index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
71,052
evaluate.evaluator.base
_infer_device
Helper function to check if GPU or CPU is available for inference.
@staticmethod def _infer_device() -> int: """Helper function to check if GPU or CPU is available for inference.""" # try infer with torch first try: import torch if torch.cuda.is_available(): device = 0 # first GPU else: device = -1 # CPU except ImportError: # if not available try TF try: import tensorflow as tf if len(tf.config.list_physical_devices("GPU")) > 0: device = 0 # first GPU else: device = -1 # CPU except ImportError: device = -1 if device == -1: logger.info("No GPU found. The default device for pipeline inference is set to CPU.") else: logger.info("GPU found. The default device for pipeline inference is set to GPU (CUDA:0).") return device
() -> int
71,053
evaluate.evaluator.base
call_pipeline
null
def call_pipeline(self, pipe, *args, **kwargs): start_time = perf_counter() pipe_output = pipe(*args, **kwargs, **self.PIPELINE_KWARGS) end_time = perf_counter() return pipe_output, self._compute_time_perf(start_time, end_time, len(pipe_output))
(self, pipe, *args, **kwargs)
71,054
evaluate.evaluator.base
check_for_mismatch_in_device_setup
null
@staticmethod def check_for_mismatch_in_device_setup(device, model_or_pipeline): if device is not None and device != -1 and isinstance(model_or_pipeline, Pipeline): if model_or_pipeline.device.type == "cpu": raise ValueError( "The value of the `device` kwarg passed to `compute` suggests that this pipe should be run on an " "accelerator, but the pipe was instantiated on CPU. Pass `device` to the pipeline during " "initialization to use an accelerator, or pass `device=None` to `compute`. " ) elif device != model_or_pipeline.device.index: raise ValueError( f"This pipeline was instantiated on device {model_or_pipeline.device.index} but device={device} was passed to `compute`." )
(device, model_or_pipeline)
71,055
evaluate.evaluator.base
check_required_columns
Ensure the columns required for the evaluation are present in the dataset. Args: data (`str` or [`Dataset`]): Specifies the dataset we will run evaluation on. columns_names (`List[str]`): List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method, while the values are the column names to check. Example: ```py >>> from datasets import load_dataset >>> from evaluate import evaluator >>> data = load_dataset("rotten_tomatoes', split="train") >>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"}) ```
def check_required_columns(self, data: Union[str, Dataset], columns_names: Dict[str, str]): """ Ensure the columns required for the evaluation are present in the dataset. Args: data (`str` or [`Dataset`]): Specifies the dataset we will run evaluation on. columns_names (`List[str]`): List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method, while the values are the column names to check. Example: ```py >>> from datasets import load_dataset >>> from evaluate import evaluator >>> data = load_dataset("rotten_tomatoes', split="train") >>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"}) ``` """ for input_name, column_name in columns_names.items(): if column_name not in data.column_names: raise ValueError( f"Invalid `{input_name}` {column_name} specified. The dataset contains the following columns: {data.column_names}." )
(self, data: Union[str, datasets.arrow_dataset.Dataset], columns_names: Dict[str, str])
71,056
evaluate.evaluator.audio_classification
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"file"`): The name of the column containing either the audio files or a raw waveform, represented as a numpy array, in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: <Tip> Remember that, in order to process audio files, you need ffmpeg installed (https://ffmpeg.org/download.html) </Tip> ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("audio-classification") >>> data = load_dataset("superb", 'ks', split="test[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", >>> data=data, >>> label_column="label", >>> input_column="file", >>> metric="accuracy", >>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} >>> ) ``` <Tip> The evaluator supports raw audio data as well, in the form of a numpy array. However, be aware that calling the audio column automatically decodes and resamples the audio files, which can be slow for large datasets. </Tip> ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("audio-classification") >>> data = load_dataset("superb", 'ks', split="test[:40]") >>> data = data.map(lambda example: {"audio": example["audio"]["array"]}) >>> results = task_evaluator.compute( >>> model_or_pipeline=""superb/wav2vec2-base-superb-ks"", >>> data=data, >>> label_column="label", >>> input_column="audio", >>> metric="accuracy", >>> label_mapping={0: "yes", 1: "no", 2: "up", 3: "down"} >>> ) ```
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "file", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"file"`): The name of the column containing either the audio files or a raw waveform, represented as a numpy array, in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, feature_extractor=feature_extractor, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, label_mapping=label_mapping, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, feature_extractor: Union[str, ForwardRef('FeatureExtractionMixin'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'file', label_column: str = 'label', label_mapping: Optional[Dict[str, numbers.Number]] = None) -> Tuple[Dict[str, float], Any]
71,057
evaluate.evaluator.base
compute_metric
Compute and return metrics.
def compute_metric( self, metric: EvaluationModule, metric_inputs: Dict, strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None, ): """Compute and return metrics.""" result = metric.compute(**metric_inputs, **self.METRIC_KWARGS) if strategy == "bootstrap": metric_keys = result.keys() bootstrap_dict = self._compute_confidence_interval( metric, metric_inputs, metric_keys, confidence_level, n_resamples, random_state, ) for key in metric_keys: bootstrap_dict[key]["score"] = result[key] return bootstrap_dict return result
(self, metric: evaluate.module.EvaluationModule, metric_inputs: Dict, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None)
71,058
evaluate.evaluator.base
get_dataset_split
Infers which split to use if `None` is given. Args: data (`str`): Name of dataset. subset (`str`): Name of config for datasets with multiple configurations (e.g. 'glue/cola'). split (`str`, defaults to `None`): Split to use. Returns: `split`: `str` containing which split to use Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes") WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST 'test' ```
@staticmethod def get_dataset_split(data, subset=None, split=None): """ Infers which split to use if `None` is given. Args: data (`str`): Name of dataset. subset (`str`): Name of config for datasets with multiple configurations (e.g. 'glue/cola'). split (`str`, defaults to `None`): Split to use. Returns: `split`: `str` containing which split to use Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes") WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST 'test' ``` """ if split is None: split = choose_split(data, subset) logger.warning(f"Dataset split not defined! Automatically evaluating with split: {split.upper()}") return split
(data, subset=None, split=None)
71,059
evaluate.evaluator.base
load_data
Load dataset with given subset and split. Args: data ([`Dataset`] or `str`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Specifies dataset subset to be passed to `name` in `load_dataset`. To be used with datasets with several configurations (e.g. glue/sst2). split (`str`, defaults to `None`): User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`). If not defined and data is a `str` type, will automatically select the best one via `choose_split()`. Returns: data ([`Dataset`]): Loaded dataset which will be used for evaluation. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train") Dataset({ features: ['text', 'label'], num_rows: 8530 }) ```
def load_data(self, data: Union[str, Dataset], subset: str = None, split: str = None): """ Load dataset with given subset and split. Args: data ([`Dataset`] or `str`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Specifies dataset subset to be passed to `name` in `load_dataset`. To be used with datasets with several configurations (e.g. glue/sst2). split (`str`, defaults to `None`): User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`). If not defined and data is a `str` type, will automatically select the best one via `choose_split()`. Returns: data ([`Dataset`]): Loaded dataset which will be used for evaluation. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train") Dataset({ features: ['text', 'label'], num_rows: 8530 }) ``` """ if isinstance(data, str): split = self.get_dataset_split(data, subset, split) data = load_dataset(data, name=subset, split=split) return data elif isinstance(data, Dataset): if split is not None or subset is not None: logger.warning("`data` is a preloaded Dataset! Ignoring `subset` and `split`.") return data else: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." )
(self, data: Union[str, datasets.arrow_dataset.Dataset], subset: Optional[str] = None, split: Optional[str] = None)
71,060
evaluate.evaluator.audio_classification
predictions_processor
null
def predictions_processor(self, predictions, label_mapping): pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions] pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label] return {"predictions": pred_label}
(self, predictions, label_mapping)
71,061
evaluate.evaluator.base
prepare_data
Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column(`str`, *optional*): The name of the column containing the second text feature if there is one. Otherwise, set to `None`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. Example: ```py >>> from evaluate import evaluator >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label") ```
def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs): """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column(`str`, *optional*): The name of the column containing the second text feature if there is one. Otherwise, set to `None`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. Example: ```py >>> from evaluate import evaluator >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label") ``` """ self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) return {"references": data[label_column]}, DatasetColumn(data, input_column)
(self, data: datasets.arrow_dataset.Dataset, input_column: str, label_column: str, *args, **kwargs)
71,062
evaluate.evaluator.base
prepare_metric
Prepare metric. Args: metric (`str` or [`EvaluationModule`], defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. Returns: The loaded metric. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_metric("accuracy") ```
def prepare_metric(self, metric: Union[str, EvaluationModule]): """ Prepare metric. Args: metric (`str` or [`EvaluationModule`], defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. Returns: The loaded metric. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_metric("accuracy") ``` """ # Prepare metric. if metric is None: if self.default_metric_name is None: raise ValueError( "`Evaluator` doesn't specify a default metric. Please specify a valid `metric` argument." ) metric = load(self.default_metric_name) elif isinstance(metric, str): metric = load(metric) return metric
(self, metric: Union[str, evaluate.module.EvaluationModule])
71,063
evaluate.evaluator.base
prepare_pipeline
Prepare pipeline. Args: model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`): Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. Returns: The initialized pipeline. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased") ```
def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): """ Prepare pipeline. Args: model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`): Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. Returns: The initialized pipeline. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased") ``` """ if device is None: device = self._infer_device() if ( isinstance(model_or_pipeline, str) or isinstance(model_or_pipeline, transformers.PreTrainedModel) or isinstance(model_or_pipeline, transformers.TFPreTrainedModel) ): pipe = pipeline( self.task, model=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) else: if model_or_pipeline is None: pipe = pipeline(self.task, device=device) else: pipe = model_or_pipeline if tokenizer is not None and feature_extractor is not None: logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).") if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")): raise ValueError( f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task." ) return pipe
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')], tokenizer: Union[ForwardRef('PreTrainedTokenizerBase'), ForwardRef('FeatureExtractionMixin')] = None, feature_extractor: Union[ForwardRef('PreTrainedTokenizerBase'), ForwardRef('FeatureExtractionMixin')] = None, device: int = None)
71,064
evaluate.evaluator.automatic_speech_recognition
AutomaticSpeechRecognitionEvaluator
Automatic speech recognition evaluator. This automatic speech recognition evaluator can currently be loaded from [`evaluator`] using the default task name `automatic-speech-recognition`. Methods in this class assume a data format compatible with the [`AutomaticSpeechRecognitionPipeline`].
class AutomaticSpeechRecognitionEvaluator(Evaluator): """ Automatic speech recognition evaluator. This automatic speech recognition evaluator can currently be loaded from [`evaluator`] using the default task name `automatic-speech-recognition`. Methods in this class assume a data format compatible with the [`AutomaticSpeechRecognitionPipeline`]. """ PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="automatic-speech-recognition", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions, label_mapping): return {"predictions": [pred["text"] for pred in predictions]} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "path", label_column: str = "sentence", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"path"`): the name of the column containing the input audio path in the dataset specified by `data`. label_column (`str`, defaults to `"sentence"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. """ if generation_kwargs is not None: self.PIPELINE_KWARGS.update(generation_kwargs) result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, ) return result
(task='automatic-speech-recognition', default_metric_name=None)
71,065
evaluate.evaluator.automatic_speech_recognition
__init__
null
def __init__(self, task="automatic-speech-recognition", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='automatic-speech-recognition', default_metric_name=None)
71,072
evaluate.evaluator.automatic_speech_recognition
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"path"`): the name of the column containing the input audio path in the dataset specified by `data`. label_column (`str`, defaults to `"sentence"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("automatic-speech-recognition") >>> data = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="validation[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="https://huggingface.co/openai/whisper-tiny.en", >>> data=data, >>> input_column="path", >>> label_column="sentence", >>> metric="wer", >>> ) ```
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "path", label_column: str = "sentence", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"path"`): the name of the column containing the input audio path in the dataset specified by `data`. label_column (`str`, defaults to `"sentence"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. """ if generation_kwargs is not None: self.PIPELINE_KWARGS.update(generation_kwargs) result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'path', label_column: str = 'sentence', generation_kwargs: dict = None) -> Tuple[Dict[str, float], Any]
71,076
evaluate.evaluator.automatic_speech_recognition
predictions_processor
null
def predictions_processor(self, predictions, label_mapping): return {"predictions": [pred["text"] for pred in predictions]}
(self, predictions, label_mapping)
71,080
evaluate.module
CombinedEvaluations
null
class CombinedEvaluations: def __init__(self, evaluation_modules, force_prefix=False): from .loading import load # avoid circular imports self.evaluation_module_names = None if isinstance(evaluation_modules, list): self.evaluation_modules = evaluation_modules elif isinstance(evaluation_modules, dict): self.evaluation_modules = list(evaluation_modules.values()) self.evaluation_module_names = list(evaluation_modules.keys()) loaded_modules = [] for module in self.evaluation_modules: if isinstance(module, str): module = load(module) loaded_modules.append(module) self.evaluation_modules = loaded_modules if self.evaluation_module_names is None: self.evaluation_module_names = [module.name for module in self.evaluation_modules] self.force_prefix = force_prefix def add(self, prediction=None, reference=None, **kwargs): """Add one prediction and reference for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]): ... clf_metrics.add(references=ref, predictions=pred) ``` """ for evaluation_module in self.evaluation_modules: batch = {"predictions": prediction, "references": reference, **kwargs} batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} evaluation_module.add(**batch) def add_batch(self, predictions=None, references=None, **kwargs): """Add a batch of predictions and references for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... clf_metrics.add(references=refs, predictions=preds) ``` """ for evaluation_module in self.evaluation_modules: batch = {"predictions": predictions, "references": references, **kwargs} batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} evaluation_module.add_batch(**batch) def compute(self, predictions=None, references=None, **kwargs): """Compute each evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (*optional*): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> clf_metrics.compute(predictions=[0,1], references=[1,1]) {'accuracy': 0.5, 'f1': 0.6666666666666666} ``` """ results = [] for evaluation_module in self.evaluation_modules: batch = {"predictions": predictions, "references": references, **kwargs} results.append(evaluation_module.compute(**batch)) return self._merge_results(results) def _merge_results(self, results): merged_results = {} results_keys = list(itertools.chain.from_iterable([r.keys() for r in results])) duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1} duplicate_names = [ item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1 ] duplicate_counter = {name: 0 for name in duplicate_names} for module_name, result in zip(self.evaluation_module_names, results): for k, v in result.items(): if k not in duplicate_keys and not self.force_prefix: merged_results[f"{k}"] = v elif module_name in duplicate_counter: merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v else: merged_results[f"{module_name}_{k}"] = v if module_name in duplicate_counter: duplicate_counter[module_name] += 1 return merged_results
(evaluation_modules, force_prefix=False)
71,081
evaluate.module
__init__
null
def __init__(self, evaluation_modules, force_prefix=False): from .loading import load # avoid circular imports self.evaluation_module_names = None if isinstance(evaluation_modules, list): self.evaluation_modules = evaluation_modules elif isinstance(evaluation_modules, dict): self.evaluation_modules = list(evaluation_modules.values()) self.evaluation_module_names = list(evaluation_modules.keys()) loaded_modules = [] for module in self.evaluation_modules: if isinstance(module, str): module = load(module) loaded_modules.append(module) self.evaluation_modules = loaded_modules if self.evaluation_module_names is None: self.evaluation_module_names = [module.name for module in self.evaluation_modules] self.force_prefix = force_prefix
(self, evaluation_modules, force_prefix=False)
71,082
evaluate.module
_merge_results
null
def _merge_results(self, results): merged_results = {} results_keys = list(itertools.chain.from_iterable([r.keys() for r in results])) duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1} duplicate_names = [ item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1 ] duplicate_counter = {name: 0 for name in duplicate_names} for module_name, result in zip(self.evaluation_module_names, results): for k, v in result.items(): if k not in duplicate_keys and not self.force_prefix: merged_results[f"{k}"] = v elif module_name in duplicate_counter: merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v else: merged_results[f"{module_name}_{k}"] = v if module_name in duplicate_counter: duplicate_counter[module_name] += 1 return merged_results
(self, results)
71,083
evaluate.module
add
Add one prediction and reference for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]): ... clf_metrics.add(references=ref, predictions=pred) ```
def add(self, prediction=None, reference=None, **kwargs): """Add one prediction and reference for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]): ... clf_metrics.add(references=ref, predictions=pred) ``` """ for evaluation_module in self.evaluation_modules: batch = {"predictions": prediction, "references": reference, **kwargs} batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} evaluation_module.add(**batch)
(self, prediction=None, reference=None, **kwargs)
71,084
evaluate.module
add_batch
Add a batch of predictions and references for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... clf_metrics.add(references=refs, predictions=preds) ```
def add_batch(self, predictions=None, references=None, **kwargs): """Add a batch of predictions and references for each evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... clf_metrics.add(references=refs, predictions=preds) ``` """ for evaluation_module in self.evaluation_modules: batch = {"predictions": predictions, "references": references, **kwargs} batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()} evaluation_module.add_batch(**batch)
(self, predictions=None, references=None, **kwargs)
71,085
evaluate.module
compute
Compute each evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (*optional*): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> clf_metrics.compute(predictions=[0,1], references=[1,1]) {'accuracy': 0.5, 'f1': 0.6666666666666666} ```
def compute(self, predictions=None, references=None, **kwargs): """Compute each evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (*optional*): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) >>> clf_metrics.compute(predictions=[0,1], references=[1,1]) {'accuracy': 0.5, 'f1': 0.6666666666666666} ``` """ results = [] for evaluation_module in self.evaluation_modules: batch = {"predictions": predictions, "references": references, **kwargs} results.append(evaluation_module.compute(**batch)) return self._merge_results(results)
(self, predictions=None, references=None, **kwargs)
71,086
evaluate.module
Comparison
A Comparison is the base class and common API for all comparisons. Args: config_name (`str`): This is used to define a hash specific to a comparison computation script and prevents the comparison's data to be overridden when the comparison loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). max_concurrent_cache_files (`int`): Max number of concurrent comparison cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization.
class Comparison(EvaluationModule): """A Comparison is the base class and common API for all comparisons. Args: config_name (`str`): This is used to define a hash specific to a comparison computation script and prevents the comparison's data to be overridden when the comparison loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute comparisons in distributed setups (in particular non-additive comparisons). max_concurrent_cache_files (`int`): Max number of concurrent comparison cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization. """
(config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs)
71,087
evaluate.module
__del__
null
def __del__(self): if hasattr(self, "filelock") and self.filelock is not None: self.filelock.release() if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None: self.rendez_vous_lock.release() if hasattr(self, "writer"): # in case it was already deleted del self.writer if hasattr(self, "data"): # in case it was already deleted del self.data
(self)
71,088
evaluate.module
__init__
null
def __init__( self, config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs, ): # prepare info self.config_name = config_name or "default" info = self._info() info.module_name = camelcase_to_snakecase(self.__class__.__name__) info.config_name = self.config_name info.experiment_id = experiment_id or "default_experiment" EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level # Safety checks on num_process and process_id if not isinstance(process_id, int) or process_id < 0: raise ValueError("'process_id' should be a number greater than 0") if not isinstance(num_process, int) or num_process <= process_id: raise ValueError("'num_process' should be a number greater than process_id") if keep_in_memory and num_process != 1: raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).") self.num_process = num_process self.process_id = process_id self.max_concurrent_cache_files = max_concurrent_cache_files self.keep_in_memory = keep_in_memory self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE) self.data_dir = self._build_data_dir() if seed is None: _, seed, pos, *_ = np.random.get_state() self.seed: int = seed[pos] if pos < 624 else seed[0] else: self.seed: int = seed self.timeout: Union[int, float] = timeout # Update 'compute' and 'add' docstring # methods need to be copied otherwise it changes the docstrings of every instance self.compute = types.MethodType(copyfunc(self.compute), self) self.add_batch = types.MethodType(copyfunc(self.add_batch), self) self.add = types.MethodType(copyfunc(self.add), self) self.compute.__func__.__doc__ += self.info.inputs_description self.add_batch.__func__.__doc__ += self.info.inputs_description self.add.__func__.__doc__ += self.info.inputs_description # self.arrow_schema = pa.schema(field for field in self.info.features.type) self.selected_feature_format = None self.buf_writer = None self.writer = None self.writer_batch_size = None self.data = None # This is the cache file we store our predictions/references in # Keep it None for now so we can (cloud)pickle the object self.cache_file_name = None self.filelock = None self.rendez_vous_lock = None # This is all the cache files on which we have a lock when we are in a distributed setting self.file_paths = None self.filelocks = None # This fingerprints the evaluation module according to the hashed contents of the module code self._hash = hash
(self, config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: Optional[str] = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs)
71,089
evaluate.module
__len__
Return the number of examples (predictions or predictions/references pair) currently stored in the evaluation module's cache.
def __len__(self): """Return the number of examples (predictions or predictions/references pair) currently stored in the evaluation module's cache. """ return 0 if self.writer is None else len(self.writer)
(self)
71,090
evaluate.module
__repr__
null
def __repr__(self): return ( f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", ' f'features: {self.features}, usage: """{self.inputs_description}""", ' f"stored examples: {len(self)})" )
(self)
71,091
evaluate.module
_build_data_dir
Path of this evaluation module in cache_dir: Will be: self._data_dir_root/self.name/self.config_name/self.hash (if not none)/ If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
def _build_data_dir(self): """Path of this evaluation module in cache_dir: Will be: self._data_dir_root/self.name/self.config_name/self.hash (if not none)/ If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. """ builder_data_dir = self._data_dir_root builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name) os.makedirs(builder_data_dir, exist_ok=True) return builder_data_dir
(self)
71,092
evaluate.module
_check_all_processes_locks
null
def _check_all_processes_locks(self): expected_lock_file_names = [ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock") for process_id in range(self.num_process) ] for expected_lock_file_name in expected_lock_file_names: nofilelock = FileFreeLock(expected_lock_file_name) try: nofilelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." ) from None else: nofilelock.release()
(self)
71,093
evaluate.module
_check_rendez_vous
null
def _check_rendez_vous(self): expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock") nofilelock = FileFreeLock(expected_lock_file_name) try: nofilelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." ) from None else: nofilelock.release() lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") rendez_vous_lock = FileLock(lock_file_name) try: rendez_vous_lock.acquire(timeout=self.timeout) except Timeout: raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None else: rendez_vous_lock.release()
(self)
71,094
evaluate.module
_compute
This method defines the common API for all the evaluation module in the library
def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]: """This method defines the common API for all the evaluation module in the library""" raise NotImplementedError
(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]
71,095
evaluate.module
_create_cache_file
Create a new cache file. If the default cache file is used, we generated a new hash.
def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]: """Create a new cache file. If the default cache file is used, we generated a new hash.""" file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow") filelock = None for i in range(self.max_concurrent_cache_files): filelock = FileLock(file_path + ".lock") try: filelock.acquire(timeout=timeout) except Timeout: # If we have reached the max number of attempts or we are not allow to find a free name (distributed setup) # We raise an error if self.num_process != 1: raise ValueError( f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. " f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " f"between distributed evaluation module instances." ) from None if i == self.max_concurrent_cache_files - 1: raise ValueError( f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system." f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module " f"(current value is {self.max_concurrent_cache_files})." ) from None # In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name. file_uuid = str(uuid.uuid4()) file_path = os.path.join( self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow" ) else: break return file_path, filelock
(self, timeout=1) -> Tuple[str, datasets.utils._filelock.FileLock]
71,096
evaluate.module
_download_and_prepare
Downloads and prepares resources for the evaluation module. This is the internal implementation to overwrite called when user calls `download_and_prepare`. It should download all required resources for the evaluation module. Args: dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data.
def _download_and_prepare(self, dl_manager): """Downloads and prepares resources for the evaluation module. This is the internal implementation to overwrite called when user calls `download_and_prepare`. It should download all required resources for the evaluation module. Args: dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data. """ return None
(self, dl_manager)
71,097
evaluate.module
_enforce_nested_string_type
Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string. Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error.
def _enforce_nested_string_type(self, schema, obj): """ Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string. Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error. """ # Nested structures: we allow dict, list, tuples, sequences if isinstance(schema, dict): return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)] elif isinstance(schema, (list, tuple)): sub_schema = schema[0] return [self._enforce_nested_string_type(sub_schema, o) for o in obj] elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): if isinstance(obj, (list, tuple)): # obj is a list of dict for k, dict_tuples in zip_dict(schema.feature, *obj): for sub_obj in dict_tuples[1:]: if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]): self._enforce_nested_string_type(dict_tuples[0], sub_obj) break return None else: # obj is a single dict for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj): for sub_obj in sub_objs: if _check_non_null_non_empty_recursive(sub_obj, sub_schema): self._enforce_nested_string_type(sub_schema, sub_obj) break return None # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError(f"Got a string but expected a list instead: '{obj}'") if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, schema.feature): break if not isinstance(first_elmt, list): return self._enforce_nested_string_type(schema.feature, first_elmt) elif isinstance(schema, Value): if pa.types.is_string(schema.pa_type) and not isinstance(obj, str): raise TypeError(f"Expected type str but got {type(obj)}.")
(self, schema, obj)
71,098
evaluate.module
_feature_names
null
def _feature_names(self): if isinstance(self.features, list): feature_names = list(self.features[0].keys()) else: feature_names = list(self.features.keys()) return feature_names
(self)
71,099
evaluate.module
_finalize
Close all the writing process and load/gather the data from all the nodes if main node or all_process is True.
def _finalize(self): """Close all the writing process and load/gather the data from all the nodes if main node or all_process is True. """ if self.writer is not None: self.writer.finalize() self.writer = None # release the locks of the processes > 0 so that process 0 can lock them to read + delete the data if self.filelock is not None and self.process_id > 0: self.filelock.release() if self.keep_in_memory: # Read the predictions and references reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format)) self.data = Dataset.from_buffer(self.buf_writer.getvalue()) elif self.process_id == 0: # Let's acquire a lock on each node files to be sure they are finished writing file_paths, filelocks = self._get_all_cache_files() # Read the predictions and references try: reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format)) self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths])) except FileNotFoundError: raise ValueError( "Error in finalize: another evaluation module instance is already using the local cache file. " "Please specify an experiment_id to avoid collision between distributed evaluation module instances." ) from None # Store file paths and locks and we will release/delete them after the computation. self.file_paths = file_paths self.filelocks = filelocks
(self)
71,100
evaluate.module
_get_all_cache_files
Get a lock on all the cache files in a distributed setup. We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds).
def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]: """Get a lock on all the cache files in a distributed setup. We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds). """ if self.num_process == 1: if self.cache_file_name is None: raise ValueError( "Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` " "at least once before calling `compute`." ) file_paths = [self.cache_file_name] else: file_paths = [ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow") for process_id in range(self.num_process) ] # Let's acquire a lock on each process files to be sure they are finished writing filelocks = [] for process_id, file_path in enumerate(file_paths): if process_id == 0: # process 0 already has its lock file filelocks.append(self.filelock) else: filelock = FileLock(file_path + ".lock") try: filelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Cannot acquire lock on cached file {file_path} for process {process_id}." ) from None else: filelocks.append(filelock) return file_paths, filelocks
(self) -> Tuple[List[str], List[datasets.utils._filelock.FileLock]]
71,101
evaluate.module
_infer_feature_from_batch
null
def _infer_feature_from_batch(self, batch): if isinstance(self.features, Features): return self.features else: example = dict([(k, v[0]) for k, v in batch.items()]) return self._infer_feature_from_example(example)
(self, batch)
71,102
evaluate.module
_infer_feature_from_example
null
def _infer_feature_from_example(self, example): if isinstance(self.features, Features): return self.features else: for features in self.features: try: self._enforce_nested_string_type(features, example) features.encode_example(example) return features except (ValueError, TypeError): continue feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)]) error_msg = ( f"Predictions and/or references don't match the expected format.\n" f"Expected format:\n{feature_strings},\n" f"Input predictions: {summarize_if_long_list(example['predictions'])},\n" f"Input references: {summarize_if_long_list(example['references'])}" ) raise ValueError(error_msg) from None
(self, example)
71,103
evaluate.module
_info
Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details. Warning: This function is only called once and the result is cached for all following .info() calls. Returns: info: (EvaluationModuleInfo) The EvaluationModule information
def _info(self) -> EvaluationModuleInfo: """Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details. Warning: This function is only called once and the result is cached for all following .info() calls. Returns: info: (EvaluationModuleInfo) The EvaluationModule information """ raise NotImplementedError
(self) -> evaluate.info.EvaluationModuleInfo
71,104
evaluate.module
_init_writer
null
def _init_writer(self, timeout=1): if self.num_process > 1: if self.process_id == 0: file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") self.rendez_vous_lock = FileLock(file_path) try: self.rendez_vous_lock.acquire(timeout=timeout) except TimeoutError: raise ValueError( f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. " f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " f"between distributed evaluation module instances." ) from None if self.keep_in_memory: self.buf_writer = pa.BufferOutputStream() self.writer = ArrowWriter( features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size ) else: self.buf_writer = None # Get cache file name and lock it if self.cache_file_name is None or self.filelock is None: cache_file_name, filelock = self._create_cache_file() # get ready self.cache_file_name = cache_file_name self.filelock = filelock self.writer = ArrowWriter( features=self.selected_feature_format, path=self.cache_file_name, writer_batch_size=self.writer_batch_size, ) # Setup rendez-vous here if if self.num_process > 1: if self.process_id == 0: self._check_all_processes_locks() # wait for everyone to be ready self.rendez_vous_lock.release() # let everyone go else: self._check_rendez_vous() # wait for master to be ready and to let everyone go
(self, timeout=1)
71,105
evaluate.module
add
Add one prediction and reference for the evaluation module's stack. Args: prediction (`list/array/tensor`, *optional*): Predictions. reference (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.add(references=[0,1], predictions=[1,0]) ```
def add(self, *, prediction=None, reference=None, **kwargs): """Add one prediction and reference for the evaluation module's stack. Args: prediction (`list/array/tensor`, *optional*): Predictions. reference (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.add(references=[0,1], predictions=[1,0]) ``` """ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] if bad_inputs: raise ValueError( f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" ) example = {"predictions": prediction, "references": reference, **kwargs} example = {input_name: example[input_name] for input_name in self._feature_names()} if self.writer is None: self.selected_feature_format = self._infer_feature_from_example(example) self._init_writer() try: self._enforce_nested_string_type(self.selected_feature_format, example) example = self.selected_feature_format.encode_example(example) self.writer.write(example) except (pa.ArrowInvalid, TypeError): error_msg = ( f"Evaluation module inputs don't match the expected format.\n" f"Expected format: {self.selected_feature_format},\n" ) error_msg_inputs = ",\n".join( f"Input {input_name}: {summarize_if_long_list(example[input_name])}" for input_name in self.selected_feature_format ) error_msg += error_msg_inputs raise ValueError(error_msg) from None
(self, *, prediction=None, reference=None, **kwargs)
71,106
evaluate.module
add_batch
Add a batch of predictions and references for the evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... accuracy.add_batch(references=refs, predictions=preds) ```
def add_batch(self, *, predictions=None, references=None, **kwargs): """Add a batch of predictions and references for the evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... accuracy.add_batch(references=refs, predictions=preds) ``` """ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] if bad_inputs: raise ValueError( f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" ) batch = {"predictions": predictions, "references": references, **kwargs} batch = {input_name: batch[input_name] for input_name in self._feature_names()} if self.writer is None: self.selected_feature_format = self._infer_feature_from_batch(batch) self._init_writer() try: for key, column in batch.items(): if len(column) > 0: self._enforce_nested_string_type(self.selected_feature_format[key], column[0]) batch = self.selected_feature_format.encode_batch(batch) self.writer.write_batch(batch) except (pa.ArrowInvalid, TypeError): if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch): col0 = next(iter(batch)) bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0] error_msg = ( f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})" ) elif set(self.selected_feature_format) != {"references", "predictions"}: error_msg = ( f"Module inputs don't match the expected format.\n" f"Expected format: {self.selected_feature_format },\n" ) error_msg_inputs = ",\n".join( f"Input {input_name}: {summarize_if_long_list(batch[input_name])}" for input_name in self.selected_feature_format ) error_msg += error_msg_inputs else: error_msg = ( f"Predictions and/or references don't match the expected format.\n" f"Expected format: {self.selected_feature_format },\n" f"Input predictions: {summarize_if_long_list(predictions)},\n" f"Input references: {summarize_if_long_list(references)}" ) raise ValueError(error_msg) from None
(self, *, predictions=None, references=None, **kwargs)
71,107
evaluate.module
compute
Compute the evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (optional): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) ```
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: """Compute the evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (optional): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) ``` """ all_kwargs = {"predictions": predictions, "references": references, **kwargs} if predictions is None and references is None: missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} all_kwargs.update(missing_kwargs) else: missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] if missing_inputs: raise ValueError( f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" ) inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} if any(v is not None for v in inputs.values()): self.add_batch(**inputs) self._finalize() self.cache_file_name = None self.filelock = None self.selected_feature_format = None if self.process_id == 0: self.data.set_format(type=self.info.format) inputs = {input_name: self.data[input_name] for input_name in self._feature_names()} with temp_seed(self.seed): output = self._compute(**inputs, **compute_kwargs) if self.buf_writer is not None: self.buf_writer = None del self.data self.data = None else: # Release locks and delete all the cache files. Process 0 is released last. for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))): logger.info(f"Removing {file_path}") del self.data self.data = None del self.writer self.writer = None os.remove(file_path) filelock.release() return output else: return None
(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]
71,108
evaluate.module
download_and_prepare
Downloads and prepares evaluation module for reading. Args: download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. dl_manager ([`DownloadManager`], *optional*): Specific download manager to use. Example: ```py >>> import evaluate ```
def download_and_prepare( self, download_config: Optional[DownloadConfig] = None, dl_manager: Optional[DownloadManager] = None, ): """Downloads and prepares evaluation module for reading. Args: download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. dl_manager ([`DownloadManager`], *optional*): Specific download manager to use. Example: ```py >>> import evaluate ``` """ if dl_manager is None: if download_config is None: download_config = DownloadConfig() download_config.cache_dir = os.path.join(self.data_dir, "downloads") download_config.force_download = False dl_manager = DownloadManager( dataset_name=self.name, download_config=download_config, data_dir=self.data_dir ) self._download_and_prepare(dl_manager)
(self, download_config: Optional[datasets.download.download_config.DownloadConfig] = None, dl_manager: Optional[datasets.download.download_manager.DownloadManager] = None)
71,109
evaluate.info
ComparisonInfo
Information about a comparison. `EvaluationModuleInfo` documents a comparison, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later.
class ComparisonInfo(EvaluationModuleInfo): """Information about a comparison. `EvaluationModuleInfo` documents a comparison, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ module_type: str = "comparison"
(description: str, citation: str, features: Union[datasets.features.features.Features, List[datasets.features.features.Features]], inputs_description: str = <factory>, homepage: str = <factory>, license: str = <factory>, codebase_urls: List[str] = <factory>, reference_urls: List[str] = <factory>, streamable: bool = False, format: Optional[str] = None, module_type: str = 'comparison', module_name: Optional[str] = None, config_name: Optional[str] = None, experiment_id: Optional[str] = None) -> None
71,110
evaluate.info
__eq__
null
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ EvaluationModuleInfo records information we know about a dataset and a metric. """ import dataclasses import json import os from dataclasses import asdict, dataclass, field from typing import List, Optional, Union from datasets.features import Features, Value from . import config from .utils.logging import get_logger logger = get_logger(__name__) @dataclass class EvaluationModuleInfo: """Base class to store information about an evaluation used for `MetricInfo`, `ComparisonInfo`, and `MeasurementInfo`. `EvaluationModuleInfo` documents an evaluation, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ # Set in the dataset scripts description: str citation: str features: Union[Features, List[Features]] inputs_description: str = field(default_factory=str) homepage: str = field(default_factory=str) license: str = field(default_factory=str) codebase_urls: List[str] = field(default_factory=list) reference_urls: List[str] = field(default_factory=list) streamable: bool = False format: Optional[str] = None module_type: str = "metric" # deprecate this in the future # Set later by the builder module_name: Optional[str] = None config_name: Optional[str] = None experiment_id: Optional[str] = None def __post_init__(self): if self.format is not None: for key, value in self.features.items(): if not isinstance(value, Value): raise ValueError( f"When using 'numpy' format, all features should be a `datasets.Value` feature. " f"Here {key} is an instance of {value.__class__.__name__}" ) def write_to_directory(self, metric_info_dir): """Write `EvaluationModuleInfo` as JSON to `metric_info_dir`. Also save the license separately in LICENSE. Args: metric_info_dir (`str`): The directory to save `metric_info_dir` to. Example: ```py >>> my_metric.info.write_to_directory("/path/to/directory/") ``` """ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f: json.dump(asdict(self), f) with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f: f.write(self.license) @classmethod def from_directory(cls, metric_info_dir) -> "EvaluationModuleInfo": """Create `EvaluationModuleInfo` from the JSON file in `metric_info_dir`. Args: metric_info_dir (`str`): The directory containing the `metric_info` JSON file. This should be the root directory of a specific metric version. Example: ```py >>> my_metric = EvaluationModuleInfo.from_directory("/path/to/directory/") ``` """ logger.info(f"Loading Metric info from {metric_info_dir}") if not metric_info_dir: raise ValueError("Calling EvaluationModuleInfo.from_directory() with undefined metric_info_dir.") with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f: metric_info_dict = json.load(f) return cls.from_dict(metric_info_dict) @classmethod def from_dict(cls, metric_info_dict: dict) -> "EvaluationModuleInfo": field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
(self, other)
71,112
evaluate.info
__post_init__
null
def __post_init__(self): if self.format is not None: for key, value in self.features.items(): if not isinstance(value, Value): raise ValueError( f"When using 'numpy' format, all features should be a `datasets.Value` feature. " f"Here {key} is an instance of {value.__class__.__name__}" )
(self)
71,114
evaluate.info
write_to_directory
Write `EvaluationModuleInfo` as JSON to `metric_info_dir`. Also save the license separately in LICENSE. Args: metric_info_dir (`str`): The directory to save `metric_info_dir` to. Example: ```py >>> my_metric.info.write_to_directory("/path/to/directory/") ```
def write_to_directory(self, metric_info_dir): """Write `EvaluationModuleInfo` as JSON to `metric_info_dir`. Also save the license separately in LICENSE. Args: metric_info_dir (`str`): The directory to save `metric_info_dir` to. Example: ```py >>> my_metric.info.write_to_directory("/path/to/directory/") ``` """ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f: json.dump(asdict(self), f) with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f: f.write(self.license)
(self, metric_info_dir)
71,115
evaluate.module
EvaluationModule
A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements. Args: config_name (`str`): This is used to define a hash specific to a module computation script and prevents the module's data to be overridden when the module loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute module in distributed setups (in particular non-additive modules like F1). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute module in distributed setups (in particular non-additive metrics like F1). seed (`int`, optional): If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute module in distributed setups (in particular non-additive metrics like F1). hash (`str`): Used to identify the evaluation module according to the hashed file contents. max_concurrent_cache_files (`int`): Max number of concurrent module cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization.
class EvaluationModule(EvaluationModuleInfoMixin): """A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements. Args: config_name (`str`): This is used to define a hash specific to a module computation script and prevents the module's data to be overridden when the module loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute module in distributed setups (in particular non-additive modules like F1). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute module in distributed setups (in particular non-additive metrics like F1). seed (`int`, optional): If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute module in distributed setups (in particular non-additive metrics like F1). hash (`str`): Used to identify the evaluation module according to the hashed file contents. max_concurrent_cache_files (`int`): Max number of concurrent module cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization. """ def __init__( self, config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs, ): # prepare info self.config_name = config_name or "default" info = self._info() info.module_name = camelcase_to_snakecase(self.__class__.__name__) info.config_name = self.config_name info.experiment_id = experiment_id or "default_experiment" EvaluationModuleInfoMixin.__init__(self, info) # For easy access on low level # Safety checks on num_process and process_id if not isinstance(process_id, int) or process_id < 0: raise ValueError("'process_id' should be a number greater than 0") if not isinstance(num_process, int) or num_process <= process_id: raise ValueError("'num_process' should be a number greater than process_id") if keep_in_memory and num_process != 1: raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).") self.num_process = num_process self.process_id = process_id self.max_concurrent_cache_files = max_concurrent_cache_files self.keep_in_memory = keep_in_memory self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE) self.data_dir = self._build_data_dir() if seed is None: _, seed, pos, *_ = np.random.get_state() self.seed: int = seed[pos] if pos < 624 else seed[0] else: self.seed: int = seed self.timeout: Union[int, float] = timeout # Update 'compute' and 'add' docstring # methods need to be copied otherwise it changes the docstrings of every instance self.compute = types.MethodType(copyfunc(self.compute), self) self.add_batch = types.MethodType(copyfunc(self.add_batch), self) self.add = types.MethodType(copyfunc(self.add), self) self.compute.__func__.__doc__ += self.info.inputs_description self.add_batch.__func__.__doc__ += self.info.inputs_description self.add.__func__.__doc__ += self.info.inputs_description # self.arrow_schema = pa.schema(field for field in self.info.features.type) self.selected_feature_format = None self.buf_writer = None self.writer = None self.writer_batch_size = None self.data = None # This is the cache file we store our predictions/references in # Keep it None for now so we can (cloud)pickle the object self.cache_file_name = None self.filelock = None self.rendez_vous_lock = None # This is all the cache files on which we have a lock when we are in a distributed setting self.file_paths = None self.filelocks = None # This fingerprints the evaluation module according to the hashed contents of the module code self._hash = hash def __len__(self): """Return the number of examples (predictions or predictions/references pair) currently stored in the evaluation module's cache. """ return 0 if self.writer is None else len(self.writer) def __repr__(self): return ( f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", ' f'features: {self.features}, usage: """{self.inputs_description}""", ' f"stored examples: {len(self)})" ) def _build_data_dir(self): """Path of this evaluation module in cache_dir: Will be: self._data_dir_root/self.name/self.config_name/self.hash (if not none)/ If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped. """ builder_data_dir = self._data_dir_root builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name) os.makedirs(builder_data_dir, exist_ok=True) return builder_data_dir def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]: """Create a new cache file. If the default cache file is used, we generated a new hash.""" file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow") filelock = None for i in range(self.max_concurrent_cache_files): filelock = FileLock(file_path + ".lock") try: filelock.acquire(timeout=timeout) except Timeout: # If we have reached the max number of attempts or we are not allow to find a free name (distributed setup) # We raise an error if self.num_process != 1: raise ValueError( f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. " f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " f"between distributed evaluation module instances." ) from None if i == self.max_concurrent_cache_files - 1: raise ValueError( f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system." f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module " f"(current value is {self.max_concurrent_cache_files})." ) from None # In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name. file_uuid = str(uuid.uuid4()) file_path = os.path.join( self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow" ) else: break return file_path, filelock def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]: """Get a lock on all the cache files in a distributed setup. We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds). """ if self.num_process == 1: if self.cache_file_name is None: raise ValueError( "Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` " "at least once before calling `compute`." ) file_paths = [self.cache_file_name] else: file_paths = [ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow") for process_id in range(self.num_process) ] # Let's acquire a lock on each process files to be sure they are finished writing filelocks = [] for process_id, file_path in enumerate(file_paths): if process_id == 0: # process 0 already has its lock file filelocks.append(self.filelock) else: filelock = FileLock(file_path + ".lock") try: filelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Cannot acquire lock on cached file {file_path} for process {process_id}." ) from None else: filelocks.append(filelock) return file_paths, filelocks def _check_all_processes_locks(self): expected_lock_file_names = [ os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock") for process_id in range(self.num_process) ] for expected_lock_file_name in expected_lock_file_names: nofilelock = FileFreeLock(expected_lock_file_name) try: nofilelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." ) from None else: nofilelock.release() def _check_rendez_vous(self): expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock") nofilelock = FileFreeLock(expected_lock_file_name) try: nofilelock.acquire(timeout=self.timeout) except Timeout: raise ValueError( f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist." ) from None else: nofilelock.release() lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") rendez_vous_lock = FileLock(lock_file_name) try: rendez_vous_lock.acquire(timeout=self.timeout) except Timeout: raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None else: rendez_vous_lock.release() def _finalize(self): """Close all the writing process and load/gather the data from all the nodes if main node or all_process is True. """ if self.writer is not None: self.writer.finalize() self.writer = None # release the locks of the processes > 0 so that process 0 can lock them to read + delete the data if self.filelock is not None and self.process_id > 0: self.filelock.release() if self.keep_in_memory: # Read the predictions and references reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format)) self.data = Dataset.from_buffer(self.buf_writer.getvalue()) elif self.process_id == 0: # Let's acquire a lock on each node files to be sure they are finished writing file_paths, filelocks = self._get_all_cache_files() # Read the predictions and references try: reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format)) self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths])) except FileNotFoundError: raise ValueError( "Error in finalize: another evaluation module instance is already using the local cache file. " "Please specify an experiment_id to avoid collision between distributed evaluation module instances." ) from None # Store file paths and locks and we will release/delete them after the computation. self.file_paths = file_paths self.filelocks = filelocks def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: """Compute the evaluation module. Usage of positional arguments is not allowed to prevent mistakes. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. **kwargs (optional): Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`] method (see details in the docstring). Return: `dict` or `None` - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`). - `None` if the evaluation module is not run on the main process (`process_id != 0`). ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1]) ``` """ all_kwargs = {"predictions": predictions, "references": references, **kwargs} if predictions is None and references is None: missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs} all_kwargs.update(missing_kwargs) else: missing_inputs = [k for k in self._feature_names() if k not in all_kwargs] if missing_inputs: raise ValueError( f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}" ) inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()} compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()} if any(v is not None for v in inputs.values()): self.add_batch(**inputs) self._finalize() self.cache_file_name = None self.filelock = None self.selected_feature_format = None if self.process_id == 0: self.data.set_format(type=self.info.format) inputs = {input_name: self.data[input_name] for input_name in self._feature_names()} with temp_seed(self.seed): output = self._compute(**inputs, **compute_kwargs) if self.buf_writer is not None: self.buf_writer = None del self.data self.data = None else: # Release locks and delete all the cache files. Process 0 is released last. for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))): logger.info(f"Removing {file_path}") del self.data self.data = None del self.writer self.writer = None os.remove(file_path) filelock.release() return output else: return None def add_batch(self, *, predictions=None, references=None, **kwargs): """Add a batch of predictions and references for the evaluation module's stack. Args: predictions (`list/array/tensor`, *optional*): Predictions. references (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]): ... accuracy.add_batch(references=refs, predictions=preds) ``` """ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] if bad_inputs: raise ValueError( f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" ) batch = {"predictions": predictions, "references": references, **kwargs} batch = {input_name: batch[input_name] for input_name in self._feature_names()} if self.writer is None: self.selected_feature_format = self._infer_feature_from_batch(batch) self._init_writer() try: for key, column in batch.items(): if len(column) > 0: self._enforce_nested_string_type(self.selected_feature_format[key], column[0]) batch = self.selected_feature_format.encode_batch(batch) self.writer.write_batch(batch) except (pa.ArrowInvalid, TypeError): if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch): col0 = next(iter(batch)) bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0] error_msg = ( f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})" ) elif set(self.selected_feature_format) != {"references", "predictions"}: error_msg = ( f"Module inputs don't match the expected format.\n" f"Expected format: {self.selected_feature_format },\n" ) error_msg_inputs = ",\n".join( f"Input {input_name}: {summarize_if_long_list(batch[input_name])}" for input_name in self.selected_feature_format ) error_msg += error_msg_inputs else: error_msg = ( f"Predictions and/or references don't match the expected format.\n" f"Expected format: {self.selected_feature_format },\n" f"Input predictions: {summarize_if_long_list(predictions)},\n" f"Input references: {summarize_if_long_list(references)}" ) raise ValueError(error_msg) from None def add(self, *, prediction=None, reference=None, **kwargs): """Add one prediction and reference for the evaluation module's stack. Args: prediction (`list/array/tensor`, *optional*): Predictions. reference (`list/array/tensor`, *optional*): References. Example: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> accuracy.add(references=[0,1], predictions=[1,0]) ``` """ bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()] if bad_inputs: raise ValueError( f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}" ) example = {"predictions": prediction, "references": reference, **kwargs} example = {input_name: example[input_name] for input_name in self._feature_names()} if self.writer is None: self.selected_feature_format = self._infer_feature_from_example(example) self._init_writer() try: self._enforce_nested_string_type(self.selected_feature_format, example) example = self.selected_feature_format.encode_example(example) self.writer.write(example) except (pa.ArrowInvalid, TypeError): error_msg = ( f"Evaluation module inputs don't match the expected format.\n" f"Expected format: {self.selected_feature_format},\n" ) error_msg_inputs = ",\n".join( f"Input {input_name}: {summarize_if_long_list(example[input_name])}" for input_name in self.selected_feature_format ) error_msg += error_msg_inputs raise ValueError(error_msg) from None def _infer_feature_from_batch(self, batch): if isinstance(self.features, Features): return self.features else: example = dict([(k, v[0]) for k, v in batch.items()]) return self._infer_feature_from_example(example) def _infer_feature_from_example(self, example): if isinstance(self.features, Features): return self.features else: for features in self.features: try: self._enforce_nested_string_type(features, example) features.encode_example(example) return features except (ValueError, TypeError): continue feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)]) error_msg = ( f"Predictions and/or references don't match the expected format.\n" f"Expected format:\n{feature_strings},\n" f"Input predictions: {summarize_if_long_list(example['predictions'])},\n" f"Input references: {summarize_if_long_list(example['references'])}" ) raise ValueError(error_msg) from None def _feature_names(self): if isinstance(self.features, list): feature_names = list(self.features[0].keys()) else: feature_names = list(self.features.keys()) return feature_names def _init_writer(self, timeout=1): if self.num_process > 1: if self.process_id == 0: file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock") self.rendez_vous_lock = FileLock(file_path) try: self.rendez_vous_lock.acquire(timeout=timeout) except TimeoutError: raise ValueError( f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. " f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision " f"between distributed evaluation module instances." ) from None if self.keep_in_memory: self.buf_writer = pa.BufferOutputStream() self.writer = ArrowWriter( features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size ) else: self.buf_writer = None # Get cache file name and lock it if self.cache_file_name is None or self.filelock is None: cache_file_name, filelock = self._create_cache_file() # get ready self.cache_file_name = cache_file_name self.filelock = filelock self.writer = ArrowWriter( features=self.selected_feature_format, path=self.cache_file_name, writer_batch_size=self.writer_batch_size, ) # Setup rendez-vous here if if self.num_process > 1: if self.process_id == 0: self._check_all_processes_locks() # wait for everyone to be ready self.rendez_vous_lock.release() # let everyone go else: self._check_rendez_vous() # wait for master to be ready and to let everyone go def _info(self) -> EvaluationModuleInfo: """Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details. Warning: This function is only called once and the result is cached for all following .info() calls. Returns: info: (EvaluationModuleInfo) The EvaluationModule information """ raise NotImplementedError def download_and_prepare( self, download_config: Optional[DownloadConfig] = None, dl_manager: Optional[DownloadManager] = None, ): """Downloads and prepares evaluation module for reading. Args: download_config ([`DownloadConfig`], *optional*): Specific download configuration parameters. dl_manager ([`DownloadManager`], *optional*): Specific download manager to use. Example: ```py >>> import evaluate ``` """ if dl_manager is None: if download_config is None: download_config = DownloadConfig() download_config.cache_dir = os.path.join(self.data_dir, "downloads") download_config.force_download = False dl_manager = DownloadManager( dataset_name=self.name, download_config=download_config, data_dir=self.data_dir ) self._download_and_prepare(dl_manager) def _download_and_prepare(self, dl_manager): """Downloads and prepares resources for the evaluation module. This is the internal implementation to overwrite called when user calls `download_and_prepare`. It should download all required resources for the evaluation module. Args: dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data. """ return None def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]: """This method defines the common API for all the evaluation module in the library""" raise NotImplementedError def __del__(self): if hasattr(self, "filelock") and self.filelock is not None: self.filelock.release() if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None: self.rendez_vous_lock.release() if hasattr(self, "writer"): # in case it was already deleted del self.writer if hasattr(self, "data"): # in case it was already deleted del self.data def _enforce_nested_string_type(self, schema, obj): """ Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string. Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error. """ # Nested structures: we allow dict, list, tuples, sequences if isinstance(schema, dict): return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)] elif isinstance(schema, (list, tuple)): sub_schema = schema[0] return [self._enforce_nested_string_type(sub_schema, o) for o in obj] elif isinstance(schema, Sequence): # We allow to reverse list of dict => dict of list for compatiblity with tfds if isinstance(schema.feature, dict): if isinstance(obj, (list, tuple)): # obj is a list of dict for k, dict_tuples in zip_dict(schema.feature, *obj): for sub_obj in dict_tuples[1:]: if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]): self._enforce_nested_string_type(dict_tuples[0], sub_obj) break return None else: # obj is a single dict for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj): for sub_obj in sub_objs: if _check_non_null_non_empty_recursive(sub_obj, sub_schema): self._enforce_nested_string_type(sub_schema, sub_obj) break return None # schema.feature is not a dict if isinstance(obj, str): # don't interpret a string as a list raise ValueError(f"Got a string but expected a list instead: '{obj}'") if obj is None: return None else: if len(obj) > 0: for first_elmt in obj: if _check_non_null_non_empty_recursive(first_elmt, schema.feature): break if not isinstance(first_elmt, list): return self._enforce_nested_string_type(schema.feature, first_elmt) elif isinstance(schema, Value): if pa.types.is_string(schema.pa_type) and not isinstance(obj, str): raise TypeError(f"Expected type str but got {type(obj)}.")
(config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs)
71,138
evaluate.info
EvaluationModuleInfo
Base class to store information about an evaluation used for `MetricInfo`, `ComparisonInfo`, and `MeasurementInfo`. `EvaluationModuleInfo` documents an evaluation, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later.
class EvaluationModuleInfo: """Base class to store information about an evaluation used for `MetricInfo`, `ComparisonInfo`, and `MeasurementInfo`. `EvaluationModuleInfo` documents an evaluation, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ # Set in the dataset scripts description: str citation: str features: Union[Features, List[Features]] inputs_description: str = field(default_factory=str) homepage: str = field(default_factory=str) license: str = field(default_factory=str) codebase_urls: List[str] = field(default_factory=list) reference_urls: List[str] = field(default_factory=list) streamable: bool = False format: Optional[str] = None module_type: str = "metric" # deprecate this in the future # Set later by the builder module_name: Optional[str] = None config_name: Optional[str] = None experiment_id: Optional[str] = None def __post_init__(self): if self.format is not None: for key, value in self.features.items(): if not isinstance(value, Value): raise ValueError( f"When using 'numpy' format, all features should be a `datasets.Value` feature. " f"Here {key} is an instance of {value.__class__.__name__}" ) def write_to_directory(self, metric_info_dir): """Write `EvaluationModuleInfo` as JSON to `metric_info_dir`. Also save the license separately in LICENSE. Args: metric_info_dir (`str`): The directory to save `metric_info_dir` to. Example: ```py >>> my_metric.info.write_to_directory("/path/to/directory/") ``` """ with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), "w", encoding="utf-8") as f: json.dump(asdict(self), f) with open(os.path.join(metric_info_dir, config.LICENSE_FILENAME), "w", encoding="utf-8") as f: f.write(self.license) @classmethod def from_directory(cls, metric_info_dir) -> "EvaluationModuleInfo": """Create `EvaluationModuleInfo` from the JSON file in `metric_info_dir`. Args: metric_info_dir (`str`): The directory containing the `metric_info` JSON file. This should be the root directory of a specific metric version. Example: ```py >>> my_metric = EvaluationModuleInfo.from_directory("/path/to/directory/") ``` """ logger.info(f"Loading Metric info from {metric_info_dir}") if not metric_info_dir: raise ValueError("Calling EvaluationModuleInfo.from_directory() with undefined metric_info_dir.") with open(os.path.join(metric_info_dir, config.METRIC_INFO_FILENAME), encoding="utf-8") as f: metric_info_dict = json.load(f) return cls.from_dict(metric_info_dict) @classmethod def from_dict(cls, metric_info_dict: dict) -> "EvaluationModuleInfo": field_names = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in metric_info_dict.items() if k in field_names})
(description: str, citation: str, features: Union[datasets.features.features.Features, List[datasets.features.features.Features]], inputs_description: str = <factory>, homepage: str = <factory>, license: str = <factory>, codebase_urls: List[str] = <factory>, reference_urls: List[str] = <factory>, streamable: bool = False, format: Optional[str] = None, module_type: str = 'metric', module_name: Optional[str] = None, config_name: Optional[str] = None, experiment_id: Optional[str] = None) -> None
71,144
evaluate.evaluation_suite
EvaluationSuite
This class instantiates an evaluation suite made up of multiple tasks, where each task consists of a dataset and an associated metric, and runs evaluation on a model or pipeline. Evaluation suites can be a Python script found either locally or uploaded as a Space on the Hugging Face Hub. Usage: ```python from evaluate import EvaluationSuite suite = EvaluationSuite.load("evaluate/evaluation-suite-ci") results = suite.run("lvwerra/distilbert-imdb") ```
class EvaluationSuite: """ This class instantiates an evaluation suite made up of multiple tasks, where each task consists of a dataset and an associated metric, and runs evaluation on a model or pipeline. Evaluation suites can be a Python script found either locally or uploaded as a Space on the Hugging Face Hub. Usage: ```python from evaluate import EvaluationSuite suite = EvaluationSuite.load("evaluate/evaluation-suite-ci") results = suite.run("lvwerra/distilbert-imdb") ``` """ def __init__(self, name): self.name = name @staticmethod def load( path: str, download_mode: Optional[DownloadMode] = None, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, ): download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) evaluation_module = evaluation_module_factory( path, module_type=None, revision=revision, download_config=download_config, download_mode=download_mode ) name = Path(path).stem evaluation_cls = import_main_class(evaluation_module.module_path) evaluation_instance = evaluation_cls(name) return evaluation_instance def __repr__(self): self.tasks = [str(task) for task in self.suite] return f'EvaluationSuite name: "{self.name}", ' f"Tasks: {self.tasks})" def assert_suite_nonempty(self): if not self.suite: raise ValueError( "No evaluation tasks found. The EvaluationSuite must include at least one SubTask definition." ) def run( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"] # noqa: F821 ) -> Dict[str, float]: self.assert_suite_nonempty() results_all = [] for task in self.suite: task_name = task.data if task.data_preprocessor: # task requires extra preprocessing ds = load_dataset(task.data, name=task.subset, split=task.split) task.data = ds.map(task.data_preprocessor) task_evaluator = evaluator(task.task_type) args_for_task = task.args_for_task args_for_task["model_or_pipeline"] = model_or_pipeline args_for_task["data"] = task.data args_for_task["subset"] = task.subset args_for_task["split"] = task.split results = task_evaluator.compute(**args_for_task) results["task_name"] = task_name + "/" + task.subset if task.subset else task_name results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None results_all.append(results) return results_all
(name)
71,146
evaluate.evaluation_suite
__repr__
null
def __repr__(self): self.tasks = [str(task) for task in self.suite] return f'EvaluationSuite name: "{self.name}", ' f"Tasks: {self.tasks})"
(self)
71,147
evaluate.evaluation_suite
assert_suite_nonempty
null
def assert_suite_nonempty(self): if not self.suite: raise ValueError( "No evaluation tasks found. The EvaluationSuite must include at least one SubTask definition." )
(self)
71,148
evaluate.evaluation_suite
load
null
@staticmethod def load( path: str, download_mode: Optional[DownloadMode] = None, revision: Optional[Union[str, Version]] = None, download_config: Optional[DownloadConfig] = None, ): download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS) evaluation_module = evaluation_module_factory( path, module_type=None, revision=revision, download_config=download_config, download_mode=download_mode ) name = Path(path).stem evaluation_cls = import_main_class(evaluation_module.module_path) evaluation_instance = evaluation_cls(name) return evaluation_instance
(path: str, download_mode: Optional[datasets.download.download_manager.DownloadMode] = None, revision: Union[str, datasets.utils.version.Version, NoneType] = None, download_config: Optional[datasets.download.download_config.DownloadConfig] = None)
71,149
evaluate.evaluation_suite
run
null
def run( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"] # noqa: F821 ) -> Dict[str, float]: self.assert_suite_nonempty() results_all = [] for task in self.suite: task_name = task.data if task.data_preprocessor: # task requires extra preprocessing ds = load_dataset(task.data, name=task.subset, split=task.split) task.data = ds.map(task.data_preprocessor) task_evaluator = evaluator(task.task_type) args_for_task = task.args_for_task args_for_task["model_or_pipeline"] = model_or_pipeline args_for_task["data"] = task.data args_for_task["subset"] = task.subset args_for_task["split"] = task.split results = task_evaluator.compute(**args_for_task) results["task_name"] = task_name + "/" + task.subset if task.subset else task_name results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None results_all.append(results) return results_all
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')]) -> Dict[str, float]
71,150
evaluate.evaluator.base
Evaluator
The [`Evaluator`] class is the class from which all evaluators inherit. Refer to this class for methods shared across different evaluators. Base class implementing evaluator operations.
class Evaluator(ABC): """ The [`Evaluator`] class is the class from which all evaluators inherit. Refer to this class for methods shared across different evaluators. Base class implementing evaluator operations. """ PIPELINE_KWARGS = {} METRIC_KWARGS = {} def __init__(self, task: str, default_metric_name: str = None): if not TRANSFORMERS_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[evaluator]`." ) if not SCIPY_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `scipy>=1.7.1`. Run `pip install evaluate[evaluator]`." ) self.task = task self.default_metric_name = default_metric_name @staticmethod def _compute_confidence_interval( metric, metric_inputs, metric_keys: List[str], confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None, ) -> Dict[str, Any]: """ A utility function enabling the confidence interval calculation for metrics computed by the evaluator based on `scipy`'s `bootstrap` method. """ # bootstrap only works with functions that use args and no kwargs def build_args_metric(metric, key, **kwargs): def args_metric(*args): return metric.compute(**{k: v for k, v in zip(kwargs.keys(), args)})[key] return args_metric bootstrap_dict = {} for key in metric_keys: bs = bootstrap( data=list(metric_inputs.values()), statistic=build_args_metric(metric, key, **metric_inputs), paired=True, vectorized=False, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) bootstrap_dict[key] = { "confidence_interval": (bs.confidence_interval.low, bs.confidence_interval.high), "standard_error": bs.standard_error, } return bootstrap_dict @staticmethod def _compute_time_perf(start_time: float, end_time: float, num_samples: int) -> Dict[str, Any]: """ A utility function computing time performance metrics: - `total_time_in_seconds` - pipeline inference runtime for the evaluation data in seconds, - `samples_per_second` - pipeline throughput in the number of samples per second. - `latency_in_seconds` - pipeline inference runtime for the evaluation data in seconds per sample, """ latency = end_time - start_time throughput = num_samples / latency latency_sample = 1.0 / throughput return { "total_time_in_seconds": latency, "samples_per_second": throughput, "latency_in_seconds": latency_sample, } @staticmethod def _infer_device() -> int: """Helper function to check if GPU or CPU is available for inference.""" # try infer with torch first try: import torch if torch.cuda.is_available(): device = 0 # first GPU else: device = -1 # CPU except ImportError: # if not available try TF try: import tensorflow as tf if len(tf.config.list_physical_devices("GPU")) > 0: device = 0 # first GPU else: device = -1 # CPU except ImportError: device = -1 if device == -1: logger.info("No GPU found. The default device for pipeline inference is set to CPU.") else: logger.info("GPU found. The default device for pipeline inference is set to GPU (CUDA:0).") return device @abstractmethod def predictions_processor(self, *args, **kwargs): """ A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric. """ raise NotImplementedError() def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Dict[str, float]: result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data(data=data, input_column=input_column, label_column=label_column) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) # TODO: To clarify why `wer` and `cer` return float # even though metric.compute contract says that it # returns Optional[dict]. if type(metric_results) is float: metric_results = {metric.name: metric_results} result.update(metric_results) result.update(perf_results) return result @staticmethod def check_for_mismatch_in_device_setup(device, model_or_pipeline): if device is not None and device != -1 and isinstance(model_or_pipeline, Pipeline): if model_or_pipeline.device.type == "cpu": raise ValueError( "The value of the `device` kwarg passed to `compute` suggests that this pipe should be run on an " "accelerator, but the pipe was instantiated on CPU. Pass `device` to the pipeline during " "initialization to use an accelerator, or pass `device=None` to `compute`. " ) elif device != model_or_pipeline.device.index: raise ValueError( f"This pipeline was instantiated on device {model_or_pipeline.device.index} but device={device} was passed to `compute`." ) def check_required_columns(self, data: Union[str, Dataset], columns_names: Dict[str, str]): """ Ensure the columns required for the evaluation are present in the dataset. Args: data (`str` or [`Dataset`]): Specifies the dataset we will run evaluation on. columns_names (`List[str]`): List of column names to check in the dataset. The keys are the arguments to the [`evaluate.EvaluationModule.compute`] method, while the values are the column names to check. Example: ```py >>> from datasets import load_dataset >>> from evaluate import evaluator >>> data = load_dataset("rotten_tomatoes', split="train") >>> evaluator.check_required_columns(data, {"input_column": "text", "label_column": "label"}) ``` """ for input_name, column_name in columns_names.items(): if column_name not in data.column_names: raise ValueError( f"Invalid `{input_name}` {column_name} specified. The dataset contains the following columns: {data.column_names}." ) @staticmethod def get_dataset_split(data, subset=None, split=None): """ Infers which split to use if `None` is given. Args: data (`str`): Name of dataset. subset (`str`): Name of config for datasets with multiple configurations (e.g. 'glue/cola'). split (`str`, defaults to `None`): Split to use. Returns: `split`: `str` containing which split to use Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").get_dataset_split(data="rotten_tomatoes") WARNING:evaluate.evaluator.base:Dataset split not defined! Automatically evaluating with split: TEST 'test' ``` """ if split is None: split = choose_split(data, subset) logger.warning(f"Dataset split not defined! Automatically evaluating with split: {split.upper()}") return split def load_data(self, data: Union[str, Dataset], subset: str = None, split: str = None): """ Load dataset with given subset and split. Args: data ([`Dataset`] or `str`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Specifies dataset subset to be passed to `name` in `load_dataset`. To be used with datasets with several configurations (e.g. glue/sst2). split (`str`, defaults to `None`): User-defined dataset split by name (e.g. train, validation, test). Supports slice-split (`test[:n]`). If not defined and data is a `str` type, will automatically select the best one via `choose_split()`. Returns: data ([`Dataset`]): Loaded dataset which will be used for evaluation. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").load_data(data="rotten_tomatoes", split="train") Dataset({ features: ['text', 'label'], num_rows: 8530 }) ``` """ if isinstance(data, str): split = self.get_dataset_split(data, subset, split) data = load_dataset(data, name=subset, split=split) return data elif isinstance(data, Dataset): if split is not None or subset is not None: logger.warning("`data` is a preloaded Dataset! Ignoring `subset` and `split`.") return data else: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) def prepare_data(self, data: Dataset, input_column: str, label_column: str, *args, **kwargs): """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column(`str`, *optional*): The name of the column containing the second text feature if there is one. Otherwise, set to `None`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. Example: ```py >>> from evaluate import evaluator >>> from datasets import load_dataset >>> ds = load_dataset("rotten_tomatoes", split="train") >>> evaluator("text-classification").prepare_data(ds, input_column="text", second_input_column=None, label_column="label") ``` """ self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) return {"references": data[label_column]}, DatasetColumn(data, input_column) def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): """ Prepare pipeline. Args: model_or_pipeline (`str` or [`~transformers.Pipeline`] or `Callable` or [`~transformers.PreTrainedModel`] or [`~transformers.TFPreTrainedModel`], defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task. If the argument is of the type `str` or is a model instance, we use it to initialize a new [`~transformers.Pipeline`] with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. preprocessor ([`~transformers.PreTrainedTokenizerBase`] or [`~transformers.FeatureExtractionMixin`], *optional*, defaults to `None`): Argument can be used to overwrite a default preprocessor if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. Returns: The initialized pipeline. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_pipeline(model_or_pipeline="distilbert-base-uncased") ``` """ if device is None: device = self._infer_device() if ( isinstance(model_or_pipeline, str) or isinstance(model_or_pipeline, transformers.PreTrainedModel) or isinstance(model_or_pipeline, transformers.TFPreTrainedModel) ): pipe = pipeline( self.task, model=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) else: if model_or_pipeline is None: pipe = pipeline(self.task, device=device) else: pipe = model_or_pipeline if tokenizer is not None and feature_extractor is not None: logger.warning("Ignoring the value of the preprocessor argument (`tokenizer` or `feature_extractor`).") if (pipe.task != self.task) and not (self.task == "translation" and pipe.task.startswith("translation")): raise ValueError( f"Incompatible `model_or_pipeline`. Please specify `model_or_pipeline` compatible with the `{self.task}` task." ) return pipe def prepare_metric(self, metric: Union[str, EvaluationModule]): """ Prepare metric. Args: metric (`str` or [`EvaluationModule`], defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. Returns: The loaded metric. Example: ```py >>> from evaluate import evaluator >>> evaluator("text-classification").prepare_metric("accuracy") ``` """ # Prepare metric. if metric is None: if self.default_metric_name is None: raise ValueError( "`Evaluator` doesn't specify a default metric. Please specify a valid `metric` argument." ) metric = load(self.default_metric_name) elif isinstance(metric, str): metric = load(metric) return metric def call_pipeline(self, pipe, *args, **kwargs): start_time = perf_counter() pipe_output = pipe(*args, **kwargs, **self.PIPELINE_KWARGS) end_time = perf_counter() return pipe_output, self._compute_time_perf(start_time, end_time, len(pipe_output)) def compute_metric( self, metric: EvaluationModule, metric_inputs: Dict, strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, random_state: Optional[int] = None, ): """Compute and return metrics.""" result = metric.compute(**metric_inputs, **self.METRIC_KWARGS) if strategy == "bootstrap": metric_keys = result.keys() bootstrap_dict = self._compute_confidence_interval( metric, metric_inputs, metric_keys, confidence_level, n_resamples, random_state, ) for key in metric_keys: bootstrap_dict[key]["score"] = result[key] return bootstrap_dict return result
(task: str, default_metric_name: str = None)
71,151
evaluate.evaluator.base
__init__
null
def __init__(self, task: str, default_metric_name: str = None): if not TRANSFORMERS_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `transformers`. Run `pip install evaluate[evaluator]`." ) if not SCIPY_AVAILABLE: raise ImportError( "If you want to use the `Evaluator` you need `scipy>=1.7.1`. Run `pip install evaluate[evaluator]`." ) self.task = task self.default_metric_name = default_metric_name
(self, task: str, default_metric_name: Optional[str] = None)
71,158
evaluate.evaluator.base
compute
null
def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Dict[str, float]: result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data(data=data, input_column=input_column, label_column=label_column) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) # TODO: To clarify why `wer` and `cer` return float # even though metric.compute contract says that it # returns Optional[dict]. if type(metric_results) is float: metric_results = {metric.name: metric_results} result.update(metric_results) result.update(perf_results) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, feature_extractor: Union[str, ForwardRef('FeatureExtractionMixin'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'text', label_column: str = 'label', label_mapping: Optional[Dict[str, numbers.Number]] = None) -> Dict[str, float]
71,162
evaluate.evaluator.base
predictions_processor
A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric.
@abstractmethod def predictions_processor(self, *args, **kwargs): """ A core method of the `Evaluator` class, which processes the pipeline outputs for compatibility with the metric. """ raise NotImplementedError()
(self, *args, **kwargs)
71,166
evaluate.evaluator.image_classification
ImageClassificationEvaluator
Image classification evaluator. This image classification evaluator can currently be loaded from [`evaluator`] using the default task name `image-classification`. Methods in this class assume a data format compatible with the [`ImageClassificationPipeline`].
class ImageClassificationEvaluator(Evaluator): """ Image classification evaluator. This image classification evaluator can currently be loaded from [`evaluator`] using the default task name `image-classification`. Methods in this class assume a data format compatible with the [`ImageClassificationPipeline`]. """ PIPELINE_KWARGS = {} def __init__(self, task="image-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions, label_mapping): pred_label = [max(pred, key=lambda x: x["score"])["label"] for pred in predictions] pred_label = [label_mapping[pred] if label_mapping is not None else pred for pred in pred_label] return {"predictions": pred_label} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "image", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"image"`): The name of the column containing the images as PIL ImageFile in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, feature_extractor=feature_extractor, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, label_mapping=label_mapping, ) return result
(task='image-classification', default_metric_name=None)
71,167
evaluate.evaluator.image_classification
__init__
null
def __init__(self, task="image-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='image-classification', default_metric_name=None)
71,174
evaluate.evaluator.image_classification
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"image"`): The name of the column containing the images as PIL ImageFile in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("image-classification") >>> data = load_dataset("beans", split="test[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="nateraw/vit-base-beans", >>> data=data, >>> label_column="labels", >>> metric="accuracy", >>> label_mapping={'angular_leaf_spot': 0, 'bean_rust': 1, 'healthy': 2}, >>> strategy="bootstrap" >>> ) ```
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "image", label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"image"`): The name of the column containing the images as PIL ImageFile in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, feature_extractor=feature_extractor, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, label_mapping=label_mapping, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, feature_extractor: Union[str, ForwardRef('FeatureExtractionMixin'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'image', label_column: str = 'label', label_mapping: Optional[Dict[str, numbers.Number]] = None) -> Tuple[Dict[str, float], Any]
71,182
evaluate.module
Measurement
A Measurement is the base class and common API for all measurements. Args: config_name (`str`): This is used to define a hash specific to a measurement computation script and prevents the measurement's data to be overridden when the measurement loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute measurements in distributed setups (in particular non-additive measurements). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute measurements in distributed setups (in particular non-additive measurements). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute measurements in distributed setups (in particular non-additive measurements). max_concurrent_cache_files (`int`): Max number of concurrent measurement cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization.
class Measurement(EvaluationModule): """A Measurement is the base class and common API for all measurements. Args: config_name (`str`): This is used to define a hash specific to a measurement computation script and prevents the measurement's data to be overridden when the measurement loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute measurements in distributed setups (in particular non-additive measurements). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute measurements in distributed setups (in particular non-additive measurements). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute measurements in distributed setups (in particular non-additive measurements). max_concurrent_cache_files (`int`): Max number of concurrent measurement cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization. """
(config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs)
71,205
evaluate.info
MeasurementInfo
Information about a measurement. `EvaluationModuleInfo` documents a measurement, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later.
class MeasurementInfo(EvaluationModuleInfo): """Information about a measurement. `EvaluationModuleInfo` documents a measurement, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ module_type: str = "measurement"
(description: str, citation: str, features: Union[datasets.features.features.Features, List[datasets.features.features.Features]], inputs_description: str = <factory>, homepage: str = <factory>, license: str = <factory>, codebase_urls: List[str] = <factory>, reference_urls: List[str] = <factory>, streamable: bool = False, format: Optional[str] = None, module_type: str = 'measurement', module_name: Optional[str] = None, config_name: Optional[str] = None, experiment_id: Optional[str] = None) -> None
71,211
evaluate.module
Metric
A Metric is the base class and common API for all metrics. Args: config_name (`str`): This is used to define a hash specific to a metric computation script and prevents the metric's data to be overridden when the metric loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). max_concurrent_cache_files (`int`): Max number of concurrent metric cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization.
class Metric(EvaluationModule): """A Metric is the base class and common API for all metrics. Args: config_name (`str`): This is used to define a hash specific to a metric computation script and prevents the metric's data to be overridden when the metric loading script is modified. keep_in_memory (`bool`): Keep all predictions and references in memory. Not possible in distributed settings. cache_dir (`str`): Path to a directory in which temporary prediction/references data will be stored. The data directory should be located on a shared file-system in distributed setups. num_process (`int`): Specify the total number of nodes in a distributed settings. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). process_id (`int`): Specify the id of the current process in a distributed setup (between 0 and num_process-1) This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). seed (`int`, *optional*): If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run. experiment_id (`str`): A specific experiment id. This is used if several distributed evaluations share the same file system. This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1). max_concurrent_cache_files (`int`): Max number of concurrent metric cache files (default `10000`). timeout (`Union[int, float]`): Timeout in second for distributed setting synchronization. """
(config_name: Optional[str] = None, keep_in_memory: bool = False, cache_dir: Optional[str] = None, num_process: int = 1, process_id: int = 0, seed: Optional[int] = None, experiment_id: Optional[str] = None, hash: str = None, max_concurrent_cache_files: int = 10000, timeout: Union[int, float] = 100, **kwargs)
71,234
evaluate.info
MetricInfo
Information about a metric. `EvaluationModuleInfo` documents a metric, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later.
class MetricInfo(EvaluationModuleInfo): """Information about a metric. `EvaluationModuleInfo` documents a metric, including its name, version, and features. See the constructor arguments and properties for a full list. Note: Not all fields are known on construction and may be updated later. """ module_type: str = "metric"
(description: str, citation: str, features: Union[datasets.features.features.Features, List[datasets.features.features.Features]], inputs_description: str = <factory>, homepage: str = <factory>, license: str = <factory>, codebase_urls: List[str] = <factory>, reference_urls: List[str] = <factory>, streamable: bool = False, format: Optional[str] = None, module_type: str = 'metric', module_name: Optional[str] = None, config_name: Optional[str] = None, experiment_id: Optional[str] = None) -> None
71,240
evaluate.evaluator.question_answering
QuestionAnsweringEvaluator
Question answering evaluator. This evaluator handles [**extractive** question answering](https://huggingface.co/docs/transformers/task_summary#extractive-question-answering), where the answer to the question is extracted from a context. This question answering evaluator can currently be loaded from [`evaluator`] using the default task name `question-answering`. Methods in this class assume a data format compatible with the [`~transformers.QuestionAnsweringPipeline`].
class QuestionAnsweringEvaluator(Evaluator): """ Question answering evaluator. This evaluator handles [**extractive** question answering](https://huggingface.co/docs/transformers/task_summary#extractive-question-answering), where the answer to the question is extracted from a context. This question answering evaluator can currently be loaded from [`evaluator`] using the default task name `question-answering`. Methods in this class assume a data format compatible with the [`~transformers.QuestionAnsweringPipeline`]. """ PIPELINE_KWARGS = {} def __init__(self, task="question-answering", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def prepare_data( self, data: Dataset, question_column: str, context_column: str, id_column: str, label_column: str ): """Prepare data.""" if data is None: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) self.check_required_columns( data, { "question_column": question_column, "context_column": context_column, "id_column": id_column, "label_column": label_column, }, ) metric_inputs = dict() metric_inputs["references"] = [ {"id": element[id_column], "answers": element[label_column]} for element in data ] return metric_inputs, { "question": DatasetColumn(data, question_column), "context": DatasetColumn(data, context_column), } def is_squad_v2_format(self, data: Dataset, label_column: str = "answers"): """ Check if the provided dataset follows the squad v2 data schema, namely possible samples where the answer is not in the context. In this case, the answer text list should be `[]`. """ original_num_rows = data.num_rows nonempty_num_rows = data.filter( lambda x: len(x[label_column]["text"]) > 0, load_from_cache_file=False ).num_rows if original_num_rows > nonempty_num_rows: return True else: return False def predictions_processor(self, predictions: List, squad_v2_format: bool, ids: List): result = [] for i in range(len(predictions)): pred = {"prediction_text": predictions[i]["answer"], "id": ids[i]} if squad_v2_format: pred["no_answer_probability"] = predictions[i]["score"] result.append(pred) return {"predictions": result} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, question_column: str = "question", context_column: str = "context", id_column: str = "id", label_column: str = "answers", squad_v2_format: Optional[bool] = None, ) -> Tuple[Dict[str, float], Any]: """ question_column (`str`, defaults to `"question"`): The name of the column containing the question in the dataset specified by `data`. context_column (`str`, defaults to `"context"`): The name of the column containing the context in the dataset specified by `data`. id_column (`str`, defaults to `"id"`): The name of the column containing the identification field of the question and answer pair in the dataset specified by `data`. label_column (`str`, defaults to `"answers"`): The name of the column containing the answers in the dataset specified by `data`. squad_v2_format (`bool`, *optional*, defaults to `None`): Whether the dataset follows the format of squad_v2 dataset. This is the case when the provided dataset has questions where the answer is not in the context, more specifically when are answers as `{"text": [], "answer_start": []}` in the answer column. If all questions have at least one answer, this parameter should be set to `False`. If this parameter is not provided, the format will be automatically inferred. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, question_column=question_column, context_column=context_column, id_column=id_column, label_column=label_column, ) if squad_v2_format is None: squad_v2_format = self.is_squad_v2_format(data=data, label_column=label_column) logger.warning( f"`squad_v2_format` parameter not provided to QuestionAnsweringEvaluator.compute(). Automatically inferred `squad_v2_format` as {squad_v2_format}." ) pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) metric = self.prepare_metric(metric) if squad_v2_format and metric.name == "squad": logger.warning( "The dataset has SQuAD v2 format but you are using the SQuAD metric. Consider passing the 'squad_v2' metric." ) if not squad_v2_format and metric.name == "squad_v2": logger.warning( "The dataset has SQuAD v1 format but you are using the SQuAD v2 metric. Consider passing the 'squad' metric." ) if squad_v2_format: self.PIPELINE_KWARGS["handle_impossible_answer"] = True else: self.PIPELINE_KWARGS["handle_impossible_answer"] = False # Compute predictions predictions, perf_results = self.call_pipeline(pipe, **pipe_inputs) predictions = self.predictions_processor(predictions, squad_v2_format=squad_v2_format, ids=data[id_column]) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(task='question-answering', default_metric_name=None)
71,241
evaluate.evaluator.question_answering
__init__
null
def __init__(self, task="question-answering", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='question-answering', default_metric_name=None)
71,248
evaluate.evaluator.question_answering
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. question_column (`str`, defaults to `"question"`): The name of the column containing the question in the dataset specified by `data`. context_column (`str`, defaults to `"context"`): The name of the column containing the context in the dataset specified by `data`. id_column (`str`, defaults to `"id"`): The name of the column containing the identification field of the question and answer pair in the dataset specified by `data`. label_column (`str`, defaults to `"answers"`): The name of the column containing the answers in the dataset specified by `data`. squad_v2_format (`bool`, *optional*, defaults to `None`): Whether the dataset follows the format of squad_v2 dataset. This is the case when the provided dataset has questions where the answer is not in the context, more specifically when are answers as `{"text": [], "answer_start": []}` in the answer column. If all questions have at least one answer, this parameter should be set to `False`. If this parameter is not provided, the format will be automatically inferred. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("question-answering") >>> data = load_dataset("squad", split="validation[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="sshleifer/tiny-distilbert-base-cased-distilled-squad", >>> data=data, >>> metric="squad", >>> ) ``` <Tip> Datasets where the answer may be missing in the context are supported, for example SQuAD v2 dataset. In this case, it is safer to pass `squad_v2_format=True` to the compute() call. </Tip> ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("question-answering") >>> data = load_dataset("squad_v2", split="validation[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="mrm8488/bert-tiny-finetuned-squadv2", >>> data=data, >>> metric="squad_v2", >>> squad_v2_format=True, >>> ) ```
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, question_column: str = "question", context_column: str = "context", id_column: str = "id", label_column: str = "answers", squad_v2_format: Optional[bool] = None, ) -> Tuple[Dict[str, float], Any]: """ question_column (`str`, defaults to `"question"`): The name of the column containing the question in the dataset specified by `data`. context_column (`str`, defaults to `"context"`): The name of the column containing the context in the dataset specified by `data`. id_column (`str`, defaults to `"id"`): The name of the column containing the identification field of the question and answer pair in the dataset specified by `data`. label_column (`str`, defaults to `"answers"`): The name of the column containing the answers in the dataset specified by `data`. squad_v2_format (`bool`, *optional*, defaults to `None`): Whether the dataset follows the format of squad_v2 dataset. This is the case when the provided dataset has questions where the answer is not in the context, more specifically when are answers as `{"text": [], "answer_start": []}` in the answer column. If all questions have at least one answer, this parameter should be set to `False`. If this parameter is not provided, the format will be automatically inferred. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, question_column=question_column, context_column=context_column, id_column=id_column, label_column=label_column, ) if squad_v2_format is None: squad_v2_format = self.is_squad_v2_format(data=data, label_column=label_column) logger.warning( f"`squad_v2_format` parameter not provided to QuestionAnsweringEvaluator.compute(). Automatically inferred `squad_v2_format` as {squad_v2_format}." ) pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) metric = self.prepare_metric(metric) if squad_v2_format and metric.name == "squad": logger.warning( "The dataset has SQuAD v2 format but you are using the SQuAD metric. Consider passing the 'squad_v2' metric." ) if not squad_v2_format and metric.name == "squad_v2": logger.warning( "The dataset has SQuAD v1 format but you are using the SQuAD v2 metric. Consider passing the 'squad' metric." ) if squad_v2_format: self.PIPELINE_KWARGS["handle_impossible_answer"] = True else: self.PIPELINE_KWARGS["handle_impossible_answer"] = False # Compute predictions predictions, perf_results = self.call_pipeline(pipe, **pipe_inputs) predictions = self.predictions_processor(predictions, squad_v2_format=squad_v2_format, ids=data[id_column]) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, question_column: str = 'question', context_column: str = 'context', id_column: str = 'id', label_column: str = 'answers', squad_v2_format: Optional[bool] = None) -> Tuple[Dict[str, float], Any]
71,251
evaluate.evaluator.question_answering
is_squad_v2_format
Check if the provided dataset follows the squad v2 data schema, namely possible samples where the answer is not in the context. In this case, the answer text list should be `[]`.
def is_squad_v2_format(self, data: Dataset, label_column: str = "answers"): """ Check if the provided dataset follows the squad v2 data schema, namely possible samples where the answer is not in the context. In this case, the answer text list should be `[]`. """ original_num_rows = data.num_rows nonempty_num_rows = data.filter( lambda x: len(x[label_column]["text"]) > 0, load_from_cache_file=False ).num_rows if original_num_rows > nonempty_num_rows: return True else: return False
(self, data: datasets.arrow_dataset.Dataset, label_column: str = 'answers')
71,253
evaluate.evaluator.question_answering
predictions_processor
null
def predictions_processor(self, predictions: List, squad_v2_format: bool, ids: List): result = [] for i in range(len(predictions)): pred = {"prediction_text": predictions[i]["answer"], "id": ids[i]} if squad_v2_format: pred["no_answer_probability"] = predictions[i]["score"] result.append(pred) return {"predictions": result}
(self, predictions: List, squad_v2_format: bool, ids: List)
71,254
evaluate.evaluator.question_answering
prepare_data
Prepare data.
def prepare_data( self, data: Dataset, question_column: str, context_column: str, id_column: str, label_column: str ): """Prepare data.""" if data is None: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) self.check_required_columns( data, { "question_column": question_column, "context_column": context_column, "id_column": id_column, "label_column": label_column, }, ) metric_inputs = dict() metric_inputs["references"] = [ {"id": element[id_column], "answers": element[label_column]} for element in data ] return metric_inputs, { "question": DatasetColumn(data, question_column), "context": DatasetColumn(data, context_column), }
(self, data: datasets.arrow_dataset.Dataset, question_column: str, context_column: str, id_column: str, label_column: str)
71,257
evaluate.evaluator.text2text_generation
SummarizationEvaluator
Text summarization evaluator. This text summarization evaluator can currently be loaded from [`evaluator`] using the default task name `summarization`. Methods in this class assume a data format compatible with the [`SummarizationEvaluator`].
class SummarizationEvaluator(Text2TextGenerationEvaluator): """ Text summarization evaluator. This text summarization evaluator can currently be loaded from [`evaluator`] using the default task name `summarization`. Methods in this class assume a data format compatible with the [`SummarizationEvaluator`]. """ PREDICTION_PREFIX = "summary" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="summarization", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, SUMMARIZATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result
(task='summarization', default_metric_name=None)
71,258
evaluate.evaluator.text2text_generation
__init__
null
def __init__(self, task="summarization", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='summarization', default_metric_name=None)
71,265
evaluate.evaluator.text2text_generation
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"text"`): the name of the column containing the input text in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("summarization") >>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="facebook/bart-large-cnn", >>> data=data, >>> input_column="article", >>> label_column="highlights", >>> ) ```
@add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, SUMMARIZATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'text', label_column: str = 'label', generation_kwargs: dict = None) -> Tuple[Dict[str, float], Any]
71,269
evaluate.evaluator.text2text_generation
predictions_processor
null
def predictions_processor(self, predictions, label_mapping): return {"predictions": [pred[f"{self.PREDICTION_PREFIX}_text"] for pred in predictions]}
(self, predictions, label_mapping)
71,273
evaluate.evaluator.text2text_generation
Text2TextGenerationEvaluator
Text2Text generation evaluator. This Text2Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text2text-generation`. Methods in this class assume a data format compatible with the [`~transformers.Text2TextGenerationPipeline`].
class Text2TextGenerationEvaluator(Evaluator): """ Text2Text generation evaluator. This Text2Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text2text-generation`. Methods in this class assume a data format compatible with the [`~transformers.Text2TextGenerationPipeline`]. """ PREDICTION_PREFIX = "generated" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="text2text-generation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions, label_mapping): return {"predictions": [pred[f"{self.PREDICTION_PREFIX}_text"] for pred in predictions]} @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TEXT2TEXT_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: if generation_kwargs is not None: self.PIPELINE_KWARGS.update(generation_kwargs) result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, ) return result
(task='text2text-generation', default_metric_name=None)
71,274
evaluate.evaluator.text2text_generation
__init__
null
def __init__(self, task="text2text-generation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='text2text-generation', default_metric_name=None)
71,281
evaluate.evaluator.text2text_generation
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"text"`): the name of the column containing the input text in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("text2text-generation") >>> data = load_dataset("cnn_dailymail", "3.0.0", split="validation[:40]") >>> results = task_evaluator.compute( >>> model_or_pipeline="facebook/bart-large-cnn", >>> data=data, >>> input_column="article", >>> label_column="highlights", >>> metric="rouge", >>> ) ```
@add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TEXT2TEXT_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: if generation_kwargs is not None: self.PIPELINE_KWARGS.update(generation_kwargs) result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'text', label_column: str = 'label', generation_kwargs: dict = None) -> Tuple[Dict[str, float], Any]
71,289
evaluate.evaluator.text_classification
TextClassificationEvaluator
Text classification evaluator. This text classification evaluator can currently be loaded from [`evaluator`] using the default task name `text-classification` or with a `"sentiment-analysis"` alias. Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual feature as input and a categorical label as output.
class TextClassificationEvaluator(Evaluator): """ Text classification evaluator. This text classification evaluator can currently be loaded from [`evaluator`] using the default task name `text-classification` or with a `"sentiment-analysis"` alias. Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual feature as input and a categorical label as output. """ PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="text-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str): if data is None: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) if second_input_column is not None: self.check_required_columns(data, {"second_input_column": second_input_column}) data = load_dataset(data) if isinstance(data, str) else data return {"references": data[label_column]}, DatasetColumnPair( data, input_column, second_input_column, "text", "text_pair" ) def predictions_processor(self, predictions, label_mapping): predictions = [ label_mapping[element["label"]] if label_mapping is not None else element["label"] for element in predictions ] return {"predictions": predictions} @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", second_input_column: Optional[str] = None, label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, *optional*, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column (`str`, *optional*, defaults to `None`): The name of the second column containing the text features. This may be useful for classification tasks as MNLI, where two columns are used. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column ) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(task='text-classification', default_metric_name=None)
71,290
evaluate.evaluator.text_classification
__init__
null
def __init__(self, task="text-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='text-classification', default_metric_name=None)
71,297
evaluate.evaluator.text_classification
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, *optional*, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column (`str`, *optional*, defaults to `None`): The name of the second column containing the text features. This may be useful for classification tasks as MNLI, where two columns are used. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("text-classification") >>> data = load_dataset("imdb", split="test[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli", >>> data=data, >>> metric="accuracy", >>> label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0}, >>> strategy="bootstrap", >>> n_resamples=10, >>> random_state=0 >>> ) ```
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", second_input_column: Optional[str] = None, label_column: str = "label", label_mapping: Optional[Dict[str, Number]] = None, ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, *optional*, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. second_input_column (`str`, *optional*, defaults to `None`): The name of the second column containing the text features. This may be useful for classification tasks as MNLI, where two columns are used. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`): We want to map class labels defined by the model in the pipeline to values consistent with those defined in the `label_column` of the `data` dataset. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column ) pipe = self.prepare_pipeline( model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, feature_extractor=feature_extractor, device=device, ) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, label_mapping) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, feature_extractor: Union[str, ForwardRef('FeatureExtractionMixin'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'text', second_input_column: Optional[str] = None, label_column: str = 'label', label_mapping: Optional[Dict[str, numbers.Number]] = None) -> Tuple[Dict[str, float], Any]
71,301
evaluate.evaluator.text_classification
predictions_processor
null
def predictions_processor(self, predictions, label_mapping): predictions = [ label_mapping[element["label"]] if label_mapping is not None else element["label"] for element in predictions ] return {"predictions": predictions}
(self, predictions, label_mapping)
71,302
evaluate.evaluator.text_classification
prepare_data
null
def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str): if data is None: raise ValueError( "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object." ) self.check_required_columns(data, {"input_column": input_column, "label_column": label_column}) if second_input_column is not None: self.check_required_columns(data, {"second_input_column": second_input_column}) data = load_dataset(data) if isinstance(data, str) else data return {"references": data[label_column]}, DatasetColumnPair( data, input_column, second_input_column, "text", "text_pair" )
(self, data: Union[str, datasets.arrow_dataset.Dataset], input_column: str, second_input_column: str, label_column: str)
71,305
evaluate.evaluator.text_generation
TextGenerationEvaluator
Text generation evaluator. This Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text-generation`. Methods in this class assume a data format compatible with the [`~transformers.TextGenerationPipeline`].
class TextGenerationEvaluator(Evaluator): """ Text generation evaluator. This Text generation evaluator can currently be loaded from [`evaluator`] using the default task name `text-generation`. Methods in this class assume a data format compatible with the [`~transformers.TextGenerationPipeline`]. """ def predictions_processor(self, predictions, *args, **kwargs): """ Args: predictions: A list of lists of dicts Returns: `dict`: All the generated texts are flattened and stored under the "data" key. """ return {"data": [pred[f"{self.predictions_prefix}_text"] for pred_list in predictions for pred in pred_list]} def __init__(self, task="text-generation", default_metric_name=None, predictions_prefix: str = "generated"): super().__init__(task=task, default_metric_name=default_metric_name) self.predictions_prefix = predictions_prefix def prepare_data(self, data: Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, DatasetColumn]: """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. """ self.check_required_columns(data, {"input_column": input_column}) return {}, DatasetColumn(data, input_column)
(task='text-generation', default_metric_name=None, predictions_prefix: str = 'generated')
71,306
evaluate.evaluator.text_generation
__init__
null
def __init__(self, task="text-generation", default_metric_name=None, predictions_prefix: str = "generated"): super().__init__(task=task, default_metric_name=default_metric_name) self.predictions_prefix = predictions_prefix
(self, task='text-generation', default_metric_name=None, predictions_prefix: str = 'generated')
71,317
evaluate.evaluator.text_generation
predictions_processor
Args: predictions: A list of lists of dicts Returns: `dict`: All the generated texts are flattened and stored under the "data" key.
def predictions_processor(self, predictions, *args, **kwargs): """ Args: predictions: A list of lists of dicts Returns: `dict`: All the generated texts are flattened and stored under the "data" key. """ return {"data": [pred[f"{self.predictions_prefix}_text"] for pred_list in predictions for pred in pred_list]}
(self, predictions, *args, **kwargs)
71,318
evaluate.evaluator.text_generation
prepare_data
Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs.
def prepare_data(self, data: Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, DatasetColumn]: """ Prepare data. Args: data ([`Dataset`]): Specifies the dataset we will run evaluation on. input_column (`str`, defaults to `"text"`): The name of the column containing the text feature in the dataset specified by `data`. Returns: `dict`: metric inputs. `list`: pipeline inputs. """ self.check_required_columns(data, {"input_column": input_column}) return {}, DatasetColumn(data, input_column)
(self, data: datasets.arrow_dataset.Dataset, input_column: str, *args, **kwargs) -> Tuple[Dict, evaluate.evaluator.utils.DatasetColumn]
71,321
evaluate.evaluator.token_classification
TokenClassificationEvaluator
Token classification evaluator. This token classification evaluator can currently be loaded from [`evaluator`] using the default task name `token-classification`. Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`].
class TokenClassificationEvaluator(Evaluator): """ Token classification evaluator. This token classification evaluator can currently be loaded from [`evaluator`] using the default task name `token-classification`. Methods in this class assume a data format compatible with the [`~transformers.TokenClassificationPipeline`]. """ PIPELINE_KWARGS = {"ignore_labels": []} def __init__(self, task="token-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str): """ Transform the pipeline predictions into a list of predicted labels of the same length as the true labels. Args: predictions (`List[List[Dict]]`): List of pipeline predictions, where each token has been labeled. words (`List[List[str]]`): Original input data to the pipeline, used to build predicted labels of the same length. join_by (`str`): String to use to join two words. In English, it will typically be " ". Returns: `dict`: a dictionary holding the predictions """ preds = [] # iterate over the data rows for i, prediction in enumerate(predictions): pred_processed = [] # get a list of tuples giving the indexes of the start and end character of each word words_offsets = self.words_to_offsets(words[i], join_by) token_index = 0 for word_offset in words_offsets: # for each word, we may keep only the predicted label for the first token, discard the others while prediction[token_index]["start"] < word_offset[0]: token_index += 1 if prediction[token_index]["start"] > word_offset[0]: # bad indexing pred_processed.append("O") elif prediction[token_index]["start"] == word_offset[0]: pred_processed.append(prediction[token_index]["entity"]) preds.append(pred_processed) return {"predictions": preds} def words_to_offsets(self, words: List[str], join_by: str): """ Convert a list of words to a list of offsets, where word are joined by `join_by`. Args: words (`List[str]`): List of words to get offsets from. join_by (`str`): String to insert between words. Returns: `List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words. """ offsets = [] start = 0 for word in words: end = start + len(word) - 1 offsets.append((start, end)) start = end + len(join_by) + 1 return offsets def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str): super().prepare_data(data, input_column, label_column) if not isinstance(data.features[input_column], Sequence) or not isinstance( data.features[label_column], Sequence ): raise ValueError( "TokenClassificationEvaluator expects the input and label columns to be provided as lists." ) # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. labels_are_int = isinstance(data.features[label_column].feature, ClassLabel) if labels_are_int: label_list = data.features[label_column].feature.names # list of string labels id_to_label = {i: label for i, label in enumerate(label_list)} references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]] elif data.features[label_column].feature.dtype.startswith("int"): raise NotImplementedError( "References provided as integers, but the reference column is not a Sequence of ClassLabels." ) else: # In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings # An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset references = data[label_column] metric_inputs = {"references": references} data = data.map(lambda x: {input_column: join_by.join(x[input_column])}) pipeline_inputs = DatasetColumn(data, input_column) return metric_inputs, pipeline_inputs def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device) # check the pipeline outputs start characters in its predictions dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS) if dummy_output[0][0]["start"] is None: raise ValueError( "TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). " "Transformers pipelines with a slow tokenizer will raise this error." ) return pipe @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: str = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: Optional[int] = None, random_state: Optional[int] = None, input_column: str = "tokens", label_column: str = "ner_tags", join_by: Optional[str] = " ", ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"tokens"`): The name of the column containing the tokens feature in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. join_by (`str`, *optional*, defaults to `" "`): This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join words to generate a string input. This is especially useful for languages that do not separate words by a space. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, label_column=label_column, join_by=join_by ) pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, data[input_column], join_by) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(task='token-classification', default_metric_name=None)
71,322
evaluate.evaluator.token_classification
__init__
null
def __init__(self, task="token-classification", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='token-classification', default_metric_name=None)
71,329
evaluate.evaluator.token_classification
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"tokens"`): The name of the column containing the tokens feature in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. join_by (`str`, *optional*, defaults to `" "`): This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join words to generate a string input. This is especially useful for languages that do not separate words by a space. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. The dataset input and label columns are expected to be formatted as a list of words and a list of labels respectively, following [conll2003 dataset](https://huggingface.co/datasets/conll2003). Datasets whose inputs are single strings, and labels are a list of offset are not supported. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("token-classification") >>> data = load_dataset("conll2003", split="validation[:2]") >>> results = task_evaluator.compute( >>> model_or_pipeline="elastic/distilbert-base-uncased-finetuned-conll03-english", >>> data=data, >>> metric="seqeval", >>> ) ``` <Tip> For example, the following dataset format is accepted by the evaluator: ```python dataset = Dataset.from_dict( mapping={ "tokens": [["New", "York", "is", "a", "city", "and", "Felix", "a", "person", "."]], "ner_tags": [[1, 2, 0, 0, 0, 0, 3, 0, 0, 0]], }, features=Features({ "tokens": Sequence(feature=Value(dtype="string")), "ner_tags": Sequence(feature=ClassLabel(names=["O", "B-LOC", "I-LOC", "B-PER", "I-PER"])), }), ) ``` </Tip> <Tip warning={true}> For example, the following dataset format is **not** accepted by the evaluator: ```python dataset = Dataset.from_dict( mapping={ "tokens": [["New York is a city and Felix a person."]], "starts": [[0, 23]], "ends": [[7, 27]], "ner_tags": [["LOC", "PER"]], }, features=Features({ "tokens": Value(dtype="string"), "starts": Sequence(feature=Value(dtype="int32")), "ends": Sequence(feature=Value(dtype="int32")), "ner_tags": Sequence(feature=Value(dtype="string")), }), ) ``` </Tip>
@add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING) @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: str = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: Optional[int] = None, random_state: Optional[int] = None, input_column: str = "tokens", label_column: str = "ner_tags", join_by: Optional[str] = " ", ) -> Tuple[Dict[str, float], Any]: """ input_column (`str`, defaults to `"tokens"`): The name of the column containing the tokens feature in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): The name of the column containing the labels in the dataset specified by `data`. join_by (`str`, *optional*, defaults to `" "`): This evaluator supports dataset whose input column is a list of words. This parameter specifies how to join words to generate a string input. This is especially useful for languages that do not separate words by a space. """ result = {} self.check_for_mismatch_in_device_setup(device, model_or_pipeline) # Prepare inputs data = self.load_data(data=data, subset=subset, split=split) metric_inputs, pipe_inputs = self.prepare_data( data=data, input_column=input_column, label_column=label_column, join_by=join_by ) pipe = self.prepare_pipeline(model_or_pipeline=model_or_pipeline, tokenizer=tokenizer, device=device) metric = self.prepare_metric(metric) # Compute predictions predictions, perf_results = self.call_pipeline(pipe, pipe_inputs) predictions = self.predictions_processor(predictions, data[input_column], join_by) metric_inputs.update(predictions) # Compute metrics from references and predictions metric_results = self.compute_metric( metric=metric, metric_inputs=metric_inputs, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, random_state=random_state, ) result.update(metric_results) result.update(perf_results) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: str = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: Optional[int] = None, random_state: Optional[int] = None, input_column: str = 'tokens', label_column: str = 'ner_tags', join_by: Optional[str] = ' ') -> Tuple[Dict[str, float], Any]
71,333
evaluate.evaluator.token_classification
predictions_processor
Transform the pipeline predictions into a list of predicted labels of the same length as the true labels. Args: predictions (`List[List[Dict]]`): List of pipeline predictions, where each token has been labeled. words (`List[List[str]]`): Original input data to the pipeline, used to build predicted labels of the same length. join_by (`str`): String to use to join two words. In English, it will typically be " ". Returns: `dict`: a dictionary holding the predictions
def predictions_processor(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str): """ Transform the pipeline predictions into a list of predicted labels of the same length as the true labels. Args: predictions (`List[List[Dict]]`): List of pipeline predictions, where each token has been labeled. words (`List[List[str]]`): Original input data to the pipeline, used to build predicted labels of the same length. join_by (`str`): String to use to join two words. In English, it will typically be " ". Returns: `dict`: a dictionary holding the predictions """ preds = [] # iterate over the data rows for i, prediction in enumerate(predictions): pred_processed = [] # get a list of tuples giving the indexes of the start and end character of each word words_offsets = self.words_to_offsets(words[i], join_by) token_index = 0 for word_offset in words_offsets: # for each word, we may keep only the predicted label for the first token, discard the others while prediction[token_index]["start"] < word_offset[0]: token_index += 1 if prediction[token_index]["start"] > word_offset[0]: # bad indexing pred_processed.append("O") elif prediction[token_index]["start"] == word_offset[0]: pred_processed.append(prediction[token_index]["entity"]) preds.append(pred_processed) return {"predictions": preds}
(self, predictions: List[List[Dict]], words: List[List[str]], join_by: str)
71,334
evaluate.evaluator.token_classification
prepare_data
null
def prepare_data(self, data: Union[str, Dataset], input_column: str, label_column: str, join_by: str): super().prepare_data(data, input_column, label_column) if not isinstance(data.features[input_column], Sequence) or not isinstance( data.features[label_column], Sequence ): raise ValueError( "TokenClassificationEvaluator expects the input and label columns to be provided as lists." ) # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. labels_are_int = isinstance(data.features[label_column].feature, ClassLabel) if labels_are_int: label_list = data.features[label_column].feature.names # list of string labels id_to_label = {i: label for i, label in enumerate(label_list)} references = [[id_to_label[label_id] for label_id in label_ids] for label_ids in data[label_column]] elif data.features[label_column].feature.dtype.startswith("int"): raise NotImplementedError( "References provided as integers, but the reference column is not a Sequence of ClassLabels." ) else: # In the event the labels are not a `Sequence[ClassLabel]`, we have already labels as strings # An example is labels as ["PER", "PER", "O", "LOC", "O", "LOC", "O"], e.g. in polyglot_ner dataset references = data[label_column] metric_inputs = {"references": references} data = data.map(lambda x: {input_column: join_by.join(x[input_column])}) pipeline_inputs = DatasetColumn(data, input_column) return metric_inputs, pipeline_inputs
(self, data: Union[str, datasets.arrow_dataset.Dataset], input_column: str, label_column: str, join_by: str)
71,336
evaluate.evaluator.token_classification
prepare_pipeline
null
def prepare_pipeline( self, model_or_pipeline: Union[str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"], # noqa: F821 tokenizer: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 feature_extractor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] = None, # noqa: F821 device: int = None, ): pipe = super().prepare_pipeline(model_or_pipeline, tokenizer, feature_extractor, device) # check the pipeline outputs start characters in its predictions dummy_output = pipe(["2003 New York Gregory"], **self.PIPELINE_KWARGS) if dummy_output[0][0]["start"] is None: raise ValueError( "TokenClassificationEvaluator supports only pipelines giving 'start' index as a pipeline output (got None). " "Transformers pipelines with a slow tokenizer will raise this error." ) return pipe
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')], tokenizer: Union[ForwardRef('PreTrainedTokenizerBase'), ForwardRef('FeatureExtractionMixin')] = None, feature_extractor: Union[ForwardRef('PreTrainedTokenizerBase'), ForwardRef('FeatureExtractionMixin')] = None, device: int = None)
71,337
evaluate.evaluator.token_classification
words_to_offsets
Convert a list of words to a list of offsets, where word are joined by `join_by`. Args: words (`List[str]`): List of words to get offsets from. join_by (`str`): String to insert between words. Returns: `List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words.
def words_to_offsets(self, words: List[str], join_by: str): """ Convert a list of words to a list of offsets, where word are joined by `join_by`. Args: words (`List[str]`): List of words to get offsets from. join_by (`str`): String to insert between words. Returns: `List[Tuple[int, int]]`: List of the characters (start index, end index) for each of the words. """ offsets = [] start = 0 for word in words: end = start + len(word) - 1 offsets.append((start, end)) start = end + len(join_by) + 1 return offsets
(self, words: List[str], join_by: str)
71,338
evaluate.evaluator.text2text_generation
TranslationEvaluator
Translation evaluator. This translation generation evaluator can currently be loaded from [`evaluator`] using the default task name `translation`. Methods in this class assume a data format compatible with the [`~transformers.TranslationPipeline`].
class TranslationEvaluator(Text2TextGenerationEvaluator): """ Translation evaluator. This translation generation evaluator can currently be loaded from [`evaluator`] using the default task name `translation`. Methods in this class assume a data format compatible with the [`~transformers.TranslationPipeline`]. """ PREDICTION_PREFIX = "translation" PIPELINE_KWARGS = {"truncation": True} def __init__(self, task="translation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name) @add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TRANSLATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result
(task='translation', default_metric_name=None)
71,339
evaluate.evaluator.text2text_generation
__init__
null
def __init__(self, task="translation", default_metric_name=None): super().__init__(task, default_metric_name=default_metric_name)
(self, task='translation', default_metric_name=None)
71,346
evaluate.evaluator.text2text_generation
compute
Compute the metric for a given pipeline and dataset combination. Args: model_or_pipeline (`str` or `Pipeline` or `Callable` or `PreTrainedModel` or `TFPreTrainedModel`, defaults to `None`): If the argument in not specified, we initialize the default pipeline for the task (in this case `text-classification` or its alias - `sentiment-analysis`). If the argument is of the type `str` or is a model instance, we use it to initialize a new `Pipeline` with the given model. Otherwise we assume the argument specifies a pre-initialized pipeline. data (`str` or `Dataset`, defaults to `None`): Specifies the dataset we will run evaluation on. If it is of type `str`, we treat it as the dataset name, and load it. Otherwise we assume it represents a pre-loaded dataset. subset (`str`, defaults to `None`): Defines which dataset subset to load. If `None` is passed the default subset is loaded. split (`str`, defaults to `None`): Defines which dataset split to load. If `None` is passed, infers based on the `choose_split` function. metric (`str` or `EvaluationModule`, defaults to `None`): Specifies the metric we use in evaluator. If it is of type `str`, we treat it as the metric name, and load it. Otherwise we assume it represents a pre-loaded metric. tokenizer (`str` or `PreTrainedTokenizer`, *optional*, defaults to `None`): Argument can be used to overwrite a default tokenizer if `model_or_pipeline` represents a model for which we build a pipeline. If `model_or_pipeline` is `None` or a pre-initialized pipeline, we ignore this argument. strategy (`Literal["simple", "bootstrap"]`, defaults to "simple"): specifies the evaluation strategy. Possible values are: - `"simple"` - we evaluate the metric and return the scores. - `"bootstrap"` - on top of computing the metric scores, we calculate the confidence interval for each of the returned metric keys, using `scipy`'s `bootstrap` method https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html. confidence_level (`float`, defaults to `0.95`): The `confidence_level` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. n_resamples (`int`, defaults to `9999`): The `n_resamples` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. device (`int`, defaults to `None`): Device ordinal for CPU/GPU support of the pipeline. Setting this to -1 will leverage CPU, a positive integer will run the model on the associated CUDA device ID. If `None` is provided it will be inferred and CUDA:0 used if available, CPU otherwise. random_state (`int`, *optional*, defaults to `None`): The `random_state` value passed to `bootstrap` if `"bootstrap"` strategy is chosen. Useful for debugging. input_column (`str`, defaults to `"text"`): the name of the column containing the input text in the dataset specified by `data`. label_column (`str`, defaults to `"label"`): the name of the column containing the labels in the dataset specified by `data`. generation_kwargs (`Dict`, *optional*, defaults to `None`): The generation kwargs are passed to the pipeline and set the text generation strategy. Return: A `Dict`. The keys represent metric keys calculated for the `metric` spefied in function arguments. For the `"simple"` strategy, the value is the metric score. For the `"bootstrap"` strategy, the value is a `Dict` containing the score, the confidence interval and the standard error calculated for each metric key. Examples: ```python >>> from evaluate import evaluator >>> from datasets import load_dataset >>> task_evaluator = evaluator("translation") >>> data = load_dataset("wmt19", "fr-de", split="validation[:40]") >>> data = data.map(lambda x: {"text": x["translation"]["de"], "label": x["translation"]["fr"]}) >>> results = task_evaluator.compute( >>> model_or_pipeline="Helsinki-NLP/opus-mt-de-fr", >>> data=data, >>> ) ```
@add_start_docstrings( EVALUTOR_COMPUTE_START_DOCSTRING, TASK_DOCUMENTATION_KWARGS, EVALUATOR_COMPUTE_RETURN_DOCSTRING, TRANSLATION_TASK_DOCSTRING_EXAMPLE, ) def compute( self, model_or_pipeline: Union[ str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel" # noqa: F821 ] = None, data: Union[str, Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, EvaluationModule] = None, tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None, # noqa: F821 strategy: Literal["simple", "bootstrap"] = "simple", confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = "text", label_column: str = "label", generation_kwargs: dict = None, ) -> Tuple[Dict[str, float], Any]: result = super().compute( model_or_pipeline=model_or_pipeline, data=data, subset=subset, split=split, metric=metric, tokenizer=tokenizer, strategy=strategy, confidence_level=confidence_level, n_resamples=n_resamples, device=device, random_state=random_state, input_column=input_column, label_column=label_column, generation_kwargs=generation_kwargs, ) return result
(self, model_or_pipeline: Union[str, ForwardRef('Pipeline'), Callable, ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] = None, data: Union[str, datasets.arrow_dataset.Dataset] = None, subset: Optional[str] = None, split: Optional[str] = None, metric: Union[str, evaluate.module.EvaluationModule] = None, tokenizer: Union[str, ForwardRef('PreTrainedTokenizer'), NoneType] = None, strategy: Literal['simple', 'bootstrap'] = 'simple', confidence_level: float = 0.95, n_resamples: int = 9999, device: int = None, random_state: Optional[int] = None, input_column: str = 'text', label_column: str = 'label', generation_kwargs: dict = None) -> Tuple[Dict[str, float], Any]
71,354
evaluate.module
combine
Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that can be used like a single evaluation module. If two scores have the same name, then they are prefixed with their module names. And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix. Args: evaluations (`Union[list, dict]`): A list or dictionary of evaluation modules. The modules can either be passed as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules. The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`. force_prefix (`bool`, *optional*, defaults to `False`): If `True` all scores from the modules are prefixed with their name. If a dictionary is passed the keys are used as name otherwise the module's name. Examples: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) ```
def combine(evaluations, force_prefix=False): """Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that can be used like a single evaluation module. If two scores have the same name, then they are prefixed with their module names. And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix. Args: evaluations (`Union[list, dict]`): A list or dictionary of evaluation modules. The modules can either be passed as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules. The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`. force_prefix (`bool`, *optional*, defaults to `False`): If `True` all scores from the modules are prefixed with their name. If a dictionary is passed the keys are used as name otherwise the module's name. Examples: ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") >>> f1 = evaluate.load("f1") >>> clf_metrics = combine(["accuracy", "f1"]) ``` """ return CombinedEvaluations(evaluations, force_prefix=force_prefix)
(evaluations, force_prefix=False)