file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield'
val synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l)
val synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l)
let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 111, "end_line": 43, "start_col": 0, "start_line": 39 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> Prims.Tot (LowParse.Spec.BitFields.bitfields cl lo hi l)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "FStar.Pervasives.Native.Mktuple2", "LowParse.BitFields.bitfield", "LowParse.Spec.BitFields.bitfields", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield'" ]
[ "recursion" ]
false
false
false
false
false
let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l) =
match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.valid_bitfield_bounds
val valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
val valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 68, "end_line": 14, "start_col": 0, "start_line": 11 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Tot Prims.bool
Prims.Tot
[ "total", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.op_AmpAmp", "LowParse.Spec.BitFields.valid_bitfield_bounds", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) =
match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.bounds_of_widths
val bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l)
val bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l)
let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 28, "start_col": 0, "start_line": 21 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Pure (Prims.list Prims.nat)
Prims.Pure
[ "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.Nil", "Prims.Cons", "Prims.op_Addition", "LowParse.Spec.BitFields.bounds_of_widths", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.valid_bitfield_bounds" ]
[ "recursion" ]
false
false
false
false
false
let rec bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) =
match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.parse_bitfield
val parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l))
val parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l))
let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 43, "end_line": 93, "start_col": 0, "start_line": 92 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> cl: LowParse.BitFields.uint_t tot t -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> LowParse.Spec.Base.parser k (LowParse.Spec.BitFields.bitfields cl 0 tot l)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.pos", "LowParse.BitFields.uint_t", "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield" ]
[]
false
false
false
false
false
let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l)) =
p `parse_synth` (synth_bitfield cl 0 tot l)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_injective
val synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))]
val synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))]
let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)))
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 60, "end_line": 68, "start_col": 0, "start_line": 60 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> FStar.Pervasives.Lemma (ensures lo == 0 /\ hi == tot ==> LowParse.Spec.Combinators.synth_injective (LowParse.Spec.BitFields.synth_bitfield cl lo hi l )) [ SMTPat (LowParse.Spec.Combinators.synth_injective (LowParse.Spec.BitFields.synth_bitfield cl lo hi l)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.synth_injective_intro'", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims._assert", "Prims.eq2", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "Prims.unit", "LowParse.BitFields.get_bitfield_full", "LowParse.Spec.BitFields.synth_bitfield_injective'", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "LowParse.Spec.Combinators.synth_injective", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] =
synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)))
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_lemma0_hi
val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64)
val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64)
let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; }
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 60, "start_col": 0, "start_line": 43 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 64 + (Lib.IntTypes.v hi / Prims.pow2 14 % Prims.pow2 26) * Hacl.Spec.Poly1305.Field32xN.pow78 + (Lib.IntTypes.v hi / Prims.pow2 40) * Hacl.Spec.Poly1305.Field32xN.pow104 == Lib.IntTypes.v hi * Prims.pow2 64)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Modulus", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.op_Division", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Math.Lemmas.euclidean_division_definition" ]
[]
false
false
true
false
false
let load_tup64_lemma0_hi hi =
calc ( == ) { (v hi % pow2 14) * pow2 64 + ((v hi / pow2 14) % pow2 26) * pow78 + (v hi / pow2 40) * pow104; ( == ) { (assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)) } (v hi % pow2 14) * pow2 64 + (((v hi / pow2 14) % pow2 26) * pow2 14) * pow2 64 + ((v hi / pow2 40) * pow2 40) * pow2 64; ( == ) { () } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; }
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_four_sqr64_wide
val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 629, "start_col": 0, "start_line": 610 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64) (ensures (let d = Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a3 +. Lib.IntTypes.mul64_wide (a1 *. Lib.IntTypes.u64 2) a2 in Lib.IntTypes.v d = Lib.IntTypes.v a0 * Lib.IntTypes.v a3 + Lib.IntTypes.v a1 * Lib.IntTypes.v a2 + Lib.IntTypes.v a2 * Lib.IntTypes.v a1 + Lib.IntTypes.v a3 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d <= 16384 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
false
false
true
false
false
let lemma_four_sqr64_wide a0 a1 a2 a3 =
let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert ((v a0 * 2) * v a3 + (v a1 * 2) * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod ((v a0 * 2) * v a3 + (v a1 * 2) * v a2) (pow2 128); calc ( == ) { (v a0 * 2) * v a3 + (v a1 * 2) * v a2; ( == ) { (Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3)) } v a0 * v a3 + v a0 * v a3 + (v a1 * 2) * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2)) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; }
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma0
val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 584, "start_col": 0, "start_line": 565 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 0} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.op_Subtraction", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let lset_bit5_lemma0 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ 0 ] <- f.[ 0 ] |. b in assert (v f.[ i / 26 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 0 ] i; assert (v out.[ 0 ] == v f.[ 0 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 0 ]) (pow2 (i % 26)); let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f2
val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 293, "start_col": 0, "start_line": 255 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Lib.IntTypes.uint64 -> hi: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (ensures (let t3 = lo >>. 48ul |. hi <<. 16ul in Lib.IntTypes.v (t3 >>. 4ul &. Lib.IntTypes.u64 0x3ffffff) == Lib.IntTypes.v lo / Prims.pow2 52 + (Lib.IntTypes.v hi % Prims.pow2 14) * Prims.pow2 12))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Addition", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Modulus", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "Hacl.Poly1305.Field32xN.Lemmas2.load_tup64_4_compact_lemma_f2_mod", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.u64", "Lib.IntTypes.mod_mask_lemma", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.division_multiplication_lemma", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Bar_Dot" ]
[]
false
false
true
false
false
let load_tup64_4_compact_lemma_f2 lo hi =
let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc ( == ) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; ( == ) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + ((v hi % pow2 48) * pow2 12) * pow2 4) / pow2 4; ( == ) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; ( == ) { (Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4) } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc ( == ) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; ( == ) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; ( == ) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_injective'
val synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l)
val synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l)
let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 69, "end_line": 58, "start_col": 0, "start_line": 47 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> y: t -> FStar.Pervasives.Lemma (requires LowParse.Spec.BitFields.synth_bitfield cl lo hi l x == LowParse.Spec.BitFields.synth_bitfield cl lo hi l y) (ensures LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) lo hi == LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) lo hi) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.BitFields.get_bitfield_empty", "LowParse.BitFields.__proj__Mkuint_t__item__v", "Prims.unit", "LowParse.BitFields.get_bitfield_partition_2_gen", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield_injective'", "Prims.eq2", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims.squash", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.get_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) =
match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.bitfields_destr_cons_nil
val bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz])
val bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz])
let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz))
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 224, "start_col": 0, "start_line": 216 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> sz: Prims.nat{lo + sz <= tot} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo (lo + sz) [sz]
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "LowParse.Spec.BitFields.bitfields", "Prims.Cons", "Prims.Nil", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[]
false
false
false
false
false
let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) =
fun f_t f x -> f (cl.get_bitfield x lo (lo + sz))
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.mk_bitfields_destr
val mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l)
val mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l)
let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 172, "end_line": 262, "start_col": 0, "start_line": 254 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo hi l
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops", "LowParse.Spec.BitFields.bitfields_destr_t", "LowParse.Spec.BitFields.mk_bitfields_destr'" ]
[]
false
false
false
false
false
let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) =
norm [ delta_only [ `%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons ]; iota; zeta; primops ] (mk_bitfields_destr' cl lo hi l)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_recip_inverse'
val synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l)
val synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l)
let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 79, "end_line": 131, "start_col": 0, "start_line": 107 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitFields.synth_bitfield cl lo hi l (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l x) == x) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "Prims._assert", "Prims.eq2", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.BitFields.bitfield", "Prims.unit", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "LowParse.BitFields.get_bitfield_set_bitfield_same", "Prims.op_Addition", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitFields.synth_bitfield_recip_inverse'", "LowParse.Spec.BitFields.synth_bitfield_ext", "LowParse.BitFields.get_bitfield_set_bitfield_other", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) =
match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let hd, tl = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide52
val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 749, "start_col": 0, "start_line": 736 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 4097 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a1 + Lib.IntTypes.v a1 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 8193 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
false
false
true
false
false
let lemma_add_two_sqr64_wide52 md d a0 a1 =
lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + (v a0 * 2) * v a1 <= md * max52 + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max52); ( < ) { (assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 8192 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a1) (pow2 128)
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.serialize_bitfield
val serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l))
val serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l))
let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 152, "start_col": 0, "start_line": 143 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: LowParse.Spec.Base.serializer p -> cl: LowParse.BitFields.uint_t tot t -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield p cl l)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.pos", "LowParse.BitFields.uint_t", "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.Spec.BitFields.parse_bitfield" ]
[]
false
false
false
false
false
let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l)) =
serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_sqr64_wide
val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 724, "start_col": 0, "start_line": 691 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12802 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a1 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide (a2 *. Lib.IntTypes.u64 2) a3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a1 * Lib.IntTypes.v a4 + Lib.IntTypes.v a2 * Lib.IntTypes.v a3 + Lib.IntTypes.v a3 * Lib.IntTypes.v a2 + Lib.IntTypes.v a4 * Lib.IntTypes.v a1 /\ Lib.IntTypes.v d1 <= 8705 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
false
false
true
false
false
let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 =
let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + (v a2 * 2) * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); ( < ) { (assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 8704 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc ( == ) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; ( == ) { (Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3)) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1)) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; }
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.bitfields_destr_nil
val bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo [])
val bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo [])
let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f ()
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 8, "end_line": 235, "start_col": 0, "start_line": 228 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat{lo <= tot} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo lo []
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitFields.bitfields", "Prims.Nil", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[]
false
false
false
false
false
let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo []) =
fun f_t f x -> f ()
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_recip'
val synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l)
val synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l)
let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 80, "end_line": 101, "start_col": 0, "start_line": 95 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> Prims.Tot t
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "LowParse.BitFields.bitfield", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield_recip'", "FStar.Pervasives.Native.tuple2" ]
[ "recursion" ]
false
false
false
false
false
let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l) =
match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let hd, tl = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.valid_bitfield_widths_inj
val valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l)
val valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l)
let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 60, "end_line": 277, "start_col": 0, "start_line": 266 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi1: Prims.nat{lo <= hi1} -> hi2: Prims.nat{lo <= hi2} -> l: Prims.list Prims.nat -> FStar.Pervasives.Lemma (requires LowParse.Spec.BitFields.valid_bitfield_widths lo hi1 l /\ LowParse.Spec.BitFields.valid_bitfield_widths lo hi2 l) (ensures hi1 == hi2) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths_inj", "Prims.op_Addition", "Prims.unit", "Prims.l_and", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims.squash", "Prims.eq2", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) =
match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.valid_bitfield_widths_prefix
val valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix)
val valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix)
let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat { lo <= hi }) (prefix: list nat) (suffix: list nat { valid_bitfield_widths lo hi (prefix `L.append` suffix) }) : Tot (mi: nat { lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix }) (decreases prefix) = match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 65, "end_line": 288, "start_col": 0, "start_line": 279 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> prefix: Prims.list Prims.nat -> suffix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi (prefix @ suffix)} -> Prims.Tot (mi: Prims.nat{lo <= mi /\ mi <= hi /\ LowParse.Spec.BitFields.valid_bitfield_widths lo mi prefix})
Prims.Tot
[ "total", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "FStar.List.Tot.Base.append", "LowParse.Spec.BitFields.valid_bitfield_widths_prefix", "Prims.op_Addition", "Prims.l_and" ]
[ "recursion" ]
false
false
false
false
false
let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix) =
match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide
val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 788, "start_col": 0, "start_line": 762 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8705 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a2 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide a3 a3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a2 * Lib.IntTypes.v a4 + Lib.IntTypes.v a3 * Lib.IntTypes.v a3 + Lib.IntTypes.v a4 * Lib.IntTypes.v a2 /\ Lib.IntTypes.v d1 <= 4609 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
false
false
true
false
false
let lemma_add_three_sqr64_wide md d a2 a3 a4 =
assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); ( < ) { (assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 4608 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc ( == ) { v d + v a2 * (v a4 * 2) + v a3 * v a3; ( == ) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; }
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_recip_inverse
val synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ]
val synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ]
let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x )
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 141, "start_col": 0, "start_line": 135 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> FStar.Pervasives.Lemma (ensures lo == 0 /\ hi == tot ==> LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitFields.synth_bitfield cl lo hi l) (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l)) [ SMTPat (LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitFields.synth_bitfield cl lo hi l) (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.synth_inverse_intro'", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.Spec.BitFields.synth_bitfield_recip_inverse'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.Combinators.synth_inverse", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ] =
synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma3
val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 710, "start_col": 0, "start_line": 685 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 3} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow78", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow104", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let lset_bit5_lemma3 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ 3 ] <- f.[ 3 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[ 3 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 3 ] i; assert (v out.[ 3 ] == v f.[ 3 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 3 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.valid_bitfield_widths_append
val valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix)
val valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix)
let rec valid_bitfield_widths_append (lo: nat) (mi: nat { lo <= mi }) (hi: nat { mi <= hi }) (prefix: list nat { valid_bitfield_widths lo mi prefix }) (suffix: list nat { valid_bitfield_widths mi hi suffix }) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix) = match prefix with | [] -> () | sz :: q -> valid_bitfield_widths_append (lo + sz) mi hi q suffix
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 68, "end_line": 301, "start_col": 0, "start_line": 290 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat { lo <= hi }) (prefix: list nat) (suffix: list nat { valid_bitfield_widths lo hi (prefix `L.append` suffix) }) : Tot (mi: nat { lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix }) (decreases prefix) = match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lo: Prims.nat -> mi: Prims.nat{lo <= mi} -> hi: Prims.nat{mi <= hi} -> prefix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo mi prefix} -> suffix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths mi hi suffix} -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitFields.valid_bitfield_widths lo hi (prefix @ suffix)) (decreases prefix)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.valid_bitfield_widths_append", "Prims.op_Addition", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.List.Tot.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix) =
match prefix with | [] -> () | sz :: q -> valid_bitfield_widths_append (lo + sz) mi hi q suffix
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.mk_bitfields_destr'
val mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l)
val mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l)
let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 89, "end_line": 250, "start_col": 0, "start_line": 238 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> Prims.Tot (LowParse.Spec.BitFields.bitfields_destr_t cl lo hi l)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields_destr_nil", "LowParse.Spec.BitFields.bitfields_destr_cons_nil", "LowParse.Spec.BitFields.bitfields_destr_cons", "LowParse.Spec.BitFields.mk_bitfields_destr'", "Prims.op_Addition", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[ "recursion" ]
false
false
false
false
false
let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l) =
match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q)
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide52
val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
let lemma_add_three_sqr64_wide52 md d a0 a1 a2 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc (<) { md * max52 + 12288 * (max52 * max52); (<) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2 + v a1 * v a1) (pow2 128); calc (==) { v d + v a0 * 2 * v a2 + v a1 * v a1; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 823, "start_col": 0, "start_line": 801 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; } val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8194 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a2 +. Lib.IntTypes.mul64_wide a1 a1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a2 + Lib.IntTypes.v a1 * Lib.IntTypes.v a1 + Lib.IntTypes.v a2 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 12289 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
false
false
true
false
false
let lemma_add_three_sqr64_wide52 md d a0 a1 a2 =
lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 12288 * (max52 * max52); ( < ) { (assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 12288 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a2) (pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a2 + v a1 * v a1) (pow2 128); calc ( == ) { v d + (v a0 * 2) * v a2 + v a1 * v a1; ( == ) { (Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2)) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; }
false
Spec.K256.Test.fst
Spec.K256.Test.test1_msg
val test1_msg:lbytes 6
val test1_msg:lbytes 6
let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 35, "start_col": 0, "start_line": 30 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 6
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test1_msg:lbytes 6 =
let l = List.Tot.map u8_from_UInt8 [0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy] in assert_norm (List.Tot.length l == 6); of_list l
false
LowParse.Spec.BitFields.fst
LowParse.Spec.BitFields.synth_bitfield_ext
val synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l)
val synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l)
let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 71, "end_line": 88, "start_col": 0, "start_line": 72 }
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 128, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> y: t -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) lo hi == LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) lo hi) (ensures LowParse.Spec.BitFields.synth_bitfield cl lo hi l x == LowParse.Spec.BitFields.synth_bitfield cl lo hi l y) (decreases l)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims._assert", "Prims.eq2", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims.unit", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.BitFields.synth_bitfield_ext", "Prims.op_Addition", "LowParse.BitFields.get_bitfield_get_bitfield", "Prims.op_Subtraction", "LowParse.BitFields.ubitfield", "LowParse.BitFields.get_bitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) =
match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma4
val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_lemma4 f i = let b = u64 1 <<. size (i % 26) in let out = f.[4] <- f.[4] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[4] < pow2 (i % 26)); lset_bit5_lemma_aux f.[4] i; assert (v out.[4] == v f.[4] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[4]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 752, "start_col": 0, "start_line": 727 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 4} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow104", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let lset_bit5_lemma4 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ 4 ] <- f.[ 4 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[ 4 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 4 ] i; assert (v out.[ 4 ] == v f.[ 4 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 4 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_sqr64_wide
val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 678, "start_col": 0, "start_line": 643 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 16385 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide (a1 *. Lib.IntTypes.u64 2) a3 +. Lib.IntTypes.mul64_wide a2 a2 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a4 + Lib.IntTypes.v a1 * Lib.IntTypes.v a3 + Lib.IntTypes.v a2 * Lib.IntTypes.v a2 + Lib.IntTypes.v a3 * Lib.IntTypes.v a1 + Lib.IntTypes.v a4 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 12801 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
false
false
true
false
false
let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 =
let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); ( < ) { (assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 12800 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2) (pow2 128); calc ( == ) { v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3)) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; ( == ) { (Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4)) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; }
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma2
val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 668, "start_col": 0, "start_line": 643 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 2} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow52", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let lset_bit5_lemma2 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ 2 ] <- f.[ 2 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[ 2 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 2 ] i; assert (v out.[ 2 ] == v f.[ 2 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 2 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
false
Spec.K256.Test.fst
Spec.K256.Test.test2_sk
val test2_sk:lbytes 32
val test2_sk:lbytes 32
let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 63, "start_col": 0, "start_line": 55 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_sk:lbytes 32 =
let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
false
Spec.K256.Test.fst
Spec.K256.Test.test
val test: Prims.unit -> FStar.All.ML bool
val test: Prims.unit -> FStar.All.ML bool
let test () : FStar.All.ML bool = let t0 : bool = test_secret_to_public test2_sk test2_pk in let t1 : bool = test_verify test1_pk test1_msg test1_sgnt in let t2 : bool = test_sign_and_verify test2_sk test2_pk test2_nonce test2_msgHash test2_sgnt in let t3 : bool = test_public_key_compressed test2_pk in let t4 : bool = test_public_key_uncompressed test2_pk in if t0 && t1 && t2 && t3 && t4 then begin IO.print_string "Test K256 ecdsa: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa: Failure :(\n"; false end
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 207, "start_col": 0, "start_line": 198 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end let test_public_key_uncompressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> begin IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false end #set-options "--ifuel 2"
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.unit", "Prims.op_AmpAmp", "Prims.bool", "FStar.IO.print_string", "Spec.K256.Test.test_public_key_uncompressed", "Spec.K256.Test.test2_pk", "Spec.K256.Test.test_public_key_compressed", "Spec.K256.Test.test_sign_and_verify", "Spec.K256.Test.test2_sk", "Spec.K256.Test.test2_nonce", "Spec.K256.Test.test2_msgHash", "Spec.K256.Test.test2_sgnt", "Spec.K256.Test.test_verify", "Spec.K256.Test.test1_pk", "Spec.K256.Test.test1_msg", "Spec.K256.Test.test1_sgnt", "Spec.K256.Test.test_secret_to_public" ]
[]
false
true
false
false
false
let test () : FStar.All.ML bool =
let t0:bool = test_secret_to_public test2_sk test2_pk in let t1:bool = test_verify test1_pk test1_msg test1_sgnt in let t2:bool = test_sign_and_verify test2_sk test2_pk test2_nonce test2_msgHash test2_sgnt in let t3:bool = test_public_key_compressed test2_pk in let t4:bool = test_public_key_uncompressed test2_pk in if t0 && t1 && t2 && t3 && t4 then (IO.print_string "Test K256 ecdsa: Success!\n"; true) else (IO.print_string "Test K256 ecdsa: Failure :(\n"; false)
false
Spec.K256.Test.fst
Spec.K256.Test.test_secret_to_public
val test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool
val test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool
let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 128, "start_col": 0, "start_line": 118 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sk: Lib.ByteSequence.lbytes 32 -> pk_expected: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.secret_to_public" ]
[]
false
true
false
false
false
let test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool =
let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.set_bit5_lemma_k
val set_bit5_lemma_k: #w:lanes -> f:lseq (uint64xN w) 5 -> i:size_nat{i <= 128} -> k:nat{k < w} -> Lemma (requires lfelem_fits f (1, 1, 1, 1, 1) /\ lfelem_less f (pow2 i)) (ensures ( let out = set_bit5 f i in tup64_fits5 (as_tup64_i (as_tup5 out) k) (1, 1, 1, 1, 1) /\ (lfeval out).[k] == pfadd (pow2 i) (lfeval f).[k]))
val set_bit5_lemma_k: #w:lanes -> f:lseq (uint64xN w) 5 -> i:size_nat{i <= 128} -> k:nat{k < w} -> Lemma (requires lfelem_fits f (1, 1, 1, 1, 1) /\ lfelem_less f (pow2 i)) (ensures ( let out = set_bit5 f i in tup64_fits5 (as_tup64_i (as_tup5 out) k) (1, 1, 1, 1, 1) /\ (lfeval out).[k] == pfadd (pow2 i) (lfeval f).[k]))
let set_bit5_lemma_k #w f i k = let lf = create 5 (u64 0) in let lf = lf.[0] <- (vec_v f.[0]).[k] in let lf = lf.[1] <- (vec_v f.[1]).[k] in let lf = lf.[2] <- (vec_v f.[2]).[k] in let lf = lf.[3] <- (vec_v f.[3]).[k] in let lf = lf.[4] <- (vec_v f.[4]).[k] in lset_bit5 lf i
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 827, "start_col": 0, "start_line": 820 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma4 f i = let b = u64 1 <<. size (i % 26) in let out = f.[4] <- f.[4] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[4] < pow2 (i % 26)); lset_bit5_lemma_aux f.[4] i; assert (v out.[4] == v f.[4] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[4]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_ f i = let ind = i / 26 in let j = i % 26 in FStar.Math.Lemmas.euclidean_division_definition i 26; assert (i == ind * 26 + j); match ind with | 0 -> lset_bit5_lemma0 f i | 1 -> lset_bit5_lemma1 f i | 2 -> lset_bit5_lemma2 f i | 3 -> lset_bit5_lemma3 f i | 4 -> lset_bit5_lemma4 f i val lset_bit5: f:lseq uint64 5 -> i:size_nat{i <= 128} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) % prime == (pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) % prime) % prime)) let lset_bit5 f i = let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in lset_bit5_ f i; let out = (out.[0], out.[1], out.[2], out.[3], out.[4]) in let f = (f.[0], f.[1], f.[2], f.[3], f.[4]) in assert (as_nat5 out % prime == (pow2 i + as_nat5 f) % prime); FStar.Math.Lemmas.lemma_mod_plus_distr_r (pow2 i) (as_nat5 f) prime val set_bit5_lemma_k: #w:lanes -> f:lseq (uint64xN w) 5 -> i:size_nat{i <= 128} -> k:nat{k < w} -> Lemma (requires lfelem_fits f (1, 1, 1, 1, 1) /\ lfelem_less f (pow2 i)) (ensures ( let out = set_bit5 f i in tup64_fits5 (as_tup64_i (as_tup5 out) k) (1, 1, 1, 1, 1) /\ (lfeval out).[k] == pfadd (pow2 i) (lfeval f).[k]))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq (Hacl.Spec.Poly1305.Field32xN.uint64xN w) 5 -> i: Lib.IntTypes.size_nat{i <= 128} -> k: Prims.nat{k < w} -> FStar.Pervasives.Lemma (requires Hacl.Spec.Poly1305.Field32xN.lfelem_fits f (1, 1, 1, 1, 1) /\ Hacl.Spec.Poly1305.Field32xN.lfelem_less f (Prims.pow2 i)) (ensures (let out = Hacl.Spec.Poly1305.Field32xN.set_bit5 f i in Hacl.Spec.Poly1305.Field32xN.tup64_fits5 (Hacl.Spec.Poly1305.Field32xN.as_tup64_i (Hacl.Spec.Poly1305.Field32xN.as_tup5 out) k) (1, 1, 1, 1, 1) /\ (Hacl.Spec.Poly1305.Field32xN.lfeval out).[ k ] == Hacl.Spec.Poly1305.Vec.pfadd (Prims.pow2 i) (Hacl.Spec.Poly1305.Field32xN.lfeval f).[ k ]) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Poly1305.Field32xN.lanes", "Lib.Sequence.lseq", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.nat", "Prims.op_LessThan", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Lib.IntVector.vec_v", "Prims.l_Forall", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint64", "Lib.Sequence.op_String_Access", "Lib.IntTypes.uint_t", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create", "Lib.IntTypes.u64", "Prims.unit" ]
[]
true
false
true
false
false
let set_bit5_lemma_k #w f i k =
let lf = create 5 (u64 0) in let lf = lf.[ 0 ] <- (vec_v f.[ 0 ]).[ k ] in let lf = lf.[ 1 ] <- (vec_v f.[ 1 ]).[ k ] in let lf = lf.[ 2 ] <- (vec_v f.[ 2 ]).[ k ] in let lf = lf.[ 3 ] <- (vec_v f.[ 3 ]).[ k ] in let lf = lf.[ 4 ] <- (vec_v f.[ 4 ]).[ k ] in lset_bit5 lf i
false
Vale.Def.TypesNative_s.fst
Vale.Def.TypesNative_s.natN
val natN : n: Prims.nat -> Type0
let natN = Vale.Def.Words_s.natN
{ "file_name": "vale/specs/defs/Vale.Def.TypesNative_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 4, "start_col": 7, "start_line": 4 }
module Vale.Def.TypesNative_s open FStar.Mul
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.TypesNative_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.natN" ]
[]
false
false
false
true
true
let natN =
Vale.Def.Words_s.natN
false
Spec.K256.Test.fst
Spec.K256.Test.test_sign_and_verify
val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 164, "start_col": 0, "start_line": 152 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sk: Lib.ByteSequence.lbytes 32 -> pk: Lib.ByteSequence.lbytes 64 -> nonce: Lib.ByteSequence.lbytes 32 -> msgHash: Lib.ByteSequence.lbytes 32 -> sgnt: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Lib.ByteSequence.lbytes", "Prims.op_AmpAmp", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Spec.K256.ecdsa_verify_hashed_msg", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.ecdsa_sign_hashed_msg" ]
[]
false
true
false
false
false
let test_sign_and_verify sk pk nonce msgHash sgnt =
let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then (IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true) else (IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false)
false
Spec.K256.Test.fst
Spec.K256.Test.test_verify
val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 84, "end_line": 141, "start_col": 0, "start_line": 137 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pk: Lib.ByteSequence.lbytes 64 -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t} -> sgnt: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Lib.ByteSequence.lbytes", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.max_size_t", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Spec.K256.ecdsa_verify_sha256" ]
[]
false
true
false
false
false
let test_verify pk msg sgnt =
let verify:bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then (IO.print_string "Test K256 ecdsa verification: Success!\n"; true) else (IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false)
false
Spec.K256.Test.fst
Spec.K256.Test.test1_sgnt
val test1_sgnt:lbytes 64
val test1_sgnt:lbytes 64
let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 50, "start_col": 0, "start_line": 38 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test1_sgnt:lbytes 64 =
let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l
false
Spec.K256.Test.fst
Spec.K256.Test.test2_msgHash
val test2_msgHash:lbytes 32
val test2_msgHash:lbytes 32
let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 100, "start_col": 0, "start_line": 92 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_msgHash:lbytes 32 =
let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.store_tup64_lemma
val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 8, "end_line": 503, "start_col": 0, "start_line": 464 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64)
Prims.Pure
[]
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Modulus", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "Prims.op_Division", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_tup64_mod_pow2_128", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_hi", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_lo", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let store_tup64_lemma f =
let f0, f1, f2, f3, f4 = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc ( == ) { v lo + v hi * pow2 64; ( == ) { () } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; ( == ) { () } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 * pow2 40) % pow2 64) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 % pow2 24) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 % pow2 24) * pow2 40) * pow2 64; ( == ) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + (v f4 % pow2 24) * pow104; ( == ) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + (v f2 / pow2 12) * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma1
val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 626, "start_col": 0, "start_line": 601 }
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 1} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow26", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let lset_bit5_lemma1 f i =
let b = u64 1 <<. size (i % 26) in let out = f.[ 1 ] <- f.[ 1 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[ 1 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 1 ] i; assert (v out.[ 1 ] == v f.[ 1 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 1 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
false
Vale.Def.TypesNative_s.fst
Vale.Def.TypesNative_s.pow2_norm
val pow2_norm : n: Prims.nat -> Prims.pos
let pow2_norm = Vale.Def.Words_s.pow2_norm
{ "file_name": "vale/specs/defs/Vale.Def.TypesNative_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 5, "start_col": 7, "start_line": 5 }
module Vale.Def.TypesNative_s open FStar.Mul
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.TypesNative_s.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Prims.pos
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.pow2_norm" ]
[]
false
false
false
true
false
let pow2_norm =
Vale.Def.Words_s.pow2_norm
false
Spec.K256.Test.fst
Spec.K256.Test.test1_pk
val test1_pk:lbytes 64
val test1_pk:lbytes 64
let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 27, "start_col": 0, "start_line": 15 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test1_pk:lbytes 64 =
let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
false
Spec.K256.Test.fst
Spec.K256.Test.test_public_key_uncompressed
val test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool
val test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool
let test_public_key_uncompressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> begin IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false end
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 85, "end_line": 194, "start_col": 0, "start_line": 182 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pk_raw: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "Prims.op_Negation", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.pk_uncompressed_to_raw", "Spec.K256.pk_uncompressed_from_raw" ]
[]
false
true
false
false
false
let test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool =
let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false
false
Spec.K256.Test.fst
Spec.K256.Test.test2_pk
val test2_pk:lbytes 64
val test2_pk:lbytes 64
let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 78, "start_col": 0, "start_line": 66 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_pk:lbytes 64 =
let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
false
Spec.K256.Test.fst
Spec.K256.Test.test_public_key_compressed
val test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool
val test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool
let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 83, "end_line": 179, "start_col": 0, "start_line": 167 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pk_raw: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "Prims.op_Negation", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.pk_compressed_to_raw", "Spec.K256.pk_compressed_from_raw" ]
[]
false
true
false
false
false
let test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool =
let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false
false
Spec.K256.Test.fst
Spec.K256.Test.test2_nonce
val test2_nonce:lbytes 32
val test2_nonce:lbytes 32
let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 89, "start_col": 0, "start_line": 81 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_nonce:lbytes 32 =
let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
false
Spec.K256.Test.fst
Spec.K256.Test.test2_sgnt
val test2_sgnt:lbytes 64
val test2_sgnt:lbytes 64
let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 115, "start_col": 0, "start_line": 103 }
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let test2_sgnt:lbytes 64 =
let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
false
Spec.GaloisField.fst
Spec.GaloisField.fadd
val fadd (#f: field) (a b: felem f) : felem f
val fadd (#f: field) (a b: felem f) : felem f
let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 33, "start_col": 0, "start_line": 33 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.op_Hat_Dot", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC" ]
[]
false
false
false
false
false
let fadd (#f: field) (a b: felem f) : felem f =
a ^. b
false
Spec.GaloisField.fst
Spec.GaloisField.op_Star_At
val op_Star_At : e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
let op_Star_At #f e1 e2 = fmul #f e1 e2
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 51, "start_col": 0, "start_line": 51 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fmul" ]
[]
false
false
false
false
false
let ( *@ ) #f e1 e2 =
fmul #f e1 e2
false
Spec.GaloisField.fst
Spec.GaloisField.op_Plus_At
val op_Plus_At : e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
let op_Plus_At #f e1 e2 = fadd #f e1 e2
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 34, "start_col": 0, "start_line": 34 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fadd" ]
[]
false
false
false
false
false
let ( +@ ) #f e1 e2 =
fadd #f e1 e2
false
Spec.GaloisField.fst
Spec.GaloisField.op_Star_Star_At
val op_Star_Star_At : e1: Spec.GaloisField.felem f -> e2: n: Prims.nat{n >= 1} -> Spec.GaloisField.felem f
let op_Star_Star_At #f e1 e2 = fexp #f e1 e2
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 91, "start_col": 0, "start_line": 91 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n) let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e1: Spec.GaloisField.felem f -> e2: n: Prims.nat{n >= 1} -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Spec.GaloisField.fexp" ]
[]
false
false
false
false
false
let ( **@ ) #f e1 e2 =
fexp #f e1 e2
false
Spec.GaloisField.fst
Spec.GaloisField.gf
val gf : t: Lib.IntTypes.inttype{Lib.IntTypes.unsigned t /\ t <> Lib.IntTypes.U1} -> irred: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Spec.GaloisField.field
let gf t irred = GF t irred
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 15, "start_col": 0, "start_line": 15 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Lib.IntTypes.inttype{Lib.IntTypes.unsigned t /\ t <> Lib.IntTypes.U1} -> irred: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Spec.GaloisField.field
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.b2t", "Lib.IntTypes.unsigned", "Prims.op_disEquality", "Lib.IntTypes.U1", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Spec.GaloisField.GF", "Spec.GaloisField.field" ]
[]
false
false
false
false
false
let gf t irred =
GF t irred
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.poly128
val poly128 : Type0
let poly128 = p:poly{degree p < 128}
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 28, "start_col": 0, "start_line": 28 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.Math.Poly2_s.poly", "Prims.b2t", "Prims.op_LessThan", "Vale.Math.Poly2_s.degree" ]
[]
false
false
false
true
true
let poly128 =
p: poly{degree p < 128}
false
Spec.GaloisField.fst
Spec.GaloisField.to_felem
val to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f
val to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f
let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 17, "start_col": 0, "start_line": 17 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= Lib.IntTypes.maxint (GF?.t f)} -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Spec.GaloisField.felem" ]
[]
false
false
false
false
false
let to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f =
uint #f.t #SEC n
false
Spec.GaloisField.fst
Spec.GaloisField.from_felem
val from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t}
val from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t}
let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 83, "end_line": 18, "start_col": 0, "start_line": 18 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Spec.GaloisField.felem f -> n: Prims.nat{n <= Lib.IntTypes.maxint (GF?.t f)}
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.uint_v", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint" ]
[]
false
false
false
false
false
let from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t} =
uint_v #f.t #SEC e
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_incremental
val ghash_incremental : _: Vale.Def.Types_s.quad32 -> _: Vale.Def.Types_s.quad32 -> _: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Tot Vale.Def.Types_s.quad32
let ghash_incremental = opaque_make ghash_incremental_def
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 87, "start_col": 19, "start_line": 87 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) ) let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Vale.Def.Types_s.quad32 -> _: Vale.Def.Types_s.quad32 -> _: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Tot Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Opaque_s.opaque_make", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.GHash_BE.ghash_incremental_def" ]
[]
false
false
false
true
false
let ghash_incremental =
opaque_make ghash_incremental_def
false
Spec.GaloisField.fst
Spec.GaloisField.zero
val zero (#f: field) : felem f
val zero (#f: field) : felem f
let zero (#f:field) : felem f = to_felem 0
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 20, "start_col": 0, "start_line": 20 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.to_felem", "Spec.GaloisField.felem" ]
[]
false
false
false
false
false
let zero (#f: field) : felem f =
to_felem 0
false
Spec.GaloisField.fst
Spec.GaloisField.one
val one (#f: field) : felem f
val one (#f: field) : felem f
let one (#f:field) : felem f = to_felem 1
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 21, "start_col": 0, "start_line": 21 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.to_felem", "Spec.GaloisField.felem" ]
[]
false
false
false
false
false
let one (#f: field) : felem f =
to_felem 1
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_incremental0
val ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32
val ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32
let ghash_incremental0 (h:quad32) (y_prev:quad32) (x:seq quad32) : quad32 = if length x > 0 then ghash_incremental h y_prev x else y_prev
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 117, "start_col": 0, "start_line": 116 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) ) let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE [@"opaque_to_smt"] let ghash_incremental = opaque_make ghash_incremental_def irreducible let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (ensures of_quad32 (ghash_incremental h_BE y_prev x) == ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) (fun_seq_quad32_BE_poly128 x) 0 (length x) ) // avoids need for extra fuel val lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (requires length x == 0) (ensures ghash_incremental_def h_BE y_prev x == y_prev) [SMTPat (ghash_incremental_def h_BE y_prev x)] val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma (requires length x > 0) (ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x) (decreases %[length x]) val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma (ensures ghash_incremental h y_prev (append a b) == (let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b)) (decreases %[length b])
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.Def.Types_s.quad32 -> y_prev: Vale.Def.Types_s.quad32 -> x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "Vale.AES.GHash_BE.ghash_incremental", "Prims.bool" ]
[]
false
false
false
true
false
let ghash_incremental0 (h y_prev: quad32) (x: seq quad32) : quad32 =
if length x > 0 then ghash_incremental h y_prev x else y_prev
false
LowStar.Lib.AssocList.fsti
LowStar.Lib.AssocList.map
val map : k: Prims.eqtype -> v: Type -> Type
let map (k: eqtype) v = M.t k (option v)
{ "file_name": "krmllib/LowStar.Lib.AssocList.fsti", "git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
{ "end_col": 18, "end_line": 28, "start_col": 0, "start_line": 27 }
module LowStar.Lib.AssocList /// A Low*, stateful associative list that exposes a map-like interface. module B = LowStar.Buffer module HS = FStar.HyperStack module G = FStar.Ghost module L = FStar.List.Tot module U32 = FStar.UInt32 module ST = FStar.HyperStack.ST module M = FStar.Map module LL2 = LowStar.Lib.LinkedList2 module LL1 = LowStar.Lib.LinkedList open FStar.HyperStack.ST open LowStar.BufferOps /// Types, invariants /// ----------------- val t: eqtype -> Type0 -> Type0 /// Rather than force clients to provide a dummy value for the type (which would /// allow us to do something like initialize an empty map with ``restrict (const
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Lib.LinkedList2.fst.checked", "LowStar.Lib.LinkedList.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.Lib.AssocList.fsti" }
[ { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Lib.LinkedList", "short_module": "LL1" }, { "abbrev": true, "full_module": "LowStar.Lib.LinkedList2", "short_module": "LL2" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "LowStar.Lib", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.eqtype -> v: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.Map.t", "FStar.Pervasives.Native.option" ]
[]
false
false
false
true
true
let map (k: eqtype) v =
M.t k (option v)
false
Spec.GaloisField.fst
Spec.GaloisField.reverse
val reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC
val reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC
let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 91, "end_line": 28, "start_col": 0, "start_line": 26 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Lib.IntTypes.uint_t t Lib.IntTypes.SEC
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.LoopCombinators.repeati", "Lib.IntTypes.int_t", "Lib.IntTypes.bits", "Prims.nat", "Prims.op_LessThan", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Lib.IntTypes.uint", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC =
repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_poly
val ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j))
val ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j))
let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 35, "start_col": 0, "start_line": 33 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.Math.Poly2_s.poly -> init: Vale.Math.Poly2_s.poly -> data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) -> j: Prims.int -> k: Prims.int -> Prims.Tot Vale.Math.Poly2_s.poly
Prims.Tot
[ "total", "" ]
[]
[ "Vale.Math.Poly2_s.poly", "Prims.int", "Vale.AES.GHash_BE.poly128", "Prims.op_LessThanOrEqual", "Prims.bool", "Vale.AES.GF128.gf128_mul_rev", "Vale.Math.Poly2.op_Plus_Dot", "Vale.AES.GHash_BE.ghash_poly", "Prims.op_Subtraction" ]
[ "recursion" ]
false
false
false
true
false
let rec ghash_poly (h init: poly) (data: (int -> poly128)) (j k: int) : Tot poly (decreases (k - j)) =
if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h
false
Spec.GaloisField.fst
Spec.GaloisField.get_ith_bit
val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2})
val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2})
let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 57, "start_col": 0, "start_line": 55 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Spec.GaloisField.felem f -> i: Prims.nat{i < Lib.IntTypes.bits (GF?.t f)} -> r: Spec.GaloisField.felem f {Lib.IntTypes.v r == Lib.IntTypes.v x / Prims.pow2 (Lib.IntTypes.bits (GF?.t f) - 1 - i) % 2}
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Prims.op_Subtraction", "Spec.GaloisField.one", "Prims.unit", "Lib.IntTypes.logand_mask", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2" ]
[]
false
false
false
false
false
let get_ith_bit #f x i =
logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.fun_seq_quad32_BE_poly128
val fun_seq_quad32_BE_poly128 (s: seq quad32) : (int -> poly128)
val fun_seq_quad32_BE_poly128 (s: seq quad32) : (int -> poly128)
let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 31, "start_col": 0, "start_line": 30 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128}
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> _: Prims.int -> Vale.AES.GHash_BE.poly128
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.int", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Math.Poly2.Bits_s.of_quad32", "FStar.Seq.Base.index", "Prims.bool", "Vale.Math.Poly2_s.zero", "Vale.AES.GHash_BE.poly128" ]
[]
false
false
false
true
false
let fun_seq_quad32_BE_poly128 (s: seq quad32) : (int -> poly128) =
fun (i: int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero
false
Spec.GaloisField.fst
Spec.GaloisField.store_felem_le
val store_felem_le (#f: field) (e: felem f) : lbytes (numbytes f.t)
val store_felem_le (#f: field) (e: felem f) : lbytes (numbytes f.t)
let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 102, "end_line": 31, "start_col": 0, "start_line": 31 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Spec.GaloisField.felem f -> Lib.ByteSequence.lbytes (Lib.IntTypes.numbytes (GF?.t f))
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.store_felem_be", "Spec.GaloisField.reverse", "Spec.GaloisField.__proj__GF__item__t", "Lib.ByteSequence.lbytes", "Lib.IntTypes.numbytes" ]
[]
false
false
false
false
false
let store_felem_le (#f: field) (e: felem f) : lbytes (numbytes f.t) =
store_felem_be #f (reverse #f.t e)
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_unroll
val ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly
val ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly
let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 61, "start_col": 0, "start_line": 57 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE)
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.Math.Poly2_s.poly -> prev: Vale.Math.Poly2_s.poly -> data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) -> k: Prims.int -> m: Prims.nat -> n: Prims.nat -> Vale.Math.Poly2_s.poly
Prims.Tot
[ "total" ]
[]
[ "Vale.Math.Poly2_s.poly", "Prims.int", "Vale.AES.GHash_BE.poly128", "Prims.nat", "Prims.op_Equality", "Vale.Math.Poly2.op_Star_Dot", "Vale.Math.Poly2.op_Plus_Dot", "Prims.bool", "Vale.AES.GHash_BE.ghash_unroll", "Prims.op_Subtraction", "Prims.op_Addition", "Vale.AES.GHash_BE.gf128_power" ]
[ "recursion" ]
false
false
false
true
false
let rec ghash_unroll (h prev: poly) (data: (int -> poly128)) (k: int) (m n: nat) : poly =
let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
false
Spec.GaloisField.fst
Spec.GaloisField.finv
val finv (#f: field) (a: felem f) : felem f
val finv (#f: field) (a: felem f) : felem f
let finv (#f:field) (a:felem f) : felem f = fexp #f a (maxint f.t - 1)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 94, "start_col": 0, "start_line": 93 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n) let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r' let op_Star_Star_At #f e1 e2 = fexp #f e1 e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fexp", "Prims.op_Subtraction", "Lib.IntTypes.maxint", "Spec.GaloisField.__proj__GF__item__t" ]
[]
false
false
false
false
false
let finv (#f: field) (a: felem f) : felem f =
fexp #f a (maxint f.t - 1)
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_incremental_reveal
val ghash_incremental_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.GHash_BE.ghash_incremental == Vale.AES.GHash_BE.ghash_incremental_def)
let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 120, "end_line": 88, "start_col": 12, "start_line": 88 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) ) let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.GHash_BE.ghash_incremental == Vale.AES.GHash_BE.ghash_incremental_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.AES.GHash_BE.ghash_incremental", "Vale.AES.GHash_BE.ghash_incremental_def" ]
[]
true
false
true
false
false
let ghash_incremental_reveal =
opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def
false
Spec.GaloisField.fst
Spec.GaloisField.fmul
val fmul (#f: field) (a b: felem f) : felem f
val fmul (#f: field) (a b: felem f) : felem f
let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 50, "start_col": 0, "start_line": 36 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.int_t", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Hat_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.eq_mask", "FStar.Pervasives.Native.tuple3", "Lib.LoopCombinators.repeati", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.Mktuple3", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Spec.GaloisField.__proj__GF__item__irred", "Lib.IntTypes.op_Less_Less_Dot", "Spec.GaloisField.zero", "Spec.GaloisField.one" ]
[]
false
false
false
false
false
let fmul (#f: field) (a b: felem f) : felem f =
let one = one #f in let zero = zero #f in let p, a, b = repeati (bits f.t - 1) (fun i (p, a, b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p, a, b)) (zero, a, b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_unroll_back
val ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly
val ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly
let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 69, "start_col": 0, "start_line": 64 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.Math.Poly2_s.poly -> prev: Vale.Math.Poly2_s.poly -> data: (_: Prims.int -> Vale.AES.GHash_BE.poly128) -> k: Prims.int -> n: Prims.nat -> m: Prims.nat -> Vale.Math.Poly2_s.poly
Prims.Tot
[ "total" ]
[]
[ "Vale.Math.Poly2_s.poly", "Prims.int", "Vale.AES.GHash_BE.poly128", "Prims.nat", "Prims.op_Equality", "Vale.Math.Poly2.op_Star_Dot", "Prims.bool", "Vale.Math.Poly2.op_Plus_Dot", "Vale.AES.GHash_BE.ghash_unroll_back", "Prims.op_Subtraction", "Vale.AES.GHash_BE.gf128_power", "Prims.op_Addition" ]
[ "recursion" ]
false
false
false
true
false
let rec ghash_unroll_back (h prev: poly) (data: (int -> poly128)) (k: int) (n m: nat) : poly =
let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.hkeys_reqs_priv
val hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0
val hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0
let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 51, "start_col": 0, "start_line": 45 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n))
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hkeys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> h_BE: Vale.Def.Types_s.quad32 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Seq.Base.index", "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.Bits_s.of_quad32", "Vale.AES.GHash_BE.gf128_power", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let hkeys_reqs_priv (hkeys: seq quad32) (h_BE: quad32) : Vale.Def.Prop_s.prop0 =
let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.ghash_incremental_def
val ghash_incremental_def (h_BE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x])
val ghash_incremental_def (h_BE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x])
let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 86, "start_col": 0, "start_line": 81 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) )
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h_BE: Vale.Def.Types_s.quad32 -> y_prev: Vale.Def.Types_s.quad32 -> x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Tot Vale.Def.Types_s.quad32
Prims.Tot
[ "total", "" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "Vale.AES.GHash_BE_s.gf128_mul_BE", "Vale.Def.Types_s.quad32_xor", "FStar.Seq.Properties.last", "Vale.AES.GHash_BE.ghash_incremental_def", "Vale.Lib.Seqs_s.all_but_last" ]
[ "recursion" ]
false
false
false
true
false
let rec ghash_incremental_def (h_BE y_prev: quad32) (x: seq quad32) : Tot quad32 (decreases %[length x]) =
if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE
false
Spec.GaloisField.fst
Spec.GaloisField.fmul_be
val fmul_be (#f: field) (x y: felem f) : felem f
val fmul_be (#f: field) (x y: felem f) : felem f
let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 81, "start_col": 0, "start_line": 79 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Spec.GaloisField.felem f -> y: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "Spec.GaloisField.fmul_be_f", "FStar.Pervasives.Native.Mktuple2", "Spec.GaloisField.zero" ]
[]
false
false
false
false
false
let fmul_be (#f: field) (x y: felem f) : felem f =
let res, y = repeati (bits f.t) (fmul_be_f x) (zero, y) in res
false
Spec.GaloisField.fst
Spec.GaloisField.load_felem_le
val load_felem_le (#f: field) (b: lbytes (numbytes f.t)) : felem f
val load_felem_le (#f: field) (b: lbytes (numbytes f.t)) : felem f
let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 100, "end_line": 30, "start_col": 0, "start_line": 30 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.ByteSequence.lbytes (Lib.IntTypes.numbytes (GF?.t f)) -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Lib.ByteSequence.lbytes", "Lib.IntTypes.numbytes", "Spec.GaloisField.__proj__GF__item__t", "Spec.GaloisField.reverse", "Spec.GaloisField.load_felem_be", "Spec.GaloisField.felem" ]
[]
false
false
false
false
false
let load_felem_le (#f: field) (b: lbytes (numbytes f.t)) : felem f =
reverse #f.t (load_felem_be #f b)
false
Spec.GaloisField.fst
Spec.GaloisField.fmul_be_f
val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f
val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f
let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 76, "start_col": 0, "start_line": 73 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Spec.GaloisField.felem f -> i: Prims.nat{i < Lib.IntTypes.bits (GF?.t f)} -> res_y: (Spec.GaloisField.felem f * Spec.GaloisField.felem f) -> Spec.GaloisField.felem f * Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.eq2", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Spec.GaloisField.get_ith_bit", "Prims.op_Subtraction", "Spec.GaloisField.fadd", "Lib.IntTypes.shift_right", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Spec.GaloisField.__proj__GF__item__irred", "Prims.bool", "Spec.GaloisField.mask_shift_right_mod", "Spec.GaloisField.mask_add" ]
[]
false
false
false
false
false
let fmul_be_f #f x i (res, y) =
let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y)
false
Spec.GaloisField.fst
Spec.GaloisField.fexp
val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n)
val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n)
let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r'
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 90, "start_col": 0, "start_line": 84 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> n: Prims.nat{n >= 1} -> Prims.Tot (Spec.GaloisField.felem f)
Prims.Tot
[ "total", "" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.bool", "Spec.GaloisField.fmul", "Prims.op_Modulus", "Spec.GaloisField.fexp", "Prims.op_Division" ]
[ "recursion" ]
false
false
false
false
false
let rec fexp #f a x =
if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r'
false
Spec.GaloisField.fst
Spec.GaloisField.mask_shift_right_mod
val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))})
val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))})
let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 69, "start_col": 0, "start_line": 67 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
y: Spec.GaloisField.felem f -> r: Spec.GaloisField.felem f { r == (match Lib.IntTypes.v (Spec.GaloisField.get_ith_bit y (Lib.IntTypes.bits (GF?.t f) - 1)) = 1 with | true -> Spec.GaloisField.fadd (y >>. 1ul) (GF?.irred f) | _ -> y >>. 1ul) }
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fadd", "Lib.IntTypes.op_Greater_Greater_Dot", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Amp_Dot", "Spec.GaloisField.__proj__GF__item__irred", "Lib.IntTypes.eq_mask", "Spec.GaloisField.get_ith_bit", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Spec.GaloisField.one", "Prims.unit", "Lib.IntTypes.logxor_lemma", "Spec.GaloisField.zero", "Prims.eq2", "Lib.IntTypes.int_t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Prims.bool" ]
[]
false
false
false
false
false
let mask_shift_right_mod #f y =
logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one)
false
Spec.GaloisField.fst
Spec.GaloisField.store_felem_be
val store_felem_be (#f: field) (e: felem f) : lbytes (numbytes f.t)
val store_felem_be (#f: field) (e: felem f) : lbytes (numbytes f.t)
let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 95, "end_line": 24, "start_col": 0, "start_line": 24 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Spec.GaloisField.felem f -> Lib.ByteSequence.lbytes (Lib.IntTypes.numbytes (GF?.t f))
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.ByteSequence.uint_to_bytes_be", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "Lib.ByteSequence.lbytes", "Lib.IntTypes.numbytes" ]
[]
false
false
false
false
false
let store_felem_be (#f: field) (e: felem f) : lbytes (numbytes f.t) =
uint_to_bytes_be #f.t #SEC e
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.lemma_add_mul_zero_high
val lemma_add_mul_zero_high (a0 a1 b0 b1: poly) : Lemma (requires a0 == zero \/ b0 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a1 b1)
val lemma_add_mul_zero_high (a0 a1 b0 b1: poly) : Lemma (requires a0 == zero \/ b0 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a1 b1)
let lemma_add_mul_zero_high (a0 a1 b0 b1:poly) : Lemma (requires a0 == zero \/ b0 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a1 b1) = lemma_mul_commute a0 b0; lemma_mul_zero a0; lemma_mul_zero b0; lemma_add_commute (mul a0 b0) (mul a1 b1); lemma_add_zero (mul a1 b1)
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 192, "start_col": 0, "start_line": 184 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) ) let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE [@"opaque_to_smt"] let ghash_incremental = opaque_make ghash_incremental_def irreducible let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (ensures of_quad32 (ghash_incremental h_BE y_prev x) == ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) (fun_seq_quad32_BE_poly128 x) 0 (length x) ) // avoids need for extra fuel val lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (requires length x == 0) (ensures ghash_incremental_def h_BE y_prev x == y_prev) [SMTPat (ghash_incremental_def h_BE y_prev x)] val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma (requires length x > 0) (ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x) (decreases %[length x]) val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma (ensures ghash_incremental h y_prev (append a b) == (let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b)) (decreases %[length b]) let ghash_incremental0 (h:quad32) (y_prev:quad32) (x:seq quad32) : quad32 = if length x > 0 then ghash_incremental h y_prev x else y_prev val lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma (requires y1 = ghash_incremental0 h y0 s1 /\ y2 = ghash_incremental0 h y1 s2) (ensures y2 = ghash_incremental0 h y0 (s1 @| s2)) val lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32) : Lemma (requires y_mid = ghash_incremental0 h y_init s1 /\ y_final = ghash_incremental h y_mid (create 1 q)) (ensures y_final == ghash_incremental h y_init (s1 @| (create 1 q))) val ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma (requires io = ghash_incremental0 h old_io in_quads) (ensures length in_quads == (num_bytes / 16) /\ num_bytes % 16 == 0 ==> (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in num_bytes > 0 ==> length input_quads > 0 /\ io == ghash_incremental h old_io input_quads)) #reset-options "--z3rlimit 30" val lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma (requires (1 <= num_bytes /\ num_bytes < 16 * length input /\ 16 * (length input - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ //4096 * num_bytes < pow2_32 /\ (let num_blocks = num_bytes / 16 in let full_blocks = slice input 0 num_blocks in y_mid = ghash_incremental0 h y_init full_blocks /\ final == index input num_blocks /\ (let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in length padded_bytes == 16 /\ final_padded == be_bytes_to_quad32 padded_bytes /\ y_final = ghash_incremental h y_mid (create 1 final_padded))))) (ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in length padded_bytes == 16 * length input_quads /\ y_final == ghash_incremental h y_init input_quads)) val lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma (requires (1 <= num_bytes /\ num_bytes < 16 * (length input_blocks) + 16 /\ 16 * (length input_blocks) < num_bytes /\ num_bytes % 16 <> 0 /\ y_mid = ghash_incremental0 h y_init input_blocks /\ (let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in length padded_bytes == 16 /\ final_padded == be_bytes_to_quad32 padded_bytes /\ y_final = ghash_incremental h y_mid (create 1 final_padded)))) (ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in length padded_bytes == 16 * length input_quads /\ y_final == ghash_incremental h y_init input_quads)) let lemma_add_mul_zero_low (a0 a1 b0 b1:poly) : Lemma (requires a1 == zero \/ b1 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a0 b0) = lemma_mul_commute a1 b1; lemma_mul_zero a1; lemma_mul_zero b1; lemma_add_zero (mul a0 b0)
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Vale.Math.Poly2_s.poly -> a1: Vale.Math.Poly2_s.poly -> b0: Vale.Math.Poly2_s.poly -> b1: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires a0 == Vale.Math.Poly2_s.zero \/ b0 == Vale.Math.Poly2_s.zero) (ensures Vale.Math.Poly2_s.add (Vale.Math.Poly2_s.mul a0 b0) (Vale.Math.Poly2_s.mul a1 b1) == Vale.Math.Poly2_s.mul a1 b1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.lemma_add_zero", "Vale.Math.Poly2_s.mul", "Prims.unit", "Vale.Math.Poly2.lemma_add_commute", "Vale.Math.Poly2.lemma_mul_zero", "Vale.Math.Poly2.lemma_mul_commute", "Prims.l_or", "Prims.eq2", "Vale.Math.Poly2_s.zero", "Prims.squash", "Vale.Math.Poly2_s.add", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_add_mul_zero_high (a0 a1 b0 b1: poly) : Lemma (requires a0 == zero \/ b0 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a1 b1) =
lemma_mul_commute a0 b0; lemma_mul_zero a0; lemma_mul_zero b0; lemma_add_commute (mul a0 b0) (mul a1 b1); lemma_add_zero (mul a1 b1)
false
Spec.GaloisField.fst
Spec.GaloisField.mask_add
val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)})
val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)})
let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one)
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 63, "start_col": 0, "start_line": 61 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Spec.GaloisField.felem f -> y: Spec.GaloisField.felem f -> res: Spec.GaloisField.felem f -> i: Prims.nat{i < Lib.IntTypes.bits (GF?.t f)} -> r: Spec.GaloisField.felem f { r == (match Lib.IntTypes.v (Spec.GaloisField.get_ith_bit x i) = 1 with | true -> Spec.GaloisField.fadd res y | _ -> res) }
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "Spec.GaloisField.fadd", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.eq_mask", "Spec.GaloisField.get_ith_bit", "Spec.GaloisField.one", "Prims.unit", "Lib.IntTypes.logxor_lemma", "Spec.GaloisField.zero", "Prims.eq2", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Prims.bool" ]
[]
false
false
false
false
false
let mask_add #f x y res i =
logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one)
false
Vale.AES.GHash_BE.fsti
Vale.AES.GHash_BE.lemma_add_mul_zero_low
val lemma_add_mul_zero_low (a0 a1 b0 b1: poly) : Lemma (requires a1 == zero \/ b1 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a0 b0)
val lemma_add_mul_zero_low (a0 a1 b0 b1: poly) : Lemma (requires a1 == zero \/ b1 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a0 b0)
let lemma_add_mul_zero_low (a0 a1 b0 b1:poly) : Lemma (requires a1 == zero \/ b1 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a0 b0) = lemma_mul_commute a1 b1; lemma_mul_zero a1; lemma_mul_zero b1; lemma_add_zero (mul a0 b0)
{ "file_name": "vale/code/crypto/aes/Vale.AES.GHash_BE.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 182, "start_col": 0, "start_line": 175 }
module Vale.AES.GHash_BE open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GHash_BE_s open Vale.AES.GF128_s open Vale.AES.GCTR_BE_s open Vale.AES.GCM_helpers_BE open Vale.Lib.Seqs_s open Vale.Lib.Seqs open FStar.Seq open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Bits_s open Vale.Math.Poly2.Bits open Vale.AES.GF128 open FStar.Mul open FStar.Calc open Vale.AES.OptPublic_BE open Vale.Math.Poly2.Words open Vale.Math.Poly2.Lemmas open Vale.Def.Words.Seq_s #reset-options let poly128 = p:poly{degree p < 128} let fun_seq_quad32_BE_poly128 (s:seq quad32) : (int -> poly128) = fun (i:int) -> if 0 <= i && i < length s then of_quad32 (index s i) else zero let rec ghash_poly (h:poly) (init:poly) (data:int -> poly128) (j:int) (k:int) : Tot poly (decreases (k - j)) = if k <= j then init else gf128_mul_rev (ghash_poly h init data j (k - 1) +. data (k - 1)) h val g_power (a:poly) (n:nat) : poly val lemma_g_power_1 (a:poly) : Lemma (g_power a 1 == a) val lemma_g_power_n (a:poly) (n:pos) : Lemma (g_power a (n + 1) == a *~ g_power a n) val gf128_power (h:poly) (n:nat) : poly val lemma_gf128_power (h:poly) (n:nat) : Lemma (gf128_power h n == shift_key_1 128 gf128_modulus_low_terms (g_power h n)) let hkeys_reqs_priv (hkeys:seq quad32) (h_BE:quad32) : Vale.Def.Prop_s.prop0 = let h = of_quad32 h_BE in length hkeys >= 3 /\ index hkeys 2 == h_BE /\ of_quad32 (index hkeys 0) == gf128_power h 1 /\ of_quad32 (index hkeys 1) == gf128_power h 2 val lemma_hkeys_reqs_pub_priv (hkeys:seq quad32) (h_BE:quad32) : Lemma (hkeys_reqs_pub hkeys h_BE <==> hkeys_reqs_priv hkeys h_BE) // Unrolled series of n ghash computations let rec ghash_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m n:nat) : poly = let d = data (k + m) in let p = gf128_power h (n + 1) in if m = 0 then (prev +. d) *. p else ghash_unroll h prev data k (m - 1) (n + 1) +. d *. p // Unrolled series of n ghash computations in reverse order (last to first) let rec ghash_unroll_back (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n m:nat) : poly = let d = data (k + (n - 1 - m)) in let p = gf128_power h (m + 1) in let v = if m = n - 1 then prev +. d else d in if m = 0 then v *. p else ghash_unroll_back h prev data k n (m - 1) +. v *. p val lemma_ghash_unroll_back_forward (h:poly) (prev:poly) (data:int -> poly128) (k:int) (n:nat) : Lemma (ghash_unroll h prev data k n 0 == ghash_unroll_back h prev data k (n + 1) n) val lemma_ghash_poly_of_unroll (h:poly) (prev:poly) (data:int -> poly128) (k:int) (m:nat) : Lemma (requires degree h < 128 /\ degree prev < 128) (ensures mod_rev 128 (ghash_unroll h prev data k m 0) gf128_modulus == ghash_poly h prev data k (k + m + 1) ) let rec ghash_incremental_def (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Tot quad32 (decreases %[length x]) = if length x = 0 then y_prev else let y_i_minus_1 = ghash_incremental_def h_BE y_prev (all_but_last x) in let x_i = last x in let xor_BE = quad32_xor y_i_minus_1 x_i in gf128_mul_BE xor_BE h_BE [@"opaque_to_smt"] let ghash_incremental = opaque_make ghash_incremental_def irreducible let ghash_incremental_reveal = opaque_revealer (`%ghash_incremental) ghash_incremental ghash_incremental_def val lemma_ghash_incremental_poly (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (ensures of_quad32 (ghash_incremental h_BE y_prev x) == ghash_poly (of_quad32 h_BE) (of_quad32 y_prev) (fun_seq_quad32_BE_poly128 x) 0 (length x) ) // avoids need for extra fuel val lemma_ghash_incremental_def_0 (h_BE:quad32) (y_prev:quad32) (x:seq quad32) : Lemma (requires length x == 0) (ensures ghash_incremental_def h_BE y_prev x == y_prev) [SMTPat (ghash_incremental_def h_BE y_prev x)] val ghash_incremental_to_ghash (h:quad32) (x:seq quad32) : Lemma (requires length x > 0) (ensures ghash_incremental h (Mkfour 0 0 0 0) x == ghash_BE h x) (decreases %[length x]) val lemma_hash_append (h:quad32) (y_prev:quad32) (a b:ghash_plain_BE) : Lemma (ensures ghash_incremental h y_prev (append a b) == (let y_a = ghash_incremental h y_prev a in ghash_incremental h y_a b)) (decreases %[length b]) let ghash_incremental0 (h:quad32) (y_prev:quad32) (x:seq quad32) : quad32 = if length x > 0 then ghash_incremental h y_prev x else y_prev val lemma_ghash_incremental0_append (h y0 y1 y2:quad32) (s1 s2:seq quad32) : Lemma (requires y1 = ghash_incremental0 h y0 s1 /\ y2 = ghash_incremental0 h y1 s2) (ensures y2 = ghash_incremental0 h y0 (s1 @| s2)) val lemma_hash_append2 (h y_init y_mid y_final:quad32) (s1:seq quad32) (q:quad32) : Lemma (requires y_mid = ghash_incremental0 h y_init s1 /\ y_final = ghash_incremental h y_mid (create 1 q)) (ensures y_final == ghash_incremental h y_init (s1 @| (create 1 q))) val ghash_incremental_bytes_pure_no_extra (old_io io h:quad32) (in_quads:seq quad32) (num_bytes:nat64) : Lemma (requires io = ghash_incremental0 h old_io in_quads) (ensures length in_quads == (num_bytes / 16) /\ num_bytes % 16 == 0 ==> (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE in_quads)) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in num_bytes > 0 ==> length input_quads > 0 /\ io == ghash_incremental h old_io input_quads)) #reset-options "--z3rlimit 30" val lemma_ghash_incremental_bytes_extra_helper (h y_init y_mid y_final:quad32) (input:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma (requires (1 <= num_bytes /\ num_bytes < 16 * length input /\ 16 * (length input - 1) < num_bytes /\ num_bytes % 16 <> 0 /\ //4096 * num_bytes < pow2_32 /\ (let num_blocks = num_bytes / 16 in let full_blocks = slice input 0 num_blocks in y_mid = ghash_incremental0 h y_init full_blocks /\ final == index input num_blocks /\ (let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in length padded_bytes == 16 /\ final_padded == be_bytes_to_quad32 padded_bytes /\ y_final = ghash_incremental h y_mid (create 1 final_padded))))) (ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE input)) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in length padded_bytes == 16 * length input_quads /\ y_final == ghash_incremental h y_init input_quads)) val lemma_ghash_incremental_bytes_extra_helper_alt (h y_init y_mid y_final:quad32) (input_blocks:seq quad32) (final final_padded:quad32) (num_bytes:nat) : Lemma (requires (1 <= num_bytes /\ num_bytes < 16 * (length input_blocks) + 16 /\ 16 * (length input_blocks) < num_bytes /\ num_bytes % 16 <> 0 /\ y_mid = ghash_incremental0 h y_init input_blocks /\ (let padded_bytes = pad_to_128_bits (slice (be_quad32_to_bytes final) 0 (num_bytes % 16)) in length padded_bytes == 16 /\ final_padded == be_bytes_to_quad32 padded_bytes /\ y_final = ghash_incremental h y_mid (create 1 final_padded)))) (ensures (let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append input_blocks (create 1 final)))) 0 num_bytes in let padded_bytes = pad_to_128_bits input_bytes in let input_quads = be_bytes_to_seq_quad32 padded_bytes in length padded_bytes == 16 * length input_quads /\ y_final == ghash_incremental h y_init input_quads))
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Words.fsti.checked", "Vale.Math.Poly2.Lemmas.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Math.Poly2.Bits.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Vale.Lib.Seqs_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.OptPublic_BE.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.GHash_BE.fsti" }
[ { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Vale.Math.Poly2_s.poly -> a1: Vale.Math.Poly2_s.poly -> b0: Vale.Math.Poly2_s.poly -> b1: Vale.Math.Poly2_s.poly -> FStar.Pervasives.Lemma (requires a1 == Vale.Math.Poly2_s.zero \/ b1 == Vale.Math.Poly2_s.zero) (ensures Vale.Math.Poly2_s.add (Vale.Math.Poly2_s.mul a0 b0) (Vale.Math.Poly2_s.mul a1 b1) == Vale.Math.Poly2_s.mul a0 b0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Math.Poly2_s.poly", "Vale.Math.Poly2.lemma_add_zero", "Vale.Math.Poly2_s.mul", "Prims.unit", "Vale.Math.Poly2.lemma_mul_zero", "Vale.Math.Poly2.lemma_mul_commute", "Prims.l_or", "Prims.eq2", "Vale.Math.Poly2_s.zero", "Prims.squash", "Vale.Math.Poly2_s.add", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_add_mul_zero_low (a0 a1 b0 b1: poly) : Lemma (requires a1 == zero \/ b1 == zero) (ensures add (mul a0 b0) (mul a1 b1) == mul a0 b0) =
lemma_mul_commute a1 b1; lemma_mul_zero a1; lemma_mul_zero b1; lemma_add_zero (mul a0 b0)
false
Spec.GaloisField.fst
Spec.GaloisField.load_felem_be
val load_felem_be (#f: field) (b: lbytes (numbytes f.t)) : felem f
val load_felem_be (#f: field) (b: lbytes (numbytes f.t)) : felem f
let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 97, "end_line": 23, "start_col": 0, "start_line": 23 }
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.ByteSequence.lbytes (Lib.IntTypes.numbytes (GF?.t f)) -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Lib.ByteSequence.lbytes", "Lib.IntTypes.numbytes", "Spec.GaloisField.__proj__GF__item__t", "Lib.ByteSequence.uint_from_bytes_be", "Lib.IntTypes.SEC", "Spec.GaloisField.felem" ]
[]
false
false
false
false
false
let load_felem_be (#f: field) (b: lbytes (numbytes f.t)) : felem f =
uint_from_bytes_be #f.t #SEC b
false
Hacl.Hash.MD.fst
Hacl.Hash.MD.mk_update_last
val mk_update_last: a:legacy_alg -> update_multi_st (|a, ()|) -> pad_st a -> update_last_st (|a, ()|)
val mk_update_last: a:legacy_alg -> update_multi_st (|a, ()|) -> pad_st a -> update_last_st (|a, ()|)
let mk_update_last a update_multi = assert_norm(block_length a > 0); fun pad s prev_len input input_len -> ST.push_frame (); let h0 = ST.get () in (* Get a series of complete blocks. *) let blocks_n = U32.(input_len /^ block_len a) in Math.Lemmas.nat_times_nat_is_nat (UInt32.v blocks_n) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v input_len) (block_length a); let blocks_len = U32.(blocks_n *^ block_len a) in Math.Lemmas.cancel_mul_mod (U32.v blocks_n) (block_length a); assert (U32.v blocks_len % block_length a = 0); let blocks = B.sub input 0ul blocks_len in (* The rest that doesn't make up a complete block *) let rest_len = U32.(input_len -^ blocks_len) in assert (U32.v rest_len < block_length a); let rest = B.sub input blocks_len rest_len in assert(B.length blocks = U32.v blocks_len); assert(block_length a * U32.v blocks_n = U32.v blocks_n * block_length a); update_multi s () blocks blocks_n; let h1 = ST.get () in assert (S.equal (B.as_seq h0 input) (S.append (B.as_seq h1 blocks) (B.as_seq h1 rest))); assert (S.equal (as_seq h1 s) (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h0 blocks))); (* Compute the total number of bytes fed. *) let total_input_len: len_t a = len_add32 a prev_len input_len in (* Blit the remaining data and the padding together *) let pad_len = Hacl.Hash.PadFinish.pad_len a total_input_len in let tmp_len = U32.( rest_len +^ pad_len ) in assert (len_v a total_input_len = len_v a prev_len + U32.v blocks_len + U32.v rest_len); Lemmas.modulo_distributivity (len_v a prev_len) (U32.v blocks_len) (block_length a); Math.Lemmas.lemma_mod_plus_distr_r (len_v a prev_len) (U32.v blocks_len) (block_length a); assert ((len_v a prev_len + U32.v blocks_len) % block_length a = 0); pad_length_mod a (len_v a prev_len + U32.v blocks_len) (U32.v rest_len); padding_round a total_input_len; assert(FStar.UInt32.v tmp_len % Spec.Hash.Definitions.block_length a = 0); assert (U32.v tmp_len % block_length a = 0); pad_len_bound a prev_len input_len; assert (U32.v tmp_len <= 2 * block_length a); let tmp_twoblocks = B.alloca (Lib.IntTypes.u8 0) U32.(2ul *^ block_len a) in let tmp = B.sub tmp_twoblocks 0ul tmp_len in let tmp_rest = B.sub tmp 0ul rest_len in let tmp_pad = B.sub tmp rest_len pad_len in B.blit rest 0ul tmp_rest 0ul rest_len; pad total_input_len tmp_pad; let h2 = ST.get () in assert (S.equal (B.as_seq h2 tmp) (S.append (B.as_seq h2 tmp_rest) (B.as_seq h2 tmp_pad))); assert (S.equal (B.as_seq h2 tmp_rest) (B.as_seq h1 rest)); assert (S.equal (B.as_seq h2 tmp_pad) (Spec.Hash.MD.pad a (len_v a total_input_len))); (* Update multi those last few blocks *) Math.Lemmas.cancel_mul_mod (U32.v tmp_len) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v tmp_len) (block_length a); Math.Lemmas.swap_mul (block_length a) (U32.v U32.(tmp_len /^ block_len a)); assert(B.length tmp = block_length a * U32.v U32.(tmp_len /^ block_len a)); update_multi s () tmp U32.(tmp_len /^ block_len a); let h3 = ST.get () in assert (S.equal (B.as_seq h3 s) (Spec.Agile.Hash.update_multi a (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h1 blocks)) () (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))))); assert ( let s1 = B.as_seq h1 blocks in let s2 = B.as_seq h2 rest in let s3 = Spec.Hash.MD.pad a (len_v a total_input_len) in S.equal (S.append s1 (S.append s2 s3)) (S.append (S.append s1 s2) s3)); Spec.Hash.Lemmas.update_multi_associative a (B.as_seq h0 s) (B.as_seq h1 blocks) (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))); ST.pop_frame ()
{ "file_name": "code/hash/Hacl.Hash.MD.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 220, "start_col": 0, "start_line": 139 }
module Hacl.Hash.MD (** The Merkle-Damgård construction. *) module U8 = FStar.UInt8 module U32 = FStar.UInt32 module U64 = FStar.UInt64 module U128 = FStar.UInt128 module Int = Lib.IntTypes module Lemmas = FStar.Math.Lemmas module B = LowStar.Buffer module S = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open Hacl.Hash.Definitions open Hacl.Hash.Lemmas open Spec.Hash.Definitions open FStar.Mul module HI = Spec.Hash.Incremental module AH = Spec.Agile.Hash (** Auxiliary helpers *) #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100" let padding_round (a: md_alg) (len: len_t a): Lemma ((len_v a len + pad_length a (len_v a len)) % block_length a = 0) = () private val mod_sub_add: a:int -> b:int -> c:int -> d:int -> p:pos -> Lemma (requires b % p = 0) (ensures (a - ((b + c) + d)) % p == (a - (c + d)) % p) let mod_sub_add a b c d p = calc (==) { (a - ((b + c) + d)) % p; == { Math.Lemmas.lemma_mod_sub_distr a ((b + c) + d) p } (a - ((b + c) + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l (b + c) d p } (a - ((b + c) % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l b c p } (a - ((b % p + c) % p + d) % p) % p; == { } (a - (c % p + d) % p) % p; == { Math.Lemmas.lemma_mod_plus_distr_l c d p } (a - (c + d) % p) % p; == { Math.Lemmas.lemma_mod_sub_distr a (c + d) p } (a - (c + d)) % p; } let pad0_length_mod (a: hash_alg{is_md a}) (base_len: nat) (len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad0_length a (base_len + len) = pad0_length a len) = mod_sub_add (block_length a) base_len len (len_length a + 1) (block_length a) let pad_length_mod (a: hash_alg{is_md a}) (base_len len: nat): Lemma (requires base_len % block_length a = 0) (ensures pad_length a (base_len + len) = pad_length a len) = pad0_length_mod a base_len len val pad_len_bound : a : md_alg -> prev_len:len_t a { len_v a prev_len % block_length a = 0 } -> input_len:U32.t { (U32.v input_len + len_v a prev_len) `less_than_max_input_length` a} -> Lemma( (U32.v input_len % block_length a) + pad_length a (len_v a prev_len + U32.v input_len) <= 2 * block_length a) let pad_len_bound a prev_len input_len = () (* Avoiding an ill-formed pattern error... *) noextract inline_for_extraction let len_add32 a prev_len input_len = let open FStar.Int.Cast.Full in match a with | SHA2_224 | SHA2_256 | MD5 | SHA1 | Blake2S -> assert_norm (pow2 61 < pow2 64); U64.(prev_len +^ uint32_to_uint64 input_len) | SHA2_384 | SHA2_512 | Blake2B -> assert_norm (pow2 125 < pow2 128); U128.(prev_len +^ uint64_to_uint128 (uint32_to_uint64 input_len)) #push-options "--fuel 0 --ifuel 0 --z3rlimit 300" (** Iterated compression function. *) noextract inline_for_extraction let mk_update_multi a update s () blocks n_blocks = let h0 = ST.get () in let inv (h: HS.mem) (i: nat) = let i_block = i * block_length a in i <= U32.v n_blocks /\ B.live h s /\ B.live h blocks /\ B.(modifies (loc_buffer s) h0 h) /\ as_seq h s == Spec.Agile.Hash.update_multi a (as_seq h0 s) () (S.slice (B.as_seq h0 blocks) 0 i_block) in let f (i:U32.t { U32.(0 <= v i /\ v i < v n_blocks)}): ST.Stack unit (requires (fun h -> inv h (U32.v i))) (ensures (fun h0 _ h1 -> inv h0 (U32.v i) /\ inv h1 (U32.v i + 1))) = let h1 = ST.get () in let sz = block_len a in let blocks0 = B.sub blocks 0ul U32.(sz *^ i) in let block = B.sub blocks U32.(sz *^ i) sz in update s block; (**) Spec.Hash.Lemmas.update_multi_update a (as_seq h1 s) (B.as_seq h0 block); (**) let h2 = ST.get () in (**) let blocks_v : Ghost.erased _ = B.as_seq h0 blocks in (**) let block_v : Ghost.erased _ = B.as_seq h0 block in (**) let blocks0_v : Ghost.erased _ = B.as_seq h0 blocks0 in assert ( let s1 = B.as_seq h1 s in let s2 = B.as_seq h2 s in let i = U32.v i in let n_blocks = U32.v n_blocks in block_length a * (i + 1) <= S.length blocks_v /\ (block_length a * (i + 1) - block_length a * i) % block_length a = 0 /\ S.equal block_v (S.slice blocks_v (block_length a * i) (block_length a * (i + 1))) /\ S.equal s2 (Spec.Agile.Hash.update_multi a s1 () block_v) ); (**) let i_block : Ghost.erased _ = block_length a * (U32.v i) in (**) Spec.Hash.Lemmas.update_multi_associative a (as_seq h0 s) (S.slice blocks_v 0 i_block) block_v in assert (B.length blocks = U32.v n_blocks * block_length a); Spec.Hash.Lemmas.update_multi_zero a (as_seq h0 s); C.Loops.for 0ul n_blocks inv f #pop-options #push-options "--fuel 0 --ifuel 0 --z3rlimit 400" (** An arbitrary number of bytes, then padding. *)
{ "checked_file": "/", "dependencies": [ "Spec.Hash.MD.fst.checked", "Spec.Hash.Lemmas.fsti.checked", "Spec.Hash.Incremental.fsti.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.Hash.fst.checked", "Spec.Agile.Hash.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Hash.PadFinish.fsti.checked", "Hacl.Hash.Lemmas.fst.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD.fst" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "AH" }, { "abbrev": true, "full_module": "Spec.Hash.Incremental", "short_module": "HI" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "Int" }, { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 400, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Hash.MD.legacy_alg -> update_multi: Hacl.Hash.Definitions.update_multi_st (| a, () |) -> _: Hacl.Hash.Definitions.pad_st a -> Hacl.Hash.Definitions.update_last_st (| a, () |)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Hash.MD.legacy_alg", "Hacl.Hash.Definitions.update_multi_st", "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec", "Hacl.Hash.Definitions.pad_st", "Hacl.Hash.Definitions.state", "Hacl.Hash.Definitions.prev_len_t", "Hacl.Hash.Definitions.get_alg", "LowStar.Buffer.buffer", "Lib.IntTypes.uint8", "Prims.l_and", "Spec.Hash.Definitions.is_keccak", "Prims.l_True", "Prims.bool", "Prims.b2t", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.op_Addition", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "Spec.Hash.Definitions.len_v", "Prims.logical", "Prims.op_LessThanOrEqual", "Spec.Hash.Definitions.block_length", "Lib.IntTypes.size_t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Spec.Hash.Lemmas.update_multi_associative", "LowStar.Monotonic.Buffer.as_seq", "Hacl.Hash.Definitions.impl_word", "FStar.Seq.Base.append", "Spec.Hash.MD.pad", "Prims._assert", "FStar.Seq.Base.equal", "Spec.Hash.Definitions.bytes", "Prims.op_Modulus", "FStar.Seq.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.seq", "Spec.Agile.Hash.update_multi", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.UInt32.op_Slash_Hat", "Hacl.Hash.Definitions.block_len", "FStar.Mul.op_Star", "FStar.UInt32.v", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Math.Lemmas.cancel_mul_mod", "LowStar.Monotonic.Buffer.blit", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.sub", "FStar.Ghost.hide", "FStar.UInt32.t", "Prims.eq2", "Prims.nat", "FStar.UInt32.mul", "FStar.UInt32.uint_to_t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Buffer.alloca", "Lib.IntTypes.u8", "FStar.UInt32.op_Star_Hat", "Hacl.Hash.MD.pad_len_bound", "Hacl.Hash.MD.padding_round", "Hacl.Hash.MD.pad_length_mod", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "FStar.Math.Lemmas.modulo_distributivity", "FStar.UInt32.op_Plus_Hat", "FStar.UInt.size", "Spec.Hash.Definitions.pad_length", "Hacl.Hash.PadFinish.pad_len", "Spec.Hash.Definitions.len_t", "Hacl.Hash.MD.len_add32", "Spec.Hash.Definitions.word", "Hacl.Hash.Definitions.as_seq", "FStar.UInt32.n", "Prims.op_LessThan", "FStar.UInt32.op_Subtraction_Hat", "FStar.Math.Lemmas.nat_times_nat_is_nat", "FStar.HyperStack.ST.push_frame", "FStar.Pervasives.assert_norm", "Prims.op_GreaterThan", "Hacl.Hash.Definitions.update_last_st" ]
[]
false
false
false
false
false
let mk_update_last a update_multi =
assert_norm (block_length a > 0); fun pad s prev_len input input_len -> ST.push_frame (); let h0 = ST.get () in let blocks_n = let open U32 in input_len /^ block_len a in Math.Lemmas.nat_times_nat_is_nat (UInt32.v blocks_n) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v input_len) (block_length a); let blocks_len = let open U32 in blocks_n *^ block_len a in Math.Lemmas.cancel_mul_mod (U32.v blocks_n) (block_length a); assert (U32.v blocks_len % block_length a = 0); let blocks = B.sub input 0ul blocks_len in let rest_len = let open U32 in input_len -^ blocks_len in assert (U32.v rest_len < block_length a); let rest = B.sub input blocks_len rest_len in assert (B.length blocks = U32.v blocks_len); assert (block_length a * U32.v blocks_n = U32.v blocks_n * block_length a); update_multi s () blocks blocks_n; let h1 = ST.get () in assert (S.equal (B.as_seq h0 input) (S.append (B.as_seq h1 blocks) (B.as_seq h1 rest))); assert (S.equal (as_seq h1 s) (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h0 blocks))); let total_input_len:len_t a = len_add32 a prev_len input_len in let pad_len = Hacl.Hash.PadFinish.pad_len a total_input_len in let tmp_len = let open U32 in rest_len +^ pad_len in assert (len_v a total_input_len = len_v a prev_len + U32.v blocks_len + U32.v rest_len); Lemmas.modulo_distributivity (len_v a prev_len) (U32.v blocks_len) (block_length a); Math.Lemmas.lemma_mod_plus_distr_r (len_v a prev_len) (U32.v blocks_len) (block_length a); assert ((len_v a prev_len + U32.v blocks_len) % block_length a = 0); pad_length_mod a (len_v a prev_len + U32.v blocks_len) (U32.v rest_len); padding_round a total_input_len; assert (FStar.UInt32.v tmp_len % Spec.Hash.Definitions.block_length a = 0); assert (U32.v tmp_len % block_length a = 0); pad_len_bound a prev_len input_len; assert (U32.v tmp_len <= 2 * block_length a); let tmp_twoblocks = B.alloca (Lib.IntTypes.u8 0) U32.(2ul *^ block_len a) in let tmp = B.sub tmp_twoblocks 0ul tmp_len in let tmp_rest = B.sub tmp 0ul rest_len in let tmp_pad = B.sub tmp rest_len pad_len in B.blit rest 0ul tmp_rest 0ul rest_len; pad total_input_len tmp_pad; let h2 = ST.get () in assert (S.equal (B.as_seq h2 tmp) (S.append (B.as_seq h2 tmp_rest) (B.as_seq h2 tmp_pad))); assert (S.equal (B.as_seq h2 tmp_rest) (B.as_seq h1 rest)); assert (S.equal (B.as_seq h2 tmp_pad) (Spec.Hash.MD.pad a (len_v a total_input_len))); Math.Lemmas.cancel_mul_mod (U32.v tmp_len) (block_length a); Math.Lemmas.euclidean_division_definition (U32.v tmp_len) (block_length a); Math.Lemmas.swap_mul (block_length a) (U32.v U32.(tmp_len /^ block_len a)); assert (B.length tmp = block_length a * U32.v U32.(tmp_len /^ block_len a)); update_multi s () tmp U32.(tmp_len /^ block_len a); let h3 = ST.get () in assert (S.equal (B.as_seq h3 s) (Spec.Agile.Hash.update_multi a (Spec.Agile.Hash.update_multi a (B.as_seq h0 s) () (B.as_seq h1 blocks)) () (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))))); assert (let s1 = B.as_seq h1 blocks in let s2 = B.as_seq h2 rest in let s3 = Spec.Hash.MD.pad a (len_v a total_input_len) in S.equal (S.append s1 (S.append s2 s3)) (S.append (S.append s1 s2) s3)); Spec.Hash.Lemmas.update_multi_associative a (B.as_seq h0 s) (B.as_seq h1 blocks) (S.append (B.as_seq h1 rest) (Spec.Hash.MD.pad a (len_v a total_input_len))); ST.pop_frame ()
false
Hacl.Spec.K256.Field52.Lemmas5.fst
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide
val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
let lemma_add_two_sqr64_wide md d a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a3 (a4 *. u64 2); assert (v d + v a3 * (v a4 * 2) <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<) { assert_norm (64193 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 512 } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * (v a4 * 2)) (pow2 128)
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 851, "start_col": 0, "start_line": 835 }
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; } val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_sqr64_wide52 md d a0 a1 a2 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc (<) { md * max52 + 12288 * (max52 * max52); (<) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2 + v a1 * v a1) (pow2 128); calc (==) { v d + v a0 * 2 * v a2 + v a1 * v a1; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; } val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 64193 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a3 (a4 *. Lib.IntTypes.u64 2) in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a3 * Lib.IntTypes.v a4 + Lib.IntTypes.v a4 * Lib.IntTypes.v a3 /\ Lib.IntTypes.v d1 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
false
false
true
false
false
let lemma_add_two_sqr64_wide md d a3 a4 =
assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a3 (a4 *. u64 2); assert (v d + v a3 * (v a4 * 2) <= md * max52 + 8192 * (max52 * max48)); calc ( < ) { md * max52 + 8192 * (max52 * max48); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); ( < ) { (assert_norm (64193 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 512 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 512 } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * (v a4 * 2)) (pow2 128)
false
FStar.Tactics.Typeclasses.fsti
FStar.Tactics.Typeclasses.solve
val solve (#a: Type) (#[tcresolve ()] ev: a) : Tot a
val solve (#a: Type) (#[tcresolve ()] ev: a) : Tot a
let solve (#a:Type) (#[tcresolve ()] ev : a) : Tot a = ev
{ "file_name": "ulib/FStar.Tactics.Typeclasses.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 42, "start_col": 7, "start_line": 42 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Typeclasses open FStar.Tactics.Effect open FStar.Stubs.Reflection.Types (* for `decls` *) (* The attribute that marks classes *) val tcclass : unit (* The attribute that marks instances *) val tcinstance : unit (* The attribute that marks class fields to signal that no method should be generated for them *) val no_method : unit (* The typeclass resolution metaprogram. This is a plugin, clients can run this tactics without having to know its definition in the .fst *) val tcresolve : unit -> Tac unit (* The metaprogram to generate class methods. Also a plugin. This is inserted automatically by the desugaring phase for any `class` declaration. *) val mk_class (nm:string) : Tac decls (* Helper to solve an explicit argument by typeclass resolution *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Reflection.Types.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Typeclasses.fsti" }
[ { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types (* for `decls` *)", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let solve (#a: Type) (#[tcresolve ()] ev: a) : Tot a =
ev
false
Hacl.Chacha20Poly1305_256.fst
Hacl.Chacha20Poly1305_256.encrypt
val encrypt:aead_encrypt_st M256
val encrypt:aead_encrypt_st M256
let encrypt : aead_encrypt_st M256 = chacha20poly1305_aead_encrypt_higher #M256 True poly1305_do_256 Hacl.Chacha20.Vec256.chacha20_encrypt_256
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_256.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 107, "end_line": 32, "start_col": 0, "start_line": 31 }
module Hacl.Chacha20Poly1305_256 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_256 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_256 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M256 [@CInline] private let poly1305_do_256 = chacha20poly1305_poly1305_do_higher #M256 True poly1305_finish poly1305_init poly1305_padded_256 [@@ Comment "Encrypt a message `input` with key `key`. The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory. @param output Pointer to `input_len` bytes of memory where the ciphertext is written to. @param tag Pointer to 16 bytes of memory where the mac is written to. @param input Pointer to `input_len` bytes of memory where the message is read from. @param input_len Length of the message. @param data Pointer to `data_len` bytes of memory where the associated data is read from. @param data_len Length of the associated data. @param key Pointer to 32 bytes of memory where the AEAD key is read from.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_256.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec256.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_256.fst" }
[ { "abbrev": false, "full_module": "Hacl.Poly1305_256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st Hacl.Impl.Poly1305.Fields.M256
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_encrypt_higher", "Hacl.Impl.Poly1305.Fields.M256", "Prims.l_True", "Hacl.Chacha20Poly1305_256.poly1305_do_256", "Hacl.Chacha20.Vec256.chacha20_encrypt_256" ]
[]
false
false
false
true
false
let encrypt:aead_encrypt_st M256 =
chacha20poly1305_aead_encrypt_higher #M256 True poly1305_do_256 Hacl.Chacha20.Vec256.chacha20_encrypt_256
false
Hacl.Chacha20Poly1305_256.fst
Hacl.Chacha20Poly1305_256.decrypt
val decrypt:aead_decrypt_st M256
val decrypt:aead_decrypt_st M256
let decrypt : aead_decrypt_st M256 = chacha20poly1305_aead_decrypt_higher #M256 True Hacl.Chacha20.Vec256.chacha20_encrypt_256 poly1305_do_256
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_256.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 107, "end_line": 53, "start_col": 0, "start_line": 52 }
module Hacl.Chacha20Poly1305_256 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_256 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_256 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M256 [@CInline] private let poly1305_do_256 = chacha20poly1305_poly1305_do_higher #M256 True poly1305_finish poly1305_init poly1305_padded_256 [@@ Comment "Encrypt a message `input` with key `key`. The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory. @param output Pointer to `input_len` bytes of memory where the ciphertext is written to. @param tag Pointer to 16 bytes of memory where the mac is written to. @param input Pointer to `input_len` bytes of memory where the message is read from. @param input_len Length of the message. @param data Pointer to `data_len` bytes of memory where the associated data is read from. @param data_len Length of the associated data. @param key Pointer to 32 bytes of memory where the AEAD key is read from. @param nonce Pointer to 12 bytes of memory where the AEAD nonce is read from."] let encrypt : aead_encrypt_st M256 = chacha20poly1305_aead_encrypt_higher #M256 True poly1305_do_256 Hacl.Chacha20.Vec256.chacha20_encrypt_256 [@@ Comment "Decrypt a ciphertext `input` with key `key`. The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption. Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory. If decryption succeeds, the resulting plaintext is stored in `output` and the function returns the success code 0. If decryption fails, the array `output` remains unchanged and the function returns the error code 1. @param output Pointer to `input_len` bytes of memory where the message is written to. @param input Pointer to `input_len` bytes of memory where the ciphertext is read from. @param input_len Length of the ciphertext. @param data Pointer to `data_len` bytes of memory where the associated data is read from. @param data_len Length of the associated data. @param key Pointer to 32 bytes of memory where the AEAD key is read from. @param nonce Pointer to 12 bytes of memory where the AEAD nonce is read from. @param tag Pointer to 16 bytes of memory where the mac is read from.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_256.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec256.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_256.fst" }
[ { "abbrev": false, "full_module": "Hacl.Poly1305_256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Chacha20Poly1305.aead_decrypt_st Hacl.Impl.Poly1305.Fields.M256
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_decrypt_higher", "Hacl.Impl.Poly1305.Fields.M256", "Prims.l_True", "Hacl.Chacha20.Vec256.chacha20_encrypt_256", "Hacl.Chacha20Poly1305_256.poly1305_do_256" ]
[]
false
false
false
true
false
let decrypt:aead_decrypt_st M256 =
chacha20poly1305_aead_decrypt_higher #M256 True Hacl.Chacha20.Vec256.chacha20_encrypt_256 poly1305_do_256
false
Hacl.Chacha20Poly1305_256.fst
Hacl.Chacha20Poly1305_256.poly1305_do_256
val poly1305_do_256 : Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True
let poly1305_do_256 = chacha20poly1305_poly1305_do_higher #M256 True poly1305_finish poly1305_init poly1305_padded_256
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_256.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 118, "end_line": 16, "start_col": 0, "start_line": 16 }
module Hacl.Chacha20Poly1305_256 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_256 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline] private let poly1305_padded_256 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M256 [@CInline]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_256.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec256.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_256.fst" }
[ { "abbrev": false, "full_module": "Hacl.Poly1305_256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True
Prims.Tot
[ "total" ]
[]
[ "Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher", "Hacl.Impl.Poly1305.Fields.M256", "Prims.l_True", "Hacl.Poly1305_256.poly1305_finish", "Hacl.Poly1305_256.poly1305_init", "Hacl.Chacha20Poly1305_256.poly1305_padded_256" ]
[]
false
false
false
true
false
let poly1305_do_256 =
chacha20poly1305_poly1305_do_higher #M256 True poly1305_finish poly1305_init poly1305_padded_256
false
Hacl.Chacha20Poly1305_256.fst
Hacl.Chacha20Poly1305_256.poly1305_padded_256
val poly1305_padded_256 : Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M256
let poly1305_padded_256 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M256
{ "file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_256.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 83, "end_line": 12, "start_col": 0, "start_line": 12 }
module Hacl.Chacha20Poly1305_256 open Hacl.Meta.Chacha20Poly1305 open Hacl.Impl.Chacha20Poly1305 open Hacl.Impl.Poly1305.Fields open Hacl.Poly1305_256 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" [@CInline]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Poly1305_256.fsti.checked", "Hacl.Meta.Chacha20Poly1305.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20Poly1305.fst.checked", "Hacl.Chacha20.Vec256.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Chacha20Poly1305_256.fst" }
[ { "abbrev": false, "full_module": "Hacl.Poly1305_256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Meta.Chacha20Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M256
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded", "Hacl.Impl.Poly1305.Fields.M256" ]
[]
false
false
false
true
false
let poly1305_padded_256 =
Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M256
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.fsum
val fsum: out:felem -> a:felem -> b:felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ eq_or_disjoint a b /\ eq_or_disjoint a out /\ eq_or_disjoint b out /\ F51.felem_fits h a (1, 2, 1, 1, 1) /\ F51.felem_fits h b (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (2, 4, 2, 2, 2) /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fadd` F51.fevalh h0 b )
val fsum: out:felem -> a:felem -> b:felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ eq_or_disjoint a b /\ eq_or_disjoint a out /\ eq_or_disjoint b out /\ F51.felem_fits h a (1, 2, 1, 1, 1) /\ F51.felem_fits h b (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (2, 4, 2, 2, 2) /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fadd` F51.fevalh h0 b )
let fsum out a b = BN.fadd out a b
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 64, "start_col": 0, "start_line": 63 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0) let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Bignum25519.felem -> a: Hacl.Bignum25519.felem -> b: Hacl.Bignum25519.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum25519.felem", "Hacl.Impl.Curve25519.Field51.fadd", "Prims.unit" ]
[]
false
true
false
false
false
let fsum out a b =
BN.fadd out a b
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.fdifference
val fdifference: out:felem -> a:felem -> b:felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ eq_or_disjoint a b /\ eq_or_disjoint a out /\ eq_or_disjoint b out /\ F51.felem_fits h a (1, 2, 1, 1, 1) /\ F51.felem_fits h b (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (9, 10, 9, 9, 9) /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fsub` F51.fevalh h0 b )
val fdifference: out:felem -> a:felem -> b:felem -> Stack unit (requires fun h -> live h a /\ live h b /\ live h out /\ eq_or_disjoint a b /\ eq_or_disjoint a out /\ eq_or_disjoint b out /\ F51.felem_fits h a (1, 2, 1, 1, 1) /\ F51.felem_fits h b (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (9, 10, 9, 9, 9) /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fsub` F51.fevalh h0 b )
let fdifference out a b = BN.fsub out a b
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 69, "start_col": 0, "start_line": 68 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0) let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1) [@CInline] let fsum out a b = BN.fadd out a b
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Bignum25519.felem -> a: Hacl.Bignum25519.felem -> b: Hacl.Bignum25519.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum25519.felem", "Hacl.Impl.Curve25519.Field51.fsub", "Prims.unit" ]
[]
false
true
false
false
false
let fdifference out a b =
BN.fsub out a b
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.mask_51
val mask_51 : u8: Lib.IntTypes.uint64{Lib.IntTypes.v u8 == 0x7ffffffffffff}
let mask_51 = u64 0x7ffffffffffff
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 24, "start_col": 0, "start_line": 24 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u8: Lib.IntTypes.uint64{Lib.IntTypes.v u8 == 0x7ffffffffffff}
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.u64" ]
[]
false
false
false
false
false
let mask_51 =
u64 0x7ffffffffffff
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.carry51
val carry51: #m:S51.scale64{m < 8192} -> l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires S51.felem_fits1 l m /\ S51.felem_fits1 cin 1) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ S51.felem_fits1 l0 1 /\ uint_v l1 < m + 1)
val carry51: #m:S51.scale64{m < 8192} -> l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires S51.felem_fits1 l m /\ S51.felem_fits1 cin 1) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ S51.felem_fits1 l0 1 /\ uint_v l1 < m + 1)
let carry51 l cin = let l' = l +! cin in mod_mask_lemma l' 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask_51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51; (l' &. mask_51, l' >>. 51ul)
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 92, "start_col": 0, "start_line": 85 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0) let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1) [@CInline] let fsum out a b = BN.fadd out a b [@CInline] let fdifference out a b = BN.fsub out a b inline_for_extraction noextract val carry51: #m:S51.scale64{m < 8192} -> l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires S51.felem_fits1 l m /\ S51.felem_fits1 cin 1) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ S51.felem_fits1 l0 1 /\ uint_v l1 < m + 1)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Lib.IntTypes.uint64 -> cin: Lib.IntTypes.uint64 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64)
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Bignum25519.mask_51", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Math.Lemmas.pow2_minus", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.IntTypes.v", "Prims.pow2", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.mod_mask_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let carry51 l cin =
let l' = l +! cin in mod_mask_lemma l' 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask_51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51; (l' &. mask_51, l' >>. 51ul)
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.make_u64_5
val make_u64_5: b:lbuffer uint64 5ul -> s0:uint64 -> s1:uint64 -> s2:uint64 -> s3:uint64 -> s4:uint64 -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.as_felem h1 b == (s0, s1, s2, s3, s4) /\ F51.as_nat h1 b == S51.as_nat5 (s0, s1, s2, s3, s4) )
val make_u64_5: b:lbuffer uint64 5ul -> s0:uint64 -> s1:uint64 -> s2:uint64 -> s3:uint64 -> s4:uint64 -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.as_felem h1 b == (s0, s1, s2, s3, s4) /\ F51.as_nat h1 b == S51.as_nat5 (s0, s1, s2, s3, s4) )
let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 31, "start_col": 0, "start_line": 26 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> s0: Lib.IntTypes.uint64 -> s1: Lib.IntTypes.uint64 -> s2: Lib.IntTypes.uint64 -> s3: Lib.IntTypes.uint64 -> s4: Lib.IntTypes.uint64 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.Buffer.op_Array_Assignment", "Prims.unit" ]
[]
false
true
false
false
false
let make_u64_5 b s0 s1 s2 s3 s4 =
b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.fsquare
val fsquare: out:felem -> a:felem -> Stack unit (requires fun h -> live h out /\ live h a /\ eq_or_disjoint a out /\ F51.felem_fits h a (9, 10, 9, 9, 9) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fmul` F51.fevalh h0 a )
val fsquare: out:felem -> a:felem -> Stack unit (requires fun h -> live h out /\ live h a /\ eq_or_disjoint a out /\ F51.felem_fits h a (9, 10, 9, 9, 9) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.mul_inv_t h1 out /\ F51.fevalh h1 out == F51.fevalh h0 a `SC.fmul` F51.fevalh h0 a )
let fsquare out a = push_frame(); let tmp = create 5ul (u128 0) in BN.fsqr out a tmp; pop_frame()
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 216, "start_col": 0, "start_line": 212 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0) let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1) [@CInline] let fsum out a b = BN.fadd out a b [@CInline] let fdifference out a b = BN.fsub out a b inline_for_extraction noextract val carry51: #m:S51.scale64{m < 8192} -> l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires S51.felem_fits1 l m /\ S51.felem_fits1 cin 1) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ S51.felem_fits1 l0 1 /\ uint_v l1 < m + 1) let carry51 l cin = let l' = l +! cin in mod_mask_lemma l' 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask_51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51; (l' &. mask_51, l' >>. 51ul) let reduce_513 a = let (f0, f1, f2, f3, f4) = (a.(0ul), a.(1ul), a.(2ul), a.(3ul), a.(4ul)) in let tmp0, c0 = carry51 #9 f0 (u64 0) in let tmp1, c1 = carry51 #10 f1 c0 in let tmp2, c2 = carry51 #9 f2 c1 in let tmp3, c3 = carry51 #9 f3 c2 in let tmp4, c4 = carry51 #9 f4 c3 in assert (S51.felem_fits5 (tmp0, tmp1, tmp2, tmp3, tmp4) (1, 1, 1, 1, 1)); SL51.lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; assert ( S51.as_nat5 (f0, f1, f2, f3, f4) % SC.prime == (S51.as_nat5 (tmp0, tmp1, tmp2, tmp3, tmp4) + v c4 * 19) % SC.prime); [@inline_let] let tmp0', c5 = carry51 #1 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in Hacl.Spec.Curve25519.Field51.lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; make_u64_5 a tmp0' tmp1' tmp2 tmp3 tmp4 [@CInline] let fmul output input input2 = push_frame(); let tmp = create 10ul (u128 0) in BN.fmul output input input2 tmp; pop_frame() [@CInline] let times_2 out a = (**) let h0 = ST.get() in let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let o0 = u64 2 *. a0 in let o1 = u64 2 *. a1 in let o2 = u64 2 *. a2 in let o3 = u64 2 *. a3 in let o4 = u64 2 *. a4 in make_u64_5 out o0 o1 o2 o3 o4; (**) let h1 = ST.get() in (**) assert (S51.felem_fits1 a0 1); (**) assert (F51.felem_fits h1 out (2, 4, 2, 2, 2)); calc (==) { (2 * (F51.fevalh h0 a)) % SC.prime; (==) { calc (==) { F51.fevalh h0 a; (==) { } S51.as_nat5 (a0, a1, a2, a3, a4) % SC.prime; } } (2 * (S51.as_nat5 (a0, a1, a2, a3, a4) % SC.prime)) % SC.prime; (==) { FStar.Math.Lemmas.lemma_mod_mul_distr_r 2 (S51.as_nat5 (a0, a1, a2, a3, a4)) SC.prime } (2 * S51.as_nat5 (a0, a1, a2, a3, a4)) % SC.prime; (==) { calc (==) { 2 * S51.as_nat5 (a0, a1, a2, a3, a4); (==) { SL51.lemma_smul_felem5 (u64 2) (a0, a1, a2, a3, a4) } 2 * v a0 + 2 * v a1 * S51.pow51 + 2 * v a2 * S51.pow51 * S51.pow51 + 2 * v a3 * S51.pow51 * S51.pow51 * S51.pow51 + 2 * v a4 * S51.pow51 * S51.pow51 * S51.pow51 * S51.pow51; (==) { assert_norm (2 * S51.pow51 < pow2 64); assert_norm (4 * S51.pow51 < pow2 64); FStar.Math.Lemmas.small_mod (2 * v a0) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a1) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a2) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a3) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a4) (pow2 64) } S51.as_nat5 (u64 2 *. a0, u64 2 *. a1, u64 2 *. a2, u64 2 *. a3, u64 2 *. a4); } } S51.as_nat5 (u64 2 *. a0, u64 2 *. a1, u64 2 *. a2, u64 2 *. a3, u64 2 *. a4) % SC.prime; (==) { } F51.fevalh h1 out; } [@CInline] let times_d out a = push_frame(); let d = create 5ul (u64 0) in d.(0ul) <- u64 0x00034dca135978a3; d.(1ul) <- u64 0x0001a8283b156ebd; d.(2ul) <- u64 0x0005e7a26001c029; d.(3ul) <- u64 0x000739c663a03cbb; d.(4ul) <- u64 0x00052036cee2b6ff; assert_norm (S51.as_nat5 (u64 0x00034dca135978a3, u64 0x0001a8283b156ebd, u64 0x0005e7a26001c029, u64 0x000739c663a03cbb, u64 0x00052036cee2b6ff) % Spec.Curve25519.prime == Spec.Ed25519.d); fmul out d a; pop_frame() [@CInline] let times_2d out a = push_frame(); let d2 = create 5ul (u64 0) in d2.(0ul) <- u64 0x00069b9426b2f159; d2.(1ul) <- u64 0x00035050762add7a; d2.(2ul) <- u64 0x0003cf44c0038052; d2.(3ul) <- u64 0x0006738cc7407977; d2.(4ul) <- u64 0x0002406d9dc56dff; fmul out d2 a; assert_norm (S51.as_nat5 (u64 0x00069b9426b2f159, u64 0x00035050762add7a, u64 0x0003cf44c0038052, u64 0x0006738cc7407977, u64 0x0002406d9dc56dff) % Spec.Curve25519.prime == 2 `SC.fmul` Spec.Ed25519.d); pop_frame()
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Bignum25519.felem -> a: Hacl.Bignum25519.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum25519.felem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Curve25519.Field51.fsqr", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Hacl.Impl.Curve25519.Fields.Core.wide", "Hacl.Impl.Curve25519.Fields.Core.M51", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.u128", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let fsquare out a =
push_frame (); let tmp = create 5ul (u128 0) in BN.fsqr out a tmp; pop_frame ()
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.make_one
val make_one: b:lbuffer uint64 5ul -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one )
val make_one: b:lbuffer uint64 5ul -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.one )
let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1)
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 59, "start_col": 0, "start_line": 53 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.u64", "Spec.Curve25519.prime", "Prims.unit", "Lib.Buffer.op_Array_Assignment" ]
[]
false
true
false
false
false
let make_one b =
b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1)
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.make_zero
val make_zero: b:lbuffer uint64 5ul -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero )
val make_zero: b:lbuffer uint64 5ul -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ F51.mul_inv_t h1 b /\ F51.fevalh h1 b == SC.zero )
let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0)
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 51, "start_col": 0, "start_line": 45 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.u64", "Spec.Curve25519.prime", "Prims.unit", "Lib.Buffer.op_Array_Assignment" ]
[]
false
true
false
false
false
let make_zero b =
b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0)
false
Hacl.Bignum25519.fst
Hacl.Bignum25519.fsquare_times
val fsquare_times: out:felem -> a:felem -> n:size_t{v n > 0} -> Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ F51.felem_fits h a (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (1, 2, 1, 1, 1) /\ F51.fevalh h1 out == Hacl.Spec.Curve25519.Finv.pow (F51.fevalh h0 a) (pow2 (v n)) )
val fsquare_times: out:felem -> a:felem -> n:size_t{v n > 0} -> Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ F51.felem_fits h a (1, 2, 1, 1, 1) ) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.felem_fits h1 out (1, 2, 1, 1, 1) /\ F51.fevalh h1 out == Hacl.Spec.Curve25519.Finv.pow (F51.fevalh h0 a) (pow2 (v n)) )
let fsquare_times output input count = push_frame(); let tmp = create 5ul (u128 0) in Hacl.Curve25519_51.fsquare_times output input tmp count; pop_frame()
{ "file_name": "code/ed25519/Hacl.Bignum25519.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 224, "start_col": 0, "start_line": 220 }
module Hacl.Bignum25519 module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module S51 = Hacl.Spec.Curve25519.Field51.Definition module SL51 = Hacl.Spec.Curve25519.Field51.Lemmas module BN = Hacl.Impl.Curve25519.Field51 module SC = Spec.Curve25519 friend Hacl.Curve25519_51 #reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" inline_for_extraction noextract let mask_51 = u64 0x7ffffffffffff let make_u64_5 b s0 s1 s2 s3 s4 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4 let make_u64_10 b s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 = b.(0ul) <- s0; b.(1ul) <- s1; b.(2ul) <- s2; b.(3ul) <- s3; b.(4ul) <- s4; b.(5ul) <- s5; b.(6ul) <- s6; b.(7ul) <- s7; b.(8ul) <- s8; b.(9ul) <- s9 let make_zero b = b.(0ul) <- u64 0; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 0, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 0) let make_one b = b.(0ul) <- u64 1; b.(1ul) <- u64 0; b.(2ul) <- u64 0; b.(3ul) <- u64 0; b.(4ul) <- u64 0; assert_norm (S51.as_nat5 (u64 1, u64 0, u64 0, u64 0, u64 0) % Spec.Curve25519.prime == 1) [@CInline] let fsum out a b = BN.fadd out a b [@CInline] let fdifference out a b = BN.fsub out a b inline_for_extraction noextract val carry51: #m:S51.scale64{m < 8192} -> l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires S51.felem_fits1 l m /\ S51.felem_fits1 cin 1) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ S51.felem_fits1 l0 1 /\ uint_v l1 < m + 1) let carry51 l cin = let l' = l +! cin in mod_mask_lemma l' 51ul; assert (v (mod_mask #U64 #SEC 51ul) == v mask_51); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v l') 51 64; FStar.Math.Lemmas.euclidean_division_definition (v l') (pow2 51); FStar.Math.Lemmas.pow2_minus 64 51; (l' &. mask_51, l' >>. 51ul) let reduce_513 a = let (f0, f1, f2, f3, f4) = (a.(0ul), a.(1ul), a.(2ul), a.(3ul), a.(4ul)) in let tmp0, c0 = carry51 #9 f0 (u64 0) in let tmp1, c1 = carry51 #10 f1 c0 in let tmp2, c2 = carry51 #9 f2 c1 in let tmp3, c3 = carry51 #9 f3 c2 in let tmp4, c4 = carry51 #9 f4 c3 in assert (S51.felem_fits5 (tmp0, tmp1, tmp2, tmp3, tmp4) (1, 1, 1, 1, 1)); SL51.lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; assert ( S51.as_nat5 (f0, f1, f2, f3, f4) % SC.prime == (S51.as_nat5 (tmp0, tmp1, tmp2, tmp3, tmp4) + v c4 * 19) % SC.prime); [@inline_let] let tmp0', c5 = carry51 #1 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in Hacl.Spec.Curve25519.Field51.lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; make_u64_5 a tmp0' tmp1' tmp2 tmp3 tmp4 [@CInline] let fmul output input input2 = push_frame(); let tmp = create 10ul (u128 0) in BN.fmul output input input2 tmp; pop_frame() [@CInline] let times_2 out a = (**) let h0 = ST.get() in let a0 = a.(0ul) in let a1 = a.(1ul) in let a2 = a.(2ul) in let a3 = a.(3ul) in let a4 = a.(4ul) in let o0 = u64 2 *. a0 in let o1 = u64 2 *. a1 in let o2 = u64 2 *. a2 in let o3 = u64 2 *. a3 in let o4 = u64 2 *. a4 in make_u64_5 out o0 o1 o2 o3 o4; (**) let h1 = ST.get() in (**) assert (S51.felem_fits1 a0 1); (**) assert (F51.felem_fits h1 out (2, 4, 2, 2, 2)); calc (==) { (2 * (F51.fevalh h0 a)) % SC.prime; (==) { calc (==) { F51.fevalh h0 a; (==) { } S51.as_nat5 (a0, a1, a2, a3, a4) % SC.prime; } } (2 * (S51.as_nat5 (a0, a1, a2, a3, a4) % SC.prime)) % SC.prime; (==) { FStar.Math.Lemmas.lemma_mod_mul_distr_r 2 (S51.as_nat5 (a0, a1, a2, a3, a4)) SC.prime } (2 * S51.as_nat5 (a0, a1, a2, a3, a4)) % SC.prime; (==) { calc (==) { 2 * S51.as_nat5 (a0, a1, a2, a3, a4); (==) { SL51.lemma_smul_felem5 (u64 2) (a0, a1, a2, a3, a4) } 2 * v a0 + 2 * v a1 * S51.pow51 + 2 * v a2 * S51.pow51 * S51.pow51 + 2 * v a3 * S51.pow51 * S51.pow51 * S51.pow51 + 2 * v a4 * S51.pow51 * S51.pow51 * S51.pow51 * S51.pow51; (==) { assert_norm (2 * S51.pow51 < pow2 64); assert_norm (4 * S51.pow51 < pow2 64); FStar.Math.Lemmas.small_mod (2 * v a0) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a1) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a2) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a3) (pow2 64); FStar.Math.Lemmas.small_mod (2 * v a4) (pow2 64) } S51.as_nat5 (u64 2 *. a0, u64 2 *. a1, u64 2 *. a2, u64 2 *. a3, u64 2 *. a4); } } S51.as_nat5 (u64 2 *. a0, u64 2 *. a1, u64 2 *. a2, u64 2 *. a3, u64 2 *. a4) % SC.prime; (==) { } F51.fevalh h1 out; } [@CInline] let times_d out a = push_frame(); let d = create 5ul (u64 0) in d.(0ul) <- u64 0x00034dca135978a3; d.(1ul) <- u64 0x0001a8283b156ebd; d.(2ul) <- u64 0x0005e7a26001c029; d.(3ul) <- u64 0x000739c663a03cbb; d.(4ul) <- u64 0x00052036cee2b6ff; assert_norm (S51.as_nat5 (u64 0x00034dca135978a3, u64 0x0001a8283b156ebd, u64 0x0005e7a26001c029, u64 0x000739c663a03cbb, u64 0x00052036cee2b6ff) % Spec.Curve25519.prime == Spec.Ed25519.d); fmul out d a; pop_frame() [@CInline] let times_2d out a = push_frame(); let d2 = create 5ul (u64 0) in d2.(0ul) <- u64 0x00069b9426b2f159; d2.(1ul) <- u64 0x00035050762add7a; d2.(2ul) <- u64 0x0003cf44c0038052; d2.(3ul) <- u64 0x0006738cc7407977; d2.(4ul) <- u64 0x0002406d9dc56dff; fmul out d2 a; assert_norm (S51.as_nat5 (u64 0x00069b9426b2f159, u64 0x00035050762add7a, u64 0x0003cf44c0038052, u64 0x0006738cc7407977, u64 0x0002406d9dc56dff) % Spec.Curve25519.prime == 2 `SC.fmul` Spec.Ed25519.d); pop_frame() [@CInline] let fsquare out a = push_frame(); let tmp = create 5ul (u128 0) in BN.fsqr out a tmp; pop_frame()
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "Hacl.Spec.Curve25519.Field51.fst.checked", "Hacl.Impl.Curve25519.Field51.fst.checked", "Hacl.Curve25519_51.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Bignum25519.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field51", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": "SL51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "SC" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": "S51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Bignum25519.felem -> a: Hacl.Bignum25519.felem -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n > 0} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum25519.felem", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Curve25519_51.fsquare_times", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Hacl.Impl.Curve25519.Fields.Core.wide", "Hacl.Impl.Curve25519.Fields.Core.M51", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.u128", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let fsquare_times output input count =
push_frame (); let tmp = create 5ul (u128 0) in Hacl.Curve25519_51.fsquare_times output input tmp count; pop_frame ()
false