file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.i_at_least
val i_at_least : n: Prims.nat -> x: a -> m: FStar.Monotonic.Seq.i_seq r a p -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical
let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 117, "start_col": 0, "start_line": 115 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: a -> m: FStar.Monotonic.Seq.i_seq r a p -> h: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Seq.Base.seq", "Prims.nat", "FStar.Monotonic.Seq.i_seq", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Monotonic.HyperStack.sel", "FStar.Monotonic.Seq.grows_p", "Prims.eq2", "FStar.Seq.Base.index", "Prims.logical" ]
[]
false
false
false
false
true
let i_at_least (#r: rid) (#a: Type) (#p: (seq a -> Type)) (n: nat) (x: a) (m: i_seq r a p) (h: mem) =
Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.op_At
val op_At : s1: FStar.Seq.Base.seq _ -> s2: FStar.Seq.Base.seq _ -> FStar.Seq.Base.seq _
let op_At s1 s2 = Seq.append s1 s2
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 210, "start_col": 8, "start_line": 210 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq _ -> s2: FStar.Seq.Base.seq _ -> FStar.Seq.Base.seq _
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Base.append" ]
[]
false
false
false
true
false
let ( @ ) s1 s2 =
Seq.append s1 s2
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_prefix
val map_prefix : r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> bs: FStar.Seq.Base.seq b -> h: FStar.Monotonic.HyperStack.mem -> Type0
let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r))
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 269, "start_col": 0, "start_line": 264 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> bs: FStar.Seq.Base.seq b -> h: FStar.Monotonic.HyperStack.mem -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.Seq.map", "FStar.Monotonic.HyperStack.sel" ]
[]
false
false
false
false
true
let map_prefix (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (bs: seq b) (h: mem) =
grows bs (map f (HS.sel h r))
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.alloc_mref_seq
val alloc_mref_seq (#a: Type) (r: rid) (init: seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1))
val alloc_mref_seq (#a: Type) (r: rid) (init: seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1))
let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 68, "start_col": 0, "start_line": 61 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.Seq.rid -> init: FStar.Seq.Base.seq a -> FStar.HyperStack.ST.ST (FStar.HyperStack.ST.m_rref r (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows)
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Seq.Base.seq", "FStar.HyperStack.ST.ralloc", "FStar.Monotonic.Seq.grows", "FStar.HyperStack.ST.mref", "FStar.HyperStack.ST.m_rref", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.witnessed", "FStar.HyperStack.ST.region_contains_pred", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "Prims.eq2", "FStar.Monotonic.HyperStack.sel", "FStar.HyperStack.ST.ralloc_post" ]
[]
false
true
false
false
false
let alloc_mref_seq (#a: Type) (r: rid) (init: seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) =
ralloc r init
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.i_at_least_is_stable
val i_at_least_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (n: nat) (x: a) (m: i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m))
val i_at_least_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (n: nat) (x: a) (m: i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m))
let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 121, "start_col": 0, "start_line": 119 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: a -> m: FStar.Monotonic.Seq.i_seq r a p -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t m (FStar.Monotonic.Seq.i_at_least n x m))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Seq.Base.seq", "Prims.nat", "FStar.Monotonic.Seq.i_seq", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Monotonic.Seq.grows", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.grows_p", "FStar.Monotonic.Seq.i_at_least", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let i_at_least_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (n: nat) (x: a) (m: i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) =
reveal_opaque (`%grows) (grows #a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_prefix
val collect_prefix : r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> bs: FStar.Seq.Base.seq b -> h: FStar.Monotonic.HyperStack.mem -> Type0
let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r))
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 332, "start_col": 0, "start_line": 327 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> bs: FStar.Seq.Base.seq b -> h: FStar.Monotonic.HyperStack.mem -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.Seq.collect", "FStar.Monotonic.HyperStack.sel" ]
[]
false
false
false
false
true
let collect_prefix (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (bs: seq b) (h: mem) =
grows bs (collect f (HS.sel h r))
false
Hacl.Bignum.AlmostMontgomery.fsti
Hacl.Bignum.AlmostMontgomery.bn_almost_mont_mul_st
val bn_almost_mont_mul_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
let bn_almost_mont_mul_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> aM:lbignum t len -> bM:lbignum t len -> resM:lbignum t len -> Stack unit (requires fun h -> live h aM /\ live h bM /\ live h resM /\ live h n /\ disjoint resM n /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM resM /\ eq_or_disjoint bM resM) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ as_seq h1 resM == S.bn_almost_mont_mul (as_seq h0 n) mu (as_seq h0 aM) (as_seq h0 bM))
{ "file_name": "code/bignum/Hacl.Bignum.AlmostMontgomery.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 90, "end_line": 52, "start_col": 0, "start_line": 40 }
module Hacl.Bignum.AlmostMontgomery open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.AlmostMontgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Almost Montgomery Multiplication inline_for_extraction noextract let bn_almost_mont_reduction_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) = n:lbignum t len -> mu:limb t -> c:lbignum t (len +! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h c /\ live h res /\ disjoint res n /\ disjoint res c /\ disjoint n c) (ensures fun h0 _ h1 -> modifies (loc res |+| loc c) h0 h1 /\ as_seq h1 res == S.bn_almost_mont_reduction (as_seq h0 n) mu (as_seq h0 c)) inline_for_extraction noextract val bn_almost_mont_reduction: #t:limb_t -> k:BN.bn t -> bn_almost_mont_reduction_st t k.BN.len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.AlmostMontgomery.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.AlmostMontgomery", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.AlmostMontgomery", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_mul" ]
[]
false
false
false
false
true
let bn_almost_mont_mul_st (t: limb_t) (len: BN.meta_len t) =
n: lbignum t len -> mu: limb t -> aM: lbignum t len -> bM: lbignum t len -> resM: lbignum t len -> Stack unit (requires fun h -> live h aM /\ live h bM /\ live h resM /\ live h n /\ disjoint resM n /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM resM /\ eq_or_disjoint bM resM) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ as_seq h1 resM == S.bn_almost_mont_mul (as_seq h0 n) mu (as_seq h0 aM) (as_seq h0 bM))
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_has_at_index
val collect_has_at_index : r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> n: Prims.nat -> v: b -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Prims.logical
let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 353, "start_col": 0, "start_line": 347 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> n: Prims.nat -> v: b -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Prims.logical
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "Prims.nat", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Monotonic.Seq.collect", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Monotonic.HyperStack.sel", "Prims.logical" ]
[]
false
false
false
false
true
let collect_has_at_index (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (n: nat) (v: b) (h: mem) =
let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.int_at_most_is_stable
val int_at_most_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (is: i_seq r a p) (k: int) : Lemma (ensures stable_on_t is (int_at_most k is))
val int_at_most_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (is: i_seq r a p) (k: int) : Lemma (ensures stable_on_t is (int_at_most k is))
let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 128, "start_col": 0, "start_line": 126 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is: FStar.Monotonic.Seq.i_seq r a p -> k: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t is (FStar.Monotonic.Seq.int_at_most k is))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.i_seq", "Prims.int", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Monotonic.Seq.grows", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.grows_p", "FStar.Monotonic.Seq.int_at_most", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let int_at_most_is_stable (#r: rid) (#a: Type) (#p: (seq a -> Type)) (is: i_seq r a p) (k: int) : Lemma (ensures stable_on_t is (int_at_most k is)) =
reveal_opaque (`%grows) (grows #a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.at_least_is_stable
val at_least_is_stable (#a: Type) (#i: rid) (n: nat) (x: a) (r: m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r))
val at_least_is_stable (#a: Type) (#i: rid) (n: nat) (x: a) (r: m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r))
let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 79, "start_col": 0, "start_line": 77 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: a -> r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t r (FStar.Monotonic.Seq.at_least n x r))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "Prims.nat", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.at_least", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let at_least_is_stable (#a: Type) (#i: rid) (n: nat) (x: a) (r: m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) =
reveal_opaque (`%grows) (grows #a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.i_read
val i_read (#a: Type) (#p: (Seq.seq a -> Type)) (#r: rid) (m: i_seq r a p) : ST (s: seq a {p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0 == h1 /\ x == i_sel h0 m))
val i_read (#a: Type) (#p: (Seq.seq a -> Type)) (#r: rid) (m: i_seq r a p) : ST (s: seq a {p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0 == h1 /\ x == i_sel h0 m))
let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 138, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Monotonic.Seq.i_seq r a p -> FStar.HyperStack.ST.ST (s: FStar.Seq.Base.seq a {p s})
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.rid", "FStar.Monotonic.Seq.i_seq", "FStar.HyperStack.ST.op_Bang", "FStar.Monotonic.Seq.grows_p", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "Prims.l_or", "Prims.squash", "FStar.Monotonic.Seq.i_sel" ]
[]
false
true
false
false
false
let i_read (#a: Type) (#p: (Seq.seq a -> Type)) (#r: rid) (m: i_seq r a p) : ST (s: seq a {p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0 == h1 /\ x == i_sel h0 m)) =
!m
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.grows_p
val grows_p (#a: Type) (p: (seq a -> Type)) : Preorder.preorder (s: seq a {p s})
val grows_p (#a: Type) (p: (seq a -> Type)) : Preorder.preorder (s: seq a {p s})
let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 105, "start_col": 0, "start_line": 104 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence ////////////////////////////////////////////////////////////////////////////////
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: FStar.Seq.Base.seq a -> Type) -> FStar.Preorder.preorder (s: FStar.Seq.Base.seq a {p s})
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Preorder.preorder" ]
[]
false
false
false
false
false
let grows_p (#a: Type) (p: (seq a -> Type)) : Preorder.preorder (s: seq a {p s}) =
fun s1 s2 -> grows s1 s2
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.invariant
val invariant : s: FStar.Seq.Base.seq Prims.nat -> Prims.logical
let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 167, "start_col": 8, "start_line": 165 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Prims.nat -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_disEquality", "FStar.Seq.Base.index", "Prims.logical" ]
[]
false
false
false
true
true
let invariant (s: seq nat) =
forall (i: nat) (j: nat). i < Seq.length s /\ j < Seq.length s /\ i <> j ==> Seq.index s i <> Seq.index s j
false
Hacl.Bignum.AlmostMontgomery.fsti
Hacl.Bignum.AlmostMontgomery.bn_almost_mont_reduction_st
val bn_almost_mont_reduction_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.v len + Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } -> Type0
let bn_almost_mont_reduction_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) = n:lbignum t len -> mu:limb t -> c:lbignum t (len +! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h c /\ live h res /\ disjoint res n /\ disjoint res c /\ disjoint n c) (ensures fun h0 _ h1 -> modifies (loc res |+| loc c) h0 h1 /\ as_seq h1 res == S.bn_almost_mont_reduction (as_seq h0 n) mu (as_seq h0 c))
{ "file_name": "code/bignum/Hacl.Bignum.AlmostMontgomery.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 32, "start_col": 0, "start_line": 22 }
module Hacl.Bignum.AlmostMontgomery open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.AlmostMontgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Almost Montgomery Multiplication
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.AlmostMontgomery.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.AlmostMontgomery", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.v len + Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction" ]
[]
false
false
false
false
true
let bn_almost_mont_reduction_st (t: limb_t) (len: size_t{0 < v len /\ v len + v len <= max_size_t}) =
n: lbignum t len -> mu: limb t -> c: lbignum t (len +! len) -> res: lbignum t len -> Stack unit (requires fun h -> live h n /\ live h c /\ live h res /\ disjoint res n /\ disjoint res c /\ disjoint n c) (ensures fun h0 _ h1 -> modifies (loc res |+| loc c) h0 h1 /\ as_seq h1 res == S.bn_almost_mont_reduction (as_seq h0 n) mu (as_seq h0 c))
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.write_at_end
val write_at_end (#a: Type) (#i: rid) (r: m_rref i (seq a) grows) (x: a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r)))
val write_at_end (#a: Type) (#i: rid) (r: m_rref i (seq a) grows) (x: a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r)))
let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 98, "start_col": 0, "start_line": 82 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> x: a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.HyperStack.ST.mr_witness", "FStar.Monotonic.Seq.at_least", "Prims.unit", "FStar.Seq.Properties.contains_snoc", "FStar.Monotonic.Seq.at_least_is_stable", "FStar.HyperStack.ST.op_Colon_Equals", "FStar.Seq.Properties.snoc", "Prims.nat", "FStar.Seq.Base.length", "FStar.HyperStack.ST.op_Bang", "FStar.HyperStack.ST.recall", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "FStar.Monotonic.HyperStack.modifies_one", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Set.singleton", "FStar.Monotonic.HyperStack.as_addr", "Prims.eq2", "FStar.Monotonic.HyperStack.sel", "FStar.HyperStack.ST.witnessed" ]
[]
false
true
false
false
false
let write_at_end (#a: Type) (#i: rid) (r: m_rref i (seq a) grows) (x: a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) =
recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.test0
val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True))
val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True))
let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 178, "start_col": 0, "start_line": 172 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.Seq.rid -> a: FStar.HyperStack.ST.m_rref r (FStar.Seq.Base.seq Prims.nat) FStar.Monotonic.Seq.grows -> k: Prims.nat -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "Prims.nat", "FStar.Monotonic.Seq.grows", "FStar.HyperStack.ST.mr_witness", "FStar.Monotonic.Seq.at_least", "FStar.Seq.Base.index", "FStar.Monotonic.HyperStack.sel", "Prims.unit", "FStar.Seq.Properties.contains_intro", "FStar.Monotonic.Seq.at_least_is_stable", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let test0 r a k =
let h0 = HST.get () in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.itest
val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True))
val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True))
let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 186, "start_col": 0, "start_line": 183 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.Seq.rid -> a: FStar.Monotonic.Seq.i_seq r Prims.nat FStar.Monotonic.Seq.invariant -> k: Prims.nat -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Monotonic.Seq.i_seq", "Prims.nat", "FStar.Monotonic.Seq.invariant", "FStar.HyperStack.ST.mr_witness", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows_p", "FStar.Monotonic.Seq.i_at_least", "FStar.Seq.Base.index", "FStar.Monotonic.Seq.i_sel", "Prims.unit", "FStar.Monotonic.Seq.i_at_least_is_stable", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let itest r a k =
let h0 = HST.get () in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map
val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s))
val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s))
let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 202, "start_col": 0, "start_line": 199 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> s: FStar.Seq.Base.seq 'a -> Prims.Tot (FStar.Seq.Base.seq 'b)
Prims.Tot
[ "total", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Seq.Properties.snoc", "FStar.Monotonic.Seq.map", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc" ]
[ "recursion" ]
false
false
false
true
false
let rec map f s =
if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.i_write_at_end
val i_write_at_end (#a: Type) (#p: (seq a -> Type)) (#rgn: rid) (r: i_seq rgn a p) (x: a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r)))
val i_write_at_end (#a: Type) (#p: (seq a -> Type)) (#rgn: rid) (r: i_seq rgn a p) (x: a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r)))
let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 160, "start_col": 0, "start_line": 144 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.Seq.i_seq rgn a p -> x: a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.rid", "FStar.Monotonic.Seq.i_seq", "FStar.HyperStack.ST.mr_witness", "FStar.Monotonic.Seq.grows_p", "FStar.Monotonic.Seq.i_at_least", "Prims.unit", "FStar.Seq.Properties.contains_snoc", "FStar.Monotonic.Seq.i_at_least_is_stable", "FStar.HyperStack.ST.op_Colon_Equals", "FStar.Seq.Properties.snoc", "Prims.nat", "FStar.Seq.Base.length", "FStar.HyperStack.ST.op_Bang", "FStar.HyperStack.ST.recall", "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.Seq.i_sel", "Prims.l_and", "FStar.Monotonic.Seq.i_contains", "FStar.Monotonic.HyperStack.modifies_one", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Set.singleton", "FStar.Monotonic.HyperStack.as_addr", "Prims.eq2", "FStar.HyperStack.ST.witnessed" ]
[]
false
true
false
false
false
let i_write_at_end (#a: Type) (#p: (seq a -> Type)) (#rgn: rid) (r: i_seq rgn a p) (x: a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) =
recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.at_most_log_len
val at_most_log_len: #l: rid -> #a: Type -> x: nat -> log: log_t l a -> mem -> GTot Type0
val at_most_log_len: #l: rid -> #a: Type -> x: nat -> log: log_t l a -> mem -> GTot Type0
let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 372, "start_col": 0, "start_line": 370 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> log: FStar.Monotonic.Seq.log_t l a -> _: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Seq.rid", "Prims.nat", "FStar.Monotonic.Seq.log_t", "FStar.Monotonic.HyperStack.mem", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Monotonic.HyperStack.sel", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows" ]
[]
false
false
false
false
true
let at_most_log_len (#l: rid) (#a: Type) (x: nat) (log: log_t l a) : mem -> GTot Type0 =
fun h -> x <= Seq.length (HS.sel h log)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.increases
val increases : x: Prims.int -> y: Prims.int -> Prims.logical
let increases (x:int) (y:int) = b2t (x <= y)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 368, "start_col": 0, "start_line": 368 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> y: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.logical" ]
[]
false
false
false
true
true
let increases (x y: int) =
b2t (x <= y)
false
Hacl.Impl.Ed25519.Sign.fst
Hacl.Impl.Ed25519.Sign.sign_compute_s
val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
let sign_compute_s r hs a s = push_frame (); let aq = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes aq a; Hacl.Impl.BignumQ.Mul.mul_modq aq hs aq; Hacl.Impl.BignumQ.Mul.add_modq aq r aq; assert_norm (0x100000000000000 == pow2 56); Hacl.Impl.Store56.store_56 s aq; pop_frame ()
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Sign.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 53, "start_col": 0, "start_line": 45 }
module Hacl.Impl.Ed25519.Sign open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s))) [@CInline] let point_mul_g_compress out s = push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame () inline_for_extraction noextract val sign_compute_s (r hs:lbuffer uint64 5ul) (a s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h r /\ live h hs /\ live h a /\ live h s /\ disjoint s r /\ disjoint s hs /\ disjoint s a /\ F56.scalar_inv_full_t h r /\ F56.scalar_inv_full_t h hs) (ensures fun h0 _ h1 -> modifies (loc s) h0 h1 /\ as_seq h1 s == BSeq.nat_to_bytes_le 32 ((F56.as_nat h0 r + (F56.as_nat h0 hs * BSeq.nat_from_bytes_le (as_seq h0 a)) % Spec.Ed25519.q) % Spec.Ed25519.q))
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.Store56.fst.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Sign.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> hs: Lib.Buffer.lbuffer Lib.IntTypes.uint64 5ul -> a: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Store56.store_56", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Hacl.Impl.BignumQ.Mul.add_modq", "Hacl.Impl.BignumQ.Mul.mul_modq", "Hacl.Impl.Load56.load_32_bytes", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let sign_compute_s r hs a s =
push_frame (); let aq = create 5ul (u64 0) in Hacl.Impl.Load56.load_32_bytes aq a; Hacl.Impl.BignumQ.Mul.mul_modq aq hs aq; Hacl.Impl.BignumQ.Mul.add_modq aq r aq; assert_norm (0x100000000000000 == pow2 56); Hacl.Impl.Store56.store_56 s aq; pop_frame ()
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_length
val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))]
val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))]
let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 242, "start_col": 0, "start_line": 239 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> s1: FStar.Seq.Base.seq 'a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.length s1 = FStar.Seq.Base.length (FStar.Monotonic.Seq.map f s1)) (decreases FStar.Seq.Base.length s1) [SMTPat (FStar.Seq.Base.length (FStar.Monotonic.Seq.map f s1))]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Monotonic.Seq.map_length", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc" ]
[ "recursion" ]
false
false
true
false
false
let rec map_length f s1 =
if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_append
val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2))
val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2))
let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 230, "start_col": 0, "start_line": 217 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> s1: FStar.Seq.Base.seq 'a -> s2: FStar.Seq.Base.seq 'a -> FStar.Pervasives.Lemma (ensures FStar.Monotonic.Seq.map f (s1 @ s2) == FStar.Monotonic.Seq.map f s1 @ FStar.Monotonic.Seq.map f s2) (decreases FStar.Seq.Base.length s2)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.cut", "FStar.Seq.Base.equal", "FStar.Monotonic.Seq.op_At", "FStar.Monotonic.Seq.map", "Prims.unit", "Prims.bool", "FStar.Monotonic.Seq.map_snoc", "FStar.Seq.Properties.snoc", "FStar.Monotonic.Seq.map_append", "FStar.Seq.Base.append", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc" ]
[ "recursion" ]
false
false
true
false
false
let rec map_append f s_1 s_2 =
if Seq.length s_2 = 0 then (cut (Seq.equal (s_1 @ s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1 @ s_2) (Seq.snoc (s_1 @ prefix_2) last)); map_snoc f (Seq.append s_1 prefix_2) last; map_append f s_1 prefix_2; cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); map_snoc f prefix_2 last)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.un_snoc
val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a)
val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a)
let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 195, "start_col": 0, "start_line": 193 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences ////////////////////////////////////////////////////////////////////////////////
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a {FStar.Seq.Base.length s > 0} -> FStar.Seq.Base.seq a * a
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.slice", "FStar.Seq.Base.index", "Prims.int", "Prims.op_Subtraction", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let un_snoc #a s =
let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_has_at_index
val map_has_at_index : r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> n: Prims.nat -> v: b -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Prims.logical
let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 283, "start_col": 0, "start_line": 277 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> n: Prims.nat -> v: b -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Prims.logical
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "Prims.nat", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Monotonic.Seq.map", "FStar.Monotonic.HyperStack.sel", "Prims.logical" ]
[]
false
false
false
false
true
let map_has_at_index (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (n: nat) (v: b) (h: mem) =
let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_grows
val map_grows (#a #b: Type) (f: (a -> Tot b)) (s1 s3: seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3))
val map_grows (#a #b: Type) (f: (a -> Tot b)) (s1 s3: seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3))
let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 262, "start_col": 0, "start_line": 257 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties!
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> s1: FStar.Seq.Base.seq a -> s3: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (ensures FStar.Monotonic.Seq.grows s1 s3 ==> FStar.Monotonic.Seq.grows (FStar.Monotonic.Seq.map f s1) (FStar.Monotonic.Seq.map f s3))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Monotonic.Seq.grows", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "FStar.Monotonic.Seq.map", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let map_grows (#a #b: Type) (f: (a -> Tot b)) (s1 s3: seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) =
reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
false
Hacl.Impl.Ed25519.Sign.fst
Hacl.Impl.Ed25519.Sign.point_mul_g_compress
val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s)))
val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s)))
let point_mul_g_compress out s = push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame ()
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Sign.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 32, "start_col": 0, "start_line": 27 }
module Hacl.Impl.Ed25519.Sign open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module BSeq = Lib.ByteSequence module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module F56 = Hacl.Impl.BignumQ.Mul module S56 = Hacl.Spec.BignumQ.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val point_mul_g_compress (out s:lbuffer uint8 32ul) : Stack unit (requires fun h -> live h out /\ live h s /\ disjoint s out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.Ed25519.point_compress (Spec.Ed25519.point_mul_g (as_seq h0 s)))
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.BignumQ.Definitions.fst.checked", "Hacl.Impl.Store56.fst.checked", "Hacl.Impl.SHA512.ModQ.fst.checked", "Hacl.Impl.Load56.fst.checked", "Hacl.Impl.Ed25519.PointCompress.fst.checked", "Hacl.Impl.Ed25519.Ladder.fsti.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Impl.BignumQ.Mul.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Sign.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.BignumQ.Definitions", "short_module": "S56" }, { "abbrev": true, "full_module": "Hacl.Impl.BignumQ.Mul", "short_module": "F56" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> s: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Ed25519.PointCompress.point_compress", "Hacl.Impl.Ed25519.Ladder.point_mul_g", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let point_mul_g_compress out s =
push_frame (); let tmp = create 20ul (u64 0) in Hacl.Impl.Ed25519.Ladder.point_mul_g tmp s; Hacl.Impl.Ed25519.PointCompress.point_compress out tmp; pop_frame ()
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_prefix_stable
val collect_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (bs: seq b) : Lemma (stable_on_t r (collect_prefix r f bs))
val collect_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (bs: seq b) : Lemma (stable_on_t r (collect_prefix r f bs))
let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 345, "start_col": 0, "start_line": 334 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> bs: FStar.Seq.Base.seq b -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t r (FStar.Monotonic.Seq.collect_prefix r f bs))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Classical.forall_intro_2", "FStar.Monotonic.HyperStack.mem", "Prims.l_imp", "Prims.l_and", "FStar.Monotonic.Seq.collect_prefix", "FStar.Monotonic.HyperStack.sel", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Monotonic.Seq.collect_grows", "FStar.HyperStack.ST.stable_on_t" ]
[]
false
false
true
false
false
let collect_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (bs: seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) =
let aux: h0: mem -> h1: mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_index
val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)]
val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)]
let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 253, "start_col": 0, "start_line": 249 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> s: FStar.Seq.Base.seq 'a -> i: Prims.nat{i < FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Monotonic.Seq.map f s) i == f (FStar.Seq.Base.index s i)) (decreases FStar.Seq.Base.length s) [SMTPat (FStar.Seq.Base.index (FStar.Monotonic.Seq.map f s) i)]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.Monotonic.Seq.map_index", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc" ]
[ "recursion" ]
false
false
true
false
false
let rec map_index f s i =
if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i
false
Hacl.Bignum.AlmostMontgomery.fsti
Hacl.Bignum.AlmostMontgomery.bn_almost_mont_sqr_st
val bn_almost_mont_sqr_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
let bn_almost_mont_sqr_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> aM:lbignum t len -> resM:lbignum t len -> Stack unit (requires fun h -> live h aM /\ live h resM /\ live h n /\ disjoint resM n /\ eq_or_disjoint aM resM) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ as_seq h1 resM == S.bn_almost_mont_sqr (as_seq h0 n) mu (as_seq h0 aM))
{ "file_name": "code/bignum/Hacl.Bignum.AlmostMontgomery.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 75, "end_line": 74, "start_col": 0, "start_line": 64 }
module Hacl.Bignum.AlmostMontgomery open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.AlmostMontgomery module BN = Hacl.Bignum module BM = Hacl.Bignum.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Almost Montgomery Multiplication inline_for_extraction noextract let bn_almost_mont_reduction_st (t:limb_t) (len:size_t{0 < v len /\ v len + v len <= max_size_t}) = n:lbignum t len -> mu:limb t -> c:lbignum t (len +! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h n /\ live h c /\ live h res /\ disjoint res n /\ disjoint res c /\ disjoint n c) (ensures fun h0 _ h1 -> modifies (loc res |+| loc c) h0 h1 /\ as_seq h1 res == S.bn_almost_mont_reduction (as_seq h0 n) mu (as_seq h0 c)) inline_for_extraction noextract val bn_almost_mont_reduction: #t:limb_t -> k:BN.bn t -> bn_almost_mont_reduction_st t k.BN.len inline_for_extraction noextract let bn_almost_mont_mul_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len -> mu:limb t -> aM:lbignum t len -> bM:lbignum t len -> resM:lbignum t len -> Stack unit (requires fun h -> live h aM /\ live h bM /\ live h resM /\ live h n /\ disjoint resM n /\ eq_or_disjoint aM bM /\ eq_or_disjoint aM resM /\ eq_or_disjoint bM resM) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ as_seq h1 resM == S.bn_almost_mont_mul (as_seq h0 n) mu (as_seq h0 aM) (as_seq h0 bM)) inline_for_extraction noextract val bn_almost_mont_mul: #t:limb_t -> k:BN.bn t -> mr:bn_almost_mont_reduction_st t k.BN.len -> bn_almost_mont_mul_st t k.BN.len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked", "Hacl.Bignum.Montgomery.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.AlmostMontgomery.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.AlmostMontgomery", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Bignum.Montgomery", "short_module": "BM" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.AlmostMontgomery", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.meta_len", "Hacl.Bignum.Definitions.lbignum", "Hacl.Bignum.Definitions.limb", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_sqr" ]
[]
false
false
false
false
true
let bn_almost_mont_sqr_st (t: limb_t) (len: BN.meta_len t) =
n: lbignum t len -> mu: limb t -> aM: lbignum t len -> resM: lbignum t len -> Stack unit (requires fun h -> live h aM /\ live h resM /\ live h n /\ disjoint resM n /\ eq_or_disjoint aM resM) (ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\ as_seq h1 resM == S.bn_almost_mont_sqr (as_seq h0 n) mu (as_seq h0 aM))
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect
val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s))
val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s))
let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 302, "start_col": 0, "start_line": 299 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> FStar.Seq.Base.seq 'b) -> s: FStar.Seq.Base.seq 'a -> Prims.Tot (FStar.Seq.Base.seq 'b)
Prims.Tot
[ "total", "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Seq.Base.append", "FStar.Monotonic.Seq.collect", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc" ]
[ "recursion" ]
false
false
false
true
false
let rec collect f s =
if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_has_at_index_stable
val map_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (n: nat) (v: b) : Lemma (stable_on_t r (map_has_at_index r f n v))
val map_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (n: nat) (v: b) : Lemma (stable_on_t r (map_has_at_index r f n v))
let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 289, "start_col": 0, "start_line": 285 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> n: Prims.nat -> v: b -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t r (FStar.Monotonic.Seq.map_has_at_index r f n v))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "Prims.nat", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.map_has_at_index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let map_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (n: nat) (v: b) : Lemma (stable_on_t r (map_has_at_index r f n v)) =
reveal_opaque (`%grows) (grows #a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_grows
val collect_grows (f: ('a -> Tot (seq 'b))) (s1 s2: seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2))
val collect_grows (f: ('a -> Tot (seq 'b))) (s1 s2: seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2))
let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 118, "end_line": 325, "start_col": 0, "start_line": 312 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> FStar.Seq.Base.seq 'b) -> s1: FStar.Seq.Base.seq 'a -> s2: FStar.Seq.Base.seq 'a -> FStar.Pervasives.Lemma (ensures FStar.Monotonic.Seq.grows s1 s2 ==> FStar.Monotonic.Seq.grows (FStar.Monotonic.Seq.collect f s1) (FStar.Monotonic.Seq.collect f s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Classical.arrow_to_impl", "FStar.Monotonic.Seq.grows", "FStar.Monotonic.Seq.collect", "Prims.squash", "Prims.unit", "FStar.Seq.Base.length", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_Equality", "Prims.nat", "Prims._assert", "FStar.Seq.Base.equal", "Prims.bool", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "Prims.l_True", "Prims.l_imp" ]
[]
false
false
true
false
false
let collect_grows (f: ('a -> Tot (seq 'b))) (s1 s2: seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) =
reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f: ('a -> Tot (seq 'b))) (s1 s2: seq 'a) : Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_snoc
val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a))
val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a))
let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 208, "start_col": 0, "start_line": 206 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> 'b) -> s: FStar.Seq.Base.seq 'a -> a: 'a -> FStar.Pervasives.Lemma (ensures FStar.Monotonic.Seq.map f (FStar.Seq.Properties.snoc s a) == FStar.Seq.Properties.snoc (FStar.Monotonic.Seq.map f s) (f a))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.cut", "FStar.Seq.Base.equal", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc", "FStar.Seq.Properties.snoc" ]
[]
false
false
true
false
false
let map_snoc f s a =
let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.map_prefix_stable
val map_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (bs: seq b) : Lemma (stable_on_t r (map_prefix r f bs))
val map_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (bs: seq b) : Lemma (stable_on_t r (map_prefix r f bs))
let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 275, "start_col": 0, "start_line": 272 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> b) -> bs: FStar.Seq.Base.seq b -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t r (FStar.Monotonic.Seq.map_prefix r f bs))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.map_prefix", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let map_prefix_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot b)) (bs: seq b) : Lemma (stable_on_t r (map_prefix r f bs)) =
reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_snoc
val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a))
val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a))
let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 308, "start_col": 0, "start_line": 306 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: 'a -> FStar.Seq.Base.seq 'b) -> s: FStar.Seq.Base.seq 'a -> a: 'a -> FStar.Pervasives.Lemma (ensures FStar.Monotonic.Seq.collect f (FStar.Seq.Properties.snoc s a) == FStar.Seq.Base.append (FStar.Monotonic.Seq.collect f s) (f a))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.cut", "FStar.Seq.Base.equal", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Monotonic.Seq.un_snoc", "FStar.Seq.Properties.snoc" ]
[]
false
false
true
false
false
let collect_snoc f s a =
let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.collect_has_at_index_stable
val collect_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (n: nat) (v: b) : Lemma (stable_on_t r (collect_has_at_index r f n v))
val collect_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (n: nat) (v: b) : Lemma (stable_on_t r (collect_has_at_index r f n v))
let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 360, "start_col": 0, "start_line": 355 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.HyperStack.ST.m_rref i (FStar.Seq.Base.seq a) FStar.Monotonic.Seq.grows -> f: (_: a -> FStar.Seq.Base.seq b) -> n: Prims.nat -> v: b -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t r (FStar.Monotonic.Seq.collect_has_at_index r f n v))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.HyperStack.ST.m_rref", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "Prims.nat", "FStar.Classical.forall_intro_2", "Prims.l_imp", "FStar.Monotonic.Seq.collect", "FStar.Monotonic.Seq.collect_grows", "Prims.unit", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.collect_has_at_index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let collect_has_at_index_stable (#a #b: Type) (#i: rid) (r: m_rref i (seq a) grows) (f: (a -> Tot (seq b))) (n: nat) (v: b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) =
reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.at_most_log_len_stable
val at_most_log_len_stable (#l: rid) (#a: Type) (x: nat) (log: log_t l a) : Lemma (stable_on_t log (at_most_log_len x log))
val at_most_log_len_stable (#l: rid) (#a: Type) (x: nat) (log: log_t l a) : Lemma (stable_on_t log (at_most_log_len x log))
let at_most_log_len_stable (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) = reveal_opaque (`%grows) (grows #a)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 386, "start_col": 0, "start_line": 384 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y) let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log) //Note: we may want int seqn, instead of nat seqn //because the handshake uses an initial value of -1 type seqn_val (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = (x:nat{x <= max /\ witnessed (at_most_log_len x log)}) //never more than the length of the log type seqn (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = m_rref i //counter in region i (seqn_val i log max) //never more than the length of the log increases //increasing
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> log: FStar.Monotonic.Seq.log_t l a -> FStar.Pervasives.Lemma (ensures FStar.HyperStack.ST.stable_on_t log (FStar.Monotonic.Seq.at_most_log_len x log))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.Seq.rid", "Prims.nat", "FStar.Monotonic.Seq.log_t", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.HyperStack.ST.stable_on_t", "FStar.Monotonic.Seq.at_most_log_len", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let at_most_log_len_stable (#l: rid) (#a: Type) (x: nat) (log: log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) =
reveal_opaque (`%grows) (grows #a)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.testify_seqn
val testify_seqn (#a: Type0) (#i #l: rid) (#log: log_t l a) (#max: nat) (ctr: seqn i log max) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ at_most_log_len (HS.sel h1 ctr) log h1))
val testify_seqn (#a: Type0) (#i #l: rid) (#log: log_t l a) (#max: nat) (ctr: seqn i log max) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ at_most_log_len (HS.sel h1 ctr) log h1))
let testify_seqn (#a:Type0) (#i:rid) (#l:rid) (#log:log_t l a) (#max:nat) (ctr:seqn i log max) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> h0==h1 /\ at_most_log_len (HS.sel h1 ctr) log h1)) = let n = !ctr in testify (at_most_log_len n log)
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 431, "start_col": 0, "start_line": 424 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y) let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log) //Note: we may want int seqn, instead of nat seqn //because the handshake uses an initial value of -1 type seqn_val (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = (x:nat{x <= max /\ witnessed (at_most_log_len x log)}) //never more than the length of the log type seqn (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = m_rref i //counter in region i (seqn_val i log max) //never more than the length of the log increases //increasing let at_most_log_len_stable (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) = reveal_opaque (`%grows) (grows #a) let new_seqn (#a:Type) (#l:rid) (#max:nat) (i:rid) (init:nat) (log:log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> //17-01-05 unify with ralloc_post? modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i)) = reveal_opaque (`%grows) (grows #a); recall log; recall_region i; mr_witness log (at_most_log_len init log); ralloc i init let increment_seqn (#a:Type) (#l:rid) (#max:nat) (#i:rid) (#log:log_t l a) ($c:seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1)) = reveal_opaque (`%grows) (grows #a); recall c; recall log; let n = !c + 1 in mr_witness log (at_most_log_len n log); c := n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctr: FStar.Monotonic.Seq.seqn i log max -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Monotonic.Seq.log_t", "Prims.nat", "FStar.Monotonic.Seq.seqn", "FStar.HyperStack.ST.testify", "FStar.Monotonic.Seq.at_most_log_len", "Prims.unit", "FStar.Monotonic.Seq.seqn_val", "FStar.HyperStack.ST.op_Bang", "FStar.Monotonic.Seq.increases", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperStack.sel" ]
[]
false
true
false
false
false
let testify_seqn (#a: Type0) (#i #l: rid) (#log: log_t l a) (#max: nat) (ctr: seqn i log max) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> h0 == h1 /\ at_most_log_len (HS.sel h1 ctr) log h1)) =
let n = !ctr in testify (at_most_log_len n log)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.test
val test : i: FStar.Monotonic.Seq.rid -> l: FStar.Monotonic.Seq.rid -> a: Type0 -> log: FStar.Monotonic.Seq.log_t l a -> r: FStar.Monotonic.Seq.seqn i log 8 -> h: FStar.Monotonic.HyperStack.mem -> Prims.unit
let test (i:rid) (l:rid) (a:Type0) (log:log_t l a) //(p:(nat -> Type)) (r:seqn i log 8) (h:mem) = assert (HS.sel h r = Heap.sel (FStar.Map.sel (HS.get_hmap h) i) (HS.as_ref r))
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 435, "start_col": 8, "start_line": 433 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y) let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log) //Note: we may want int seqn, instead of nat seqn //because the handshake uses an initial value of -1 type seqn_val (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = (x:nat{x <= max /\ witnessed (at_most_log_len x log)}) //never more than the length of the log type seqn (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = m_rref i //counter in region i (seqn_val i log max) //never more than the length of the log increases //increasing let at_most_log_len_stable (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) = reveal_opaque (`%grows) (grows #a) let new_seqn (#a:Type) (#l:rid) (#max:nat) (i:rid) (init:nat) (log:log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> //17-01-05 unify with ralloc_post? modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i)) = reveal_opaque (`%grows) (grows #a); recall log; recall_region i; mr_witness log (at_most_log_len init log); ralloc i init let increment_seqn (#a:Type) (#l:rid) (#max:nat) (#i:rid) (#log:log_t l a) ($c:seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1)) = reveal_opaque (`%grows) (grows #a); recall c; recall log; let n = !c + 1 in mr_witness log (at_most_log_len n log); c := n let testify_seqn (#a:Type0) (#i:rid) (#l:rid) (#log:log_t l a) (#max:nat) (ctr:seqn i log max) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> h0==h1 /\ at_most_log_len (HS.sel h1 ctr) log h1)) = let n = !ctr in testify (at_most_log_len n log)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.Monotonic.Seq.rid -> l: FStar.Monotonic.Seq.rid -> a: Type0 -> log: FStar.Monotonic.Seq.log_t l a -> r: FStar.Monotonic.Seq.seqn i log 8 -> h: FStar.Monotonic.HyperStack.mem -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.Seq.rid", "FStar.Monotonic.Seq.log_t", "FStar.Monotonic.Seq.seqn", "FStar.Monotonic.HyperStack.mem", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "FStar.Monotonic.Seq.seqn_val", "FStar.Monotonic.HyperStack.sel", "FStar.Monotonic.Seq.increases", "FStar.Monotonic.Heap.sel", "FStar.Map.sel", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "FStar.Monotonic.HyperStack.as_ref", "Prims.unit" ]
[]
false
false
false
false
false
let test (i l: rid) (a: Type0) (log: log_t l a) (r: seqn i log 8) (h: mem) =
assert (HS.sel h r = Heap.sel (FStar.Map.sel (HS.get_hmap h) i) (HS.as_ref r))
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.increment_seqn
val increment_seqn (#a: Type) (#l: rid) (#max: nat) (#i: rid) (#log: log_t l a) ($c: seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1))
val increment_seqn (#a: Type) (#l: rid) (#max: nat) (#i: rid) (#log: log_t l a) ($c: seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1))
let increment_seqn (#a:Type) (#l:rid) (#max:nat) (#i:rid) (#log:log_t l a) ($c:seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1)) = reveal_opaque (`%grows) (grows #a); recall c; recall log; let n = !c + 1 in mr_witness log (at_most_log_len n log); c := n
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 422, "start_col": 0, "start_line": 406 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y) let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log) //Note: we may want int seqn, instead of nat seqn //because the handshake uses an initial value of -1 type seqn_val (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = (x:nat{x <= max /\ witnessed (at_most_log_len x log)}) //never more than the length of the log type seqn (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = m_rref i //counter in region i (seqn_val i log max) //never more than the length of the log increases //increasing let at_most_log_len_stable (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) = reveal_opaque (`%grows) (grows #a) let new_seqn (#a:Type) (#l:rid) (#max:nat) (i:rid) (init:nat) (log:log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> //17-01-05 unify with ralloc_post? modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i)) = reveal_opaque (`%grows) (grows #a); recall log; recall_region i; mr_witness log (at_most_log_len init log); ralloc i init
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
$c: FStar.Monotonic.Seq.seqn i log max -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "Prims.nat", "FStar.Monotonic.Seq.log_t", "FStar.Monotonic.Seq.seqn", "FStar.HyperStack.ST.op_Colon_Equals", "FStar.Monotonic.Seq.seqn_val", "FStar.Monotonic.Seq.increases", "Prims.unit", "FStar.HyperStack.ST.mr_witness", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Monotonic.Seq.at_most_log_len", "Prims.int", "Prims.op_Addition", "FStar.HyperStack.ST.op_Bang", "FStar.HyperStack.ST.recall", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_LessThanOrEqual", "FStar.Monotonic.HyperStack.sel", "FStar.Monotonic.HyperStack.modifies_one", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Set.singleton", "FStar.Monotonic.HyperStack.as_addr", "Prims.op_Equality" ]
[]
false
true
false
false
false
let increment_seqn (#a: Type) (#l: rid) (#max: nat) (#i: rid) (#log: log_t l a) ($c: seqn i log max) : ST unit (requires (fun h -> let log = HS.sel h log in let n = HS.sel h c in n < Seq.length log /\ n + 1 <= max)) (ensures (fun h0 _ h1 -> modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr c)) h0 h1 /\ HS.sel h1 c = HS.sel h0 c + 1)) =
reveal_opaque (`%grows) (grows #a); recall c; recall log; let n = !c + 1 in mr_witness log (at_most_log_len n log); c := n
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_bytes
val crypto_bytes:r: size_t{v r == FP.crypto_bytes FP.Frodo64}
val crypto_bytes:r: size_t{v r == FP.crypto_bytes FP.Frodo64}
let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 23, "start_col": 0, "start_line": 22 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ]
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB {Lib.IntTypes.v r == Spec.Frodo.Params.crypto_bytes Spec.Frodo.Params.Frodo64}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Frodo.Params.crypto_bytes", "Spec.Frodo.Params.Frodo64" ]
[]
false
false
false
false
false
let crypto_bytes:r: size_t{v r == FP.crypto_bytes FP.Frodo64} =
crypto_bytes FP.Frodo64
false
Steel.HigherReference.fsti
Steel.HigherReference.ghost_pts_to
val ghost_pts_to (#a: _) (r: ghost_ref a) (p: perm) (x: a) : vprop
val ghost_pts_to (#a: _) (r: ghost_ref a) (p: perm) (x: a) : vprop
let ghost_pts_to (#a:_) (r:ghost_ref a) (p:perm) (x:a) : vprop = to_vprop (ghost_pts_to_sl r p x)
{ "file_name": "lib/steel/Steel.HigherReference.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 34, "end_line": 212, "start_col": 7, "start_line": 211 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open Steel.FractionalPermission open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory /// A library for Steel references with fractional permissions, storing values at universe 1 /// Under the hood, this library builds upon the PCM-based reference memory model in /// Steel.PCMReference, by instantiating a specific fractional permission PCM /// An abstract datatype for references val ref ([@@@unused] a:Type u#1) : Type u#0 /// The null pointer val null (#a:Type u#1) : ref a /// Checking whether a pointer is null can be done in a decidable way val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null}) /// The standard points to separation logic assertion, expressing that /// reference [r] is valid in memory, stores value [v], and that we have /// permission [p] on it. val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1 /// Lifting the standard points to predicate to vprop, with a non-informative selector [@@ __steel_reduce__] unfold let pts_to (#a:Type u#1) (r:ref a) (p:perm) (v:a) : vprop = to_vprop (pts_to_sl r p v) /// If two pts_to predicates on the same reference [r] are valid in the memory [m], /// then the two values [v0] and [v1] are identical val pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) /// A valid pts_to predicate implies that the pointer is not the null pointer val pts_to_not_null (#a:Type u#1) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) /// Exposing the is_witness_invariant from Steel.Memory for HigherReferences val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) /// A stateful version of the pts_to_ref_injective lemma above val higher_ref_pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) /// A permission is always no greater than one val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a) : SteelGhost unit u (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm) /// Allocates a reference with value [x]. We have full permission on the newly /// allocated reference. val alloc (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r)) /// Reads the value in reference [r], as long as it initially is valid val read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v) /// Atomic read /// /// -- This is a little too powerful. We should only allow it on [t]'s /// that are small enough. E.g., word-sized val atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : SteelAtomic a opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun h -> True) (ensures fun _ x _ -> x == Ghost.reveal v) /// A variant of read, useful when an existentially quantified predicate /// depends on the value stored in the reference val read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) /// Writes value [x] in the reference [r], as long as we have full ownership of [r] val write (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) /// Atomic write, also requires full ownership of [r] /// /// -- This is a little too powerful. We should only allow it on [t]'s /// that are small enough. E.g., word-sized val atomic_write (#opened:_) (#a:Type) (#v:erased a) (r:ref a) (x:a) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) /// Frees reference [r], as long as we have full ownership of [r] val free (#a:Type) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) /// Splits the permission on reference [r] into two. /// This function is computationally irrelevant (it has effect SteelGhost) val share_gen (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ref a) (p1 p2: perm) : SteelGhost unit u (pts_to r p x) (fun _ -> pts_to r p1 x `star` pts_to r p2 x) (fun _ -> p == p1 `sum_perm` p2) (fun _ _ _ -> True) val share (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) /// Combines permissions on reference [r]. /// This function is computationally irrelevant (it has effect SteelGhost) val gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a) : SteelGhost unit uses (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r (sum_perm p0 p1) v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) /// Implementing cas as an action on references. val cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)})) (#uses:inames) (r:ref t) (v:erased t) (v_old:t) (v_new:t) : action_except (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) (*** Ghost references ***) /// We also define a ghost variant of references, useful to do proofs relying on a ghost state /// Ghost references are marked as erasable, ensuring that they are computationally irrelevant, /// and only used in computationally irrelevant contexts. /// The functions below are variants of the reference functions defined above, /// but operating on ghost references, and with the computationally irrelevant SteelGhost effect [@@ erasable] val ghost_ref (a:Type u#1) : Type u#0 val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1 /// Lemmas to break the abstraction, if one needs to manipulate both /// ghost and non-ghost references. These lemmas have no SMT patterns /// so that the normalizer or SMT won't silently unfold the /// definitions of ghost_ref or ghost_pts_to_sl. These should be /// harmless since ghost_ref is erasable val reveal_ghost_ref (a: Type u#1) : Lemma (ghost_ref a == erased (ref a)) val reveal_ghost_pts_to_sl (#a: _) (r: ghost_ref a) (p: perm) (x: a) : Lemma (ghost_pts_to_sl r p x == pts_to_sl (reveal (coerce_eq (reveal_ghost_ref a) r)) p x)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.HigherReference.fsti" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.HigherReference.ghost_ref a -> p: Steel.FractionalPermission.perm -> x: a -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.HigherReference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Effect.Common.to_vprop", "Steel.HigherReference.ghost_pts_to_sl", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let ghost_pts_to (#a: _) (r: ghost_ref a) (p: perm) (x: a) : vprop =
to_vprop (ghost_pts_to_sl r p x)
false
Steel.HigherReference.fsti
Steel.HigherReference.pts_to
val pts_to (#a: Type u#1) (r: ref a) (p: perm) (v: a) : vprop
val pts_to (#a: Type u#1) (r: ref a) (p: perm) (v: a) : vprop
let pts_to (#a:Type u#1) (r:ref a) (p:perm) (v:a) : vprop = to_vprop (pts_to_sl r p v)
{ "file_name": "lib/steel/Steel.HigherReference.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 28, "end_line": 49, "start_col": 7, "start_line": 48 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.HigherReference open Steel.FractionalPermission open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory /// A library for Steel references with fractional permissions, storing values at universe 1 /// Under the hood, this library builds upon the PCM-based reference memory model in /// Steel.PCMReference, by instantiating a specific fractional permission PCM /// An abstract datatype for references val ref ([@@@unused] a:Type u#1) : Type u#0 /// The null pointer val null (#a:Type u#1) : ref a /// Checking whether a pointer is null can be done in a decidable way val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null}) /// The standard points to separation logic assertion, expressing that /// reference [r] is valid in memory, stores value [v], and that we have /// permission [p] on it. val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1 /// Lifting the standard points to predicate to vprop, with a non-informative selector
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.HigherReference.fsti" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "RP" }, { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMFrac", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.HigherReference.ref", "Steel.FractionalPermission.perm", "Steel.Effect.Common.to_vprop", "Steel.HigherReference.pts_to_sl", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let pts_to (#a: Type u#1) (r: ref a) (p: perm) (v: a) : vprop =
to_vprop (pts_to_sl r p v)
false
FStar.Monotonic.Seq.fst
FStar.Monotonic.Seq.new_seqn
val new_seqn (#a: Type) (#l: rid) (#max: nat) (i: rid) (init: nat) (log: log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i))
val new_seqn (#a: Type) (#l: rid) (#max: nat) (i: rid) (init: nat) (log: log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i))
let new_seqn (#a:Type) (#l:rid) (#max:nat) (i:rid) (init:nat) (log:log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> //17-01-05 unify with ralloc_post? modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i)) = reveal_opaque (`%grows) (grows #a); recall log; recall_region i; mr_witness log (at_most_log_len init log); ralloc i init
{ "file_name": "ulib/FStar.Monotonic.Seq.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 404, "start_col": 0, "start_line": 388 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Monotonic.Seq open FStar.Seq open FStar.Classical module HS = FStar.HyperStack module HST = FStar.HyperStack.ST open FStar.HyperStack open FStar.HyperStack.ST (* 2016-11-22: The following is meant to override the fact that the enclosing namespace of the current module (here FStar.Monotonic) is automatically opened, which makes Seq resolve into FStar.Monotonic.Seq instead of FStar.Seq. *) module Seq = FStar.Seq //////////////////////////////////////////////////////////////////////////////// (* * 12/08 * AR: writing this in terms of length and index * earlier it was written in terms of an exists s3. Seq.equal (append s1 s3) s2 * that meant going through many hoops to prove simple things like transitivity of grows * so far this seems to work better. *) let grows_aux (#a:Type) :Preorder.preorder (seq a) = fun (s1:seq a) (s2:seq a) -> length s1 <= length s2 /\ (forall (i:nat).{:pattern (Seq.index s1 i) \/ (Seq.index s2 i)} i < length s1 ==> index s1 i == index s2 i) [@@"opaque_to_smt"] let grows #a = grows_aux #a type rid = HST.erid let snoc (s:seq 'a) (x:'a) : Tot (seq 'a) = Seq.append s (Seq.create 1 x) let lemma_snoc_extends (#a:Type) (s:seq a) (x:a) : Lemma (requires True) (ensures (grows s (Seq.snoc s x))) [SMTPat (grows s (Seq.snoc s x))] = reveal_opaque (`%grows) (grows #a) let alloc_mref_seq (#a:Type) (r:rid) (init:seq a) : ST (m_rref r (seq a) grows) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HS.contains h1 m /\ HS.sel h1 m == init /\ HST.ralloc_post r init h0 m h1)) = ralloc r init (* * AR: changing rids below to rid which is eternal regions. *) let at_least (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) (h:mem) = Seq.length (HS.sel h r) > n /\ Seq.index (HS.sel h r) n == x let at_least_is_stable (#a:Type) (#i:rid) (n:nat) (x:a) (r:m_rref i (seq a) grows) : Lemma (ensures stable_on_t r (at_least n x r)) = reveal_opaque (`%grows) (grows #a) (** extending a stored sequence, witnessing its new entry for convenience. *) let write_at_end (#a:Type) (#i:rid) (r:m_rref i (seq a) grows) (x:a) : ST unit (requires (fun h -> True)) (ensures (fun h0 _ h1 -> contains h1 r /\ modifies_one i h0 h1 /\ modifies_ref i (Set.singleton (HS.as_addr r)) h0 h1 /\ HS.sel h1 r == Seq.snoc (HS.sel h0 r) x /\ witnessed (at_least (Seq.length (HS.sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; at_least_is_stable n x r; Seq.contains_snoc s0 x; mr_witness r (at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Monotone sequences with a (stateless) invariant of the whole sequence //////////////////////////////////////////////////////////////////////////////// let grows_p (#a:Type) (p:seq a -> Type) :Preorder.preorder (s:seq a{p s}) = fun s1 s2 -> grows s1 s2 let i_seq (r:rid) (a:Type) (p:seq a -> Type) = m_rref r (s:seq a{p s}) (grows_p p) let alloc_mref_iseq (#a:Type) (p:seq a -> Type) (r:rid) (init:seq a{p init}) : ST (i_seq r a p) (requires (fun _ -> HST.witnessed (region_contains_pred r))) (ensures (fun h0 m h1 -> HST.ralloc_post r init h0 m h1)) = ralloc r init let i_at_least (#r:rid) (#a:Type) (#p:(seq a -> Type)) (n:nat) (x:a) (m:i_seq r a p) (h:mem) = Seq.length (HS.sel h m) > n /\ Seq.index (HS.sel h m) n == x let i_at_least_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (n:nat) (x:a) (m:i_seq r a p) : Lemma (ensures stable_on_t m (i_at_least n x m)) = reveal_opaque (`%grows) (grows #a) let int_at_most #r #a #p (x:int) (is:i_seq r a p) (h:mem) : Type0 = x < Seq.length (HS.sel h is) let int_at_most_is_stable (#r:rid) (#a:Type) (#p:seq a -> Type) (is:i_seq r a p) (k:int) : Lemma (ensures stable_on_t is (int_at_most k is)) = reveal_opaque (`%grows) (grows #a) let i_sel (#r:rid) (#a:Type) (#p:seq a -> Type) (h:mem) (m:i_seq r a p) : GTot (s:seq a{p s}) = HS.sel h m let i_read (#a:Type) (#p:Seq.seq a -> Type) (#r:rid) (m:i_seq r a p) : ST (s:seq a{p s}) (requires (fun h -> True)) (ensures (fun h0 x h1 -> h0==h1 /\ x == i_sel h0 m)) = !m let i_contains (#r:rid) (#a:Type) (#p:seq a -> Type) (m:i_seq r a p) (h:mem) : GTot Type0 = HS.contains h m let i_write_at_end (#a:Type) (#p:seq a -> Type) (#rgn:rid) (r:i_seq rgn a p) (x:a) : ST unit (requires (fun h -> p (Seq.snoc (i_sel h r) x))) (ensures (fun h0 _ h1 -> i_contains r h1 /\ modifies_one rgn h0 h1 /\ modifies_ref rgn (Set.singleton (HS.as_addr r)) h0 h1 /\ i_sel h1 r == Seq.snoc (i_sel h0 r) x /\ witnessed (i_at_least (Seq.length (i_sel h0 r)) x r))) = recall r; let s0 = !r in let n = Seq.length s0 in r := Seq.snoc s0 x; i_at_least_is_stable n x r; contains_snoc s0 x; mr_witness r (i_at_least n x r) //////////////////////////////////////////////////////////////////////////////// //Testing invariant sequences //////////////////////////////////////////////////////////////////////////////// private let invariant (s:seq nat) = forall (i:nat) (j:nat). i < Seq.length s /\ j < Seq.length s /\ i<>j ==> Seq.index s i <> Seq.index s j private val test0: r:rid -> a:m_rref r (seq nat) grows -> k:nat -> ST unit (requires (fun h -> k < Seq.length (HS.sel h a))) (ensures (fun h0 result h1 -> True)) let test0 r a k = let h0 = HST.get() in let _ = let s = HS.sel h0 a in at_least_is_stable k (Seq.index (HS.sel h0 a) k) a; Seq.contains_intro s k (Seq.index s k) in mr_witness a (at_least k (Seq.index (HS.sel h0 a) k) a) private val itest: r:rid -> a:i_seq r nat invariant -> k:nat -> ST unit (requires (fun h -> k < Seq.length (i_sel h a))) (ensures (fun h0 result h1 -> True)) let itest r a k = let h0 = HST.get() in i_at_least_is_stable k (Seq.index (i_sel h0 a) k) a; mr_witness a (i_at_least k (Seq.index (i_sel h0 a) k) a) //////////////////////////////////////////////////////////////////////////////// //Mapping functions over monotone sequences //////////////////////////////////////////////////////////////////////////////// val un_snoc: #a: Type -> s:seq a {Seq.length s > 0} -> Tot(seq a * a) let un_snoc #a s = let last = Seq.length s - 1 in Seq.slice s 0 last, Seq.index s last val map: ('a -> Tot 'b) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec map f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.snoc (map f prefix) (f last) val map_snoc: f:('a -> Tot 'b) -> s:seq 'a -> a:'a -> Lemma (map f (Seq.snoc s a) == Seq.snoc (map f s) (f a)) let map_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) private let op_At s1 s2 = Seq.append s1 s2 val map_append: f:('a -> Tot 'b) -> s1:seq 'a -> s2:seq 'a -> Lemma (requires True) (ensures (map f (s1@s2) == (map f s1 @ map f s2))) (decreases (Seq.length s2)) #reset-options "--z3rlimit 10 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let rec map_append f s_1 s_2 = if Seq.length s_2 = 0 then (cut (Seq.equal (s_1@s_2) s_1); cut (Seq.equal (map f s_1 @ map f s_2) (map f s_1))) else (let prefix_2, last = un_snoc s_2 in let m_s_1 = map f s_1 in let m_p_2 = map f prefix_2 in let flast = f last in cut (Seq.equal (s_1@s_2) (Seq.snoc (s_1@prefix_2) last)); //map f (s1@s2) = map f (snoc (s1@p) last) map_snoc f (Seq.append s_1 prefix_2) last; // = snoc (map f (s1@p)) (f last) map_append f s_1 prefix_2; // = snoc (map f s_1 @ map f p) (f last) cut (Seq.equal (Seq.snoc (m_s_1 @ m_p_2) flast) (m_s_1 @ Seq.snoc m_p_2 flast)); // = map f s1 @ (snoc (map f p) (f last)) map_snoc f prefix_2 last) // = map f s1 @ map f (snoc p last) #reset-options "--z3rlimit 5" val map_length: f:('a -> Tot 'b) -> s1:seq 'a -> Lemma (requires True) (ensures (Seq.length s1 = Seq.length (map f s1))) (decreases (length s1)) [SMTPat (Seq.length (map f s1))] let rec map_length f s1 = if Seq.length s1 = 0 then () else let prefix, last = un_snoc s1 in map_length f prefix val map_index: f:('a -> Tot 'b) -> s:seq 'a -> i:nat{i<Seq.length s} -> Lemma (requires True) (ensures (Seq.index (map f s) i == f (Seq.index s i))) (decreases (Seq.length s)) [SMTPat (Seq.index (map f s) i)] let rec map_index f s i = if i = Seq.length s - 1 then () else let prefix, last = un_snoc s in map_index f prefix i //17-01-05 all the stuff above should go to Seq.Properties! let map_grows (#a:Type) (#b:Type) (f:a -> Tot b) (s1:seq a) (s3:seq a) : Lemma (grows s1 s3 ==> grows (map f s1) (map f s3)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) (h:mem) = grows bs (map f (HS.sel h r)) //17-01-05 this applies to log_t's defined below. let map_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (bs:seq b) :Lemma (stable_on_t r (map_prefix r f bs)) = reveal_opaque (`%grows) (grows #a); reveal_opaque (`%grows) (grows #b) let map_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length s /\ Seq.index (map f s) n == v let map_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot b) (n:nat) (v:b) : Lemma (stable_on_t r (map_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #a) //////////////////////////////////////////////////////////////////////////////// //Collecting monotone sequences //////////////////////////////////////////////////////////////////////////////// (** yields the concatenation of all sequences returned by f applied to the sequence elements *) val collect: ('a -> Tot (seq 'b)) -> s:seq 'a -> Tot (seq 'b) (decreases (Seq.length s)) let rec collect f s = if Seq.length s = 0 then Seq.empty else let prefix, last = un_snoc s in Seq.append (collect f prefix) (f last) val collect_snoc: f:('a -> Tot (seq 'b)) -> s:seq 'a -> a:'a -> Lemma (collect f (Seq.snoc s a) == Seq.append (collect f s) (f a)) let collect_snoc f s a = let prefix, last = un_snoc (Seq.snoc s a) in cut (Seq.equal prefix s) #reset-options "--z3rlimit 20 --initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" let collect_grows (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) : Lemma (grows s1 s2 ==> grows (collect f s1) (collect f s2)) = reveal_opaque (`%grows) (grows #'a); reveal_opaque (`%grows) (grows #'b); let rec collect_grows_aux (f:'a -> Tot (seq 'b)) (s1:seq 'a) (s2:seq 'a) :Lemma (requires (grows s1 s2)) (ensures (grows (collect f s1) (collect f s2))) (decreases (Seq.length s2)) = if length s1 = length s2 then assert (Seq.equal s1 s2) else let s2_prefix, s2_last = un_snoc s2 in collect_grows_aux f s1 s2_prefix in Classical.arrow_to_impl #(grows s1 s2) #(grows (collect f s1) (collect f s2)) (fun _ -> collect_grows_aux f s1 s2) let collect_prefix (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) (h:mem) = grows bs (collect f (HS.sel h r)) let collect_prefix_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (bs:seq b) : Lemma (stable_on_t r (collect_prefix r f bs)) = let aux : h0:mem -> h1:mem -> Lemma (collect_prefix r f bs h0 /\ grows (HS.sel h0 r) (HS.sel h1 r) ==> collect_prefix r f bs h1) = fun h0 h1 -> let s1 = HS.sel h0 r in let s3 = HS.sel h1 r in collect_grows f s1 s3 in forall_intro_2 aux let collect_has_at_index (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) (h:mem) = let s = HS.sel h r in n < Seq.length (collect f s) /\ Seq.index (collect f s) n == v let collect_has_at_index_stable (#a:Type) (#b:Type) (#i:rid) (r:m_rref i (seq a) grows) (f:a -> Tot (seq b)) (n:nat) (v:b) : Lemma (stable_on_t r (collect_has_at_index r f n v)) = reveal_opaque (`%grows) (grows #b); Classical.forall_intro_2 (collect_grows f) //////////////////////////////////////////////////////////////////////////////// //Monotonic sequence numbers, bounded by the length of a log //////////////////////////////////////////////////////////////////////////////// //17-01-05 the simpler variant, with an historic name; consider using uniform names below. type log_t (i:rid) (a:Type) = m_rref i (seq a) grows let increases (x:int) (y:int) = b2t (x <= y) let at_most_log_len (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : mem -> GTot Type0 = fun h -> x <= Seq.length (HS.sel h log) //Note: we may want int seqn, instead of nat seqn //because the handshake uses an initial value of -1 type seqn_val (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = (x:nat{x <= max /\ witnessed (at_most_log_len x log)}) //never more than the length of the log type seqn (#l:rid) (#a:Type) (i:rid) (log:log_t l a) (max:nat) = m_rref i //counter in region i (seqn_val i log max) //never more than the length of the log increases //increasing let at_most_log_len_stable (#l:rid) (#a:Type) (x:nat) (log:log_t l a) : Lemma (stable_on_t log (at_most_log_len x log)) = reveal_opaque (`%grows) (grows #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.Heap.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Monotonic.Seq.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.Monotonic.Seq.rid -> init: Prims.nat -> log: FStar.Monotonic.Seq.log_t l a -> FStar.HyperStack.ST.ST (FStar.Monotonic.Seq.seqn i log max)
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.Monotonic.Seq.rid", "Prims.nat", "FStar.Monotonic.Seq.log_t", "FStar.HyperStack.ST.ralloc", "FStar.Monotonic.Seq.seqn_val", "FStar.Monotonic.Seq.increases", "FStar.HyperStack.ST.mref", "Prims.unit", "FStar.HyperStack.ST.mr_witness", "FStar.Seq.Base.seq", "FStar.Monotonic.Seq.grows", "FStar.Monotonic.Seq.at_most_log_len", "FStar.Monotonic.Seq.seqn", "FStar.HyperStack.ST.recall_region", "FStar.HyperStack.ST.recall", "FStar.Pervasives.reveal_opaque", "FStar.Preorder.preorder", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "FStar.HyperStack.ST.witnessed", "FStar.HyperStack.ST.region_contains_pred", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Monotonic.HyperStack.sel", "FStar.Monotonic.HyperStack.modifies_one", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Set.empty", "FStar.Monotonic.HyperStack.fresh_ref", "Prims.op_Equality", "FStar.Map.contains", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap" ]
[]
false
true
false
false
false
let new_seqn (#a: Type) (#l: rid) (#max: nat) (i: rid) (init: nat) (log: log_t l a) : ST (seqn i log max) (requires (fun h -> HST.witnessed (region_contains_pred i) /\ init <= max /\ init <= Seq.length (HS.sel h log))) (ensures (fun h0 c h1 -> modifies_one i h0 h1 /\ modifies_ref i Set.empty h0 h1 /\ fresh_ref c h0 h1 /\ HS.sel h1 c = init /\ FStar.Map.contains (HS.get_hmap h1) i)) =
reveal_opaque (`%grows) (grows #a); recall log; recall_region i; mr_witness log (at_most_log_len init log); ralloc i init
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_kem_keypair
val crypto_kem_keypair: crypto_kem_keypair_st FP.Frodo64 FP.SHAKE128
val crypto_kem_keypair: crypto_kem_keypair_st FP.Frodo64 FP.SHAKE128
let crypto_kem_keypair pk sk = crypto_kem_keypair FP.Frodo64 FP.SHAKE128 pk sk
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 37, "start_col": 0, "start_line": 36 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64 let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64) let crypto_secretkeybytes :r:size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} = normalize_term (crypto_secretkeybytes FP.Frodo64) let crypto_ciphertextbytes :r:size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64} = normalize_term (crypto_ciphertextbytes FP.Frodo64)
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Frodo.KEM.crypto_kem_keypair_st Spec.Frodo.Params.Frodo64 Spec.Frodo.Params.SHAKE128
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_secretkeybytes", "Hacl.Frodo.KEM.crypto_kem_keypair", "Spec.Frodo.Params.SHAKE128", "Lib.IntTypes.uint32" ]
[]
false
false
false
true
false
let crypto_kem_keypair pk sk =
crypto_kem_keypair FP.Frodo64 FP.SHAKE128 pk sk
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_publickeybytes
val crypto_publickeybytes:r: size_t{v r == FP.crypto_publickeybytes FP.Frodo64}
val crypto_publickeybytes:r: size_t{v r == FP.crypto_publickeybytes FP.Frodo64}
let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64)
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 26, "start_col": 0, "start_line": 25 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB {Lib.IntTypes.v r == Spec.Frodo.Params.crypto_publickeybytes Spec.Frodo.Params.Frodo64}
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize_term", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.v", "Spec.Frodo.Params.crypto_publickeybytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_publickeybytes" ]
[]
false
false
false
false
false
let crypto_publickeybytes:r: size_t{v r == FP.crypto_publickeybytes FP.Frodo64} =
normalize_term (crypto_publickeybytes FP.Frodo64)
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_secretkeybytes
val crypto_secretkeybytes:r: size_t{v r == FP.crypto_secretkeybytes FP.Frodo64}
val crypto_secretkeybytes:r: size_t{v r == FP.crypto_secretkeybytes FP.Frodo64}
let crypto_secretkeybytes :r:size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} = normalize_term (crypto_secretkeybytes FP.Frodo64)
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 29, "start_col": 0, "start_line": 28 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64 let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64)
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB {Lib.IntTypes.v r == Spec.Frodo.Params.crypto_secretkeybytes Spec.Frodo.Params.Frodo64}
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize_term", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.v", "Spec.Frodo.Params.crypto_secretkeybytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_secretkeybytes" ]
[]
false
false
false
false
false
let crypto_secretkeybytes:r: size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} =
normalize_term (crypto_secretkeybytes FP.Frodo64)
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_kem_dec
val crypto_kem_dec: crypto_kem_dec_st FP.Frodo64 FP.SHAKE128
val crypto_kem_dec: crypto_kem_dec_st FP.Frodo64 FP.SHAKE128
let crypto_kem_dec ss ct sk = crypto_kem_dec FP.Frodo64 FP.SHAKE128 ss ct sk
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 45, "start_col": 0, "start_line": 44 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64 let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64) let crypto_secretkeybytes :r:size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} = normalize_term (crypto_secretkeybytes FP.Frodo64) let crypto_ciphertextbytes :r:size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64} = normalize_term (crypto_ciphertextbytes FP.Frodo64) val crypto_kem_keypair: crypto_kem_keypair_st FP.Frodo64 FP.SHAKE128 let crypto_kem_keypair pk sk = crypto_kem_keypair FP.Frodo64 FP.SHAKE128 pk sk val crypto_kem_enc: crypto_kem_enc_st FP.Frodo64 FP.SHAKE128 let crypto_kem_enc ct ss pk = crypto_kem_enc FP.Frodo64 FP.SHAKE128 ct ss pk
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Frodo.KEM.crypto_kem_dec_st Spec.Frodo.Params.Frodo64 Spec.Frodo.Params.SHAKE128
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_secretkeybytes", "Hacl.Frodo.KEM.crypto_kem_dec", "Spec.Frodo.Params.SHAKE128", "Lib.IntTypes.uint32" ]
[]
false
false
false
true
false
let crypto_kem_dec ss ct sk =
crypto_kem_dec FP.Frodo64 FP.SHAKE128 ss ct sk
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_ciphertextbytes
val crypto_ciphertextbytes:r: size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64}
val crypto_ciphertextbytes:r: size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64}
let crypto_ciphertextbytes :r:size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64} = normalize_term (crypto_ciphertextbytes FP.Frodo64)
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 32, "start_col": 0, "start_line": 31 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64 let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64) let crypto_secretkeybytes :r:size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} = normalize_term (crypto_secretkeybytes FP.Frodo64)
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB {Lib.IntTypes.v r == Spec.Frodo.Params.crypto_ciphertextbytes Spec.Frodo.Params.Frodo64}
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize_term", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.v", "Spec.Frodo.Params.crypto_ciphertextbytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes" ]
[]
false
false
false
false
false
let crypto_ciphertextbytes:r: size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64} =
normalize_term (crypto_ciphertextbytes FP.Frodo64)
false
Hacl.Frodo64.fst
Hacl.Frodo64.crypto_kem_enc
val crypto_kem_enc: crypto_kem_enc_st FP.Frodo64 FP.SHAKE128
val crypto_kem_enc: crypto_kem_enc_st FP.Frodo64 FP.SHAKE128
let crypto_kem_enc ct ss pk = crypto_kem_enc FP.Frodo64 FP.SHAKE128 ct ss pk
{ "file_name": "code/frodo/Hacl.Frodo64.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 41, "start_col": 0, "start_line": 40 }
module Hacl.Frodo64 open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Frodo.KEM open Hacl.Impl.Frodo.Params module FP = Spec.Frodo.Params #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" [@@ CPrologue "/* this variant is used only for testing purposes! */\n" ] let crypto_bytes :r:size_t{v r == FP.crypto_bytes FP.Frodo64} = crypto_bytes FP.Frodo64 let crypto_publickeybytes :r:size_t{v r == FP.crypto_publickeybytes FP.Frodo64} = normalize_term (crypto_publickeybytes FP.Frodo64) let crypto_secretkeybytes :r:size_t{v r == FP.crypto_secretkeybytes FP.Frodo64} = normalize_term (crypto_secretkeybytes FP.Frodo64) let crypto_ciphertextbytes :r:size_t{v r == FP.crypto_ciphertextbytes FP.Frodo64} = normalize_term (crypto_ciphertextbytes FP.Frodo64) val crypto_kem_keypair: crypto_kem_keypair_st FP.Frodo64 FP.SHAKE128 let crypto_kem_keypair pk sk = crypto_kem_keypair FP.Frodo64 FP.SHAKE128 pk sk
{ "checked_file": "/", "dependencies": [ "Spec.Frodo.Params.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Frodo.KEM.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Frodo64.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Frodo.KEM.crypto_kem_enc_st Spec.Frodo.Params.Frodo64 Spec.Frodo.Params.SHAKE128
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Spec.Frodo.Params.Frodo64", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Hacl.Frodo.KEM.crypto_kem_enc", "Spec.Frodo.Params.SHAKE128", "Lib.IntTypes.uint32" ]
[]
false
false
false
true
false
let crypto_kem_enc ct ss pk =
crypto_kem_enc FP.Frodo64 FP.SHAKE128 ct ss pk
false
Lib.Exponentiation.fst
Lib.Exponentiation.b_acc
val b_acc (l: pos) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i <= bBits / l}) : nat
val b_acc (l: pos) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i <= bBits / l}) : nat
let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 23, "start_col": 0, "start_line": 22 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.pos -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i <= bBits / l} -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let b_acc (l: pos) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i <= bBits / l}) : nat =
b / pow2 (bBits - bBits % l - l * i)
false
Lib.Exponentiation.fst
Lib.Exponentiation.lemma_b_div_pow2i
val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2)
val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2)
let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 47, "start_col": 0, "start_line": 45 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.pos{i <= bBits} -> FStar.Pervasives.Lemma (ensures b / Prims.pow2 (bBits - i) == (b / Prims.pow2 (bBits - i + 1)) * 2 + b / Prims.pow2 (bBits - i) % 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Lib.Exponentiation.lemma_b_div_pow2ki", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int" ]
[]
true
false
true
false
false
let lemma_b_div_pow2i bBits b i =
assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_lr_lemma
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b)
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b)
let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 151, "start_col": 0, "start_line": 147 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_lr k a bBits b == Lib.Exponentiation.Definition.pow k a b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Prims.op_Division", "Lib.Exponentiation.exp_lr_lemma_loop", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_lr_f", "Lib.Exponentiation.Definition.one" ]
[]
true
false
true
false
false
let exp_lr_lemma #t k a bBits b =
let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_rl_lemma
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b)
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b)
let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 96, "start_col": 0, "start_line": 92 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_rl k a bBits b == Lib.Exponentiation.Definition.pow k a b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Math.Lemmas.small_mod", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Prims.op_Modulus", "Lib.Exponentiation.exp_rl_lemma_loop", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_rl_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one" ]
[]
false
false
true
false
false
let exp_rl_lemma #t k a bBits b =
let acc, c = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_lr_lemma_step
val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1)))
val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1)))
let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 120, "start_col": 0, "start_line": 108 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> acc1: t -> FStar.Pervasives.Lemma (requires acc1 == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i))) (ensures Lib.Exponentiation.exp_lr_f k a bBits b i acc1 == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i - 1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Subtraction", "Prims.bool", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow_add", "FStar.Mul.op_Star", "Lib.Exponentiation.Definition.lemma_pow1", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Prims.op_Addition", "Lib.Exponentiation.lemma_b_div_pow2i", "Lib.Exponentiation.exp_lr_f" ]
[]
false
false
true
false
false
let exp_lr_lemma_step #t k a bBits b i acc1 =
let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == (b / pow2 (bBits - i)) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a ((b / pow2 (bBits - i)) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else (assert (acc == mul (pow k a ((b / pow2 (bBits - i)) * 2)) a); lemma_pow1 k a; lemma_pow_add k a ((b / pow2 (bBits - i)) * 2) 1; ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_lr_lemma_loop
val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i)))
val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i)))
let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 144, "start_col": 0, "start_line": 130 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i <= bBits} -> FStar.Pervasives.Lemma (ensures (let acc = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_lr_f k a bBits b) Lib.Exponentiation.Definition.one in acc == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow0", "Lib.LoopCombinators.eq_repeati0", "Lib.Exponentiation.exp_lr_f", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_lr_lemma_step", "Prims.op_Subtraction", "Lib.Exponentiation.exp_lr_lemma_loop", "Lib.LoopCombinators.unfold_repeati", "Lib.LoopCombinators.repeati" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_lr_lemma_loop #t k a bBits b i =
let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then (Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; ()) else let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); exp_lr_lemma_loop k a bBits b (i - 1); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; ()
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_swap2_lemma
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 251, "start_col": 0, "start_line": 250 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_mont_ladder_swap2 k a bBits b == Lib.Exponentiation.exp_mont_ladder k a bBits b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop", "Prims.unit" ]
[]
true
false
true
false
false
let exp_mont_ladder_swap2_lemma #t k a bBits b =
exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits
false
Lib.Exponentiation.fst
Lib.Exponentiation.lemma_b_mod_pow2i
val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1))
val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1))
let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 20, "start_col": 0, "start_line": 11 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.pos{i <= bBits} -> FStar.Pervasives.Lemma (ensures b % Prims.pow2 i == (b / Prims.pow2 (i - 1) % 2) * Prims.pow2 (i - 1) + b % Prims.pow2 (i - 1) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1" ]
[]
false
false
true
false
false
let lemma_b_mod_pow2i bBits b i =
calc ( == ) { b % pow2 i; ( == ) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } (b % pow2 i / pow2 (i - 1)) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } (b % pow2 i / pow2 (i - 1)) * pow2 (i - 1) + b % pow2 (i - 1); ( == ) { (Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2)) } (b / pow2 (i - 1) % 2) * pow2 (i - 1) + b % pow2 (i - 1); }
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_lemma
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b)
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b)
let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 225, "start_col": 0, "start_line": 222 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_mont_ladder k a bBits b == Lib.Exponentiation.Definition.pow k a b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.Exponentiation.exp_mont_ladder_lemma_loop", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_mont_ladder_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one" ]
[]
false
false
true
false
false
let exp_mont_ladder_lemma #t k a bBits b =
let r0, r1 = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_rl_lemma_loop
val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i))
val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i))
let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 89, "start_col": 0, "start_line": 59 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i <= bBits} -> a: t -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_rl_f k bBits b) (Lib.Exponentiation.Definition.one, a) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ acc c = _ in acc == Lib.Exponentiation.Definition.pow k a (b % Prims.pow2 i) /\ c == Lib.Exponentiation.Definition.pow k a (Prims.pow2 i)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.Exponentiation.Definition.lemma_pow1", "Lib.Exponentiation.Definition.lemma_pow0", "FStar.Pervasives.assert_norm", "Lib.LoopCombinators.eq_repeati0", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.exp_rl_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one", "Prims.bool", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Subtraction", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.Definition.lemma_pow_add", "Lib.Exponentiation.Definition.mul", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.Exponentiation.lemma_b_mod_pow2i", "FStar.Math.Lemmas.pow2_double_sum", "Prims.l_and", "Lib.Exponentiation.exp_rl_lemma_loop", "Lib.LoopCombinators.unfold_repeati", "Lib.LoopCombinators.repeati" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_rl_lemma_loop #t k bBits b i a =
let acc, c = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then (Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; ()) else let acc1, c1 = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == (b / pow2 (i - 1) % 2) * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then (assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_lemma_step
val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1))))
val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1))))
let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 195, "start_col": 0, "start_line": 166 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> a: t -> r0: t -> r1: t -> i: Prims.nat{i < bBits} -> FStar.Pervasives.Lemma (requires r1 == Lib.Exponentiation.Definition.mul r0 a /\ r0 == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i))) (ensures (let _ = Lib.Exponentiation.exp_mont_ladder_f k bBits b i (r0, r1) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r0' r1' = _ in r1' == Lib.Exponentiation.Definition.mul r0' a /\ r0' == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i - 1))) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_Subtraction", "Prims.unit", "Lib.Exponentiation.Definition.lemma_mul_comm", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.lemma_mul_assoc", "Lib.Exponentiation.Definition.pow", "Prims.bool", "Lib.Exponentiation.Definition.lemma_pow_add", "FStar.Mul.op_Star", "Lib.Exponentiation.Definition.lemma_pow1", "Prims.op_Addition", "Lib.Exponentiation.lemma_b_div_pow2i", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.exp_mont_ladder_f", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
true
false
false
let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i =
let r0', r1' = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == (b / pow2 (bBits - i)) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a ((b / pow2 (bBits - i)) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then (assert (r0' == pow k a (b / pow2 (bBits - i - 1))); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; ()) else (assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a ((b / pow2 (bBits - i)) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.lemma_b_div_pow2ki
val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i)
val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i)
let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 40, "start_col": 0, "start_line": 27 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> k: Prims.pos -> i: Prims.pos{i <= bBits / k} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.b_acc k bBits b (i - 1) * Prims.pow2 k + Lib.Exponentiation.b_acc k bBits b i % Prims.pow2 k == Lib.Exponentiation.b_acc k bBits b i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.distributivity_sub_right" ]
[]
false
false
true
false
false
let lemma_b_div_pow2ki bBits b k i =
let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc ( == ) { b / pow2 (bk - k * i); ( == ) { Math.Lemmas.euclidean_division_definition c (pow2 k) } (c / pow2 k) * pow2 k + c % pow2 k; ( == ) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } (b / (pow2 (bk - k * i) * pow2 k)) * pow2 k + c % pow2 k; ( == ) { Math.Lemmas.pow2_plus (bk - k * i) k } (b / pow2 (bk - k * i + k)) * pow2 k + c % pow2 k; ( == ) { Math.Lemmas.distributivity_sub_right k i 1 } (b / pow2 (bk - k * (i - 1))) * pow2 k + c % pow2 k; }
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop
val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4)
val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4)
let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 247, "start_col": 0, "start_line": 238 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i <= bBits} -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_mont_ladder_swap2_f k bBits b) (Lib.Exponentiation.Definition.one, a) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r0 r1 = _ in let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_mont_ladder_f k bBits b) (Lib.Exponentiation.Definition.one, a) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r3 r4 = _ in r0 == r3 /\ r1 == r4) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.exp_mont_ladder_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one", "Lib.Exponentiation.exp_mont_ladder_swap2_f", "Prims.bool", "Lib.Exponentiation.exp_mont_ladder_swap2_lemma_loop", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i =
if i = 0 then (Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); ()) else (Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_lemma_loop
val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i)))
val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i)))
let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 219, "start_col": 0, "start_line": 205 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> a: t -> i: Prims.nat{i <= bBits} -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_mont_ladder_f k bBits b) (Lib.Exponentiation.Definition.one, a) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r0 r1 = _ in r1 == Lib.Exponentiation.Definition.mul r0 a /\ r0 == Lib.Exponentiation.Definition.pow k a (b / Prims.pow2 (bBits - i))) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.Exponentiation.Definition.lemma_mul_comm", "Lib.Exponentiation.Definition.one", "Lib.Exponentiation.Definition.lemma_one", "Lib.Exponentiation.Definition.lemma_pow0", "FStar.Math.Lemmas.small_div", "Lib.LoopCombinators.eq_repeati0", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.exp_mont_ladder_f", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Lib.Exponentiation.exp_mont_ladder_lemma_step", "Prims.op_Subtraction", "Lib.Exponentiation.exp_mont_ladder_lemma_loop", "Lib.LoopCombinators.unfold_repeati", "Lib.LoopCombinators.repeati" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_mont_ladder_lemma_loop #t k bBits b a i =
let r0, r1 = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then (Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; ()) else let r0', r1' = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); ()
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4))
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4))
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 274, "start_col": 0, "start_line": 265 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> sw0: Prims.nat{sw0 == b / Prims.pow2 bBits % 2} -> i: Prims.nat{i <= bBits} -> FStar.Pervasives.Lemma (ensures (let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_mont_ladder_swap_f k bBits b) (Lib.Exponentiation.Definition.one, a, sw0) in (let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ r0 r1 sw = _ in let _ = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_mont_ladder_f k bBits b) (Lib.Exponentiation.cswap sw0 Lib.Exponentiation.Definition.one a) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ r3 r4 = _ in let bit = b / Prims.pow2 (bBits - i) % 2 in sw == bit /\ Lib.Exponentiation.cswap bit r0 r1 == (r3, r4)) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.unit", "Lib.LoopCombinators.eq_repeati0", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.exp_mont_ladder_f", "Lib.Exponentiation.cswap", "Lib.Exponentiation.Definition.one", "FStar.Pervasives.Native.tuple3", "Lib.Exponentiation.exp_mont_ladder_swap_f", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop", "Prims.op_Subtraction", "Lib.LoopCombinators.unfold_repeati" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i =
if i = 0 then (Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); ()) else (Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_pow2_loop_lemma
val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i))
val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i))
let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 294, "start_col": 0, "start_line": 284 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> b: Prims.nat -> i: Prims.nat{i <= b} -> FStar.Pervasives.Lemma (ensures Lib.LoopCombinators.repeat i (Lib.Exponentiation.Definition.sqr k) a == Lib.Exponentiation.Definition.pow k a (Prims.pow2 i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Lib.Exponentiation.Definition.lemma_pow1", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.pow2", "Lib.LoopCombinators.eq_repeat0", "Lib.Exponentiation.Definition.sqr", "Prims.bool", "FStar.Math.Lemmas.pow2_double_sum", "Prims.op_Subtraction", "Lib.Exponentiation.Definition.lemma_pow_add", "Lib.Exponentiation.exp_pow2_loop_lemma", "Lib.LoopCombinators.unfold_repeat" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_pow2_loop_lemma #t k a b i =
if i = 0 then (Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a) else (Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); ())
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_mont_ladder_swap_lemma
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 278, "start_col": 0, "start_line": 277 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_mont_ladder_swap k a bBits b == Lib.Exponentiation.exp_mont_ladder k a bBits b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Lib.Exponentiation.exp_mont_ladder_swap_lemma_loop", "Prims.unit" ]
[]
true
false
true
false
false
let exp_mont_ladder_swap_lemma #t k a bBits b =
exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_pow2_lemma
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b))
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b))
let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 296, "start_col": 0, "start_line": 296 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> b: Prims.nat -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_pow2 k a b == Lib.Exponentiation.Definition.pow k a (Prims.pow2 b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Lib.Exponentiation.exp_pow2_loop_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let exp_pow2_lemma #t k a b =
exp_pow2_loop_lemma k a b b
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_fw_lemma
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b)
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b)
let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 404, "start_col": 0, "start_line": 393 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_fw k a bBits b l == Lib.Exponentiation.Definition.pow k a b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Prims.op_Division", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.Exponentiation.b_acc", "Lib.Exponentiation.exp_fw_lemma_loop", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_fw_f", "Lib.Exponentiation.exp_fw_acc0_aux_lemma", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_fw_acc0" ]
[]
false
false
true
false
false
let exp_fw_lemma #t k a bBits b l =
let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_fw_lemma_loop
val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i))
val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i))
let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 351, "start_col": 0, "start_line": 340 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i <= bBits / l} -> FStar.Pervasives.Lemma (ensures (let acc0 = Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b 0) in let acc = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_fw_f k a bBits b l) acc0 in acc == Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Equality", "Prims.int", "Lib.LoopCombinators.eq_repeati0", "Lib.Exponentiation.exp_fw_f", "Prims.bool", "Prims.unit", "Lib.Exponentiation.exp_fw_lemma_step", "Lib.Exponentiation.exp_fw_lemma_loop", "Prims.op_Subtraction", "Prims._assert", "Prims.eq2", "Lib.LoopCombinators.repeati", "Lib.LoopCombinators.unfold_repeati", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.b_acc" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_fw_lemma_loop #t k a bBits b l i =
let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else (Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; ())
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_codegen_success_KeyExpansionRound
val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool
val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool
let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ())))))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 84, "end_line": 48, "start_col": 0, "start_line": 37 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsAes.va_codegen_success_AESNI_keygen_assist", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.InsVector.va_codegen_success_Pshufd", "Vale.X64.InsVector.va_codegen_success_VPslldq4", "Vale.X64.InsVector.va_codegen_success_Pxor", "Vale.X64.InsVector.va_codegen_success_Store128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Prims.op_Multiply", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_KeyExpansionRound round rcon =
(va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ())))))))))))
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_double_fw_lemma
val exp_double_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2))
val exp_double_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2))
let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 529, "start_col": 0, "start_line": 521 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_double_fw k a1 bBits b1 a2 b2 l == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 b1) (Lib.Exponentiation.Definition.pow k a2 b2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims.unit", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.Exponentiation.exp_double_fw_lemma_loop", "Prims.op_Division", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_double_fw_f", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.b_acc", "Lib.Exponentiation.exp_double_fw_acc0_lemma", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_double_fw_acc0" ]
[]
false
false
true
false
false
let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1)
false
Lib.Exponentiation.fst
Lib.Exponentiation.lemma_mul_assoc4
val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4)
val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4)
let lemma_mul_assoc4 #t k a1 a2 a3 a4 = calc (==) { k.mul a1 (k.mul (k.mul a2 a3) a4); (==) { k.lemma_mul_assoc a1 (k.mul a2 a3) a4 } k.mul (k.mul a1 (k.mul a2 a3)) a4; (==) { k.lemma_mul_assoc a1 a2 a3 } k.mul (k.mul (k.mul a1 a2) a3) a4; }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 543, "start_col": 0, "start_line": 536 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1) //------------------------- val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> a2: t -> a3: t -> a4: t -> FStar.Pervasives.Lemma (ensures Mkcomm_monoid?.mul k a1 (Mkcomm_monoid?.mul k (Mkcomm_monoid?.mul k a2 a3) a4) == Mkcomm_monoid?.mul k (Mkcomm_monoid?.mul k (Mkcomm_monoid?.mul k a1 a2) a3) a4)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__lemma_mul_assoc", "Prims.squash" ]
[]
false
false
true
false
false
let lemma_mul_assoc4 #t k a1 a2 a3 a4 =
calc ( == ) { k.mul a1 (k.mul (k.mul a2 a3) a4); ( == ) { k.lemma_mul_assoc a1 (k.mul a2 a3) a4 } k.mul (k.mul a1 (k.mul a2 a3)) a4; ( == ) { k.lemma_mul_assoc a1 a2 a3 } k.mul (k.mul (k.mul a1 a2) a3) a4; }
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_double_fw_acc0_lemma
val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)))
val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)))
let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 518, "start_col": 0, "start_line": 503 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures (let acc0 = (match bBits % l = 0 with | true -> Lib.Exponentiation.Definition.one | _ -> Lib.Exponentiation.exp_double_fw_acc0 k a1 bBits b1 a2 b2 l) <: t in acc0 == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 0)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 0))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Prims.op_Division", "Lib.Exponentiation.Definition.lemma_one", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__one", "Lib.Exponentiation.Definition.lemma_pow0", "FStar.Mul.op_Star", "FStar.Math.Lemmas.small_div", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_fw_acc0_lemma", "Prims.op_Subtraction" ]
[]
false
false
true
false
false
let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l =
let bk = bBits - bBits % l in if bBits % l = 0 then let acc = one in assert ((bBits / l) * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 ((bBits / l) * l) == 0); assert (b2 / pow2 ((bBits / l) * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () else (exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_fw_lemma_step
val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i))
val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i))
let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 328, "start_col": 0, "start_line": 309 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.pos{i <= bBits / l} -> acc1: t -> FStar.Pervasives.Lemma (requires acc1 == Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b (i - 1))) (ensures Lib.Exponentiation.exp_fw_f k a bBits b l (i - 1) acc1 == Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.b_acc", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Lib.Exponentiation.Definition.lemma_pow_mul", "Lib.Exponentiation.Definition.lemma_pow_add", "Lib.Exponentiation.lemma_b_div_pow2ki", "Prims._assert", "FStar.Math.Lemmas.distributivity_sub_right", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Lib.Exponentiation.exp_pow2_lemma", "Lib.Exponentiation.exp_fw_f" ]
[]
false
false
true
false
false
let exp_fw_lemma_step #t k a bBits b l i acc1 =
let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc ( == ) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); ( == ) { () } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); ( == ) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); ( == ) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); ( == ) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); }
false
Lib.Exponentiation.fst
Lib.Exponentiation.lemma_pow_distr_mul
val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x)
val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x)
let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 423, "start_col": 0, "start_line": 412 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> x: t -> a: t -> r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> FStar.Pervasives.Lemma (ensures Mkcomm_monoid?.mul k (Mkcomm_monoid?.mul k x (Lib.Exponentiation.Definition.pow k (Lib.Exponentiation.Definition.pow k a r1) r3)) (Lib.Exponentiation.Definition.pow k a r2) == Mkcomm_monoid?.mul k (Lib.Exponentiation.Definition.pow k a (r1 * r3 + r2)) x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Lib.Exponentiation.Definition.pow", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Lib.Exponentiation.Definition.lemma_pow_mul", "Prims.squash", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__lemma_mul_assoc", "Lib.Exponentiation.Definition.lemma_pow_add", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__lemma_mul_comm" ]
[]
false
false
true
false
false
let lemma_pow_distr_mul #t k x a r1 r2 r3 =
calc ( == ) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); ( == ) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); ( == ) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); ( == ) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); ( == ) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; }
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_four_fw_acc0_lemma
val exp_four_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)))
val exp_four_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)))
let exp_four_fw_acc0_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l = let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in if bBits % l = 0 then begin assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); Math.Lemmas.small_div b2 (pow2 bBits); Math.Lemmas.small_div b3 (pow2 bBits); Math.Lemmas.small_div b4 (pow2 bBits); assert (b1_rem = 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_pow0 k a3; lemma_pow0 k a4; assert ( mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)) == mul (mul one one) (mul one one)); lemma_one k.one; () end else begin let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in let acc_a3 = exp_fw_acc0 k a3 bBits b3 l in let acc_a4 = exp_fw_acc0 k a4 bBits b4 l in exp_fw_acc0_lemma k a1 bBits b1 l; exp_fw_acc0_lemma k a2 bBits b2 l; exp_fw_acc0_lemma k a3 bBits b3 l; exp_fw_acc0_lemma k a4 bBits b4 l; Math.Lemmas.euclidean_division_definition bBits l; assert (acc_a1 == pow k a1 b1_rem); assert (acc_a2 == pow k a2 b2_rem); assert (acc_a3 == pow k a3 b3_rem); assert (acc_a4 == pow k a4 b4_rem) end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 755, "start_col": 0, "start_line": 718 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1) //------------------------- val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4) let lemma_mul_assoc4 #t k a1 a2 a3 a4 = calc (==) { k.mul a1 (k.mul (k.mul a2 a3) a4); (==) { k.lemma_mul_assoc a1 (k.mul a2 a3) a4 } k.mul (k.mul a1 (k.mul a2 a3)) a4; (==) { k.lemma_mul_assoc a1 a2 a3 } k.mul (k.mul (k.mul a1 a2) a3) a4; } val exp_four_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (pow k a3 (b_acc l bBits b3 (i - 1)))) (pow k a4 (b_acc l bBits b4 (i - 1)))) (ensures exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1) acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i))) let exp_four_fw_lemma_step #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in let r31 = b_acc l bBits b3 (i - 1) in let r32 = b_acc l bBits b3 i % pow2 l in let r41 = b_acc l bBits b4 (i - 1) in let r42 = b_acc l bBits b4 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in let res_a3 = pow k a3 (b_acc l bBits b3 i) in let res_a4 = pow k a4 (b_acc l bBits b4 i) in let acc_1 = pow k a1 r11 in let acc_1_l = pow k acc_1 (pow2 l) in let acc_12 = k.mul acc_1 (pow k a2 r21) in let acc_12_l = pow k acc_12 (pow2 l) in let acc_123 = k.mul acc_12 (pow k a3 r31) in let acc_123_l = pow k acc_123 (pow2 l) in calc (==) { k.mul acc1 (pow k a4 r42); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a4 r42); (==) { } k.mul (pow k (k.mul acc_123 (pow k a4 r41)) (pow2 l)) (pow k a4 r42); (==) { lemma_pow_mul_base k acc_123 (pow k a4 r41) (pow2 l) } k.mul (k.mul acc_123_l (pow k (pow k a4 r41) (pow2 l))) (pow k a4 r42); (==) { lemma_pow_distr_mul k acc_123_l a4 r41 r42 (pow2 l) } k.mul (pow k a4 (r41 * pow2 l + r42)) acc_123_l; (==) { lemma_b_div_pow2ki bBits b4 l i } k.mul res_a4 acc_123_l; }; calc (==) { k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32); (==) { } k.mul (k.mul res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l))) (pow k a3 r32); (==) {k.lemma_mul_assoc res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)} k.mul res_a4 (k.mul (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)); (==) { lemma_pow_mul_base k acc_12 (pow k a3 r31) (pow2 l) } k.mul res_a4 (k.mul (k.mul acc_12_l (pow k (pow k a3 r31) (pow2 l))) (pow k a3 r32)); (==) { lemma_pow_distr_mul k acc_12_l a3 r31 r32 (pow2 l) } k.mul res_a4 (k.mul (pow k a3 (r31 * pow2 l + r32)) acc_12_l); (==) { lemma_b_div_pow2ki bBits b3 l i } k.mul res_a4 (k.mul res_a3 acc_12_l); (==) { k.lemma_mul_assoc res_a4 res_a3 acc_12_l; k.lemma_mul_comm res_a4 res_a3 } k.mul (k.mul res_a3 res_a4) acc_12_l; }; let res_a234 = k.mul (k.mul res_a2 res_a3) res_a4 in let res_a34 = k.mul res_a3 res_a4 in calc (==) { k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22); (==) { } k.mul (k.mul res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l))) (pow k a2 r22); (==) { lemma_mul_assoc res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22) } k.mul res_a34 (k.mul (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22)); (==) { lemma_pow_mul_base k acc_1 (pow k a2 r21) (pow2 l) } k.mul res_a34 (k.mul (k.mul acc_1_l (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22)); (==) { lemma_pow_distr_mul k acc_1_l a2 r21 r22 (pow2 l) } k.mul res_a34 (k.mul (pow k a2 (r21 * pow2 l + r22)) acc_1_l); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a34 (k.mul res_a2 acc_1_l); (==) { k.lemma_mul_assoc res_a34 res_a2 acc_1_l; k.lemma_mul_comm res_a34 res_a2 } k.mul (k.mul res_a2 res_a34) acc_1_l; (==) { k.lemma_mul_assoc res_a2 res_a3 res_a4 } k.mul res_a234 acc_1_l; }; calc (==) { k.mul (k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a234 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a234 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a234; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 (k.mul (k.mul res_a2 res_a3) res_a4); (==) { lemma_mul_assoc4 k res_a1 res_a2 res_a3 res_a4 } k.mul (k.mul (k.mul res_a1 res_a2) res_a3) res_a4; } val exp_four_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == mul (mul (mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i))) let rec exp_four_fw_lemma_loop #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i = let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 else begin Loops.unfold_repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1); exp_four_fw_lemma_step k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc1; () end val exp_four_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures (let acc0 = (match bBits % l = 0 with | true -> Lib.Exponentiation.Definition.one | _ -> Lib.Exponentiation.exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) <: t in let b1_rem = Lib.Exponentiation.b_acc l bBits b1 0 in let b2_rem = Lib.Exponentiation.b_acc l bBits b2 0 in let b3_rem = Lib.Exponentiation.b_acc l bBits b3 0 in let b4_rem = Lib.Exponentiation.b_acc l bBits b4 0 in acc0 == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 b1_rem) (Lib.Exponentiation.Definition.pow k a2 b2_rem)) (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a3 b3_rem) (Lib.Exponentiation.Definition.pow k a4 b4_rem))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.unit", "Lib.Exponentiation.Definition.lemma_one", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__one", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.Definition.one", "Lib.Exponentiation.Definition.lemma_pow0", "FStar.Math.Lemmas.small_div", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.bool", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.Exponentiation.exp_fw_acc0_lemma", "Lib.Exponentiation.exp_fw_acc0", "Lib.Exponentiation.b_acc" ]
[]
false
false
true
false
false
let exp_four_fw_acc0_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l =
let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in if bBits % l = 0 then (assert ((bBits / l) * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); Math.Lemmas.small_div b2 (pow2 bBits); Math.Lemmas.small_div b3 (pow2 bBits); Math.Lemmas.small_div b4 (pow2 bBits); assert (b1_rem = 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_pow0 k a3; lemma_pow0 k a4; assert (mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)) == mul (mul one one) (mul one one)); lemma_one k.one; ()) else let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in let acc_a3 = exp_fw_acc0 k a3 bBits b3 l in let acc_a4 = exp_fw_acc0 k a4 bBits b4 l in exp_fw_acc0_lemma k a1 bBits b1 l; exp_fw_acc0_lemma k a2 bBits b2 l; exp_fw_acc0_lemma k a3 bBits b3 l; exp_fw_acc0_lemma k a4 bBits b4 l; Math.Lemmas.euclidean_division_definition bBits l; assert (acc_a1 == pow k a1 b1_rem); assert (acc_a2 == pow k a2 b2_rem); assert (acc_a3 == pow k a3 b3_rem); assert (acc_a4 == pow k a4 b4_rem)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_fw_acc0_aux_lemma
val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0))
val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0))
let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 390, "start_col": 0, "start_line": 380 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures (let acc0 = (match bBits % l = 0 with | true -> Lib.Exponentiation.Definition.one | _ -> Lib.Exponentiation.exp_fw_acc0 k a bBits b l) <: t in acc0 == Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b 0)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Prims.op_Division", "FStar.Mul.op_Star", "Lib.Exponentiation.Definition.lemma_pow0", "FStar.Math.Lemmas.small_div", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_fw_acc0_lemma" ]
[]
false
false
true
false
false
let exp_fw_acc0_aux_lemma #t k a bBits b l =
if bBits % l = 0 then let acc = one in assert ((bBits / l) * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 ((bBits / l) * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 ((bBits / l) * l))); () else exp_fw_acc0_lemma #t k a bBits b l
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_double_fw_lemma_loop
val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 494, "start_col": 0, "start_line": 483 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i <= bBits / l} -> FStar.Pervasives.Lemma (ensures (let acc0 = Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 0)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 0)) in let acc = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 i)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 i))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Equality", "Prims.int", "Lib.LoopCombinators.eq_repeati0", "Lib.Exponentiation.exp_double_fw_f", "Prims.bool", "Prims.unit", "Lib.Exponentiation.exp_double_fw_lemma_step", "Lib.Exponentiation.exp_double_fw_lemma_loop", "Prims.op_Subtraction", "Lib.LoopCombinators.repeati", "Lib.LoopCombinators.unfold_repeati", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.b_acc" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i =
let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else (Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; ())
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_KeyExpansionRound
val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code
val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code
let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ()))))))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 33, "start_col": 0, "start_line": 24 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsAes.va_code_AESNI_keygen_assist", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.InsVector.va_code_Pshufd", "Vale.X64.InsVector.va_code_VPslldq4", "Vale.X64.InsVector.va_code_Pxor", "Vale.X64.InsVector.va_code_Store128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Prims.op_Multiply", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_CNil", "Vale.X64.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_KeyExpansionRound round rcon =
(va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ()))))))))))))
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_four_fw_lemma
val exp_four_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (exp_four_fw k a1 bBits b1 a2 b2 a3 b3 a4 b4 l == mul (mul (mul (pow k a1 b1) (pow k a2 b2)) (pow k a3 b3)) (pow k a4 b4))
val exp_four_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (exp_four_fw k a1 bBits b1 a2 b2 a3 b3 a4 b4 l == mul (mul (mul (pow k a1 b1) (pow k a2 b2)) (pow k a3 b3)) (pow k a4 b4))
let exp_four_fw_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l = let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in exp_four_fw_acc0_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l; assert (acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem))); k.lemma_mul_assoc (k.mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (pow k a3 b3_rem) (pow k a4 b4_rem); Math.Lemmas.euclidean_division_definition bBits l; let res = Loops.repeati (bBits / l) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (bBits / l); assert_norm (pow2 0 = 1)
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 780, "start_col": 0, "start_line": 758 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1) //------------------------- val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4) let lemma_mul_assoc4 #t k a1 a2 a3 a4 = calc (==) { k.mul a1 (k.mul (k.mul a2 a3) a4); (==) { k.lemma_mul_assoc a1 (k.mul a2 a3) a4 } k.mul (k.mul a1 (k.mul a2 a3)) a4; (==) { k.lemma_mul_assoc a1 a2 a3 } k.mul (k.mul (k.mul a1 a2) a3) a4; } val exp_four_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (pow k a3 (b_acc l bBits b3 (i - 1)))) (pow k a4 (b_acc l bBits b4 (i - 1)))) (ensures exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1) acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i))) let exp_four_fw_lemma_step #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in let r31 = b_acc l bBits b3 (i - 1) in let r32 = b_acc l bBits b3 i % pow2 l in let r41 = b_acc l bBits b4 (i - 1) in let r42 = b_acc l bBits b4 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in let res_a3 = pow k a3 (b_acc l bBits b3 i) in let res_a4 = pow k a4 (b_acc l bBits b4 i) in let acc_1 = pow k a1 r11 in let acc_1_l = pow k acc_1 (pow2 l) in let acc_12 = k.mul acc_1 (pow k a2 r21) in let acc_12_l = pow k acc_12 (pow2 l) in let acc_123 = k.mul acc_12 (pow k a3 r31) in let acc_123_l = pow k acc_123 (pow2 l) in calc (==) { k.mul acc1 (pow k a4 r42); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a4 r42); (==) { } k.mul (pow k (k.mul acc_123 (pow k a4 r41)) (pow2 l)) (pow k a4 r42); (==) { lemma_pow_mul_base k acc_123 (pow k a4 r41) (pow2 l) } k.mul (k.mul acc_123_l (pow k (pow k a4 r41) (pow2 l))) (pow k a4 r42); (==) { lemma_pow_distr_mul k acc_123_l a4 r41 r42 (pow2 l) } k.mul (pow k a4 (r41 * pow2 l + r42)) acc_123_l; (==) { lemma_b_div_pow2ki bBits b4 l i } k.mul res_a4 acc_123_l; }; calc (==) { k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32); (==) { } k.mul (k.mul res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l))) (pow k a3 r32); (==) {k.lemma_mul_assoc res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)} k.mul res_a4 (k.mul (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)); (==) { lemma_pow_mul_base k acc_12 (pow k a3 r31) (pow2 l) } k.mul res_a4 (k.mul (k.mul acc_12_l (pow k (pow k a3 r31) (pow2 l))) (pow k a3 r32)); (==) { lemma_pow_distr_mul k acc_12_l a3 r31 r32 (pow2 l) } k.mul res_a4 (k.mul (pow k a3 (r31 * pow2 l + r32)) acc_12_l); (==) { lemma_b_div_pow2ki bBits b3 l i } k.mul res_a4 (k.mul res_a3 acc_12_l); (==) { k.lemma_mul_assoc res_a4 res_a3 acc_12_l; k.lemma_mul_comm res_a4 res_a3 } k.mul (k.mul res_a3 res_a4) acc_12_l; }; let res_a234 = k.mul (k.mul res_a2 res_a3) res_a4 in let res_a34 = k.mul res_a3 res_a4 in calc (==) { k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22); (==) { } k.mul (k.mul res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l))) (pow k a2 r22); (==) { lemma_mul_assoc res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22) } k.mul res_a34 (k.mul (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22)); (==) { lemma_pow_mul_base k acc_1 (pow k a2 r21) (pow2 l) } k.mul res_a34 (k.mul (k.mul acc_1_l (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22)); (==) { lemma_pow_distr_mul k acc_1_l a2 r21 r22 (pow2 l) } k.mul res_a34 (k.mul (pow k a2 (r21 * pow2 l + r22)) acc_1_l); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a34 (k.mul res_a2 acc_1_l); (==) { k.lemma_mul_assoc res_a34 res_a2 acc_1_l; k.lemma_mul_comm res_a34 res_a2 } k.mul (k.mul res_a2 res_a34) acc_1_l; (==) { k.lemma_mul_assoc res_a2 res_a3 res_a4 } k.mul res_a234 acc_1_l; }; calc (==) { k.mul (k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a234 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a234 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a234; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 (k.mul (k.mul res_a2 res_a3) res_a4); (==) { lemma_mul_assoc4 k res_a1 res_a2 res_a3 res_a4 } k.mul (k.mul (k.mul res_a1 res_a2) res_a3) res_a4; } val exp_four_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == mul (mul (mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i))) let rec exp_four_fw_lemma_loop #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i = let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 else begin Loops.unfold_repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1); exp_four_fw_lemma_step k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc1; () end val exp_four_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem))) let exp_four_fw_acc0_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l = let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in if bBits % l = 0 then begin assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); Math.Lemmas.small_div b2 (pow2 bBits); Math.Lemmas.small_div b3 (pow2 bBits); Math.Lemmas.small_div b4 (pow2 bBits); assert (b1_rem = 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_pow0 k a3; lemma_pow0 k a4; assert ( mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem)) == mul (mul one one) (mul one one)); lemma_one k.one; () end else begin let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in let acc_a3 = exp_fw_acc0 k a3 bBits b3 l in let acc_a4 = exp_fw_acc0 k a4 bBits b4 l in exp_fw_acc0_lemma k a1 bBits b1 l; exp_fw_acc0_lemma k a2 bBits b2 l; exp_fw_acc0_lemma k a3 bBits b3 l; exp_fw_acc0_lemma k a4 bBits b4 l; Math.Lemmas.euclidean_division_definition bBits l; assert (acc_a1 == pow k a1 b1_rem); assert (acc_a2 == pow k a2 b2_rem); assert (acc_a3 == pow k a3 b3_rem); assert (acc_a4 == pow k a4 b4_rem) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_four_fw k a1 bBits b1 a2 b2 a3 b3 a4 b4 l == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 b1) (Lib.Exponentiation.Definition.pow k a2 b2)) (Lib.Exponentiation.Definition.pow k a3 b3)) (Lib.Exponentiation.Definition.pow k a4 b4))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Prims.unit", "Lib.Exponentiation.exp_four_fw_lemma_loop", "Prims.op_Division", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_four_fw_f", "FStar.Math.Lemmas.euclidean_division_definition", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__lemma_mul_assoc", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Lib.Exponentiation.Definition.pow", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.exp_four_fw_acc0_lemma", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_four_fw_acc0", "Lib.Exponentiation.b_acc" ]
[]
false
false
true
false
false
let exp_four_fw_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l =
let b1_rem = b_acc l bBits b1 0 in let b2_rem = b_acc l bBits b2 0 in let b3_rem = b_acc l bBits b3 0 in let b4_rem = b_acc l bBits b4 0 in let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in exp_four_fw_acc0_lemma #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l; assert (acc0 == mul (mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (mul (pow k a3 b3_rem) (pow k a4 b4_rem))); k.lemma_mul_assoc (k.mul (pow k a1 b1_rem) (pow k a2 b2_rem)) (pow k a3 b3_rem) (pow k a4 b4_rem); Math.Lemmas.euclidean_division_definition bBits l; let res = Loops.repeati (bBits / l) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (bBits / l); assert_norm (pow2 0 = 1)
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_fw_acc0_lemma
val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0))
val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0))
let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); ()
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 370, "start_col": 0, "start_line": 360 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos{bBits % l <> 0} -> FStar.Pervasives.Lemma (ensures Lib.Exponentiation.exp_fw_acc0 k a bBits b l == Lib.Exponentiation.Definition.pow k a (Lib.Exponentiation.b_acc l bBits b 0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.Exponentiation.Definition.pow", "Prims.op_Division", "FStar.Mul.op_Star", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.lemma_div_lt_nat", "Lib.Exponentiation.get_ith_lbits" ]
[]
true
false
true
false
false
let exp_fw_acc0_lemma #t k a bBits b l =
let bits_c = get_ith_lbits bBits b ((bBits / l) * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 ((bBits / l) * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits ((bBits / l) * l); assert (b / pow2 ((bBits / l) * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 ((bBits / l) * l)) (pow2 l); assert (bits_c == b / pow2 ((bBits / l) * l)); assert (acc == pow k a (b / pow2 ((bBits / l) * l))); ()
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_KeyExpansion128Stdcall
val va_code_KeyExpansion128Stdcall : win:bool -> Tot va_code
val va_code_KeyExpansion128Stdcall : win:bool -> Tot va_code
let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ()))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 308, "start_col": 0, "start_line": 298 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsVector.va_code_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRcx", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_CNil", "Vale.X64.Machine_s.rRdi", "Vale.X64.InsBasic.va_code_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Machine_s.rRsi", "Vale.X64.Decls.va_code", "Vale.X64.InsVector.va_code_Store128_buffer", "Vale.AES.X64.AES128.va_code_KeyExpansionRoundUnrolledRecursive", "Vale.X64.InsVector.va_code_Pxor" ]
[]
false
false
false
true
false
let va_code_KeyExpansion128Stdcall win =
(va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))) ))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_codegen_success_KeyExpansion128Stdcall
val va_codegen_success_KeyExpansion128Stdcall : win:bool -> Tot va_pbool
val va_codegen_success_KeyExpansion128Stdcall : win:bool -> Tot va_pbool
let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ())))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 85, "end_line": 322, "start_col": 0, "start_line": 311 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ()))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsVector.va_codegen_success_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRcx", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_ttrue", "Vale.X64.Machine_s.rRdi", "Vale.X64.InsBasic.va_codegen_success_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Machine_s.rRsi", "Vale.X64.Decls.va_pbool", "Vale.X64.InsVector.va_codegen_success_Store128_buffer", "Vale.AES.X64.AES128.va_codegen_success_KeyExpansionRoundUnrolledRecursive", "Vale.X64.InsVector.va_codegen_success_Pxor" ]
[]
false
false
false
true
false
let va_codegen_success_KeyExpansion128Stdcall win =
(va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ())))))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_codegen_success_AES128EncryptRound
val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool
val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool
let va_codegen_success_AES128EncryptRound n = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ())))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 434, "start_col": 0, "start_line": 431 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ())))) val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsVector.va_codegen_success_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rR8", "Prims.op_Multiply", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.InsAes.va_codegen_success_AESNI_enc", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_AES128EncryptRound n =
(va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ())))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_AES128EncryptRound
val va_code_AES128EncryptRound : n:nat -> Tot va_code
val va_code_AES128EncryptRound : n:nat -> Tot va_code
let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ()))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 427, "start_col": 0, "start_line": 424 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsVector.va_code_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rR8", "Prims.op_Multiply", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.InsAes.va_code_AESNI_enc", "Vale.X64.Decls.va_CNil", "Vale.X64.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_AES128EncryptRound n =
(va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ()))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_AES128EncryptBlock
val va_code_AES128EncryptBlock : va_dummy:unit -> Tot va_code
val va_code_AES128EncryptBlock : va_dummy:unit -> Tot va_code
let va_code_AES128EncryptBlock () = (va_Block (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_CCons (va_code_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_AES128EncryptRound 1) (va_CCons (va_code_AES128EncryptRound 2) (va_CCons (va_code_AES128EncryptRound 3) (va_CCons (va_code_AES128EncryptRound 4) (va_CCons (va_code_AES128EncryptRound 5) (va_CCons (va_code_AES128EncryptRound 6) (va_CCons (va_code_AES128EncryptRound 7) (va_CCons (va_code_AES128EncryptRound 8) (va_CCons (va_code_AES128EncryptRound 9) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_CCons (va_code_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CNil ())))))))))))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 533, "start_col": 0, "start_line": 522 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ())))) val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptRound n = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ()))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptRound (va_mods:va_mods_t) (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (va_arg5:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 188 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg5) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 189 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret keys_buffer n) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 190 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QEmpty (())))))) val va_lemma_AES128EncryptRound : va_b0:va_code -> va_s0:va_state -> n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES128EncryptRound n) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptRound va_b0 va_s0 n init round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptRound va_mods n init round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptRound n) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 168 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 186 column 53 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n ==> va_k va_sM (()))) val va_wpProof_AES128EncryptRound : n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptRound (va_code_AES128EncryptRound n) va_s0 n init round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (va_QProc (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES128EncryptRound n init round_keys keys_buffer) (va_wpProof_AES128EncryptRound n init round_keys keys_buffer)) //-- //-- AES128EncryptBlock
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_dummy: Prims.unit -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.Decls.va_CNil", "Vale.X64.InsVector.va_code_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rR8", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.InsVector.va_code_Pxor", "Vale.AES.X64.AES128.va_code_AES128EncryptRound", "Prims.op_Multiply", "Vale.X64.InsAes.va_code_AESNI_enc_last", "Vale.X64.Decls.va_code" ]
[]
false
false
false
true
false
let va_code_AES128EncryptBlock () =
(va_Block (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_CCons (va_code_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_AES128EncryptRound 1) (va_CCons (va_code_AES128EncryptRound 2) (va_CCons (va_code_AES128EncryptRound 3) (va_CCons (va_code_AES128EncryptRound 4) (va_CCons (va_code_AES128EncryptRound 5) (va_CCons (va_code_AES128EncryptRound 6) (va_CCons (va_code_AES128EncryptRound 7) (va_CCons (va_code_AES128EncryptRound 8) (va_CCons (va_code_AES128EncryptRound 9) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_CCons (va_code_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2 ) (va_op_xmm_xmm 2)) (va_CNil ())))))))))))))))))
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_four_fw_lemma_loop
val exp_four_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == mul (mul (mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i)))
val exp_four_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == mul (mul (mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i)))
let rec exp_four_fw_lemma_loop #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i = let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 else begin Loops.unfold_repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1); exp_four_fw_lemma_step k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc1; () end
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 697, "start_col": 0, "start_line": 681 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; } val exp_double_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) let rec exp_double_fw_lemma_loop #t k a1 bBits b1 a2 b2 l i = let acc0 = mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0)) in let acc = Loops.repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 else begin Loops.unfold_repeati i (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (i - 1); exp_double_fw_lemma_step k a1 bBits b1 a2 b2 l i acc1; () end val exp_double_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) let exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l = let bk = bBits - bBits % l in if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b1 (pow2 bBits); assert (b1 / pow2 (bBits / l * l) == 0); assert (b2 / pow2 (bBits / l * l) == 0); lemma_pow0 k a1; lemma_pow0 k a2; lemma_one k.one; assert (acc == mul (pow k a1 (b1 / pow2 bk)) (pow k a2 (b2 / pow2 bk))); () end else begin exp_fw_acc0_lemma #t k a1 bBits b1 l; exp_fw_acc0_lemma #t k a2 bBits b2 l end let exp_double_fw_lemma #t k a1 bBits b1 a2 b2 l = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in exp_double_fw_acc0_lemma #t k a1 bBits b1 a2 b2 l; assert (acc0 == mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))); let res = Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 in exp_double_fw_lemma_loop k a1 bBits b1 a2 b2 l (bBits / l); Math.Lemmas.euclidean_division_definition bBits l; assert_norm (pow2 0 = 1) //------------------------- val lemma_mul_assoc4: #t:Type -> k:comm_monoid t -> a1:t -> a2:t -> a3:t -> a4:t -> Lemma (k.mul a1 (k.mul (k.mul a2 a3) a4) == k.mul (k.mul (k.mul a1 a2) a3) a4) let lemma_mul_assoc4 #t k a1 a2 a3 a4 = calc (==) { k.mul a1 (k.mul (k.mul a2 a3) a4); (==) { k.lemma_mul_assoc a1 (k.mul a2 a3) a4 } k.mul (k.mul a1 (k.mul a2 a3)) a4; (==) { k.lemma_mul_assoc a1 a2 a3 } k.mul (k.mul (k.mul a1 a2) a3) a4; } val exp_four_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (pow k a3 (b_acc l bBits b3 (i - 1)))) (pow k a4 (b_acc l bBits b4 (i - 1)))) (ensures exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1) acc == k.mul (k.mul (k.mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i))) let exp_four_fw_lemma_step #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in let r31 = b_acc l bBits b3 (i - 1) in let r32 = b_acc l bBits b3 i % pow2 l in let r41 = b_acc l bBits b4 (i - 1) in let r42 = b_acc l bBits b4 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in let res_a3 = pow k a3 (b_acc l bBits b3 i) in let res_a4 = pow k a4 (b_acc l bBits b4 i) in let acc_1 = pow k a1 r11 in let acc_1_l = pow k acc_1 (pow2 l) in let acc_12 = k.mul acc_1 (pow k a2 r21) in let acc_12_l = pow k acc_12 (pow2 l) in let acc_123 = k.mul acc_12 (pow k a3 r31) in let acc_123_l = pow k acc_123 (pow2 l) in calc (==) { k.mul acc1 (pow k a4 r42); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a4 r42); (==) { } k.mul (pow k (k.mul acc_123 (pow k a4 r41)) (pow2 l)) (pow k a4 r42); (==) { lemma_pow_mul_base k acc_123 (pow k a4 r41) (pow2 l) } k.mul (k.mul acc_123_l (pow k (pow k a4 r41) (pow2 l))) (pow k a4 r42); (==) { lemma_pow_distr_mul k acc_123_l a4 r41 r42 (pow2 l) } k.mul (pow k a4 (r41 * pow2 l + r42)) acc_123_l; (==) { lemma_b_div_pow2ki bBits b4 l i } k.mul res_a4 acc_123_l; }; calc (==) { k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32); (==) { } k.mul (k.mul res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l))) (pow k a3 r32); (==) {k.lemma_mul_assoc res_a4 (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)} k.mul res_a4 (k.mul (pow k (k.mul acc_12 (pow k a3 r31)) (pow2 l)) (pow k a3 r32)); (==) { lemma_pow_mul_base k acc_12 (pow k a3 r31) (pow2 l) } k.mul res_a4 (k.mul (k.mul acc_12_l (pow k (pow k a3 r31) (pow2 l))) (pow k a3 r32)); (==) { lemma_pow_distr_mul k acc_12_l a3 r31 r32 (pow2 l) } k.mul res_a4 (k.mul (pow k a3 (r31 * pow2 l + r32)) acc_12_l); (==) { lemma_b_div_pow2ki bBits b3 l i } k.mul res_a4 (k.mul res_a3 acc_12_l); (==) { k.lemma_mul_assoc res_a4 res_a3 acc_12_l; k.lemma_mul_comm res_a4 res_a3 } k.mul (k.mul res_a3 res_a4) acc_12_l; }; let res_a234 = k.mul (k.mul res_a2 res_a3) res_a4 in let res_a34 = k.mul res_a3 res_a4 in calc (==) { k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22); (==) { } k.mul (k.mul res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l))) (pow k a2 r22); (==) { lemma_mul_assoc res_a34 (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22) } k.mul res_a34 (k.mul (pow k (k.mul acc_1 (pow k a2 r21)) (pow2 l)) (pow k a2 r22)); (==) { lemma_pow_mul_base k acc_1 (pow k a2 r21) (pow2 l) } k.mul res_a34 (k.mul (k.mul acc_1_l (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22)); (==) { lemma_pow_distr_mul k acc_1_l a2 r21 r22 (pow2 l) } k.mul res_a34 (k.mul (pow k a2 (r21 * pow2 l + r22)) acc_1_l); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a34 (k.mul res_a2 acc_1_l); (==) { k.lemma_mul_assoc res_a34 res_a2 acc_1_l; k.lemma_mul_comm res_a34 res_a2 } k.mul (k.mul res_a2 res_a34) acc_1_l; (==) { k.lemma_mul_assoc res_a2 res_a3 res_a4 } k.mul res_a234 acc_1_l; }; calc (==) { k.mul (k.mul (k.mul (k.mul acc1 (pow k a4 r42)) (pow k a3 r32)) (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a234 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a234 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a234; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 (k.mul (k.mul res_a2 res_a3) res_a4); (==) { lemma_mul_assoc4 k res_a1 res_a2 res_a3 res_a4 } k.mul (k.mul (k.mul res_a1 res_a2) res_a3) res_a4; } val exp_four_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> a3:t -> b3:nat{b3 < pow2 bBits} -> a4:t -> b4:nat{b4 < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == mul (mul (mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i))) (pow k a3 (b_acc l bBits b3 i))) (pow k a4 (b_acc l bBits b4 i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i <= bBits / l} -> FStar.Pervasives.Lemma (ensures (let acc0 = Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 0)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 0)) ) (Lib.Exponentiation.Definition.pow k a3 (Lib.Exponentiation.b_acc l bBits b3 0))) (Lib.Exponentiation.Definition.pow k a4 (Lib.Exponentiation.b_acc l bBits b4 0)) in let acc = Lib.LoopCombinators.repeati i (Lib.Exponentiation.exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in acc == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 i)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 i))) (Lib.Exponentiation.Definition.pow k a3 (Lib.Exponentiation.b_acc l bBits b3 i))) (Lib.Exponentiation.Definition.pow k a4 (Lib.Exponentiation.b_acc l bBits b4 i))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Equality", "Prims.int", "Lib.LoopCombinators.eq_repeati0", "Lib.Exponentiation.exp_four_fw_f", "Prims.bool", "Prims.unit", "Lib.Exponentiation.exp_four_fw_lemma_step", "Lib.Exponentiation.exp_four_fw_lemma_loop", "Prims.op_Subtraction", "Lib.LoopCombinators.repeati", "Lib.LoopCombinators.unfold_repeati", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.b_acc" ]
[ "recursion" ]
false
false
true
false
false
let rec exp_four_fw_lemma_loop #t k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i =
let acc0 = mul (mul (mul (pow k a1 (b_acc l bBits b1 0)) (pow k a2 (b_acc l bBits b2 0))) (pow k a3 (b_acc l bBits b3 0))) (pow k a4 (b_acc l bBits b4 0)) in let acc = Loops.repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 else (Loops.unfold_repeati i (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 in exp_four_fw_lemma_loop k a1 bBits b1 a2 b2 a3 b3 a4 b4 l (i - 1); exp_four_fw_lemma_step k a1 bBits b1 a2 b2 a3 b3 a4 b4 l i acc1; ())
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_codegen_success_AES128EncryptBlock
val va_codegen_success_AES128EncryptBlock : va_dummy:unit -> Tot va_pbool
val va_codegen_success_AES128EncryptBlock : va_dummy:unit -> Tot va_pbool
let va_codegen_success_AES128EncryptBlock () = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_AES128EncryptRound 1) (va_pbool_and (va_codegen_success_AES128EncryptRound 2) (va_pbool_and (va_codegen_success_AES128EncryptRound 3) (va_pbool_and (va_codegen_success_AES128EncryptRound 4) (va_pbool_and (va_codegen_success_AES128EncryptRound 5) (va_pbool_and (va_codegen_success_AES128EncryptRound 6) (va_pbool_and (va_codegen_success_AES128EncryptRound 7) (va_pbool_and (va_codegen_success_AES128EncryptRound 8) (va_pbool_and (va_codegen_success_AES128EncryptRound 9) (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_pbool_and (va_codegen_success_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_ttrue ())))))))))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 93, "end_line": 548, "start_col": 0, "start_line": 536 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ())))) val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptRound n = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ()))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptRound (va_mods:va_mods_t) (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (va_arg5:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 188 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg5) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 189 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret keys_buffer n) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 190 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QEmpty (())))))) val va_lemma_AES128EncryptRound : va_b0:va_code -> va_s0:va_state -> n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES128EncryptRound n) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptRound va_b0 va_s0 n init round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptRound va_mods n init round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptRound n) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 168 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 186 column 53 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n ==> va_k va_sM (()))) val va_wpProof_AES128EncryptRound : n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptRound (va_code_AES128EncryptRound n) va_s0 n init round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (va_QProc (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES128EncryptRound n init round_keys keys_buffer) (va_wpProof_AES128EncryptRound n init round_keys keys_buffer)) //-- //-- AES128EncryptBlock [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptBlock () = (va_Block (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_CCons (va_code_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_AES128EncryptRound 1) (va_CCons (va_code_AES128EncryptRound 2) (va_CCons (va_code_AES128EncryptRound 3) (va_CCons (va_code_AES128EncryptRound 4) (va_CCons (va_code_AES128EncryptRound 5) (va_CCons (va_code_AES128EncryptRound 6) (va_CCons (va_code_AES128EncryptRound 7) (va_CCons (va_code_AES128EncryptRound 8) (va_CCons (va_code_AES128EncryptRound 9) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_CCons (va_code_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CNil ())))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_dummy: Prims.unit -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsVector.va_codegen_success_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rR8", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.InsVector.va_codegen_success_Pxor", "Vale.AES.X64.AES128.va_codegen_success_AES128EncryptRound", "Prims.op_Multiply", "Vale.X64.InsAes.va_codegen_success_AESNI_enc_last", "Vale.X64.Decls.va_ttrue", "Vale.X64.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_codegen_success_AES128EncryptBlock () =
(va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_AES128EncryptRound 1) (va_pbool_and (va_codegen_success_AES128EncryptRound 2) (va_pbool_and (va_codegen_success_AES128EncryptRound 3) (va_pbool_and (va_codegen_success_AES128EncryptRound 4) (va_pbool_and (va_codegen_success_AES128EncryptRound 5) (va_pbool_and (va_codegen_success_AES128EncryptRound 6) (va_pbool_and (va_codegen_success_AES128EncryptRound 7) (va_pbool_and (va_codegen_success_AES128EncryptRound 8) (va_pbool_and (va_codegen_success_AES128EncryptRound 9) (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_pbool_and (va_codegen_success_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_ttrue ())))))))))))))))
false
Lib.Exponentiation.fst
Lib.Exponentiation.exp_double_fw_lemma_step
val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc = let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc (==) { k.mul acc1 (pow k a2 r22); (==) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); (==) { } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); (==) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); (==) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); (==) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc (==) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); (==) { } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); (==) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; (==) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; }
{ "file_name": "lib/Lib.Exponentiation.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 470, "start_col": 0, "start_line": 437 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val lemma_b_mod_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)) let lemma_b_mod_pow2i bBits b i = calc (==) { b % pow2 i; (==) { Math.Lemmas.euclidean_division_definition (b % pow2 i) (pow2 (i - 1)) } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 i % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 b (i - 1) i } b % pow2 i / pow2 (i - 1) * pow2 (i - 1) + b % pow2 (i - 1); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 b (i - 1) i; assert_norm (pow2 1 = 2) } b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1); } let b_acc (l:pos) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i <= bBits / l}) : nat = b / pow2 (bBits - bBits % l - l * i) val lemma_b_div_pow2ki: bBits:nat -> b:nat{b < pow2 bBits} -> k:pos -> i:pos{i <= bBits / k} -> Lemma (b_acc k bBits b (i - 1) * pow2 k + b_acc k bBits b i % pow2 k == b_acc k bBits b i) let lemma_b_div_pow2ki bBits b k i = let bk = bBits - bBits % k in let c = b / pow2 (bk - k * i) in calc (==) { b / pow2 (bk - k * i); (==) { Math.Lemmas.euclidean_division_definition c (pow2 k) } c / pow2 k * pow2 k + c % pow2 k; (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (bk - k * i)) (pow2 k) } b / (pow2 (bk - k * i) * pow2 k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.pow2_plus (bk - k * i) k } b / pow2 (bk - k * i + k) * pow2 k + c % pow2 k; (==) { Math.Lemmas.distributivity_sub_right k i 1 } b / pow2 (bk - k * (i - 1)) * pow2 k + c % pow2 k; } val lemma_b_div_pow2i: bBits:nat -> b:nat{b < pow2 bBits} -> i:pos{i <= bBits} -> Lemma (b / pow2 (bBits - i) == b / pow2 (bBits - i + 1) * 2 + b / pow2 (bBits - i) % 2) let lemma_b_div_pow2i bBits b i = assert_norm (pow2 1 = 2); lemma_b_div_pow2ki bBits b 1 i //------------------------------ val exp_rl_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> a:t -> Lemma (let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in acc == pow k a (b % pow2 i) /\ c == pow k a (pow2 i)) let rec exp_rl_lemma_loop #t k bBits b i a = let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_rl_f k bBits b) (one, a); assert_norm (pow2 0 = 1); lemma_pow0 k a; lemma_pow1 k a; () end else begin let (acc1, c1) = Loops.repeati (i - 1) (exp_rl_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_rl_f k bBits b) (one, a) (i - 1); exp_rl_lemma_loop #t k bBits b (i - 1) a; assert (acc1 == pow k a (b % pow2 (i - 1)) /\ c1 == pow k a (pow2 (i - 1))); //assert (c == k.mul c1 c1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); assert (c == pow k a (pow2 i)); lemma_b_mod_pow2i bBits b i; assert (b % pow2 i == b / pow2 (i - 1) % 2 * pow2 (i - 1) + b % pow2 (i - 1)); if (b / pow2 (i - 1) % 2 = 1) then begin //assert (acc == acc1 * a1); assert (acc == mul (pow k a (b % pow2 (i - 1))) (pow k a (pow2 (i - 1)))); lemma_pow_add k a (b % pow2 (i - 1)) (pow2 (i - 1)); assert (acc == pow k a (b % pow2 i)); () end else () end let exp_rl_lemma #t k a bBits b = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in exp_rl_lemma_loop k bBits b bBits a; assert (acc == pow k a (b % pow2 bBits)); Math.Lemmas.small_mod b (pow2 bBits) //------------------------------ val exp_lr_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i < bBits} -> acc1:t -> Lemma (requires acc1 == pow k a (b / pow2 (bBits - i))) (ensures exp_lr_f k a bBits b i acc1 == pow k a (b / pow2 (bBits - i - 1))) let exp_lr_lemma_step #t k a bBits b i acc1 = let acc = exp_lr_f k a bBits b i acc1 in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul acc1 acc1 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then () else begin assert (acc == mul (pow k a (b / pow2 (bBits - i) * 2)) a); lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; () end val exp_lr_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let acc = Loops.repeati i (exp_lr_f k a bBits b) one in acc == pow k a (b / pow2 (bBits - i))) let rec exp_lr_lemma_loop #t k a bBits b i = let acc = Loops.repeati i (exp_lr_f k a bBits b) one in if i = 0 then begin Loops.eq_repeati0 i (exp_lr_f k a bBits b) one; lemma_pow0 k a; () end else begin let acc1 = Loops.repeati (i - 1) (exp_lr_f k a bBits b) one in Loops.unfold_repeati i (exp_lr_f k a bBits b) one (i - 1); //assert (acc == exp_lr_f k a bBits b (i - 1) acc1); exp_lr_lemma_loop k a bBits b (i - 1); //assert (acc1 == pow k a (b / pow2 (bBits - i + 1))); exp_lr_lemma_step #t k a bBits b (i - 1) acc1; //assert (acc == pow k a (b / pow2 (bBits - i))); () end let exp_lr_lemma #t k a bBits b = let acc = Loops.repeati bBits (exp_lr_f k a bBits b) one in exp_lr_lemma_loop #t k a bBits b bBits; assert (acc == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_lemma_step: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> r0:t -> r1:t -> i:nat{i < bBits} -> Lemma (requires r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) (ensures (let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in r1' == mul r0' a /\ r0' == pow k a (b / pow2 (bBits - i - 1)))) let exp_mont_ladder_lemma_step #t k bBits b a r0 r1 i = let (r0', r1') = exp_mont_ladder_f k bBits b i (r0, r1) in lemma_b_div_pow2i bBits b (i + 1); assert (b / pow2 (bBits - i - 1) == b / pow2 (bBits - i) * 2 + b / pow2 (bBits - i - 1) % 2); lemma_pow_add k a (b / pow2 (bBits - i)) (b / pow2 (bBits - i)); assert (mul r0 r0 == pow k a (b / pow2 (bBits - i) * 2)); if (b / pow2 (bBits - i - 1) % 2 = 0) then begin assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r0); assert (r1' == mul (mul r0 a) r0); lemma_mul_comm r0 a; lemma_mul_assoc a r0 r0; assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end else begin //assert (r0' == mul r0 r1); assert (r0' == mul r0 (mul r0 a)); lemma_mul_assoc r0 r0 a; lemma_pow1 k a; lemma_pow_add k a (b / pow2 (bBits - i) * 2) 1; assert (r0' == pow k a (b / pow2 (bBits - i - 1))); //assert (r1' == mul r1 r1); assert (r1' == mul (mul r0 a) (mul r0 a)); lemma_mul_comm r0 a; lemma_mul_assoc a r0 (mul r0 a); assert (r1' == mul a r0'); lemma_mul_comm a r0'; () end val exp_mont_ladder_lemma_loop: #t:Type -> k:comm_monoid t -> bBits:nat -> b:nat{b < pow2 bBits} -> a:t -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r1 == mul r0 a /\ r0 == pow k a (b / pow2 (bBits - i))) let rec exp_mont_ladder_lemma_loop #t k bBits b a i = let (r0, r1) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); Math.Lemmas.small_div b (pow2 bBits); lemma_pow0 k a; lemma_one a; lemma_mul_comm a one; //mul one r1 == r1 () end else begin let (r0', r1') = Loops.repeati (i - 1) (exp_mont_ladder_f k bBits b) (one, a) in Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_lemma_loop k bBits b a (i - 1); exp_mont_ladder_lemma_step #t k bBits b a r0' r1' (i - 1); () end let exp_mont_ladder_lemma # t k a bBits b = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in exp_mont_ladder_lemma_loop #t k bBits b a bBits; assert_norm (pow2 0 = 1) //------------------------------ val exp_mont_ladder_swap2_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} -> Lemma (let (r0, r1) = Loops.repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (one, a) in r0 == r3 /\ r1 == r4) let rec exp_mont_ladder_swap2_lemma_loop #t k a bBits b i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap2_f k bBits b) (one, a); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (one, a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap2_f k bBits b) (one, a) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (one, a) (i - 1); exp_mont_ladder_swap2_lemma_loop k a bBits b (i - 1); () end let exp_mont_ladder_swap2_lemma #t k a bBits b = exp_mont_ladder_swap2_lemma_loop #t k a bBits b bBits val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> sw0:nat{sw0 == b / pow2 bBits % 2} -> i:nat{i <= bBits} -> Lemma (let (r0, r1, sw) = Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) in let (r3, r4) = Loops.repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) in let bit = b / pow2 (bBits - i) % 2 in sw == bit /\ cswap bit r0 r1 == (r3, r4)) let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b sw0 i = if i = 0 then begin Loops.eq_repeati0 i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0); Loops.eq_repeati0 i (exp_mont_ladder_f k bBits b) (cswap sw0 one a); () end else begin Loops.unfold_repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, sw0) (i - 1); Loops.unfold_repeati i (exp_mont_ladder_f k bBits b) (cswap sw0 one a) (i - 1); exp_mont_ladder_swap_lemma_loop k a bBits b sw0 (i - 1); () end let exp_mont_ladder_swap_lemma #t k a bBits b = exp_mont_ladder_swap_lemma_loop #t k a bBits b 0 bBits //------------------------------ val exp_pow2_loop_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> i:nat{i <= b} -> Lemma (Loops.repeat i (sqr k) a == pow k a (pow2 i)) let rec exp_pow2_loop_lemma #t k a b i = if i = 0 then begin Loops.eq_repeat0 (sqr k) a; assert_norm (pow2 0 = 1); lemma_pow1 k a end else begin Loops.unfold_repeat b (sqr k) a (i - 1); exp_pow2_loop_lemma k a b (i - 1); lemma_pow_add k a (pow2 (i - 1)) (pow2 (i - 1)); Math.Lemmas.pow2_double_sum (i - 1); () end let exp_pow2_lemma #t k a b = exp_pow2_loop_lemma k a b b // Fixed-window method //--------------------- val exp_fw_lemma_step: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc1:t -> Lemma (requires acc1 == pow k a (b_acc l bBits b (i - 1))) (ensures exp_fw_f k a bBits b l (i - 1) acc1 == pow k a (b_acc l bBits b i)) let exp_fw_lemma_step #t k a bBits b l i acc1 = let acc = exp_fw_f k a bBits b l (i - 1) acc1 in exp_pow2_lemma k acc1 l; let r1 = b_acc l bBits b (i - 1) in let r2 = b_acc l bBits b i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; assert (acc == k.mul (pow k acc1 (pow2 l)) (pow k a r2)); calc (==) { k.mul (pow k acc1 (pow2 l)) (pow k a r2); (==) { } k.mul (pow k (pow k a r1) (pow2 l)) (pow k a r2); (==) { lemma_pow_mul k a r1 (pow2 l) } k.mul (pow k a (r1 * pow2 l)) (pow k a r2); (==) { lemma_pow_add k a (r1 * pow2 l) r2 } pow k a (r1 * pow2 l + r2); (==) { lemma_b_div_pow2ki bBits b l i } pow k a (b_acc l bBits b i); } val exp_fw_lemma_loop: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> i:nat{i <= bBits / l} -> Lemma ( let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in acc == pow k a (b_acc l bBits b i)) let rec exp_fw_lemma_loop #t k a bBits b l i = let acc0 = pow k a (b_acc l bBits b 0) in let acc = Loops.repeati i (exp_fw_f k a bBits b l) acc0 in if i = 0 then Loops.eq_repeati0 i (exp_fw_f k a bBits b l) acc0 else begin Loops.unfold_repeati i (exp_fw_f k a bBits b l) acc0 (i - 1); let acc1 = Loops.repeati (i - 1) (exp_fw_f k a bBits b l) acc0 in assert (acc == exp_fw_f k a bBits b l (i - 1) acc1); exp_fw_lemma_loop k a bBits b l (i - 1); exp_fw_lemma_step k a bBits b l i acc1; () end val exp_fw_acc0_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos{bBits % l <> 0} -> Lemma (exp_fw_acc0 k a bBits b l == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_lemma #t k a bBits b l = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in let acc = pow k a bits_c in assert (bits_c == b / pow2 (bBits / l * l) % pow2 l); Math.Lemmas.lemma_div_lt_nat b bBits (bBits / l * l); assert (b / pow2 (bBits / l * l) < pow2 (bBits % l)); Math.Lemmas.pow2_lt_compat l (bBits % l); Math.Lemmas.small_mod (b / pow2 (bBits / l * l)) (pow2 l); assert (bits_c == b / pow2 (bBits / l * l)); assert (acc == pow k a (b / pow2 (bBits / l * l))); () val exp_fw_acc0_aux_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in acc0 == pow k a (b_acc l bBits b 0)) let exp_fw_acc0_aux_lemma #t k a bBits b l = if bBits % l = 0 then begin let acc = one in assert (bBits / l * l == bBits); Math.Lemmas.small_div b (pow2 bBits); assert (b / pow2 (bBits / l * l) == 0); lemma_pow0 k a; assert (acc == pow k a (b / pow2 (bBits / l * l))); () end else exp_fw_acc0_lemma #t k a bBits b l let exp_fw_lemma #t k a bBits b l = let b_rem = b_acc l bBits b 0 in let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in exp_fw_acc0_aux_lemma k a bBits b l; assert (acc0 == pow k a b_rem); let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in exp_fw_lemma_loop k a bBits b l (bBits / l); assert (res == pow k a (b_acc l bBits b (bBits / l))); Math.Lemmas.euclidean_division_definition bBits l; assert (res == pow k a (b / pow2 0)); assert_norm (pow2 0 = 1) // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- val lemma_pow_distr_mul: #t:Type -> k:comm_monoid t -> x:t -> a:t -> r1:nat -> r2:nat -> r3:nat -> Lemma (k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2) == k.mul (pow k a (r1 * r3 + r2)) x) let lemma_pow_distr_mul #t k x a r1 r2 r3 = calc (==) { k.mul (k.mul x (pow k (pow k a r1) r3)) (pow k a r2); (==) { lemma_pow_mul k a r1 r3 } k.mul (k.mul x (pow k a (r1 * r3))) (pow k a r2); (==) { k.lemma_mul_assoc x (pow k a (r1 * r3)) (pow k a r2) } k.mul x (k.mul (pow k a (r1 * r3)) (pow k a r2)); (==) { lemma_pow_add k a (r1 * r3) r2 } k.mul x (pow k a (r1 * r3 + r2)); (==) { k.lemma_mul_comm x (pow k a (r1 * r3 + r2)) } k.mul (pow k a (r1 * r3 + r2)) x; } val exp_double_fw_lemma_step: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> i:pos{i <= bBits / l} -> acc:t -> Lemma (requires acc == mul (pow k a1 (b_acc l bBits b1 (i - 1))) (pow k a2 (b_acc l bBits b2 (i - 1)))) (ensures exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == mul (pow k a1 (b_acc l bBits b1 i)) (pow k a2 (b_acc l bBits b2 i)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.Exponentiation.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.pos{i <= bBits / l} -> acc: t -> FStar.Pervasives.Lemma (requires acc == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 (i - 1))) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 (i - 1)))) (ensures Lib.Exponentiation.exp_double_fw_f k a1 bBits b1 a2 b2 l (i - 1) acc == Lib.Exponentiation.Definition.mul (Lib.Exponentiation.Definition.pow k a1 (Lib.Exponentiation.b_acc l bBits b1 i)) (Lib.Exponentiation.Definition.pow k a2 (Lib.Exponentiation.b_acc l bBits b2 i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_LessThanOrEqual", "Prims.op_Division", "FStar.Calc.calc_finish", "Prims.eq2", "Lib.Exponentiation.Definition.__proj__Mkcomm_monoid__item__mul", "Lib.Exponentiation.Definition.pow", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Lib.Exponentiation.lemma_pow_distr_mul", "Lib.Exponentiation.lemma_b_div_pow2ki", "Lib.Exponentiation.exp_pow2_lemma", "Lib.Exponentiation.Definition.lemma_pow_mul_base", "Lib.Exponentiation.b_acc", "FStar.Math.Lemmas.distributivity_sub_right", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction", "Lib.Exponentiation.exp_pow2" ]
[]
false
false
true
false
false
let exp_double_fw_lemma_step #t k a1 bBits b1 a2 b2 l i acc =
let acc1 = exp_pow2 k acc l in let r11 = b_acc l bBits b1 (i - 1) in let r12 = b_acc l bBits b1 i % pow2 l in let r21 = b_acc l bBits b2 (i - 1) in let r22 = b_acc l bBits b2 i % pow2 l in Math.Lemmas.distributivity_sub_right l i 1; let res_a1 = pow k a1 (b_acc l bBits b1 i) in let res_a2 = pow k a2 (b_acc l bBits b2 i) in calc ( == ) { k.mul acc1 (pow k a2 r22); ( == ) { exp_pow2_lemma k acc l } k.mul (pow k acc (pow2 l)) (pow k a2 r22); ( == ) { () } k.mul (pow k (k.mul (pow k a1 r11) (pow k a2 r21)) (pow2 l)) (pow k a2 r22); ( == ) { lemma_pow_mul_base k (pow k a1 r11) (pow k a2 r21) (pow2 l) } k.mul (k.mul (pow k (pow k a1 r11) (pow2 l)) (pow k (pow k a2 r21) (pow2 l))) (pow k a2 r22); ( == ) { lemma_pow_distr_mul k (pow k (pow k a1 r11) (pow2 l)) a2 r21 r22 (pow2 l) } k.mul (pow k a2 (r21 * pow2 l + r22)) (pow k (pow k a1 r11) (pow2 l)); ( == ) { lemma_b_div_pow2ki bBits b2 l i } k.mul res_a2 (pow k (pow k a1 r11) (pow2 l)); }; calc ( == ) { k.mul (k.mul acc1 (pow k a2 r22)) (pow k a1 r12); ( == ) { () } k.mul (k.mul res_a2 (pow k (pow k a1 r11) (pow2 l))) (pow k a1 r12); ( == ) { lemma_pow_distr_mul k res_a2 a1 r11 r12 (pow2 l) } k.mul (pow k a1 (r11 * pow2 l + r12)) res_a2; ( == ) { lemma_b_div_pow2ki bBits b1 l i } k.mul res_a1 res_a2; }
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_AES128EncryptBlockStdcall
val va_code_AES128EncryptBlockStdcall : win:bool -> Tot va_code
val va_code_AES128EncryptBlockStdcall : win:bool -> Tot va_code
let va_code_AES128EncryptBlockStdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRsi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rR8) (va_op_opr64_reg64 rRdx)) (va_CNil ())))) (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_AES128EncryptBlock ()) (va_CCons (if win then va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ()))) (va_CNil ()))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 639, "start_col": 0, "start_line": 629 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ())))) val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptRound n = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ()))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptRound (va_mods:va_mods_t) (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (va_arg5:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 188 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg5) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 189 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret keys_buffer n) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 190 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QEmpty (())))))) val va_lemma_AES128EncryptRound : va_b0:va_code -> va_s0:va_state -> n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES128EncryptRound n) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptRound va_b0 va_s0 n init round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptRound va_mods n init round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptRound n) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 168 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 186 column 53 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n ==> va_k va_sM (()))) val va_wpProof_AES128EncryptRound : n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptRound (va_code_AES128EncryptRound n) va_s0 n init round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (va_QProc (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES128EncryptRound n init round_keys keys_buffer) (va_wpProof_AES128EncryptRound n init round_keys keys_buffer)) //-- //-- AES128EncryptBlock [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptBlock () = (va_Block (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_CCons (va_code_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_AES128EncryptRound 1) (va_CCons (va_code_AES128EncryptRound 2) (va_CCons (va_code_AES128EncryptRound 3) (va_CCons (va_code_AES128EncryptRound 4) (va_CCons (va_code_AES128EncryptRound 5) (va_CCons (va_code_AES128EncryptRound 6) (va_CCons (va_code_AES128EncryptRound 7) (va_CCons (va_code_AES128EncryptRound 8) (va_CCons (va_code_AES128EncryptRound 9) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_CCons (va_code_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CNil ()))))))))))))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptBlock () = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_AES128EncryptRound 1) (va_pbool_and (va_codegen_success_AES128EncryptRound 2) (va_pbool_and (va_codegen_success_AES128EncryptRound 3) (va_pbool_and (va_codegen_success_AES128EncryptRound 4) (va_pbool_and (va_codegen_success_AES128EncryptRound 5) (va_pbool_and (va_codegen_success_AES128EncryptRound 6) (va_pbool_and (va_codegen_success_AES128EncryptRound 7) (va_pbool_and (va_codegen_success_AES128EncryptRound 8) (va_pbool_and (va_codegen_success_AES128EncryptRound 9) (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_pbool_and (va_codegen_success_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_ttrue ()))))))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptBlock (va_mods:va_mods_t) (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptBlock ())) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_qAssertSquash va_range1 "***** EXPRESSION PRECONDITIONS NOT MET WITHIN line 216 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" ((fun a_539 (s_540:(FStar.Seq.Base.seq a_539)) (i_541:Prims.nat) -> let (i_515:Prims.nat) = i_541 in Prims.b2t (Prims.op_LessThan i_515 (FStar.Seq.Base.length #a_539 s_540))) Vale.Def.Types_s.quad32 round_keys 0) (fun _ -> let (init:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.quad32_xor input (FStar.Seq.Base.index #Vale.Def.Types_s.quad32 round_keys 0) in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 218 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret keys_buffer 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 219 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 220 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 1 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 221 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 2 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 222 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 3 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 223 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 4 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 224 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 5 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 225 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 6 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 226 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 7 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 227 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 8 init round_keys keys_buffer) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 228 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 9 init round_keys keys_buffer) (fun (va_s:va_state) _ -> let (va_arg20:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 229 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg20) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 230 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret keys_buffer 10) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 231 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 234 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (fun (va_s:va_state) _ -> va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 235 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.aes_encrypt_LE_reveal ()) (va_QEmpty (())))))))))))))))))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptBlock va_b0 va_s0 input key round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptBlock va_mods input key round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptBlock ()) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 193 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 214 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_128 key input)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AES128EncryptBlock input key round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptBlock (va_code_AES128EncryptBlock ()) va_s0 input key round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptBlockStdcall
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_code
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Vale.X64.InsVector.va_code_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_CNil", "Vale.X64.Machine_s.rRsi", "Vale.X64.InsBasic.va_code_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Decls.va_code", "Vale.AES.X64.AES128.va_code_AES128EncryptBlock", "Vale.X64.InsVector.va_code_Store128_buffer", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdi" ]
[]
false
false
false
true
false
let va_code_AES128EncryptBlockStdcall win =
(va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRsi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rR8) (va_op_opr64_reg64 rRdx)) (va_CNil ())))) (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_AES128EncryptBlock ()) (va_CCons (if win then va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ()))) (va_CNil ()))))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_codegen_success_AES128EncryptBlockStdcall
val va_codegen_success_AES128EncryptBlockStdcall : win:bool -> Tot va_pbool
val va_codegen_success_AES128EncryptBlockStdcall : win:bool -> Tot va_pbool
let va_codegen_success_AES128EncryptBlockStdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRsi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rR8) (va_op_opr64_reg64 rRdx)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_AES128EncryptBlock ()) (va_pbool_and (if win then va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_xmm_xmm 0) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_xmm_xmm 0) 0 Secret) (va_ttrue ())) (va_ttrue ()))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 652, "start_col": 0, "start_line": 642 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRoundUnrolledRecursive : key:(seq nat32) -> dst:buffer128 -> n:int -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 key dst n in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) : (va_quickCode unit (va_code_KeyExpansionRoundUnrolledRecursive n)) = (va_QProc (va_code_KeyExpansionRoundUnrolledRecursive n) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRoundUnrolledRecursive key dst n) (va_wpProof_KeyExpansionRoundUnrolledRecursive key dst n)) //-- //-- KeyExpansion128Stdcall [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansion128Stdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_CNil ())))) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive 10) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_CNil ())))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansion128Stdcall win = (va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret) (va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive 10) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_ttrue ()))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansion128Stdcall (va_mods:va_mods_t) (win:bool) (input_key_b:buffer128) (output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion128Stdcall win)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s) (fun _ -> va_get_reg64 rRdi va_s) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s) (fun _ -> va_get_reg64 rRsi va_s) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s)) in va_QBind va_range1 "***** PRECONDITION NOT MET AT line 143 column 15 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_qInlineIf va_mods win (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 145 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRcx) 0 Secret input_key_b 0) (va_QEmpty (())))) (qblock va_mods (fun (va_s:va_state) -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 149 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 1) (va_op_reg_opr64_reg64 rRdi) 0 Secret input_key_b 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 150 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Mov64 (va_op_dst_opr64_reg64 rRdx) (va_op_opr64_reg64 rRsi)) (va_QEmpty (())))))) (fun (va_s:va_state) va_g -> va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 153 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) 0 Secret output_key_expansion_b 0) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 154 column 39 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_KeyExpansionRoundUnrolledRecursive key output_key_expansion_b 10) (fun (va_s:va_state) _ -> let (va_arg18:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = key in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 155 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_expand_key_128 va_arg18 11) (va_QLemma va_range1 "***** PRECONDITION NOT MET AT line 156 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" true (fun _ -> va_reveal_eq (`%key_to_round_keys_LE) key_to_round_keys_LE key_to_round_keys_LE) (fun _ -> va_reveal_opaque (`%key_to_round_keys_LE) key_to_round_keys_LE) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 159 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 160 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 161 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 3) (va_op_xmm_xmm 3)) (va_QEmpty (()))))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansion128Stdcall va_b0 va_s0 win input_key_b output_key_expansion_b = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansion128Stdcall va_mods win input_key_b output_key_expansion_b in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansion128Stdcall win) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 119 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 135 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 136 column 76 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 1 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 137 column 98 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 11 (va_get_mem_layout va_sM) Secret)) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Words_s.nat32)) = Vale.Arch.Types.quad32_to_seq (Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0)) in label va_range1 "***** POSTCONDITION NOT MET AT line 139 column 70 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 141 column 109 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (forall j . {:pattern(buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= 10 ==> Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) == FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_128 key) j))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_KeyExpansion128Stdcall win input_key_b output_key_expansion_b va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansion128Stdcall (va_code_KeyExpansion128Stdcall win) va_s0 win input_key_b output_key_expansion_b in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptRound val va_code_AES128EncryptRound : n:nat -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptRound n = (va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_CCons (va_code_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CNil ())))) val va_codegen_success_AES128EncryptRound : n:nat -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptRound n = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret) (va_pbool_and (va_codegen_success_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_ttrue ()))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptRound (va_mods:va_mods_t) (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in let (va_arg5:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 188 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg5) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 189 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` n) Secret keys_buffer n) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 190 column 14 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QEmpty (())))))) val va_lemma_AES128EncryptRound : va_b0:va_code -> va_s0:va_state -> n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_AES128EncryptRound n) va_s0 /\ va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptRound va_b0 va_s0 n init round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptRound va_mods n init round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptRound n) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 168 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 186 column 53 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ (1 <= n /\ n < 10 /\ 10 <= FStar.Seq.Base.length #quad32 round_keys) /\ va_get_xmm 0 va_s0 == Vale.AES.AES_s.eval_rounds_def init round_keys (n - 1) /\ va_get_reg64 rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR8 va_s0) keys_buffer 11 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.buffer128_read keys_buffer n (va_get_mem_heaplet 0 va_s0) == FStar.Seq.Base.index #quad32 round_keys n /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.eval_rounds_def init round_keys n ==> va_k va_sM (()))) val va_wpProof_AES128EncryptRound : n:nat -> init:quad32 -> round_keys:(seq quad32) -> keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_AES128EncryptRound n init round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptRound (va_code_AES128EncryptRound n) va_s0 n init round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_AES128EncryptRound (n:nat) (init:quad32) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptRound n)) = (va_QProc (va_code_AES128EncryptRound n) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) (va_wp_AES128EncryptRound n init round_keys keys_buffer) (va_wpProof_AES128EncryptRound n init round_keys keys_buffer)) //-- //-- AES128EncryptBlock [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptBlock () = (va_Block (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_CCons (va_code_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_AES128EncryptRound 1) (va_CCons (va_code_AES128EncryptRound 2) (va_CCons (va_code_AES128EncryptRound 3) (va_CCons (va_code_AES128EncryptRound 4) (va_CCons (va_code_AES128EncryptRound 5) (va_CCons (va_code_AES128EncryptRound 6) (va_CCons (va_code_AES128EncryptRound 7) (va_CCons (va_code_AES128EncryptRound 8) (va_CCons (va_code_AES128EncryptRound 9) (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_CCons (va_code_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_CNil ()))))))))))))))))) [@ "opaque_to_smt" va_qattr] let va_codegen_success_AES128EncryptBlock () = (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_AES128EncryptRound 1) (va_pbool_and (va_codegen_success_AES128EncryptRound 2) (va_pbool_and (va_codegen_success_AES128EncryptRound 3) (va_pbool_and (va_codegen_success_AES128EncryptRound 4) (va_pbool_and (va_codegen_success_AES128EncryptRound 5) (va_pbool_and (va_codegen_success_AES128EncryptRound 6) (va_pbool_and (va_codegen_success_AES128EncryptRound 7) (va_pbool_and (va_codegen_success_AES128EncryptRound 8) (va_pbool_and (va_codegen_success_AES128EncryptRound 9) (va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret) (va_pbool_and (va_codegen_success_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (va_ttrue ()))))))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_AES128EncryptBlock (va_mods:va_mods_t) (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_buffer:buffer128) : (va_quickCode unit (va_code_AES128EncryptBlock ())) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_qAssertSquash va_range1 "***** EXPRESSION PRECONDITIONS NOT MET WITHIN line 216 column 5 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" ((fun a_539 (s_540:(FStar.Seq.Base.seq a_539)) (i_541:Prims.nat) -> let (i_515:Prims.nat) = i_541 in Prims.b2t (Prims.op_LessThan i_515 (FStar.Seq.Base.length #a_539 s_540))) Vale.Def.Types_s.quad32 round_keys 0) (fun _ -> let (init:Vale.Def.Types_s.quad32) = Vale.Def.Types_s.quad32_xor input (FStar.Seq.Base.index #Vale.Def.Types_s.quad32 round_keys 0) in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 218 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) 0 Secret keys_buffer 0) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 219 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 220 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 1 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 221 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 2 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 222 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 3 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 223 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 4 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 224 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 5 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 225 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 6 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 226 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 7 init round_keys keys_buffer) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 227 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 8 init round_keys keys_buffer) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 228 column 23 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AES128EncryptRound 9 init round_keys keys_buffer) (fun (va_s:va_state) _ -> let (va_arg20:Vale.Def.Types_s.quad32) = va_get_xmm 0 va_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 229 column 33 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.commute_sub_bytes_shift_rows va_arg20) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 230 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 2) (va_op_reg_opr64_reg64 rR8) (16 `op_Multiply` 10) Secret keys_buffer 10) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 231 column 19 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_enc_last (va_op_xmm_xmm 0) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 234 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 2) (va_op_xmm_xmm 2)) (fun (va_s:va_state) _ -> va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 235 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_s.aes_encrypt_LE_reveal ()) (va_QEmpty (())))))))))))))))))))) [@"opaque_to_smt"] let va_lemma_AES128EncryptBlock va_b0 va_s0 input key round_keys keys_buffer = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok] in let va_qc = va_qcode_AES128EncryptBlock va_mods input key round_keys keys_buffer in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_AES128EncryptBlock ()) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 193 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 214 column 52 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_128 key input)) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0; va_Mod_ok]) va_sM va_s0; (va_sM, va_fM) [@"opaque_to_smt"] let va_wpProof_AES128EncryptBlock input key round_keys keys_buffer va_s0 va_k = let (va_sM, va_f0) = va_lemma_AES128EncryptBlock (va_code_AES128EncryptBlock ()) va_s0 input key round_keys keys_buffer in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) //-- //-- AES128EncryptBlockStdcall [@ "opaque_to_smt" va_qattr] let va_code_AES128EncryptBlockStdcall win = (va_Block (va_CCons (if win then va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRsi) 0 Secret) (va_CCons (va_code_Mov64 (va_op_dst_opr64_reg64 rR8) (va_op_opr64_reg64 rRdx)) (va_CNil ())))) (va_CCons (va_Block (va_CNil ())) (va_CCons (va_code_AES128EncryptBlock ()) (va_CCons (if win then va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ())) else va_Block (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_xmm_xmm 0) 0 Secret) (va_CNil ()))) (va_CNil ()))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_pbool_and", "Vale.X64.InsVector.va_codegen_success_Load128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_ttrue", "Vale.X64.Machine_s.rRsi", "Vale.X64.InsBasic.va_codegen_success_Mov64", "Vale.X64.Decls.va_op_dst_opr64_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.Decls.va_op_opr64_reg64", "Vale.X64.Decls.va_pbool", "Vale.AES.X64.AES128.va_codegen_success_AES128EncryptBlock", "Vale.X64.InsVector.va_codegen_success_Store128_buffer", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rRdi" ]
[]
false
false
false
true
false
let va_codegen_success_AES128EncryptBlockStdcall win =
(va_pbool_and (if win then va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRdx) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Load128_buffer (va_op_heaplet_mem_heaplet 0) (va_op_xmm_xmm 0) (va_op_reg_opr64_reg64 rRsi) 0 Secret) (va_pbool_and (va_codegen_success_Mov64 (va_op_dst_opr64_reg64 rR8) (va_op_opr64_reg64 rRdx)) (va_ttrue ()))) (va_pbool_and (va_codegen_success_AES128EncryptBlock ()) (va_pbool_and (if win then va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRcx) (va_op_xmm_xmm 0) 0 Secret) (va_ttrue ()) else va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdi) (va_op_xmm_xmm 0) 0 Secret) (va_ttrue ())) (va_ttrue ()))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_wp_KeyExpansionRound
val va_wp_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 143, "start_col": 0, "start_line": 128 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM)
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> dst: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.eq2", "Prims.nat", "Prims.l_or", "Vale.Def.Words_s.pow2_8", "Vale.Def.Words_s.pow2_32", "Vale.AES.AES_common_s.aes_rcon", "Vale.AES.AES_s.is_aes_key_LE", "Vale.AES.AES_common_s.AES_128", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.va_get_xmm", "Vale.AES.AES_helpers.expand_key_128", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Decls.quad32", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.X64.Decls.buffer128_read", "Prims.op_Addition", "Vale.X64.Decls.modifies_buffer_specific128", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_mem" ]
[]
false
false
false
true
true
let va_wp_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem: vale_heap) (va_x_heap1: vale_heap) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (())))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_quick_KeyExpansionRound
val va_quick_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon))
val va_quick_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon))
let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 171, "start_col": 0, "start_line": 167 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g)
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> dst: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES128.va_code_KeyExpansionRound round rcon)
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.AES128.va_code_KeyExpansionRound", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.AES128.va_wp_KeyExpansionRound", "Vale.AES.X64.AES128.va_wpProof_KeyExpansionRound", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_KeyExpansionRound (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) =
(va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_qcode_KeyExpansionRound
val va_qcode_KeyExpansionRound (va_mods: va_mods_t) (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon))
val va_qcode_KeyExpansionRound (va_mods: va_mods_t) (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon))
let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (())))))))))))))))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 97, "end_line": 81, "start_col": 0, "start_line": 51 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ())))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_mods: Vale.X64.QuickCode.va_mods_t -> round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> dst: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES128.va_code_KeyExpansionRound round rcon)
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.QuickCode.va_mods_t", "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.QuickCodes.qblock", "Prims.unit", "Prims.Cons", "Vale.X64.Decls.va_code", "Vale.X64.InsAes.va_code_AESNI_keygen_assist", "Vale.X64.Decls.va_op_xmm_xmm", "Vale.X64.InsVector.va_code_Pshufd", "Vale.X64.InsVector.va_code_VPslldq4", "Vale.X64.InsVector.va_code_Pxor", "Vale.X64.InsVector.va_code_Store128_buffer", "Vale.X64.Decls.va_op_heaplet_mem_heaplet", "Vale.X64.Decls.va_op_reg_opr64_reg64", "Vale.X64.Machine_s.rRdx", "Prims.op_Multiply", "Prims.op_Addition", "Vale.Arch.HeapTypes_s.Secret", "Prims.Nil", "Vale.X64.Machine_s.precode", "Vale.X64.Decls.ins", "Vale.X64.Decls.ocmp", "Vale.X64.Decls.va_state", "Vale.X64.QuickCodes.va_QSeq", "Vale.X64.QuickCodes.va_range1", "Vale.X64.InsAes.va_quick_AESNI_keygen_assist", "Vale.X64.InsVector.va_quick_Pshufd", "Vale.X64.InsVector.va_quick_VPslldq4", "Vale.X64.InsVector.va_quick_Pxor", "Vale.X64.QuickCodes.va_QBind", "Vale.X64.InsVector.va_quick_Store128_buffer", "Vale.X64.QuickCodes.va_qPURE", "Prims.pure_post", "Prims.l_and", "Prims.l_True", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Vale.Def.Types_s.quad32", "Vale.AES.AES_helpers.simd_round_key_128", "Vale.AES.AES_helpers.round_key_128_rcon", "Vale.AES.AES_helpers.lemma_simd_round_key", "Vale.Def.Words_s.nat32", "Prims.nat", "Vale.AES.AES_s.is_aes_key_LE", "Vale.AES.AES_common_s.AES_128", "Vale.AES.AES_helpers.expand_key_128", "Vale.AES.AES_helpers.expand_key_128_def", "Vale.AES.AES_helpers.expand_key_128_reveal", "Vale.X64.QuickCodes.va_QEmpty", "Vale.X64.Decls.va_get_xmm", "Vale.X64.QuickCodes.quickCodes", "Vale.X64.State.vale_state", "Vale.X64.QuickCode.va_quickCode", "Vale.AES.X64.AES128.va_code_KeyExpansionRound" ]
[]
false
false
false
false
false
let va_qcode_KeyExpansionRound (va_mods: va_mods_t) (round: nat64) (rcon: nat8) (dst: buffer128) (key: (seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) =
(qblock va_mods (fun (va_s: va_state) -> let va_old_s:va_state = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1 ) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s: va_state) _ -> let va_arg15:Vale.Def.Types_s.nat32 = rcon in let va_arg14:Vale.Def.Types_s.quad32 = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_: unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_: unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (())))))))))))))))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_wpProof_KeyExpansionRound
val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g)
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 164, "start_col": 0, "start_line": 154 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
round: Vale.X64.Memory.nat64 -> rcon: Vale.X64.Memory.nat8 -> dst: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Prims.Ghost ((Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel) * Prims.unit)
Prims.Ghost
[]
[]
[ "Vale.X64.Memory.nat64", "Vale.X64.Memory.nat8", "Vale.X64.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.va_state", "Prims.unit", "Vale.X64.Decls.va_fuel", "FStar.Pervasives.Native.Mktuple3", "Vale.X64.QuickCode.va_lemma_norm_mods", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Prims._assert", "Vale.X64.Decls.va_state_eq", "Vale.X64.Decls.va_update_flags", "Vale.X64.Decls.va_update_xmm", "Vale.X64.Decls.va_update_mem_heaplet", "Vale.X64.Decls.va_update_ok", "Vale.X64.Decls.va_update_mem", "Vale.X64.Decls.va_lemma_upd_update", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.tuple2", "Vale.X64.State.vale_state", "Vale.AES.X64.AES128.va_lemma_KeyExpansionRound", "Vale.AES.X64.AES128.va_code_KeyExpansionRound" ]
[]
false
false
false
false
false
let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k =
let va_sM, va_f0 = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([ va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem ]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g)
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_wp_KeyExpansionRoundUnrolledRecursive
val va_wp_KeyExpansionRoundUnrolledRecursive (key: (seq nat32)) (dst: buffer128) (n: int) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_KeyExpansionRoundUnrolledRecursive (key: (seq nat32)) (dst: buffer128) (n: int) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_KeyExpansionRoundUnrolledRecursive (key:(seq nat32)) (dst:buffer128) (n:int) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 265, "start_col": 0, "start_line": 248 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n]) [@ "opaque_to_smt"] let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ()))) val va_codegen_success_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_pbool(decreases %[n]) [@ "opaque_to_smt"] let rec va_codegen_success_KeyExpansionRoundUnrolledRecursive n = (va_pbool_and (if (0 < n && n <= 10) then va_pbool_and (va_codegen_success_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_pbool_and (va_codegen_success_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_ttrue ())) else va_ttrue ()) (va_ttrue ())) val va_lemma_KeyExpansionRoundUnrolledRecursive : va_b0:va_code -> va_s0:va_state -> key:(seq nat32) -> dst:buffer128 -> n:int -> Ghost (va_state & va_fuel)(decreases %[n]) (requires (va_require_total va_b0 (va_code_KeyExpansionRoundUnrolledRecursive n) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j . {:pattern(buffer128_read dst j (va_get_mem_heaplet 1 va_sM))}0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let rec va_lemma_KeyExpansionRoundUnrolledRecursive va_b0 va_s0 key dst n = va_reveal_opaque (`%va_code_KeyExpansionRoundUnrolledRecursive) (va_code_KeyExpansionRoundUnrolledRecursive n); let (va_old_s:va_state) = va_s0 in let (va_b1:va_codes) = va_get_block va_b0 in Vale.AES.AES_helpers.expand_key_128_reveal (); let va_b3 = va_tl va_b1 in let va_c3 = va_hd va_b1 in let (va_fc3, va_s3) = ( if (0 < n && n <= 10) then ( let va_b4 = va_get_block va_c3 in let (va_s5, va_fc5) = va_lemma_KeyExpansionRoundUnrolledRecursive (va_hd va_b4) va_s0 key dst (n - 1) in let va_b5 = va_tl va_b4 in let (va_s6, va_fc6) = va_lemma_KeyExpansionRound (va_hd va_b5) va_s5 (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1)) dst key in let va_b6 = va_tl va_b5 in let (va_s3, va_f6) = va_lemma_empty_total va_s6 va_b6 in let va_f5 = va_lemma_merge_total va_b5 va_s5 va_fc6 va_s6 va_f6 va_s3 in let va_fc3 = va_lemma_merge_total va_b4 va_s0 va_fc5 va_s5 va_f5 va_s3 in (va_fc3, va_s3) ) else ( let va_b7 = va_get_block va_c3 in let (va_s3, va_fc3) = va_lemma_empty_total va_s0 va_b7 in (va_fc3, va_s3) ) ) in let (va_sM, va_f3) = va_lemma_empty_total va_s3 va_b3 in let va_fM = va_lemma_merge_total va_b1 va_s0 va_fc3 va_s3 va_f3 va_sM in (va_sM, va_fM)
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> dst: Vale.X64.Memory.buffer128 -> n: Prims.int -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Memory.buffer128", "Prims.int", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.Decls.validDstAddrs128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRdx", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.op_LessThanOrEqual", "Vale.AES.AES_s.is_aes_key_LE", "Vale.AES.AES_common_s.AES_128", "Prims.eq2", "Vale.Arch.Types.quad32_to_seq", "Vale.X64.Decls.va_get_xmm", "Vale.X64.Decls.quad32", "Vale.X64.Decls.buffer128_read", "Vale.X64.Memory.buffer_addr", "Vale.X64.Memory.vuint128", "Prims.l_Forall", "Vale.X64.InsBasic.vale_heap", "Vale.X64.Flags.t", "Prims.l_imp", "Vale.X64.Decls.modifies_buffer128", "Prims.op_GreaterThanOrEqual", "Vale.Def.Types_s.quad32", "Vale.AES.AES_helpers.expand_key_128", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_mem_heaplet", "Vale.X64.Decls.va_upd_mem" ]
[]
false
false
false
true
true
let va_wp_KeyExpansionRoundUnrolledRecursive (key: (seq nat32)) (dst: buffer128) (n: int) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= n /\ n <= 10) /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ key == Vale.Arch.Types.quad32_to_seq (va_get_xmm 1 va_s0) /\ va_get_xmm 1 va_s0 == Vale.X64.Decls.buffer128_read dst 0 (va_get_mem_heaplet 1 va_s0) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 dst (va_get_mem_heaplet 1 va_s0) /\ (forall (va_x_mem: vale_heap) (va_x_heap1: vale_heap) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.modifies_buffer128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst n (va_get_mem_heaplet 1 va_sM) /\ (forall j. {:pattern (buffer128_read dst j (va_get_mem_heaplet 1 va_sM))} 0 <= j /\ j <= n ==> Vale.X64.Decls.buffer128_read dst j (va_get_mem_heaplet 1 va_sM) == Vale.AES.AES_helpers.expand_key_128 key j) ==> va_k va_sM (())))
false
Vale.AES.X64.AES128.fst
Vale.AES.X64.AES128.va_code_KeyExpansionRoundUnrolledRecursive
val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n])
val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n])
let rec va_code_KeyExpansionRoundUnrolledRecursive n = (va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ())))
{ "file_name": "obj/Vale.AES.X64.AES128.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 18, "end_line": 181, "start_col": 0, "start_line": 177 }
module Vale.AES.X64.AES128 open Vale.Def.Opaque_s open Vale.Def.Types_s open FStar.Seq open Vale.AES.AES_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.Arch.Types open Vale.AES.AES_helpers open Vale.X64.CPU_Features_s #reset-options "--z3rlimit 20" //-- KeyExpansionRound val va_code_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_code [@ "opaque_to_smt" va_qattr] let va_code_KeyExpansionRound round rcon = (va_Block (va_CCons (va_code_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_CCons (va_code_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_CCons (va_code_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_CCons (va_code_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_CNil ())))))))))))) val va_codegen_success_KeyExpansionRound : round:nat64 -> rcon:nat8 -> Tot va_pbool [@ "opaque_to_smt" va_qattr] let va_codegen_success_KeyExpansionRound round rcon = (va_pbool_and (va_codegen_success_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_pbool_and (va_codegen_success_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_pbool_and (va_codegen_success_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_pbool_and (va_codegen_success_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret) (va_ttrue ()))))))))))) [@ "opaque_to_smt" va_qattr] let va_qcode_KeyExpansionRound (va_mods:va_mods_t) (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (qblock va_mods (fun (va_s:va_state) -> let (va_old_s:va_state) = va_s in va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 70 column 24 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_AESNI_keygen_assist (va_op_xmm_xmm 2) (va_op_xmm_xmm 1) rcon) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 71 column 11 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pshufd (va_op_xmm_xmm 2) (va_op_xmm_xmm 2) 255) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 72 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 73 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 74 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 75 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 76 column 13 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_VPslldq4 (va_op_xmm_xmm 3) (va_op_xmm_xmm 1)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 77 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 3)) (va_QSeq va_range1 "***** PRECONDITION NOT MET AT line 78 column 9 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Pxor (va_op_xmm_xmm 1) (va_op_xmm_xmm 2)) (va_QBind va_range1 "***** PRECONDITION NOT MET AT line 79 column 20 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_quick_Store128_buffer (va_op_heaplet_mem_heaplet 1) (va_op_reg_opr64_reg64 rRdx) (va_op_xmm_xmm 1) (16 `op_Multiply` (round + 1)) Secret dst (round + 1)) (fun (va_s:va_state) _ -> let (va_arg15:Vale.Def.Types_s.nat32) = rcon in let (va_arg14:Vale.Def.Types_s.quad32) = va_get_xmm 1 va_old_s in va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 82 column 25 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.lemma_simd_round_key va_arg14 va_arg15) (va_qPURE va_range1 "***** PRECONDITION NOT MET AT line 83 column 26 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (fun (_:unit) -> Vale.AES.AES_helpers.expand_key_128_reveal ()) (va_QEmpty (()))))))))))))))) val va_lemma_KeyExpansionRound : va_b0:va_code -> va_s0:va_state -> round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_KeyExpansionRound round rcon) va_s0 /\ va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round)) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))) [@"opaque_to_smt"] let va_lemma_KeyExpansionRound va_b0 va_s0 round rcon dst key = let (va_mods:va_mods_t) = [va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem] in let va_qc = va_qcode_KeyExpansionRound va_mods round rcon dst key in let (va_sM, va_fM, va_g) = va_wp_sound_code_norm (va_code_KeyExpansionRound round rcon) va_qc va_s0 (fun va_s0 va_sM va_g -> let () = va_g in label va_range1 "***** POSTCONDITION NOT MET AT line 47 column 1 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_ok va_sM) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 58 column 65 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 66 column 54 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 67 column 47 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1)) /\ label va_range1 "***** POSTCONDITION NOT MET AT line 68 column 82 of file /home/gebner/fstar_dataset/projects/hacl-star/vale/code/crypto/aes/x64/Vale.AES.X64.AES128.vaf *****" (Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1))) in assert_norm (va_qc.mods == va_mods); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_ok; va_Mod_mem]) va_sM va_s0; (va_sM, va_fM) [@ va_qattr] let va_wp_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdx va_s0) dst 11 (va_get_mem_layout va_s0) Secret /\ (aesni_enabled /\ avx_enabled /\ sse_enabled) /\ (0 <= round /\ round < 10) /\ rcon == Vale.AES.AES_common_s.aes_rcon round /\ Vale.AES.AES_s.is_aes_key_LE AES_128 key /\ va_get_xmm 1 va_s0 == Vale.AES.AES_helpers.expand_key_128 key round /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem va_s0))))) in va_get_ok va_sM /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) (va_get_reg64 rRdx va_sM) dst 11 (va_get_mem_layout va_sM) Secret /\ va_get_xmm 1 va_sM == Vale.X64.Decls.buffer128_read dst (round + 1) (va_get_mem_heaplet 1 va_sM) /\ va_get_xmm 1 va_sM == Vale.AES.AES_helpers.expand_key_128 key (round + 1) /\ Vale.X64.Decls.modifies_buffer_specific128 dst (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) (round + 1) (round + 1) ==> va_k va_sM (()))) val va_wpProof_KeyExpansionRound : round:nat64 -> rcon:nat8 -> dst:buffer128 -> key:(seq nat32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_KeyExpansionRound round rcon dst key va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@"opaque_to_smt"] let va_wpProof_KeyExpansionRound round rcon dst key va_s0 va_k = let (va_sM, va_f0) = va_lemma_KeyExpansionRound (va_code_KeyExpansionRound round rcon) va_s0 round rcon dst key in va_lemma_upd_update va_sM; assert (va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))); va_lemma_norm_mods ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) va_sM va_s0; let va_g = () in (va_sM, va_f0, va_g) [@ "opaque_to_smt" va_qattr] let va_quick_KeyExpansionRound (round:nat64) (rcon:nat8) (dst:buffer128) (key:(seq nat32)) : (va_quickCode unit (va_code_KeyExpansionRound round rcon)) = (va_QProc (va_code_KeyExpansionRound round rcon) ([va_Mod_flags; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_mem]) (va_wp_KeyExpansionRound round rcon dst key) (va_wpProof_KeyExpansionRound round rcon dst key)) //-- //-- KeyExpansionRoundUnrolledRecursive val va_code_KeyExpansionRoundUnrolledRecursive : n:int -> Tot va_code(decreases %[n])
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_helpers.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.X64.AES128.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.int -> Prims.Tot Vale.X64.Decls.va_code
Prims.Tot
[ "total", "" ]
[]
[ "Prims.int", "Vale.X64.Decls.va_Block", "Vale.X64.Decls.va_CCons", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "Vale.AES.X64.AES128.va_code_KeyExpansionRoundUnrolledRecursive", "Prims.op_Subtraction", "Vale.AES.X64.AES128.va_code_KeyExpansionRound", "Vale.AES.AES_common_s.aes_rcon", "Vale.X64.Decls.va_CNil", "Prims.bool", "Vale.X64.Decls.va_code" ]
[ "recursion" ]
false
false
false
true
false
let rec va_code_KeyExpansionRoundUnrolledRecursive n =
(va_Block (va_CCons (if (0 < n && n <= 10) then va_Block (va_CCons (va_code_KeyExpansionRoundUnrolledRecursive (n - 1)) (va_CCons (va_code_KeyExpansionRound (n - 1) (Vale.AES.AES_common_s.aes_rcon (n - 1))) (va_CNil ()))) else va_Block (va_CNil ())) (va_CNil ())))
false