) # task_type_index was incremented when creating the task entity # reset the index to match the currently created task's index task_type_index = self.task_type_dict[task_entity.type] - 1 for output_property, output_parent_entity_iri, data_structure_iri in results: # instantiate and add data entity output_data_entity_iri = output_parent_entity_iri + str(task_type_index) output_data_entity = DataEntity( output_data_entity_iri, DataEntity(output_parent_entity_iri, self.data_entity), has_data_structure_iri=data_structure_iri, ) add_and_attach_data_entity( self.output_kg, self.data, self.top_level_schema.kg, self.top_level_schema.namespace, output_data_entity, self.top_level_schema.namespace.hasOutput, task_entity, ) task_entity.output_dict[output_parent_entity_iri.split("#")[1]] = output_data_entity self.existing_data_entity_list.append(output_data_entity)
(self, task_entity: exe_kg_lib.classes.task.Task) -> NoneType
68,488
exe_kg_lib.classes.exe_kg
_bind_used_namespaces
Binds top-level, bottom-level and Visualization KG schemas' namespaces with their prefixes Adds these bindings to the Graphs of kgs list Args: kgs: list of Graph objects to which the namespace bindings are added
def _bind_used_namespaces(self, kgs: List[Graph]): """ Binds top-level, bottom-level and Visualization KG schemas' namespaces with their prefixes Adds these bindings to the Graphs of kgs list Args: kgs: list of Graph objects to which the namespace bindings are added """ for kg in kgs: kg.bind(self.top_level_schema.namespace_prefix, self.top_level_schema.namespace) for bottom_level_kg_schema in self.bottom_level_schemata.values(): kg.bind( bottom_level_kg_schema.namespace_prefix, bottom_level_kg_schema.namespace, )
(self, kgs: List[rdflib.graph.Graph])
68,489
exe_kg_lib.classes.exe_kg
_create_method
Instantiate and attach method to task of self.output_kg Args: task_to_attach_to: the task to attach the created method to
def _create_method(self, task_to_attach_to: Entity) -> None: """ Instantiate and attach method to task of self.output_kg Args: task_to_attach_to: the task to attach the created method to """ print(f"Please choose a method for {task_to_attach_to.type}:") # fetch compatible methods and their properties from KG schema results = list( get_method_properties_and_methods( self.input_kg, self.top_level_schema.namespace_prefix, task_to_attach_to.parent_entity.iri, ) ) for i, pair in enumerate(results): tmp_method = pair[1].split("#")[1] print(f"\t{str(i)}. {tmp_method}") method_id = int(input()) selected_property_and_method = results[method_id] method_parent = next( filter( lambda m: m.iri == selected_property_and_method[1], self.atomic_method_list, ), None, ) # instantiate method and link it with the task using the appropriate selected_property_and_method[0] relation add_instance_from_parent_with_relation( task_to_attach_to.namespace, self.output_kg, method_parent, selected_property_and_method[0], task_to_attach_to, name_instance(self.task_type_dict, self.method_type_dict, method_parent), ) # fetch compatible data properties from KG schema property_list = get_data_properties_plus_inherited_by_class_iri(self.input_kg, method_parent.iri) if property_list: print(f"Please enter requested properties for {method_parent.name}:") # add data properties to the task with given values for pair in property_list: property_instance = URIRef(pair[0]) range = pair[1].split("#")[1] range_iri = pair[1] input_property = Literal( lexical_or_value=input("\t{} in range({}): ".format(pair[0].split("#")[1], range)), datatype=range_iri, ) add_literal(self.output_kg, task_to_attach_to, property_instance, input_property) check_kg_executability(self.output_kg)
(self, task_to_attach_to: exe_kg_lib.classes.entity.Entity) -> NoneType
68,490
exe_kg_lib.classes.exe_kg
_create_next_task_cli
Instantiates and adds task (without method) based on user input to self.output_kg Adds task's output data entities to self.existing_data_entity_list Returns: None: in case user wants to end the pipeline creation Task: object of the created task
def _create_next_task_cli(self) -> Union[None, Task]: """ Instantiates and adds task (without method) based on user input to self.output_kg Adds task's output data entities to self.existing_data_entity_list Returns: None: in case user wants to end the pipeline creation Task: object of the created task """ print("Please choose the next task") for i, t in enumerate(self.atomic_task_list): if not self.canvas_task_created and t.name == "PlotTask": continue if self.canvas_task_created and t.name == "CanvasTask": continue print(f"\t{str(i)}. {t.name}") print(f"\t{str(-1)}. End pipeline") next_task_id = int(input()) if next_task_id == -1: return None next_task_parent = self.atomic_task_list[next_task_id] relation_iri = ( self.top_level_schema.namespace.hasNextTask if self.last_created_task.type != "Pipeline" else self.top_level_schema.namespace.hasStartTask ) # use relation depending on the previous task # instantiate task and link it with the previous one task_entity = add_instance_from_parent_with_relation( next_task_parent.namespace, self.output_kg, next_task_parent, relation_iri, self.last_created_task, name_instance(self.task_type_dict, self.method_type_dict, next_task_parent), ) task_entity = Task(task_entity.iri, task_entity.parent_entity) # create Task object from Entity object's info # instantiate and add input data entities to the task based on user input self._add_inputs_to_task(next_task_parent.namespace, task_entity) # instantiate and add output data entities to the task, as specified in the KG schema self._add_outputs_to_task(task_entity) self.last_created_task = task_entity if task_entity.type == "CanvasTask": self.canvas_task_created = True return task_entity
(self) -> Optional[exe_kg_lib.classes.task.Task]
68,491
exe_kg_lib.classes.exe_kg
_parse_data_entity_by_iri
Parses an input or output data entity of self.input_kg and stores the parsed info in a Python object Args: in_out_data_entity_iri: IRI of the KG entity to parse Returns: None: if given IRI does not belong to an instance of a sub-class of self.top_level_schema.namespace.DataEntity DataEntity: object with data entity's parsed properties
def _parse_data_entity_by_iri(self, in_out_data_entity_iri: str) -> Optional[DataEntity]: """ Parses an input or output data entity of self.input_kg and stores the parsed info in a Python object Args: in_out_data_entity_iri: IRI of the KG entity to parse Returns: None: if given IRI does not belong to an instance of a sub-class of self.top_level_schema.namespace.DataEntity DataEntity: object with data entity's parsed properties """ # fetch type of entity with given IRI query_result = get_first_query_result_if_exists( query_entity_parent_iri, self.input_kg, in_out_data_entity_iri, self.top_level_schema.namespace.DataEntity, ) if query_result is None: return None data_entity_parent_iri = str(query_result[0]) # fetch IRI of data entity that is referenced by the given entity query_result = get_first_query_result_if_exists( query_data_entity_reference_iri, self.input_kg, self.top_level_schema.namespace_prefix, in_out_data_entity_iri, ) if query_result is None: # no referenced data entity found data_entity_ref_iri = in_out_data_entity_iri else: data_entity_ref_iri = str(query_result[0]) # create DataEntity object to store all the parsed properties data_entity = DataEntity(in_out_data_entity_iri, Entity(data_entity_parent_iri)) data_entity.has_reference = data_entity_ref_iri.split("#")[1] for s, p, o in self.input_kg.triples((URIRef(data_entity_ref_iri), None, None)): # parse property name and value field_name = property_name_to_field_name(str(p)) if not hasattr(data_entity, field_name) or field_name == "type": continue field_value = self._property_value_to_field_value(str(o)) setattr(data_entity, field_name, field_value) # set field value dynamically return data_entity
(self, in_out_data_entity_iri: str) -> Optional[exe_kg_lib.classes.data_entity.DataEntity]
68,492
exe_kg_lib.classes.exe_kg
_parse_kgs
Fills lists with subclasses of top-level KG schema classes and initializes dicts used for unique naming
def _parse_kgs(self) -> None: """ Fills lists with subclasses of top-level KG schema classes and initializes dicts used for unique naming """ atomic_task_subclasses = get_subclasses_of(self.atomic_task.iri, self.input_kg) for t in list(atomic_task_subclasses): task = Entity(t[0], self.atomic_task) self.atomic_task_list.append(task) self.task_type_dict[task.name] = 1 atomic_method_subclasses = get_subclasses_of(self.atomic_method.iri, self.input_kg) for m in list(atomic_method_subclasses): method = Entity(m[0], self.atomic_method) self.atomic_method_list.append(method) self.method_type_dict[method.name] = 1 data_type_subclasses = get_subclasses_of(self.data_entity.iri, self.input_kg) for d in list(data_type_subclasses): data_type = Entity(d[0], self.data_entity) self.data_type_list.append(data_type) data_semantics_subclasses = get_subclasses_of(self.data_semantics.iri, self.top_level_schema.kg) for d in list(data_semantics_subclasses): if d[0] == self.data_entity.iri: continue data_semantics = Entity(d[0], self.data_semantics) self.data_semantics_list.append(data_semantics) data_structure_subclasses = get_subclasses_of(self.data_structure.iri, self.top_level_schema.kg) for d in list(data_structure_subclasses): if d[0] == self.data_entity.iri: continue data_structure = Entity(d[0], self.data_structure) self.data_structure_list.append(data_structure)
(self) -> NoneType
68,493
exe_kg_lib.classes.exe_kg
_parse_task_by_iri
Parses a task of self.input_kg and stores the info in an object of a sub-class of Task The sub-class name and the object's fields are mapped dynamically based on the found KG components Args: task_iri: IRI of the task to be parsed canvas_method: optional object to pass as argument for task object initialization Returns: Task: object of a sub-class of Task, containing all the parsed info
def _parse_task_by_iri(self, task_iri: str, canvas_method: visual_tasks.CanvasTaskCanvasMethod = None) -> Task: """ Parses a task of self.input_kg and stores the info in an object of a sub-class of Task The sub-class name and the object's fields are mapped dynamically based on the found KG components Args: task_iri: IRI of the task to be parsed canvas_method: optional object to pass as argument for task object initialization Returns: Task: object of a sub-class of Task, containing all the parsed info """ # fetch type of entity with given IRI query_result = get_first_query_result_if_exists( query_entity_parent_iri, self.input_kg, task_iri, self.top_level_schema.namespace.AtomicTask, ) if ( query_result is None ): # given IRI does not belong to an instance of a sub-class of self.top_level_schema.namespace.AtomicTask print(f"Cannot retrieve parent of task with iri {task_iri}. Exiting...") exit(1) task_parent_iri = str(query_result[0]) task = Task(task_iri, Task(task_parent_iri)) method = get_method_by_task_iri( self.input_kg, self.top_level_schema.namespace_prefix, self.top_level_schema.namespace, task_iri, ) if method is None: print(f"Cannot retrieve method for task with iri: {task_iri}") # perform automatic mapping of KG task class to Python sub-class class_name = task.type + method.type Class = getattr(visual_tasks, class_name, None) if Class is None: Class = getattr(statistic_tasks, class_name, None) if Class is None: Class = getattr(ml_tasks, class_name, None) # create Task sub-class object if canvas_method: task = Class(task_iri, Task(task_parent_iri), canvas_method) else: task = Class(task_iri, Task(task_parent_iri)) task_related_triples = self.input_kg.triples((URIRef(task_iri), None, None)) method_related_triples = self.input_kg.triples((URIRef(method.iri), None, None)) for s, p, o in itertools.chain(task_related_triples, method_related_triples): # parse property name and value field_name = property_name_to_field_name(str(p)) if not hasattr(task, field_name) or field_name == "type": continue field_value = self._property_value_to_field_value(str(o)) # set field value dynamically if field_name == "has_input" or field_name == "has_output": getattr(task, field_name).append(field_value) else: setattr(task, field_name, field_value) return task
(self, task_iri: str, canvas_method: Optional[exe_kg_lib.classes.tasks.visual_tasks.CanvasTaskCanvasMethod] = None) -> exe_kg_lib.classes.task.Task
68,494
exe_kg_lib.classes.exe_kg
_property_value_to_field_value
Converts property value to Python class field value If property_value is not a data entity's IRI, it is returned as is Else, its property values are converted recursively and stored in a DataEntity object Args: property_value: value of the property as found in KG Returns: str: property_value parameter as is DataEntity: object containing parsed data entity properties
def _property_value_to_field_value(self, property_value: str) -> Union[str, DataEntity]: """ Converts property value to Python class field value If property_value is not a data entity's IRI, it is returned as is Else, its property values are converted recursively and stored in a DataEntity object Args: property_value: value of the property as found in KG Returns: str: property_value parameter as is DataEntity: object containing parsed data entity properties """ if "#" in property_value: data_entity = self._parse_data_entity_by_iri(property_value) if data_entity is None: return property_value return data_entity return property_value
(self, property_value: str) -> Union[str, exe_kg_lib.classes.data_entity.DataEntity]
68,495
exe_kg_lib.classes.exe_kg
add_task
Instantiates and adds a new task entity to self.output_kg Components attached to the task during creation: input and output data entities, and a method with properties Args: kg_schema_short: abbreviated name of the KG schema in which the task and method belong task: task name input_data_entity_dict: keys -> input names of the specified task values -> lists of DataEntity objects to be added as input to the task method: method name properties_dict: keys -> property names of the specified method values -> values to be added as parameters to the method Returns: Task: object of the created task
def add_task( self, kg_schema_short: str, task: str, input_data_entity_dict: Dict[str, List[DataEntity]], method: str, properties_dict: Dict[str, Union[str, int, float]], ) -> Task: """ Instantiates and adds a new task entity to self.output_kg Components attached to the task during creation: input and output data entities, and a method with properties Args: kg_schema_short: abbreviated name of the KG schema in which the task and method belong task: task name input_data_entity_dict: keys -> input names of the specified task values -> lists of DataEntity objects to be added as input to the task method: method name properties_dict: keys -> property names of the specified method values -> values to be added as parameters to the method Returns: Task: object of the created task """ kg_schema_to_use = self.bottom_level_schemata[kg_schema_short] relation_iri = ( self.top_level_schema.namespace.hasNextTask if self.last_created_task.type != "Pipeline" else self.top_level_schema.namespace.hasStartTask ) # use relation depending on the previous task # instantiate task and link it with the previous one parent_task = Task(kg_schema_to_use.namespace + task, self.atomic_task) added_entity = add_instance_from_parent_with_relation( kg_schema_to_use.namespace, self.output_kg, parent_task, relation_iri, self.last_created_task, name_instance(self.task_type_dict, self.method_type_dict, parent_task), ) next_task = Task.from_entity(added_entity) # create Task object from Entity object # instantiate and add given input data entities to the task self._add_inputs_to_task(kg_schema_to_use.namespace, next_task, input_data_entity_dict) # instantiate and add output data entities to the task, as specified in the KG schema self._add_outputs_to_task(next_task) method_parent = Entity(kg_schema_to_use.namespace + method, self.atomic_method) # fetch compatible methods and their properties from KG schema results = list( get_method_properties_and_methods( self.input_kg, self.top_level_schema.namespace_prefix, next_task.parent_entity.iri, ) ) chosen_property_method = next( filter(lambda pair: pair[1].split("#")[1] == method, results), None ) # match given method_type with query result if chosen_property_method is None: print(f"Property connecting task of type {task} with method of type {method} not found") exit(1) # instantiate method and link it with the task using the appropriate chosen_property_method[0] relation method_entity = add_instance_from_parent_with_relation( kg_schema_to_use.namespace, self.output_kg, method_parent, chosen_property_method[0], next_task, name_instance(self.task_type_dict, self.method_type_dict, method_parent), ) # fetch compatible data properties from KG schema property_list = get_data_properties_plus_inherited_by_class_iri(self.input_kg, method_parent.iri) # add data properties to the task with given values for pair in property_list: property_iri = pair[0] property_name = property_iri.split("#")[1] range_iri = pair[1] input_property = Literal( lexical_or_value=properties_dict[property_name], datatype=range_iri, ) add_literal(self.output_kg, method_entity, property_iri, input_property) self.last_created_task = next_task # store created task return next_task
(self, kg_schema_short: str, task: str, input_data_entity_dict: Dict[str, List[exe_kg_lib.classes.data_entity.DataEntity]], method: str, properties_dict: Dict[str, Union[str, int, float]]) -> exe_kg_lib.classes.task.Task
68,496
exe_kg_lib.classes.exe_kg
create_data_entity
Creates a DataEntity object Args: name: name of the data entity source_value: name of the data source corresponding to a column of the data data_semantics_name: name of the data semantics entity data_structure_name: name of the data structure entity Returns: DataEntity: object initialized with the given parameter values
def create_data_entity( self, name: str, source_value: str, data_semantics_name: str, data_structure_name: str, ) -> DataEntity: """ Creates a DataEntity object Args: name: name of the data entity source_value: name of the data source corresponding to a column of the data data_semantics_name: name of the data semantics entity data_structure_name: name of the data structure entity Returns: DataEntity: object initialized with the given parameter values """ return DataEntity( self.top_level_schema.namespace + name, self.data_entity, source_value, self.top_level_schema.namespace + data_semantics_name, self.top_level_schema.namespace + data_structure_name, )
(self, name: str, source_value: str, data_semantics_name: str, data_structure_name: str) -> exe_kg_lib.classes.data_entity.DataEntity
68,497
exe_kg_lib.classes.exe_kg
create_pipeline_task
Instantiates and adds a new pipeline task entity to self.output_kg Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks Returns: Task: created pipeline
def create_pipeline_task(self, pipeline_name: str, input_data_path: str) -> Task: """ Instantiates and adds a new pipeline task entity to self.output_kg Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks Returns: Task: created pipeline """ pipeline = create_pipeline_task( self.top_level_schema.namespace, self.pipeline, self.output_kg, pipeline_name, input_data_path, ) self.last_created_task = pipeline return pipeline
(self, pipeline_name: str, input_data_path: str) -> exe_kg_lib.classes.task.Task
68,498
exe_kg_lib.classes.exe_kg
execute_pipeline
Retrieves and executes pipeline by parsing self.input_kg
def execute_pipeline(self): """ Retrieves and executes pipeline by parsing self.input_kg """ pipeline_iri, input_data_path, next_task_iri = get_pipeline_and_first_task_iri( self.input_kg, self.top_level_schema.namespace_prefix ) input_data = pd.read_csv(input_data_path, delimiter=",", encoding="ISO-8859-1") canvas_method = None # stores Task object that corresponds to a task of type CanvasTask task_output_dict = {} # gradually filled with outputs of executed tasks while next_task_iri is not None: next_task = self._parse_task_by_iri(next_task_iri, canvas_method) output = next_task.run_method(task_output_dict, input_data) if output: task_output_dict.update(output) if next_task.type == "CanvasTask": canvas_method = next_task next_task_iri = next_task.has_next_task
(self)
68,499
exe_kg_lib.classes.exe_kg
save_created_kg
Saves self.output_kg to a file Args: file_path: path of the output file
def save_created_kg(self, file_path: str) -> None: """ Saves self.output_kg to a file Args: file_path: path of the output file """ check_kg_executability(self.output_kg) dir_path = os.path.dirname(file_path) os.makedirs(dir_path, exist_ok=True) self.output_kg.serialize(destination=file_path) print(f"Executable KG saved in {file_path}")
(self, file_path: str) -> NoneType
68,500
exe_kg_lib.classes.exe_kg
start_pipeline_creation
Handles the pipeline creation through CLI Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks
def start_pipeline_creation(self, pipeline_name: str, input_data_path: str) -> None: """ Handles the pipeline creation through CLI Args: pipeline_name: name for the pipeline input_data_path: path for the input data to be used by the pipeline's tasks """ pipeline = create_pipeline_task( self.top_level_schema.namespace, self.pipeline, self.output_kg, pipeline_name, input_data_path, ) self.last_created_task = pipeline while True: next_task = self._create_next_task_cli() if next_task is None: break self._create_method(next_task)
(self, pipeline_name: str, input_data_path: str) -> NoneType
68,503
mltable.mltable
DataType
Helper class for handling the proper manipulation of supported column types (int, bool, string, etc.). Currently used with `MLTable.convert_column_types(...)` & `from_delimited_files(...)` for specifying which types to convert columns to. Different types are selected with `DataType.from_*(...)` methods.
class DataType: """ Helper class for handling the proper manipulation of supported column types (int, bool, string, etc.). Currently used with `MLTable.convert_column_types(...)` & `from_delimited_files(...)` for specifying which types to convert columns to. Different types are selected with `DataType.from_*(...)` methods. """ _MISMATCH_AS_TYPES = ('error', 'true', 'false') @staticmethod def _from_raw(value): if isinstance(value, DataType): return value if value == 'string': return DataType.to_string() if value == 'int': return DataType.to_int() if value == 'float': return DataType.to_float() if value == 'boolean': return DataType.to_bool() if value == 'stream_info': return DataType.to_stream() raise UserErrorException(f"'{value}' is not a supported string conversion for `mltable.DataType`, " "supported types are 'string', 'int', 'float', 'boolean', & 'stream_info'") @staticmethod def _create(data_type): dt = DataType() dt._data_type = data_type dt._arguments = _SIMPLE_TYPES.get(data_type) return dt @staticmethod def _format_str_list(values, var_name): if values is None: return None if isinstance(values, str): return [values] if isinstance(values, (list, tuple, set)) and any(not isinstance(x, str) for x in values): raise UserErrorException(f'`{var_name}` must only consists of strings') if len(values) == 0: return None return list(values) @staticmethod def to_string(): """Configure conversion to string.""" return DataType._create(FieldType.STRING) @staticmethod def to_int(): """Configure conversion to 64-bit integer.""" return DataType._create(FieldType.INTEGER) @staticmethod def to_float(): """Configure conversion to 64-bit float.""" return DataType._create(FieldType.DECIMAL) @staticmethod def to_bool(true_values: Optional[List[str]] = None, false_values: Optional[List[str]] = None, mismatch_as: Optional[str] = None): """ Configure conversion to bool. `true_values` & `false_values` must both be None or non-empty lists of, string else an error will be thrown. :param true_values: List of values in dataset to designate as True. For example, ['1', 'yes'] will be replaced as [True, True]. The true_values need to be present in the dataset otherwise None will be returned for values not present. :type true_values: builtin.list[str] :param false_values: List of values in dataset to designate as False. For example, ['0', 'no'] will be replaced as [False, False]. The false_values need to be present in the dataset otherwise None will be returned for values not present. :type false_values: builtin.list[str] :param mismatch_as: How cast strings that are neither in `true_values` or `false_values`; 'true' casts all as True, 'false' as False, and 'error' will error instead of casting. Defaults to None which equal to 'error'. :type mismatch_as: Optional[str] """ dt = DataType._create(FieldType.BOOLEAN) if mismatch_as is not None and mismatch_as not in DataType._MISMATCH_AS_TYPES: raise UserErrorException(f"`mismatch_as` can only be {DataType._MISMATCH_AS_TYPES}") true_values = DataType._format_str_list(true_values, 'true_values') false_values = DataType._format_str_list(false_values, 'false_values') if (true_values is None) != (false_values is None): raise UserErrorException('`true_values` and `false_values` must both be None or non-empty list of strings') if true_values is not None and false_values is not None \ and (len(set(true_values).intersection(false_values)) > 0): raise UserErrorException('`true_values` and `false_values` can not have overlapping values') type_name = dt._arguments args = {type_name: {}} if true_values and false_values: args[type_name]['true_values'] = true_values args[type_name]['false_values'] = false_values args[type_name]['mismatch_as'] = 'error' if mismatch_as: args[type_name]['mismatch_as'] = mismatch_as dt._arguments = args if args[type_name] else type_name return dt @staticmethod def to_stream(): """Configure conversion to stream.""" return DataType._create(FieldType.STREAM) @staticmethod def to_datetime(formats: Union[str, List[str]], date_constant: Optional[str] = None): """ Configure conversion to datetime. :param formats: Formats to try for datetime conversion. For example `%d-%m-%Y` for data in "day-month-year", and `%Y-%m-%dT%H:%M:%S.%f` for "combined date and time representation" according to ISO 8601. * %Y: Year with 4 digits * %y: Year with 2 digits * %m: Month in digits * %b: Month represented by its abbreviated name in 3 letters, like Aug * %B: Month represented by its full name, like August * %d: Day in digits * %H: Hour as represented in 24-hour clock time * %I: Hour as represented in 12-hour clock time * %M: Minute in 2 digits * %S: Second in 2 digits * %f: Microsecond * %p: AM/PM designator * %z: Timezone, for example: -0700 :type formats: str or builtin.list[str] :param date_constant: If the column contains only time values, a date to apply to the resulting DateTime. :type date_constant: Optional[str] """ dt = DataType._create(FieldType.DATE) type_name = _SIMPLE_TYPES.get(FieldType.DATE) if isinstance(formats, str): formats = [formats] elif not (isinstance(formats, (list, tuple)) and all(isinstance(x, str) for x in formats)): raise UserErrorException( 'Expect `formats` to be a single string, a list of strings, or a tuple of strings') dt._arguments = {type_name: {'formats': formats}} if date_constant is not None: dt._arguments[type_name]['date_constant'] = date_constant return dt
()
68,504
mltable.mltable
_create
null
@staticmethod def _create(data_type): dt = DataType() dt._data_type = data_type dt._arguments = _SIMPLE_TYPES.get(data_type) return dt
(data_type)
68,505
mltable.mltable
_format_str_list
null
@staticmethod def _format_str_list(values, var_name): if values is None: return None if isinstance(values, str): return [values] if isinstance(values, (list, tuple, set)) and any(not isinstance(x, str) for x in values): raise UserErrorException(f'`{var_name}` must only consists of strings') if len(values) == 0: return None return list(values)
(values, var_name)
68,506
mltable.mltable
_from_raw
null
@staticmethod def _from_raw(value): if isinstance(value, DataType): return value if value == 'string': return DataType.to_string() if value == 'int': return DataType.to_int() if value == 'float': return DataType.to_float() if value == 'boolean': return DataType.to_bool() if value == 'stream_info': return DataType.to_stream() raise UserErrorException(f"'{value}' is not a supported string conversion for `mltable.DataType`, " "supported types are 'string', 'int', 'float', 'boolean', & 'stream_info'")
(value)
68,507
mltable.mltable
to_bool
Configure conversion to bool. `true_values` & `false_values` must both be None or non-empty lists of, string else an error will be thrown. :param true_values: List of values in dataset to designate as True. For example, ['1', 'yes'] will be replaced as [True, True]. The true_values need to be present in the dataset otherwise None will be returned for values not present. :type true_values: builtin.list[str] :param false_values: List of values in dataset to designate as False. For example, ['0', 'no'] will be replaced as [False, False]. The false_values need to be present in the dataset otherwise None will be returned for values not present. :type false_values: builtin.list[str] :param mismatch_as: How cast strings that are neither in `true_values` or `false_values`; 'true' casts all as True, 'false' as False, and 'error' will error instead of casting. Defaults to None which equal to 'error'. :type mismatch_as: Optional[str]
@staticmethod def to_bool(true_values: Optional[List[str]] = None, false_values: Optional[List[str]] = None, mismatch_as: Optional[str] = None): """ Configure conversion to bool. `true_values` & `false_values` must both be None or non-empty lists of, string else an error will be thrown. :param true_values: List of values in dataset to designate as True. For example, ['1', 'yes'] will be replaced as [True, True]. The true_values need to be present in the dataset otherwise None will be returned for values not present. :type true_values: builtin.list[str] :param false_values: List of values in dataset to designate as False. For example, ['0', 'no'] will be replaced as [False, False]. The false_values need to be present in the dataset otherwise None will be returned for values not present. :type false_values: builtin.list[str] :param mismatch_as: How cast strings that are neither in `true_values` or `false_values`; 'true' casts all as True, 'false' as False, and 'error' will error instead of casting. Defaults to None which equal to 'error'. :type mismatch_as: Optional[str] """ dt = DataType._create(FieldType.BOOLEAN) if mismatch_as is not None and mismatch_as not in DataType._MISMATCH_AS_TYPES: raise UserErrorException(f"`mismatch_as` can only be {DataType._MISMATCH_AS_TYPES}") true_values = DataType._format_str_list(true_values, 'true_values') false_values = DataType._format_str_list(false_values, 'false_values') if (true_values is None) != (false_values is None): raise UserErrorException('`true_values` and `false_values` must both be None or non-empty list of strings') if true_values is not None and false_values is not None \ and (len(set(true_values).intersection(false_values)) > 0): raise UserErrorException('`true_values` and `false_values` can not have overlapping values') type_name = dt._arguments args = {type_name: {}} if true_values and false_values: args[type_name]['true_values'] = true_values args[type_name]['false_values'] = false_values args[type_name]['mismatch_as'] = 'error' if mismatch_as: args[type_name]['mismatch_as'] = mismatch_as dt._arguments = args if args[type_name] else type_name return dt
(true_values: Optional[List[str]] = None, false_values: Optional[List[str]] = None, mismatch_as: Optional[str] = None)