gt
stringclasses
1 value
context
stringlengths
2.49k
119k
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import bt_spline_description2118 except ImportError: bt_spline_description2118 = sys.modules[ "onshape_client.oas.models.bt_spline_description2118" ] try: from onshape_client.oas.models import bt_surface_description1564 except ImportError: bt_surface_description1564 = sys.modules[ "onshape_client.oas.models.bt_surface_description1564" ] try: from onshape_client.oas.models import bt_sweep_description1473_all_of except ImportError: bt_sweep_description1473_all_of = sys.modules[ "onshape_client.oas.models.bt_sweep_description1473_all_of" ] try: from onshape_client.oas.models import bt_vector3d389 except ImportError: bt_vector3d389 = sys.modules["onshape_client.oas.models.bt_vector3d389"] class BTSweepDescription1473(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("type",): { "PLANE": "PLANE", "CYLINDER": "CYLINDER", "CONE": "CONE", "SPHERE": "SPHERE", "TORUS": "TORUS", "SPUN": "SPUN", "SWEEP": "SWEEP", "OFFSET": "OFFSET", "BLEND": "BLEND", "BSURFACE": "BSURFACE", "OTHER": "OTHER", "UNKNOWN": "UNKNOWN", }, } validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "bt_type": (str,), # noqa: E501 "direction": (bt_vector3d389.BTVector3d389,), # noqa: E501 "profile": ( bt_spline_description2118.BTSplineDescription2118, ), # noqa: E501 "type": (str,), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "bt_type": "btType", # noqa: E501 "direction": "direction", # noqa: E501 "profile": "profile", # noqa: E501 "type": "type", # noqa: E501 } required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", "_composed_instances", "_var_name_to_model_instances", "_additional_properties_model_instances", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """bt_sweep_description1473.BTSweepDescription1473 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. bt_type (str): [optional] # noqa: E501 direction (bt_vector3d389.BTVector3d389): [optional] # noqa: E501 profile (bt_spline_description2118.BTSplineDescription2118): [optional] # noqa: E501 type (str): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration constant_args = { "_check_type": _check_type, "_path_to_item": _path_to_item, "_from_server": _from_server, "_configuration": _configuration, } required_args = {} # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in six.iteritems(kwargs): if ( var_name in unused_args and self._configuration is not None and self._configuration.discard_unknown_keys and not self._additional_properties_model_instances ): # discard variable. continue setattr(self, var_name, var_value) @staticmethod def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading return { "anyOf": [], "allOf": [ bt_surface_description1564.BTSurfaceDescription1564, bt_sweep_description1473_all_of.BTSweepDescription1473AllOf, ], "oneOf": [], }
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.layers.base.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from absl.testing import parameterized import numpy as np from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.keras import combinations from tensorflow.python.keras.engine import base_layer as keras_base_layer from tensorflow.python.keras.engine import input_spec from tensorflow.python.keras.legacy_tf_layers import base as base_layers from tensorflow.python.keras.legacy_tf_layers import core as core_layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import random_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import test class BaseLayerTest(test.TestCase, parameterized.TestCase): @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testLayerProperties(self): layer = base_layers.Layer(name='my_layer') self.assertEqual(layer.variables, []) self.assertEqual(layer.trainable_variables, []) self.assertEqual(layer.non_trainable_variables, []) if not context.executing_eagerly(): # updates, losses only supported in GRAPH mode self.assertEqual(layer.updates, []) self.assertEqual(layer.losses, []) self.assertEqual(layer.built, False) layer = base_layers.Layer(name='my_layer', trainable=False) self.assertEqual(layer.trainable, False) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInt64Layer(self): layer = base_layers.Layer(name='my_layer', dtype='int64') layer.add_variable('my_var', [2, 2]) self.assertEqual(layer.name, 'my_layer') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testKerasStyleAddWeight(self): keras_layer = keras_base_layer.Layer(name='keras_layer') with ops.name_scope('foo', skip_on_eager=False): keras_variable = keras_layer.add_variable( 'my_var', [2, 2], initializer=init_ops.zeros_initializer()) self.assertEqual(keras_variable.name, 'foo/my_var:0') with ops.name_scope('baz', skip_on_eager=False): old_style_layer = base_layers.Layer(name='my_layer') # Test basic variable creation. variable = old_style_layer.add_variable( 'my_var', [2, 2], initializer=init_ops.zeros_initializer()) self.assertEqual(variable.name, 'my_layer/my_var:0') with base_layers.keras_style_scope(): layer = base_layers.Layer(name='my_layer') # Test basic variable creation. with ops.name_scope('bar', skip_on_eager=False): variable = layer.add_variable( 'my_var', [2, 2], initializer=init_ops.zeros_initializer()) self.assertEqual(variable.name, 'bar/my_var:0') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testAddWeight(self): layer = base_layers.Layer(name='my_layer') # Test basic variable creation. variable = layer.add_variable( 'my_var', [2, 2], initializer=init_ops.zeros_initializer()) self.assertEqual(variable.name, 'my_layer/my_var:0') self.assertEqual(layer.variables, [variable]) self.assertEqual(layer.trainable_variables, [variable]) self.assertEqual(layer.non_trainable_variables, []) if not context.executing_eagerly(): self.assertEqual( layer.variables, ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)) # Test non-trainable variable creation. # layer.add_variable should work even outside `build` and `call`. variable_2 = layer.add_variable( 'non_trainable_var', [2, 2], initializer=init_ops.zeros_initializer(), trainable=False) self.assertEqual(layer.variables, [variable, variable_2]) self.assertEqual(layer.trainable_variables, [variable]) self.assertEqual(layer.non_trainable_variables, [variable_2]) if not context.executing_eagerly(): self.assertEqual( len(ops.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES)), 1) regularizer = lambda x: math_ops.reduce_sum(x) * 1e-3 _ = layer.add_variable( 'reg_var', [2, 2], initializer=init_ops.zeros_initializer(), regularizer=regularizer) self.assertEqual(len(layer.losses), 1) added_variable = [False] # Test that sync `ON_READ` variables are defaulted to be non-trainable. variable_3 = layer.add_variable( 'sync_on_read_var', [2, 2], initializer=init_ops.zeros_initializer(), synchronization=variable_scope.VariableSynchronization.ON_READ, aggregation=variable_scope.VariableAggregation.SUM) self.assertEqual(layer.non_trainable_variables, [variable_2, variable_3]) @def_function.function def function_adds_weight(): if not added_variable[0]: layer.add_variable( 'reg_var_from_function', [2, 2], initializer=init_ops.zeros_initializer(), regularizer=regularizer) added_variable[0] = True function_adds_weight() self.assertEqual(len(layer.losses), 2) def testInvalidTrainableSynchronizationCombination(self): layer = base_layers.Layer(name='my_layer') with self.assertRaisesRegexp( ValueError, 'Synchronization value can be set to ' 'VariableSynchronization.ON_READ only for non-trainable variables. ' 'You have specified trainable=True and ' 'synchronization=VariableSynchronization.ON_READ.'): _ = layer.add_variable( 'v', [2, 2], initializer=init_ops.zeros_initializer(), synchronization=variable_scope.VariableSynchronization.ON_READ, trainable=True) @test_util.run_deprecated_v1 def testReusePartitionedVariablesAndRegularizers(self): regularizer = lambda x: math_ops.reduce_sum(x) * 1e-3 partitioner = partitioned_variables.fixed_size_partitioner(3) for reuse in [False, True]: with variable_scope.variable_scope(variable_scope.get_variable_scope(), partitioner=partitioner, reuse=reuse): layer = base_layers.Layer(name='my_layer') _ = layer.add_variable( 'reg_part_var', [4, 4], initializer=init_ops.zeros_initializer(), regularizer=regularizer) self.assertEqual( len(ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)), 3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testCall(self): class MyLayer(base_layers.Layer): def call(self, inputs): return math_ops.square(inputs) layer = MyLayer(name='my_layer') inputs = random_ops.random_uniform((5,), seed=1) outputs = layer.apply(inputs) self.assertEqual(layer.built, True) if not context.executing_eagerly(): # op is only supported in GRAPH mode self.assertEqual(outputs.op.name, 'my_layer/Square') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testDeepCopy(self): class MyLayer(base_layers.Layer): def call(self, inputs): return math_ops.square(inputs) layer = MyLayer(name='my_layer') layer._private_tensor = random_ops.random_uniform(()) inputs = random_ops.random_uniform((5,), seed=1) outputs = layer.apply(inputs) self.assertEqual(layer.built, True) if not context.executing_eagerly(): # op only supported in GRAPH mode. self.assertEqual(outputs.op.name, 'my_layer/Square') layer_copy = copy.deepcopy(layer) self.assertEqual(layer_copy.name, layer.name) self.assertEqual(layer_copy._scope.name, layer._scope.name) self.assertEqual(layer_copy._private_tensor, layer._private_tensor) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testScopeNaming(self): class PrivateLayer(base_layers.Layer): def call(self, inputs): return inputs inputs = random_ops.random_uniform((5,)) default_layer = PrivateLayer() _ = default_layer.apply(inputs) self.assertEqual(default_layer._scope.name, 'private_layer') default_layer1 = PrivateLayer() default_layer1.apply(inputs) self.assertEqual(default_layer1._scope.name, 'private_layer_1') my_layer = PrivateLayer(name='my_layer') my_layer.apply(inputs) self.assertEqual(my_layer._scope.name, 'my_layer') my_layer1 = PrivateLayer(name='my_layer') my_layer1.apply(inputs) self.assertEqual(my_layer1._scope.name, 'my_layer_1') my_layer2 = PrivateLayer(name='my_layer') my_layer2.apply(inputs) self.assertEqual(my_layer2._scope.name, 'my_layer_2') # Name scope shouldn't affect names. with ops.name_scope('some_name_scope'): default_layer2 = PrivateLayer() default_layer2.apply(inputs) self.assertEqual(default_layer2._scope.name, 'private_layer_2') my_layer3 = PrivateLayer(name='my_layer') my_layer3.apply(inputs) self.assertEqual(my_layer3._scope.name, 'my_layer_3') other_layer = PrivateLayer(name='other_layer') other_layer.apply(inputs) self.assertEqual(other_layer._scope.name, 'other_layer') # Variable scope gets added to scope names. with variable_scope.variable_scope('var_scope'): default_layer_scoped = PrivateLayer() default_layer_scoped.apply(inputs) self.assertEqual(default_layer_scoped._scope.name, 'var_scope/private_layer') my_layer_scoped = PrivateLayer(name='my_layer') my_layer_scoped.apply(inputs) self.assertEqual(my_layer_scoped._scope.name, 'var_scope/my_layer') my_layer_scoped1 = PrivateLayer(name='my_layer') my_layer_scoped1.apply(inputs) self.assertEqual(my_layer_scoped1._scope.name, 'var_scope/my_layer_1') @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecNdimCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(ndim=2) def call(self, inputs): return inputs if not context.executing_eagerly(): layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'requires a defined rank'): layer.apply(array_ops.placeholder('int32')) layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected ndim=2'): layer.apply(constant_op.constant([1])) # Note that we re-create the layer since in Eager mode, input spec checks # only happen on first call. # Works layer = CustomerLayer() layer.apply(constant_op.constant([[1], [2]])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecMinNdimCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(min_ndim=2) def call(self, inputs): return inputs if not context.executing_eagerly(): layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'requires a defined rank'): layer.apply(array_ops.placeholder('int32')) layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected min_ndim=2'): layer.apply(constant_op.constant([1])) # Works layer = CustomerLayer() layer.apply(constant_op.constant([[1], [2]])) layer = CustomerLayer() layer.apply(constant_op.constant([[[1], [2]]])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecMaxNdimCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(max_ndim=2) def call(self, inputs): return inputs if not context.executing_eagerly(): layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'requires a defined rank'): layer.apply(array_ops.placeholder('int32')) layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected max_ndim=2'): layer.apply(constant_op.constant([[[1], [2]]])) # Works layer = CustomerLayer() layer.apply(constant_op.constant([1])) layer = CustomerLayer() layer.apply(constant_op.constant([[1], [2]])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecDtypeCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(dtype='float32') def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected dtype=float32'): layer.apply(constant_op.constant(1, dtype=dtypes.int32)) # Works layer = CustomerLayer() layer.apply(constant_op.constant(1.0, dtype=dtypes.float32)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecAxesCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(axes={-1: 2}) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected axis'): layer.apply(constant_op.constant([1, 2, 3])) # Works layer = CustomerLayer() layer.apply(constant_op.constant([1, 2])) layer = CustomerLayer() layer.apply(constant_op.constant([[1, 2], [3, 4], [5, 6]])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testInputSpecShapeCheck(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = input_spec.InputSpec(shape=(None, 3)) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegexp(ValueError, r'expected shape'): layer.apply(constant_op.constant([[1, 2]])) # Works layer = CustomerLayer() layer.apply(constant_op.constant([[1, 2, 3], [4, 5, 6]])) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testNoInputSpec(self): class CustomerLayer(base_layers.Layer): def __init__(self): super(CustomerLayer, self).__init__() self.input_spec = None def call(self, inputs): return inputs layer = CustomerLayer() layer.apply(constant_op.constant(1)) # Works if not context.executing_eagerly(): layer.apply(array_ops.placeholder('int32')) layer.apply(array_ops.placeholder('int32', shape=(2, 3))) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_count_params(self): dense = core_layers.Dense(16) dense.build((None, 4)) self.assertEqual(dense.count_params(), 16 * 4 + 16) dense = core_layers.Dense(16) with self.assertRaises(ValueError): dense.count_params() @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def testDictInputOutput(self): class DictLayer(base_layers.Layer): def call(self, inputs): return {'l' + key: inputs[key] for key in inputs} layer = DictLayer() if context.executing_eagerly(): i1 = constant_op.constant(3) i2 = constant_op.constant(4.0) result = layer.apply({'abel': i1, 'ogits': i2}) self.assertTrue(isinstance(result, dict)) self.assertEqual(set(['label', 'logits']), set(result.keys())) self.assertEqual(3, result['label'].numpy()) self.assertEqual(4.0, result['logits'].numpy()) else: i1 = array_ops.placeholder('int32') i2 = array_ops.placeholder('float32') result = layer.apply({'abel': i1, 'ogits': i2}) self.assertTrue(isinstance(result, dict)) self.assertEqual(set(['label', 'logits']), set(result.keys())) @test_util.run_deprecated_v1 def testActivityRegularizer(self): regularizer = math_ops.reduce_sum layer = base_layers.Layer(activity_regularizer=regularizer) x = array_ops.placeholder('int32') layer.apply(x) self.assertEqual(len(layer.get_losses_for(x)), 1) def testNameScopeIsConsistentWithVariableScope(self): # Github issue 13429. class MyLayer(base_layers.Layer): def build(self, input_shape): self.my_var = self.add_variable('my_var', (), dtypes.float32) self.built = True def call(self, inputs): return math_ops.multiply(inputs, self.my_var, name='my_op') def _gen_layer(x, name=None): layer = MyLayer(name=name) out = layer.apply(x) return layer, out # unnamed layer with ops.Graph().as_default(): x = array_ops.placeholder(dtypes.float32, (), 'x') layer, op = _gen_layer(x) layer1, op1 = _gen_layer(op) layer2, op2 = _gen_layer(op1) self.assertEqual(layer.my_var.name, 'my_layer/my_var:0') self.assertEqual(op.name, 'my_layer/my_op:0') self.assertEqual(layer1.my_var.name, 'my_layer_1/my_var:0') self.assertEqual(op1.name, 'my_layer_1/my_op:0') self.assertEqual(layer2.my_var.name, 'my_layer_2/my_var:0') self.assertEqual(op2.name, 'my_layer_2/my_op:0') # name starts from zero with ops.Graph().as_default(): x = array_ops.placeholder(dtypes.float32, (), 'x') layer, op = _gen_layer(x, name='name') layer1, op1 = _gen_layer(op, name='name_1') layer2, op2 = _gen_layer(op1, name='name_2') self.assertEqual(layer.my_var.name, 'name/my_var:0') self.assertEqual(op.name, 'name/my_op:0') self.assertEqual(layer1.my_var.name, 'name_1/my_var:0') self.assertEqual(op1.name, 'name_1/my_op:0') self.assertEqual(layer2.my_var.name, 'name_2/my_var:0') self.assertEqual(op2.name, 'name_2/my_op:0') # name starts from one with ops.Graph().as_default(): x = array_ops.placeholder(dtypes.float32, (), 'x') layer, op = _gen_layer(x, name='name_1') layer1, op1 = _gen_layer(op, name='name_2') layer2, op2 = _gen_layer(op1, name='name_3') self.assertEqual(layer.my_var.name, 'name_1/my_var:0') self.assertEqual(op.name, 'name_1/my_op:0') self.assertEqual(layer1.my_var.name, 'name_2/my_var:0') self.assertEqual(op1.name, 'name_2/my_op:0') self.assertEqual(layer2.my_var.name, 'name_3/my_var:0') self.assertEqual(op2.name, 'name_3/my_op:0') def testVariablesAreLiftedFromFunctionBuildingGraphs(self): class MyLayer(base_layers.Layer): def build(self, input_shape): self.my_var = self.add_variable('my_var', (), dtypes.float32) self.built = True def call(self, inputs): return inputs outer_graph = ops.get_default_graph() function_building_graph = ops.Graph() function_building_graph._building_function = True with outer_graph.as_default(): with function_building_graph.as_default(): layer = MyLayer() # Create a variable by invoking build through __call__ and assert that # it is both tracked and lifted into the outer graph. inputs = array_ops.placeholder(dtypes.float32, (), 'inputs') layer.apply(inputs) self.assertEqual(len(layer.variables), 1) self.assertEqual(len(layer.trainable_variables), 1) self.assertEqual(layer.variables[0].graph, outer_graph) @test_util.run_deprecated_v1 def testGetUpdateFor(self): class MyLayer(base_layers.Layer): def build(self, input_shape): self.a = self.add_variable('a', (), dtypes.float32, trainable=False) self.b = self.add_variable('b', (), dtypes.float32, trainable=False) self.add_update(state_ops.assign_add(self.a, 1., name='b_update')) self.built = True def call(self, inputs): self.add_update(state_ops.assign_add(self.a, inputs, name='a_update'), inputs=True) return inputs + 1 layer = MyLayer() inputs = array_ops.placeholder(dtypes.float32, (), 'inputs') intermediate_inputs = inputs + 1 outputs = layer.apply(intermediate_inputs) self.assertEqual(len(layer.updates), 2) self.assertEqual(len(layer.get_updates_for(None)), 1) self.assertEqual(len(layer.get_updates_for([inputs])), 1) self.assertEqual(len(layer.get_updates_for([intermediate_inputs])), 1) self.assertEqual(len(layer.get_updates_for([outputs])), 0) # Call same layer on new input, creating one more conditional update inputs = array_ops.placeholder(dtypes.float32, (), 'inputs') intermediate_inputs = inputs + 1 outputs = layer.apply(intermediate_inputs) self.assertEqual(len(layer.updates), 3) self.assertEqual(len(layer.get_updates_for(None)), 1) # Check that we are successfully filtering out irrelevant updates self.assertEqual(len(layer.get_updates_for([inputs])), 1) self.assertEqual(len(layer.get_updates_for([intermediate_inputs])), 1) self.assertEqual(len(layer.get_updates_for([outputs])), 0) @test_util.run_deprecated_v1 def testGetLossesFor(self): class MyLayer(base_layers.Layer): def build(self, input_shape): self.a = self.add_variable('a', (), dtypes.float32, trainable=False) self.b = self.add_variable('b', (), dtypes.float32, trainable=False) self.add_loss(self.a) self.built = True def call(self, inputs): self.add_loss(inputs, inputs=True) return inputs + 1 layer = MyLayer() inputs = array_ops.placeholder(dtypes.float32, (), 'inputs') intermediate_inputs = inputs + 1 outputs = layer.apply(intermediate_inputs) self.assertEqual(len(layer.losses), 2) self.assertEqual(len(layer.get_losses_for(None)), 1) self.assertEqual(len(layer.get_losses_for([inputs])), 1) self.assertEqual(len(layer.get_losses_for([intermediate_inputs])), 1) self.assertEqual(len(layer.get_losses_for([outputs])), 0) # Call same layer on new input, creating one more conditional loss inputs = array_ops.placeholder(dtypes.float32, (), 'inputs') intermediate_inputs = inputs + 1 outputs = layer.apply(intermediate_inputs) self.assertEqual(len(layer.losses), 3) self.assertEqual(len(layer.get_losses_for(None)), 1) # Check that we are successfully filtering out irrelevant losses self.assertEqual(len(layer.get_losses_for([inputs])), 1) self.assertEqual(len(layer.get_losses_for([intermediate_inputs])), 1) self.assertEqual(len(layer.get_losses_for([outputs])), 0) class IdentityLayer(base_layers.Layer): """A layer returns the identity of it's input.""" def call(self, inputs): return inputs @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class DTypeTest(test.TestCase, parameterized.TestCase): def _const(self, dtype): return array_ops.constant(1, dtype=dtype) def test_dtype_inferred_from_input(self): # Test with Tensor input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const('float64')) self.assertEqual(layer.dtype, 'float64') # Test with Numpy input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(np.array(1., dtype='float64')) self.assertEqual(layer.dtype, 'float64') # Test with integer input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const('int32')) self.assertEqual(layer.dtype, 'int32') # Test layer dtype doesn't change when passed a new dtype layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const('float64')) self.assertEqual(layer.dtype, 'float64') layer(self._const('float16')) self.assertEqual(layer.dtype, 'float64') # Test layer dtype inferred from first input layer = IdentityLayer() layer([self._const('float32'), self._const('float64')]) self.assertEqual(layer.dtype, 'float32') def test_passing_dtype_to_constructor(self): layer = IdentityLayer(dtype='float64') layer(self._const('float32')) self.assertEqual(layer.dtype, 'float64') layer = IdentityLayer(dtype='int32') layer(self._const('float32')) self.assertEqual(layer.dtype, 'int32') layer = IdentityLayer(dtype=dtypes.float64) layer(self._const('float32')) self.assertEqual(layer.dtype, 'float64') def test_inputs_not_casted(self): layer = IdentityLayer(dtype='float32') self.assertEqual(layer(self._const('float64')).dtype, 'float64') if __name__ == '__main__': test.main()
########################### # Latent ODEs for Irregularly-Sampled Time Series # Author: Yulia Rubanova ########################### import gc import numpy as np import sklearn as sk import numpy as np #import gc import torch import torch.nn as nn from torch.nn.functional import relu import lib.utils as utils from lib.utils import get_device from lib.encoder_decoder import * from lib.likelihood_eval import * from torch.distributions.multivariate_normal import MultivariateNormal from torch.distributions.normal import Normal from torch.distributions import kl_divergence, Independent def gaussian_log_likelihood(mu_2d, data_2d, obsrv_std, indices = None): n_data_points = mu_2d.size()[-1] if n_data_points > 0: gaussian = Independent(Normal(loc = mu_2d, scale = obsrv_std.repeat(n_data_points)), 1) log_prob = gaussian.log_prob(data_2d) log_prob = log_prob / n_data_points else: log_prob = torch.zeros([1]).to(get_device(data_2d)).squeeze() return log_prob def poisson_log_likelihood(masked_log_lambdas, masked_data, indices, int_lambdas): # masked_log_lambdas and masked_data n_data_points = masked_data.size()[-1] if n_data_points > 0: log_prob = torch.sum(masked_log_lambdas) - int_lambdas[indices] #log_prob = log_prob / n_data_points else: log_prob = torch.zeros([1]).to(get_device(masked_data)).squeeze() return log_prob def compute_binary_CE_loss(label_predictions, mortality_label): #print("Computing binary classification loss: compute_CE_loss") mortality_label = mortality_label.reshape(-1) if len(label_predictions.size()) == 1: label_predictions = label_predictions.unsqueeze(0) n_traj_samples = label_predictions.size(0) label_predictions = label_predictions.reshape(n_traj_samples, -1) idx_not_nan = ~torch.isnan(mortality_label) if len(idx_not_nan) == 0.: print("All are labels are NaNs!") ce_loss = torch.Tensor(0.).to(get_device(mortality_label)) label_predictions = label_predictions[:,idx_not_nan] mortality_label = mortality_label[idx_not_nan] if torch.sum(mortality_label == 0.) == 0 or torch.sum(mortality_label == 1.) == 0: print("Warning: all examples in a batch belong to the same class -- please increase the batch size.") assert(not torch.isnan(label_predictions).any()) assert(not torch.isnan(mortality_label).any()) # For each trajectory, we get n_traj_samples samples from z0 -- compute loss on all of them mortality_label = mortality_label.repeat(n_traj_samples, 1) ce_loss = nn.BCEWithLogitsLoss()(label_predictions, mortality_label) # divide by number of patients in a batch ce_loss = ce_loss / n_traj_samples return ce_loss def compute_multiclass_CE_loss(label_predictions, true_label, mask): #print("Computing multi-class classification loss: compute_multiclass_CE_loss") if (len(label_predictions.size()) == 3): label_predictions = label_predictions.unsqueeze(0) n_traj_samples, n_traj, n_tp, n_dims = label_predictions.size() # assert(not torch.isnan(label_predictions).any()) # assert(not torch.isnan(true_label).any()) # For each trajectory, we get n_traj_samples samples from z0 -- compute loss on all of them true_label = true_label.repeat(n_traj_samples, 1, 1) label_predictions = label_predictions.reshape(n_traj_samples * n_traj * n_tp, n_dims) true_label = true_label.reshape(n_traj_samples * n_traj * n_tp, n_dims) # choose time points with at least one measurement mask = torch.sum(mask, -1) > 0 # repeat the mask for each label to mark that the label for this time point is present pred_mask = mask.repeat(n_dims, 1,1).permute(1,2,0) label_mask = mask pred_mask = pred_mask.repeat(n_traj_samples,1,1,1) label_mask = label_mask.repeat(n_traj_samples,1,1,1) pred_mask = pred_mask.reshape(n_traj_samples * n_traj * n_tp, n_dims) label_mask = label_mask.reshape(n_traj_samples * n_traj * n_tp, 1) if (label_predictions.size(-1) > 1) and (true_label.size(-1) > 1): assert(label_predictions.size(-1) == true_label.size(-1)) # targets are in one-hot encoding -- convert to indices _, true_label = true_label.max(-1) res = [] for i in range(true_label.size(0)): pred_masked = torch.masked_select(label_predictions[i], pred_mask[i].bool()) labels = torch.masked_select(true_label[i], label_mask[i].bool()) pred_masked = pred_masked.reshape(-1, n_dims) if (len(labels) == 0): continue ce_loss = nn.CrossEntropyLoss()(pred_masked, labels.long()) res.append(ce_loss) ce_loss = torch.stack(res, 0).to(get_device(label_predictions)) ce_loss = torch.mean(ce_loss) # # divide by number of patients in a batch # ce_loss = ce_loss / n_traj_samples return ce_loss def compute_masked_likelihood(mu, data, mask, likelihood_func): # Compute the likelihood per patient and per attribute so that we don't priorize patients with more measurements n_traj_samples, n_traj, n_timepoints, n_dims = data.size() res = [] for i in range(n_traj_samples): for k in range(n_traj): for j in range(n_dims): data_masked = torch.masked_select(data[i,k,:,j], mask[i,k,:,j].bool()) #assert(torch.sum(data_masked == 0.) < 10) mu_masked = torch.masked_select(mu[i,k,:,j], mask[i,k,:,j].bool()) log_prob = likelihood_func(mu_masked, data_masked, indices = (i,k,j)) res.append(log_prob) # shape: [n_traj*n_traj_samples, 1] res = torch.stack(res, 0).to(get_device(data)) res = res.reshape((n_traj_samples, n_traj, n_dims)) # Take mean over the number of dimensions res = torch.mean(res, -1) # !!!!!!!!!!! changed from sum to mean res = res.transpose(0,1) return res def masked_gaussian_log_density(mu, data, obsrv_std, mask = None): # these cases are for plotting through plot_estim_density if (len(mu.size()) == 3): # add additional dimension for gp samples mu = mu.unsqueeze(0) if (len(data.size()) == 2): # add additional dimension for gp samples and time step data = data.unsqueeze(0).unsqueeze(2) elif (len(data.size()) == 3): # add additional dimension for gp samples data = data.unsqueeze(0) n_traj_samples, n_traj, n_timepoints, n_dims = mu.size() assert(data.size()[-1] == n_dims) # Shape after permutation: [n_traj, n_traj_samples, n_timepoints, n_dims] if mask is None: mu_flat = mu.reshape(n_traj_samples*n_traj, n_timepoints * n_dims) n_traj_samples, n_traj, n_timepoints, n_dims = data.size() data_flat = data.reshape(n_traj_samples*n_traj, n_timepoints * n_dims) res = gaussian_log_likelihood(mu_flat, data_flat, obsrv_std) res = res.reshape(n_traj_samples, n_traj).transpose(0,1) else: # Compute the likelihood per patient so that we don't priorize patients with more measurements func = lambda mu, data, indices: gaussian_log_likelihood(mu, data, obsrv_std = obsrv_std, indices = indices) res = compute_masked_likelihood(mu, data, mask, func) return res def mse(mu, data, indices = None): n_data_points = mu.size()[-1] if n_data_points > 0: mse = nn.MSELoss()(mu, data) else: mse = torch.zeros([1]).to(get_device(data)).squeeze() return mse def compute_mse(mu, data, mask = None): # these cases are for plotting through plot_estim_density if (len(mu.size()) == 3): # add additional dimension for gp samples mu = mu.unsqueeze(0) if (len(data.size()) == 2): # add additional dimension for gp samples and time step data = data.unsqueeze(0).unsqueeze(2) elif (len(data.size()) == 3): # add additional dimension for gp samples data = data.unsqueeze(0) n_traj_samples, n_traj, n_timepoints, n_dims = mu.size() assert(data.size()[-1] == n_dims) # Shape after permutation: [n_traj, n_traj_samples, n_timepoints, n_dims] if mask is None: mu_flat = mu.reshape(n_traj_samples*n_traj, n_timepoints * n_dims) n_traj_samples, n_traj, n_timepoints, n_dims = data.size() data_flat = data.reshape(n_traj_samples*n_traj, n_timepoints * n_dims) res = mse(mu_flat, data_flat) else: # Compute the likelihood per patient so that we don't priorize patients with more measurements res = compute_masked_likelihood(mu, data, mask, mse) return res def compute_poisson_proc_likelihood(truth, pred_y, info, mask = None): # Compute Poisson likelihood # https://math.stackexchange.com/questions/344487/log-likelihood-of-a-realization-of-a-poisson-process # Sum log lambdas across all time points if mask is None: poisson_log_l = torch.sum(info["log_lambda_y"], 2) - info["int_lambda"] # Sum over data dims poisson_log_l = torch.mean(poisson_log_l, -1) else: # Compute likelihood of the data under the predictions truth_repeated = truth.repeat(pred_y.size(0), 1, 1, 1) mask_repeated = mask.repeat(pred_y.size(0), 1, 1, 1) # Compute the likelihood per patient and per attribute so that we don't priorize patients with more measurements int_lambda = info["int_lambda"] f = lambda log_lam, data, indices: poisson_log_likelihood(log_lam, data, indices, int_lambda) poisson_log_l = compute_masked_likelihood(info["log_lambda_y"], truth_repeated, mask_repeated, f) poisson_log_l = poisson_log_l.permute(1,0) # Take mean over n_traj #poisson_log_l = torch.mean(poisson_log_l, 1) # poisson_log_l shape: [n_traj_samples, n_traj] return poisson_log_l
#! /usr/bin/env python from __future__ import absolute_import, division, print_function from __future__ import unicode_literals import nose from nose.tools import assert_equal, assert_true import numpy as np import pymatgen as pmg from sknano.core import rezero_array from sknano.core.crystallography import Crystal2DLattice, Crystal3DLattice, \ Reciprocal2DLattice, Reciprocal3DLattice # from sknano.core.atoms import Atom, Atoms, XAtom, XAtoms from sknano.core.math import Point, transformation_matrix, zhat, \ rotation_matrix from sknano.core.refdata import aCC, element_data r_CC_vdw = element_data['C']['VanDerWaalsRadius'] def test1(): dlattice = Crystal2DLattice(a=4.0, b=8.0, gamma=120) orientation_matrix = rotation_matrix(angle=np.pi/6, axis=zhat) rlattice = \ Reciprocal2DLattice(a_star=dlattice.reciprocal_lattice.a_star, b_star=dlattice.reciprocal_lattice.b_star, gamma_star=dlattice.reciprocal_lattice.gamma_star, orientation_matrix=orientation_matrix) print('\ndlattice.matrix:\n{}'.format(dlattice.matrix)) print('\nrlattice.matrix:\n{}'.format(rlattice.matrix)) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) print('\nrlattice.reciprocal_lattice.matrix:\n{}'.format( rlattice.reciprocal_lattice.matrix)) assert_true(np.allclose(dlattice.matrix, rlattice.reciprocal_lattice.matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, rlattice.matrix)) def test2(): a = np.sqrt(3) * aCC latt = Crystal2DLattice(a=a, b=a, gamma=120) hexlatt = Crystal2DLattice.hexagonal(a) assert_equal(latt, hexlatt) def test3(): a = np.sqrt(3) * aCC latt = Crystal2DLattice(a=a, b=a, gamma=90) square = Crystal2DLattice.square(a) assert_equal(latt, square) def test4(): a = np.sqrt(3) * aCC latt = Crystal2DLattice(a=a, b=a, gamma=60) a1 = latt.a1 a2 = latt.a2 rotated_a1 = a1.copy() rotated_a2 = a2.copy() xfrm = transformation_matrix(angle=-np.pi / 6) rotated_a1.rotate(transform_matrix=xfrm) rotated_a2.rotate(transform_matrix=xfrm) latt.rotate(angle=-np.pi / 6) assert_equal(latt.a1, rotated_a1) assert_equal(latt.a2, rotated_a2) assert_true(np.allclose(latt.orientation_matrix, xfrm)) rotated_latt = Crystal2DLattice(a1=rotated_a1, a2=rotated_a2) assert_equal(rotated_a1, rotated_latt.a1) assert_equal(rotated_a2, rotated_latt.a2) assert_true(np.allclose(latt.orientation_matrix, rotated_latt.orientation_matrix)) def test5(): a = np.sqrt(3) * aCC dlattice = Crystal2DLattice(a=a, b=a, gamma=60) rlattice = \ Reciprocal2DLattice(cell_matrix=dlattice.reciprocal_lattice.matrix) assert_equal(dlattice, rlattice.reciprocal_lattice) assert_equal(dlattice.reciprocal_lattice, rlattice) def test6(): a = np.sqrt(3) * aCC l1 = Crystal2DLattice.square(a) l2 = Crystal2DLattice.square(2 * a) assert_true(l1 < l2) assert_true(np.allclose(2 * l1.a, l2.a)) def test7(): latt = Crystal3DLattice(a=4.0, b=8.0, c=2.0, alpha=90, beta=90, gamma=120) assert_true(np.allclose(latt.a, 4.0)) assert_true(np.allclose(latt.b, 8.0)) assert_true(np.allclose(latt.c, 2.0)) assert_true(np.allclose(latt.alpha, 90.)) assert_true(np.allclose(latt.beta, 90.)) assert_true(np.allclose(latt.gamma, 120.)) def test8(): a = np.sqrt(3) * aCC latt = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) print(latt) a1 = latt.a1 a2 = latt.a2 a3 = latt.a3 xfrm = transformation_matrix(angle=-np.pi / 6) rotangle = -np.pi / 6 for v in (a1, a2, a3): v.rotate(angle=rotangle) latt.rotate(angle=rotangle, axis='z') print(latt) assert_equal(latt.a1, a1) assert_equal(latt.a2, a2) assert_equal(latt.a3, a3) assert_true(np.allclose(latt.orientation_matrix, xfrm)) def test9(): a = np.sqrt(3) * aCC latt = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) print(latt) hex_latt = \ Crystal3DLattice.hexagonal(a, 2 * r_CC_vdw) print(hex_latt) assert_equal(latt, hex_latt) def test10(): a = np.sqrt(3) * aCC dlattice = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) rlattice = \ Reciprocal3DLattice(cell_matrix=dlattice.reciprocal_lattice.matrix) # print('\n{}'.format(np.linalg.inv(dlattice.matrix))) # print(np.linalg.inv(dlattice.matrix) * dlattice.matrix) # print(np.linalg.inv(dlattice.matrix).T) # print(dlattice.reciprocal_lattice.matrix) # print(dlattice.reciprocal_lattice.b1) # print(dlattice.reciprocal_lattice.b2) # print(dlattice.reciprocal_lattice.b3) # print(rlattice.matrix) assert_equal(dlattice, rlattice.reciprocal_lattice) assert_equal(dlattice.reciprocal_lattice, rlattice) assert_equal(dlattice.reciprocal_lattice.b1, rlattice.b1) assert_equal(dlattice.reciprocal_lattice.b2, rlattice.b2) assert_equal(dlattice.reciprocal_lattice.b3, rlattice.b3) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, rlattice.matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.metric_tensor, rlattice.metric_tensor)) assert_true(np.allclose(dlattice.ortho_matrix, rlattice.reciprocal_lattice.ortho_matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.ortho_matrix, rlattice.ortho_matrix)) assert_true(np.allclose(dlattice.matrix * rlattice.matrix.T, np.eye(3))) assert_true(np.allclose(dlattice.metric_tensor * rlattice.metric_tensor, np.eye(3))) pmg_dlattice = pmg.Lattice(dlattice.matrix) print('\npmg_dlattice.matrix:\n{}'.format( rezero_array(pmg_dlattice.matrix))) print('\ndlattice.matrix:\n{}'.format(rezero_array(dlattice.matrix))) print('\npmg_dlattice.reciprocal_lattice.matrix:\n{}'.format( rezero_array(pmg_dlattice.reciprocal_lattice.matrix))) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( rezero_array(dlattice.reciprocal_lattice.matrix))) assert_true(np.allclose(dlattice.a, pmg_dlattice.a)) assert_true(np.allclose(dlattice.b, pmg_dlattice.b)) assert_true(np.allclose(dlattice.c, pmg_dlattice.c)) assert_true(np.allclose(np.asarray(dlattice.a1), pmg_dlattice.matrix[0])) assert_true(np.allclose(np.asarray(dlattice.a2), pmg_dlattice.matrix[1])) assert_true(np.allclose(np.asarray(dlattice.a3), pmg_dlattice.matrix[2])) assert_true(np.allclose(dlattice.matrix, pmg_dlattice.matrix)) pmg_dlattice = pmg.Lattice.from_parameters(dlattice.a, dlattice.b, dlattice.c, dlattice.alpha, dlattice.beta, dlattice.gamma) print('\npmg_dlattice.matrix:\n{}'.format( rezero_array(pmg_dlattice.matrix))) print('\ndlattice.matrix:\n{}'.format(rezero_array(dlattice.matrix))) print('\npmg_dlattice.reciprocal_lattice.matrix:\n{}'.format( rezero_array(pmg_dlattice.reciprocal_lattice.matrix))) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( rezero_array(dlattice.reciprocal_lattice.matrix))) assert_true(np.allclose(dlattice.a, pmg_dlattice.a)) assert_true(np.allclose(dlattice.b, pmg_dlattice.b)) assert_true(np.allclose(dlattice.c, pmg_dlattice.c)) assert_true(np.allclose(np.asarray(dlattice.a1), pmg_dlattice.matrix[0])) assert_true(np.allclose(np.asarray(dlattice.a2), pmg_dlattice.matrix[1])) assert_true(np.allclose(np.asarray(dlattice.a3), pmg_dlattice.matrix[2])) assert_true(np.allclose(dlattice.matrix, pmg_dlattice.matrix)) assert_true(np.allclose(dlattice.ortho_matrix.T, pmg.Lattice(dlattice.ortho_matrix.T).matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).metric_tensor, dlattice.metric_tensor)) assert_true(np.allclose(pmg.Lattice(dlattice.ortho_matrix.T).metric_tensor, dlattice.metric_tensor)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).matrix, dlattice.matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.ortho_matrix.T).matrix, dlattice.matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).matrix, rlattice.reciprocal_lattice.matrix)) pmg_rlattice = \ pmg.Lattice.from_parameters(dlattice.reciprocal_lattice.a_star, dlattice.reciprocal_lattice.b_star, dlattice.reciprocal_lattice.c_star, dlattice.reciprocal_lattice.alpha_star, dlattice.reciprocal_lattice.beta_star, dlattice.reciprocal_lattice.gamma_star) print('\npmg_rlattice:\n{}'.format(rezero_array(pmg_rlattice.matrix))) print('\nrlattice:\n{}'.format(rezero_array(rlattice.matrix))) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, rlattice.matrix)) # assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, # pmg_rlattice.matrix)) # assert_true(np.allclose(rlattice.matrix, # pmg_rlattice.matrix)) def test11(): a = np.sqrt(3) * aCC dlattice = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) orientation_matrix = rotation_matrix(angle=np.pi / 6, axis=zhat) rlattice = \ Reciprocal3DLattice(a_star=dlattice.reciprocal_lattice.a_star, b_star=dlattice.reciprocal_lattice.b_star, c_star=dlattice.reciprocal_lattice.c_star, alpha_star=dlattice.reciprocal_lattice.alpha_star, beta_star=dlattice.reciprocal_lattice.beta_star, gamma_star=dlattice.reciprocal_lattice.gamma_star, orientation_matrix=orientation_matrix) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) print('\nrlattice.matrix:\n{}'.format(rlattice.matrix)) print('\ndlattice.matrix:\n{}'.format(dlattice.matrix)) print('\nrlattice.reciprocal_lattice.matrix:\n{}'.format( rlattice.reciprocal_lattice.matrix)) # assert_equal(dlattice.reciprocal_lattice, rlattice) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, rlattice.matrix)) assert_true(np.allclose(dlattice.matrix, rlattice.reciprocal_lattice.matrix)) # print('\n{}'.format(np.linalg.inv(dlattice.matrix))) # print(np.linalg.inv(dlattice.matrix) * dlattice.matrix) # print(np.linalg.inv(dlattice.matrix).T) # print(dlattice.reciprocal_lattice.matrix) # print(dlattice.reciprocal_lattice.b1) # print(dlattice.reciprocal_lattice.b2) # print(dlattice.reciprocal_lattice.b3) # print(rlattice.matrix) # print(rlattice.b1) # print(rlattice.b2) # print(rlattice.b3) assert_equal(dlattice.reciprocal_lattice, rlattice) assert_equal(dlattice.reciprocal_lattice.b1, rlattice.b1) assert_equal(dlattice.reciprocal_lattice.b2, rlattice.b2) assert_equal(dlattice.reciprocal_lattice.b3, rlattice.b3) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, rlattice.matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.metric_tensor, rlattice.metric_tensor)) pmg_dlattice = pmg.Lattice(dlattice.matrix) print('\npmg_dlattice.matrix:\n{}'.format(pmg_dlattice.matrix)) print('\ndlattice.matrix:\n{}'.format(dlattice.matrix)) print('\npmg_dlattice.reciprocal_lattice.matrix:\n{}'.format( pmg_dlattice.reciprocal_lattice.matrix)) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) assert_true(np.allclose(dlattice.a, pmg_dlattice.a)) assert_true(np.allclose(dlattice.b, pmg_dlattice.b)) assert_true(np.allclose(dlattice.c, pmg_dlattice.c)) assert_true(np.allclose(np.asarray(dlattice.a1), pmg_dlattice.matrix[0])) assert_true(np.allclose(np.asarray(dlattice.a2), pmg_dlattice.matrix[1])) assert_true(np.allclose(np.asarray(dlattice.a3), pmg_dlattice.matrix[2])) assert_true(np.allclose(dlattice.matrix, pmg_dlattice.matrix)) assert_true(np.allclose(dlattice.ortho_matrix.T, pmg.Lattice(dlattice.ortho_matrix.T).matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).metric_tensor, dlattice.metric_tensor)) assert_true(np.allclose(pmg.Lattice(dlattice.ortho_matrix.T).metric_tensor, dlattice.metric_tensor)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).matrix, dlattice.matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.ortho_matrix.T).matrix, dlattice.matrix)) # print('latt_from_inv_latt_matrix_transpose:\n{}\n'.format( # latt_from_inv_latt_matrix_transpose.matrix)) # print('rlattice.reciprocal_lattice.matrix:\n{}'.format( # rlattice.reciprocal_lattice.matrix)) assert_true(np.allclose(pmg.Lattice(dlattice.matrix).matrix, rlattice.reciprocal_lattice.matrix)) # print('rlattice.reciprocal_lattice.matrix:\n{}'.format( # rlattice.reciprocal_lattice.matrix)) # print('pmg.Lattice(np.linalg.inv(dlattice.matrix).T).' # 'reciprocal_lattice_crystallographic.matrix:\n{}' # .format(pmg.Lattice(np.linalg.inv(dlattice.matrix).T) # .reciprocal_lattice_crystallographic.matrix)) # print('pmg.Lattice.from_parameters(...):\n{}\n'.format( # rezero_array(pmg.Lattice.from_parameters( # dlattice.reciprocal_lattice.a_star, # dlattice.reciprocal_lattice.b_star, # dlattice.reciprocal_lattice.c_star, # dlattice.reciprocal_lattice.alpha_star, # dlattice.reciprocal_lattice.beta_star, # dlattice.reciprocal_lattice.gamma_star) # .reciprocal_lattice_crystallographic.matrix))) # print('dlattice.ortho_matrix:\n{}'.format(dlattice.ortho_matrix)) # print('np.linalg.inv(dlattice.matrix).T:\n{}'.format(np.linalg.inv( # dlattice.matrix).T)) # print('rlattice.reciprocal_lattice.ortho_matrix:\n{}' # .format(rlattice.reciprocal_lattice.ortho_matrix)) # print('rlattice.reciprocal_lattice.ortho_matrix:\n{}\n'. # format(rlattice.reciprocal_lattice.ortho_matrix)) # print('dlattice.reciprocal_lattice.ortho_matrix:\n{}'.format( # dlattice.reciprocal_lattice.ortho_matrix)) # print('rlattice.ortho_matrix:\n{}'.format( # rlattice.ortho_matrix)) # print('rlattice.ortho_matrix:\n{}\n'.format( # rlattice.ortho_matrix)) assert_true(np.allclose(dlattice.ortho_matrix, rlattice.reciprocal_lattice. ortho_matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.ortho_matrix, rlattice.ortho_matrix)) assert_equal(dlattice, rlattice.reciprocal_lattice) assert_equal(dlattice.reciprocal_lattice, rlattice) print(dlattice.matrix * rlattice.matrix.T) assert_true(np.allclose(dlattice.matrix * rlattice.matrix.T, np.eye(3))) def test12(): a = np.sqrt(3) * aCC cubic_latt = Crystal3DLattice(a=a, b=a, c=a, alpha=90, beta=90, gamma=90) assert_equal(cubic_latt, Crystal3DLattice.cubic(a)) def test13(): latt = Crystal3DLattice(a=4.0, b=4.0, c=4.0, alpha=90, beta=90, gamma=90) print(latt) p = [2.1, 0.9, 0.5] assert_true(np.allclose(latt.wrap_fractional_coordinate(p), Point((0.1, 0.9, 0.5)))) def test14(): latt = Crystal3DLattice(a=4.0, b=4.0, c=4.0, alpha=90, beta=90, gamma=90) print(latt) a = latt.a1 b = latt.a2 c = latt.a3 G = np.matrix([[a.dot(a), a.dot(b), a.dot(c)], [b.dot(a), b.dot(b), b.dot(c)], [c.dot(a), c.dot(b), c.dot(c)]]) assert_true(np.allclose(latt.metric_tensor, G)) def test15(): latt = Crystal3DLattice(a=4.0, b=4.0, c=4.0, alpha=90, beta=90, gamma=90) print(latt) recip_latt = Crystal3DLattice(a1=latt.b1, a2=latt.b2, a3=latt.b3) print(recip_latt) assert_equal(latt.a1, recip_latt.b1) assert_equal(latt.a2, recip_latt.b2) assert_equal(latt.a3, recip_latt.b3) def test16(): a = np.sqrt(3) * aCC assert_true(Crystal3DLattice.cubic(a) < Crystal3DLattice.cubic(2 * a)) def test17(): dlattice = Crystal3DLattice.hexagonal(np.sqrt(3) * aCC, r_CC_vdw) rlattice = dlattice.reciprocal_lattice assert_true(np.allclose(dlattice.volume ** 2, np.linalg.det(dlattice.metric_tensor))) print(dlattice.volume ** 2) print(np.linalg.det(dlattice.metric_tensor)) print(rlattice.volume ** 2) print(np.linalg.det(rlattice.metric_tensor)) assert_true(np.allclose(rlattice.volume ** 2, np.linalg.det(rlattice.metric_tensor))) print(rlattice.metric_tensor) print(rlattice.metric_tensor.T) assert_true(np.allclose(dlattice.volume * rlattice.volume, 1.0)) assert_true(np.allclose(rlattice.metric_tensor * dlattice.metric_tensor.T, np.asmatrix(np.eye(3)))) def test18(): a = np.sqrt(3) * aCC dlattice = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) dlattice_from_matrix = Crystal3DLattice(cell_matrix=dlattice.matrix) assert_equal(dlattice, dlattice_from_matrix) assert_true(np.allclose(dlattice.matrix, dlattice_from_matrix.matrix)) def test19(): a = np.sqrt(3) * aCC dlattice = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120) print('\ndlattice.matrix:\n{}'.format(dlattice.matrix)) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) a1 = dlattice.a1 a2 = dlattice.a2 a3 = dlattice.a3 V = dlattice.volume b1 = a2.cross(a3) / V b2 = a3.cross(a1) / V b3 = a1.cross(a2) / V a_star = b1.length b_star = b2.length c_star = b3.length alpha_star = np.degrees(b2.angle(b3)) beta_star = np.degrees(b3.angle(b1)) gamma_star = np.degrees(b1.angle(b2)) assert_true(np.allclose(a_star, dlattice.reciprocal_lattice.a_star)) assert_true(np.allclose(b_star, dlattice.reciprocal_lattice.b_star)) assert_true(np.allclose(c_star, dlattice.reciprocal_lattice.c_star)) assert_true(np.allclose(alpha_star, dlattice.reciprocal_lattice.alpha_star)) assert_true(np.allclose(beta_star, dlattice.reciprocal_lattice.beta_star)) assert_true(np.allclose(gamma_star, dlattice.reciprocal_lattice.gamma_star)) rlattice = Reciprocal3DLattice(a_star=a_star, b_star=b_star, c_star=c_star, alpha_star=alpha_star, beta_star=beta_star, gamma_star=gamma_star) print('\nrlattice.matrix:\n{}'.format(rlattice.matrix)) print('\nrlattice.reciprocal_lattice.matrix:\n{}'.format( rlattice.reciprocal_lattice.matrix)) rlattice_from_rlattice_matrix = \ Reciprocal3DLattice(cell_matrix=rlattice.matrix) print('\nrlattice_from_rlattice_matrix.matrix:\n{}'.format( rlattice_from_rlattice_matrix.matrix)) print('\nrlattice_from_rlattice_matrix.reciprocal_lattice.matrix:\n{}'. format(rlattice_from_rlattice_matrix.reciprocal_lattice.matrix)) assert_equal(rlattice, rlattice_from_rlattice_matrix) assert_true(np.allclose(rlattice.matrix, rlattice_from_rlattice_matrix.matrix)) rlattice_from_dlattice_rlattice_matrix = \ Reciprocal3DLattice(cell_matrix=dlattice.reciprocal_lattice.matrix) print('\nrlattice_from_dlattice_rlattice_matrix.matrix:\n{}'.format( rlattice_from_dlattice_rlattice_matrix.matrix)) print('\nrlattice_from_dlattice_rlattice_matrix.reciprocal_lattice.' 'matrix:\n{}'.format(rlattice_from_dlattice_rlattice_matrix. reciprocal_lattice.matrix)) def test20(): a = np.sqrt(3) * aCC orientation_matrix = rotation_matrix(angle=-np.pi / 6, axis=zhat) dlattice = Crystal3DLattice(a=a, b=a, c=2 * r_CC_vdw, alpha=90, beta=90, gamma=120, orientation_matrix=orientation_matrix) rlattice = \ Reciprocal3DLattice(a_star=dlattice.reciprocal_lattice.a_star, b_star=dlattice.reciprocal_lattice.b_star, c_star=dlattice.reciprocal_lattice.c_star, alpha_star=dlattice.reciprocal_lattice.alpha_star, beta_star=dlattice.reciprocal_lattice.beta_star, gamma_star=dlattice.reciprocal_lattice.gamma_star) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) print('\nrlattice.matrix:\n{}'.format(rlattice.matrix)) print('\ndlattice.matrix:\n{}'.format(dlattice.matrix)) print('\nrlattice.reciprocal_lattice.matrix:\n{}'.format( rlattice.reciprocal_lattice.matrix)) print('\ndlattice.reciprocal_lattice.matrix:\n{}'.format( dlattice.reciprocal_lattice.matrix)) pmg_rlattice = \ pmg.Lattice.from_parameters(dlattice.reciprocal_lattice.a_star, dlattice.reciprocal_lattice.b_star, dlattice.reciprocal_lattice.c_star, dlattice.reciprocal_lattice.alpha_star, dlattice.reciprocal_lattice.beta_star, dlattice.reciprocal_lattice.gamma_star) print('\npmg_rlattice.matrix:\n{}'.format(pmg_rlattice.matrix)) print('\nrlattice.matrix:\n{}'.format(rlattice.matrix)) print('\npmg_rlattice.reciprocal_lattice.matrix:\n{}'.format( pmg_rlattice.reciprocal_lattice.matrix)) print('\nrlattice.reciprocal_lattice.matrix:\n{}'.format( rlattice.reciprocal_lattice.matrix)) assert_true(np.allclose(rlattice.matrix, pmg_rlattice.matrix)) assert_true(np.allclose(dlattice.reciprocal_lattice.matrix, pmg_rlattice.matrix)) assert_true(np.allclose(rlattice.matrix, pmg_rlattice.matrix)) if __name__ == '__main__': nose.runmodule()
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Deleting model 'SyncShard' db.delete_table('webinars_syncshard') # Deleting model 'SyncJob' db.delete_table('webinars_syncjob') # Deleting model 'SyncStage' db.delete_table('webinars_syncstage') def backwards(self, orm): # Adding model 'SyncShard' db.create_table('webinars_syncshard', ( ('completed_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('depth', self.gf('django.db.models.fields.IntegerField')()), ('section', self.gf('django.db.models.fields.IntegerField')()), ('created_at', self.gf('sanetime.dj.SaneTimeField')(blank=True)), ('started_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('sync_job', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.SyncJob'])), )) db.send_create_signal('webinars', ['SyncShard']) # Adding model 'SyncJob' db.create_table('webinars_syncjob', ( ('started_at', self.gf('sanetime.dj.SaneTimeField')(blank=True)), ('completed_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('account', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.Account'], null=True)), ('parent', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.SyncJob'], null=True)), ('sharded_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('auto', self.gf('django.db.models.fields.BooleanField')(default=True)), ('staged_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('event', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.Event'], null=True)), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal('webinars', ['SyncJob']) # Adding model 'SyncStage' db.create_table('webinars_syncstage', ( ('completed_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('offset', self.gf('django.db.models.fields.IntegerField')()), ('cms_form', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.CmsForm'], null=True)), ('started_at', self.gf('sanetime.dj.SaneTimeField')(null=True)), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('max_size', self.gf('django.db.models.fields.IntegerField')()), ('size', self.gf('django.db.models.fields.IntegerField')(null=True)), ('kind', self.gf('django.db.models.fields.CharField')(max_length=16)), ('created_at', self.gf('sanetime.dj.SaneTimeField')(blank=True)), ('subkind', self.gf('django.db.models.fields.CharField')(max_length=16, null=True)), ('sync_job', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['webinars.SyncJob'])), )) db.send_create_signal('webinars', ['SyncStage']) models = { 'webinars.account': { 'Meta': {'object_name': 'Account'}, 'account_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.AccountType']"}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'current_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.AccountSync']"}), 'default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'extra': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'hub': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Hub']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.AccountSync']"}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'prevent_unformed_lead_import': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'sync_lock': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'updated_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'webinars.accountsync': { 'Meta': {'object_name': 'AccountSync'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Account']"}), 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'debug': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'forced_stop': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.HubSync']", 'null': 'True'}), 'sharded_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'staged_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'webinars.accountsyncshard': { 'Meta': {'object_name': 'AccountSyncShard'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'depth': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent_sync': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.AccountSync']"}), 'section': ('django.db.models.fields.IntegerField', [], {}), 'size': ('django.db.models.fields.IntegerField', [], {}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.accountsyncstage': { 'Meta': {'object_name': 'AccountSyncStage'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'max_size': ('django.db.models.fields.IntegerField', [], {}), 'offset': ('django.db.models.fields.IntegerField', [], {}), 'parent_sync': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.AccountSync']"}), 'size': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.accounttype': { 'Meta': {'object_name': 'AccountType'}, 'can_api_create_event': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'can_api_load_event': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'can_api_register_user': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'can_api_report_views': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'extra_username_label': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_available': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'listing_priority': ('django.db.models.fields.IntegerField', [], {}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'updated_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'username_label': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'webinars.cmsform': { 'Meta': {'object_name': 'CmsForm'}, 'guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'primary_key': 'True'}), 'hub': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Hub']"}), 'is_sync_target': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'webinars.event': { 'Meta': {'object_name': 'Event'}, '_attended_criterium_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), '_attended_saved_search_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), '_noshow_saved_search_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), '_registered_criterium_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), '_registered_saved_search_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Account']"}), 'attended_campaign_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'cms_forms': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['webinars.CmsForm']", 'through': "orm['webinars.EventForm']", 'symmetrical': 'False'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'current_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.EventSync']"}), 'deleted_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '4096'}), 'duration': ('django.db.models.fields.IntegerField', [], {}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.EventSync']"}), 'mothballed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'noshow_campaign_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'remote_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'sync_leads_for_all_time': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'sync_lock': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'time_starts_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'timezone_starts_at': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'unknowable_registrants': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'updated_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}) }, 'webinars.eventform': { 'Meta': {'object_name': 'EventForm'}, 'cms_form': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.CmsForm']"}), 'converted_at_cutoff': ('sanetime.dj.SaneTimeField', [], {'default': '0'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_last_modified_at': ('sanetime.dj.SaneTimeField', [], {'default': '0'}) }, 'webinars.eventsync': { 'Meta': {'object_name': 'EventSync'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'debug': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'forced_stop': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.AccountSync']", 'null': 'True'}), 'sharded_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'staged_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'webinars.eventsyncshard': { 'Meta': {'object_name': 'EventSyncShard'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'depth': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent_sync': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.EventSync']"}), 'section': ('django.db.models.fields.IntegerField', [], {}), 'size': ('django.db.models.fields.IntegerField', [], {}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.hub': { 'Meta': {'object_name': 'Hub'}, '_attended_any_criterium_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), '_attended_any_saved_search_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), '_registered_any_criterium_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), '_registered_any_saved_search_id': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), '_timezone': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'current_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.HubSync']"}), 'id': ('django.db.models.fields.BigIntegerField', [], {'unique': 'True', 'primary_key': 'True'}), 'last_sync': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'+'", 'null': 'True', 'to': "orm['webinars.HubSync']"}), 'sync_lock': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'uninstalled_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'updated_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}) }, 'webinars.hubspoteventsyncstage': { 'Meta': {'object_name': 'HubSpotEventSyncStage'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'event_form': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.EventForm']"}), 'finish_last_modified_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_size': ('django.db.models.fields.IntegerField', [], {}), 'offset': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'parent_sync': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.EventSync']"}), 'size': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'start_last_modified_at': ('sanetime.dj.SaneTimeField', [], {}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.hubspotregistrantsnapshot': { 'Meta': {'object_name': 'HubSpotRegistrantSnapshot'}, 'attended_any': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'attended_for': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'attended_this': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'initial_form_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'lead_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'registered_any': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'registered_this': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'stopped_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.hubsync': { 'Meta': {'object_name': 'HubSync'}, 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'debug': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'forced_stop': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'hub': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Hub']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'visible': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'webinars.landingpage': { 'Meta': {'object_name': 'LandingPage'}, 'cms_form': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.CmsForm']"}), 'form_title': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'webinars.registrant': { 'Meta': {'object_name': 'Registrant'}, 'attended_for': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'cms_form': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.CmsForm']", 'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'deleted_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'lead_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'remote_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'stopped_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'updated_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}) }, 'webinars.stagedhubspotregistrant': { 'Meta': {'object_name': 'StagedHubSpotRegistrant'}, 'attended_any': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'attended_for': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'attended_this': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'converted_at': ('sanetime.dj.SaneTimeField', [], {}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'form_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'lead_guid': ('django.db.models.fields.CharField', [], {'max_length': '36', 'null': 'True'}), 'registered_any': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'registered_this': ('django.db.models.fields.NullBooleanField', [], {'null': 'True', 'blank': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'stopped_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.stagedwebexevent': { 'Meta': {'object_name': 'StagedWebexEvent'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Account']"}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '4096', 'null': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'session_key': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'time_starts_at': ('sanetime.dj.SaneTimeField', [], {}), 'timezone_starts_at': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'webinars.stagedwebexregistrant': { 'Meta': {'object_name': 'StagedWebexRegistrant'}, 'attendee_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'stopped_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.webexeventsnapshot': { 'Meta': {'object_name': 'WebexEventSnapshot'}, 'account': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Account']"}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '4096', 'null': 'True'}), 'duration': ('django.db.models.fields.IntegerField', [], {}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'remote_id': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'time_starts_at': ('sanetime.dj.SaneTimeField', [], {}), 'timezone_starts_at': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'webinars.webexeventsyncstage': { 'Meta': {'object_name': 'WebexEventSyncStage'}, 'attendants': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'completed_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'created_at': ('sanetime.dj.SaneTimeField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'max_size': ('django.db.models.fields.IntegerField', [], {}), 'offset': ('django.db.models.fields.IntegerField', [], {}), 'parent_sync': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.EventSync']"}), 'size': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) }, 'webinars.webexregistrantsnapshot': { 'Meta': {'object_name': 'WebexRegistrantSnapshot'}, 'attended_for': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'event': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['webinars.Event']"}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'hashcode': ('django.db.models.fields.IntegerField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True'}), 'remote_id': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True'}), 'started_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}), 'stopped_at': ('sanetime.dj.SaneTimeField', [], {'null': 'True'}) } } complete_apps = ['webinars']
import json from datetime import datetime from html2text import html2text from dojo.models import Finding class MobSFParser(object): def get_scan_types(self): return ["MobSF Scan"] def get_label_for_scan_types(self, scan_type): return "MobSF Scan" def get_description_for_scan_types(self, scan_type): return "Export a JSON file using the API, api/v1/report_json." def get_findings(self, filename, test): tree = filename.read() try: data = json.loads(str(tree, 'utf-8')) except: data = json.loads(tree) find_date = datetime.now() dupes = {} test_description = "" if "name" in data: test_description = "**Info:**\n" if "packagename" in data: test_description = "%s **Package Name:** %s\n" % (test_description, data["packagename"]) if "mainactivity" in data: test_description = "%s **Main Activity:** %s\n" % (test_description, data["mainactivity"]) if "pltfm" in data: test_description = "%s **Platform:** %s\n" % (test_description, data["pltfm"]) if "sdk" in data: test_description = "%s **SDK:** %s\n" % (test_description, data["sdk"]) if "min" in data: test_description = "%s **Min SDK:** %s\n" % (test_description, data["min"]) if "targetsdk" in data: test_description = "%s **Target SDK:** %s\n" % (test_description, data["targetsdk"]) if "minsdk" in data: test_description = "%s **Min SDK:** %s\n" % (test_description, data["minsdk"]) if "maxsdk" in data: test_description = "%s **Max SDK:** %s\n" % (test_description, data["maxsdk"]) test_description = "%s\n**File Information:**\n" % (test_description) if "name" in data: test_description = "%s **Name:** %s\n" % (test_description, data["name"]) if "md5" in data: test_description = "%s **MD5:** %s\n" % (test_description, data["md5"]) if "sha1" in data: test_description = "%s **SHA-1:** %s\n" % (test_description, data["sha1"]) if "sha256" in data: test_description = "%s **SHA-256:** %s\n" % (test_description, data["sha256"]) if "size" in data: test_description = "%s **Size:** %s\n" % (test_description, data["size"]) if "urls" in data: curl = "" for url in data["urls"]: for curl in url["urls"]: curl = "%s\n" % (curl) if curl: test_description = "%s\n**URL's:**\n %s\n" % (test_description, curl) if "bin_anal" in data: test_description = "%s \n**Binary Analysis:** %s\n" % (test_description, data["bin_anal"]) test.description = html2text(test_description) mobsf_findings = [] # Mobile Permissions if "permissions" in data: # for permission, details in data["permissions"].items(): if type(data["permissions"]) is list: for details in data["permissions"]: mobsf_item = { "category": "Mobile Permissions", "title": details.get("name", ""), "severity": self.getSeverityForPermission(details.get("status")), "description": "**Permission Type:** " + details.get("name", "") + " (" + details.get("status", "") + ")\n\n**Description:** " + details.get("description", "") + "\n\n**Reason:** " + details.get("reason", ""), "file_path": None } mobsf_findings.append(mobsf_item) else: for permission, details in list(data["permissions"].items()): mobsf_item = { "category": "Mobile Permissions", "title": permission, "severity": self.getSeverityForPermission(details.get("status", "")), "description": "**Permission Type:** " + permission + "\n\n**Description:** " + details.get("description", ""), "file_path": None } mobsf_findings.append(mobsf_item) # Insecure Connections if "insecure_connections" in data: for details in data["insecure_connections"]: insecure_urls = "" for url in details.split(','): insecure_urls = insecure_urls + url + "\n" mobsf_item = { "category": None, "title": "Insecure Connections", "severity": "Low", "description": insecure_urls, "file_path": None } mobsf_findings.append(mobsf_item) # Binary Analysis if "binary_analysis" in data: if type(data["binary_analysis"]) is list: for details in data["binary_analysis"]: for binary_analysis_type in details: if "name" != binary_analysis_type: mobsf_item = { "category": "Binary Analysis", "title": details[binary_analysis_type]["description"].split(".")[0], "severity": details[binary_analysis_type]["severity"].replace("warning", "low").title(), "description": details[binary_analysis_type]["description"], "file_path": details["name"] } mobsf_findings.append(mobsf_item) else: for binary_analysis_type, details in list(data["binary_analysis"].items()): # "Binary makes use of insecure API(s)":{ # "detailed_desc":"The binary may contain the following insecure API(s) _vsprintf.", # "severity":"high", # "cvss":6, # "cwe":"CWE-676 - Use of Potentially Dangerous Function", # "owasp-mobile":"M7: Client Code Quality", # "masvs":"MSTG-CODE-8" # } mobsf_item = { "category": "Binary Analysis", "title": details["detailed_desc"], "severity": details["severity"].replace("good", "info").title(), "description": details["detailed_desc"], "file_path": None } mobsf_findings.append(mobsf_item) # specific node for Android reports if "android_api" in data: # "android_insecure_random": { # "files": { # "u/c/a/b/a/c.java": "9", # "kotlinx/coroutines/repackaged/net/bytebuddy/utility/RandomString.java": "3", # ... # "hu/mycompany/vbnmqweq/gateway/msg/Response.java": "13" # }, # "metadata": { # "id": "android_insecure_random", # "description": "The App uses an insecure Random Number Generator.", # "type": "Regex", # "pattern": "java\\.util\\.Random;", # "severity": "high", # "input_case": "exact", # "cvss": 7.5, # "cwe": "CWE-330 Use of Insufficiently Random Values", # "owasp-mobile": "M5: Insufficient Cryptography", # "masvs": "MSTG-CRYPTO-6" # } # }, for api, details in list(data["android_api"].items()): mobsf_item = { "category": "Android API", "title": details["metadata"]["description"], "severity": details["metadata"]["severity"].replace("warning", "low").title(), "description": "**API:** " + api + "\n\n**Description:** " + details["metadata"]["description"], "file_path": None } mobsf_findings.append(mobsf_item) # Manifest if "manifest" in data: for details in data["manifest"]: mobsf_item = { "category": "Manifest", "title": details["title"], "severity": details["stat"], "description": details["desc"], "file_path": None } mobsf_findings.append(mobsf_item) # MobSF Findings if "findings" in data: for title, finding in list(data["findings"].items()): description = title file_path = None if "path" in finding: description = description + "\n\n**Files:**\n" for path in finding["path"]: if file_path is None: file_path = path description = description + " * " + path + "\n" mobsf_item = { "category": "Findings", "title": title, "severity": finding["level"], "description": description, "file_path": file_path } mobsf_findings.append(mobsf_item) for mobsf_finding in mobsf_findings: title = mobsf_finding["title"] sev = self.getCriticalityRating(mobsf_finding["severity"]) description = "" file_path = None if mobsf_finding["category"]: description += "**Category:** " + mobsf_finding["category"] + "\n\n" description = description + html2text(mobsf_finding["description"]) finding = Finding( title=title, cwe=919, # Weaknesses in Mobile Applications test=test, description=description, severity=sev, references=None, date=find_date, static_finding=True, dynamic_finding=False, nb_occurences=1, ) if mobsf_finding["file_path"]: finding.file_path = mobsf_finding["file_path"] dupe_key = sev + title if dupe_key in dupes: find = dupes[dupe_key] if description is not None: find.description += description find.nb_occurences += 1 else: dupes[dupe_key] = finding return list(dupes.values()) def getSeverityForPermission(self, status): """Convert status for permission detection to severity In MobSF there is only 4 know values for permission, we map them as this: dangerous => High (Critical?) normal => Info signature => Info (it's positive so... Info) signatureOrSystem => Info (it's positive so... Info) """ if "dangerous" == status: return "High" else: return "Info" # Criticality rating def getCriticalityRating(self, rating): criticality = "Info" if rating == "warning": criticality = "Info" else: criticality = rating.capitalize() return criticality def suite_data(self, suites): suite_info = "" suite_info += suites["name"] + "\n" suite_info += "Cipher Strength: " + str(suites["cipherStrength"]) + "\n" if "ecdhBits" in suites: suite_info += "ecdhBits: " + str(suites["ecdhBits"]) + "\n" if "ecdhStrength" in suites: suite_info += "ecdhStrength: " + str(suites["ecdhStrength"]) suite_info += "\n\n" return suite_info
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import frappe import HTMLParser import smtplib from frappe import msgprint, throw, _ from frappe.email.smtp import SMTPServer, get_outgoing_email_account from frappe.email.email_body import get_email, get_formatted_html from frappe.utils.verified_command import get_signed_params, verify_request from html2text import html2text from frappe.utils import get_url, nowdate, encode, now_datetime, add_days, split_emails class BulkLimitCrossedError(frappe.ValidationError): pass def send(recipients=None, sender=None, subject=None, message=None, reference_doctype=None, reference_name=None, unsubscribe_method=None, unsubscribe_params=None, unsubscribe_message=None, attachments=None, reply_to=None, cc=(), message_id=None, send_after=None, expose_recipients=False): """Add email to sending queue (Bulk Email) :param recipients: List of recipients. :param sender: Email sender. :param subject: Email subject. :param message: Email message. :param reference_doctype: Reference DocType of caller document. :param reference_name: Reference name of caller document. :param unsubscribe_method: URL method for unsubscribe. Default is `/api/method/frappe.email.bulk.unsubscribe`. :param unsubscribe_params: additional params for unsubscribed links. default are name, doctype, email :param attachments: Attachments to be sent. :param reply_to: Reply to be captured here (default inbox) :param message_id: Used for threading. If a reply is received to this email, Message-Id is sent back as In-Reply-To in received email. :param send_after: Send this email after the given datetime. If value is in integer, then `send_after` will be the automatically set to no of days from current date. """ if not unsubscribe_method: unsubscribe_method = "/api/method/frappe.email.bulk.unsubscribe" if not recipients: return if isinstance(recipients, basestring): recipients = split_emails(recipients) if isinstance(send_after, int): send_after = add_days(nowdate(), send_after) if not sender or sender == "Administrator": email_account = get_outgoing_email_account() sender = email_account.get("sender") or email_account.email_id check_bulk_limit(recipients) formatted = get_formatted_html(subject, message) try: text_content = html2text(formatted) except HTMLParser.HTMLParseError: text_content = "See html attachment" if reference_doctype and reference_name: unsubscribed = [d.email for d in frappe.db.get_all("Email Unsubscribe", "email", {"reference_doctype": reference_doctype, "reference_name": reference_name})] unsubscribed += [d.email for d in frappe.db.get_all("Email Unsubscribe", "email", {"global_unsubscribe": 1})] else: unsubscribed = [] recipients = [r for r in list(set(recipients)) if r and r not in unsubscribed] for email in recipients: email_content = formatted email_text_context = text_content if reference_doctype: unsubscribe_link = get_unsubscribe_link( reference_doctype=reference_doctype, reference_name=reference_name, email=email, recipients=recipients, expose_recipients=expose_recipients, unsubscribe_method=unsubscribe_method, unsubscribe_params=unsubscribe_params, unsubscribe_message=unsubscribe_message ) email_content = email_content.replace("<!--unsubscribe link here-->", unsubscribe_link.html) email_text_context += unsubscribe_link.text # add to queue add(email, sender, subject, email_content, email_text_context, reference_doctype, reference_name, attachments, reply_to, cc, message_id, send_after) def add(email, sender, subject, formatted, text_content=None, reference_doctype=None, reference_name=None, attachments=None, reply_to=None, cc=(), message_id=None, send_after=None): """add to bulk mail queue""" e = frappe.new_doc('Bulk Email') e.sender = sender e.recipient = email try: mail = get_email(email, sender=e.sender, formatted=formatted, subject=subject, text_content=text_content, attachments=attachments, reply_to=reply_to, cc=cc) if message_id: mail.set_message_id(message_id) e.message = mail.as_string() except frappe.InvalidEmailAddressError: # bad email id - don't add to queue return e.reference_doctype = reference_doctype e.reference_name = reference_name e.send_after = send_after e.insert(ignore_permissions=True) def check_bulk_limit(recipients): # get count of mails sent this month this_month = frappe.db.sql("""select count(*) from `tabBulk Email` where status='Sent' and MONTH(creation)=MONTH(CURDATE())""")[0][0] # if using settings from site_config.json, check bulk limit # No limit for own email settings smtp_server = SMTPServer() if (smtp_server.email_account and getattr(smtp_server.email_account, "from_site_config", False) or frappe.flags.in_test): monthly_bulk_mail_limit = frappe.conf.get('monthly_bulk_mail_limit') or 500 if (this_month + len(recipients)) > monthly_bulk_mail_limit: throw(_("Email limit {0} crossed").format(monthly_bulk_mail_limit), BulkLimitCrossedError) def get_unsubscribe_link(reference_doctype, reference_name, email, recipients, expose_recipients, unsubscribe_method, unsubscribe_params, unsubscribe_message): unsubscribe_email = recipients if expose_recipients else [email] unsubscribe_email = _("This email was sent to {0}").format(", ".join(unsubscribe_email)) if not unsubscribe_message: unsubscribe_message = _("Unsubscribe from this list") unsubscribe_url = get_unsubcribed_url(reference_doctype, reference_name, email, unsubscribe_method, unsubscribe_params) html = """<div style="margin: 15px auto; padding: 0px 7px; text-align: center; color: #8d99a6;"> {email} <p style="margin: 15px auto;"> <a href="{unsubscribe_url}" style="color: #8d99a6; text-decoration: underline; target="_blank">{unsubscribe_message} </a> </p> </div>""".format( unsubscribe_url = unsubscribe_url, email=unsubscribe_email, unsubscribe_message=unsubscribe_message ) text = "\n{email}\n\n{unsubscribe_message}: {unsubscribe_url}".format( email=unsubscribe_email, unsubscribe_message=unsubscribe_message, unsubscribe_url=unsubscribe_url ) return frappe._dict({ "html": html, "text": text }) def get_unsubcribed_url(reference_doctype, reference_name, email, unsubscribe_method, unsubscribe_params): params = {"email": email.encode("utf-8"), "doctype": reference_doctype.encode("utf-8"), "name": reference_name.encode("utf-8")} if unsubscribe_params: params.update(unsubscribe_params) query_string = get_signed_params(params) # for test frappe.local.flags.signed_query_string = query_string return get_url(unsubscribe_method + "?" + get_signed_params(params)) @frappe.whitelist(allow_guest=True) def unsubscribe(doctype, name, email): # unsubsribe from comments and communications if not verify_request(): return try: frappe.get_doc({ "doctype": "Email Unsubscribe", "email": email, "reference_doctype": doctype, "reference_name": name }).insert(ignore_permissions=True) except frappe.DuplicateEntryError: frappe.db.rollback() else: frappe.db.commit() return_unsubscribed_page(email, doctype, name) def return_unsubscribed_page(email, doctype, name): frappe.respond_as_web_page(_("Unsubscribed"), _("{0} has left the conversation in {1} {2}").format(email, _(doctype), name)) def flush(from_test=False): """flush email queue, every time: called from scheduler""" smtpserver = SMTPServer() auto_commit = not from_test # additional check check_bulk_limit([]) if frappe.are_emails_muted(): msgprint(_("Emails are muted")) from_test = True frappe.db.sql("""update `tabBulk Email` set status='Expired' where datediff(curdate(), creation) > 3""", auto_commit=auto_commit) for i in xrange(500): email = frappe.db.sql("""select * from `tabBulk Email` where status='Not Sent' and ifnull(send_after, "2000-01-01 00:00:00") < %s order by creation asc limit 1 for update""", now_datetime(), as_dict=1) if email: email = email[0] else: break frappe.db.sql("""update `tabBulk Email` set status='Sending' where name=%s""", (email["name"],), auto_commit=auto_commit) try: if not from_test: smtpserver.setup_email_account(email.reference_doctype) smtpserver.sess.sendmail(email["sender"], email["recipient"], encode(email["message"])) frappe.db.sql("""update `tabBulk Email` set status='Sent' where name=%s""", (email["name"],), auto_commit=auto_commit) except (smtplib.SMTPServerDisconnected, smtplib.SMTPConnectError, smtplib.SMTPHeloError, smtplib.SMTPAuthenticationError): # bad connection, retry later frappe.db.sql("""update `tabBulk Email` set status='Not Sent' where name=%s""", (email["name"],), auto_commit=auto_commit) # no need to attempt further return except Exception, e: frappe.db.sql("""update `tabBulk Email` set status='Error', error=%s where name=%s""", (unicode(e), email["name"]), auto_commit=auto_commit) def clear_outbox(): """Remove mails older than 31 days in Outbox. Called daily via scheduler.""" frappe.db.sql("""delete from `tabBulk Email` where datediff(now(), creation) > 31""")
# # ------------------------------------------------------------ # Copyright (c) All rights reserved # SiLab, Institute of Physics, University of Bonn # ------------------------------------------------------------ # import unittest import yaml from bitarray import bitarray from basil.dut import Dut cnfg_yaml = """ transfer_layer: - name : dummy_tl type : Dummy init: mem : {0: 2, 14: 4} # module version for init of spi and mem bytes hw_drivers: - name : spi_module type : spi interface : dummy_tl base_addr : 0x0 registers: - name : TEST1 type : StdRegister hw_driver : spi_module size : 32 - name : TEST2 type : StdRegister hw_driver : spi_module size : 20 fields : - name : VINJECT size : 6 offset : 19 bit_order: [5,4,3,1,0,2] default : 0 - name : VPULSE size : 6 offset : 13 - name : EN size : 2 offset : 7 - name : COLUMN offset : 5 size : 3 repeat : 2 fields : - name : EnR size : 1 offset : 2 - name : DACR size : 2 offset : 1 """ class TestClass(unittest.TestCase): @classmethod def setUpClass(cls): cls.cnfg = yaml.load(cnfg_yaml) cls.dut = Dut(cls.cnfg) cls.dut['spi_module']._require_version = "==2" cls.dut.init() cls.dut['spi_module']._mem_bytes = 4 def test_mem_bytes(self): self.dut.init() self.dut['spi_module']._mem_bytes = 4 self.assertEqual(4, self.dut['spi_module'].MEM_BYTES) self.assertRaises(ValueError, self.dut['spi_module'].set_data, [1, 2, 3, 4, 5]) def test_init_simple(self): self.dut['TEST1'].write() mem = dict() # mem[0] = 0 # reset # mem[0] = 1 mem[16] = 0 # has an offset of 16 bytes mem[17] = 0 mem[18] = 0 mem[19] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'][0] = 1 self.dut['TEST1'].write() mem[19] = 1 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'][31] = 1 self.dut['TEST1'].write() mem[16] = 0x80 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'] = 0 self.dut['TEST1'].write() mem[16] = 0 mem[19] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'] = 0xa55a8001 self.dut['TEST1'].write() mem[16] = 0xa5 mem[17] = 0x5a mem[18] = 0x80 mem[19] = 0x01 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'] = 0 self.dut['TEST1'][11:4] = 0xff self.dut['TEST1'].write() mem[16] = 0x0 mem[17] = 0x0 mem[18] = 0x0f mem[19] = 0xf0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'] = 0 self.dut['TEST1'][11:4] = '10000001' self.dut['TEST1'].write() mem[16] = 0x0 mem[17] = 0x0 mem[18] = 0x08 mem[19] = 0x10 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST1'] = 0 self.dut['TEST1'][11:4] = bitarray('00011000') self.dut['TEST1'].write() mem[16] = 0x0 mem[17] = 0x0 mem[18] = 0x01 mem[19] = 0x80 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) def test_bit_order(self): self.dut['TEST2'].write() mem = dict() # mem[0] = 0 # reset mem[0] = 2 mem[14] = 4 mem[16] = 0 mem[17] = 0 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VINJECT'] = 0x01 self.dut['TEST2'].write() mem[16] = 0x08 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VINJECT'] = 0x02 self.dut['TEST2'].write() mem[16] = 0x10 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VINJECT'] = 0x04 self.dut['TEST2'].write() mem[16] = 0x04 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VINJECT'] = 0x08 self.dut['TEST2'].write() mem[16] = 0x20 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VINJECT'] = 0 self.dut['TEST2']['VINJECT'][0] = 1 self.dut['TEST2'].write() mem[16] = 0x04 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) def test_repeat(self): self.dut['dummy_tl'].mem = dict() # self.dut['TEST2'] = 0 self.dut['TEST2']['VINJECT'] = 0 self.dut['TEST2']['VPULSE'] = 0 self.dut['TEST2'].write() mem = dict() # mem[0] = 1 mem[16] = 0 mem[17] = 0 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['COLUMN'][0]['EnR'] = 1 self.dut['TEST2'].write() mem[17] = 0x02 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['COLUMN'][1]['DACR'] = 1 self.dut['TEST2'].write() mem[18] = 0x10 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) def test_default(self): self.cnfg['registers'][1]['fields'][0]['default'] = 0x01 # VINJECT self.dut = Dut(self.cnfg) self.dut['spi_module']._require_version = "==2" self.dut.init() self.dut['spi_module']._mem_bytes = 32 mem = dict() # mem[0] = 0 # reset mem[0] = 2 mem[14] = 4 mem[16] = 0x08 mem[17] = 0 mem[18] = 0 self.dut['TEST2'].write() self.assertDictEqual(mem, self.dut['dummy_tl'].mem) def test_fields(self): self.dut['dummy_tl'].mem = dict() self.dut['TEST2']['VINJECT'] = 0 self.dut['TEST2']['VPULSE'] = 0 self.dut['TEST2'].write() mem = dict() # mem[0] = 1 mem[16] = 0 mem[17] = 0 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VPULSE'] = 0x5 self.dut['TEST2'].write() mem = dict() mem[16] = 0 mem[17] = 0x50 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VPULSE'] = bitarray('100001') self.dut['TEST2'].write() mem = dict() mem[16] = 0x02 mem[17] = 0x10 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VPULSE'] = '100001' self.dut['TEST2'].write() mem = dict() mem[16] = 0x02 mem[17] = 0x10 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) self.dut['TEST2']['VPULSE'] = 0b100011 self.dut['TEST2'].write() mem = dict() mem[16] = 0x02 mem[17] = 0x30 mem[18] = 0 self.assertDictEqual(mem, self.dut['dummy_tl'].mem) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestClass) unittest.TextTestRunner(verbosity=2).run(suite)
# Copyright (c) 2011 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """The hosts admin extension.""" import webob.exc from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api.openstack import xmlutil from nova import compute from nova import exception from nova.openstack.common.gettextutils import _ from nova.openstack.common import log as logging LOG = logging.getLogger(__name__) ALIAS = 'os-hosts' authorize = extensions.extension_authorizer('compute', 'v3:' + ALIAS) class HostIndexTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('hosts') elem = xmlutil.SubTemplateElement(root, 'host', selector='hosts') elem.set('host_name') elem.set('service') elem.set('zone') return xmlutil.MasterTemplate(root, 1) class HostShowTemplate(xmlutil.TemplateBuilder): def construct(self): root = xmlutil.TemplateElement('host') elem = xmlutil.make_flat_dict('resource', selector='host', subselector='resource') root.append(elem) return xmlutil.MasterTemplate(root, 1) class HostController(wsgi.Controller): """The Hosts API controller for the OpenStack API.""" def __init__(self): self.api = compute.HostAPI() super(HostController, self).__init__() @extensions.expected_errors(()) @wsgi.serializers(xml=HostIndexTemplate) def index(self, req): """ :returns: A dict in the format: {'hosts': [{'host_name': 'some.host.name', 'service': 'cells', 'zone': 'internal'}, {'host_name': 'some.other.host.name', 'service': 'cells', 'zone': 'internal'}, {'host_name': 'some.celly.host.name', 'service': 'cells', 'zone': 'internal'}, {'host_name': 'console1.host.com', 'service': 'consoleauth', 'zone': 'internal'}, {'host_name': 'network1.host.com', 'service': 'network', 'zone': 'internal'}, {'host_name': 'netwwork2.host.com', 'service': 'network', 'zone': 'internal'}, {'host_name': 'compute1.host.com', 'service': 'compute', 'zone': 'nova'}, {'host_name': 'compute2.host.com', 'service': 'compute', 'zone': 'nova'}, {'host_name': 'sched1.host.com', 'service': 'scheduler', 'zone': 'internal'}, {'host_name': 'sched2.host.com', 'service': 'scheduler', 'zone': 'internal'}, {'host_name': 'vol1.host.com', 'service': 'volume'}, 'zone': 'internal']} """ context = req.environ['nova.context'] authorize(context) filters = {'disabled': False} zone = req.GET.get('zone', None) if zone: filters['availability_zone'] = zone services = self.api.service_get_all(context, filters=filters, set_zones=True) hosts = [] for service in services: hosts.append({'host_name': service['host'], 'service': service['topic'], 'zone': service['availability_zone']}) return {'hosts': hosts} @extensions.expected_errors((400, 404, 501)) def update(self, req, id, body): """ :param body: example format {'host': {'status': 'enable', 'maintenance_mode': 'enable'}} :returns: """ def read_enabled(orig_val, msg): """ :param orig_val: A string with either 'enable' or 'disable'. May be surrounded by whitespace, and case doesn't matter :param msg: The message to be passed to HTTPBadRequest. A single %s will be replaced with orig_val. :returns: True for 'enabled' and False for 'disabled' """ val = orig_val.strip().lower() if val == "enable": return True elif val == "disable": return False else: raise webob.exc.HTTPBadRequest(explanation=msg % orig_val) context = req.environ['nova.context'] authorize(context) # See what the user wants to 'update' if not self.is_valid_body(body, 'host'): raise webob.exc.HTTPBadRequest( explanation=_("The request body invalid")) params = dict([(k.strip().lower(), v) for k, v in body['host'].iteritems()]) orig_status = status = params.pop('status', None) orig_maint_mode = maint_mode = params.pop('maintenance_mode', None) # Validate the request if len(params) > 0: # Some extra param was passed. Fail. explanation = _("Invalid update setting: '%s'") % params.keys()[0] raise webob.exc.HTTPBadRequest(explanation=explanation) if orig_status is not None: status = read_enabled(orig_status, _("Invalid status: '%s'")) if orig_maint_mode is not None: maint_mode = read_enabled(orig_maint_mode, _("Invalid mode: '%s'")) if status is None and maint_mode is None: explanation = _("'status' or 'maintenance_mode' needed for " "host update") raise webob.exc.HTTPBadRequest(explanation=explanation) # Make the calls and merge the results result = {'host': id} if status is not None: result['status'] = self._set_enabled_status(context, id, status) if maint_mode is not None: result['maintenance_mode'] = self._set_host_maintenance(context, id, maint_mode) return {'host': result} def _set_host_maintenance(self, context, host_name, mode=True): """Start/Stop host maintenance window. On start, it triggers guest VMs evacuation. """ LOG.audit(_("Putting host %(host_name)s in maintenance mode " "%(mode)s."), {'host_name': host_name, 'mode': mode}) try: result = self.api.set_host_maintenance(context, host_name, mode) except NotImplementedError: msg = _("Virt driver does not implement host maintenance mode.") raise webob.exc.HTTPNotImplemented(explanation=msg) except exception.HostNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except exception.ComputeServiceUnavailable as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) if result not in ("on_maintenance", "off_maintenance"): raise webob.exc.HTTPBadRequest(explanation=result) return result def _set_enabled_status(self, context, host_name, enabled): """Sets the specified host's ability to accept new instances. :param enabled: a boolean - if False no new VMs will be able to start on the host. """ if enabled: LOG.audit(_("Enabling host %s.") % host_name) else: LOG.audit(_("Disabling host %s.") % host_name) try: result = self.api.set_host_enabled(context, host_name=host_name, enabled=enabled) except NotImplementedError: msg = _("Virt driver does not implement host disabled status.") raise webob.exc.HTTPNotImplemented(explanation=msg) except exception.HostNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except exception.ComputeServiceUnavailable as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) if result not in ("enabled", "disabled"): raise webob.exc.HTTPBadRequest(explanation=result) return result def _host_power_action(self, req, host_name, action): """Reboots, shuts down or powers up the host.""" context = req.environ['nova.context'] authorize(context) try: result = self.api.host_power_action(context, host_name=host_name, action=action) except NotImplementedError: msg = _("Virt driver does not implement host power management.") raise webob.exc.HTTPNotImplemented(explanation=msg) except exception.HostNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except exception.ComputeServiceUnavailable as e: raise webob.exc.HTTPBadRequest(explanation=e.format_message()) return {"host": {"host": host_name, "power_action": result}} @extensions.expected_errors((400, 404, 501)) def startup(self, req, id): return self._host_power_action(req, host_name=id, action="startup") @extensions.expected_errors((400, 404, 501)) def shutdown(self, req, id): return self._host_power_action(req, host_name=id, action="shutdown") @extensions.expected_errors((400, 404, 501)) def reboot(self, req, id): return self._host_power_action(req, host_name=id, action="reboot") @staticmethod def _get_total_resources(host_name, compute_node): return {'resource': {'host': host_name, 'project': '(total)', 'cpu': compute_node['vcpus'], 'memory_mb': compute_node['memory_mb'], 'disk_gb': compute_node['local_gb']}} @staticmethod def _get_used_now_resources(host_name, compute_node): return {'resource': {'host': host_name, 'project': '(used_now)', 'cpu': compute_node['vcpus_used'], 'memory_mb': compute_node['memory_mb_used'], 'disk_gb': compute_node['local_gb_used']}} @staticmethod def _get_resource_totals_from_instances(host_name, instances): cpu_sum = 0 mem_sum = 0 hdd_sum = 0 for instance in instances: cpu_sum += instance['vcpus'] mem_sum += instance['memory_mb'] hdd_sum += instance['root_gb'] + instance['ephemeral_gb'] return {'resource': {'host': host_name, 'project': '(used_max)', 'cpu': cpu_sum, 'memory_mb': mem_sum, 'disk_gb': hdd_sum}} @staticmethod def _get_resources_by_project(host_name, instances): # Getting usage resource per project project_map = {} for instance in instances: resource = project_map.setdefault(instance['project_id'], {'host': host_name, 'project': instance['project_id'], 'cpu': 0, 'memory_mb': 0, 'disk_gb': 0}) resource['cpu'] += instance['vcpus'] resource['memory_mb'] += instance['memory_mb'] resource['disk_gb'] += (instance['root_gb'] + instance['ephemeral_gb']) return project_map @extensions.expected_errors((403, 404)) @wsgi.serializers(xml=HostShowTemplate) def show(self, req, id): """Shows the physical/usage resource given by hosts. :param id: hostname :returns: expected to use HostShowTemplate. ex.:: {'host': {'resource':D},..} D: {'host': 'hostname','project': 'admin', 'cpu': 1, 'memory_mb': 2048, 'disk_gb': 30} """ context = req.environ['nova.context'] authorize(context) host_name = id try: service = self.api.service_get_by_compute_host(context, host_name) except exception.ComputeHostNotFound as e: raise webob.exc.HTTPNotFound(explanation=e.format_message()) except exception.AdminRequired: # TODO(Alex Xu): The authorization is done by policy, # db layer checking is needless. The db layer checking should # be removed msg = _("Describe-resource is admin only functionality") raise webob.exc.HTTPForbidden(explanation=msg) compute_node = service['compute_node'] instances = self.api.instance_get_all_by_host(context, host_name) resources = [self._get_total_resources(host_name, compute_node)] resources.append(self._get_used_now_resources(host_name, compute_node)) resources.append(self._get_resource_totals_from_instances(host_name, instances)) by_proj_resources = self._get_resources_by_project(host_name, instances) for resource in by_proj_resources.itervalues(): resources.append({'resource': resource}) return {'host': resources} class Hosts(extensions.V3APIExtensionBase): """Admin-only host administration.""" name = "Hosts" alias = ALIAS namespace = "http://docs.openstack.org/compute/ext/hosts/api/v3" version = 1 def get_resources(self): resources = [extensions.ResourceExtension('os-hosts', HostController(), member_actions={"startup": "GET", "shutdown": "GET", "reboot": "GET"})] return resources def get_controller_extensions(self): return []
"""Sensors flow for Withings.""" import typing as types from homeassistant.config_entries import ConfigEntry from homeassistant.helpers.entity import Entity from homeassistant.helpers.typing import HomeAssistantType from homeassistant.util import slugify from . import const from .common import _LOGGER, WithingsDataManager, get_data_manager # There's only 3 calls (per profile) made to the withings api every 5 # minutes (see throttle values). This component wouldn't benefit # much from parallel updates. PARALLEL_UPDATES = 1 async def async_setup_entry( hass: HomeAssistantType, entry: ConfigEntry, async_add_entities: types.Callable[[types.List[Entity], bool], None], ): """Set up the sensor config entry.""" data_manager = get_data_manager(hass, entry) entities = create_sensor_entities(data_manager) async_add_entities(entities, True) def get_measures(): """Get all the measures. This function exists to be easily mockable so we can test one measure at a time. This becomes necessary when integration testing throttle functionality in the data manager. """ return list(WITHINGS_MEASUREMENTS_MAP) def create_sensor_entities(data_manager: WithingsDataManager): """Create sensor entities.""" entities = [] measures = get_measures() for attribute in WITHINGS_ATTRIBUTES: if attribute.measurement not in measures: _LOGGER.debug( "Skipping measurement %s as it is not in the" "list of measurements to use", attribute.measurement, ) continue _LOGGER.debug( "Creating entity for measurement: %s, measure_type: %s," "friendly_name: %s, unit_of_measurement: %s", attribute.measurement, attribute.measure_type, attribute.friendly_name, attribute.unit_of_measurement, ) entity = WithingsHealthSensor(data_manager, attribute) entities.append(entity) return entities class WithingsAttribute: """Base class for modeling withing data.""" def __init__( self, measurement: str, measure_type, friendly_name: str, unit_of_measurement: str, icon: str, ) -> None: """Constructor.""" self.measurement = measurement self.measure_type = measure_type self.friendly_name = friendly_name self.unit_of_measurement = unit_of_measurement self.icon = icon class WithingsMeasureAttribute(WithingsAttribute): """Model measure attributes.""" class WithingsSleepStateAttribute(WithingsAttribute): """Model sleep data attributes.""" def __init__( self, measurement: str, friendly_name: str, unit_of_measurement: str, icon: str ) -> None: """Constructor.""" super().__init__(measurement, None, friendly_name, unit_of_measurement, icon) class WithingsSleepSummaryAttribute(WithingsAttribute): """Models sleep summary attributes.""" WITHINGS_ATTRIBUTES = [ WithingsMeasureAttribute( const.MEAS_WEIGHT_KG, const.MEASURE_TYPE_WEIGHT, "Weight", const.UOM_MASS_KG, "mdi:weight-kilogram", ), WithingsMeasureAttribute( const.MEAS_FAT_MASS_KG, const.MEASURE_TYPE_FAT_MASS, "Fat Mass", const.UOM_MASS_KG, "mdi:weight-kilogram", ), WithingsMeasureAttribute( const.MEAS_FAT_FREE_MASS_KG, const.MEASURE_TYPE_FAT_MASS_FREE, "Fat Free Mass", const.UOM_MASS_KG, "mdi:weight-kilogram", ), WithingsMeasureAttribute( const.MEAS_MUSCLE_MASS_KG, const.MEASURE_TYPE_MUSCLE_MASS, "Muscle Mass", const.UOM_MASS_KG, "mdi:weight-kilogram", ), WithingsMeasureAttribute( const.MEAS_BONE_MASS_KG, const.MEASURE_TYPE_BONE_MASS, "Bone Mass", const.UOM_MASS_KG, "mdi:weight-kilogram", ), WithingsMeasureAttribute( const.MEAS_HEIGHT_M, const.MEASURE_TYPE_HEIGHT, "Height", const.UOM_LENGTH_M, "mdi:ruler", ), WithingsMeasureAttribute( const.MEAS_TEMP_C, const.MEASURE_TYPE_TEMP, "Temperature", const.UOM_TEMP_C, "mdi:thermometer", ), WithingsMeasureAttribute( const.MEAS_BODY_TEMP_C, const.MEASURE_TYPE_BODY_TEMP, "Body Temperature", const.UOM_TEMP_C, "mdi:thermometer", ), WithingsMeasureAttribute( const.MEAS_SKIN_TEMP_C, const.MEASURE_TYPE_SKIN_TEMP, "Skin Temperature", const.UOM_TEMP_C, "mdi:thermometer", ), WithingsMeasureAttribute( const.MEAS_FAT_RATIO_PCT, const.MEASURE_TYPE_FAT_RATIO, "Fat Ratio", const.UOM_PERCENT, None, ), WithingsMeasureAttribute( const.MEAS_DIASTOLIC_MMHG, const.MEASURE_TYPE_DIASTOLIC_BP, "Diastolic Blood Pressure", const.UOM_MMHG, None, ), WithingsMeasureAttribute( const.MEAS_SYSTOLIC_MMGH, const.MEASURE_TYPE_SYSTOLIC_BP, "Systolic Blood Pressure", const.UOM_MMHG, None, ), WithingsMeasureAttribute( const.MEAS_HEART_PULSE_BPM, const.MEASURE_TYPE_HEART_PULSE, "Heart Pulse", const.UOM_BEATS_PER_MINUTE, "mdi:heart-pulse", ), WithingsMeasureAttribute( const.MEAS_SPO2_PCT, const.MEASURE_TYPE_SPO2, "SP02", const.UOM_PERCENT, None ), WithingsMeasureAttribute( const.MEAS_HYDRATION, const.MEASURE_TYPE_HYDRATION, "Hydration", "", "mdi:water" ), WithingsMeasureAttribute( const.MEAS_PWV, const.MEASURE_TYPE_PWV, "Pulse Wave Velocity", const.UOM_METERS_PER_SECOND, None, ), WithingsSleepStateAttribute( const.MEAS_SLEEP_STATE, "Sleep state", None, "mdi:sleep" ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_WAKEUP_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_WAKEUP_DURATION, "Wakeup time", const.UOM_SECONDS, "mdi:sleep-off", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_LIGHT_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_LIGHT_DURATION, "Light sleep", const.UOM_SECONDS, "mdi:sleep", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_DEEP_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_DEEP_DURATION, "Deep sleep", const.UOM_SECONDS, "mdi:sleep", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_REM_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_REM_DURATION, "REM sleep", const.UOM_SECONDS, "mdi:sleep", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_WAKEUP_COUNT, const.MEASURE_TYPE_SLEEP_WAKUP_COUNT, "Wakeup count", const.UOM_FREQUENCY, "mdi:sleep-off", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_TOSLEEP_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_TOSLEEP_DURATION, "Time to sleep", const.UOM_SECONDS, "mdi:sleep", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_TOWAKEUP_DURATION_SECONDS, const.MEASURE_TYPE_SLEEP_TOWAKEUP_DURATION, "Time to wakeup", const.UOM_SECONDS, "mdi:sleep-off", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_HEART_RATE_AVERAGE, const.MEASURE_TYPE_SLEEP_HEART_RATE_AVERAGE, "Average heart rate", const.UOM_BEATS_PER_MINUTE, "mdi:heart-pulse", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_HEART_RATE_MIN, const.MEASURE_TYPE_SLEEP_HEART_RATE_MIN, "Minimum heart rate", const.UOM_BEATS_PER_MINUTE, "mdi:heart-pulse", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_HEART_RATE_MAX, const.MEASURE_TYPE_SLEEP_HEART_RATE_MAX, "Maximum heart rate", const.UOM_BEATS_PER_MINUTE, "mdi:heart-pulse", ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_RESPIRATORY_RATE_AVERAGE, const.MEASURE_TYPE_SLEEP_RESPIRATORY_RATE_AVERAGE, "Average respiratory rate", const.UOM_BREATHS_PER_MINUTE, None, ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_RESPIRATORY_RATE_MIN, const.MEASURE_TYPE_SLEEP_RESPIRATORY_RATE_MIN, "Minimum respiratory rate", const.UOM_BREATHS_PER_MINUTE, None, ), WithingsSleepSummaryAttribute( const.MEAS_SLEEP_RESPIRATORY_RATE_MAX, const.MEASURE_TYPE_SLEEP_RESPIRATORY_RATE_MAX, "Maximum respiratory rate", const.UOM_BREATHS_PER_MINUTE, None, ), ] WITHINGS_MEASUREMENTS_MAP = {attr.measurement: attr for attr in WITHINGS_ATTRIBUTES} class WithingsHealthSensor(Entity): """Implementation of a Withings sensor.""" def __init__( self, data_manager: WithingsDataManager, attribute: WithingsAttribute ) -> None: """Initialize the Withings sensor.""" self._data_manager = data_manager self._attribute = attribute self._state = None self._slug = self._data_manager.slug self._user_id = self._data_manager.api.get_credentials().user_id @property def name(self) -> str: """Return the name of the sensor.""" return f"Withings {self._attribute.measurement} {self._slug}" @property def unique_id(self) -> str: """Return a unique, HASS-friendly identifier for this entity.""" return "withings_{}_{}_{}".format( self._slug, self._user_id, slugify(self._attribute.measurement) ) @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self) -> str: """Return the unit of measurement of this entity, if any.""" return self._attribute.unit_of_measurement @property def icon(self) -> str: """Icon to use in the frontend, if any.""" return self._attribute.icon @property def device_state_attributes(self): """Get withings attributes.""" return self._attribute.__dict__ async def async_update(self) -> None: """Update the data.""" _LOGGER.debug( "Async update slug: %s, measurement: %s, user_id: %s", self._slug, self._attribute.measurement, self._user_id, ) if isinstance(self._attribute, WithingsMeasureAttribute): _LOGGER.debug("Updating measures state") await self._data_manager.update_measures() await self.async_update_measure(self._data_manager.measures) elif isinstance(self._attribute, WithingsSleepStateAttribute): _LOGGER.debug("Updating sleep state") await self._data_manager.update_sleep() await self.async_update_sleep_state(self._data_manager.sleep) elif isinstance(self._attribute, WithingsSleepSummaryAttribute): _LOGGER.debug("Updating sleep summary state") await self._data_manager.update_sleep_summary() await self.async_update_sleep_summary(self._data_manager.sleep_summary) async def async_update_measure(self, data) -> None: """Update the measures data.""" if data is None: _LOGGER.error("Provided data is None. Setting state to %s", None) self._state = None return measure_type = self._attribute.measure_type _LOGGER.debug( "Finding the unambiguous measure group with measure_type: %s", measure_type ) measure_groups = [ g for g in data if (not g.is_ambiguous() and g.get_measure(measure_type) is not None) ] if not measure_groups: _LOGGER.warning("No measure groups found, setting state to %s", None) self._state = None return _LOGGER.debug( "Sorting list of %s measure groups by date created (DESC)", len(measure_groups), ) measure_groups.sort(key=(lambda g: g.created), reverse=True) self._state = round(measure_groups[0].get_measure(measure_type), 4) async def async_update_sleep_state(self, data) -> None: """Update the sleep state data.""" if data is None: _LOGGER.error("Provided data is None. Setting state to %s", None) self._state = None return if not data.series: _LOGGER.warning("No sleep data, setting state to %s", None) self._state = None return series = sorted(data.series, key=lambda o: o.enddate, reverse=True) serie = series[0] if serie.state == const.MEASURE_TYPE_SLEEP_STATE_AWAKE: self._state = const.STATE_AWAKE elif serie.state == const.MEASURE_TYPE_SLEEP_STATE_LIGHT: self._state = const.STATE_LIGHT elif serie.state == const.MEASURE_TYPE_SLEEP_STATE_DEEP: self._state = const.STATE_DEEP elif serie.state == const.MEASURE_TYPE_SLEEP_STATE_REM: self._state = const.STATE_REM else: self._state = None async def async_update_sleep_summary(self, data) -> None: """Update the sleep summary data.""" if data is None: _LOGGER.error("Provided data is None. Setting state to %s", None) self._state = None return if not data.series: _LOGGER.warning("Sleep data has no series, setting state to %s", None) self._state = None return measurement = self._attribute.measurement measure_type = self._attribute.measure_type _LOGGER.debug("Determining total value for: %s", measurement) total = 0 for serie in data.series: if hasattr(serie, measure_type): total += getattr(serie, measure_type) self._state = round(total, 4)
#!/usr/bin/env python3 import importlib import inspect import logging import sys import synapseclient try: from synapseclient.core.exceptions import SynapseHTTPError except ModuleNotFoundError: from synapseclient.exceptions import SynapseHTTPError from . import config from . import example_filetype_format from . import process_functions logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class ValidationHelper(object): # Used for the kwargs in validate_single_file # Overload this per class _validate_kwargs = [] def __init__(self, syn, project_id, center, entitylist, format_registry=config.PROCESS_FILES, file_type=None): """A validator helper class for a center's files. Args: syn: a synapseclient.Synapse object project_id: Synapse Project ID where files are stored and configured. center: The participating center name. filepathlist: a list of file paths. format_registry: A dictionary mapping file format name to the format class. file_type: Specify file type to skip filename validation """ self._synapse_client = syn self._project = syn.get(project_id) self.entitylist = entitylist self.center = center self._format_registry = format_registry self.file_type = (self.determine_filetype() if file_type is None else file_type) def determine_filetype(self): """Gets the file type of the file by validating its filename Args: syn: Synapse object filepathlist: list of filepaths to center files Returns: str: File type of input files. None if no filetype found """ filetype = None # Loop through file formats for file_format in self._format_registry: validator = self._format_registry[file_format](self._synapse_client, self.center) try: filenames = [entity.name for entity in self.entitylist] filetype = validator.validateFilename(filenames) except AssertionError: continue # If valid filename, return file type. if filetype is not None: break return filetype def validate_single_file(self, **kwargs): """Validate a submitted file unit. Returns: message: errors and warnings valid: Boolean value of validation status """ if self.file_type not in self._format_registry: valid = False errors = "Your filename is incorrect! Please change your filename before you run the validator or specify --filetype if you are running the validator locally" warnings = "" else: mykwargs = {} for required_parameter in self._validate_kwargs: assert required_parameter in kwargs.keys(), \ "%s not in parameter list" % required_parameter mykwargs[required_parameter] = kwargs[required_parameter] validator_cls = self._format_registry[self.file_type] validator = validator_cls(self._synapse_client, self.center) filepathlist = [entity.path for entity in self.entitylist] valid, errors, warnings = validator.validate(filePathList=filepathlist, **mykwargs) # Complete error message message = collect_errors_and_warnings(errors, warnings) return (valid, message) class GenieValidationHelper(ValidationHelper): """A validator helper class for AACR Project Genie. """ _validate_kwargs = ['oncotree_link', 'nosymbol_check'] def collect_errors_and_warnings(errors, warnings): '''Aggregates error and warnings into a string. Args: errors: string of file errors, separated by new lines. warnings: string of file warnings, separated by new lines. Returns: message - errors + warnings ''' # Complete error message message = "----------------ERRORS----------------\n" if errors == "": message = "YOUR FILE IS VALIDATED!\n" logger.info(message) else: for error in errors.split("\n"): if error != '': logger.error(error) message += errors if warnings != "": for warning in warnings.split("\n"): if warning != '': logger.warning(warning) message += "-------------WARNINGS-------------\n" + warnings return message def get_config(syn, synid): """Gets Synapse database to Table mapping in dict Args: syn: Synapse connection synid: Synapse id of database mapping table Returns: dict: {'databasename': 'synid'} """ config = syn.tableQuery('SELECT * FROM {}'.format(synid)) configdf = config.asDataFrame() configdf.index = configdf['Database'] config_dict = configdf.to_dict() return config_dict['Id'] def _check_parentid_permission_container(syn, parentid): """Checks permission / container # TODO: Currently only checks if a user has READ permissions """ if parentid is not None: try: syn_ent = syn.get(parentid, downloadFile=False) # If not container, throw an assertion assert synapseclient.entity.is_container(syn_ent) except (SynapseHTTPError, AssertionError): raise ValueError( "Provided Synapse id must be your input folder Synapse id " "or a Synapse Id of a folder inside your input directory") def _check_center_input(center, center_list): """Checks center input Args: center: Center name center_list: List of allowed centers Raises: ValueError: If specify a center not part of the center list """ if center not in center_list: raise ValueError("Must specify one of these " f"centers: {', '.join(center_list)}") def _get_oncotreelink(syn, databasetosynid_mappingdf, oncotree_link=None): """ Gets oncotree link unless a link is specified by the user Args: syn: Synapse object databasetosynid_mappingdf: database to synid mapping oncotree_link: link to oncotree. Default is None Returns: oncotree link """ if oncotree_link is None: oncolink = databasetosynid_mappingdf.query( 'Database == "oncotreeLink"').Id oncolink_ent = syn.get(oncolink.iloc[0]) oncotree_link = oncolink_ent.externalURL return oncotree_link def _upload_to_synapse(syn, filepaths, valid, parentid=None): """ Upload to synapse if parentid is specified and valid Args: syn: Synapse object filepaths: List of file paths valid: Boolean value for validity of file parentid: Synapse id of container. Default is None """ if parentid is not None and valid: logger.info("Uploading file to {}".format(parentid)) for path in filepaths: file_ent = synapseclient.File(path, parent=parentid) ent = syn.store(file_ent) logger.info("Stored to {}".format(ent.id)) def collect_format_types(package_names): """Finds subclasses of the example_filetype_format.FileTypeFormat from a list of package names. Args: package_names: A list of Python package names as strings. Returns: A list of classes that are in the named packages and subclasses of example_filetype_format.FileTypeFormat """ file_format_list = [] for package_name in package_names: importlib.import_module(package_name) for cls in config.get_subclasses(example_filetype_format.FileTypeFormat): logger.debug("checking {}.".format(cls)) cls_module_name = cls.__module__ cls_pkg = cls_module_name.split('.')[0] if cls_pkg in package_names: file_format_list.append(cls) file_format_dict = config.make_format_registry_dict(file_format_list) return file_format_dict def _perform_validate(syn, args): """This is the main entry point to the genie command line tool.""" # Check parentid argparse _check_parentid_permission_container(syn, args.parentid) databasetosynid_mappingdf = process_functions.get_synid_database_mappingdf( syn, project_id=args.project_id) synid = databasetosynid_mappingdf.query('Database == "centerMapping"').Id center_mapping = syn.tableQuery('select * from {}'.format(synid.iloc[0])) center_mapping_df = center_mapping.asDataFrame() # Check center argparse _check_center_input(args.center, center_mapping_df.center.tolist()) args.oncotree_link = _get_oncotreelink(syn, databasetosynid_mappingdf, oncotree_link=args.oncotree_link) format_registry = collect_format_types(args.format_registry_packages) logger.debug("Using {} file formats.".format(format_registry)) entity_list = [synapseclient.File(name=filepath, path=filepath, parentId=None) for filepath in args.filepath] validator = GenieValidationHelper(syn=syn, project_id=args.project_id, center=args.center, entitylist=entity_list, format_registry=format_registry, file_type=args.filetype) mykwargs = dict(oncotree_link=args.oncotree_link, nosymbol_check=args.nosymbol_check, project_id=args.project_id) valid, message = validator.validate_single_file(**mykwargs) # Upload to synapse if parentid is specified and valid _upload_to_synapse(syn, args.filepath, valid, parentid=args.parentid)
# Copyright (c) 2011 Florian Mounier # Copyright (c) 2011 Anshuman Bhaduri # Copyright (c) 2012-2014 Tycho Andersen # Copyright (c) 2013 xarvh # Copyright (c) 2013 Craig Barnes # Copyright (c) 2014 Sean Vig # Copyright (c) 2014 Adi Sieker # Copyright (c) 2014 Sebastien Blot # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import pytest import subprocess import time import libqtile import libqtile.layout import libqtile.bar import libqtile.command import libqtile.widget import libqtile.manager import libqtile.config import libqtile.hook import libqtile.confreader from .conftest import whereis, BareConfig, no_xinerama class ManagerConfig(object): auto_fullscreen = True groups = [ libqtile.config.Group("a"), libqtile.config.Group("b"), libqtile.config.Group("c"), libqtile.config.Group("d") ] layouts = [ libqtile.layout.stack.Stack(num_stacks=1), libqtile.layout.stack.Stack(num_stacks=2), libqtile.layout.tile.Tile(ratio=0.5), libqtile.layout.max.Max() ] floating_layout = libqtile.layout.floating.Floating( float_rules=[dict(wmclass="xclock")]) keys = [ libqtile.config.Key( ["control"], "k", libqtile.command._Call([("layout", None)], "up") ), libqtile.config.Key( ["control"], "j", libqtile.command._Call([("layout", None)], "down") ), ] mouse = [] screens = [libqtile.config.Screen( bottom=libqtile.bar.Bar( [ libqtile.widget.GroupBox(), ], 20 ), )] main = None follow_mouse_focus = True manager_config = pytest.mark.parametrize("qtile", [ManagerConfig], indirect=True) @manager_config def test_screen_dim(qtile): # self.c.restart() qtile.testXclock() assert qtile.c.screen.info()["index"] == 0 assert qtile.c.screen.info()["x"] == 0 assert qtile.c.screen.info()["width"] == 800 assert qtile.c.group.info()["name"] == 'a' assert qtile.c.group.info()["focus"] == 'xclock' qtile.c.to_screen(1) qtile.testXeyes() assert qtile.c.screen.info()["index"] == 1 assert qtile.c.screen.info()["x"] == 800 assert qtile.c.screen.info()["width"] == 640 assert qtile.c.group.info()["name"] == 'b' assert qtile.c.group.info()["focus"] == 'xeyes' qtile.c.to_screen(0) assert qtile.c.screen.info()["index"] == 0 assert qtile.c.screen.info()["x"] == 0 assert qtile.c.screen.info()["width"] == 800 assert qtile.c.group.info()["name"] == 'a' assert qtile.c.group.info()["focus"] == 'xclock' @pytest.mark.parametrize("xephyr", [{"xoffset": 0}], indirect=True) @manager_config def test_clone_dim(qtile): self = qtile self.testXclock() assert self.c.screen.info()["index"] == 0 assert self.c.screen.info()["x"] == 0 assert self.c.screen.info()["width"] == 800 assert self.c.group.info()["name"] == 'a' assert self.c.group.info()["focus"] == 'xclock' assert len(self.c.screens()) == 1 @manager_config def test_to_screen(qtile): self = qtile assert self.c.screen.info()["index"] == 0 self.c.to_screen(1) assert self.c.screen.info()["index"] == 1 self.testWindow("one") self.c.to_screen(0) self.testWindow("two") ga = self.c.groups()["a"] assert ga["windows"] == ["two"] gb = self.c.groups()["b"] assert gb["windows"] == ["one"] assert self.c.window.info()["name"] == "two" self.c.next_screen() assert self.c.window.info()["name"] == "one" self.c.next_screen() assert self.c.window.info()["name"] == "two" self.c.prev_screen() assert self.c.window.info()["name"] == "one" @manager_config def test_togroup(qtile): self = qtile self.testWindow("one") with pytest.raises(libqtile.command.CommandError): self.c.window.togroup("nonexistent") assert self.c.groups()["a"]["focus"] == "one" self.c.window.togroup("a") assert self.c.groups()["a"]["focus"] == "one" self.c.window.togroup("b") assert self.c.groups()["b"]["focus"] == "one" assert self.c.groups()["a"]["focus"] is None self.c.to_screen(1) self.c.window.togroup("c") assert self.c.groups()["c"]["focus"] == "one" @manager_config def test_resize(qtile): self = qtile self.c.screen[0].resize(x=10, y=10, w=100, h=100) for _ in range(10): time.sleep(0.1) d = self.c.screen[0].info() if d["width"] == d["height"] == 100: break else: raise AssertionError("Screen didn't resize") assert d["x"] == d["y"] == 10 @no_xinerama def test_minimal(qtile): assert qtile.c.status() == "OK" @manager_config @no_xinerama def test_events(qtile): assert qtile.c.status() == "OK" # FIXME: failing test disabled. For some reason we don't seem # to have a keymap in Xnest or Xephyr 99% of the time. @manager_config @no_xinerama def test_keypress(qtile): self = qtile self.testWindow("one") self.testWindow("two") v = self.c.simulate_keypress(["unknown"], "j") assert v.startswith("Unknown modifier") assert self.c.groups()["a"]["focus"] == "two" self.c.simulate_keypress(["control"], "j") assert self.c.groups()["a"]["focus"] == "one" @manager_config @no_xinerama def test_spawn(qtile): # Spawn something with a pid greater than init's assert int(qtile.c.spawn("true")) > 1 @manager_config @no_xinerama def test_spawn_list(qtile): # Spawn something with a pid greater than init's assert int(qtile.c.spawn(["echo", "true"])) > 1 @manager_config @no_xinerama def test_kill_window(qtile): qtile.testWindow("one") qtile.testwindows = [] qtile.c.window[qtile.c.window.info()["id"]].kill() qtile.c.sync() for _ in range(20): time.sleep(0.1) if not qtile.c.windows(): break else: raise AssertionError("Window did not die...") @manager_config @no_xinerama def test_kill_other(qtile): self = qtile self.c.group.setlayout("tile") one = self.testWindow("one") assert self.c.window.info()["width"] == 798 assert self.c.window.info()["height"] == 578 two = self.testWindow("two") assert self.c.window.info()["name"] == "two" assert self.c.window.info()["width"] == 398 assert self.c.window.info()["height"] == 578 assert len(self.c.windows()) == 2 self.kill_window(one) for _ in range(10): time.sleep(0.1) if len(self.c.windows()) == 1: break else: raise AssertionError("window did not die") assert self.c.window.info()["name"] == "two" assert self.c.window.info()["width"] == 798 assert self.c.window.info()["height"] == 578 @manager_config @no_xinerama def test_regression_groupswitch(qtile): self = qtile self.c.group["c"].toscreen() self.c.group["d"].toscreen() assert self.c.groups()["c"]["screen"] is None @manager_config @no_xinerama def test_next_layout(qtile): self = qtile self.testWindow("one") self.testWindow("two") assert len(self.c.layout.info()["stacks"]) == 1 self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.c.next_layout() self.c.next_layout() self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 1 @manager_config @no_xinerama def test_setlayout(qtile): self = qtile assert not self.c.layout.info()["name"] == "max" self.c.group.setlayout("max") assert self.c.layout.info()["name"] == "max" @manager_config @no_xinerama def test_adddelgroup(qtile): self = qtile self.testWindow("one") self.c.addgroup("dummygroup") self.c.addgroup("testgroup") assert "testgroup" in self.c.groups().keys() self.c.window.togroup("testgroup") self.c.delgroup("testgroup") assert "testgroup" not in self.c.groups().keys() # Assert that the test window is still a member of some group. assert sum(len(i["windows"]) for i in self.c.groups().values()) for i in list(self.c.groups().keys())[:-1]: self.c.delgroup(i) with pytest.raises(libqtile.command.CommandException): self.c.delgroup(list(self.c.groups().keys())[0]) @manager_config @no_xinerama def test_delgroup(qtile): self = qtile self.testWindow("one") for i in ['a', 'd', 'c']: self.c.delgroup(i) with pytest.raises(libqtile.command.CommandException): self.c.delgroup('b') @manager_config @no_xinerama def test_nextprevgroup(qtile): self = qtile start = self.c.group.info()["name"] ret = self.c.screen.next_group() assert self.c.group.info()["name"] != start assert self.c.group.info()["name"] == ret ret = self.c.screen.prev_group() assert self.c.group.info()["name"] == start @manager_config @no_xinerama def test_toggle_group(qtile): self = qtile self.c.group["a"].toscreen() self.c.group["b"].toscreen() self.c.screen.toggle_group("c") assert self.c.group.info()["name"] == "c" self.c.screen.toggle_group("c") assert self.c.group.info()["name"] == "b" self.c.screen.toggle_group() assert self.c.group.info()["name"] == "c" @manager_config @no_xinerama def test_inspect_xeyes(qtile): self = qtile self.testXeyes() assert self.c.window.inspect() @manager_config @no_xinerama def test_inspect_xterm(qtile): self = qtile self.testXterm() assert self.c.window.inspect()["wm_class"] @manager_config @no_xinerama def test_static(qtile): self = qtile self.testXeyes() self.testWindow("one") self.c.window[self.c.window.info()["id"]].static(0, 0, 0, 100, 100) @manager_config @no_xinerama def test_match(qtile): self = qtile self.testXeyes() assert self.c.window.match(wname="xeyes") assert not self.c.window.match(wname="nonexistent") @manager_config @no_xinerama def test_default_float(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXclock() assert self.c.group.info()['focus'] == 'xclock' assert self.c.window.info()['width'] == 164 assert self.c.window.info()['height'] == 164 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 assert self.c.window.info()['floating'] is True self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 164 assert self.c.window.info()['height'] == 164 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 assert self.c.window.info()['floating'] is True @manager_config @no_xinerama def test_last_float_size(qtile): """ When you re-float something it would be preferable to have it use the previous float size """ self = qtile self.testXeyes() assert self.c.window.info()['name'] == 'xeyes' assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 # float and it moves self.c.window.toggle_floating() assert self.c.window.info()['width'] == 150 assert self.c.window.info()['height'] == 100 # resize self.c.window.set_size_floating(50, 90, 42, 42) assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 # back to not floating self.c.window.toggle_floating() assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 # float again, should use last float size self.c.window.toggle_floating() assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 # make sure it works through min and max self.c.window.toggle_maximize() self.c.window.toggle_minimize() self.c.window.toggle_minimize() self.c.window.toggle_floating() assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 @manager_config @no_xinerama def test_float_max_min_combo(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 assert self.c.window.info()['floating'] is False self.c.window.toggle_maximize() assert self.c.window.info()['floating'] is True assert self.c.window.info()['maximized'] is True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] is True assert self.c.window.info()['minimized'] is True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_floating() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] is False assert self.c.window.info()['minimized'] is False assert self.c.window.info()['maximized'] is False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @manager_config @no_xinerama def test_toggle_fullscreen(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'width': 150, 'height': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_fullscreen() assert self.c.window.info()['floating'] is True assert self.c.window.info()['maximized'] is False assert self.c.window.info()['fullscreen'] is True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 600 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_fullscreen() assert self.c.window.info()['floating'] is False assert self.c.window.info()['maximized'] is False assert self.c.window.info()['fullscreen'] is False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @manager_config @no_xinerama def test_toggle_max(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'width': 150, 'height': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_maximize() assert self.c.window.info()['floating'] is True assert self.c.window.info()['maximized'] is True assert self.c.window.info()['width'] == 800 assert self.c.window.info()['height'] == 580 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_maximize() assert self.c.window.info()['floating'] is False assert self.c.window.info()['maximized'] is False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @manager_config @no_xinerama def test_toggle_min(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['float_info'] == { 'y': 0, 'x': 400, 'width': 150, 'height': 100} assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] is True assert self.c.window.info()['minimized'] is True assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 self.c.window.toggle_minimize() assert self.c.group.info()['focus'] == 'xeyes' assert self.c.window.info()['floating'] is False assert self.c.window.info()['minimized'] is False assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 400 assert self.c.window.info()['y'] == 0 @manager_config @no_xinerama def test_toggle_floating(qtile): self = qtile self.testXeyes() assert self.c.window.info()['floating'] is False self.c.window.toggle_floating() assert self.c.window.info()['floating'] is True self.c.window.toggle_floating() assert self.c.window.info()['floating'] is False self.c.window.toggle_floating() assert self.c.window.info()['floating'] is True # change layout (should still be floating) self.c.next_layout() assert self.c.window.info()['floating'] is True @manager_config @no_xinerama def test_floating_focus(qtile): self = qtile # change to 2 col stack self.c.next_layout() assert len(self.c.layout.info()["stacks"]) == 2 self.testXterm() self.testXeyes() # self.testWindow("one") assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 self.c.window.toggle_floating() self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['name'] == 'xeyes' assert self.c.group.info()['focus'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # change focus to xterm self.c.group.next_window() assert self.c.window.info()['width'] == 398 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['name'] != 'xeyes' assert self.c.group.info()['focus'] != 'xeyes' # check what stack thinks is focus # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # focus back to xeyes self.c.group.next_window() assert self.c.window.info()['name'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # now focusing via layout is borked (won't go to float) self.c.layout.up() assert self.c.window.info()['name'] != 'xeyes' self.c.layout.up() assert self.c.window.info()['name'] != 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] # focus back to xeyes self.c.group.next_window() assert self.c.window.info()['name'] == 'xeyes' # check what stack thinks is focus assert [x['current'] for x in self.c.layout.info()['stacks']] == [0, 0] @manager_config @no_xinerama def test_move_floating(qtile): self = qtile self.testXeyes() # self.testWindow("one") assert self.c.window.info()['width'] == 798 assert self.c.window.info()['height'] == 578 assert self.c.window.info()['x'] == 0 assert self.c.window.info()['y'] == 0 self.c.window.toggle_floating() assert self.c.window.info()['floating'] is True self.c.window.move_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 150 assert self.c.window.info()['height'] == 100 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.set_size_floating(50, 90, 42, 42) assert self.c.window.info()['width'] == 50 assert self.c.window.info()['height'] == 90 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.resize_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 60 assert self.c.window.info()['height'] == 110 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 self.c.window.set_size_floating(10, 20, 42, 42) assert self.c.window.info()['width'] == 10 assert self.c.window.info()['height'] == 20 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 # change layout (x, y should be same) self.c.next_layout() assert self.c.window.info()['width'] == 10 assert self.c.window.info()['height'] == 20 assert self.c.window.info()['x'] == 10 assert self.c.window.info()['y'] == 20 @manager_config @no_xinerama def test_screens(qtile): self = qtile assert len(self.c.screens()) @manager_config @no_xinerama def test_rotate(qtile): self = qtile self.testWindow("one") s = self.c.screens()[0] height, width = s["height"], s["width"] subprocess.call( [ "xrandr", "--output", "default", "-display", self.display, "--rotate", "left" ], stderr=subprocess.PIPE, stdout=subprocess.PIPE ) for _ in range(10): time.sleep(0.1) s = self.c.screens()[0] if s["width"] == height and s["height"] == width: break else: raise AssertionError("Screen did not rotate") # TODO: see note on test_resize @manager_config @no_xinerama def test_resize_(qtile): self = qtile self.testWindow("one") subprocess.call( [ "xrandr", "-s", "480x640", "-display", self.display ] ) for _ in range(10): time.sleep(0.1) d = self.c.screen.info() if d["width"] == 480 and d["height"] == 640: break else: raise AssertionError("Screen did not resize") @manager_config @no_xinerama def test_focus_stays_on_layout_switch(qtile): qtile.testWindow("one") qtile.testWindow("two") # switch to a double stack layout qtile.c.next_layout() # focus on a different window than the default qtile.c.layout.next() # toggle the layout qtile.c.next_layout() qtile.c.prev_layout() assert qtile.c.window.info()['name'] == 'one' @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_xeyes(qtile): qtile.testXeyes() @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_xterm(qtile): qtile.testXterm() @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_xterm_kill_window(qtile): self = qtile self.testXterm() self.c.window.kill() self.c.sync() for _ in range(10): time.sleep(0.1) if not self.c.windows(): break else: raise AssertionError("xterm did not die") @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_map_request(qtile): self = qtile self.testWindow("one") info = self.c.groups()["a"] assert "one" in info["windows"] assert info["focus"] == "one" self.testWindow("two") info = self.c.groups()["a"] assert "two" in info["windows"] assert info["focus"] == "two" @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_unmap(qtile): self = qtile one = self.testWindow("one") two = self.testWindow("two") three = self.testWindow("three") info = self.c.groups()["a"] assert info["focus"] == "three" assert len(self.c.windows()) == 3 self.kill_window(three) assert len(self.c.windows()) == 2 info = self.c.groups()["a"] assert info["focus"] == "two" self.kill_window(two) assert len(self.c.windows()) == 1 info = self.c.groups()["a"] assert info["focus"] == "one" self.kill_window(one) assert len(self.c.windows()) == 0 info = self.c.groups()["a"] assert info["focus"] is None @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_setgroup(qtile): self = qtile self.testWindow("one") self.c.group["b"].toscreen() self.groupconsistency() if len(self.c.screens()) == 1: assert self.c.groups()["a"]["screen"] is None else: assert self.c.groups()["a"]["screen"] == 1 assert self.c.groups()["b"]["screen"] == 0 self.c.group["c"].toscreen() self.groupconsistency() assert self.c.groups()["c"]["screen"] == 0 @pytest.mark.parametrize("qtile", [BareConfig, ManagerConfig], indirect=True) @pytest.mark.parametrize("xephyr", [{"xinerama": True}, {"xinerama": False}], indirect=True) def test_unmap_noscreen(qtile): self = qtile self.testWindow("one") pid = self.testWindow("two") assert len(self.c.windows()) == 2 self.c.group["c"].toscreen() self.groupconsistency() self.c.status() assert len(self.c.windows()) == 2 self.kill_window(pid) assert len(self.c.windows()) == 1 assert self.c.groups()["a"]["focus"] == "one" def test_init(): with pytest.raises(libqtile.manager.QtileError): libqtile.config.Key([], "unknown", libqtile.command._Call("base", None, "foo")) with pytest.raises(libqtile.manager.QtileError): libqtile.config.Key(["unknown"], "x", libqtile.command._Call("base", None, "foo")) class TScreen(libqtile.config.Screen): def setGroup(self, x, save_prev=True): pass def test_dx(): s = TScreen(left=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dx == 10 def test_dwidth(): s = TScreen(left=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dwidth == 90 s.right = libqtile.bar.Gap(10) assert s.dwidth == 80 def test_dy(): s = TScreen(top=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dy == 10 def test_dheight(): s = TScreen(top=libqtile.bar.Gap(10)) s._configure(None, 0, 0, 0, 100, 100, None) assert s.dheight == 90 s.bottom = libqtile.bar.Gap(10) assert s.dheight == 80 class _Config(object): groups = [ libqtile.config.Group("a"), libqtile.config.Group("b"), libqtile.config.Group("c"), libqtile.config.Group("d") ] layouts = [ libqtile.layout.stack.Stack(num_stacks=1), libqtile.layout.stack.Stack(num_stacks=2) ] floating_layout = libqtile.layout.floating.Floating() keys = [ libqtile.config.Key( ["control"], "k", libqtile.command._Call([("layout", None)], "up") ), libqtile.config.Key( ["control"], "j", libqtile.command._Call([("layout", None)], "down") ), ] mouse = [] screens = [libqtile.config.Screen( bottom=libqtile.bar.Bar( [ libqtile.widget.GroupBox(), ], 20 ), )] auto_fullscreen = True class ClientNewStaticConfig(_Config): @staticmethod def main(c): def client_new(c): c.static(0) libqtile.hook.subscribe.client_new(client_new) clientnew_config = pytest.mark.parametrize("qtile", [ClientNewStaticConfig], indirect=True) @clientnew_config def test_minimal_(qtile): self = qtile a = self.testWindow("one") self.kill_window(a) @pytest.mark.skipif(whereis("gkrellm") is None, reason="gkrellm not found") @clientnew_config def test_gkrellm(qtile): qtile.testGkrellm() time.sleep(0.1) class ToGroupConfig(_Config): @staticmethod def main(c): def client_new(c): c.togroup("d") libqtile.hook.subscribe.client_new(client_new) togroup_config = pytest.mark.parametrize("qtile", [ToGroupConfig], indirect=True) @togroup_config def test_minimal__(qtile): qtile.c.group["d"].toscreen() qtile.c.group["a"].toscreen() a = qtile.testWindow("one") assert len(qtile.c.group["d"].info()["windows"]) == 1 qtile.kill_window(a) @manager_config def test_colorPixel(qtile): # test for #394 qtile.c.eval("self.colorPixel(\"ffffff\")")
import random import string import typing # noqa import pyparsing as pp import mitmproxy.net.websockets from mitmproxy.utils import strutils from . import base, generators, actions, message NESTED_LEADER = b"pathod!" class WF(base.CaselessLiteral): TOK = "wf" class OpCode(base.IntField): names = { "continue": mitmproxy.net.websockets.OPCODE.CONTINUE, "text": mitmproxy.net.websockets.OPCODE.TEXT, "binary": mitmproxy.net.websockets.OPCODE.BINARY, "close": mitmproxy.net.websockets.OPCODE.CLOSE, "ping": mitmproxy.net.websockets.OPCODE.PING, "pong": mitmproxy.net.websockets.OPCODE.PONG, } # type: typing.Dict[str, int] max = 15 preamble = "c" class Body(base.Value): preamble = "b" class RawBody(base.Value): unique_name = "body" preamble = "r" class Fin(base.Boolean): name = "fin" class RSV1(base.Boolean): name = "rsv1" class RSV2(base.Boolean): name = "rsv2" class RSV3(base.Boolean): name = "rsv3" class Mask(base.Boolean): name = "mask" class Key(base.FixedLengthValue): preamble = "k" length = 4 class KeyNone(base.CaselessLiteral): unique_name = "key" TOK = "knone" class Length(base.Integer): bounds = (0, 1 << 64) preamble = "l" class Times(base.Integer): preamble = "x" COMPONENTS = [ OpCode, Length, # Bit flags Fin, RSV1, RSV2, RSV3, Mask, actions.PauseAt, actions.DisconnectAt, actions.InjectAt, KeyNone, Key, Times, Body, RawBody, ] class WebsocketFrame(message.Message): components = COMPONENTS # type: typing.List[typing.Type[base._Component]] logattrs = ["body"] # Used for nested frames unique_name = "body" @property def actions(self): return self.toks(actions._Action) @property def body(self): return self.tok(Body) @property def rawbody(self): return self.tok(RawBody) @property def opcode(self): return self.tok(OpCode) @property def fin(self): return self.tok(Fin) @property def rsv1(self): return self.tok(RSV1) @property def rsv2(self): return self.tok(RSV2) @property def rsv3(self): return self.tok(RSV3) @property def mask(self): return self.tok(Mask) @property def key(self): return self.tok(Key) @property def knone(self): return self.tok(KeyNone) @property def times(self): return self.tok(Times) @property def toklength(self): return self.tok(Length) @classmethod def expr(cls): parts = [i.expr() for i in cls.components] atom = pp.MatchFirst(parts) resp = pp.And( [ WF.expr(), base.Sep, pp.ZeroOrMore(base.Sep + atom) ] ) resp = resp.setParseAction(cls) return resp @property def nested_frame(self): return self.tok(NestedFrame) def resolve(self, settings, msg=None): tokens = self.tokens[:] if not self.mask and settings.is_client: tokens.append( Mask(True) ) if not self.knone and self.mask and self.mask.value and not self.key: allowed_chars = string.ascii_letters + string.digits k = ''.join([allowed_chars[random.randrange(0, len(allowed_chars))] for i in range(4)]) tokens.append( Key(base.TokValueLiteral(k)) ) return self.__class__( [i.resolve(settings, self) for i in tokens] ) def values(self, settings): if self.body: bodygen = self.body.value.get_generator(settings) length = len(self.body.value.get_generator(settings)) elif self.rawbody: bodygen = self.rawbody.value.get_generator(settings) length = len(self.rawbody.value.get_generator(settings)) elif self.nested_frame: bodygen = NESTED_LEADER + strutils.always_bytes(self.nested_frame.parsed.spec()) length = len(bodygen) else: bodygen = None length = 0 if self.toklength: length = int(self.toklength.value) frameparts = dict( payload_length=length ) if self.mask and self.mask.value: frameparts["mask"] = True if self.knone: frameparts["masking_key"] = None elif self.key: key = self.key.values(settings)[0][:] frameparts["masking_key"] = key for i in ["opcode", "fin", "rsv1", "rsv2", "rsv3", "mask"]: v = getattr(self, i, None) if v is not None: frameparts[i] = v.value frame = mitmproxy.net.websockets.FrameHeader(**frameparts) vals = [bytes(frame)] if bodygen: if frame.masking_key and not self.rawbody: masker = mitmproxy.net.websockets.Masker(frame.masking_key) vals.append( generators.TransformGenerator( bodygen, masker.mask ) ) else: vals.append(bodygen) return vals def spec(self): return ":".join([i.spec() for i in self.tokens]) class NestedFrame(message.NestedMessage): preamble = "f" nest_type = WebsocketFrame class WebsocketClientFrame(WebsocketFrame): components = COMPONENTS + [NestedFrame]
# # Copyright (c) 2012 Atis Elsts # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .structures import * # Arithmetic functions -- "sum", "plus" (add), "minus" (subtract), "times" (multiply), "divide", "modulo", "difference", "abs", "neg", "invert", "square", "sqrt", "power" # Data aggregation -- "min", "max", "average" (avg), "stdev" (std), "ewma", "changed" # Signal processing -- "sharpen" (contrast), "smoothen" (blur), "map" # Filtering -- "match", "filterRange", "filterEqual", "filterNotEqual", "filterLess", "filterLessOrEqual", "filterMore", "filterMoreOrEqual", "invertfilter" # Subset selection & special purpose -- "take", "tuple", "sync", "if" # this global dictionary holds all functions by name functions = {} class SealFunction(object): def __init__(self, name): global functions functions[name.lower()] = self self.name = name # parameters self.aggregate = False # can have subset-selection or "tuple" function as argument? self.special = False # special-purpose? self.alias = None # if set, can be referred by this name in SEAL code self.group = "" # function class (documentation only) self.repeatedArguments = False # has this function variable number of arguments? self.arguments = [] def getArgumentByName(self, name): for arg in self.arguments: if arg.name.lower() == name: return arg return None def getArgumentByPosition(self, pos): if pos < len(self.arguments): return self.arguments[pos] return None def declaration(self): result = self.name result += "(" result += ", ".join(map(str, self.arguments)) result += ")" return result class SealArgument(object): def __init__(self, name, constantOnly = False, defaultValue = None, repeated = False): self.name = name # value must be known at compile time? i.e. not a sensor self.constantOnly = constantOnly # optional arguments can be skipped; they must have default values self.defaultValue = defaultValue # some functions (e.g. "sum(1, 2, 3)") can have arguments repatead zero to many times self.repeated = repeated def __str__(self): return self.name # -------------------------------------------------- f = SealFunction("sum") f.group = "arithmetic" # or aggregate f.aggregate = True f.repeatedArguments = True f.arguments.append(SealArgument("value", repeated = True)) f = SealFunction("plus") f.group = "arithmetic" f.alias = "add" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("minus") f.group = "arithmetic" f.alias = "subtract" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("times") f.group = "arithmetic" f.alias = "multiply" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("divide") f.group = "arithmetic" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("modulo") f.group = "arithmetic" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("difference") f.group = "arithmetic" f.arguments.append(SealArgument("arg1")) f.arguments.append(SealArgument("arg2")) f = SealFunction("abs") f.group = "arithmetic" f.arguments.append(SealArgument("value")) f = SealFunction("neg") f.group = "arithmetic" f.arguments.append(SealArgument("value")) f = SealFunction("invert") f.group = "arithmetic" f.arguments.append(SealArgument("value")) f = SealFunction("square") f.group = "arithmetic" f.arguments.append(SealArgument("value")) f = SealFunction("sqrt") f.group = "arithmetic" f.arguments.append(SealArgument("value")) f = SealFunction("power") f.group = "arithmetic" f.arguments.append(SealArgument("base")) f.arguments.append(SealArgument("exponent")) # -------------------------------------------------- f = SealFunction("min") f.group = "aggregation" f.aggregate = True f.repeatedArguments = True f.arguments.append(SealArgument("value", repeated = True)) f = SealFunction("max") f.group = "aggregation" f.aggregate = True f.repeatedArguments = True f.arguments.append(SealArgument("value", repeated = True)) f = SealFunction("average") f.group = "aggregation" f.aggregate = True f.alias = "avg" f.arguments.append(SealArgument("value")) f = SealFunction("stdev") f.group = "aggregation" f.aggregate = True f.alias = "std" f.arguments.append(SealArgument("value")) f = SealFunction("variance") f.group = "aggregation" f.aggregate = True f.arguments.append(SealArgument("value")) f = SealFunction("ewma") # exponentially weighted moving average f.group = "aggregation" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("alpha", constantOnly = True, defaultValue = Value(0.1))) f = SealFunction("changed") f.group = "aggregation" f.aggregate = True f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("milliseconds", constantOnly = True, defaultValue = Value(10000))) # -------------------------------------------------- f = SealFunction("map") f.group = "signal processing" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("fromRangeLow", constantOnly = True)) f.arguments.append(SealArgument("fromRangeHigh", constantOnly = True)) f.arguments.append(SealArgument("toRangeLow", constantOnly = True)) f.arguments.append(SealArgument("toRangeHigh", constantOnly = True)) f = SealFunction("sharpen") f.group = "signal processing" f.alias = "contrast" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("numSamples", constantOnly = True, defaultValue = Value(3))) f.arguments.append(SealArgument("weight", constantOnly = True, defaultValue = Value(1))) f = SealFunction("smoothen") f.group = "signal processing" f.alias = "blur" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("numSamples", constantOnly = True, defaultValue = Value(3))) f.arguments.append(SealArgument("weight", constantOnly = True, defaultValue = Value(1))) # -------------------------------------------------- f = SealFunction("match") f.group = "filtering" f.arguments.append(SealArgument("value")) # XXX: only a string (pattern name) is allowed. this is not validated ATM f.arguments.append(SealArgument("pattern")) f = SealFunction("filterRange") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("thresholdMin", constantOnly = True)) f.arguments.append(SealArgument("thresholdMax", constantOnly = True)) f = SealFunction("filterEqual") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("filterNotEqual") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("filterLess") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("filterLessOrEqual") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("filterMore") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("filterMoreOrEqual") f.group = "filtering" f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("threshold", constantOnly = True)) f = SealFunction("invertFilter") f.group = "filtering" f.arguments.append(SealArgument("filteredValue")) # -------------------------------------------------- # Take a number of single sensor values f = SealFunction("take") f.group = "special" f.special = True f.arguments.append(SealArgument("value")) f.arguments.append(SealArgument("numberToTake", constantOnly = True)) # time in milliseconds; if not set, time is not taken in account f.arguments.append(SealArgument("timeToTake", constantOnly = True, defaultValue = Value(0))) # Create a tuple with a number of different sensor values f = SealFunction("tuple") f.group = "special" f.special = True f.repeatedArguments = True f.arguments.append(SealArgument("value", repeated = True)) # Synchronize sensor reading (must be at the top level) f = SealFunction("sync") f.group = "special" f.special = True f.repeatedArguments = True f.arguments.append(SealArgument("value", repeated = True)) # Logical IF (like in Excel) f = SealFunction("if") f.group = "special" f.special = True f.arguments.append(SealArgument("condition")) f.arguments.append(SealArgument("ifPart")) f.arguments.append(SealArgument("elsePart", defaultValue = Value(0))) # -------------------------------------------------- def resolveAlias(funName): funName = funName.lower() if funName == "add": return "plus" if funName == "subtract": return "minus" if funName == "multiply": return "times" if funName == "avg": return "average" if funName == "std": return "stdev" if funName == "contrast": return "sharpen" if funName == "blur": return "smoothen" return funName def validateFunction(functionTree): funName = functionTree.function fun = functions.get(resolveAlias(funName)) if fun is None: return (False, "Unhandled function {}()\n".format(funName)) givenArgs = {} for i in range(len(functionTree.arguments)): givenArg = functionTree.arguments[i] if givenArg.parameterName: formalArg = fun.getArgumentByName(givenArg.parameterName) if formalArg == None: return (False, "Unknown named argument {} for function {}\n".format( givenArg.parameterName, fun.declaration())) else: # TODO? do not allow to mix the args (i.e. named args must always be at the end) formalArg = fun.getArgumentByPosition(i) if formalArg == None: if fun.repeatedArguments: continue return (False, "Too many arguments for function {}\n".format( fun.declaration())) if formalArg.name not in givenArgs: givenArgs[formalArg.name] = [givenArg] else: givenArgs[formalArg.name].append(givenArg) i = 0 for f in fun.arguments: i += 1 g = givenArgs.get(f.name) if g is None: if not f.defaultValue: return (False, "{} argument ('{}') of function {} is not optional\n".format( toTitleCase(orderNumToString(i)), f.name, fun.declaration())) # append the default value to real arguments functionTree.arguments.append(FunctionTree(f.defaultValue, [])) continue if len(g) > 1: if not f.repeated: return (False, "{} argument ('{}') of function {} repeated more than once\n".format( toTitleCase(orderNumToString(i)), f.name, fun.declaration())) # OK, argument expected and found. check its value. if f.constantOnly: for v in g: if v.asConstant() is None: return (False, "{} argument ('{}') of function {} is expected to be a constant!\n".format( toTitleCase(orderNumToString(i)), f.name, fun.declaration())) return (True, None)
class BSTree: def __init__(self, value, comp): """ Creates a new binary search tree (BST) data structure Args: value: The data of the root node of the BST comp(new_element, root): The comparison function for maintaining order Operations: insert: Insert a new element into the BST search: Find an element in the BST remove: Remove an element from the BST find_min: Find the minimum value in the BST find_max: Find the maximum value in the BST pre_order: Gets the pre-order traversal in_order: Gets the in-order traversal post_order: Gets the post-order traversal """ self.comp = comp self.data = value self.parent = None self.left = None self.right = None def insert(self, element, visual = False, visual_string = "Insertion:\t"): """ Inserts an element into the Binary Search Tree with n elements Args: element: The new value to be inserted visual: Set to True for additional screen output Time: O(log n) [Average Case] O(n) [Worst Case] Explanation: Recursively attempt to insert into left subtree or right subtree """ if visual: visual_string += " {}".format(self.data) if self.comp(element, self.data): if self.left == None: if visual: print(visual_string + "L --> {}".format(element)) self.left = BSTree(element, self.comp) self.left.parent = self else: if visual: visual_string += "L -->" self.left.insert(element, visual, visual_string) else: if self.right == None: if visual: print(visual_string + "R --> {}".format(element)) self.right = BSTree(element, self.comp) self.right.parent = self else: if visual: visual_string += "R -->" self.right.insert(element, visual, visual_string) def search(self, element, visual = False, visual_string = "Searching:\t"): """ Finds an element in the Binary Search Tree with n elements Args: element: The new value to be inserted visual: Set to True for additional screen output Time: O(log n) [Average Case] O(n) [Worst Case] Returns: The BST subtree with root containing the element if found, None otherwise Explanation: Recursively attempt to find element in left subtree or right subtree """ visual_string += " {}".format(self.data) if self.data == element: if visual: print(visual_string + " [Found]") return self elif self.comp(element, self.data): if self.left != None: if visual: visual_string += "L -->" self.left.search(element, visual, visual_string) else: if visual: print(visual_string + " [Not Found]") return None else: if self.right != None: if visual: visual_string += "R -->" self.right.search(element, visual, visual_string) else: if visual: print(visual_string + " [Not Found]") return None def find_leftmost(self, visual = False): """ Finds the "left-most" (minimum) element in the Binary Search Tree with n elements Args: visual: Set to True for additional screen output Time: O(log n) [Average Case] O(n) [Worst Case] Returns: The left-most element Explanation: Recursively traverse down the left subtree """ if self.left == None: if visual: print("Minimum value {} found".format(self.data)) return self.data else: return self.left.find_leftmost(visual) def find_rightmost(self, visual = False): """ Finds the "right-most" (maximum) element in the Binary Search Tree with n elements Args: visual: Set to True for additional screen output Time: O(log n) [Average Case] O(n) [Worst Case] Returns: The right-most element Explanation: Recursively traverse down the right subtree """ if self.right == None: if visual: print("Maximum value {} found".format(self.data)) return self.data else: return self.right.find_rightmost(visual) def remove(self, element, visual = False, visual_string = "Removal:\t"): """ Removes an element from a Binary Search Tree with n elements Args: element: The target element to remove visual: Set to True for additional screen output Time: O(log n) [Average Case] O(n) [Worst Case] Explanation: 1) Find the element to be removed in the BST 2) If node has no children, remove the node 3) If node has only 1 child, replace the node with its child 4) If node has 2 children, replace node value with in-order successor, then recursively remove the node containing the in-order successor """ if visual: visual_string += " {}".format(self.data) if self.data == element: if self.left == None or self.right == None: # At most 1 child child = self.left if self.right == None else self.right if self.parent.left == self: self.parent.left = child else: self.parent.right = child if visual: print(visual_string + " [Removed]") else: # 2 Child -> replace with in-order successor self.data = self.right.find_leftmost() if visual: visual_string += "R [Replaced with {}] -->".format(self.data) self.right.remove(self.data, visual, visual_string) else: if self.comp(element, self.data): if self.left != None: if visual: visual_string += "L -->" self.left.remove(element, visual, visual_string) elif visual: print("{} not found in BST".format(element)) else: if self.right != None: if visual: visual_string += "R -->" self.right.remove(element, visual, visual_string) elif visual: print("{} not found in BST".format(element)) def pre_order(self, result = []): """ Generates the pre-order traversal sequence for a given BST Time: O(n) Returns: A list containing the pre-order traversal of the BST Explanation: 1) Append data of root 2) Repeat on left subtree 3) Repeat on right subtree """ result.append(self.data) if self.left != None: result = self.left.pre_order(result) if self.right != None: result = self.right.pre_order(result) return result def in_order(self, result = []): """ Generates the in-order traversal sequence for a given BST. Time: O(n) Returns: A list containing the in-order traversal of the BST Explanation: 1) Repeat on left subtree 2) Append data of root 3) Repeat on right subtree Note: Will be sorted based on comparison function of BST """ if self.left != None: result = self.left.in_order(result) result.append(self.data) if self.right != None: result = self.right.in_order(result) return result def post_order(self, result = []): """ Generates the post-order traversal sequence for a given BST. Time: O(n) Returns: A list containing the post-order traversal of the BST Explanation: 1) Repeat on left subtree 2) Repeat on right subtree 3) Append data of root """ if self.left != None: result = self.left.post_order(result) if self.right != None: result = self.right.post_order(result) result.append(self.data) return result
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import logging import os from contextlib import contextmanager from pants.cache.artifact import TarballArtifact from pants.cache.artifact_cache import ArtifactCache, UnreadableArtifact from pants.util.contextutil import temporary_file from pants.util.dirutil import ( safe_delete, safe_mkdir, safe_mkdir_for, safe_rm_oldest_items_in_dir, safe_rmtree, ) logger = logging.getLogger(__name__) class BaseLocalArtifactCache(ArtifactCache): def __init__( self, artifact_root, artifact_extraction_root, compression, permissions=None, dereference=True, ): """ :param str artifact_root: The path under which cacheable products will be read/written. :param str artifact_extraction_root: The path to where we should extract artifacts. Usually a reified artifact_path. :param int compression: The gzip compression level for created artifacts. Valid values are 0-9. :param str permissions: File permissions to use when creating artifact files. :param bool dereference: Dereference symlinks when creating the cache tarball. """ super().__init__(artifact_root, artifact_extraction_root) self._compression = compression self._cache_root = None self._permissions = permissions self._dereference = dereference def _artifact(self, path): return TarballArtifact( self.artifact_root, self.artifact_extraction_root, path, self._compression, dereference=self._dereference, ) @contextmanager def _tmpfile(self, cache_key, use): """Allocate tempfile on same device as cache with a suffix chosen to prevent collisions.""" with temporary_file( suffix=cache_key.id + use, root_dir=self._cache_root, permissions=self._permissions ) as tmpfile: yield tmpfile @contextmanager def insert_paths(self, cache_key, paths): """Gather paths into artifact, store it, and yield the path to stored artifact tarball.""" with self._tmpfile(cache_key, "write") as tmp: self._artifact(tmp.name).collect(paths) yield self._store_tarball(cache_key, tmp.name) def store_and_use_artifact(self, cache_key, src, results_dir=None): """Store and then extract the artifact from the given `src` iterator for the given cache_key. :param cache_key: Cache key for the artifact. :param src: Iterator over binary data to store for the artifact. :param str results_dir: The path to the expected destination of the artifact extraction: will be cleared both before extraction, and after a failure to extract. """ with self._tmpfile(cache_key, "read") as tmp: for chunk in src: tmp.write(chunk) tmp.close() tarball = self._store_tarball(cache_key, tmp.name) artifact = self._artifact(tarball) # NOTE(mateo): The two clean=True args passed in this method are likely safe, since the cache will by # definition be dealing with unique results_dir, as opposed to the stable vt.results_dir (aka 'current'). # But if by chance it's passed the stable results_dir, safe_makedir(clean=True) will silently convert it # from a symlink to a real dir and cause mysterious 'Operation not permitted' errors until the workdir is cleaned. if results_dir is not None: safe_mkdir(results_dir, clean=True) try: artifact.extract() except Exception: # Do our best to clean up after a failed artifact extraction. If a results_dir has been # specified, it is "expected" to represent the output destination of the extracted # artifact, and so removing it should clear any partially extracted state. if results_dir is not None: safe_mkdir(results_dir, clean=True) safe_delete(tarball) raise return True def _store_tarball(self, cache_key, src): """Given a src path to an artifact tarball, store it and return stored artifact's path.""" pass class LocalArtifactCache(BaseLocalArtifactCache): """An artifact cache that stores the artifacts in local files.""" def __init__( self, artifact_root, artifact_extraction_root, cache_root, compression, max_entries_per_target=None, permissions=None, dereference=True, ): """ :param str artifact_root: The path under which cacheable products will be read/written. :param str artifact_extraction_root: The path to where we should extract artifacts. Usually a reified artifact_path. :param str cache_root: The locally cached files are stored under this directory. :param int compression: The gzip compression level for created artifacts (1-9 or false-y). :param int max_entries_per_target: The maximum number of old cache files to leave behind on a cache miss. :param str permissions: File permissions to use when creating artifact files. :param bool dereference: Dereference symlinks when creating the cache tarball. """ super().__init__( artifact_root, artifact_extraction_root, compression, permissions=int(permissions.strip(), base=8) if permissions else None, dereference=dereference, ) self._cache_root = os.path.realpath(os.path.expanduser(cache_root)) self._max_entries_per_target = max_entries_per_target safe_mkdir(self._cache_root) def prune(self, root): """Prune stale cache files. If the option --cache-target-max-entry is greater than zero, then prune will remove all but n old cache files for each target/task. :param str root: The path under which cacheable artifacts will be cleaned """ max_entries_per_target = self._max_entries_per_target if os.path.isdir(root) and max_entries_per_target: safe_rm_oldest_items_in_dir(root, max_entries_per_target) def has(self, cache_key): return self._artifact_for(cache_key).exists() def _artifact_for(self, cache_key): return self._artifact(self._cache_file_for_key(cache_key)) def use_cached_files(self, cache_key, results_dir=None): tarfile = self._cache_file_for_key(cache_key) try: artifact = self._artifact_for(cache_key) if artifact.exists(): if results_dir is not None: safe_rmtree(results_dir) artifact.extract() return True except Exception as e: # TODO(davidt): Consider being more granular in what is caught. logger.warning( "Error while reading {0} from local artifact cache: {1}".format(tarfile, e) ) safe_delete(tarfile) return UnreadableArtifact(cache_key, e) return False def try_insert(self, cache_key, paths): with self.insert_paths(cache_key, paths): pass def delete(self, cache_key): safe_delete(self._cache_file_for_key(cache_key)) def _store_tarball(self, cache_key, src): dest = self._cache_file_for_key(cache_key) safe_mkdir_for(dest) os.rename(src, dest) if self._permissions: os.chmod(dest, self._permissions) self.prune(os.path.dirname(dest)) # Remove old cache files. return dest def _cache_file_for_key(self, cache_key): # Note: it's important to use the id as well as the hash, because two different targets # may have the same hash if both have no sources, but we may still want to differentiate them. return os.path.join(self._cache_root, cache_key.id, cache_key.hash) + ".tgz" class TempLocalArtifactCache(BaseLocalArtifactCache): """A local cache that does not actually store any files between calls. This implementation does not have a backing _cache_root, and never actually stores files between calls, but is useful for handling file IO for a remote cache. """ def __init__(self, artifact_root, artifact_extraction_root, compression, permissions=None): """ :param str artifact_root: The path under which cacheable products will be read/written. """ super().__init__( artifact_root, artifact_extraction_root, compression=compression, permissions=permissions, ) def _store_tarball(self, cache_key, src): return src def has(self, cache_key): return False def use_cached_files(self, cache_key, results_dir=None): return False def delete(self, cache_key): pass
from statsmodels.compat.python import (lrange, iterkeys, iteritems, lzip, reduce, itervalues, zip, string_types, range) from statsmodels.compat.collections import OrderedDict import numpy as np import pandas as pd import datetime import textwrap from .table import SimpleTable from .tableformatting import fmt_latex, fmt_txt class Summary(object): def __init__(self): self.tables = [] self.settings = [] self.extra_txt = [] self.title = None def __str__(self): return self.as_text() def __repr__(self): return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_df(self, df, index=True, header=True, float_format='%.4f', align='r'): '''Add the contents of a DataFrame to summary table Parameters ---------- df : DataFrame header: bool Reproduce the DataFrame column labels in summary table index: bool Reproduce the DataFrame row labels in summary table float_format: string Formatting to float data columns align : string Data alignment (l/c/r) ''' settings = {'index': index, 'header': header, 'float_format': float_format, 'align': align} self.tables.append(df) self.settings.append(settings) def add_array(self, array, align='r', float_format="%.4f"): '''Add the contents of a Numpy array to summary table Parameters ---------- array : numpy array (2D) float_format: string Formatting to array if type is float align : string Data alignment (l/c/r) ''' table = pd.DataFrame(array) self.add_df(table, index=False, header=False, float_format=float_format, align=align) def add_dict(self, d, ncols=2, align='l', float_format="%.4f"): '''Add the contents of a Dict to summary table Parameters ---------- d : dict Keys and values are automatically coerced to strings with str(). Users are encouraged to format them before using add_dict. ncols: int Number of columns of the output table align : string Data alignment (l/c/r) ''' keys = [_formatter(x, float_format) for x in iterkeys(d)] vals = [_formatter(x, float_format) for x in itervalues(d)] data = np.array(lzip(keys, vals)) if data.shape[0] % ncols != 0: pad = ncols - (data.shape[0] % ncols) data = np.vstack([data, np.array(pad * [['', '']])]) data = np.split(data, ncols) data = reduce(lambda x, y: np.hstack([x, y]), data) self.add_array(data, align=align) def add_text(self, string): '''Append a note to the bottom of the summary table. In ASCII tables, the note will be wrapped to table width. Notes are not indendented. ''' self.extra_txt.append(string) def add_title(self, title=None, results=None): '''Insert a title on top of the summary table. If a string is provided in the title argument, that string is printed. If no title string is provided but a results instance is provided, statsmodels attempts to construct a useful title automatically. ''' if isinstance(title, string_types): self.title = title else: try: model = results.model.__class__.__name__ if model in _model_types: model = _model_types[model] self.title = 'Results: ' + model except: self.title = '' def add_base(self, results, alpha=0.05, float_format="%.4f", title=None, xname=None, yname=None): '''Try to construct a basic summary instance. Parameters ---------- results : Model results instance alpha : float significance level for the confidence intervals (optional) float_formatting: string Float formatting for summary of parameters (optional) title : string Title of the summary table (optional) xname : List of strings of length equal to the number of parameters Names of the independent variables (optional) yname : string Name of the dependent variable (optional) ''' param = summary_params(results, alpha=alpha, use_t=results.use_t) info = summary_model(results) if xname is not None: param.index = xname if yname is not None: info['Dependent Variable:'] = yname self.add_dict(info, align='l') self.add_df(param, float_format=float_format) self.add_title(title=title, results=results) def as_text(self): '''Generate ASCII Summary Table ''' tables = self.tables settings = self.settings title = self.title extra_txt = self.extra_txt pad_col, pad_index, widest = _measure_tables(tables, settings) rule_equal = widest * '=' #TODO: this isn't used anywhere? rule_dash = widest * '-' simple_tables = _simple_tables(tables, settings, pad_col, pad_index) tab = [x.as_text() for x in simple_tables] tab = '\n'.join(tab) tab = tab.split('\n') tab[0] = rule_equal tab.append(rule_equal) tab = '\n'.join(tab) if title is not None: title = title if len(title) < widest: title = ' ' * int(widest/2 - len(title)/2) + title else: title = '' txt = [textwrap.wrap(x, widest) for x in extra_txt] txt = ['\n'.join(x) for x in txt] txt = '\n'.join(txt) out = '\n'.join([title, tab, txt]) return out def as_html(self): '''Generate HTML Summary Table ''' tables = self.tables settings = self.settings #TODO: this isn't used anywhere title = self.title simple_tables = _simple_tables(tables, settings) tab = [x.as_html() for x in simple_tables] tab = '\n'.join(tab) return tab def as_latex(self): '''Generate LaTeX Summary Table ''' tables = self.tables settings = self.settings title = self.title if title is not None: title = '\\caption{' + title + '} \\\\' else: title = '\\caption{}' simple_tables = _simple_tables(tables, settings) tab = [x.as_latex_tabular() for x in simple_tables] tab = '\n\\hline\n'.join(tab) out = '\\begin{table}', title, tab, '\\end{table}' out = '\n'.join(out) return out def _measure_tables(tables, settings): '''Compare width of ascii tables in a list and calculate padding values. We add space to each col_sep to get us as close as possible to the width of the largest table. Then, we add a few spaces to the first column to pad the rest. ''' simple_tables = _simple_tables(tables, settings) tab = [x.as_text() for x in simple_tables] length = [len(x.splitlines()[0]) for x in tab] len_max = max(length) pad_sep = [] pad_index = [] for i in range(len(tab)): nsep = tables[i].shape[1] - 1 pad = int((len_max - length[i]) / nsep) pad_sep.append(pad) len_new = length[i] + nsep * pad pad_index.append(len_max - len_new) return pad_sep, pad_index, max(length) # Useful stuff _model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weigthed least squares', 'RLM' : 'Robust linear model', 'NBin': 'Negative binomial model', 'GLM' : 'Generalized linear model' } def summary_model(results): '''Create a dict with information about the model ''' def time_now(*args, **kwds): now = datetime.datetime.now() return now.strftime('%Y-%m-%d %H:%M') info = OrderedDict() info['Model:'] = lambda x: x.model.__class__.__name__ info['Model Family:'] = lambda x: x.family.__class.__name__ info['Link Function:'] = lambda x: x.family.link.__class__.__name__ info['Dependent Variable:'] = lambda x: x.model.endog_names info['Date:'] = time_now info['No. Observations:'] = lambda x: "%#6d" % x.nobs info['Df Model:'] = lambda x: "%#6d" % x.df_model info['Df Residuals:'] = lambda x: "%#6d" % x.df_resid info['Converged:'] = lambda x: x.mle_retvals['converged'] info['No. Iterations:'] = lambda x: x.mle_retvals['iterations'] info['Method:'] = lambda x: x.method info['Norm:'] = lambda x: x.fit_options['norm'] info['Scale Est.:'] = lambda x: x.fit_options['scale_est'] info['Cov. Type:'] = lambda x: x.fit_options['cov'] info['R-squared:'] = lambda x: "%#8.3f" % x.rsquared info['Adj. R-squared:'] = lambda x: "%#8.3f" % x.rsquared_adj info['Pseudo R-squared:'] = lambda x: "%#8.3f" % x.prsquared info['AIC:'] = lambda x: "%8.4f" % x.aic info['BIC:'] = lambda x: "%8.4f" % x.bic info['Log-Likelihood:'] = lambda x: "%#8.5g" % x.llf info['LL-Null:'] = lambda x: "%#8.5g" % x.llnull info['LLR p-value:'] = lambda x: "%#8.5g" % x.llr_pvalue info['Deviance:'] = lambda x: "%#8.5g" % x.deviance info['Pearson chi2:'] = lambda x: "%#6.3g" % x.pearson_chi2 info['F-statistic:'] = lambda x: "%#8.4g" % x.fvalue info['Prob (F-statistic):'] = lambda x: "%#6.3g" % x.f_pvalue info['Scale:'] = lambda x: "%#8.5g" % x.scale out = OrderedDict() for key, func in iteritems(info): try: out[key] = func(results) # NOTE: some models don't have loglike defined (RLM), so that's NIE except (AttributeError, KeyError, NotImplementedError): pass return out def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, float_format="%.4f"): '''create a summary table of parameters from results instance Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. float_format : string float formatting options (e.g. ".3g") Returns ------- params_table : SimpleTable instance ''' if isinstance(results, tuple): results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params bse = results.bse tvalues = results.tvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) data = np.array([params, bse, tvalues, pvalues]).T data = np.hstack([data, conf_int]) data = pd.DataFrame(data) if use_t: data.columns = ['Coef.', 'Std.Err.', 't', 'P>|t|', '[' + str(alpha/2), str(1-alpha/2) + ']'] else: data.columns = ['Coef.', 'Std.Err.', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] if not xname: data.index = results.model.exog_names else: data.index = xname return data # Vertical summary instance for multiple models def _col_params(result, float_format='%.4f', stars=True, stat='std_err'): '''Stack coefficients and selected statistic in single column stat : 'p-value', 't-stat', or None Name of the value to be displayed in the summary column along with coefficients. Defaults to std_err. 'p-value' displays p value 't-stat' displays t statistic ''' '''looks like speed is being traded for fragility. If anymore modifications are made to this code, consider rewriting so that this function is not as tightly coupled with summary_params methos (should not rely on blind indexing to retreive data) index 0 = Coefs, 1 = std_err, 2 = t-stat, 3 = p-value ''' # Decide which statistic to use and get that statistic's index stat_index = 1; if stat =='t-stat': stat_index = 2 elif stat == 'p-value': stat_index = 3 # Extract parameters res = summary_params(result) # Format float for col in res.columns[[0,stat_index]]: res[col] = res[col].apply(lambda x: float_format % x) # Add parens around selected statistic res.ix[:, stat_index] = '(' + res.ix[:, stat_index] + ')' # Significance stars if stars: idx = res.ix[:, 3] < .1 res.ix[idx, 0] = res.ix[idx, 0] + '*' idx = res.ix[:, 3] < .05 res.ix[idx, 0] = res.ix[idx, 0] + '*' idx = res.ix[:, 3] < .01 res.ix[idx, 0] = res.ix[idx, 0] + '*' res = res.ix[:, [0,stat_index]] res = res.stack() res = pd.DataFrame(res) res.columns = [str(result.model.endog_names)] return res def _col_info(result, info_dict=None): '''Stack model info in a column ''' if info_dict is None: info_dict = {} out = [] index = [] for i in info_dict: if isinstance(info_dict[i], dict): # this is a specific model info_dict, but not for this result... continue try: out.append(info_dict[i](result)) except: out.append('') index.append(i) out = pd.DataFrame({str(result.model.endog_names): out}, index=index) return out def _make_unique(list_of_names): if len(set(list_of_names)) == len(list_of_names): return list_of_names # pandas does not like it if multiple columns have the same names from collections import defaultdict name_counter = defaultdict(str) header = [] for _name in list_of_names: name_counter[_name] += "I" header.append(_name+" " + name_counter[_name]) return header def summary_col(results, float_format='%.4f', model_names=[], stars=False, info_dict=None, regressor_order=[], stat='std_err'): """ Summarize multiple results instances side-by-side (coefs and SEs) Parameters ---------- results : statsmodels results instance or list of result instances float_format : string float format for coefficients and standard errors Default : '%.4f' model_names : list of strings of length len(results) if the names are not unique, a roman number will be appended to all model names stars : bool print significance stars info_dict : dict dict of lambda functions to be applied to results instances to retrieve model info. To use specific information for different models, add a (nested) info_dict with model name as the key. Example: `info_dict = {"N":..., "R2": ..., "OLS":{"R2":...}}` would only show `R2` for OLS regression models, but additionally `N` for all other results. Default : None (use the info_dict specified in result.default_model_infos, if this property exists) regressor_order : list of strings list of names of the regressors in the desired order. All regressors not specified will be appended to the end of the list. stat : string ('p-value', 't-value') or None Name of the value to be displayed in the summary column along with coefficients. Defaults to 'std_err'. 'p-value' will display p_values 't-stat' displays 't' t_pvalues """ if not isinstance(results, list): results = [results] cols = [_col_params(x, stars=stars, float_format=float_format, stat=stat) for x in results] # Unique column names (pandas has problems merging otherwise) if model_names: colnames = _make_unique(model_names) else: colnames = _make_unique([x.columns[0] for x in cols]) for i in range(len(cols)): cols[i].columns = [colnames[i]] merg = lambda x, y: x.merge(y, how='outer', right_index=True, left_index=True) summ = reduce(merg, cols) if regressor_order: varnames = summ.index.get_level_values(0).tolist() ordered = [x for x in regressor_order if x in varnames] unordered = [x for x in varnames if x not in regressor_order + ['']] order = ordered + list(np.unique(unordered)) f = lambda idx: sum([[x + 'coef', x + 'stde'] for x in idx], []) summ.index = f(np.unique(varnames)) summ = summ.reindex(f(order)) summ.index = [x[:-4] for x in summ.index] idx = pd.Series(lrange(summ.shape[0])) % 2 == 1 summ.index = np.where(idx, '', summ.index.get_level_values(0)) # add infos about the models. if info_dict: cols = [_col_info(x, info_dict.get(x.model.__class__.__name__, info_dict)) for x in results] else: cols = [_col_info(x, getattr(x, "default_model_infos", None)) for x in results] # use unique column names, otherwise the merge will not succeed for df , name in zip(cols, _make_unique([df.columns[0] for df in cols])): df.columns = [name] merg = lambda x, y: x.merge(y, how='outer', right_index=True, left_index=True) info = reduce(merg, cols) dat = pd.DataFrame(np.vstack([summ, info])) # pd.concat better, but error dat.columns = summ.columns dat.index = pd.Index(summ.index.tolist() + info.index.tolist()) summ = dat summ = summ.fillna('') smry = Summary() smry.add_df(summ, header=True, align='l') stat_name = 'Standard errors' if stat == 't-stat': stat_name = 't-statistics' elif stat == 'p-value': stat_name = 'p-values' smry.add_text(stat_name + ' in parentheses.') if stars: smry.add_text('* p<.1, ** p<.05, ***p<.01') return smry def _formatter(element, float_format='%.4f'): try: out = float_format % element except: out = str(element) return out.strip() def _df_to_simpletable(df, align='r', float_format="%.4f", header=True, index=True, table_dec_above='-', table_dec_below=None, header_dec_below='-', pad_col=0, pad_index=0): dat = df.copy() dat = dat.applymap(lambda x: _formatter(x, float_format)) if header: headers = [str(x) for x in dat.columns.tolist()] else: headers = None if index: stubs = [str(x) + int(pad_index) * ' ' for x in dat.index.tolist()] else: dat.ix[:, 0] = [str(x) + int(pad_index) * ' ' for x in dat.ix[:, 0]] stubs = None st = SimpleTable(np.array(dat), headers=headers, stubs=stubs, ltx_fmt=fmt_latex, txt_fmt=fmt_txt) st.output_formats['latex']['data_aligns'] = align st.output_formats['txt']['data_aligns'] = align st.output_formats['txt']['table_dec_above'] = table_dec_above st.output_formats['txt']['table_dec_below'] = table_dec_below st.output_formats['txt']['header_dec_below'] = header_dec_below st.output_formats['txt']['colsep'] = ' ' * int(pad_col + 1) return st def _simple_tables(tables, settings, pad_col=None, pad_index=None): simple_tables = [] float_format = '%.4f' if pad_col is None: pad_col = [0] * len(tables) if pad_index is None: pad_index = [0] * len(tables) for i, v in enumerate(tables): index = settings[i]['index'] header = settings[i]['header'] align = settings[i]['align'] simple_tables.append(_df_to_simpletable(v, align=align, float_format=float_format, header=header, index=index, pad_col=pad_col[i], pad_index=pad_index[i])) return simple_tables
__author__ = 'yuxiang' # derived from honda.py by fyang import datasets import datasets.kitti import os import PIL import datasets.imdb import numpy as np import scipy.sparse from utils.cython_bbox import bbox_overlaps from utils.boxes_grid import get_boxes_grid import subprocess import cPickle from fast_rcnn.config import cfg import math from rpn_msr.generate_anchors import generate_anchors class kitti(datasets.imdb): def __init__(self, image_set, kitti_path=None): datasets.imdb.__init__(self, 'kitti_' + image_set) self._image_set = image_set self._kitti_path = self._get_default_path() if kitti_path is None \ else kitti_path self._data_path = os.path.join(self._kitti_path, 'data_object_image_2') self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.png' self._image_index = self._load_image_set_index() # Default to roidb handler if cfg.IS_RPN: self._roidb_handler = self.gt_roidb else: self._roidb_handler = self.region_proposal_roidb # num of subclasses if image_set == 'train' or image_set == 'val': self._num_subclasses = 125 + 24 + 24 + 1 prefix = 'validation' else: self._num_subclasses = 227 + 36 + 36 + 1 prefix = 'test' # load the mapping for subcalss to class filename = os.path.join(self._kitti_path, cfg.SUBCLS_NAME, prefix, 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.int) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = self._class_to_ind[words[1]] self._subclass_mapping = mapping self.config = {'top_k': 100000} # statistics for computing recall self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_proposal = 0 assert os.path.exists(self._kitti_path), \ 'KITTI path does not exist: {}'.format(self._kitti_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self.image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ # set the prefix if self._image_set == 'test': prefix = 'testing/image_2' else: prefix = 'training/image_2' image_path = os.path.join(self._data_path, prefix, index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ image_set_file = os.path.join(self._kitti_path, self._image_set + '.txt') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.rstrip('\n') for x in f.readlines()] return image_index def _get_default_path(self): """ Return the default path where KITTI is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI') def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} gt roidb loaded from {}'.format(self.name, cache_file) return roidb gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index) for index in self.image_index] if cfg.IS_RPN: # print out recall for i in xrange(1, self.num_classes): print '{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i]) print '{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i]) print '{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i])) with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote gt roidb to {}'.format(cache_file) return gt_roidb def _load_kitti_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI format. """ if self._image_set == 'test': lines = [] else: filename = os.path.join(self._data_path, 'training', 'label_2', index + '.txt') lines = [] with open(filename) as f: for line in f: line = line.replace('Van', 'Car') words = line.split() cls = words[0] truncation = float(words[1]) occlusion = int(words[2]) height = float(words[7]) - float(words[5]) if cls in self._class_to_ind and truncation < 0.5 and occlusion < 3 and height > 25: lines.append(line) num_objs = len(lines) boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] boxes[ix, :] = [float(n) for n in words[4:8]] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) gt_subclasses = np.zeros((num_objs), dtype=np.int32) gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal anchors = generate_anchors() num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height = np.floor((height - 1) / 2 + 1 + 0.5) height = np.floor((height - 1) / 2 + 1 + 0.5) width = np.round((image_width * scale - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) # gt boxes gt_boxes = boxes * scale # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = num_anchors K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) # compute overlap overlaps_grid = bbox_overlaps(all_anchors.astype(np.float), gt_boxes.astype(np.float)) # check how many gt boxes are covered by anchors if num_objs != 0: max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[fg_inds] == i)[0]) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_subclasses': gt_subclasses, 'gt_subclasses_flipped': gt_subclasses_flipped, 'gt_overlaps' : overlaps, 'gt_subindexes': subindexes, 'gt_subindexes_flipped': subindexes_flipped, 'flipped' : False} def _load_kitti_voxel_exemplar_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI voxel exemplar format. """ if self._image_set == 'train': prefix = 'validation' elif self._image_set == 'trainval': prefix = 'test' else: return self._load_kitti_annotation(index) filename = os.path.join(self._kitti_path, cfg.SUBCLS_NAME, prefix, index + '.txt') assert os.path.exists(filename), \ 'Path does not exist: {}'.format(filename) # the annotation file contains flipped objects lines = [] lines_flipped = [] with open(filename) as f: for line in f: words = line.split() subcls = int(words[1]) is_flip = int(words[2]) if subcls != -1: if is_flip == 0: lines.append(line) else: lines_flipped.append(line) num_objs = len(lines) # store information of flipped objects assert (num_objs == len(lines_flipped)), 'The number of flipped objects is not the same!' gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) for ix, line in enumerate(lines_flipped): words = line.split() subcls = int(words[1]) gt_subclasses_flipped[ix] = subcls boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) gt_subclasses = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] subcls = int(words[1]) boxes[ix, :] = [float(n) for n in words[3:7]] gt_classes[ix] = cls gt_subclasses[ix] = subcls overlaps[ix, cls] = 1.0 subindexes[ix, cls] = subcls subindexes_flipped[ix, cls] = gt_subclasses_flipped[ix] overlaps = scipy.sparse.csr_matrix(overlaps) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal base_size = 16 ratios = [3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25] scales = 2**np.arange(1, 6, 0.5) anchors = generate_anchors(base_size, ratios, scales) num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height = np.floor((height - 1) / 2 + 1 + 0.5) height = np.floor((height - 1) / 2 + 1 + 0.5) width = np.round((image_width * scale - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) # gt boxes gt_boxes = boxes * scale # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = num_anchors K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) # compute overlap overlaps_grid = bbox_overlaps(all_anchors.astype(np.float), gt_boxes.astype(np.float)) # check how many gt boxes are covered by anchors if num_objs != 0: max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[fg_inds] == i)[0]) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_subclasses': gt_subclasses, 'gt_subclasses_flipped': gt_subclasses_flipped, 'gt_overlaps': overlaps, 'gt_subindexes': subindexes, 'gt_subindexes_flipped': subindexes_flipped, 'flipped' : False} def region_proposal_roidb(self): """ Return the database of regions of interest. Ground-truth ROIs are also included. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print '{} roidb loaded from {}'.format(self.name, cache_file) return roidb if self._image_set != 'test': gt_roidb = self.gt_roidb() print 'Loading region proposal network boxes...' if self._image_set == 'trainval': model = cfg.REGION_PROPOSAL + '_227/' else: model = cfg.REGION_PROPOSAL + '_125/' rpn_roidb = self._load_rpn_roidb(gt_roidb, model) print 'Region proposal network boxes loaded' roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb) # print 'Loading voxel pattern boxes...' # if self._image_set == 'trainval': # model = '3DVP_227' # else: # model = '3DVP_125/' # vp_roidb = self._load_voxel_pattern_roidb(gt_roidb, model) # print 'Voxel pattern boxes loaded' # roidb = datasets.imdb.merge_roidbs(vp_roidb, gt_roidb) # print 'Loading selective search boxes...' # ss_roidb = self._load_selective_search_roidb(gt_roidb) # print 'Selective search boxes loaded' # print 'Loading ACF boxes...' # acf_roidb = self._load_acf_roidb(gt_roidb) # print 'ACF boxes loaded' # roidb = datasets.imdb.merge_roidbs(ss_roidb, gt_roidb) # roidb = datasets.imdb.merge_roidbs(roidb, acf_roidb) else: print 'Loading region proposal network boxes...' model = cfg.REGION_PROPOSAL + '_227/' roidb = self._load_rpn_roidb(None, model) print 'Region proposal network boxes loaded' # print 'Loading voxel pattern boxes...' # model = '3DVP_227/' # roidb = self._load_voxel_pattern_roidb(None, model) # print 'Voxel pattern boxes loaded' # print 'Loading selective search boxes...' # roidb = self._load_selective_search_roidb(None) # print 'Selective search boxes loaded' # print 'Loading ACF boxes...' # acf_roidb = self._load_acf_roidb(None) # print 'ACF boxes loaded' # roidb = datasets.imdb.merge_roidbs(roidb, acf_roidb) print '{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index)) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote roidb to {}'.format(cache_file) return roidb def _load_rpn_roidb(self, gt_roidb, model): # set the prefix if self._image_set == 'test': prefix = model + 'testing' else: prefix = model + 'training' box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_path, 'region_proposals', prefix, index + '.txt') assert os.path.exists(filename), \ 'RPN data not found at: {}'.format(filename) raw_data = np.loadtxt(filename, dtype=float) if len(raw_data.shape) == 1: if raw_data.size == 0: raw_data = raw_data.reshape((0, 5)) else: raw_data = raw_data.reshape((1, 5)) x1 = raw_data[:, 0] y1 = raw_data[:, 1] x2 = raw_data[:, 2] y2 = raw_data[:, 3] score = raw_data[:, 4] inds = np.where((x2 > x1) & (y2 > y1))[0] raw_data = raw_data[inds,:4] self._num_boxes_proposal += raw_data.shape[0] box_list.append(raw_data) print 'load {}: {}'.format(model, index) return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_voxel_pattern_roidb(self, gt_roidb, model): # set the prefix if self._image_set == 'test': prefix = model + 'testing' else: prefix = model + 'training' box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_path, 'region_proposals', prefix, index + '.txt') assert os.path.exists(filename), \ 'Voxel pattern data not found at: {}'.format(filename) raw_data = np.loadtxt(filename, dtype=float) if len(raw_data.shape) == 1: if raw_data.size == 0: raw_data = raw_data.reshape((0, 4)) else: raw_data = raw_data.reshape((1, 4)) self._num_boxes_proposal += raw_data.shape[0] box_list.append(raw_data) return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_selective_search_roidb(self, gt_roidb): cache_file = os.path.join(self.cache_path, self.name + '_selective_search_box_list.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: box_list = cPickle.load(fid) print '{} boxes loaded from {}'.format(self.name, cache_file) else: # set the prefix model = 'selective_search/' if self._image_set == 'test': prefix = model + 'testing' else: prefix = model + 'training' box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_path, 'region_proposals', prefix, index + '.txt') assert os.path.exists(filename), \ 'Selective search data not found at: {}'.format(filename) raw_data = np.loadtxt(filename, dtype=float) box_list.append(raw_data[:min(self.config['top_k'], raw_data.shape[0]), 1:]) with open(cache_file, 'wb') as fid: cPickle.dump(box_list, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote selective search boxes to {}'.format(cache_file) return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_acf_roidb(self, gt_roidb): cache_file = os.path.join(self.cache_path, self.name + '_acf_box_list.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: box_list = cPickle.load(fid) print '{} boxes loaded from {}'.format(self.name, cache_file) else: # set the prefix model = 'ACF/' if self._image_set == 'test': prefix = model + 'testing' else: prefix = model + 'training' box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_path, 'region_proposals', prefix, index + '.txt') assert os.path.exists(filename), \ 'ACF data not found at: {}'.format(filename) raw_data = np.loadtxt(filename, usecols=(2,3,4,5), dtype=float) box_list.append(raw_data[:min(self.config['top_k'], raw_data.shape[0]), :]) with open(cache_file, 'wb') as fid: cPickle.dump(box_list, fid, cPickle.HIGHEST_PROTOCOL) print 'wrote ACF boxes to {}'.format(cache_file) return self.create_roidb_from_box_list(box_list, gt_roidb) def evaluate_detections(self, all_boxes, output_dir): # load the mapping for subcalss the alpha (viewpoint) if self._image_set == 'val': prefix = 'validation' elif self._image_set == 'test': prefix = 'test' else: prefix = '' filename = os.path.join(self._kitti_path, cfg.SUBCLS_NAME, prefix, 'mapping.txt') assert os.path.exists(filename), \ 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.float) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = float(words[3]) # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print 'Writing KITTI results to file ' + filename with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): if cfg.TEST.SUBCLS: subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' alpha = mapping[subcls] else: alpha = -10 f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\ cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) # write detection results into one file def evaluate_detections_one_file(self, all_boxes, output_dir): # open results file filename = os.path.join(output_dir, 'detections.txt') print 'Writing all KITTI results to file ' + filename with open(filename, 'wt') as f: # for each image for im_ind, index in enumerate(self.image_index): # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): if cfg.TEST.SUBCLS: subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' else: subcls = -1 f.write('{:s} {:s} {:f} {:f} {:f} {:f} {:d} {:f}\n'.format(\ index, cls, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], subcls, dets[k, 4])) def evaluate_proposals(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print 'Writing KITTI results to file ' + filename with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\ dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals_msr(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print 'Writing KITTI results to file ' + filename with open(filename, 'wt') as f: dets = all_boxes[im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) if __name__ == '__main__': d = datasets.kitti('train') res = d.roidb from IPython import embed; embed()
#!/usr/bin/env python """ Class that constructs a MultiplexMarkovchain given the counts. Also has methods to get the null model and the parameters of the probability distribution associated with the Markov chain. Currently handles only 4-state Markov chains (i.e. two layer networks). """ from __future__ import division import numpy as np import networkx as nx from warnings import warn class MarkovChain(object): """ Instances of this class contain NetworkX DiGraph objects, whose edges have attributes "counts" and "params", giving observed counts of transitions and inferred transition probabilities, respectively. A class that computes properties of a Markov chain such as the transition parameters and standard deviation. The class assumes a uniform prior for the distribution of transition parameters. Each state of the Markov chain has a Dirichlet (multivariate beta) distribution whose variates are the transition parameters. The transition parameters are estimated as the mean of the corresponding Dirichlet distribution. Parameters ---------- counts : Counts for each transition of the Markov chain. Given as a dictionary in the form counts = {(from_state,to_state):count}. For a Multiplex Markov Chain, states themselves will be n-tuples (n = number of layers) whose entries are the states in the individual layers num_transitions : The number of transitions in the Markov chain. The number of states of the Markov chain is sqrt(num_transitions). len(counts) = num_transitions state_totals : The total of counts leaving from the particular state of the Markov chain. len(state_totals) is equal to the number of states of the Markov chain. Can be accessed using the method `get_state_totals`. params : The average value of the probability of the transitions assuming a uniform prior. Stored as a dictionary whose keys are tuples (from_state,to_state). Can be accessed using method 'get_parameters' std : The standard deviations of the variates of the Dirichlet distributions associated with the Markov chain. Stored as a dictionary whose keys are tuples (from_state,to_state). Can be accessed using method 'get_std_dev' """ def __init__(self, counts): if type(counts) is not dict: raise AssertionError("counts must be presented as a dictionary: {transition: count}") elif any([type(k) is not tuple for k in counts.keys()]): raise AssertionError("keys of 'counts' must be tuples: (from_state, to_state)") elif any([len(k) != 2 for k in counts.keys()]): raise AssertionError("keys of 'counts' must be length-2 tuples: (from_state, to_state)") elif any([type(v) is not int for v in counts.values()]): raise AssertionError("values of 'counts' must be integers") self.counts = counts self.MC = nx.DiGraph() for (from_state,to_state) in counts.keys(): self.MC.add_edge(from_state,to_state, count = counts[(from_state,to_state)]) #pad 'counts' with zeros and add all missing edges to self.MC for from_state in self.MC.nodes(): for to_state in self.MC.nodes(): if ((from_state,to_state) not in counts.keys()): self.MC.add_edge(from_state,to_state,count=0) counts[(from_state,to_state)] = 0 self.params = None # probability of transitions self.std = None # std. associated with the transitions self.state_totals = None #total number of transitions leaving a state self.num_transitions = (self.MC.number_of_nodes())**2 def compute_prob_params(self,counts): """ Given counts returns the mean, std. dev. for every transition and normalization constant for each state, and attatches these values to the edges of the MC. It also packs the values into a dictionary (self.params, self.std) whose keys are edges (ordered pairs of states) """ num_transitions = self.num_transitions l = self.MC.number_of_nodes() totals = dict() for from_state in self.MC.nodes(): tot = sum([counts[(from_state,to_state)] if ((from_state,to_state) in counts.keys()) else 0 for to_state in self.MC.nodes()]) totals[from_state] = tot if tot > 0: for to_state in self.MC.nodes(): # mean and std. dev of the corresponding beta distribution p = (counts[(from_state,to_state)]+1)/(tot+l) if ((from_state,to_state) in counts.keys()) else 1/(tot+l) self.MC[from_state][to_state]['mu'] = p self.MC[from_state][to_state]['sigma'] = np.sqrt(p*(1-p)/(tot+ (l+1))) else: for to_state in self.MC.nodes(): p = 1/(tot+l) self.MC[from_state][to_state]['mu'] = p self.MC[from_state][to_state]['sigma'] = np.sqrt(p*(1-p)/(tot+ (l+1))) self.params = {(fs,ts):self.MC[fs][ts]['mu'] for (fs,ts) in self.MC.edges()} self.std = {(fs,ts):self.MC[fs][ts]['sigma'] for (fs,ts) in self.MC.edges()} self.state_totals = totals def get_parameters(self): if self.params is None: self.compute_prob_params(self.counts) return self.params def get_std_dev(self): if self.std is None: self.compute_prob_params(self.counts) return self.std def get_state_totals(self): if self.state_totals is None: self.compute_prob_params(self.counts) return self.state_totals def _is_power_of_2(x): return (x & (x-1) == 0 and x != 0) class MultiplexMarkovChain(MarkovChain): """ Class inherits from MarkovChain. In addition, the class builds a null model for detecting `dynamical spillover` (Insert ref. to paper). To build an instance of this class, you must provide a dictionary of counts, formatted as for the MarkovChain class. Moreover, states must have the form (layer1,layer2,...,layer_n), specifying the states of the edge in the n layers of the multiplex. In particular, keys of the dictionary 'counts' must have the form: ((layer1, layer2, ..., layer_n),(layer1', layer2', ..., layer_n')) Parameters ---------- null_components : a list with a dictionary for each layer of the multiplex network. The dictionary has two items: counts : the total counts associated with a Markov chain describing the edge dynamics on a particular layer MC : the MarkovChain initialized with the above counts. null_prob : transition parameters for the null model. null_std : standard deviation associated with the transition parameters of the null model. See Also --------- MarkovChain """ def __init__(self, counts): ''' num_transitions = len(counts) #check if the num_transitions is a power of 2. if not _is_power_of_2(num_transitions): raise AssertionError("Length of counts is not a power of 2.") ''' MarkovChain.__init__(self, counts) self.counts = counts self.num_layers = len(counts.keys()[0][0]) self.null_components = None self.null_prob = None self.null_std = None def _compute_null_counts(self, counts): """ This function computes counts for the null model. """ num_layers = self.num_layers null_counts = [dict() for i in range(num_layers)] for (joint_fs,joint_ts) in counts.keys(): for layer in range(num_layers): if (joint_fs[layer],joint_ts[layer]) in null_counts[layer].keys(): null_counts[layer][(joint_fs[layer],joint_ts[layer])] += counts[(joint_fs,joint_ts)] else: null_counts[layer][(joint_fs[layer],joint_ts[layer])] = counts[(joint_fs,joint_ts)] self.null_components = [{'counts':null_counts[i]} for i in range(num_layers)] def compute_prob_null_components(self): """ Initializes a MarkovChain for each layer of the multiplex that describes the evolution of edges on that layer independent of the other layers. """ if self.null_components is None: self._compute_null_counts(self.counts) for component in self.null_components: component["MC"] = MarkovChain(component["counts"]) def compute_null_components(self): """ Computes the components of the null model. For a 4-state MC, they are two 2-state MCs. """ self._compute_null_counts(self.counts) self.compute_prob_null_components() def compute_null_prob_std(self): """ Computes the null probability using the null components. When computing the standard deviation the method approximates the beta distributions as a Gaussian distributions. """ num_transitions = self.num_transitions num_layers = self.num_layers pnull = dict() std_null = dict() #If the Gaussian approximation is not justified warn the user state_totals = self.get_state_totals() if (np.any(state_totals < 100)): warn("Some of the state totals are less than 100. Gaussian approximation may not be justified.") component_params = [self.null_components[k]['MC'].get_parameters() for k in range(num_layers)] component_std_dev = [self.null_components[k]['MC'].get_std_dev() for k in range(num_layers)] pnull = {(fs,ts):np.prod([component_params[k][(fs[k],ts[k])] for k in range(num_layers)]) for (fs,ts) in self.MC.edges()} std_null = {(fs,ts): pnull[(fs,ts)]*np.sqrt( np.sum( [(component_std_dev[k][(fs[k],ts[k])]/component_params[k][(fs[k],ts[k])])**2 for k in range(num_layers)] ) ) for (fs,ts) in self.MC.edges()} self.null_prob = pnull self.null_std = std_null def get_null_prob(self): """ Return the probability for each transition of the null model. Computes the null model the first time this function is called. """ if self.null_prob is None: if self.null_components is None: self.compute_null_components() self.compute_null_prob_std() return self.null_prob def get_null_std_dev(self): """ Returns the std dev. associated with the probability distribution of the transition parameters of the null model. """ if self.null_std is None: if self.null_components is None: self.compute_null_components() self.compute_null_prob_std() return self.null_std def differs_from_null(self): """ Returns a dictionary whose keys are transitions and whose values are abs(null_prob - prob)/(std_null + std) """ if self.null_prob is None: if self.null_components is None: self.compute_null_components() self.compute_null_prob_std() if self.params is None: self.compute_prob_params(self.counts) return {k:(self.params[k]-self.null_prob[k])/(self.std[k]+self.null_std[k]) for k in self.params.keys()}
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Models for storing campaign-related entities derived from raw CAL-ACCESS data. """ from datetime import date from calaccess_processed_elections import corrections, get_expected_election_date # Managers from calaccess_processed_filings.managers import Form501FilingManager # Models from django.db import models from opencivicdata.elections.models import CandidateContest from calaccess_processed_filings.models.base import FilingBaseModel class Form501FilingBase(FilingBaseModel): """ Base and abstract model for Form 501 filings. """ date_filed = models.DateField( verbose_name='from date', null=True, db_index=True, help_text="Date when the Form 501 filing was filed (from F501_502_CD.RPT_DATE)", ) statement_type = models.CharField( max_length=62, verbose_name='statement type', help_text='Describes the type of statement, e.g. "ORIGINAL", "AMENDMENT" ' '(from LOOKUP_CODES.CODE_DESC)', ) filer_id = models.CharField( verbose_name="filer identifier", max_length=9, help_text="Filer's unique identifier (from F501_502_CD.FILER_ID)", ) committee_id = models.CharField( verbose_name='committee identifier', max_length=9, help_text="Candidate's committee's unique filer idenitifier (from " "F501_502_CD.COMMITTEE_ID)", ) title = models.CharField( verbose_name="candidate name title", max_length=100, blank=True, help_text="Name title of the candidate (from F501_502_CD.CAND_NAMT)", ) last_name = models.CharField( verbose_name="candidate last name", max_length=200, # just a few don't even have a last name blank=True, help_text="Last name of the candidate (from F501_502_CD.CAND_NAML)", ) first_name = models.CharField( verbose_name="candidate first name", max_length=45, blank=True, help_text="First name of the candidate (from F501_502_CD.CAND_NAMF)", ) middle_name = models.CharField( verbose_name="candidate middle name", max_length=20, blank=True, help_text="Middle name of the candidate (from F501_502_CD.CAND_NAMM)", ) name_suffix = models.CharField( verbose_name="candidate name suffix", max_length=10, blank=True, help_text="Name suffix of the candidate (from F501_502_CD.CAND_NAMS)", ) name_moniker = models.CharField( verbose_name="candidate name moniker", max_length=20, blank=True, help_text="Moniker (aka, nickname) of the candidate (from F501_502_CD" ".MONIKER)", ) phone = models.CharField( max_length=20, verbose_name='candidate phone number', blank=True, help_text="Phone number of the candidate (from F501_502_CD.CAND_PHON)", ) fax = models.CharField( max_length=20, verbose_name='fax number', blank=True, help_text="Phone number of the candidate (from F501_502_CD.CAND_FAX)", ) email = models.CharField( max_length=200, verbose_name='email address', blank=True, help_text="Email address of the candidate (from F501_502_CD.CAND_EMAIL)", ) city = models.CharField( max_length=200, verbose_name="candidate city", blank=True, help_text="City of the candidate (from F501_502_CD.CAND_CITY)", ) state = models.CharField( max_length=200, verbose_name='candidate state', blank=True, help_text="State of the candidate (from F501_502_CD.CAND_ST)", ) zip_code = models.CharField( max_length=10, verbose_name='zip code', blank=True, help_text='Zip code (usually zip5, sometimes zip9) of the ' 'candidate (from F501_502_CD.CAND_ZIP4)', ) office = models.CharField( verbose_name='office sought', max_length=80, blank=True, help_text='Position title of the office sought by the candidate (from ' 'LOOKUP_CODES_CD.CODE_DESC, unless NULL or 0, then F501_502_CD.' 'OFFICE_DSCR)', ) agency = models.CharField( verbose_name='agency name', max_length=200, blank=True, help_text='Name of the agency with the office sought (from ' 'F501_502_CD.AGENCY_NAM)', ) district = models.IntegerField( verbose_name='district', null=True, help_text='District of office sought, if applicable (from LOOKUP_CODES_CD' '.CODE_DESC, unless NULL or 0, then F501_502_CD.DIST_NO)', ) party = models.CharField( max_length=30, verbose_name='political party', blank=True, help_text='Political party of the candidate (from LOOKUP_CODES_CD.' 'CODE_DESC, unless NULL or 0, then F501_502_CD.PARTY)', ) jurisdiction = models.CharField( max_length=30, verbose_name='jurisdiction', blank=True, help_text='Jurisdiction of the office sought, e.g., "LOCAL", "STATE" ' '(from LOOKUP_CODES_CD.CODE_DESC)', ) election_type = models.CharField( verbose_name='election type', max_length=16, null=True, help_text='Type of election in which the candidate is declaring intention' ' to run, e.g. "PRIMARY", "GENERAL" (from LOOKUP_CODES_CD.' 'CODE_DESC)', ) election_year = models.IntegerField( verbose_name='election year', null=True, help_text='Year in which the election is held (from F501_502_CD.YR_OF_ELEC)', ) accepted_limit = models.BooleanField( null=True, help_text='Indicates if either the "I accept the voluntary expenditure ' 'ceiling" or "I do not accept the voluntary expenditure" ' 'box is checked (from F501_502_CD.ACCEPT_LIMIT_YN)', ) limit_not_exceeded_election_date = models.DateField( verbose_name='limit not exceeded election date', null=True, help_text='Date of the primary or special election in which the candidate ' 'did not accept the voluntary expenditure ceiling but also did ' 'exceed the ceiling. Candidates may amend their Form 501 to accept ' 'the limits for the general election or special election runoff ' 'and receive all the benefits of accepting the ceiling (from ' 'F501_502_CD.DID_EXCEED_DT)' ) personal_funds_contrib_date = models.DateField( verbose_name='personal funds contribution date', null=True, help_text='Date on which the candidate contributed personal funds in excess ' 'of the voluntary expenditure ceiling for the (from F501_502_CD' '.CNTRB_PRSNL_FNDS_DT)', ) executed_on = models.DateField( verbose_name='executed on date', null=True, help_text='Date on which the candidate intention statement was signed ' '(from F501_502_CD.EXECUTE_DT)' ) class Meta: """ Model options. """ abstract = True app_label = 'calaccess_processed_filings' class Form501Filing(Form501FilingBase): """ The most recent version of each Form 501 filing by a candidate. Includes information from the most recent version of each Form 501 filing. All versions of the filings can be found in Form501FilingVersion. """ filing_id = models.IntegerField( verbose_name='filing id', primary_key=True, null=False, help_text='Unique identification number for the Form 501 filing (' 'from F501_502_CD.FILING_ID)', ) amendment_count = models.IntegerField( verbose_name='Count amendments', db_index=True, null=False, help_text='Number of amendments to the Form 501 filing (from ' 'maximum value of F501_502_CD.AMEND_ID)', ) objects = Form501FilingManager() class Meta: """ Model options. """ app_label = 'calaccess_processed_filings' index_together = (( 'filing_id', 'amendment_count', ),) verbose_name = "Form 501 (Candidate Intention) filing" def __str__(self): return str(self.filing_id) @property def name(self): """ Return the 'name' of the candidate to match the format we typically put in the OCD Person model. """ split_name = self.sort_name.split(',') split_name.reverse() return ' '.join(split_name).strip() @property def sort_name(self): """ Return the 'sort_name' of the candidate to match the format we typically scrape from the CAL-ACCESS website. This is useful when trying to consolidate these forms with scraped data in our OCD models. """ return '{0.last_name}, {0.first_name} {0.middle_name}'.format(self).strip() @property def parsed_name(self): """ The parsed name of the candidate ready to be converted into an OCD Person. """ return dict( name=self.name, sort_name=self.name ) @property def office_name(self): """ Return the 'office_name' of the candidate to match the format we typically scrape from the CAL-ACCESS website. This is useful when trying to consolidate these forms with scraped data in our OCD models. """ if self.district: return '{0.office} {0.district}'.format(self).strip() else: return self.office @property def ocd_election(self): """ Return Election occurring in year with name in including election_type. Return None if none found. """ from calaccess_processed_elections.proxies import OCDElectionProxy if not self.election_year or not self.election_type: return None try: return OCDElectionProxy.objects.get( date__year=self.election_year, name__contains=self.election_type, ) except (OCDElectionProxy.DoesNotExist, OCDElectionProxy.MultipleObjectsReturned): # if it's a future primary, try to calculate the date if self.election_year >= date.today().year and self.election_type == 'PRIMARY': try: dt_obj = get_expected_election_date( self.election_year, self.election_type ) except ValueError: return None return OCDElectionProxy.objects.create_from_calaccess( '{0} {1}'.format(self.election_year, self.election_type), dt_obj, election_type=self.election_type, ) else: return None def get_party(self): """ Get the Party from Form501Filing. Return Party object or None. """ from calaccess_processed_elections.proxies import OCDPartyProxy # first try the corrections party = corrections.candidate_party( '{0.last_name}, {0.first_name} {0.middle_name}'.format(self).strip(), self.election_year, self.election_type, '{0.office} {0.district}'.format(self).strip().upper(), ) if party: return party # then try using the party on the form501 party = OCDPartyProxy.objects.get_by_name(self.party) if not party.is_unknown(): return party # finally, try looking in FilerToFilerTypes ocd_election = self.ocd_election if not ocd_election: return OCDPartyProxy.objects.unknown() return OCDPartyProxy.objects.get_by_filer_id(int(self.filer_id), ocd_election.date) def get_or_create_contest(self): """ Get or create a CandidateContest by extracting info form Form501Filing. Return a CandidateContest or None, if extracted info is insufficient. """ from calaccess_processed_elections.proxies import OCDPostProxy # Get or create an election ocd_election = self.ocd_election if not ocd_election: return None # Get or create a post post = OCDPostProxy.objects.get_by_form501(self) # Don't bother trying to get contest unless we have a post if not post: return None # Seed contest data contest_data = { 'posts__post': post, 'division': post.division, 'election': ocd_election, } # if looking for a pre-2012 primary, include party if ocd_election.is_partisan_primary: contest_data['party'] = self.get_party() # Try to get it from the database try: return CandidateContest.objects.get(**contest_data) except CandidateContest.DoesNotExist: # if the election date is later than today, but no contest if ocd_election.date > date.today(): # make the contest (CAL-ACCESS website might behind) contest = CandidateContest.objects.create( name=post.label.upper(), division=contest_data['division'], election=contest_data['election'], ) contest.posts.create( contest=contest, post=contest_data['posts__post'], ) return contest # Otherwise give up else: return None except CandidateContest.MultipleObjectsReturned: # In this case, there is likely a primary and a runoff on the same day # and the code is unable to specify between them. # I don't yet have a solution to this problem so we are going to give up return None class Form501FilingVersion(Form501FilingBase): """ Every version of each Form 501 (Candidate Intention Statement) filing by candidates. Includes information found on each version of each Form 501 filing. For the most recent version of each filing, see Form501Filing. """ filing = models.ForeignKey( 'Form501Filing', related_name='versions', db_constraint=False, null=True, on_delete=models.SET_NULL, help_text='Unique identification number for the Form 501 filing (' 'from F501_502_CD.FILING_ID)', ) amend_id = models.IntegerField( verbose_name='amendment id', null=False, help_text='Identifies the version of the Form 501 filing, with 0 ' 'representing the initial filing (from F501_502_CD.FILING_ID)', ) objects = Form501FilingManager() class Meta: """ Model options. """ app_label = 'calaccess_processed_filings' unique_together = (( 'filing', 'amend_id', ),) index_together = (( 'filing', 'amend_id', ),) verbose_name = "Form 501 (Candidate Intention) filing version" def __str__(self): return '{}-{}'.format(self.filing, self.amend_id)
# Copied from pytorch repository since my installation does not have this yet. import math import random import torch from torch.autograd import Variable def calculate_gain(nonlinearity, param=None): """Return the recommended gain value for the given nonlinearity function. The values are as follows: ============ ========================================== nonlinearity gain ============ ========================================== linear :math:`1` conv{1,2,3}d :math:`1` sigmoid :math:`1` tanh :math:`5 / 3` relu :math:`\sqrt{2}` leaky_relu :math:`\sqrt{2 / (1 + negative\_slope^2)}` ============ ========================================== Args: nonlinearity: the nonlinear function (`nn.functional` name) param: optional parameter for the nonlinear function Examples: >>> gain = nn.init.gain('leaky_relu') """ linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] if nonlinearity in linear_fns or nonlinearity == 'sigmoid': return 1 elif nonlinearity == 'tanh': return 5.0 / 3 elif nonlinearity == 'relu': return math.sqrt(2.0) elif nonlinearity == 'leaky_relu': if param is None: negative_slope = 0.01 elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError("negative_slope {} not a valid number".format(param)) return math.sqrt(2.0 / (1 + negative_slope ** 2)) else: raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) def uniform(tensor, a=0, b=1): """Fills the input Tensor or Variable with values drawn from the uniform distribution :math:`U(a, b)`. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable a: the lower bound of the uniform distribution b: the upper bound of the uniform distribution Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.uniform(w) """ if isinstance(tensor, Variable): uniform(tensor.data, a=a, b=b) return tensor return tensor.uniform_(a, b) def normal(tensor, mean=0, std=1): """Fills the input Tensor or Variable with values drawn from the normal distribution :math:`N(mean, std)`. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable mean: the mean of the normal distribution std: the standard deviation of the normal distribution Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.normal(w) """ if isinstance(tensor, Variable): normal(tensor.data, mean=mean, std=std) return tensor return tensor.normal_(mean, std) def constant(tensor, val): """Fills the input Tensor or Variable with the value `val`. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable val: the value to fill the tensor with Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.constant(w) """ if isinstance(tensor, Variable): constant(tensor.data, val) return tensor return tensor.fill_(val) def eye(tensor): """Fills the 2-dimensional input Tensor or Variable with the identity matrix. Preserves the identity of the inputs in Linear layers, where as many inputs are preserved as possible. Args: tensor: a 2-dimensional torch.Tensor or autograd.Variable Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.eye(w) """ if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") if isinstance(tensor, Variable): eye(tensor.data) return tensor return tensor.copy_(torch.eye(tensor.size(0), tensor.size(1))) def dirac(tensor): """Fills the {3, 4, 5}-dimensional input Tensor or Variable with the Dirac delta function. Preserves the identity of the inputs in Convolutional layers, where as many input channels are preserved as possible. Args: tensor: a {3, 4, 5}-dimensional torch.Tensor or autograd.Variable Examples: >>> w = torch.Tensor(3, 16, 5, 5) >>> nn.init.dirac(w) """ dimensions = tensor.ndimension() if dimensions not in [3, 4, 5]: raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported") if isinstance(tensor, Variable): dirac(tensor.data) return tensor sizes = tensor.size() min_dim = min(sizes[0], sizes[1]) tensor.zero_() for d in range(min_dim): if dimensions == 3: # Temporal convolution tensor[d, d, tensor.size(2) // 2] = 1 elif dimensions == 4: # Spatial convolution tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2] = 1 else: # Volumetric convolution tensor[d, d, tensor.size(2) // 2, tensor.size(3) // 2, tensor.size(4) // 2] = 1 return tensor def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.ndimension() if dimensions < 2: raise ValueError("Fan in and fan out can not be computed for tensor with less than 2 dimensions") if dimensions == 2: # Linear fan_in = tensor.size(1) fan_out = tensor.size(0) else: num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: receptive_field_size = tensor[0][0].numel() fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out def xavier_uniform(tensor, gain=1): """Fills the input Tensor or Variable with values according to the method described in "Understanding the difficulty of training deep feedforward neural networks" - Glorot, X. & Bengio, Y. (2010), using a uniform distribution. The resulting tensor will have values sampled from :math:`U(-a, a)` where :math:`a = gain \\times \sqrt{2 / (fan\_in + fan\_out)} \\times \sqrt{3}`. Also known as Glorot initialisation. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable gain: an optional scaling factor Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.xavier_uniform(w, gain=nn.init.calculate_gain('relu')) """ if isinstance(tensor, Variable): xavier_uniform(tensor.data, gain=gain) return tensor fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / (fan_in + fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return tensor.uniform_(-a, a) def xavier_normal(tensor, gain=1): """Fills the input Tensor or Variable with values according to the method described in "Understanding the difficulty of training deep feedforward neural networks" - Glorot, X. & Bengio, Y. (2010), using a normal distribution. The resulting tensor will have values sampled from :math:`N(0, std)` where :math:`std = gain \\times \sqrt{2 / (fan\_in + fan\_out)}`. Also known as Glorot initialisation. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable gain: an optional scaling factor Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.xavier_normal(w) """ if isinstance(tensor, Variable): xavier_normal(tensor.data, gain=gain) return tensor fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / (fan_in + fan_out)) return tensor.normal_(0, std) def _calculate_correct_fan(tensor, mode): mode = mode.lower() valid_modes = ['fan_in', 'fan_out'] if mode not in valid_modes: raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) return fan_in if mode == 'fan_in' else fan_out def kaiming_uniform(tensor, a=0, mode='fan_in'): """Fills the input Tensor or Variable with values according to the method described in "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al. (2015), using a uniform distribution. The resulting tensor will have values sampled from :math:`U(-bound, bound)` where :math:`bound = \sqrt{2 / ((1 + a^2) \\times fan\_in)} \\times \sqrt{3}`. Also known as He initialisation. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable a: the negative slope of the rectifier used after this layer (0 for ReLU by default) mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass. Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.kaiming_uniform(w, mode='fan_in') """ if isinstance(tensor, Variable): kaiming_uniform(tensor.data, a=a, mode=mode) return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain('leaky_relu', a) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return tensor.uniform_(-bound, bound) def kaiming_normal(tensor, a=0, mode='fan_in'): """Fills the input Tensor or Variable with values according to the method described in "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification" - He, K. et al. (2015), using a normal distribution. The resulting tensor will have values sampled from :math:`N(0, std)` where :math:`std = \sqrt{2 / ((1 + a^2) \\times fan\_in)}`. Also known as He initialisation. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable a: the negative slope of the rectifier used after this layer (0 for ReLU by default) mode: either 'fan_in' (default) or 'fan_out'. Choosing `fan_in` preserves the magnitude of the variance of the weights in the forward pass. Choosing `fan_out` preserves the magnitudes in the backwards pass. Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.kaiming_normal(w, mode='fan_out') """ if isinstance(tensor, Variable): kaiming_normal(tensor.data, a=a, mode=mode) return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain('leaky_relu', a) std = gain / math.sqrt(fan) return tensor.normal_(0, std) def orthogonal(tensor, gain=1): """Fills the input Tensor or Variable with a (semi) orthogonal matrix, as described in "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks" - Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. Args: tensor: an n-dimensional torch.Tensor or autograd.Variable, where n >= 2 gain: optional scaling factor Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.orthogonal(w) """ if isinstance(tensor, Variable): orthogonal(tensor.data, gain=gain) return tensor if tensor.ndimension() < 2: raise ValueError("Only tensors with 2 or more dimensions are supported") rows = tensor.size(0) cols = tensor[0].numel() flattened = torch.Tensor(rows, cols).normal_(0, 1) # Compute the qr factorization q, r = torch.qr(flattened) # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf d = torch.diag(r, 0) ph = d.sign() q *= ph.expand_as(q) # Pad zeros to Q (if rows smaller than cols) if rows < cols: padding = torch.zeros(rows, cols - rows) if q.is_cuda: q = torch.cat([q, padding.cuda()], 1) else: q = torch.cat([q, padding], 1) tensor.view_as(q).copy_(q) tensor.mul_(gain) return tensor def sparse(tensor, sparsity, std=0.01): """Fills the 2D input Tensor or Variable as a sparse matrix, where the non-zero elements will be drawn from the normal distribution :math:`N(0, 0.01)`, as described in "Deep learning via Hessian-free optimization" - Martens, J. (2010). Args: tensor: an n-dimensional torch.Tensor or autograd.Variable sparsity: The fraction of elements in each column to be set to zero std: the standard deviation of the normal distribution used to generate the non-zero values Examples: >>> w = torch.Tensor(3, 5) >>> nn.init.sparse(w, sparsity=0.1) """ if isinstance(tensor, Variable): sparse(tensor.data, sparsity, std=std) return tensor if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") tensor.normal_(0, std) rows, cols = tensor.size(0), tensor.size(1) num_zeros = int(math.ceil(cols * sparsity)) for col_idx in range(tensor.size(1)): row_indices = list(range(rows)) random.shuffle(row_indices) zero_indices = row_indices[:num_zeros] for row_idx in zero_indices: tensor[row_idx, col_idx] = 0 return tensor
# coding: utf-8 # imports import os import re import datetime from PIL import Image # filebrowser imports from filebrowser.settings import SAVE_FULL_URL, ADMIN_THUMBNAIL from filebrowser.conf import fb_settings from filebrowser.functions import get_file_type, url_join, get_version_path class FileObject(object): """ The FileObject represents a File on the Server. PATH has to be relative to MEDIA_ROOT. """ def __init__(self, path): """ `os.path.split` Split the pathname path into a pair, (head, tail) where tail is the last pathname component and head is everything leading up to that. The tail part will never contain a slash; if path ends in a slash, tail will be empty. If there is no slash in path, head will be empty. If path is empty, both head and tail are empty. """ self.path = path self.url_rel = path.replace("\\", "/") self.head, self.filename = os.path.split(path) # important for sorting self.filename_lower = self.filename.lower() # strange if file no extension then this folder self.filetype = get_file_type(self.filename) def _filesize(self): """ Filesize. """ path = self.path if os.path.isfile(os.path.join(fb_settings.MEDIA_ROOT, path)) or \ os.path.isdir(os.path.join(fb_settings.MEDIA_ROOT, path)): return os.path.getsize(os.path.join(fb_settings.MEDIA_ROOT, path)) return "" filesize = property(_filesize) def _date(self): """ Date. """ if os.path.isfile(os.path.join(fb_settings.MEDIA_ROOT, self.path)) or \ os.path.isdir(os.path.join(fb_settings.MEDIA_ROOT, self.path)): return os.path.getmtime( os.path.join(fb_settings.MEDIA_ROOT, self.path) ) return "" date = property(_date) def _datetime(self): """ Datetime Object. """ return datetime.datetime.fromtimestamp(self.date) datetime = property(_datetime) def _extension(self): """ Extension. """ return u"{0}".format(os.path.splitext(self.filename)[1]) extension = property(_extension) def _filetype_checked(self): if self.filetype == "Folder" and os.path.isdir(self.path_full): return self.filetype elif self.filetype != "Folder" and os.path.isfile(self.path_full): return self.filetype else: return "" filetype_checked = property(_filetype_checked) def _path_full(self): """ Full server PATH including MEDIA_ROOT. """ return os.path.join(fb_settings.MEDIA_ROOT, self.path) path_full = property(_path_full) def _path_relative(self): return self.path path_relative = property(_path_relative) def _path_relative_directory(self): """ Path relative to initial directory. """ directory_re = re.compile(r'^({0})'.format(fb_settings.DIRECTORY)) value = directory_re.sub('', self.path) return value path_relative_directory = property(_path_relative_directory) def _url_relative(self): return self.url_rel url_relative = property(_url_relative) def _url_full(self): """ Full URL including MEDIA_URL. """ return url_join(fb_settings.MEDIA_URL, self.url_rel) url_full = property(_url_full) def _url_save(self): """ URL used for the filebrowsefield. """ if SAVE_FULL_URL: return self.url_full else: return self.url_rel url_save = property(_url_save) def _url_thumbnail(self): """ Thumbnail URL. """ if self.filetype == "Image": return "{0}".format( url_join( fb_settings.MEDIA_URL, get_version_path(self.path, ADMIN_THUMBNAIL) ) ) else: return "" url_thumbnail = property(_url_thumbnail) def url_admin(self): if self.filetype_checked == "Folder": directory_re = re.compile(r'^({0})'.format(fb_settings.DIRECTORY)) value = directory_re.sub('', self.path) return "{0}".format(value) else: return "{0}".format(url_join(fb_settings.MEDIA_URL, self.path)) def _dimensions(self): """ Image Dimensions. """ if self.filetype == 'Image': try: im = Image.open( os.path.join(fb_settings.MEDIA_ROOT, self.path) ) return im.size except IOError: pass else: return False dimensions = property(_dimensions) def _width(self): """ Image Width. """ return self.dimensions[0] width = property(_width) def _height(self): """ Image Height. """ return self.dimensions[1] height = property(_height) def _orientation(self): """ Image Orientation. """ if self.dimensions: if self.dimensions[0] >= self.dimensions[1]: return "Landscape" else: return "Portrait" else: return None orientation = property(_orientation) def _is_empty(self): """ True if Folder is empty, False if not. """ if os.path.isdir(self.path_full): if not os.listdir(self.path_full): return True else: return False else: return None is_empty = property(_is_empty) def __repr__(self): return self.url_save def __str__(self): return self.url_save def __unicode__(self): return self.url_save
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2017 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) from pymeasure.instruments import Instrument from pymeasure.instruments.validators import ( truncated_discrete_set, strict_discrete_set, truncated_range ) from time import sleep import numpy as np import re class Yokogawa7651(Instrument): """ Represents the Yokogawa 7651 Programmable DC Source and provides a high-level for interacting with the instrument. .. code-block:: python yoko = Yokogawa7651("GPIB::1") yoko.apply_current() # Sets up to source current yoko.source_current_range = 10e-3 # Sets the current range to 10 mA yoko.compliance_voltage = 10 # Sets the compliance voltage to 10 V yoko.source_current = 0 # Sets the source current to 0 mA yoko.enable_source() # Enables the current output yoko.ramp_to_current(5e-3) # Ramps the current to 5 mA yoko.shutdown() # Ramps the current to 0 mA and disables output """ @staticmethod def _find(v, key): """ Returns a value by parsing a current panel setting output string array, which is returned with a call to "OS;E". This is used for Instrument.control methods, and should not be called directly by the user. """ status = ''.join(v.split("\r\n\n")[1:-1]) keys = re.findall('[^\dE+.-]+', status) values = re.findall('[\dE+.-]+', status) if key not in keys: raise ValueError("Invalid key used to search for status of Yokogawa 7561") else: return values[keys.index(key)] source_voltage = Instrument.control( "OD;E", "S%g;E", """ A floating point property that controls the source voltage in Volts, if that mode is active. """ ) source_current = Instrument.control( "OD;E", "S%g;E", """ A floating point property that controls the source current in Amps, if that mode is active. """ ) source_voltage_range = Instrument.control( "OS;E", "R%d;E", """ A floating point property that sets the source voltage range in Volts, which can take values: 10 mV, 100 mV, 1 V, 10 V, and 30 V. Voltages are truncted to an appropriate value if needed. """, validator=truncated_discrete_set, values={10e-3:2, 100e-3:3, 1:4, 10:5, 30:6}, map_values=True, get_process=lambda v: int(Yokogawa7651._find(v, 'R')) ) source_current_range = Instrument.control( "OS;E", "R%d;E", """ A floating point property that sets the current voltage range in Amps, which can take values: 1 mA, 10 mA, and 100 mA. Currents are truncted to an appropriate value if needed. """, validator=truncated_discrete_set, values={1e-3:4, 10e-3:5, 100e-3:6}, map_values=True, get_process=lambda v: int(Yokogawa7651._find(v, 'R')) ) source_mode = Instrument.control( "OS;E", "F%d;E", """ A string property that controls the source mode, which can take the values 'current' or 'voltage'. The convenience methods :meth:`~.Yokogawa7651.apply_current` and :meth:`~.Yokogawa7651.apply_voltage` can also be used. """, validator=strict_discrete_set, values={'current':5, 'voltage':1}, map_values=True, get_process=lambda v: int(Yokogawa7651._find(v, 'F')) ) compliance_voltage = Instrument.control( "OS;E", "LV%g;E", """ A floating point property that sets the compliance voltage in Volts, which can take values between 1 and 30 V. """, validator=truncated_range, values=[1, 30], get_process=lambda v: int(Yokogawa7651._find(v, 'LV')) ) compliance_current = Instrument.control( "OS;E", "LA%g;E", """ A floating point property that sets the compliance current in Amps, which can take values from 5 to 120 mA. """, validator=truncated_range, values=[5e-3, 120e-3], get_process=lambda v: float(Yokogawa7651._find(v, 'LA'))*1e-3, # converts A to mA set_process=lambda v: v*1e3, # converts mA to A ) def __init__(self, adapter, **kwargs): super(Yokogawa7651, self).__init__( adapter, "Yokogawa 7651 Programmable DC Source", **kwargs ) self.write("H0;E") # Set no header in output data @property def id(self): """ Returns the identification of the instrument """ return self.ask("OS;E").split('\r\n\n')[0] @property def source_enabled(self): """ Reads a boolean value that is True if the source is enabled, determined by checking if the 5th bit of the OC flag is a binary 1. """ oc = int(self.ask("OC;E")[5:]) return oc & 0b10000 def enable_source(self): """ Enables the source of current or voltage depending on the configuration of the instrument. """ self.write("O1;E") def disable_source(self): """ Disables the source of current or voltage depending on the configuration of the instrument. """ self.write("O0;E") def apply_current(self, max_current=1e-3, complinance_voltage=1): """ Configures the instrument to apply a source current, which can take optional parameters that defer to the :attr:`~.Yokogawa7651.source_current_range` and :attr:`~.Yokogawa7651.compliance_voltage` properties. """ self.source_mode = 'current' self.source_current_range = max_current self.complinance_voltage = complinance_voltage def apply_voltage(self, max_voltage=1, complinance_current=10e-3): """ Configures the instrument to apply a source voltage, which can take optional parameters that defer to the :attr:`~.Yokogawa7651.source_voltage_range` and :attr:`~.Yokogawa7651.compliance_current` properties. """ self.source_mode = 'voltage' self.source_voltage_range = max_voltage self.complinance_current = compliance_current def ramp_to_current(self, current, steps=25, duration=0.5): """ Ramps the current to a value in Amps by traversing a linear spacing of current steps over a duration, defined in seconds. :param steps: A number of linear steps to traverse :param duration: A time in seconds over which to ramp """ start_current = self.source_current stop_current = current pause = duration/steps if (start_current != stop_current): currents = np.linspace(start_current, stop_current, steps) for current in currents: self.source_current = current sleep(pause) def ramp_to_voltage(self, voltage, steps=25, duration=0.5): """ Ramps the voltage to a value in Volts by traversing a linear spacing of voltage steps over a duration, defined in seconds. :param steps: A number of linear steps to traverse :param duration: A time in seconds over which to ramp """ start_voltage = self.source_voltage stop_voltage = voltage pause = duration/steps if (start_voltage != stop_voltage): voltages = np.linspace(start_voltage, stop_voltage, steps) for voltage in voltages: self.source_voltage = voltage sleep(pause) def shutdown(self): """ Shuts down the instrument, and ramps the current or voltage to zero before disabling the source. """ # Since voltage and current are set the same way, this # ramps either the current or voltage to zero self.ramp_to_current(0.0, steps=25) self.source_current = 0.0 self.disable_source() super(Yokogawa7651, self).shutdown()
# Copyright (C) 2012 Nippon Telegraph and Telephone Corporation. # Copyright (C) 2012 Isaku Yamahata <yamahata at private email ne jp> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ slimmed down version of OVSBridge in quantum agent """ import functools from ryu import cfg import logging import ryu.exception as ryu_exc import ryu.lib.dpid as dpid_lib import ryu.lib.ovs.vsctl as ovs_vsctl LOG = logging.getLogger(__name__) CONF = cfg.CONF CONF.register_opts([ cfg.IntOpt('ovsdb-timeout', default=2, help='ovsdb timeout') ]) class OVSBridgeNotFound(ryu_exc.RyuException): message = 'no bridge for datapath_id %(datapath_id)s' class VifPort(object): def __init__(self, port_name, ofport, vif_id, vif_mac, switch): super(VifPort, self).__init__() self.port_name = port_name self.ofport = ofport self.vif_id = vif_id self.vif_mac = vif_mac self.switch = switch def __str__(self): return ('iface-id=%s, ' 'vif_mac=%s, ' 'port_name=%s, ' 'ofport=%d, ' 'bridge_name=%s' % (self.vif_id, self.vif_mac, self.port_name, self.ofport, self.switch.br_name)) class TunnelPort(object): def __init__(self, port_name, ofport, tunnel_type, local_ip, remote_ip): super(TunnelPort, self).__init__() self.port_name = port_name self.ofport = ofport self.tunnel_type = tunnel_type self.local_ip = local_ip self.remote_ip = remote_ip def __eq__(self, other): return (self.port_name == other.port_name and self.ofport == other.ofport and self.tunnel_type == other.tunnel_type and self.local_ip == other.local_ip and self.remote_ip == other.remote_ip) def __str__(self): return ('port_name=%s, ' 'ofport=%s, ' 'type=%s, ' 'local_ip=%s, ' 'remote_ip=%s' % (self.port_name, self.ofport, self.tunnel_type, self.local_ip, self.remote_ip)) class OVSBridge(object): def __init__(self, CONF, datapath_id, ovsdb_addr, timeout=None, exception=None): super(OVSBridge, self).__init__() self.datapath_id = datapath_id self.vsctl = ovs_vsctl.VSCtl(ovsdb_addr) self.timeout = timeout or CONF.ovsdb_timeout self.exception = exception self.br_name = None def run_command(self, commands): self.vsctl.run_command(commands, self.timeout, self.exception) def init(self): if self.br_name is None: self.br_name = self._get_bridge_name() def _get_bridge_name(self): """ get Bridge name of a given 'datapath_id' """ command = ovs_vsctl.VSCtlCommand( 'find', ('Bridge', 'datapath_id=%s' % dpid_lib.dpid_to_str(self.datapath_id))) self.run_command([command]) result = command.result if len(result) == 0 or len(result) > 1: raise OVSBridgeNotFound( datapath_id=dpid_lib.dpid_to_str(self.datapath_id)) return result[0].name def get_controller(self): command = ovs_vsctl.VSCtlCommand('get-controller', [self.br_name]) self.run_command([command]) return command.result[0] def set_controller(self, controllers): command = ovs_vsctl.VSCtlCommand('set-controller', [self.br_name]) command.args.extend(controllers) self.run_command([command]) def del_controller(self): command = ovs_vsctl.VSCtlCommand('del-controller', [self.br_name]) self.run_command([command]) def set_db_attribute(self, table_name, record, column, value): command = ovs_vsctl.VSCtlCommand( 'set', (table_name, record, '%s=%s' % (column, value))) self.run_command([command]) def clear_db_attribute(self, table_name, record, column): command = ovs_vsctl.VSCtlCommand('clear', (table_name, record, column)) self.run_command([command]) def db_get_val(self, table, record, column): command = ovs_vsctl.VSCtlCommand('get', (table, record, column)) self.run_command([command]) assert len(command.result) == 1 return command.result[0] def db_get_map(self, table, record, column): val = self.db_get_val(table, record, column) assert type(val) == dict return val def get_datapath_id(self): return self.db_get_val('Bridge', self.br_name, 'datapath_id') def delete_port(self, port_name): command = ovs_vsctl.VSCtlCommand( 'del-port', (self.br_name, port_name), ('--if-exists')) self.run_command([command]) def get_ofport(self, port_name): ofport_list = self.db_get_val('Interface', port_name, 'ofport') assert len(ofport_list) == 1 return int(ofport_list[0]) def get_port_name_list(self): command = ovs_vsctl.VSCtlCommand('list-ports', (self.br_name, )) self.run_command([command]) return command.result def add_tunnel_port(self, name, tunnel_type, local_ip, remote_ip, key=None): options = 'local_ip=%(local_ip)s,remote_ip=%(remote_ip)s' % locals() if key: options += ',key=%(key)s' % locals() command_add = ovs_vsctl.VSCtlCommand('add-port', (self.br_name, name)) command_set = ovs_vsctl.VSCtlCommand( 'set', ('Interface', name, 'type=%s' % tunnel_type, 'options=%s' % options)) self.run_command([command_add, command_set]) def add_gre_port(self, name, local_ip, remote_ip, key=None): self.add_tunnel_port(name, 'gre', local_ip, remote_ip, key=key) def del_port(self, port_name): command = ovs_vsctl.VSCtlCommand('del-port', (self.br_name, port_name)) self.run_command([command]) def _get_ports(self, get_port): ports = [] port_names = self.get_port_name_list() for name in port_names: if self.get_ofport(name) < 0: continue port = get_port(name) if port: ports.append(port) return ports def _vifport(self, name, external_ids): ofport = self.get_ofport(name) return VifPort(name, ofport, external_ids['iface-id'], external_ids['attached-mac'], self) def _get_vif_port(self, name): external_ids = self.db_get_map('Interface', name, 'external_ids') if 'iface-id' in external_ids and 'attached-mac' in external_ids: return self._vifport(name, external_ids) def get_vif_ports(self): 'returns a VIF object for each VIF port' return self._get_ports(self._get_vif_port) def _get_external_port(self, name): # exclude vif ports external_ids = self.db_get_map('Interface', name, 'external_ids') if external_ids: return # exclude tunnel ports options = self.db_get_map('Interface', name, 'options') if 'remote_ip' in options: return ofport = self.get_ofport(name) return VifPort(name, ofport, None, None, self) def get_external_ports(self): return self._get_ports(self._get_external_port) def get_tunnel_port(self, name, tunnel_type='gre'): type_ = self.db_get_val('Interface', name, 'type') if type_ != tunnel_type: return options = self.db_get_map('Interface', name, 'options') if 'local_ip' in options and 'remote_ip' in options: ofport = self.get_ofport(name) return TunnelPort(name, ofport, tunnel_type, options['local_ip'], options['remote_ip']) def get_tunnel_ports(self, tunnel_type='gre'): get_tunnel_port = functools.partial(self.get_tunnel_port, tunnel_type=tunnel_type) return self._get_ports(get_tunnel_port) def get_quantum_ports(self, port_name): LOG.debug('port_name %s', port_name) command = ovs_vsctl.VSCtlCommand( 'list-ifaces-verbose', [dpid_lib.dpid_to_str(self.datapath_id), port_name]) self.run_command([command]) if command.result: return command.result[0] return None
############################################################### # MPySIR: MPI python script for SIR # # SCRIPT: sirutils.py ############################################################### """ # Author: [email protected] # Date: 09.06.2015 # Version: 1.4 """ """ Some functions useful for MPI parallel programming """ from mpi4py import MPI from pySir.sirtools import lmodel8 #============================================================================= def sirexe(fila, columna, myHeight, rank, sirfile, modeloFin, resultadoSir, sirmode, chi2map = True): finalProfile = 'hsraB_3.per' if sirmode == 'gammaV' or sirmode == 'gammVaddFullProfile': gammaV() if sirmode == 'medianFilter': medianFilter(fila, columna) import os os.system('echo sir.trol | '+sirfile+' > pylog.txt') # Ahora almacenamos los resultados en memoria tau, magnitudes = lmodel8(modeloFin,verbose=False) ERRtau, ERRmagnitudes = lmodel8(modeloFin[0:-4]+'.err',verbose=False) magnitudes.insert(0,tau) ERRmagnitudes.insert(0,ERRtau) if chi2map: chifile = open('sir.chi','r') for line in chifile: pass chi2 = float(line.split()[1]) lenmag = len(magnitudes) magnitudes.insert(lenmag,chi2) ERRmagnitudes.insert(lenmag,chi2) if sirmode == 'addFullProfile' or sirmode == 'gammVaddFullProfile': addFullProfile(sirfile) finalProfile = 'dataFull.per' from pySir.sirtools import lperfil xFull, stokesFull, [nL,posi,nN] = lperfil(finalProfile,verbose=False) perfiles = [xFull,stokesFull] modelos = [magnitudes, ERRmagnitudes] punto = [fila + myHeight*rank, columna] resultadoSir.append([punto,modelos,perfiles]) if sirmode == 'beforePixel': os.system('rm hsraB.mod'); os.system('cp hsraB_3.mod hsraB.mod') #============================================================================= def pncore(): import platform; _platform = platform.system() # We execute SIR according to the OS: from subprocess import PIPE, Popen if _platform == "Linux": # Linux OS proceso = Popen(['nproc'], stdout=PIPE, stderr=PIPE) ncores = proceso.stdout.read().split('\n')[0] print('Available cores = '+ncores) elif _platform == "Darwin": # MAC OS X proceso = Popen(['sysctl','hw.ncpu'], stdout=PIPE, stderr=PIPE) ncores = proceso.stdout.read().split('\n')[0] print('Available cores = '+ncores.split(':')[-1]) #============================================================================= def pprint(ini='', end='', comm=MPI.COMM_WORLD): """Print for MPI parallel programs: Only rank 0 prints *str*.""" if comm.rank == 0: print(str(ini)+end) #============================================================================= def getTerminalSize(): import os env = os.environ def ioctl_GWINSZ(fd): try: import fcntl, termios, struct, os cr = struct.unpack('hh', fcntl.ioctl(fd, termios.TIOCGWINSZ, '1234')) except: return return cr cr = ioctl_GWINSZ(0) or ioctl_GWINSZ(1) or ioctl_GWINSZ(2) if not cr: try: fd = os.open(os.ctermid(), os.O_RDONLY) cr = ioctl_GWINSZ(fd) os.close(fd) except: pass if not cr: try: cr = (env.get('LINES', 25), env.get('COLUMNS', 80)) # import os # cr[0],cr[1] = os.popen('stty size', 'r').read().split() except: pass # print("Default") # cr = (env.get('LINES', 25), env.get('COLUMNS', 80)) return int(cr[1]), int(cr[0]) #============================================================================= def plotper(): import matplotlib.pyplot as plt import os import numpy as np # import seaborn as sns # #sns.set(font="serif") # sns.set_style("ticks") filename='hsraB_3.per' #LineName=['SiI 10827.1'] LineName = ['FeI 6301.5']#,'FeI 6302.5','SiI 10827.1','FeI 15648.5','FeI 15652.9'] NumeroLineas = len(LineName) MainFile = 'data.per' Color2 = 'm' Color1='k' # XRANGEMAX = array([0.68,0.6,1.6,1.,1.]) # XRANGEMIN = -XRANGEMAX; XRANGEMIN[0] = -3 YRANGEMAX = np.array([1.1,3.,3.,3.,3.]) YRANGEMIN = -YRANGEMAX; YRANGEMIN[0] = 0 from pySir.sirtools import lperfil # Abrimos los ficheros: x0, stokes0, [nL,posi,nN] = lperfil(MainFile) if nL == 1: x0 = np.array(x0) StokeI0=stokes0[0] StokeQ0=stokes0[1] StokeU0=stokes0[2] StokeV0=stokes0[3] x, stokes, [nL,posi,nN] = lperfil(filename) x = np.array(x) StokeI=stokes[0] StokeQ=stokes[1] StokeU=stokes[2] StokeV=stokes[3] lennN = len(nN) NumeroLineas = nL PosiNn0T = list(posi); PosiNn0T.append(lennN-1) PosiNn1T = list(posi); PosiNn1T.append(lennN-1) x0A=x0/1000. xA=x/1000. sParam = 4 plt.figure(figsize=(15,5)) # Ejemplo de titulo # title(r' '+LineName[Index].split()[0]+' $'+LineName[Index].split()[1]+'\AA$',fontsize=10) for Index in range(0,NumeroLineas): plt.subplot(NumeroLineas,sParam,Index+1) plt.plot(x0A[PosiNn0T[Index]:PosiNn0T[Index+1]-1],StokeI0[PosiNn0T[Index]:PosiNn0T[Index+1]-1],Color1,lw=1.0) # xticks(fontsize = 7) # yticks(fontsize = 9) plt.tick_params(axis='y', direction='in') plt.tick_params(axis='x', direction='in') plt.xlabel(r'$\Delta\lambda$ [$\AA$]', fontsize=15) plt.ylabel(r'$I/I_c$', fontsize=15) plt.xlim(x0A[PosiNn0T[Index]],x0A[PosiNn0T[Index+1]-1]) plt.ylim(YRANGEMIN[0],YRANGEMAX[0]) plt.grid(alpha=0.2,linestyle='-') plt.locator_params(axis = 'x', nbins = 4) plt.locator_params(axis = 'y', nbins = 6) plt.subplot(NumeroLineas,sParam,Index+1+NumeroLineas) plt.plot(x0A[PosiNn0T[Index]:PosiNn0T[Index+1]-1],100*StokeQ0[PosiNn0T[Index]:PosiNn0T[Index+1]-1],Color1,lw=1.0) # xticks(fontsize = 7) # yticks(fontsize = 9) plt.tick_params(axis='y', direction='in') plt.tick_params(axis='x', direction='in') plt.xlabel(r'$\Delta\lambda$ [$\AA$]', fontsize=15) plt.ylabel(r'$Q/I_c$ $[\%]$', fontsize=15) plt.ylim(YRANGEMIN[1],YRANGEMAX[1]) plt.xlim(x0A[PosiNn0T[Index]],x0A[PosiNn0T[Index+1]-1]) plt.grid(alpha=0.2,linestyle='-') plt.locator_params(axis = 'x', nbins = 4) plt.locator_params(axis = 'y', nbins = 6) plt.subplot(NumeroLineas,sParam,Index+2+NumeroLineas) plt.plot(x0A[PosiNn0T[Index]:PosiNn0T[Index+1]-1],100*StokeU0[PosiNn0T[Index]:PosiNn0T[Index+1]-1],Color1,lw=1.0) # xticks(fontsize = 7) # yticks(fontsize = 9) plt.tick_params(axis='y', direction='in') plt.tick_params(axis='x', direction='in') plt.xlabel(r'$\Delta\lambda$ [$\AA$]', fontsize=15) plt.ylabel(r'$U/I_c$ $[\%]$', fontsize=15) plt.grid(alpha=0.2,linestyle='-') plt.locator_params(axis = 'x', nbins = 4) plt.xlim(x0A[PosiNn0T[Index]],x0A[PosiNn0T[Index+1]-1]) plt.ylim(YRANGEMIN[2],YRANGEMAX[2]) plt.locator_params(axis = 'y', nbins = 6) plt.subplot(NumeroLineas,sParam,Index+3+NumeroLineas) plt.plot(x0A[PosiNn0T[Index]:PosiNn0T[Index+1]-1],100*StokeV0[PosiNn0T[Index]:PosiNn0T[Index+1]-1],Color1,lw=1.0) # xticks(fontsize = 7) # yticks(fontsize = 9) plt.tick_params(axis='y', direction='in') plt.tick_params(axis='x', direction='in') plt.xlabel(r'$\Delta\lambda$ [$\AA$]', fontsize=15) plt.ylabel(r'$V/I_c$ $[\%]$', fontsize=15) plt.ylim(YRANGEMIN[3],YRANGEMAX[3]) plt.xlim(x0A[PosiNn0T[Index]],x0A[PosiNn0T[Index+1]-1]) plt.grid(alpha=0.2,linestyle='-') plt.locator_params(axis = 'x', nbins = 4) plt.locator_params(axis = 'y', nbins = 6) # ======================================================================================================== plt.subplot(NumeroLineas,sParam,Index+1) plt.plot(xA[PosiNn1T[Index]:PosiNn1T[Index+1]-1],StokeI[PosiNn1T[Index]:PosiNn1T[Index+1]-1],Color2,lw=1.0) plt.subplot(NumeroLineas,sParam,Index+1+NumeroLineas) plt.plot(xA[PosiNn1T[Index]:PosiNn1T[Index+1]-1],100*StokeQ[PosiNn1T[Index]:PosiNn1T[Index+1]-1],Color2,lw=1.0) plt.subplot(NumeroLineas,sParam,Index+2+NumeroLineas) plt.plot(xA[PosiNn1T[Index]:PosiNn1T[Index+1]-1],100*StokeU[PosiNn1T[Index]:PosiNn1T[Index+1]-1],Color2,lw=1.0) plt.subplot(NumeroLineas,sParam,Index+3+NumeroLineas) plt.plot(xA[PosiNn1T[Index]:PosiNn1T[Index+1]-1],100*StokeV[PosiNn1T[Index]:PosiNn1T[Index+1]-1],Color2,lw=1.0) # ======================================================================================================== plt.tight_layout() plt.savefig('P'+filename[0:-4]+'.pdf', bbox_inches='tight')#, pad_inches=0) print('P'+filename[0:-4]+'.pdf'+':: GUARDADO') return #============================================================================= def plotmfit(): # def plotmfit(initModel,outModel,errorModel=False,whichMag,verbose=False): import matplotlib.pyplot as plt import os import numpy as np # import seaborn as sns # sns.set_style("ticks") filename = 'hsraB_3.mod' errorModel = True #==================================================================== #; 0:= temp , 1:= pres, 2:= vmic, 3:= B, 4:= vlos 5:=gamma PosiPlot = [0,3,4,5] LabelPlot= ['$T$ $[kK]$',r'$P_e$'+' [dyn cm^-3]',r'$v_{mic}$'+' [km/s]','$B$ $[kG]$',r'$v_{LOS}$'+' $[km/s]$',r'$\gamma$ $[deg]$'] TEXTAU = r'$\tau$' NumPlots = len(PosiPlot) MainFile = 'hsraB.mod' Color1='k' Color2 = 'm' from pySir.sirtools import lmodel8 tau, TodoPlot = lmodel8(MainFile,verbose=False) tau2, TodoPlot2 = lmodel8(filename,verbose=False) if errorModel: ERRtau2, TodoPlot3 = lmodel8(filename[0:-4]+'.err') MMargen=[0.2,0.3,0.3,0.3] plt.figure(figsize=(4*NumPlots,5)) for i in range(0,len(PosiPlot)): plt.subplot(1,len(PosiPlot),i+1) Cantidad0=TodoPlot[PosiPlot[i]] Cantidad1=TodoPlot2[PosiPlot[i]] plt.plot(tau,Cantidad0,Color1,lw=1.0) plt.plot(tau2,Cantidad1,Color2,lw=1.0) if errorModel: ERRCantidad1=TodoPlot3[PosiPlot[i]] plt.fill_between(tau2, Cantidad1-ERRCantidad1, Cantidad1+ERRCantidad1,facecolor='m', alpha=0.2) #ylim(YRANGEMIN[Index],YRANGEMAX[Index]) plt.xlim(min(tau2),max(tau2)) Min0 = min(Cantidad0) Min1 = min(Cantidad1) Max0 = max(Cantidad0) Max1 = max(Cantidad1) if Min0 == Min1 : MinAbs = Min0 if Min0 != Min1 : MinAbs = min([Min0,Min1]) if Max0 == Max1 : MaxAbs = Max0 if Max0 != Max1 : MaxAbs = max([Max0,Max1]) NuevoMargen= abs(MinAbs-MaxAbs)*MMargen[i] plt.ylim(MinAbs-NuevoMargen,MaxAbs+NuevoMargen) #ylim(0.,2.5) plt.tick_params(axis='y', direction='in')#,labelsize=20) plt.tick_params(axis='x', direction='in')#,labelsize=20) plt.xlabel(r'$log(\tau)$', fontsize=20) plt.ylabel(LabelPlot[PosiPlot[i]], fontsize=20) plt.locator_params(axis = 'y', nbins = 6) plt.locator_params(axis = 'x', nbins = 4) plt.grid(alpha=0.2,linestyle='-') plt.tight_layout() # plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.4, hspace=0.3) plt.savefig('M'+filename[0:-4]+'.pdf', bbox_inches='tight')#, pad_inches=0) print('M'+filename[0:-4]+'.pdf'+':: GUARDADO') return #============================================================================= def cerca(number, array): from numpy import argmin, abs indice = argmin(abs(number-array)) return indice #============================================================================= def gammaV(): from scipy import integrate from scipy.interpolate import interp1d MainFile = 'data.per' from pySir.sirtools import lperfil x0, stokes0, [nL,posi,nN] = lperfil(MainFile) indice = cerca(0.,x0) distmin = min([abs(indice),abs(len(x0)-indice)]) centro = indice x = x0 y = stokes0[3] xlobuloazul = x[centro+1-distmin:centro+1] ylobuloazul = y[centro+1-distmin:centro+1] xlobulorojo = x[centro:centro+distmin] ylobulorojo = y[centro:centro+distmin] int_roja = integrate.simps(ylobulorojo,xlobulorojo) int_azul = integrate.simps(ylobuloazul,xlobuloazul) if int_azul > int_roja: gamma = 45.0 if int_azul < int_roja: gamma = 135.0 from pySir.sirtools import lmodel8, wmodel8 from numpy import ones tau, magnitudes = lmodel8('hsraB.mod',verbose=False) modelo = [tau, magnitudes] magnitudes[5] = gamma*ones(len(magnitudes[5])) wmodel8(modelo,'hsraB.mod',verbose=False) #============================================================================= def medianFilter(fila, columna): import numpy as np medianGAMMA = np.load('medianGAMMA.npy') gamma_median = medianGAMMA[columna, fila] from pySir.sirtools import lmodel8, wmodel8 from numpy import ones tau, magnitudes = lmodel8('hsraB.mod',verbose=False) modelo = [tau, magnitudes] magnitudes[5] = gamma_median*ones(len(magnitudes[5])) wmodel8(modelo,'hsraB.mod',verbose=False) #============================================================================= def addFullProfile(sirfile): import os os.system('echo sirFull.trol | '+sirfile+' > pylogFull.txt')
import re import urllib import os from datetime import datetime from django.conf import settings from django.utils import six from django.utils.safestring import mark_safe from django.utils.functional import curry from django.core.files.images import ImageFile from django.contrib.staticfiles import finders from sorl.thumbnail import get_thumbnail class FilePath(unicode): def __new__(cls, str, instance=None, field=None, settings={}): self = super(FilePath, cls).__new__(cls, str.strip()) self._instance = instance self._field = field self._exists = None self._size = None self._accessed_time = None self._created_time = None self._modified_time = None self._thumbnails = {} self.settings = { 'img_attrs': {}, 'thumbnail_size': None, 'thumbnail_attrs': {}, } self.settings.update(settings) return self def _html_attrs(self, **kwargs): attrs = {} attrs.update(kwargs) if 'css_class' in attrs: attrs['class'] = attrs['css_class'] del attrs['css_class'] return attrs @property def unescaped(self): return urllib.unquote(self) @property def escaped(self): return urllib.quote(self.unescaped) @property def url(self): if not self.startswith('/') and self.find('//') == -1: return os.path.join(settings.MEDIA_URL, self.escaped) return self.escaped @property def local_path(self): if not self.startswith('/') and self.find('//') == -1: return os.path.join(settings.MEDIA_ROOT, urllib.unquote(self)) return self def _get_local_path_or_file(self): # if file is in static instead of media directory, sorl raises # a suspicious operation error. So we open it safely without errors. if self.startswith('/'): if self.startswith('/static/'): path = self.replace('/static/', '') elif self.startswith(settings.STATIC_URL): path = self.replace(settings.STATIC_URL, '') else: return self.local_path else: return self.local_path path = finders.find(urllib.unquote(path)) image = ImageFile(open(path, 'r')) return image @property def filename(self): return urllib.unquote(re.sub(r'^.+\/', '', self)) @property def display_name(self): without_extension = re.sub(r'\.[\w\d]+$', '', self.filename) with_spaces = re.sub(r'_', ' ', without_extension) return with_spaces @property def ext(self): return re.sub(r'^.+\.', '', self.filename) def exists(self): if self._exists == None: self._exists = os.path.exists(self.local_path) return self._exists def get_size(self): if self._size == None: self._size = os.path.getsize(self.local_path) return self._size def get_accessed_time(self): if self._accessed_time is None: self._accessed_time = datetime.fromtimestamp(os.path.getatime(self.local_path)) return self._accessed_time def get_created_time(self): if self._created_time is None: self._created_time = datetime.fromtimestamp(os.path.getctime(self.local_path)) return self._created_time def get_modified_time(self): if self._modified_time is None: self._modified_time = datetime.fromtimestamp(os.path.getmtime(self.local_path)) return self._modified_time class ImagePath(FilePath): def img_tag(self, **kwargs): attrs = {} attrs.update(self.settings['img_attrs']) attrs.update(kwargs) attrs = self._html_attrs(**attrs) attrs_str = ''.join([ u'%s="%s" ' % (key, value) for key, value in attrs.items() ]) return mark_safe(u'<img src="%s" %s/>' % (self.url, attrs_str)) def _thumbnail_file_format(self): if self.ext.lower() in ['gif', 'png']: return 'PNG' return 'JPEG' def thumbnail(self, size=None, **kwargs): size = size or self.settings['thumbnail_size'] if not size: raise Exception('No thumbnail size supplied') attrs = { 'format': self._thumbnail_file_format(), 'upscale': False, } attrs.update(self.settings['thumbnail_attrs']) attrs.update(kwargs) all_attrs = {'size': size} all_attrs.update(attrs) key = hash(frozenset(all_attrs)) if not key in self._thumbnails: #self._thumbnails[key] = get_thumbnail(self._get_local_path_or_file(), size, **attrs) self._thumbnails[key] = get_thumbnail(self.local_path, size, **attrs) return self._thumbnails[key] def thumbnail_tag(self, size, opts={}, **kwargs): try: thumbnail = self.thumbnail(size, **opts) except EnvironmentError, e: if settings.THUMBNAIL_DEBUG: raise e return '' src = ImagePath(thumbnail.url, self._instance, self._field) attrs = { 'width': thumbnail.width, 'height': thumbnail.height } attrs.update(self.settings['img_attrs']) attrs.update(kwargs) return src.img_tag(**attrs) def __getattr__(self, attr): thumbnail_mxn = re.match(r'^thumbnail_(tag_)?(\d*x?\d+)$', attr) if thumbnail_mxn: tag = thumbnail_mxn.group(1) == 'tag_' size = thumbnail_mxn.group(2) if tag: return curry(self.thumbnail_tag, size) else: return curry(self.thumbnail, size) raise AttributeError class FilePaths(unicode): item_class = FilePath def __new__(cls, str, instance=None, field=None, settings={}): self = super(FilePaths, cls).__new__(cls, str) self._instance = instance self._field = field self._all = None self._length = None self._current = 0 self.settings = { 'img_attrs': {}, 'thumbnail_size': None, 'thumbnail_attrs': {}, } self.settings.update(settings) return self def all(self): if self._all == None: self._all = [] for f in self.splitlines(): self._all.append(self._field.attr_class.item_class(f, self._instance, self._field, self.settings)) self._length = len(self._all) return self._all def count(self): self.all() return self._length def first(self): return self.all() and self.all()[0] or None def last(self): return self.all() and self.all()[-1] or None def next(self): f = self.all()[self._current] self._current += 1 return f def next_n(self, n): files = self.all()[self._current:self._current+n] self._current += n return files def next_all(self): files = self.all()[self._current:] self._current = self._length - 1 return files def has_next(self): self.all() return max(0, self._length - self._current - 1) def reset(self): self._current = 0 def __getattr__(self, attr): next_n = re.match(r'^next_(\d+)$', attr) if next_n: n = int(next_n.group(1)) return curry(self.next_n, n) raise AttributeError class ImagePaths(FilePaths): item_class = ImagePath def as_gallery(self): raise NotImplementedError def as_carousel(self): raise NotImplementedError class FilesDescriptor(object): """ Used django.db.models.fields.files.FileDescriptor as an example. This descriptor returns an unicode object, with special methods for formatting like filename(), absolute(), relative() and img_tag(). """ def __init__(self, field): self.field = field def __get__(self, instance=None, owner=None): if instance is None: raise AttributeError( "The '%s' attribute can only be accessed from %s instances." % (self.field.name, owner.__name__)) files = instance.__dict__[self.field.name] if isinstance(files, six.string_types) and not isinstance(files, (FilePath, FilePaths)): attr = self.field.attr_class(files, instance, self.field) instance.__dict__[self.field.name] = attr return instance.__dict__[self.field.name] def __set__(self, instance, value): instance.__dict__[self.field.name] = value
#! /usr/bin/env python # # oravg_s2.py - An engine, adapted from the original oravg.py, to # calculate orientation averaged cross sections and # orientation-dependent spectral information starting from several # fixed orientation spectra of a nanoparticle with axial # symmetry. Uses interpolation on the sphere S^2 with a linear # combination of translates of a single strictly positive definite # basis function. The interpolation scheme is based on the "generating # function kernel" in: # # Jetter K, Stoeckler J, Ward JD, Math. Computation 1999, 68, 733-747. # # Works with FDTD runs using x-propagating, z-polarized plane # waves. It is assumed that the particle's axis of rotational symmetry # is the z-axis when the quaternion is (0,0,0,1). # # To use: need a system with Python 2.5.2 and NumPy 1.1.0. # Command line on Unix-like system: # # chmod +x ./oravg_s2.py # ./oravg_s2.py <control_file >output_file # # # CONTROL FILE: text file with a header, choice of interpolation # parameters, and body. # # HEADER: define the job type and related parameters. Choices # currently are orientation-averaged spectrum ("o"), fixed orientation # spectrum ("f"), or polar view of cross section as particle is # rotated ("p"). Put one of the following at the top of the control # file: # # Orientation-averaged spectrum: # o <- Job type # # Fixed orientation spectrum: # f <- Job type # 0.0 0.38268 0.0 0.92388 <- Unit quaternion (x,y,z,w) defining desired # orientation # Polar view: # p <- Job type # 0.0 0.0 0.0 1.0 <- Unit quaternion defining desired orientation # 1.0 0.0 0.0 <- Unit vector defining axis about which particle # is to be rotated # 101 <- Number of angular samples from 0 to 2pi # (samples include 0 and 2pi) # 667, 1.0 <- Wavelength/frequency to sample and tolerance # between given value and value in data file # (in same units as in data file) # # CHOICE OF INTERPOLATION PARAMETERS: Put the following next in the # control file: # # 0.3 <- Peakedness z of the kernel (0 < z < 1) # dinfh <- Point group of nanoparticle # # BODY: Put the following at the end of the control file: # # 0.0 0.0 0.0 1.0 30.dat F F # 0.707106781187 0.0 0.0 0.707106781187 30a.dat F F # 0.0 0.707106781187 0.0 0.707106781187 30b.dat F F # 0.325057583672 0.325057583672 0.0 0.888073833977 30c.dat T T # # where first 4 fields represent the unit quaternion (x,y,z,w) by # which the particle is rotated; the fifth is the data file name (by # default in same subdirectory as this program) of the corresponding # spectrum, and the last two are whether reflection in the xy and xz # planes, respectively, give a different but valid orientation with an # identical spectrum. # # # DATA FILES: # The data files must be lists of wavelength or frequency followed by the # cross section, one entry per line, with no blank lines: # # 810.2498 1.6144834E-12 # # The list of wavelengths sampled must be identical between files. # # # Raman Shah, April-August 2010 # IMPORTED MODULES from math import * import numpy as np from itertools import imap from operator import mul # MISCELLANEOUS UTILITIES # Convert Ts and Fs in file to boolean values in Python # Note: Text must be trimmed of any leading whitespace! def parsebool(string): return string[0].upper() == 'T' # Read standard input until a nonblank like is found, and return the nonblank # line as a list of words. Recognize comma as a word separator. def readlist(): while True: line = raw_input().replace(',', ' ').split() if line != []: return line # QUATERNION CLASS AND RELATED METHODS class quaternion: """A self-normalized rotation quaternion (x,y,z,w).""" def __init__(self, xpart, ypart, zpart, wpart): norm = sqrt(xpart * xpart + ypart * ypart + zpart * zpart \ + wpart * wpart) if norm == 0: raise ValueError self.x = xpart / norm self.y = ypart / norm self.z = zpart / norm self.w = wpart / norm def invert(self): # Quaternion for the inverse rotation has same axis # but opposite angle, so the vector components flip sign return quaternion(-1 * self.x, -1 * self.y, -1 * self.z, self.w) def xyreflect(self): return quaternion(-1 * self.x, -1 * self.y, self.z, self.w) def xzreflect(self): return quaternion(-1 * self.x, self.y, -1 * self.z, self.w) def show(self): print self.x, self.y, self.z, self.w def multiply(quat1, quat2): prodw = quat1.w*quat2.w - quat1.x*quat2.x \ - quat1.y*quat2.y - quat1.z*quat2.z prodx = quat1.w*quat2.x + quat1.x*quat2.w \ + quat1.y*quat2.z - quat1.z*quat2.y prody = quat1.w*quat2.y + quat1.y*quat2.w \ + quat1.z*quat2.x - quat1.x*quat2.z prodz = quat1.w*quat2.z + quat1.z*quat2.w \ + quat1.x*quat2.y - quat1.y*quat2.x return quaternion(prodx,prody,prodz,prodw) # FUNCTIONS FOR WORKING IN S^2 def point(quat): # Gives the unit vector (x, y, z) in R^3 resulting when (0, 0, 1) # is rotated by the given quaternion. The third column of the # quaternion rotation matrix. return (2 * (quat.w * quat.y + quat.x * quat.z), 2 * (quat.y * quat.z - quat.x * quat.w), (quat.w * quat.w - quat.x * quat.x - \ quat.y * quat.y + quat.z * quat.z)) def dot(x, y): # Dot product of two vectors in R^3, written as tuples return sum(imap(mul, x, y)) # FUNCTIONS FOR SYMMETRY ADAPTATION OF DATA SET def cinfv_symadapt(input_tuple): return [input_tuple] def dinfh_symadapt(input_tuple): # Takes a 2-tuple (quaternion + filename) and returns a # list of the 2 tuples equivalent to the given tuple via the discrete # subgroup of D_infh. # Right-handed rotation by pi about the x axis perpc2 = quaternion(1, 0, 0, 0) quat = input_tuple[0] text = input_tuple[1] return [(quat, text), (multiply(quat, perpc2), text)] def choose_point_group(point_group): if point_group == 'cinfv': return cinfv_symadapt if point_group == 'dinfh': return dinfh_symadapt # DEFINITION OF INTERPOLATOR AND ITS INTEGRAL def choose_interpolator(z): # This is the generating function kernel, normalized to 1 for # cos_theta = 1, and its integral over S^2. interpolator = (lambda cos_theta: \ ((1 - z) ** 3.0 / (1 + z ** 2 - 2 * z * cos_theta) ** 1.5)) integral = (1 - z) ** 2 / (1 + z) return (interpolator, integral) # EXECUTION BEGINS HERE: READ CONTROL FILE TO INITIALIZE # Initialize job using header of control file piped to standard input job_type = readlist()[0] if job_type == 'o': pass elif job_type == 'f': components = map(float, readlist()) orientation = quaternion(components[0], components[1], \ components[2], components[3]) elif job_type == 'p': components = map(float, readlist()) orientation = quaternion(components[0], components[1], \ components[2], components[3]) axis = map(float, readlist()) stepcount = int(readlist()[0]) wavelength, wavelength_tol = map(float, readlist()) else: raise IOError('Job type read as ' + job_type + ' is not valid.') # Define interpolator, integral, rot_adapt from control file z = float(readlist()[0]) if not ((z > 0) and (z < 1)): raise ValueError('Need 0 < z < 1 to give a valid kernel.') point_group = readlist()[0] interpolator, integral = choose_interpolator(z) rot_adapt = choose_point_group(point_group) # Parse input from body of control file into a control array with # entries [quaternion, string, boolean, boolean]. Also create a # dictionary of open data files to read later in program. control_list = [] datafile_dict = {} while True: try: words = readlist() curr_quat = quaternion(float(words[0]), float(words[1]), \ float(words[2]), float(words[3])) xybool = parsebool(words[5]) xzbool = parsebool(words[6]) control_list.append([curr_quat, words[4], xybool, xzbool]) datafile_dict[words[4]] = open('./' + words[4], 'r') except EOFError: break # ADAPT DATA SET TO SYMMETRY OF PROBLEM # Add reflected quaternions as directed in the control list # giving an array of tuples (quaternion, string) reflected_list = [] for item in control_list: reflected_list.append((item[0], item[1])) if (item[2] and item[3]): #xy and xz both give new equivalent configurations reflected_list.append((item[0].xyreflect(), item[1])) reflected_list.append((item[0].xzreflect(), item[1])) reflected_list.append((item[0].xyreflect().xzreflect(), item[1])) continue if item[2]: #only xy gives a new equivalent configuration reflected_list.append((item[0].xyreflect(), item[1])) continue if item[3]: #only xz gives a new equivalent configuration reflected_list.append((item[0].xzreflect(), item[1])) continue # For each quaternion, add the configurations equivalent # under the rotational point group, giving a master array # of tuples (quaternion, string) ready for processing master_list = [] for item in reflected_list: master_list += rot_adapt(item) # Give tuples of the quaternions and associated filenames main_quat_list, main_filename_list = zip(*master_list) # NUMERICAL SECTION: FUNCTION EVALUATION AND MATRIX INVERSION # Instantiate a matrix of the dot products between corresponding points in # R^3 as well as a matrix of the interpolator evaluations. The former is useful # for measuring the separation distance of the data set. # a_ij = x_i dot x_j # A_ij = Phi_z(a_ij) dimension = len(main_quat_list) a = np.matrix(np.zeros((dimension, dimension))) A = np.matrix(np.zeros((dimension, dimension))) for i in range(dimension): for j in range(dimension): a[i, j] = dot(point(main_quat_list[i]), point(main_quat_list[j])) A[i, j] = interpolator(a[i, j]) # # Some verbose info # # # Find separation distance of the set of quaternions # biggest_costheta = 0 # for i in range(dimension): # for j in range(dimension): # if (i != j) and a[i,j] > biggest_costheta: # biggest_costheta = a[i,j] # print 'Smallest separation angle (in rad) is ' + \ # str(acos(biggest_costheta)) + '.' # # print 'Dimension is ' + str(dimension) + '.' # #print 'Points sampled are:' #for quat in main_quat_list: # print point(quat) # # for i in range(dimension): # for j in range(dimension): # if ((i != j) and A[i,j] == 1): # print 'Off-diagonal element ' + str(i+1) + ', ' + str(j+1) + \ # ' is 1.' # if A[i,j] == 0: # print 'Element ' + str(i+1) + ', ' + str(j+1) + ' is 0.' # Invert the matrix A to get the matrix that converts data # to coefficients Ainv = np.linalg.inv(A) # CALCULATION AND OUTPUT OF RESULTS # Spectrum-like jobs: main loop increments line number for data files if job_type in ['o', 'f']: if job_type == 'f': eval_row = np.matrix(np.zeros((1, dimension))) for j in range(dimension): eval_row[0,j] = interpolator(dot(point(orientation), \ point(main_quat_list[j]))) while True: # Loop runs until a blank line is seen in data file # Initialize the iteration cs_vector = np.matrix(np.zeros((dimension, 1))) coef_vector = np.matrix(np.zeros((dimension, 1))) curr_line_dict = {} # Read a new line, parsed into floats, to give a dictionary for filename in datafile_dict: curr_line_dict[filename] = \ map(float, datafile_dict[filename].readline().split()) if curr_line_dict.values()[0] == []: break # Look up the wavelength and cross sections for this iteration curr_wavelength = curr_line_dict.values()[0][0] for i in range(dimension): cs_vector[i] = curr_line_dict[main_filename_list[i]][1] # Compute the vector of coefficients and the sum of # coefficients coef_vector = Ainv * cs_vector if job_type == 'o': print curr_wavelength, np.sum(coef_vector) * integral if job_type == 'f': print curr_wavelength, (eval_row * coef_vector)[0,0] # Monochromatic jobs: main loop increments parameter; one line per file used if job_type == 'p': # Look up data for the desired wavelength while True: curr_line_dict = {} # Read a new line, parsed into floats, to give a dictionary for filename in datafile_dict: curr_line_dict[filename] = \ map(float, datafile_dict[filename].readline().split()) if curr_line_dict.values()[0] == []: raise IOError('Wavelength/frequency ' + \ str(wavelength) + ' not found!') curr_wavelength = float(curr_line_dict.values()[0][0]) if abs(curr_wavelength - wavelength) < wavelength_tol: # Comment out following line to get pure stream of numbers print '# Wavelength/frequency sampled is: ' + str(curr_wavelength) break # Find vector of coefficients just once for the chosen wavelength cs_vector = np.matrix(np.zeros((dimension, 1))) for i in range(dimension): cs_vector[i] = curr_line_dict[main_filename_list[i]][1] coef_vector = Ainv * cs_vector angle_list = np.linspace(0, 2*pi, stepcount, True) # Main loop for angle in angle_list: curr_quat = multiply(quaternion(axis[0] * sin(angle / 2), \ axis[1] * sin(angle / 2), \ axis[2] * sin(angle / 2), \ cos (angle / 2)), \ orientation) eval_row = np.matrix(np.zeros((1, dimension))) for j in range(dimension): eval_row[0,j] = interpolator(dot(point(curr_quat), \ point(main_quat_list[j]))) print angle, (eval_row * coef_vector)[0,0] # FINAL I/O CLEANUP for filename in datafile_dict: datafile_dict[filename].close()
# -*- coding: utf-8 -*- # # This file is part of sensim # License: BSD 3 clause # 2016, 2017 """Helpers for sentence semantic similarity model. .. Author:: Hussein AL-NATSHEH <[email protected]> """ from polyglot.text import Text from polyglot.mapping import Embedding import numpy as np from sklearn.base import BaseEstimator from sklearn.base import TransformerMixin vocab = Embedding.load("../polyglot_data/embeddings2/en/embeddings_pkl.tar.bz2") def polyglot_words(s): text = Text(s) text.language = 'en' return text.words def polyglot_name_entities(s): text = Text(s) text.language = 'en' entities = text.entities org = list(' ') loc = list(' ') per = list(' ') for entity in entities: if entity.tag == 'I-ORG': org = list(entity) elif entity.tag == 'I-PER': per = list(entity) else: loc = list(entity) return org, per, loc def polyglot_organizations(s): org, _, _ = polyglot_name_entities(s) return org def polyglot_persons(s): _, per, _ = polyglot_name_entities(s) return per def polyglot_locations(s): _, _, loc = polyglot_name_entities(s) return loc def polyglot_pos(s): """Get dictionary of list POS_tags words from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: Dictionay Dictionary of list POS_tags words """ def polyglot_pos(pos, pos_codes): for w in text.words: if w.pos_tag == pos_code: pos.append(w) if len(pos) > 0: return pos else: return ([' ']) text = Text(s) text.language = 'en' text.pos_tags POS = {} pos_lst = [] adjectives = [] pos_lst.append((adjectives, 'ADJ')) adpositions = [] pos_lst.append((adpositions, 'ADP')) adverbs = [] pos_lst.append((adverbs, 'ADV')) auxiliary_verbs = [] pos_lst.append((auxiliary_verbs, 'AUX')) coordinating_conjunctions = [] pos_lst.append((coordinating_conjunctions, 'CONJ')) determiners = [] pos_lst.append((determiners, 'DET')) interjections = [] pos_lst.append((interjections, 'INTJ')) nouns = [] pos_lst.append((nouns, 'NOUN')) numerals = [] pos_lst.append((numerals, 'NUM')) particles = [] pos_lst.append((particles, 'PART')) pronouns = [] pos_lst.append((pronouns, 'PRON')) proper_nouns = [] pos_lst.append((proper_nouns, 'PROPN')) punctuations = [] pos_lst.append((punctuations, 'PUNCT')) subordinating_conjunctions = [] pos_lst.append((subordinating_conjunctions, 'SCONJ')) symbols = [] pos_lst.append((symbols, 'SYM')) verbs = [] pos_lst.append((verbs, 'VERB')) others = [] pos_lst.append((others, 'X')) for pos, pos_code in pos_lst: POS[pos_code] = polyglot_pos(pos, pos_code) return POS def polyglot_adpositions(s): """Get the set of th adpositions tags from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string adpositions """ adpositions = polyglot_pos(s)['ADP'] return (adpositions) def polyglot_others(s): """Get the set of other PoS tags from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string other PoS tags """ others = polyglot_pos(s)['X'] return (others) def polyglot_subordinating_conjunctions(s): """Get the subordinating_conjunctions from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string subordinating_conjunctions """ subordinating_conjunctions = polyglot_pos(s)['SCONJ'] return (subordinating_conjunctions) def polyglot_punctuation(s): """Get the punctuation from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string punctuation """ punctuations = polyglot_pos(s)['PUNCT'] return (punctuations) def polyglot_particle(s): """Get the particle from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string particle """ particles = polyglot_pos(s)['PART'] return (particles) def polyglot_determiner(s): """Get the determiner from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string determiner """ determiners = polyglot_pos(s)['DET'] return (determiners) def polyglot_interjection(s): """Get the interjection from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string interjection """ interjections = polyglot_pos(s)['INTJ'] return (interjections) def polyglot_coordinating_conjunction(s): """Get the coordinating_conjunction from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string coordinating_conjunction """ coordinating_conjunctions = polyglot_pos(s)['CONJ'] return (coordinating_conjunctions) def polyglot_symbol(s): """Get the symbol from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: array of string symbol """ symbols = polyglot_pos(s)['SYM'] return (symbols) def polyglot_nouns(s): """Get list of nouns from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of nouns """ return (polyglot_pos(s)['NOUN']) def polyglot_1st_noun(s): """Get first noun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first noun """ nouns = polyglot_nouns(s) return nouns[0] def polyglot_2nd_noun(s): """Get second noun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second noun """ nouns = polyglot_nouns(s) if len(nouns) > 1: return nouns[1] else: return (' ') def polyglot_proper_nouns(s): """Get list of proper_nouns from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of proper_nouns """ return (polyglot_pos(s)['PROPN']) def polyglot_1st_proper_noun(s): """Get first proper_noun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first proper_noun """ proper_nouns = polyglot_proper_nouns(s) return proper_nouns[0] def polyglot_2nd_proper_noun(s): """Get second proper_noun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second proper_noun """ proper_nouns = polyglot_proper_nouns(s) if len(proper_nouns) > 1: return proper_nouns[1] else: return (' ') def polyglot_pronouns(s): """Get list of pronouns from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of pronouns """ return (polyglot_pos(s)['PRON']) def polyglot_1st_pronoun(s): """Get first pronoun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first pronoun """ pronouns = polyglot_pronouns(s) return pronouns[0] def polyglot_2nd_pronoun(s): """Get second pronoun from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second pronoun """ pronouns = polyglot_pronouns(s) if len(pronouns) > 1: return pronouns[1] else: return (' ') def polyglot_verbs(s): """Get list of verbs from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of verbs """ return (polyglot_pos(s)['VERB']) def polyglot_1st_verb(s): """Get first verb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first verb """ verbs = polyglot_verbs(s) return verbs[0] def polyglot_2nd_verb(s): """Get second verb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second verb """ verbs = polyglot_verbs(s) if len(verbs) > 1: return verbs[1] else: return (' ') def polyglot_auxiliary_verbs(s): """Get list of auxiliary_verbs from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of auxiliary_verbs """ return (polyglot_pos(s)['AUX']) def polyglot_1st_auxiliary_verb(s): """Get first auxiliary_verb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first auxiliary_verb """ auxiliary_verbs = polyglot_auxiliary_verbs(s) return auxiliary_verbs[0] def polyglot_2nd_auxiliary_verb(s): """Get second auxiliary_verb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second auxiliary_verb """ auxiliary_verbs = polyglot_auxiliary_verbs(s) if len(auxiliary_verbs) > 1: return auxiliary_verbs[1] else: return (' ') def polyglot_adjectives(s): """Get list of adjectives from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of adjectives """ return (polyglot_pos(s)['ADJ']) def polyglot_1st_adjective(s): """Get first adjective from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first adjective """ adjectives = polyglot_adjectives(s) return adjectives[0] def polyglot_2nd_adjective(s): """Get second adjective from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second adjective """ adjectives = polyglot_adjectives(s) if len(adjectives) > 1: return adjectives[1] else: return (' ') def polyglot_adverbs(s): """Get list of adverbs from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of adverbs """ return (polyglot_pos(s)['ADV']) def polyglot_1st_adverb(s): """Get first adverb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first adverb """ adverbs = polyglot_adverbs(s) return adverbs[0] def polyglot_2nd_adverb(s): """Get second adverb from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second adverb """ adverbs = polyglot_adverbs(s) if len(adverbs) > 1: return adverbs[1] else: return (' ') def polyglot_numbers(s): """Get list of numbers from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: list of strings list of numbers """ return (polyglot_pos(s)['NUM']) def polyglot_1st_number(s): """Get first number from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string first number """ numbers = polyglot_numbers(s) return numbers[0] def polyglot_2nd_number(s): """Get second number from the sentence. Parameters ---------- :param s: string Sentence Returns ------- :returns: string second number """ numbers = polyglot_numbers(s) if len(numbers) > 1: return numbers[1] else: return (' ') # Get the vector representation of the word using polyglot def _polyglot_vec(word): word = word.encode('ascii','ignore').decode('ascii') if word not in vocab: return np.zeros(64, dtype=float, order='C').reshape(1, -1) else: w = vocab[word] return w.reshape(1, -1) class PairPolyglotVecTransformer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): n_samples = len(X) Xt = np.zeros(n_samples, dtype=object) s_id = 0 for sample in X: lst = [] for tup in sample: w1, w2 = tup w1_id, w1_text = w1 w2_id, w2_text = w2 w1_vec = _polyglot_vec(w1_text) w2_vec = _polyglot_vec(w2_text) lst.append(((w1_id, w1_vec), (w2_id, w2_vec))) Xt[s_id] = lst s_id += 1 return Xt
""" The :mod:`model_selection.split<surprise.model_selection.split>` module contains various cross-validation iterators. Design and tools are inspired from the mighty scikit learn. The available iterators are: .. autosummary:: :nosignatures: KFold RepeatedKFold ShuffleSplit LeaveOneOut PredefinedKFold This module also contains a function for splitting datasets into trainset and testset: .. autosummary:: :nosignatures: train_test_split """ from __future__ import (absolute_import, division, print_function, unicode_literals) from itertools import chain from math import ceil, floor import numbers from collections import defaultdict from six import iteritems from six import string_types import numpy as np from ..utils import get_rng def get_cv(cv): """Return a 'validated' CV iterator.""" if cv is None: return KFold(n_splits=5) if isinstance(cv, numbers.Integral): return KFold(n_splits=cv) if hasattr(cv, 'split') and not isinstance(cv, string_types): return cv # str have split raise ValueError('Wrong CV object. Expecting None, an int or CV iterator, ' 'got a {}'.format(type(cv))) class KFold(): """A basic cross-validation iterator. Each fold is used once as a testset while the k - 1 remaining folds are used for training. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Default is ``True``. """ def __init__(self, n_splits=5, random_state=None, shuffle=True): self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ if self.n_splits > len(data.raw_ratings) or self.n_splits < 2: raise ValueError('Incorrect value for n_splits={0}. ' 'Must be >=2 and less than the number ' 'of ratings'.format(len(data.raw_ratings))) # We use indices to avoid shuffling the original data.raw_ratings list. indices = np.arange(len(data.raw_ratings)) if self.shuffle: get_rng(self.random_state).shuffle(indices) start, stop = 0, 0 for fold_i in range(self.n_splits): start = stop stop += len(indices) // self.n_splits if fold_i < len(indices) % self.n_splits: stop += 1 raw_trainset = [data.raw_ratings[i] for i in chain(indices[:start], indices[stop:])] raw_testset = [data.raw_ratings[i] for i in indices[start:stop]] trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits class RepeatedKFold(): """ Repeated :class:`KFold` cross validator. Repeats :class:`KFold` n times with different randomization in each repetition. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. n_repeats(int): The number of repetitions. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Default is ``True``. """ def __init__(self, n_splits=5, n_repeats=10, random_state=None): self.n_repeats = n_repeats self.random_state = random_state self.n_splits = n_splits def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ rng = get_rng(self.random_state) for _ in range(self.n_repeats): cv = KFold(n_splits=self.n_splits, random_state=rng, shuffle=True) for trainset, testset in cv.split(data): yield trainset, testset def get_n_folds(self): return self.n_repeats * self.n_splits class ShuffleSplit(): """A basic cross-validation iterator with random trainsets and testsets. Contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. test_size(float or int ``None``): If float, it represents the proportion of ratings to include in the testset. If int, represents the absolute number of ratings in the testset. If ``None``, the value is set to the complement of the trainset size. Default is ``.2``. train_size(float or int or ``None``): If float, it represents the proportion of ratings to include in the trainset. If int, represents the absolute number of ratings in the trainset. If ``None``, the value is set to the complement of the testset size. Default is ``None``. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter of the ``split()`` method. Shuffling is not done in-place. Setting this to `False` defeats the purpose of this iterator, but it's useful for the implementation of :func:`train_test_split`. Default is ``True``. """ def __init__(self, n_splits=5, test_size=.2, train_size=None, random_state=None, shuffle=True): if n_splits <= 0: raise ValueError('n_splits = {0} should be strictly greater than ' '0.'.format(n_splits)) if test_size is not None and test_size <= 0: raise ValueError('test_size={0} should be strictly greater than ' '0'.format(test_size)) if train_size is not None and train_size <= 0: raise ValueError('train_size={0} should be strictly greater than ' '0'.format(train_size)) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state self.shuffle = shuffle def validate_train_test_sizes(self, test_size, train_size, n_ratings): if test_size is not None and test_size >= n_ratings: raise ValueError('test_size={0} should be less than the number of ' 'ratings {1}'.format(test_size, n_ratings)) if train_size is not None and train_size >= n_ratings: raise ValueError('train_size={0} should be less than the number of' ' ratings {1}'.format(train_size, n_ratings)) if np.asarray(test_size).dtype.kind == 'f': test_size = ceil(test_size * n_ratings) if train_size is None: train_size = n_ratings - test_size elif np.asarray(train_size).dtype.kind == 'f': train_size = floor(train_size * n_ratings) if test_size is None: test_size = n_ratings - train_size if train_size + test_size > n_ratings: raise ValueError('The sum of train_size and test_size ({0}) ' 'should be smaller than the number of ' 'ratings {1}.'.format(train_size + test_size, n_ratings)) return int(train_size), int(test_size) def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ test_size, train_size = self.validate_train_test_sizes( self.test_size, self.train_size, len(data.raw_ratings)) rng = get_rng(self.random_state) for _ in range(self.n_splits): if self.shuffle: permutation = rng.permutation(len(data.raw_ratings)) else: permutation = np.arange(len(data.raw_ratings)) raw_trainset = [data.raw_ratings[i] for i in permutation[:test_size]] raw_testset = [data.raw_ratings[i] for i in permutation[test_size:(test_size + train_size)]] trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits def train_test_split(data, test_size=.2, train_size=None, random_state=None, shuffle=True): """Split a dataset into trainset and testset. See an example in the :ref:`User Guide <train_test_split_example>`. Note: this function cannot be used as a cross-validation iterator. Args: data(:obj:`Dataset <surprise.dataset.Dataset>`): The dataset to split into trainset and testset. test_size(float or int ``None``): If float, it represents the proportion of ratings to include in the testset. If int, represents the absolute number of ratings in the testset. If ``None``, the value is set to the complement of the trainset size. Default is ``.2``. train_size(float or int or ``None``): If float, it represents the proportion of ratings to include in the trainset. If int, represents the absolute number of ratings in the trainset. If ``None``, the value is set to the complement of the testset size. Default is ``None``. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. shuffle(bool): Whether to shuffle the ratings in the ``data`` parameter. Shuffling is not done in-place. Default is ``True``. """ ss = ShuffleSplit(n_splits=1, test_size=test_size, train_size=train_size, random_state=random_state, shuffle=shuffle) return next(ss.split(data)) class LeaveOneOut(): """Cross-validation iterator where each user has exactly one rating in the testset. Contrary to other cross-validation strategies, ``LeaveOneOut`` does not guarantee that all folds will be different, although this is still very likely for sizeable datasets. See an example in the :ref:`User Guide <use_cross_validation_iterators>`. Args: n_splits(int): The number of folds. random_state(int, RandomState instance from numpy, or ``None``): Determines the RNG that will be used for determining the folds. If int, ``random_state`` will be used as a seed for a new RNG. This is useful to get the same splits over multiple calls to ``split()``. If RandomState instance, this same instance is used as RNG. If ``None``, the current RNG from numpy is used. ``random_state`` is only used if ``shuffle`` is ``True``. Default is ``None``. min_n_ratings(int): Minimum number of ratings for each user in the trainset. E.g. if ``min_n_ratings`` is ``2``, we are sure each user has at least ``2`` ratings in the trainset (and ``1`` in the testset). Other users are discarded. Default is ``0``, so some users (having only one rating) may be in the testset and not in the trainset. """ def __init__(self, n_splits=5, random_state=None, min_n_ratings=0): self.n_splits = n_splits self.random_state = random_state self.min_n_ratings = min_n_ratings def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ # map ratings to the users ids user_ratings = defaultdict(list) for uid, iid, r_ui, _ in data.raw_ratings: user_ratings[uid].append((uid, iid, r_ui, None)) rng = get_rng(self.random_state) for _ in range(self.n_splits): # for each user, randomly choose a rating and put it in the # testset. raw_trainset, raw_testset = [], [] for uid, ratings in iteritems(user_ratings): if len(ratings) > self.min_n_ratings: i = rng.randint(0, len(ratings)) raw_testset.append(ratings[i]) raw_trainset += [rating for (j, rating) in enumerate(ratings) if j != i] if not raw_trainset: raise ValueError('Could not build any trainset. Maybe ' 'min_n_ratings is too high?') trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits class PredefinedKFold(): """A cross-validation iterator to when a dataset has been loaded with the :meth:`load_from_folds <surprise.dataset.Dataset.load_from_folds>` method. See an example in the :ref:`User Guide <load_from_folds_example>`. """ def split(self, data): """Generator function to iterate over trainsets and testsets. Args: data(:obj:`Dataset<surprise.dataset.Dataset>`): The data containing ratings that will be divided into trainsets and testsets. Yields: tuple of (trainset, testset) """ self.n_splits = len(data.folds_files) for train_file, test_file in data.folds_files: raw_trainset = data.read_ratings(train_file) raw_testset = data.read_ratings(test_file) trainset = data.construct_trainset(raw_trainset) testset = data.construct_testset(raw_testset) yield trainset, testset def get_n_folds(self): return self.n_splits
# ================================================================= # # Authors: Tom Kralidis <[email protected]> # # Copyright (c) 2014 Tom Kralidis # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. # # ================================================================= from datetime import datetime import logging import json from urllib.request import urlopen from urllib.parse import urlparse from functools import partial from flask_babel import gettext from owslib.wms import WebMapService from owslib.wmts import WebMapTileService from owslib.tms import TileMapService from owslib.wfs import WebFeatureService from owslib.wcs import WebCoverageService from owslib.wps import WebProcessingService from owslib.csw import CatalogueServiceWeb from owslib.sos import SensorObservationService from init import App from enums import RESOURCE_TYPES from models import Resource, Run from probe import Probe from result import ResourceResult from notifications import notify LOGGER = logging.getLogger(__name__) APP = App.get_app() DB = App.get_db() # commit or rollback shorthand def db_commit(): err = None try: DB.session.commit() except Exception as err: LOGGER.warning('Cannot commit to database {}'.format(err)) DB.session.rollback() # finally: # DB.session.close() return err def run_resources(): for resource in Resource.query.all(): # run all tests LOGGER.info('Testing %s %s' % (resource.resource_type, resource.url)) run_resource(resource.identifier) # complete handle of resource test def run_resource(resourceid): resource = Resource.query.filter_by(identifier=resourceid).first() if not resource.active: # Exit test of resource if it's not active return # Get the status of the last run, # assume success if there is none last_run_success = True last_run = resource.last_run if last_run: last_run_success = last_run.success # Run test result = run_test_resource(resource) run1 = Run(resource, result, datetime.utcnow()) DB.session.add(run1) # commit or rollback each run to avoid long-lived transactions # see https://github.com/geopython/GeoHealthCheck/issues/14 db_commit() if APP.config['GHC_NOTIFICATIONS']: # Attempt notification try: notify(APP.config, resource, run1, last_run_success) except Exception as err: # Don't bail out on failure in order to commit the Run msg = str(err) logging.warn('error notifying: %s' % msg) if not __name__ == '__main__': DB.session.remove() def run_test_resource(resource): """tests a service and provides run metrics""" result = ResourceResult(resource) if not resource.active: result.message = 'Skipped' return result result.start() probes = resource.probe_vars for probe in probes: result.add_result(Probe.run(resource, probe)) result.stop() return result def sniff_test_resource(config, resource_type, url): """tests a Resource endpoint for general compliance""" out = [] tag_list = [] if resource_type not in RESOURCE_TYPES.keys(): msg = gettext('Invalid resource type') msg2 = '%s: %s' % (msg, resource_type) LOGGER.error(msg2) raise RuntimeError(msg2) title = None start_time = datetime.utcnow() message = None resource_type_map = {'OGC:WMS': [partial(WebMapService, version='1.3.0'), partial(WebMapService, version='1.1.1')], 'OGC:WMTS': [WebMapTileService], 'OSGeo:TMS': [TileMapService], 'OGC:WFS': [WebFeatureService], 'OGC:WCS': [WebCoverageService], 'OGC:WPS': [WebProcessingService], 'OGC:CSW': [CatalogueServiceWeb], 'OGC:SOS': [SensorObservationService], 'OGC:WFS3': [urlopen], 'OGC:3DTiles': [urlopen], 'ESRI:FS': [urlopen], 'OGC:STA': [urlopen], 'WWW:LINK': [urlopen], 'FTP': [urlopen], 'GHC:Report': [urlopen], 'OSGeo:GeoNode': [geonode_get_ows], 'Mapbox:TileJSON': [urlopen] } try: ows = None try: ows_handlers = resource_type_map[resource_type] except KeyError: LOGGER.error("No handler for %s type", resource_type) raise for ows_handler in ows_handlers: try: ows = ows_handler(url) break except Exception as err: LOGGER.warning("Cannot use %s on %s: %s", ows_handler, url, err, exc_info=err) if ows is None: message = ("Cannot get {} service instance " "for {}".format(resource_type, url)) raise ValueError(message) if resource_type == 'WWW:LINK': content_type = ows.info().get('Content-Type') # When response is not an image try parse out Title and # any Exceptions if 'image/' not in content_type: content = ows.read() import re try: title_re = re.compile('<title>(.+?)</title>'.encode()) title = title_re.search(content).group(1).decode() except Exception: title = url # Optional check for any OGC-Exceptions in Response if config and config['GHC_WWW_LINK_EXCEPTION_CHECK']: exception_text = None try: except_re = re.compile( 'ServiceException>|ExceptionReport>'.encode()) exception_text = except_re.search(content).\ group(0).decode() except Exception: # No Exception in Response text pass if exception_text: # Found OGC-Exception in Response text raise Exception( "Exception in response: %s" % exception_text) del content elif resource_type == 'urn:geoss:waf': title = 'WAF %s %s' % (gettext('for'), urlparse(url).hostname) elif resource_type == 'FTP': title = urlparse(url).hostname elif resource_type == 'OSGeo:GeoNode': endpoints = ows end_time = datetime.utcnow() delta = end_time - start_time response_time = '%s.%s' % (delta.seconds, delta.microseconds) base_tags = geonode_make_tags(url) for epoint in endpoints: row = sniff_test_resource(config, epoint['type'], epoint['url']) if row: _tags = row[0][-1] _tags.extend(base_tags) row[0][-1] = _tags out.append(row[0]) elif resource_type.startswith(('OGC:', 'OSGeo', 'ESRI')): if resource_type == 'OGC:STA': title = 'OGC STA' elif resource_type == 'OGC:WFS3': title = 'OGC API Features (OAFeat)' elif resource_type == 'ESRI:FS': title = 'ESRI ArcGIS FS' elif resource_type == 'OGC:3DTiles': title = 'OGC 3D Tiles' else: title = ows.identification.title if title is None: title = '%s %s %s' % (resource_type, gettext('for'), url) success = True except Exception as err: title = 'Untitled' msg = 'Getting metadata failed: %s' % str(err) LOGGER.error(msg, exc_info=err) message = msg success = False end_time = datetime.utcnow() delta = end_time - start_time response_time = '%s.%s' % (delta.seconds, delta.microseconds) # if out is not populated yet, that means it should be populated now if not out: out.append([resource_type, url, title, success, response_time, message, start_time, tag_list]) return out GEONODE_OWS_API = '/api/ows_endpoints/' def geonode_get_ows(base_url): r = urlopen('{}{}'.format(base_url.rstrip('/'), GEONODE_OWS_API)) url = urlparse(base_url) base_name = 'GeoNode {}: {{}}'.format(url.hostname) status_code = r.getcode() if status_code != 200: msg = "Error response from GeoNode at {}: {}".format( base_url, r.text) raise ValueError(msg) try: data = json.load(r) except (TypeError, ValueError,) as err: msg = "Cannot decode response from GeoNode at {}: {}".format(base_url, err) raise ValueError(msg) def update(val): val['title'] = base_name.format(val['type']) return val return [update(d) for d in data['data']] def geonode_make_tags(base_url): url = urlparse(base_url) tag_name = 'GeoNode: {}'.format(url.hostname) return [tag_name] if __name__ == '__main__': print('START - Running health check tests on %s' % datetime.utcnow().isoformat()) run_resources() print('END - Running health check tests on %s' % datetime.utcnow().isoformat()) # from init import App # if len(sys.argv) < 3: # print('Usage: %s <resource_type> <url>' % sys.argv[0]) # sys.exit(1) # # # TODO: need APP.config here, None for now # pprint(sniff_test_resource(App.get_config(), sys.argv[1], sys.argv[2]))
#!/usr/bin/env python2 # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # from test_framework.mininode import * from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * from test_framework.comptool import wait_until import time ''' Test behavior of -maxuploadtarget. * Verify that getdata requests for old blocks (>1week) are dropped if uploadtarget has been reached. * Verify that getdata requests for recent blocks are respecteved even if uploadtarget has been reached. * Verify that the upload counters are reset after 24 hours. ''' # TestNode: bare-bones "peer". Used mostly as a conduit for a test to sending # p2p messages to a node, generating the messages in the main testing logic. class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() self.block_receive_map = {} def add_connection(self, conn): self.connection = conn self.peer_disconnected = False def on_inv(self, conn, message): pass # Track the last getdata message we receive (used in the test) def on_getdata(self, conn, message): self.last_getdata = message def on_block(self, conn, message): message.block.calc_sha256() try: self.block_receive_map[message.block.sha256] += 1 except KeyError as e: self.block_receive_map[message.block.sha256] = 1 # Spin until verack message is received from the node. # We use this to signal that our test can begin. This # is called from the testing thread, so it needs to acquire # the global lock. def wait_for_verack(self): def veracked(): return self.verack_received return wait_until(veracked, timeout=10) def wait_for_disconnect(self): def disconnected(): return self.peer_disconnected return wait_until(disconnected, timeout=10) # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_pong(self, conn, message): self.last_pong = message def on_close(self, conn): self.peer_disconnected = True # Sync up with the node after delivery of a block def sync_with_ping(self, timeout=30): def received_pong(): return (self.last_pong.nonce == self.ping_counter) self.connection.send_message(msg_ping(nonce=self.ping_counter)) success = wait_until(received_pong, timeout) self.ping_counter += 1 return success class MaxUploadTest(BitcoinTestFramework): def __init__(self): self.utxo = [] self.txouts = gen_return_txouts() def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("BITCOIND", "bitcoind"), help="bitcoind binary to test") def setup_chain(self): initialize_chain_clean(self.options.tmpdir, 2) def setup_network(self): # Start a node with maxuploadtarget of 400 MB (/24h) self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-maxuploadtarget=400", "-blockmaxsize=999000"])) def mine_full_block(self, node, address): # Want to create a full block # We'll generate a 66k transaction below, and 14 of them is close to the 1MB block limit for j in xrange(14): if len(self.utxo) < 14: self.utxo = node.listunspent() inputs=[] outputs = {} t = self.utxo.pop() inputs.append({ "txid" : t["txid"], "vout" : t["vout"]}) remchange = t["amount"] - Decimal("0.001000") outputs[address]=remchange # Create a basic transaction that will send change back to ourself after account for a fee # And then insert the 128 generated transaction outs in the middle rawtx[92] is where the # # of txouts is stored and is the only thing we overwrite from the original transaction rawtx = node.createrawtransaction(inputs, outputs) newtx = rawtx[0:92] newtx = newtx + self.txouts newtx = newtx + rawtx[94:] # Appears to be ever so slightly faster to sign with SIGHASH_NONE signresult = node.signrawtransaction(newtx,None,None,"NONE") txid = node.sendrawtransaction(signresult["hex"], True) # Mine a full sized block which will be these transactions we just created node.wallet.generate(1) def run_test(self): # Before we connect anything, we first set the time on the node # to be in the past, otherwise things break because the CNode # time counters can't be reset backward after initialization old_time = int(time.time() - 2*60*60*24*7) self.nodes[0].setmocktime(old_time) # Generate some old blocks self.nodes[0].wallet.generate(130) # test_nodes[0] will only request old blocks # test_nodes[1] will only request new blocks # test_nodes[2] will test resetting the counters test_nodes = [] connections = [] for i in xrange(3): test_nodes.append(TestNode()) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) test_nodes[i].add_connection(connections[i]) NetworkThread().start() # Start up network handling in another thread [x.wait_for_verack() for x in test_nodes] # Test logic begins here # Now mine a big block self.mine_full_block(self.nodes[0], self.nodes[0].getnewaddress()) # Store the hash; we'll request this later big_old_block = self.nodes[0].getbestblockhash() old_block_size = self.nodes[0].getblock(big_old_block, True)['size'] big_old_block = int(big_old_block, 16) # Advance to two days ago self.nodes[0].setmocktime(int(time.time()) - 2*60*60*24) # Mine one more block, so that the prior block looks old self.mine_full_block(self.nodes[0], self.nodes[0].getnewaddress()) # We'll be requesting this new block too big_new_block = self.nodes[0].getbestblockhash() new_block_size = self.nodes[0].getblock(big_new_block)['size'] big_new_block = int(big_new_block, 16) # test_nodes[0] will test what happens if we just keep requesting the # the same big old block too many times (expect: disconnect) getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, big_old_block)) max_bytes_per_day = 400*1024*1024 daily_buffer = 144 * 1000000 max_bytes_available = max_bytes_per_day - daily_buffer success_count = max_bytes_available // old_block_size # 144MB will be reserved for relaying new blocks, so expect this to # succeed for ~290 tries. for i in xrange(success_count): test_nodes[0].send_message(getdata_request) test_nodes[0].sync_with_ping() assert_equal(test_nodes[0].block_receive_map[big_old_block], i+1) assert_equal(len(self.nodes[0].getpeerinfo()), 3) # At most a couple more tries should succeed (depending on how long # the test has been running so far). for i in xrange(3): test_nodes[0].send_message(getdata_request) test_nodes[0].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 2) print "Peer 0 disconnected after downloading old block too many times" # Requesting the current block on test_nodes[1] should succeed indefinitely, # even when over the max upload target. # We'll try 200 times getdata_request.inv = [CInv(2, big_new_block)] for i in xrange(200): test_nodes[1].send_message(getdata_request) test_nodes[1].sync_with_ping() assert_equal(test_nodes[1].block_receive_map[big_new_block], i+1) print "Peer 1 able to repeatedly download new block" # But if test_nodes[1] tries for an old block, it gets disconnected too. getdata_request.inv = [CInv(2, big_old_block)] test_nodes[1].send_message(getdata_request) test_nodes[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 1) print "Peer 1 disconnected after trying to download old block" print "Advancing system time on node to clear counters..." # If we advance the time by 24 hours, then the counters should reset, # and test_nodes[2] should be able to retrieve the old block. self.nodes[0].setmocktime(int(time.time())) test_nodes[2].sync_with_ping() test_nodes[2].send_message(getdata_request) test_nodes[2].sync_with_ping() assert_equal(test_nodes[2].block_receive_map[big_old_block], 1) print "Peer 2 able to download old block" [c.disconnect_node() for c in connections] #stop and start node 0 with 1MB maxuploadtarget, whitelist 127.0.0.1 print "Restarting nodes with -whitelist=127.0.0.1" stop_node(self.nodes[0], 0) self.nodes[0] = start_node(0, self.options.tmpdir, ["-whitelist=127.0.0.1", "-maxuploadtarget=1", "-blockmaxsize=999000"]) #recreate/reconnect 3 test nodes test_nodes = [] connections = [] for i in xrange(3): test_nodes.append(TestNode()) connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_nodes[i])) test_nodes[i].add_connection(connections[i]) NetworkThread().start() # Start up network handling in another thread [x.wait_for_verack() for x in test_nodes] #retrieve 20 blocks which should be enough to break the 1MB limit getdata_request.inv = [CInv(2, big_new_block)] for i in xrange(20): test_nodes[1].send_message(getdata_request) test_nodes[1].sync_with_ping() assert_equal(test_nodes[1].block_receive_map[big_new_block], i+1) getdata_request.inv = [CInv(2, big_old_block)] test_nodes[1].send_message(getdata_request) test_nodes[1].wait_for_disconnect() assert_equal(len(self.nodes[0].getpeerinfo()), 3) #node is still connected because of the whitelist print "Peer 1 still connected after trying to download old block (whitelisted)" [c.disconnect_node() for c in connections] if __name__ == '__main__': MaxUploadTest().main()
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import errno import logging import os import six import subprocess import warnings import shlex import sys from future import standard_library standard_library.install_aliases() from builtins import str from collections import OrderedDict from six.moves import configparser from airflow.exceptions import AirflowConfigException # show Airflow's deprecation warnings warnings.filterwarnings( action='default', category=DeprecationWarning, module='airflow') warnings.filterwarnings( action='default', category=PendingDeprecationWarning, module='airflow') ConfigParser = configparser.ConfigParser def generate_fernet_key(): try: from cryptography.fernet import Fernet except ImportError: pass try: key = Fernet.generate_key().decode() except NameError: key = "cryptography_not_found_storing_passwords_in_plain_text" return key def expand_env_var(env_var): """ Expands (potentially nested) env vars by repeatedly applying `expandvars` and `expanduser` until interpolation stops having any effect. """ if not env_var: return env_var while True: interpolated = os.path.expanduser(os.path.expandvars(str(env_var))) if interpolated == env_var: return interpolated else: env_var = interpolated def run_command(command): """ Runs command and returns stdout """ process = subprocess.Popen( shlex.split(command), stdout=subprocess.PIPE, stderr=subprocess.PIPE) output, stderr = [stream.decode(sys.getdefaultencoding(), 'ignore') for stream in process.communicate()] if process.returncode != 0: raise AirflowConfigException( "Cannot execute {}. Error code is: {}. Output: {}, Stderr: {}" .format(command, process.returncode, output, stderr) ) return output _templates_dir = os.path.join(os.path.dirname(__file__), 'config_templates') with open(os.path.join(_templates_dir, 'default_airflow.cfg')) as f: DEFAULT_CONFIG = f.read() with open(os.path.join(_templates_dir, 'default_test.cfg')) as f: TEST_CONFIG = f.read() class AirflowConfigParser(ConfigParser): # These configuration elements can be fetched as the stdout of commands # following the "{section}__{name}__cmd" pattern, the idea behind this # is to not store password on boxes in text files. as_command_stdout = { ('core', 'sql_alchemy_conn'), ('core', 'fernet_key'), ('celery', 'broker_url'), ('celery', 'celery_result_backend') } def __init__(self, *args, **kwargs): ConfigParser.__init__(self, *args, **kwargs) self.read_string(parameterized_config(DEFAULT_CONFIG)) self.is_validated = False def read_string(self, string, source='<string>'): """ Read configuration from a string. A backwards-compatible version of the ConfigParser.read_string() method that was introduced in Python 3. """ # Python 3 added read_string() method if six.PY3: ConfigParser.read_string(self, string, source=source) # Python 2 requires StringIO buffer else: import StringIO self.readfp(StringIO.StringIO(string)) def _validate(self): if ( self.get("core", "executor") != 'SequentialExecutor' and "sqlite" in self.get('core', 'sql_alchemy_conn')): raise AirflowConfigException( "error: cannot use sqlite with the {}".format( self.get('core', 'executor'))) elif ( self.getboolean("webserver", "authenticate") and self.get("webserver", "owner_mode") not in ['user', 'ldapgroup'] ): raise AirflowConfigException( "error: owner_mode option should be either " "'user' or 'ldapgroup' when filtering by owner is set") elif ( self.getboolean("webserver", "authenticate") and self.get("webserver", "owner_mode").lower() == 'ldapgroup' and self.get("webserver", "auth_backend") != ( 'airflow.contrib.auth.backends.ldap_auth') ): raise AirflowConfigException( "error: attempt at using ldapgroup " "filtering without using the Ldap backend") self.is_validated = True def _get_env_var_option(self, section, key): # must have format AIRFLOW__{SECTION}__{KEY} (note double underscore) env_var = 'AIRFLOW__{S}__{K}'.format(S=section.upper(), K=key.upper()) if env_var in os.environ: return expand_env_var(os.environ[env_var]) def _get_cmd_option(self, section, key): fallback_key = key + '_cmd' # if this is a valid command key... if (section, key) in AirflowConfigParser.as_command_stdout: # if the original key is present, return it no matter what if self.has_option(section, key): return ConfigParser.get(self, section, key) # otherwise, execute the fallback key elif self.has_option(section, fallback_key): command = self.get(section, fallback_key) return run_command(command) def get(self, section, key, **kwargs): section = str(section).lower() key = str(key).lower() # first check environment variables option = self._get_env_var_option(section, key) if option is not None: return option # ...then the config file if self.has_option(section, key): return expand_env_var( ConfigParser.get(self, section, key, **kwargs)) # ...then commands option = self._get_cmd_option(section, key) if option: return option else: logging.warning("section/key [{section}/{key}] not found " "in config".format(**locals())) raise AirflowConfigException( "section/key [{section}/{key}] not found " "in config".format(**locals())) def getboolean(self, section, key): val = str(self.get(section, key)).lower().strip() if '#' in val: val = val.split('#')[0].strip() if val.lower() in ('t', 'true', '1'): return True elif val.lower() in ('f', 'false', '0'): return False else: raise AirflowConfigException( 'The value for configuration option "{}:{}" is not a ' 'boolean (received "{}").'.format(section, key, val)) def getint(self, section, key): return int(self.get(section, key)) def getfloat(self, section, key): return float(self.get(section, key)) def read(self, filenames): ConfigParser.read(self, filenames) self._validate() def as_dict(self, display_source=False, display_sensitive=False): """ Returns the current configuration as an OrderedDict of OrderedDicts. :param display_source: If False, the option value is returned. If True, a tuple of (option_value, source) is returned. Source is either 'airflow.cfg' or 'default'. :type display_source: bool :param display_sensitive: If True, the values of options set by env vars and bash commands will be displayed. If False, those options are shown as '< hidden >' :type display_sensitive: bool """ cfg = copy.deepcopy(self._sections) # remove __name__ (affects Python 2 only) for options in cfg.values(): options.pop('__name__', None) # add source if display_source: for section in cfg: for k, v in cfg[section].items(): cfg[section][k] = (v, 'airflow config') # add env vars and overwrite because they have priority for ev in [ev for ev in os.environ if ev.startswith('AIRFLOW__')]: try: _, section, key = ev.split('__') opt = self._get_env_var_option(section, key) except ValueError: opt = None if opt: if ( not display_sensitive and ev != 'AIRFLOW__CORE__UNIT_TEST_MODE'): opt = '< hidden >' if display_source: opt = (opt, 'env var') cfg.setdefault(section.lower(), OrderedDict()).update( {key.lower(): opt}) # add bash commands for (section, key) in AirflowConfigParser.as_command_stdout: opt = self._get_cmd_option(section, key) if opt: if not display_sensitive: opt = '< hidden >' if display_source: opt = (opt, 'bash cmd') cfg.setdefault(section, OrderedDict()).update({key: opt}) return cfg def load_test_config(self): """ Load the unit test configuration. Note: this is not reversible. """ # override any custom settings with defaults self.read_string(parameterized_config(DEFAULT_CONFIG)) # then read test config self.read_string(parameterized_config(TEST_CONFIG)) # then read any "custom" test settings self.read(TEST_CONFIG_FILE) def mkdir_p(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise AirflowConfigException('Had trouble creating a directory') # Setting AIRFLOW_HOME and AIRFLOW_CONFIG from environment variables, using # "~/airflow" and "~/airflow/airflow.cfg" respectively as defaults. if 'AIRFLOW_HOME' not in os.environ: AIRFLOW_HOME = expand_env_var('~/airflow') else: AIRFLOW_HOME = expand_env_var(os.environ['AIRFLOW_HOME']) mkdir_p(AIRFLOW_HOME) if 'AIRFLOW_CONFIG' not in os.environ: if os.path.isfile(expand_env_var('~/airflow.cfg')): AIRFLOW_CONFIG = expand_env_var('~/airflow.cfg') else: AIRFLOW_CONFIG = AIRFLOW_HOME + '/airflow.cfg' else: AIRFLOW_CONFIG = expand_env_var(os.environ['AIRFLOW_CONFIG']) # Set up dags folder for unit tests # this directory won't exist if users install via pip _TEST_DAGS_FOLDER = os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'tests', 'dags') if os.path.exists(_TEST_DAGS_FOLDER): TEST_DAGS_FOLDER = _TEST_DAGS_FOLDER else: TEST_DAGS_FOLDER = os.path.join(AIRFLOW_HOME, 'dags') # Set up plugins folder for unit tests _TEST_PLUGINS_FOLDER = os.path.join( os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'tests', 'plugins') if os.path.exists(_TEST_PLUGINS_FOLDER): TEST_PLUGINS_FOLDER = _TEST_PLUGINS_FOLDER else: TEST_PLUGINS_FOLDER = os.path.join(AIRFLOW_HOME, 'plugins') def parameterized_config(template): """ Generates a configuration from the provided template + variables defined in current scope :param template: a config content templated with {{variables}} """ all_vars = {k: v for d in [globals(), locals()] for k, v in d.items()} return template.format(**all_vars) TEST_CONFIG_FILE = AIRFLOW_HOME + '/unittests.cfg' # only generate a Fernet key if we need to create a new config file if not os.path.isfile(TEST_CONFIG_FILE) or not os.path.isfile(AIRFLOW_CONFIG): FERNET_KEY = generate_fernet_key() else: FERNET_KEY = '' TEMPLATE_START = ( '# ----------------------- TEMPLATE BEGINS HERE -----------------------') if not os.path.isfile(TEST_CONFIG_FILE): logging.info( 'Creating new Airflow config file for unit tests in: {}'.format( TEST_CONFIG_FILE)) with open(TEST_CONFIG_FILE, 'w') as f: cfg = parameterized_config(TEST_CONFIG) f.write(cfg.split(TEMPLATE_START)[-1].strip()) if not os.path.isfile(AIRFLOW_CONFIG): logging.info('Creating new Airflow config file in: {}'.format( AIRFLOW_CONFIG)) with open(AIRFLOW_CONFIG, 'w') as f: cfg = parameterized_config(DEFAULT_CONFIG) f.write(cfg.split(TEMPLATE_START)[-1].strip()) logging.info("Reading the config from " + AIRFLOW_CONFIG) conf = AirflowConfigParser() conf.read(AIRFLOW_CONFIG) def load_test_config(): """ Load the unit test configuration. Note: this is not reversible. """ conf.load_test_config() if conf.getboolean('core', 'unit_test_mode'): load_test_config() def get(section, key, **kwargs): return conf.get(section, key, **kwargs) def getboolean(section, key): return conf.getboolean(section, key) def getfloat(section, key): return conf.getfloat(section, key) def getint(section, key): return conf.getint(section, key) def has_option(section, key): return conf.has_option(section, key) def remove_option(section, option): return conf.remove_option(section, option) def as_dict(display_source=False, display_sensitive=False): return conf.as_dict( display_source=display_source, display_sensitive=display_sensitive) as_dict.__doc__ = conf.as_dict.__doc__ def set(section, option, value): # noqa return conf.set(section, option, value)
from django.utils.timezone import now as timezone_now from zerver.lib.actions import do_change_stream_invite_only from zerver.lib.test_classes import ZulipTestCase from zerver.models import Message, UserMessage, get_client, get_realm, get_stream class TopicHistoryTest(ZulipTestCase): def test_topics_history_zephyr_mirror(self) -> None: user_profile = self.mit_user("sipbtest") stream_name = "new_stream" # Send a message to this new stream from another user self.subscribe(self.mit_user("starnine"), stream_name) stream = get_stream(stream_name, user_profile.realm) self.send_stream_message(self.mit_user("starnine"), stream_name, topic_name="secret topic") # Now subscribe this MIT user to the new stream and verify # that the new topic is not accessible self.login_user(user_profile) self.subscribe(user_profile, stream_name) endpoint = f"/json/users/me/{stream.id}/topics" result = self.client_get(endpoint, {}, subdomain="zephyr") self.assert_json_success(result) history = result.json()["topics"] self.assertEqual(history, []) def test_topics_history(self) -> None: # verified: int(UserMessage.flags.read) == 1 user_profile = self.example_user("iago") self.login_user(user_profile) stream_name = "Verona" stream = get_stream(stream_name, user_profile.realm) recipient = stream.recipient def create_test_message(topic: str) -> int: # TODO: Clean this up to send messages the normal way. hamlet = self.example_user("hamlet") message = Message( sender=hamlet, recipient=recipient, content="whatever", date_sent=timezone_now(), sending_client=get_client("whatever"), ) message.set_topic_name(topic) message.save() UserMessage.objects.create( user_profile=user_profile, message=message, flags=0, ) return message.id # our most recent topics are topic0, topic1, topic2 # Create old messages with strange spellings. create_test_message("topic2") create_test_message("toPIc1") create_test_message("toPIc0") create_test_message("topic2") create_test_message("topic2") create_test_message("Topic2") # Create new messages topic2_msg_id = create_test_message("topic2") create_test_message("topic1") create_test_message("topic1") topic1_msg_id = create_test_message("topic1") topic0_msg_id = create_test_message("topic0") endpoint = f"/json/users/me/{stream.id}/topics" result = self.client_get(endpoint, {}) self.assert_json_success(result) history = result.json()["topics"] # We only look at the most recent three topics, because # the prior fixture data may be unreliable. history = history[:3] self.assertEqual( [topic["name"] for topic in history], [ "topic0", "topic1", "topic2", ], ) self.assertEqual( [topic["max_id"] for topic in history], [ topic0_msg_id, topic1_msg_id, topic2_msg_id, ], ) # Now try as cordelia, who we imagine as a totally new user in # that she doesn't have UserMessage rows. We should see the # same results for a public stream. self.login("cordelia") result = self.client_get(endpoint, {}) self.assert_json_success(result) history = result.json()["topics"] # We only look at the most recent three topics, because # the prior fixture data may be unreliable. history = history[:3] self.assertEqual( [topic["name"] for topic in history], [ "topic0", "topic1", "topic2", ], ) self.assertIn("topic0", [topic["name"] for topic in history]) self.assertEqual( [topic["max_id"] for topic in history], [ topic0_msg_id, topic1_msg_id, topic2_msg_id, ], ) # Now make stream private, but subscribe cordelia do_change_stream_invite_only(stream, True) self.subscribe(self.example_user("cordelia"), stream.name) result = self.client_get(endpoint, {}) self.assert_json_success(result) history = result.json()["topics"] history = history[:3] # Cordelia doesn't have these recent history items when we # wasn't subscribed in her results. self.assertNotIn("topic0", [topic["name"] for topic in history]) self.assertNotIn("topic1", [topic["name"] for topic in history]) self.assertNotIn("topic2", [topic["name"] for topic in history]) def test_bad_stream_id(self) -> None: self.login("iago") # non-sensible stream id endpoint = "/json/users/me/9999999999/topics" result = self.client_get(endpoint, {}) self.assert_json_error(result, "Invalid stream id") # out of realm bad_stream = self.make_stream( "mit_stream", realm=get_realm("zephyr"), ) endpoint = f"/json/users/me/{bad_stream.id}/topics" result = self.client_get(endpoint, {}) self.assert_json_error(result, "Invalid stream id") # private stream to which I am not subscribed private_stream = self.make_stream( "private_stream", invite_only=True, ) endpoint = f"/json/users/me/{private_stream.id}/topics" result = self.client_get(endpoint, {}) self.assert_json_error(result, "Invalid stream id") def test_get_topics_web_public_stream_web_public_request(self) -> None: stream = self.make_stream("web-public-steram", is_web_public=True) for i in range(3): self.send_stream_message( self.example_user("iago"), stream.name, topic_name="topic" + str(i) ) endpoint = f"/json/users/me/{stream.id}/topics" result = self.client_get(endpoint) self.assert_json_success(result) history = result.json()["topics"] self.assertEqual( [topic["name"] for topic in history], [ "topic2", "topic1", "topic0", ], ) def test_get_topics_non_web_public_stream_web_public_request(self) -> None: stream = get_stream("Verona", self.example_user("iago").realm) endpoint = f"/json/users/me/{stream.id}/topics" result = self.client_get(endpoint) self.assert_json_error(result, "Invalid stream id", 400) def test_get_topics_non_existant_stream_web_public_request(self) -> None: non_existant_stream_id = 10000000000000000000000 endpoint = f"/json/users/me/{non_existant_stream_id}/topics" result = self.client_get(endpoint) self.assert_json_error(result, "Invalid stream id", 400) class TopicDeleteTest(ZulipTestCase): def test_topic_delete(self) -> None: initial_last_msg_id = self.get_last_message().id stream_name = "new_stream" topic_name = "new topic 2" # NON-ADMIN USER user_profile = self.example_user("hamlet") self.subscribe(user_profile, stream_name) # Send message stream = get_stream(stream_name, user_profile.realm) self.send_stream_message(user_profile, stream_name, topic_name=topic_name) last_msg_id = self.send_stream_message(user_profile, stream_name, topic_name=topic_name) # Deleting the topic self.login_user(user_profile) endpoint = "/json/streams/" + str(stream.id) + "/delete_topic" result = self.client_post( endpoint, { "topic_name": topic_name, }, ) self.assert_json_error(result, "Must be an organization administrator") self.assertEqual(self.get_last_message().id, last_msg_id) # Make stream private with limited history do_change_stream_invite_only(stream, invite_only=True, history_public_to_subscribers=False) # ADMIN USER subscribed now user_profile = self.example_user("iago") self.subscribe(user_profile, stream_name) self.login_user(user_profile) new_last_msg_id = self.send_stream_message(user_profile, stream_name, topic_name=topic_name) # Now admin deletes all messages in topic -- which should only # delete new_last_msg_id, i.e. the one sent since they joined. self.assertEqual(self.get_last_message().id, new_last_msg_id) result = self.client_post( endpoint, { "topic_name": topic_name, }, ) self.assert_json_success(result) self.assertEqual(self.get_last_message().id, last_msg_id) # Try to delete all messages in the topic again. There are no messages accessible # to the administrator, so this should do nothing. result = self.client_post( endpoint, { "topic_name": topic_name, }, ) self.assert_json_success(result) self.assertEqual(self.get_last_message().id, last_msg_id) # Make the stream's history public to subscribers do_change_stream_invite_only(stream, invite_only=True, history_public_to_subscribers=True) # Delete the topic should now remove all messages result = self.client_post( endpoint, { "topic_name": topic_name, }, ) self.assert_json_success(result) self.assertEqual(self.get_last_message().id, initial_last_msg_id) # Delete again, to test the edge case of deleting an empty topic. result = self.client_post( endpoint, { "topic_name": topic_name, }, ) self.assert_json_success(result) self.assertEqual(self.get_last_message().id, initial_last_msg_id)
# Copyright (c) 2010 Citrix Systems, Inc. # Copyright 2010 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ A driver for XenServer or Xen Cloud Platform. **Related Flags** :xenapi_connection_url: URL for connection to XenServer/Xen Cloud Platform. :xenapi_connection_username: Username for connection to XenServer/Xen Cloud Platform (default: root). :xenapi_connection_password: Password for connection to XenServer/Xen Cloud Platform. :target_host: the iSCSI Target Host IP address, i.e. the IP address for the nova-volume host :target_port: iSCSI Target Port, 3260 Default :iqn_prefix: IQN Prefix, e.g. 'iqn.2010-10.org.openstack' **Variable Naming Scheme** - suffix "_ref" for opaque references - suffix "_uuid" for UUIDs - suffix "_rec" for record objects """ import contextlib import cPickle as pickle import math import time import urlparse import xmlrpclib from eventlet import queue from eventlet import timeout from oslo.config import cfg from nova import context from nova import exception from nova.openstack.common.gettextutils import _ from nova.openstack.common import jsonutils from nova.openstack.common import log as logging from nova import utils from nova.virt import driver from nova.virt.xenapi import host from nova.virt.xenapi import pool from nova.virt.xenapi import pool_states from nova.virt.xenapi import vm_utils from nova.virt.xenapi import vmops from nova.virt.xenapi import volumeops LOG = logging.getLogger(__name__) xenapi_opts = [ cfg.StrOpt('xenapi_connection_url', help='URL for connection to XenServer/Xen Cloud Platform. ' 'A special value of unix://local can be used to connect ' 'to the local unix socket. ' 'Required if compute_driver=xenapi.XenAPIDriver'), cfg.StrOpt('xenapi_connection_username', default='root', help='Username for connection to XenServer/Xen Cloud Platform. ' 'Used only if compute_driver=xenapi.XenAPIDriver'), cfg.StrOpt('xenapi_connection_password', help='Password for connection to XenServer/Xen Cloud Platform. ' 'Used only if compute_driver=xenapi.XenAPIDriver', secret=True), cfg.IntOpt('xenapi_connection_concurrent', default=5, help='Maximum number of concurrent XenAPI connections. ' 'Used only if compute_driver=xenapi.XenAPIDriver'), cfg.FloatOpt('xenapi_vhd_coalesce_poll_interval', default=5.0, help='The interval used for polling of coalescing vhds. ' 'Used only if compute_driver=xenapi.XenAPIDriver'), cfg.BoolOpt('xenapi_check_host', default=True, help='Ensure compute service is running on host XenAPI ' 'connects to.'), cfg.IntOpt('xenapi_vhd_coalesce_max_attempts', default=5, help='Max number of times to poll for VHD to coalesce. ' 'Used only if compute_driver=xenapi.XenAPIDriver'), cfg.StrOpt('xenapi_sr_base_path', default='/var/run/sr-mount', help='Base path to the storage repository'), cfg.StrOpt('target_host', help='iSCSI Target Host'), cfg.StrOpt('target_port', default='3260', help='iSCSI Target Port, 3260 Default'), cfg.StrOpt('iqn_prefix', default='iqn.2010-10.org.openstack', help='IQN Prefix'), # NOTE(sirp): This is a work-around for a bug in Ubuntu Maverick, # when we pull support for it, we should remove this cfg.BoolOpt('xenapi_remap_vbd_dev', default=False, help='Used to enable the remapping of VBD dev ' '(Works around an issue in Ubuntu Maverick)'), cfg.StrOpt('xenapi_remap_vbd_dev_prefix', default='sd', help='Specify prefix to remap VBD dev to ' '(ex. /dev/xvdb -> /dev/sdb)'), cfg.IntOpt('xenapi_login_timeout', default=10, help='Timeout in seconds for XenAPI login.'), ] CONF = cfg.CONF CONF.register_opts(xenapi_opts) CONF.import_opt('host', 'nova.netconf') class XenAPIDriver(driver.ComputeDriver): """A connection to XenServer or Xen Cloud Platform.""" def __init__(self, virtapi, read_only=False): super(XenAPIDriver, self).__init__(virtapi) url = CONF.xenapi_connection_url username = CONF.xenapi_connection_username password = CONF.xenapi_connection_password if not url or password is None: raise Exception(_('Must specify xenapi_connection_url, ' 'xenapi_connection_username (optionally), and ' 'xenapi_connection_password to use ' 'compute_driver=xenapi.XenAPIDriver')) self._session = XenAPISession(url, username, password, self.virtapi) self._volumeops = volumeops.VolumeOps(self._session) self._host_state = None self._host = host.Host(self._session, self.virtapi) self._vmops = vmops.VMOps(self._session, self.virtapi) self._initiator = None self._hypervisor_hostname = None self._pool = pool.ResourcePool(self._session, self.virtapi) @property def host_state(self): if not self._host_state: self._host_state = host.HostState(self._session) return self._host_state def init_host(self, host): if CONF.xenapi_check_host: vm_utils.ensure_correct_host(self._session) try: vm_utils.cleanup_attached_vdis(self._session) except Exception: LOG.exception(_('Failure while cleaning up attached VDIs')) def instance_exists(self, instance_name): """Checks existence of an instance on the host. :param instance_name: The name of the instance to lookup Returns True if an instance with the supplied name exists on the host, False otherwise. NOTE(belliott): This is an override of the base method for efficiency. """ return self._vmops.instance_exists(instance_name) def estimate_instance_overhead(self, instance_info): """Get virtualization overhead required to build an instance of the given flavor. :param instance_info: Instance/flavor to calculate overhead for. :returns: Overhead memory in MB. """ # XenServer memory overhead is proportional to the size of the # VM. Larger flavor VMs become more efficient with respect to # overhead. # interpolated formula to predict overhead required per vm. # based on data from: # https://wiki.openstack.org/wiki/XenServer/Overhead base = 3 # MB per_mb = 0.0081 # MB memory_mb = instance_info['memory_mb'] overhead = memory_mb * per_mb + base overhead = math.ceil(overhead) return {'memory_mb': overhead} def list_instances(self): """List VM instances.""" return self._vmops.list_instances() def list_instance_uuids(self): """Get the list of nova instance uuids for VMs found on the hypervisor. """ return self._vmops.list_instance_uuids() def spawn(self, context, instance, image_meta, injected_files, admin_password, network_info=None, block_device_info=None): """Create VM instance.""" self._vmops.spawn(context, instance, image_meta, injected_files, admin_password, network_info, block_device_info) def confirm_migration(self, migration, instance, network_info): """Confirms a resize, destroying the source VM.""" # TODO(Vek): Need to pass context in for access to auth_token self._vmops.confirm_migration(migration, instance, network_info) def finish_revert_migration(self, instance, network_info, block_device_info=None, power_on=True): """Finish reverting a resize.""" # NOTE(vish): Xen currently does not use network info. self._vmops.finish_revert_migration(instance, block_device_info, power_on) def finish_migration(self, context, migration, instance, disk_info, network_info, image_meta, resize_instance=False, block_device_info=None, power_on=True): """Completes a resize, turning on the migrated instance.""" self._vmops.finish_migration(context, migration, instance, disk_info, network_info, image_meta, resize_instance, block_device_info, power_on) def snapshot(self, context, instance, image_id, update_task_state): """Create snapshot from a running VM instance.""" self._vmops.snapshot(context, instance, image_id, update_task_state) def reboot(self, context, instance, network_info, reboot_type, block_device_info=None, bad_volumes_callback=None): """Reboot VM instance.""" self._vmops.reboot(instance, reboot_type, bad_volumes_callback=bad_volumes_callback) def set_admin_password(self, instance, new_pass): """Set the root/admin password on the VM instance.""" self._vmops.set_admin_password(instance, new_pass) def inject_file(self, instance, b64_path, b64_contents): """Create a file on the VM instance. The file path and contents should be base64-encoded. """ self._vmops.inject_file(instance, b64_path, b64_contents) def change_instance_metadata(self, context, instance, diff): """Apply a diff to the instance metadata.""" self._vmops.change_instance_metadata(instance, diff) def destroy(self, instance, network_info, block_device_info=None, destroy_disks=True, context=None): """Destroy VM instance.""" self._vmops.destroy(instance, network_info, block_device_info, destroy_disks) def pause(self, instance): """Pause VM instance.""" self._vmops.pause(instance) def unpause(self, instance): """Unpause paused VM instance.""" self._vmops.unpause(instance) def migrate_disk_and_power_off(self, context, instance, dest, instance_type, network_info, block_device_info=None): """Transfers the VHD of a running instance to another host, then shuts off the instance copies over the COW disk """ # NOTE(vish): Xen currently does not use network info. return self._vmops.migrate_disk_and_power_off(context, instance, dest, instance_type, block_device_info) def suspend(self, instance): """suspend the specified instance.""" self._vmops.suspend(instance) def resume(self, context, instance, network_info, block_device_info=None): """resume the specified instance.""" self._vmops.resume(instance) def rescue(self, context, instance, network_info, image_meta, rescue_password): """Rescue the specified instance.""" self._vmops.rescue(context, instance, network_info, image_meta, rescue_password) def unrescue(self, instance, network_info): """Unrescue the specified instance.""" self._vmops.unrescue(instance) def power_off(self, instance): """Power off the specified instance.""" self._vmops.power_off(instance) def power_on(self, context, instance, network_info, block_device_info=None): """Power on the specified instance.""" self._vmops.power_on(instance) def soft_delete(self, instance): """Soft delete the specified instance.""" self._vmops.soft_delete(instance) def restore(self, instance): """Restore the specified instance.""" self._vmops.restore(instance) def poll_rebooting_instances(self, timeout, instances): """Poll for rebooting instances.""" self._vmops.poll_rebooting_instances(timeout, instances) def reset_network(self, instance): """reset networking for specified instance.""" self._vmops.reset_network(instance) def inject_network_info(self, instance, network_info): """inject network info for specified instance.""" self._vmops.inject_network_info(instance, network_info) def plug_vifs(self, instance_ref, network_info): """Plug VIFs into networks.""" self._vmops.plug_vifs(instance_ref, network_info) def unplug_vifs(self, instance_ref, network_info): """Unplug VIFs from networks.""" self._vmops.unplug_vifs(instance_ref, network_info) def get_info(self, instance): """Return data about VM instance.""" return self._vmops.get_info(instance) def get_diagnostics(self, instance): """Return data about VM diagnostics.""" return self._vmops.get_diagnostics(instance) def get_all_bw_counters(self, instances): """Return bandwidth usage counters for each interface on each running VM. """ # we only care about VMs that correspond to a nova-managed # instance: imap = dict([(inst['name'], inst['uuid']) for inst in instances]) bwcounters = [] # get a dictionary of instance names. values are dictionaries # of mac addresses with values that are the bw counters: # e.g. {'instance-001' : { 12:34:56:78:90:12 : {'bw_in': 0, ....}} all_counters = self._vmops.get_all_bw_counters() for instance_name, counters in all_counters.iteritems(): if instance_name in imap: # yes these are stats for a nova-managed vm # correlate the stats with the nova instance uuid: for vif_counter in counters.values(): vif_counter['uuid'] = imap[instance_name] bwcounters.append(vif_counter) return bwcounters def get_console_output(self, instance): """Return snapshot of console.""" return self._vmops.get_console_output(instance) def get_vnc_console(self, instance): """Return link to instance's VNC console.""" return self._vmops.get_vnc_console(instance) def get_volume_connector(self, instance): """Return volume connector information.""" if not self._initiator or not self._hypervisor_hostname: stats = self.get_host_stats(refresh=True) try: self._initiator = stats['host_other-config']['iscsi_iqn'] self._hypervisor_hostname = stats['host_hostname'] except (TypeError, KeyError) as err: LOG.warn(_('Could not determine key: %s') % err, instance=instance) self._initiator = None return { 'ip': self.get_host_ip_addr(), 'initiator': self._initiator, 'host': self._hypervisor_hostname } @staticmethod def get_host_ip_addr(): xs_url = urlparse.urlparse(CONF.xenapi_connection_url) return xs_url.netloc def attach_volume(self, context, connection_info, instance, mountpoint, encryption=None): """Attach volume storage to VM instance.""" return self._volumeops.attach_volume(connection_info, instance['name'], mountpoint) def detach_volume(self, connection_info, instance, mountpoint, encryption=None): """Detach volume storage from VM instance.""" return self._volumeops.detach_volume(connection_info, instance['name'], mountpoint) def get_console_pool_info(self, console_type): xs_url = urlparse.urlparse(CONF.xenapi_connection_url) return {'address': xs_url.netloc, 'username': CONF.xenapi_connection_username, 'password': CONF.xenapi_connection_password} def get_available_resource(self, nodename): """Retrieve resource information. This method is called when nova-compute launches, and as part of a periodic task that records the results in the DB. :param nodename: ignored in this driver :returns: dictionary describing resources """ host_stats = self.get_host_stats(refresh=True) # Updating host information total_ram_mb = host_stats['host_memory_total'] / (1024 * 1024) # NOTE(belliott) memory-free-computed is a value provided by XenServer # for gauging free memory more conservatively than memory-free. free_ram_mb = host_stats['host_memory_free_computed'] / (1024 * 1024) total_disk_gb = host_stats['disk_total'] / (1024 * 1024 * 1024) used_disk_gb = host_stats['disk_used'] / (1024 * 1024 * 1024) hyper_ver = utils.convert_version_to_int(self._session.product_version) dic = {'vcpus': 0, 'memory_mb': total_ram_mb, 'local_gb': total_disk_gb, 'vcpus_used': 0, 'memory_mb_used': total_ram_mb - free_ram_mb, 'local_gb_used': used_disk_gb, 'hypervisor_type': 'xen', 'hypervisor_version': hyper_ver, 'hypervisor_hostname': host_stats['host_hostname'], 'cpu_info': host_stats['host_cpu_info']['cpu_count'], 'supported_instances': jsonutils.dumps( host_stats['supported_instances'])} return dic def ensure_filtering_rules_for_instance(self, instance_ref, network_info): # NOTE(salvatore-orlando): it enforces security groups on # host initialization and live migration. # In XenAPI we do not assume instances running upon host initialization return def check_can_live_migrate_destination(self, ctxt, instance_ref, src_compute_info, dst_compute_info, block_migration=False, disk_over_commit=False): """Check if it is possible to execute live migration. :param context: security context :param instance_ref: nova.db.sqlalchemy.models.Instance object :param block_migration: if true, prepare for block migration :param disk_over_commit: if true, allow disk over commit """ return self._vmops.check_can_live_migrate_destination(ctxt, instance_ref, block_migration, disk_over_commit) def check_can_live_migrate_destination_cleanup(self, ctxt, dest_check_data): """Do required cleanup on dest host after check_can_live_migrate calls :param ctxt: security context :param disk_over_commit: if true, allow disk over commit """ pass def check_can_live_migrate_source(self, ctxt, instance_ref, dest_check_data): """Check if it is possible to execute live migration. This checks if the live migration can succeed, based on the results from check_can_live_migrate_destination. :param context: security context :param instance_ref: nova.db.sqlalchemy.models.Instance :param dest_check_data: result of check_can_live_migrate_destination includes the block_migration flag """ return self._vmops.check_can_live_migrate_source(ctxt, instance_ref, dest_check_data) def get_instance_disk_info(self, instance_name): """Used by libvirt for live migration. We rely on xenapi checks to do this for us. """ pass def live_migration(self, ctxt, instance_ref, dest, post_method, recover_method, block_migration=False, migrate_data=None): """Performs the live migration of the specified instance. :params ctxt: security context :params instance_ref: nova.db.sqlalchemy.models.Instance object instance object that is migrated. :params dest: destination host :params post_method: post operation method. expected nova.compute.manager.post_live_migration. :params recover_method: recovery method when any exception occurs. expected nova.compute.manager.recover_live_migration. :params block_migration: if true, migrate VM disk. :params migrate_data: implementation specific params """ self._vmops.live_migrate(ctxt, instance_ref, dest, post_method, recover_method, block_migration, migrate_data) def pre_live_migration(self, context, instance_ref, block_device_info, network_info, data, migrate_data=None): """Preparation live migration. :params block_device_info: It must be the result of _get_instance_volume_bdms() at compute manager. """ # TODO(JohnGarbutt) look again when boot-from-volume hits trunk pre_live_migration_result = {} pre_live_migration_result['sr_uuid_map'] = \ self._vmops.attach_block_device_volumes(block_device_info) return pre_live_migration_result def post_live_migration_at_destination(self, ctxt, instance_ref, network_info, block_migration, block_device_info=None): """Post operation of live migration at destination host. :params ctxt: security context :params instance_ref: nova.db.sqlalchemy.models.Instance object instance object that is migrated. :params network_info: instance network information :params : block_migration: if true, post operation of block_migraiton. """ self._vmops.post_live_migration_at_destination(ctxt, instance_ref, network_info, block_device_info, block_device_info) def unfilter_instance(self, instance_ref, network_info): """Removes security groups configured for an instance.""" return self._vmops.unfilter_instance(instance_ref, network_info) def refresh_security_group_rules(self, security_group_id): """Updates security group rules for all instances associated with a given security group. Invoked when security group rules are updated. """ return self._vmops.refresh_security_group_rules(security_group_id) def refresh_security_group_members(self, security_group_id): """Updates security group rules for all instances associated with a given security group. Invoked when instances are added/removed to a security group. """ return self._vmops.refresh_security_group_members(security_group_id) def refresh_instance_security_rules(self, instance): """Updates security group rules for specified instance. Invoked when instances are added/removed to a security group or when a rule is added/removed to a security group. """ return self._vmops.refresh_instance_security_rules(instance) def refresh_provider_fw_rules(self): return self._vmops.refresh_provider_fw_rules() def get_host_stats(self, refresh=False): """Return the current state of the host. If 'refresh' is True, run the update first. """ return self.host_state.get_host_stats(refresh=refresh) def host_power_action(self, host, action): """The only valid values for 'action' on XenServer are 'reboot' or 'shutdown', even though the API also accepts 'startup'. As this is not technically possible on XenServer, since the host is the same physical machine as the hypervisor, if this is requested, we need to raise an exception. """ if action in ("reboot", "shutdown"): return self._host.host_power_action(host, action) else: msg = _("Host startup on XenServer is not supported.") raise NotImplementedError(msg) def set_host_enabled(self, host, enabled): """Sets the specified host's ability to accept new instances.""" return self._host.set_host_enabled(host, enabled) def get_host_uptime(self, host): """Returns the result of calling "uptime" on the target host.""" return self._host.get_host_uptime(host) def host_maintenance_mode(self, host, mode): """Start/Stop host maintenance window. On start, it triggers guest VMs evacuation. """ return self._host.host_maintenance_mode(host, mode) def add_to_aggregate(self, context, aggregate, host, **kwargs): """Add a compute host to an aggregate.""" return self._pool.add_to_aggregate(context, aggregate, host, **kwargs) def remove_from_aggregate(self, context, aggregate, host, **kwargs): """Remove a compute host from an aggregate.""" return self._pool.remove_from_aggregate(context, aggregate, host, **kwargs) def undo_aggregate_operation(self, context, op, aggregate, host, set_error=True): """Undo aggregate operation when pool error raised.""" return self._pool.undo_aggregate_operation(context, op, aggregate, host, set_error) def resume_state_on_host_boot(self, context, instance, network_info, block_device_info=None): """resume guest state when a host is booted.""" self._vmops.power_on(instance) def get_per_instance_usage(self): """Get information about instance resource usage. :returns: dict of nova uuid => dict of usage info """ return self._vmops.get_per_instance_usage() class XenAPISession(object): """The session to invoke XenAPI SDK calls.""" # This is not a config option as it should only ever be # changed in development environments. # MAJOR VERSION: Incompatible changes with the plugins # MINOR VERSION: Compatible changes, new plguins, etc PLUGIN_REQUIRED_VERSION = '1.0' def __init__(self, url, user, pw, virtapi): import XenAPI self.XenAPI = XenAPI self._sessions = queue.Queue() self.is_slave = False exception = self.XenAPI.Failure(_("Unable to log in to XenAPI " "(is the Dom0 disk full?)")) url = self._create_first_session(url, user, pw, exception) self._populate_session_pool(url, user, pw, exception) self.host_uuid = self._get_host_uuid() self.product_version, self.product_brand = \ self._get_product_version_and_brand() self._virtapi = virtapi self._verify_plugin_version() def _verify_plugin_version(self): # Verify that we're using the right version of the plugins returned_version = self.call_plugin_serialized( 'nova_plugin_version', 'get_version') # Can't use vmops.cmp_version because that tolerates differences in # major version req_maj, req_min = self.PLUGIN_REQUIRED_VERSION.split('.') got_maj, got_min = returned_version.split('.') if req_maj != got_maj or req_min > got_min: raise self.XenAPI.Failure( _("Plugin version mismatch (Expected %(exp)s, got %(got)s)") % {'exp': self.PLUGIN_REQUIRED_VERSION, 'got': returned_version}) def _create_first_session(self, url, user, pw, exception): try: session = self._create_session(url) with timeout.Timeout(CONF.xenapi_login_timeout, exception): session.login_with_password(user, pw) except self.XenAPI.Failure as e: # if user and pw of the master are different, we're doomed! if e.details[0] == 'HOST_IS_SLAVE': master = e.details[1] url = pool.swap_xapi_host(url, master) session = self.XenAPI.Session(url) session.login_with_password(user, pw) self.is_slave = True else: raise self._sessions.put(session) return url def _populate_session_pool(self, url, user, pw, exception): for i in xrange(CONF.xenapi_connection_concurrent - 1): session = self._create_session(url) with timeout.Timeout(CONF.xenapi_login_timeout, exception): session.login_with_password(user, pw) self._sessions.put(session) def _get_host_uuid(self): if self.is_slave: aggr = self._virtapi.aggregate_get_by_host( context.get_admin_context(), CONF.host, key=pool_states.POOL_FLAG)[0] if not aggr: LOG.error(_('Host is member of a pool, but DB ' 'says otherwise')) raise exception.AggregateHostNotFound() return aggr.metadetails[CONF.host] else: with self._get_session() as session: host_ref = session.xenapi.session.get_this_host(session.handle) return session.xenapi.host.get_uuid(host_ref) def _get_product_version_and_brand(self): """Return a tuple of (major, minor, rev) for the host version and a string of the product brand. """ software_version = self._get_software_version() product_version_str = software_version.get('product_version') # Product version is only set in some cases (e.g. XCP, XenServer) and # not in others (e.g. xenserver-core, XAPI-XCP). # In these cases, the platform version is the best number to use. if product_version_str is None: product_version_str = software_version.get('platform_version', '0.0.0') product_brand = software_version.get('product_brand') product_version = tuple(int(part) for part in product_version_str.split('.')) return product_version, product_brand def _get_software_version(self): host = self.get_xenapi_host() return self.call_xenapi('host.get_software_version', host) def get_session_id(self): """Return a string session_id. Used for vnc consoles.""" with self._get_session() as session: return str(session._session) @contextlib.contextmanager def _get_session(self): """Return exclusive session for scope of with statement.""" session = self._sessions.get() try: yield session finally: self._sessions.put(session) def get_xenapi_host(self): """Return the xenapi host on which nova-compute runs on.""" with self._get_session() as session: return session.xenapi.host.get_by_uuid(self.host_uuid) def call_xenapi(self, method, *args): """Call the specified XenAPI method on a background thread.""" with self._get_session() as session: return session.xenapi_request(method, args) def call_plugin(self, plugin, fn, args): """Call host.call_plugin on a background thread.""" # NOTE(johannes): Fetch host before we acquire a session. Since # get_xenapi_host() acquires a session too, it can result in a # deadlock if multiple greenthreads race with each other. See # bug 924918 host = self.get_xenapi_host() # NOTE(armando): pass the host uuid along with the args so that # the plugin gets executed on the right host when using XS pools args['host_uuid'] = self.host_uuid with self._get_session() as session: return self._unwrap_plugin_exceptions( session.xenapi.host.call_plugin, host, plugin, fn, args) def call_plugin_serialized(self, plugin, fn, *args, **kwargs): params = {'params': pickle.dumps(dict(args=args, kwargs=kwargs))} rv = self.call_plugin(plugin, fn, params) return pickle.loads(rv) def call_plugin_serialized_with_retry(self, plugin, fn, num_retries, callback, *args, **kwargs): """Allows a plugin to raise RetryableError so we can try again.""" attempts = num_retries + 1 sleep_time = 0.5 for attempt in xrange(1, attempts + 1): LOG.info(_('%(plugin)s.%(fn)s attempt %(attempt)d/%(attempts)d'), {'plugin': plugin, 'fn': fn, 'attempt': attempt, 'attempts': attempts}) try: if callback: callback(kwargs) return self.call_plugin_serialized(plugin, fn, *args, **kwargs) except self.XenAPI.Failure as exc: if self._is_retryable_exception(exc): LOG.warn(_('%(plugin)s.%(fn)s failed. Retrying call.') % {'plugin': plugin, 'fn': fn}) else: raise time.sleep(sleep_time) sleep_time = min(2 * sleep_time, 15) raise exception.PluginRetriesExceeded(num_retries=num_retries) def _is_retryable_exception(self, exc): _type, method, error = exc.details[:3] if error == 'RetryableError': LOG.debug(_("RetryableError, so retrying upload_vhd"), exc_info=True) return True elif "signal" in method: LOG.debug(_("Error due to a signal, retrying upload_vhd"), exc_info=True) return True else: return False def _create_session(self, url): """Stubout point. This can be replaced with a mock session.""" self.is_local_connection = url == "unix://local" if self.is_local_connection: return self.XenAPI.xapi_local() return self.XenAPI.Session(url) def _unwrap_plugin_exceptions(self, func, *args, **kwargs): """Parse exception details.""" try: return func(*args, **kwargs) except self.XenAPI.Failure as exc: LOG.debug(_("Got exception: %s"), exc) if (len(exc.details) == 4 and exc.details[0] == 'XENAPI_PLUGIN_EXCEPTION' and exc.details[2] == 'Failure'): params = None try: # FIXME(comstud): eval is evil. params = eval(exc.details[3]) except Exception: raise exc raise self.XenAPI.Failure(params) else: raise except xmlrpclib.ProtocolError as exc: LOG.debug(_("Got exception: %s"), exc) raise def get_rec(self, record_type, ref): try: return self.call_xenapi('%s.get_record' % record_type, ref) except self.XenAPI.Failure as e: if e.details[0] != 'HANDLE_INVALID': raise return None def get_all_refs_and_recs(self, record_type): """Retrieve all refs and recs for a Xen record type. Handles race-conditions where the record may be deleted between the `get_all` call and the `get_record` call. """ for ref in self.call_xenapi('%s.get_all' % record_type): rec = self.get_rec(record_type, ref) # Check to make sure the record still exists. It may have # been deleted between the get_all call and get_record call if rec: yield ref, rec
"""Test the MySensors config flow.""" from __future__ import annotations from typing import Any from unittest.mock import patch import pytest from homeassistant import config_entries, setup from homeassistant.components.mysensors.const import ( CONF_BAUD_RATE, CONF_DEVICE, CONF_GATEWAY_TYPE, CONF_GATEWAY_TYPE_MQTT, CONF_GATEWAY_TYPE_SERIAL, CONF_GATEWAY_TYPE_TCP, CONF_PERSISTENCE, CONF_PERSISTENCE_FILE, CONF_RETAIN, CONF_TCP_PORT, CONF_TOPIC_IN_PREFIX, CONF_TOPIC_OUT_PREFIX, CONF_VERSION, DOMAIN, ConfGatewayType, ) from homeassistant.core import HomeAssistant from homeassistant.data_entry_flow import FlowResult from tests.common import MockConfigEntry async def get_form( hass: HomeAssistant, gatway_type: ConfGatewayType, expected_step_id: str ) -> FlowResult: """Get a form for the given gateway type.""" await setup.async_setup_component(hass, "persistent_notification", {}) stepuser = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert stepuser["type"] == "form" assert not stepuser["errors"] result = await hass.config_entries.flow.async_configure( stepuser["flow_id"], {CONF_GATEWAY_TYPE: gatway_type}, ) await hass.async_block_till_done() assert result["type"] == "form" assert result["step_id"] == expected_step_id return result async def test_config_mqtt(hass: HomeAssistant, mqtt: None) -> None: """Test configuring a mqtt gateway.""" step = await get_form(hass, CONF_GATEWAY_TYPE_MQTT, "gw_mqtt") flow_id = step["flow_id"] with patch( "homeassistant.components.mysensors.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( flow_id, { CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "bla", CONF_TOPIC_OUT_PREFIX: "blub", CONF_VERSION: "2.4", }, ) await hass.async_block_till_done() if "errors" in result2: assert not result2["errors"] assert result2["type"] == "create_entry" assert result2["title"] == "mqtt" assert result2["data"] == { CONF_DEVICE: "mqtt", CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "bla", CONF_TOPIC_OUT_PREFIX: "blub", CONF_VERSION: "2.4", CONF_GATEWAY_TYPE: "MQTT", } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_missing_mqtt(hass: HomeAssistant) -> None: """Test configuring a mqtt gateway without mqtt integration setup.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert not result["errors"] result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_GATEWAY_TYPE: CONF_GATEWAY_TYPE_MQTT}, ) assert result["step_id"] == "user" assert result["type"] == "form" assert result["errors"] == {"base": "mqtt_required"} async def test_config_serial(hass: HomeAssistant) -> None: """Test configuring a gateway via serial.""" step = await get_form(hass, CONF_GATEWAY_TYPE_SERIAL, "gw_serial") flow_id = step["flow_id"] with patch( # mock is_serial_port because otherwise the test will be platform dependent (/dev/ttyACMx vs COMx) "homeassistant.components.mysensors.config_flow.is_serial_port", return_value=True, ), patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=True ), patch( "homeassistant.components.mysensors.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( flow_id, { CONF_BAUD_RATE: 115200, CONF_DEVICE: "/dev/ttyACM0", CONF_VERSION: "2.4", }, ) await hass.async_block_till_done() if "errors" in result2: assert not result2["errors"] assert result2["type"] == "create_entry" assert result2["title"] == "/dev/ttyACM0" assert result2["data"] == { CONF_DEVICE: "/dev/ttyACM0", CONF_BAUD_RATE: 115200, CONF_VERSION: "2.4", CONF_GATEWAY_TYPE: "Serial", } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_config_tcp(hass: HomeAssistant) -> None: """Test configuring a gateway via tcp.""" step = await get_form(hass, CONF_GATEWAY_TYPE_TCP, "gw_tcp") flow_id = step["flow_id"] with patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=True ), patch( "homeassistant.components.mysensors.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( flow_id, { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "2.4", }, ) await hass.async_block_till_done() if "errors" in result2: assert not result2["errors"] assert result2["type"] == "create_entry" assert result2["title"] == "127.0.0.1" assert result2["data"] == { CONF_DEVICE: "127.0.0.1", CONF_TCP_PORT: 5003, CONF_VERSION: "2.4", CONF_GATEWAY_TYPE: "TCP", } assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_fail_to_connect(hass: HomeAssistant) -> None: """Test configuring a gateway via tcp.""" step = await get_form(hass, CONF_GATEWAY_TYPE_TCP, "gw_tcp") flow_id = step["flow_id"] with patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=False ), patch( "homeassistant.components.mysensors.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( flow_id, { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "2.4", }, ) await hass.async_block_till_done() assert result2["type"] == "form" assert "errors" in result2 errors = result2["errors"] assert errors assert errors.get("base") == "cannot_connect" assert len(mock_setup.mock_calls) == 0 assert len(mock_setup_entry.mock_calls) == 0 @pytest.mark.parametrize( "gateway_type, expected_step_id, user_input, err_field, err_string", [ ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 600_000, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "2.4", }, CONF_TCP_PORT, "port_out_of_range", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 0, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "2.4", }, CONF_TCP_PORT, "port_out_of_range", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "a", }, CONF_VERSION, "invalid_version", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "a.b", }, CONF_VERSION, "invalid_version", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "4", }, CONF_VERSION, "invalid_version", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.1", CONF_VERSION: "v3", }, CONF_VERSION, "invalid_version", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "127.0.0.", CONF_VERSION: "2.4", }, CONF_DEVICE, "invalid_ip", ), ( CONF_GATEWAY_TYPE_TCP, "gw_tcp", { CONF_TCP_PORT: 5003, CONF_DEVICE: "abcd", CONF_VERSION: "2.4", }, CONF_DEVICE, "invalid_ip", ), ( CONF_GATEWAY_TYPE_MQTT, "gw_mqtt", { CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "bla", CONF_TOPIC_OUT_PREFIX: "blub", CONF_PERSISTENCE_FILE: "asdf.zip", CONF_VERSION: "2.4", }, CONF_PERSISTENCE_FILE, "invalid_persistence_file", ), ( CONF_GATEWAY_TYPE_MQTT, "gw_mqtt", { CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "/#/#", CONF_TOPIC_OUT_PREFIX: "blub", CONF_VERSION: "2.4", }, CONF_TOPIC_IN_PREFIX, "invalid_subscribe_topic", ), ( CONF_GATEWAY_TYPE_MQTT, "gw_mqtt", { CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "asdf", CONF_TOPIC_OUT_PREFIX: "/#/#", CONF_VERSION: "2.4", }, CONF_TOPIC_OUT_PREFIX, "invalid_publish_topic", ), ( CONF_GATEWAY_TYPE_MQTT, "gw_mqtt", { CONF_RETAIN: True, CONF_TOPIC_IN_PREFIX: "asdf", CONF_TOPIC_OUT_PREFIX: "asdf", CONF_VERSION: "2.4", }, CONF_TOPIC_OUT_PREFIX, "same_topic", ), ], ) async def test_config_invalid( hass: HomeAssistant, mqtt: None, gateway_type: ConfGatewayType, expected_step_id: str, user_input: dict[str, Any], err_field: str, err_string: str, ) -> None: """Perform a test that is expected to generate an error.""" step = await get_form(hass, gateway_type, expected_step_id) flow_id = step["flow_id"] with patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=True ), patch( "homeassistant.components.mysensors.gateway.socket.getaddrinfo", side_effect=OSError, ), patch( "homeassistant.components.mysensors.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( flow_id, user_input, ) await hass.async_block_till_done() assert result2["type"] == "form" assert "errors" in result2 errors = result2["errors"] assert errors assert err_field in errors assert errors[err_field] == err_string assert len(mock_setup.mock_calls) == 0 assert len(mock_setup_entry.mock_calls) == 0 @pytest.mark.parametrize( "user_input", [ { CONF_DEVICE: "COM5", CONF_BAUD_RATE: 57600, CONF_TCP_PORT: 5003, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "bla.json", }, { CONF_DEVICE: "COM5", CONF_PERSISTENCE_FILE: "bla.json", CONF_BAUD_RATE: 57600, CONF_TCP_PORT: 5003, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: True, }, { CONF_DEVICE: "mqtt", CONF_BAUD_RATE: 115200, CONF_TCP_PORT: 5003, CONF_TOPIC_IN_PREFIX: "intopic", CONF_TOPIC_OUT_PREFIX: "outtopic", CONF_VERSION: "2.4", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "127.0.0.1", CONF_PERSISTENCE_FILE: "blub.pickle", CONF_BAUD_RATE: 115200, CONF_TCP_PORT: 343, CONF_VERSION: "2.4", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, ], ) async def test_import(hass: HomeAssistant, mqtt: None, user_input: dict) -> None: """Test importing a gateway.""" await setup.async_setup_component(hass, "persistent_notification", {}) with patch("sys.platform", "win32"), patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=True ), patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ): result = await hass.config_entries.flow.async_init( DOMAIN, data=user_input, context={"source": config_entries.SOURCE_IMPORT} ) await hass.async_block_till_done() assert result["type"] == "create_entry" @pytest.mark.parametrize( "first_input, second_input, expected_result", [ ( { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "same2", }, { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "same2", }, (CONF_TOPIC_IN_PREFIX, "duplicate_topic"), ), ( { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "different1", CONF_TOPIC_OUT_PREFIX: "different2", }, { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "different3", CONF_TOPIC_OUT_PREFIX: "different4", }, None, ), ( { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "different2", }, { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "different4", }, (CONF_TOPIC_IN_PREFIX, "duplicate_topic"), ), ( { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "different2", }, { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "different1", CONF_TOPIC_OUT_PREFIX: "same1", }, (CONF_TOPIC_OUT_PREFIX, "duplicate_topic"), ), ( { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "different2", }, { CONF_DEVICE: "mqtt", CONF_VERSION: "2.3", CONF_TOPIC_IN_PREFIX: "same1", CONF_TOPIC_OUT_PREFIX: "different1", }, (CONF_TOPIC_IN_PREFIX, "duplicate_topic"), ), ( { CONF_DEVICE: "127.0.0.1", CONF_PERSISTENCE_FILE: "same.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "same.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, ("persistence_file", "duplicate_persistence_file"), ), ( { CONF_DEVICE: "127.0.0.1", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "same.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, None, ), ( { CONF_DEVICE: "127.0.0.1", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.2", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, None, ), ( { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "different1.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "different2.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, ("base", "already_configured"), ), ( { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "different1.json", CONF_TCP_PORT: 343, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.2", CONF_PERSISTENCE_FILE: "different2.json", CONF_TCP_PORT: 5003, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, None, ), ( { CONF_DEVICE: "192.168.1.2", CONF_TCP_PORT: 5003, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, { CONF_DEVICE: "192.168.1.3", CONF_TCP_PORT: 5003, CONF_VERSION: "2.3", CONF_PERSISTENCE: False, CONF_RETAIN: False, }, None, ), ( { CONF_DEVICE: "COM5", CONF_TCP_PORT: 5003, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "different1.json", }, { CONF_DEVICE: "COM5", CONF_TCP_PORT: 5003, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "different2.json", }, ("base", "already_configured"), ), ( { CONF_DEVICE: "COM6", CONF_BAUD_RATE: 57600, CONF_RETAIN: True, CONF_VERSION: "2.3", }, { CONF_DEVICE: "COM5", CONF_TCP_PORT: 5003, CONF_RETAIN: True, CONF_VERSION: "2.3", }, None, ), ( { CONF_DEVICE: "COM5", CONF_BAUD_RATE: 115200, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "different1.json", }, { CONF_DEVICE: "COM5", CONF_BAUD_RATE: 57600, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "different2.json", }, ("base", "already_configured"), ), ( { CONF_DEVICE: "COM5", CONF_BAUD_RATE: 115200, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "same.json", }, { CONF_DEVICE: "COM6", CONF_BAUD_RATE: 57600, CONF_RETAIN: True, CONF_VERSION: "2.3", CONF_PERSISTENCE_FILE: "same.json", }, ("persistence_file", "duplicate_persistence_file"), ), ( { CONF_DEVICE: "mqtt", CONF_PERSISTENCE_FILE: "bla.json", CONF_BAUD_RATE: 115200, CONF_TCP_PORT: 5003, CONF_VERSION: "1.4", }, { CONF_DEVICE: "COM6", CONF_PERSISTENCE_FILE: "bla2.json", CONF_BAUD_RATE: 115200, CONF_TCP_PORT: 5003, CONF_VERSION: "1.4", }, None, ), ], ) async def test_duplicate( hass: HomeAssistant, mqtt: None, first_input: dict, second_input: dict, expected_result: tuple[str, str] | None, ) -> None: """Test duplicate detection.""" await setup.async_setup_component(hass, "persistent_notification", {}) with patch("sys.platform", "win32"), patch( "homeassistant.components.mysensors.config_flow.try_connect", return_value=True ), patch( "homeassistant.components.mysensors.async_setup_entry", return_value=True, ): MockConfigEntry(domain=DOMAIN, data=first_input).add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, data=second_input, context={"source": config_entries.SOURCE_IMPORT} ) await hass.async_block_till_done() if expected_result is None: assert result["type"] == "create_entry" else: assert result["type"] == "abort" assert result["reason"] == expected_result[1]
"""Responses. responses serve both testing purpose aswell as dynamic docstring replacement """ responses = { "_v3_accounts": { "url": "/v3/accounts", "response": { "accounts": [ { "id": "101-004-1435156-002", "tags": [] }, { "id": "101-004-1435156-001", "tags": [] } ] }, }, "_v3_account_by_accountID": { "url": "/v3/accounts/{}", "response": { "account": { "trades": [ { "instrument": "DE30_EUR", "financing": "0.0000", "openTime": "2016-07-12T09:32:18.062823776Z", "initialUnits": "-10", "currentUnits": "-10", "price": "9984.7", "unrealizedPL": "341.0000", "realizedPL": "0.0000", "state": "OPEN", "id": "821" }, { "instrument": "DE30_EUR", "financing": "0.0000", "openTime": "2016-07-12T09:32:18.206929733Z", "initialUnits": "-10", "currentUnits": "-10", "price": "9984.7", "unrealizedPL": "341.0000", "realizedPL": "0.0000", "state": "OPEN", "id": "823" } ], "marginCloseoutNAV": "49393.6580", "marginUsed": "9948.9000", "currency": "EUR", "resettablePL": "-1301.0046", "NAV": "49377.6580", "marginCloseoutMarginUsed": "9949.8000", "id": "101-004-1435156-001", "marginCloseoutPositionValue": "198996.0000", "openTradeCount": 2, "orders": [ { "partialFill": "DEFAULT_FILL", "price": "0.87000", "stopLossOnFill": { "timeInForce": "GTC", "price": "0.88000" }, "timeInForce": "GTC", "clientExtensions": { "comment": "myComment", "id": "myID" }, "id": "204", "triggerCondition": "TRIGGER_DEFAULT", "replacesOrderID": "200", "positionFill": "POSITION_DEFAULT", "createTime": "2016-07-08T07:18:47.623211321Z", "instrument": "EUR_GBP", "state": "PENDING", "units": "-50000", "type": "LIMIT" } ], "hedgingEnabled": False, "marginCloseoutPercent": "0.10072", "marginCallMarginUsed": "9949.8000", "openPositionCount": 1, "positionValue": "198978.0000", "pl": "-1301.0046", "lastTransactionID": "833", "marginAvailable": "39428.7580", "marginCloseoutUnrealizedPL": "698.0000", "marginRate": "0.05", "marginCallPercent": "0.20144", "pendingOrderCount": 1, "withdrawalLimit": "39428.7580", "unrealizedPL": "682.0000", "alias": "hootnotv20", "createdByUserID": 1435156, "positions": [ { "short": { "units": "0", "resettablePL": "0.0000", "unrealizedPL": "0.0000", "pl": "0.0000" }, "unrealizedPL": "0.0000", "long": { "units": "0", "resettablePL": "-3.8046", "unrealizedPL": "0.0000", "pl": "-3.8046" }, "instrument": "EUR_USD", "resettablePL": "-3.8046", "pl": "-3.8046" }, { "short": { "unrealizedPL": "682.0000", "tradeIDs": [ "821", "823" ], "resettablePL": "-1744.8000", "units": "-20", "averagePrice": "9984.7", "pl": "-1744.8000" }, "unrealizedPL": "682.0000", "long": { "units": "0", "resettablePL": "447.6000", "unrealizedPL": "0.0000", "pl": "447.6000" }, "instrument": "DE30_EUR", "resettablePL": "-1297.2000", "pl": "-1297.2000" } ], "createdTime": "2016-06-24T21:03:50.914647476Z", "balance": "48695.6580" }, "lastTransactionID": "833" } }, "_v3_account_by_accountID_summary": { "url": "v3/accounts/{accountID}/summary", "response": { "account": { "marginCloseoutNAV": "35454.4740", "marginUsed": "10581.5000", "currency": "EUR", "resettablePL": "-13840.3525", "NAV": "35454.4740", "marginCloseoutMarginUsed": "10581.5000", "marginCloseoutPositionValue": "211630.0000", "openTradeCount": 2, "id": "101-004-1435156-001", "openPositionCount": 1, "marginCloseoutPercent": "0.14923", "marginCallMarginUsed": "10581.5000", "hedgingEnabled": False, "positionValue": "211630.0000", "pl": "-13840.3525", "lastTransactionID": "2123", "marginAvailable": "24872.9740", "marginRate": "0.05", "marginCallPercent": "0.29845", "pendingOrderCount": 0, "withdrawalLimit": "24872.9740", "unrealizedPL": "0.0000", "alias": "hootnotv20", "createdByUserID": 1435156, "marginCloseoutUnrealizedPL": "0.0000", "createdTime": "2016-06-24T21:03:50.914647476Z", "balance": "35454.4740" }, "lastTransactionID": "2123" } }, "_v3_account_by_accountID_instruments": { "url": "/v3/accounts/{accountID}/instuments", "params": { "instruments": "EU50_EUR,EUR_USD,US30_USD," "FR40_EUR,EUR_CHF,DE30_EUR" }, "response": { "instruments": [ { "minimumTradeSize": "1", "displayName": "Europe 50", "name": "EU50_EUR", "displayPrecision": 1, "type": "CFD", "minimumTrailingStopDistance": "5.0", "marginRate": "0.05", "maximumOrderUnits": "3000", "tradeUnitsPrecision": 0, "pipLocation": 0, "maximumPositionSize": "0", "maximumTrailingStopDistance": "10000.0" }, { "minimumTradeSize": "1", "displayName": "EUR/USD", "name": "EUR_USD", "displayPrecision": 5, "type": "CURRENCY", "minimumTrailingStopDistance": "0.00050", "marginRate": "0.05", "maximumOrderUnits": "100000000", "tradeUnitsPrecision": 0, "pipLocation": -4, "maximumPositionSize": "0", "maximumTrailingStopDistance": "1.00000" }, { "minimumTradeSize": "1", "displayName": "US Wall St 30", "name": "US30_USD", "displayPrecision": 1, "type": "CFD", "minimumTrailingStopDistance": "5.0", "marginRate": "0.05", "maximumOrderUnits": "1000", "tradeUnitsPrecision": 0, "pipLocation": 0, "maximumPositionSize": "0", "maximumTrailingStopDistance": "10000.0" }, { "minimumTradeSize": "1", "displayName": "France 40", "name": "FR40_EUR", "displayPrecision": 1, "type": "CFD", "minimumTrailingStopDistance": "5.0", "marginRate": "0.05", "maximumOrderUnits": "2000", "tradeUnitsPrecision": 0, "pipLocation": 0, "maximumPositionSize": "0", "maximumTrailingStopDistance": "10000.0" }, { "minimumTradeSize": "1", "displayName": "EUR/CHF", "name": "EUR_CHF", "displayPrecision": 5, "type": "CURRENCY", "minimumTrailingStopDistance": "0.00050", "marginRate": "0.05", "maximumOrderUnits": "100000000", "tradeUnitsPrecision": 0, "pipLocation": -4, "maximumPositionSize": "0", "maximumTrailingStopDistance": "1.00000" }, { "minimumTradeSize": "1", "displayName": "Germany 30", "name": "DE30_EUR", "displayPrecision": 1, "type": "CFD", "minimumTrailingStopDistance": "5.0", "marginRate": "0.05", "maximumOrderUnits": "2500", "tradeUnitsPrecision": 0, "pipLocation": 0, "maximumPositionSize": "0", "maximumTrailingStopDistance": "10000.0" }, ], "lastTransactionID": "2124" }, }, "_v3_accounts_accountID_account_config": { "url": "/v3/accounts/{accountID}/configuration", "body": { "marginRate": "0.05" }, "response": { "lastTransactionID": "830", "clientConfigureTransaction": { "userID": 1435156, "marginRate": "0.05", "batchID": "830", "time": "2016-07-12T19:48:11.657494168Z", "type": "CLIENT_CONFIGURE", "id": "830", "accountID": "101-004-1435156-001" } }, }, "_v3_accounts_accountID_account_changes": { "url": "/v3/accounts/{accountID}/changes", "params": { "sinceTransactionID": 2308 }, "response": { "state": { "trades": [], "marginCloseoutNAV": "33848.2663", "unrealizedPL": "0.0000", "marginUsed": "0.0000", "marginAvailable": "33848.2663", "positions": [], "marginCloseoutUnrealizedPL": "0.0000", "marginCallMarginUsed": "0.0000", "marginCallPercent": "0.00000", "marginCloseoutPercent": "0.00000", "NAV": "33848.2663", "marginCloseoutMarginUsed": "0.0000", "positionValue": "0.0000", "orders": [], "withdrawalLimit": "33848.2663" }, "changes": { "tradesReduced": [], "tradesOpened": [], "ordersFilled": [], "transactions": [ { "timeInForce": "GTC", "triggerCondition": "TRIGGER_DEFAULT", "positionFill": "DEFAULT", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.22000" }, "userID": 1435156, "id": "2309", "batchID": "2309", "instrument": "EUR_USD", "reason": "CLIENT_ORDER", "time": "2016-10-25T21:07:21.065554321Z", "units": "-100", "type": "LIMIT_ORDER", "price": "1.20000", "accountID": "101-004-1435156-001" } ], "ordersCreated": [ { "triggerCondition": "TRIGGER_DEFAULT", "partialFill": "DEFAULT_FILL", "price": "1.20000", "stopLossOnFill": { "timeInForce": "GTC", "price": "1.22000" }, "createTime": "2016-10-25T21:07:21.065554321Z", "timeInForce": "GTC", "instrument": "EUR_USD", "state": "PENDING", "units": "-100", "id": "2309", "type": "LIMIT", "positionFill": "POSITION_DEFAULT" } ], "positions": [], "ordersTriggered": [], "ordersCancelled": [], "tradesClosed": [] }, "lastTransactionID": "2309" } } }
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Tests For Scheduler """ import mox from nova.compute import api as compute_api from nova.compute import instance_types from nova.compute import power_state from nova.compute import rpcapi as compute_rpcapi from nova.compute import task_states from nova.compute import utils as compute_utils from nova.compute import vm_states from nova.conductor import api as conductor_api from nova import context from nova import db from nova import exception from nova.image import glance from nova.openstack.common import jsonutils from nova.openstack.common.notifier import api as notifier from nova.openstack.common import rpc from nova.scheduler import driver from nova.scheduler import manager from nova import servicegroup from nova import test from nova.tests import fake_instance_actions from nova.tests.image import fake as fake_image from nova.tests import matchers from nova.tests.scheduler import fakes from nova import utils class SchedulerManagerTestCase(test.TestCase): """Test case for scheduler manager.""" manager_cls = manager.SchedulerManager driver_cls = driver.Scheduler driver_cls_name = 'nova.scheduler.driver.Scheduler' def setUp(self): super(SchedulerManagerTestCase, self).setUp() self.flags(scheduler_driver=self.driver_cls_name) self.stubs.Set(compute_api, 'API', fakes.FakeComputeAPI) self.manager = self.manager_cls() self.context = context.RequestContext('fake_user', 'fake_project') self.topic = 'fake_topic' self.fake_args = (1, 2, 3) self.fake_kwargs = {'cat': 'meow', 'dog': 'woof'} fake_instance_actions.stub_out_action_events(self.stubs) def test_1_correct_init(self): # Correct scheduler driver manager = self.manager self.assertTrue(isinstance(manager.driver, self.driver_cls)) def test_update_service_capabilities(self): service_name = 'fake_service' host = 'fake_host' self.mox.StubOutWithMock(self.manager.driver, 'update_service_capabilities') # Test no capabilities passes empty dictionary self.manager.driver.update_service_capabilities(service_name, host, {}) self.mox.ReplayAll() result = self.manager.update_service_capabilities(self.context, service_name=service_name, host=host, capabilities={}) self.mox.VerifyAll() self.mox.ResetAll() # Test capabilities passes correctly capabilities = {'fake_capability': 'fake_value'} self.manager.driver.update_service_capabilities( service_name, host, capabilities) self.mox.ReplayAll() result = self.manager.update_service_capabilities(self.context, service_name=service_name, host=host, capabilities=capabilities) def test_update_service_multiple_capabilities(self): service_name = 'fake_service' host = 'fake_host' self.mox.StubOutWithMock(self.manager.driver, 'update_service_capabilities') capab1 = {'fake_capability': 'fake_value1'}, capab2 = {'fake_capability': 'fake_value2'}, capab3 = None self.manager.driver.update_service_capabilities( service_name, host, capab1) self.manager.driver.update_service_capabilities( service_name, host, capab2) # None is converted to {} self.manager.driver.update_service_capabilities( service_name, host, {}) self.mox.ReplayAll() self.manager.update_service_capabilities(self.context, service_name=service_name, host=host, capabilities=[capab1, capab2, capab3]) def test_show_host_resources(self): host = 'fake_host' compute_node = {'host': host, 'compute_node': [{'vcpus': 4, 'vcpus_used': 2, 'memory_mb': 1024, 'memory_mb_used': 512, 'local_gb': 1024, 'local_gb_used': 512}]} instances = [{'project_id': 'project1', 'vcpus': 1, 'memory_mb': 128, 'root_gb': 128, 'ephemeral_gb': 0}, {'project_id': 'project1', 'vcpus': 2, 'memory_mb': 256, 'root_gb': 384, 'ephemeral_gb': 0}, {'project_id': 'project2', 'vcpus': 2, 'memory_mb': 256, 'root_gb': 256, 'ephemeral_gb': 0}] self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(db, 'instance_get_all_by_host') db.service_get_by_compute_host(self.context, host).AndReturn( compute_node) db.instance_get_all_by_host(self.context, host).AndReturn(instances) self.mox.ReplayAll() result = self.manager.show_host_resources(self.context, host) expected = {'usage': {'project1': {'memory_mb': 384, 'vcpus': 3, 'root_gb': 512, 'ephemeral_gb': 0}, 'project2': {'memory_mb': 256, 'vcpus': 2, 'root_gb': 256, 'ephemeral_gb': 0}}, 'resource': {'vcpus': 4, 'vcpus_used': 2, 'local_gb': 1024, 'local_gb_used': 512, 'memory_mb': 1024, 'memory_mb_used': 512}} self.assertThat(result, matchers.DictMatches(expected)) def _mox_schedule_method_helper(self, method_name): # Make sure the method exists that we're going to test call def stub_method(*args, **kwargs): pass setattr(self.manager.driver, method_name, stub_method) self.mox.StubOutWithMock(self.manager.driver, method_name) def test_run_instance_exception_puts_instance_in_error_state(self): fake_instance_uuid = 'fake-instance-id' inst = {"vm_state": "", "task_state": ""} self._mox_schedule_method_helper('schedule_run_instance') self.mox.StubOutWithMock(compute_utils, 'add_instance_fault_from_exc') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') request_spec = {'instance_properties': inst, 'instance_uuids': [fake_instance_uuid]} self.manager.driver.schedule_run_instance(self.context, request_spec, None, None, None, None, {}).AndRaise( exception.NoValidHost(reason="")) old, new_ref = db.instance_update_and_get_original(self.context, fake_instance_uuid, {"vm_state": vm_states.ERROR, "task_state": None}).AndReturn((inst, inst)) compute_utils.add_instance_fault_from_exc(self.context, mox.IsA(conductor_api.LocalAPI), new_ref, mox.IsA(exception.NoValidHost), mox.IgnoreArg()) self.mox.ReplayAll() self.manager.run_instance(self.context, request_spec, None, None, None, None, {}) def test_live_migration_schedule_novalidhost(self): inst = {"uuid": "fake-instance-id", "vm_state": vm_states.ACTIVE, "task_state": task_states.MIGRATING, } dest = None block_migration = False disk_over_commit = False self._mox_schedule_method_helper('schedule_live_migration') self.mox.StubOutWithMock(compute_utils, 'add_instance_fault_from_exc') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.manager.driver.schedule_live_migration(self.context, inst, dest, block_migration, disk_over_commit).AndRaise( exception.NoValidHost(reason="")) db.instance_update_and_get_original(self.context, inst["uuid"], {"vm_state": inst['vm_state'], "task_state": None, "expected_task_state": task_states.MIGRATING, }).AndReturn((inst, inst)) compute_utils.add_instance_fault_from_exc(self.context, mox.IsA(conductor_api.LocalAPI), inst, mox.IsA(exception.NoValidHost), mox.IgnoreArg()) self.mox.ReplayAll() self.assertRaises(exception.NoValidHost, self.manager.live_migration, self.context, inst, dest, block_migration, disk_over_commit) def test_live_migration_compute_service_notavailable(self): inst = {"uuid": "fake-instance-id", "vm_state": vm_states.ACTIVE, "task_state": task_states.MIGRATING, } dest = 'fake_host' block_migration = False disk_over_commit = False self._mox_schedule_method_helper('schedule_live_migration') self.mox.StubOutWithMock(compute_utils, 'add_instance_fault_from_exc') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.manager.driver.schedule_live_migration(self.context, inst, dest, block_migration, disk_over_commit).AndRaise( exception.ComputeServiceUnavailable(host="src")) db.instance_update_and_get_original(self.context, inst["uuid"], {"vm_state": inst['vm_state'], "task_state": None, "expected_task_state": task_states.MIGRATING, }).AndReturn((inst, inst)) compute_utils.add_instance_fault_from_exc(self.context, mox.IsA(conductor_api.LocalAPI), inst, mox.IsA(exception.ComputeServiceUnavailable), mox.IgnoreArg()) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.manager.live_migration, self.context, inst, dest, block_migration, disk_over_commit) def test_prep_resize_no_valid_host_back_in_active_state(self): fake_instance_uuid = 'fake-instance-id' fake_instance = {'uuid': fake_instance_uuid} inst = {"vm_state": "", "task_state": ""} self._mox_schedule_method_helper('schedule_prep_resize') self.mox.StubOutWithMock(compute_utils, 'add_instance_fault_from_exc') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') request_spec = {'instance_type': 'fake_type', 'instance_uuids': [fake_instance_uuid], 'instance_properties': {'uuid': fake_instance_uuid}} kwargs = { 'context': self.context, 'image': 'fake_image', 'request_spec': request_spec, 'filter_properties': 'fake_props', 'instance': fake_instance, 'instance_type': 'fake_type', 'reservations': list('fake_res'), } self.manager.driver.schedule_prep_resize(**kwargs).AndRaise( exception.NoValidHost(reason="")) old_ref, new_ref = db.instance_update_and_get_original(self.context, fake_instance_uuid, {"vm_state": vm_states.ACTIVE, "task_state": None}).AndReturn( (inst, inst)) compute_utils.add_instance_fault_from_exc(self.context, mox.IsA(conductor_api.LocalAPI), new_ref, mox.IsA(exception.NoValidHost), mox.IgnoreArg()) self.mox.ReplayAll() self.manager.prep_resize(**kwargs) def test_prep_resize_exception_host_in_error_state_and_raise(self): fake_instance_uuid = 'fake-instance-id' fake_instance = {'uuid': fake_instance_uuid} self._mox_schedule_method_helper('schedule_prep_resize') self.mox.StubOutWithMock(compute_utils, 'add_instance_fault_from_exc') self.mox.StubOutWithMock(db, 'instance_update_and_get_original') request_spec = {'instance_properties': {'uuid': fake_instance_uuid}} kwargs = { 'context': self.context, 'image': 'fake_image', 'request_spec': request_spec, 'filter_properties': 'fake_props', 'instance': fake_instance, 'instance_type': 'fake_type', 'reservations': list('fake_res'), } self.manager.driver.schedule_prep_resize(**kwargs).AndRaise( test.TestingException('something happened')) inst = { "vm_state": "", "task_state": "", } old_ref, new_ref = db.instance_update_and_get_original(self.context, fake_instance_uuid, {"vm_state": vm_states.ERROR, "task_state": None}).AndReturn((inst, inst)) compute_utils.add_instance_fault_from_exc(self.context, mox.IsA(conductor_api.LocalAPI), new_ref, mox.IsA(test.TestingException), mox.IgnoreArg()) self.mox.ReplayAll() self.assertRaises(test.TestingException, self.manager.prep_resize, **kwargs) def test_set_vm_state_and_notify_adds_instance_fault(self): request = {'instance_properties': {'uuid': 'fake-uuid'}} updates = {'vm_state': 'foo'} fake_inst = {'uuid': 'fake-uuid'} self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.mox.StubOutWithMock(db, 'instance_fault_create') self.mox.StubOutWithMock(notifier, 'notify') db.instance_update_and_get_original(self.context, 'fake-uuid', updates).AndReturn((None, fake_inst)) db.instance_fault_create(self.context, mox.IgnoreArg()) notifier.notify(self.context, mox.IgnoreArg(), 'scheduler.foo', notifier.ERROR, mox.IgnoreArg()) self.mox.ReplayAll() self.manager._set_vm_state_and_notify('foo', {'vm_state': 'foo'}, self.context, None, request) class SchedulerTestCase(test.TestCase): """Test case for base scheduler driver class.""" # So we can subclass this test and re-use tests if we need. driver_cls = driver.Scheduler def setUp(self): super(SchedulerTestCase, self).setUp() self.stubs.Set(compute_api, 'API', fakes.FakeComputeAPI) def fake_show(meh, context, id): if id: return {'id': id, 'min_disk': None, 'min_ram': None, 'name': 'fake_name', 'status': 'active', 'properties': {'kernel_id': 'fake_kernel_id', 'ramdisk_id': 'fake_ramdisk_id', 'something_else': 'meow'}} else: raise exception.ImageNotFound(image_id=id) fake_image.stub_out_image_service(self.stubs) self.stubs.Set(fake_image._FakeImageService, 'show', fake_show) self.image_service = glance.get_default_image_service() self.driver = self.driver_cls() self.context = context.RequestContext('fake_user', 'fake_project') self.topic = 'fake_topic' self.servicegroup_api = servicegroup.API() def test_update_service_capabilities(self): service_name = 'fake_service' host = 'fake_host' self.mox.StubOutWithMock(self.driver.host_manager, 'update_service_capabilities') capabilities = {'fake_capability': 'fake_value'} self.driver.host_manager.update_service_capabilities( service_name, host, capabilities) self.mox.ReplayAll() result = self.driver.update_service_capabilities(service_name, host, capabilities) def test_hosts_up(self): service1 = {'host': 'host1'} service2 = {'host': 'host2'} services = [service1, service2] self.mox.StubOutWithMock(db, 'service_get_all_by_topic') self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') db.service_get_all_by_topic(self.context, self.topic).AndReturn(services) self.servicegroup_api.service_is_up(service1).AndReturn(False) self.servicegroup_api.service_is_up(service2).AndReturn(True) self.mox.ReplayAll() result = self.driver.hosts_up(self.context, self.topic) self.assertEqual(result, ['host2']) def _live_migration_instance(self): inst_type = instance_types.get_instance_type(1) # NOTE(danms): we have _got_ to stop doing this! inst_type['memory_mb'] = 1024 sys_meta = utils.dict_to_metadata( instance_types.save_instance_type_info({}, inst_type)) return {'id': 31337, 'uuid': 'fake_uuid', 'name': 'fake-instance', 'host': 'fake_host1', 'power_state': power_state.RUNNING, 'memory_mb': 1024, 'root_gb': 1024, 'ephemeral_gb': 0, 'vm_state': '', 'task_state': '', 'instance_type_id': inst_type['id'], 'image_ref': 'fake-image-ref', 'system_metadata': sys_meta} def test_live_migration_basic(self): # Test basic schedule_live_migration functionality. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(self.driver, '_live_migration_dest_check') self.mox.StubOutWithMock(self.driver, '_live_migration_common_check') self.mox.StubOutWithMock(self.driver.compute_rpcapi, 'check_can_live_migrate_destination') self.mox.StubOutWithMock(self.driver.compute_rpcapi, 'live_migration') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = jsonutils.to_primitive(self._live_migration_instance()) self.driver._live_migration_src_check(self.context, instance) self.driver._live_migration_dest_check(self.context, instance, dest).AndReturn(dest) self.driver._live_migration_common_check(self.context, instance, dest) self.driver.compute_rpcapi.check_can_live_migrate_destination( self.context, instance, dest, block_migration, disk_over_commit).AndReturn({}) self.driver.compute_rpcapi.live_migration(self.context, host=instance['host'], instance=instance, dest=dest, block_migration=block_migration, migrate_data={}) self.mox.ReplayAll() self.driver.schedule_live_migration(self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_all_checks_pass(self): # Test live migration when all checks pass. self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(rpc, 'call') self.mox.StubOutWithMock(self.driver.compute_rpcapi, 'live_migration') dest = 'fake_host2' block_migration = True disk_over_commit = True instance = jsonutils.to_primitive(self._live_migration_instance()) # Source checks db.service_get_by_compute_host(self.context, instance['host']).AndReturn('fake_service2') self.servicegroup_api.service_is_up('fake_service2').AndReturn(True) # Destination checks (compute is up, enough memory, disk) db.service_get_by_compute_host(self.context, dest).AndReturn('fake_service3') self.servicegroup_api.service_is_up('fake_service3').AndReturn(True) # assert_compute_node_has_enough_memory() db.service_get_by_compute_host(self.context, dest).AndReturn( {'compute_node': [{'memory_mb': 2048, 'free_disk_gb': 512, 'local_gb_used': 512, 'free_ram_mb': 1280, 'local_gb': 1024, 'vcpus': 4, 'vcpus_used': 2, 'updated_at': None, 'hypervisor_version': 1}]}) # Common checks (same hypervisor, etc) db.service_get_by_compute_host(self.context, dest).AndReturn( {'compute_node': [{'hypervisor_type': 'xen', 'hypervisor_version': 1}]}) db.service_get_by_compute_host(self.context, instance['host']).AndReturn( {'compute_node': [{'hypervisor_type': 'xen', 'hypervisor_version': 1, 'cpu_info': 'fake_cpu_info'}]}) rpc.call(self.context, "compute.fake_host2", {"method": 'check_can_live_migrate_destination', "args": {'instance': instance, 'block_migration': block_migration, 'disk_over_commit': disk_over_commit}, "version": compute_rpcapi.ComputeAPI.BASE_RPC_API_VERSION}, None).AndReturn({}) self.driver.compute_rpcapi.live_migration(self.context, host=instance['host'], instance=instance, dest=dest, block_migration=block_migration, migrate_data={}) self.mox.ReplayAll() result = self.driver.schedule_live_migration(self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) self.assertEqual(result, None) def test_live_migration_instance_not_running(self): # The instance given by instance_id is not running. dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() instance['power_state'] = power_state.NOSTATE self.assertRaises(exception.InstanceNotRunning, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_compute_src_not_exist(self): # Raise exception when src compute node is does not exist. self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() # Compute down db.service_get_by_compute_host(self.context, instance['host']).AndRaise( exception.ComputeHostNotFound(host='fake')) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_compute_src_not_alive(self): # Raise exception when src compute node is not alive. self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() # Compute down db.service_get_by_compute_host(self.context, instance['host']).AndReturn('fake_service2') self.servicegroup_api.service_is_up('fake_service2').AndReturn(False) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_compute_dest_not_exist(self): # Raise exception when dest compute node does not exist. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() self.driver._live_migration_src_check(self.context, instance) # Compute down db.service_get_by_compute_host(self.context, dest).AndRaise(exception.NotFound()) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_compute_dest_not_alive(self): # Raise exception when dest compute node is not alive. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() self.driver._live_migration_src_check(self.context, instance) db.service_get_by_compute_host(self.context, dest).AndReturn('fake_service3') # Compute is down self.servicegroup_api.service_is_up('fake_service3').AndReturn(False) self.mox.ReplayAll() self.assertRaises(exception.ComputeServiceUnavailable, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_dest_check_service_same_host(self): # Confirms exception raises in case dest and src is same host. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') block_migration = False instance = self._live_migration_instance() # make dest same as src dest = instance['host'] self.driver._live_migration_src_check(self.context, instance) self.mox.ReplayAll() self.assertRaises(exception.UnableToMigrateToSelf, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=False) def test_live_migration_dest_check_service_lack_memory(self): # Confirms exception raises when dest doesn't have enough memory. # Flag needed to make FilterScheduler test hit memory limit since the # default for it is to allow memory overcommit by a factor of 1.5. self.flags(ram_allocation_ratio=1.0) self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') self.mox.StubOutWithMock(servicegroup.API, 'service_is_up') self.mox.StubOutWithMock(self.driver, '_get_compute_info') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() self.driver._live_migration_src_check(self.context, instance) db.service_get_by_compute_host(self.context, dest).AndReturn('fake_service3') self.servicegroup_api.service_is_up('fake_service3').AndReturn(True) self.driver._get_compute_info(self.context, dest).AndReturn( {'memory_mb': 2048, 'free_disk_gb': 512, 'local_gb_used': 512, 'free_ram_mb': 512, 'local_gb': 1024, 'vcpus': 4, 'vcpus_used': 2, 'updated_at': None}) self.mox.ReplayAll() self.assertRaises(exception.MigrationError, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_different_hypervisor_type_raises(self): # Confirm live_migration to hypervisor of different type raises. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(self.driver, '_live_migration_dest_check') self.mox.StubOutWithMock(rpc, 'queue_get_for') self.mox.StubOutWithMock(rpc, 'call') self.mox.StubOutWithMock(rpc, 'cast') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() self.driver._live_migration_src_check(self.context, instance) self.driver._live_migration_dest_check(self.context, instance, dest).AndReturn(dest) db.service_get_by_compute_host(self.context, dest).AndReturn( {'compute_node': [{'hypervisor_type': 'xen', 'hypervisor_version': 1}]}) db.service_get_by_compute_host(self.context, instance['host']).AndReturn( {'compute_node': [{'hypervisor_type': 'not-xen', 'hypervisor_version': 1}]}) self.mox.ReplayAll() self.assertRaises(exception.InvalidHypervisorType, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_dest_hypervisor_version_older_raises(self): # Confirm live migration to older hypervisor raises. self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(self.driver, '_live_migration_dest_check') self.mox.StubOutWithMock(rpc, 'queue_get_for') self.mox.StubOutWithMock(rpc, 'call') self.mox.StubOutWithMock(rpc, 'cast') self.mox.StubOutWithMock(db, 'service_get_by_compute_host') dest = 'fake_host2' block_migration = False disk_over_commit = False instance = self._live_migration_instance() self.driver._live_migration_src_check(self.context, instance) self.driver._live_migration_dest_check(self.context, instance, dest).AndReturn(dest) db.service_get_by_compute_host(self.context, dest).AndReturn( {'compute_node': [{'hypervisor_type': 'xen', 'hypervisor_version': 1}]}) db.service_get_by_compute_host(self.context, instance['host']).AndReturn( {'compute_node': [{'hypervisor_type': 'xen', 'hypervisor_version': 2}]}) self.mox.ReplayAll() self.assertRaises(exception.DestinationHypervisorTooOld, self.driver.schedule_live_migration, self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) def test_live_migration_dest_check_auto_set_host(self): instance = self._live_migration_instance() # Confirm dest is picked by scheduler if not set. self.mox.StubOutWithMock(self.driver, 'select_hosts') self.mox.StubOutWithMock(instance_types, 'extract_instance_type') request_spec = {'instance_properties': instance, 'instance_type': {}, 'instance_uuids': [instance['uuid']], 'image': self.image_service.show(self.context, instance['image_ref']) } ignore_hosts = [instance['host']] filter_properties = {'ignore_hosts': ignore_hosts} instance_types.extract_instance_type(instance).AndReturn({}) self.driver.select_hosts(self.context, request_spec, filter_properties).AndReturn(['fake_host2']) self.mox.ReplayAll() result = self.driver._live_migration_dest_check(self.context, instance, None, ignore_hosts) self.assertEqual('fake_host2', result) def test_live_migration_auto_set_dest(self): instance = self._live_migration_instance() # Confirm scheduler picks target host if none given. self.mox.StubOutWithMock(instance_types, 'extract_instance_type') self.mox.StubOutWithMock(self.driver, '_live_migration_src_check') self.mox.StubOutWithMock(self.driver, 'select_hosts') self.mox.StubOutWithMock(self.driver, '_live_migration_common_check') self.mox.StubOutWithMock(rpc, 'call') self.mox.StubOutWithMock(self.driver.compute_rpcapi, 'live_migration') dest = None block_migration = False disk_over_commit = False request_spec = {'instance_properties': instance, 'instance_type': {}, 'instance_uuids': [instance['uuid']], 'image': self.image_service.show(self.context, instance['image_ref']) } self.driver._live_migration_src_check(self.context, instance) instance_types.extract_instance_type( instance).MultipleTimes().AndReturn({}) # First selected host raises exception.InvalidHypervisorType self.driver.select_hosts(self.context, request_spec, {'ignore_hosts': [instance['host']]}).AndReturn(['fake_host2']) self.driver._live_migration_common_check(self.context, instance, 'fake_host2').AndRaise(exception.InvalidHypervisorType()) # Second selected host raises exception.InvalidCPUInfo self.driver.select_hosts(self.context, request_spec, {'ignore_hosts': [instance['host'], 'fake_host2']}).AndReturn(['fake_host3']) self.driver._live_migration_common_check(self.context, instance, 'fake_host3') rpc.call(self.context, "compute.fake_host3", {"method": 'check_can_live_migrate_destination', "args": {'instance': instance, 'block_migration': block_migration, 'disk_over_commit': disk_over_commit}, "version": compute_rpcapi.ComputeAPI.BASE_RPC_API_VERSION}, None).AndRaise(exception.InvalidCPUInfo(reason="")) # Third selected host pass all checks self.driver.select_hosts(self.context, request_spec, {'ignore_hosts': [instance['host'], 'fake_host2', 'fake_host3']}).AndReturn(['fake_host4']) self.driver._live_migration_common_check(self.context, instance, 'fake_host4') rpc.call(self.context, "compute.fake_host4", {"method": 'check_can_live_migrate_destination', "args": {'instance': instance, 'block_migration': block_migration, 'disk_over_commit': disk_over_commit}, "version": compute_rpcapi.ComputeAPI.BASE_RPC_API_VERSION}, None).AndReturn({}) self.driver.compute_rpcapi.live_migration(self.context, host=instance['host'], instance=instance, dest='fake_host4', block_migration=block_migration, migrate_data={}) self.mox.ReplayAll() result = self.driver.schedule_live_migration(self.context, instance=instance, dest=dest, block_migration=block_migration, disk_over_commit=disk_over_commit) self.assertEqual(result, None) def test_handle_schedule_error_adds_instance_fault(self): instance = {'uuid': 'fake-uuid'} self.mox.StubOutWithMock(db, 'instance_update_and_get_original') self.mox.StubOutWithMock(db, 'instance_fault_create') self.mox.StubOutWithMock(notifier, 'notify') db.instance_update_and_get_original(self.context, instance['uuid'], mox.IgnoreArg()).AndReturn( (None, instance)) db.instance_fault_create(self.context, mox.IgnoreArg()) notifier.notify(self.context, mox.IgnoreArg(), 'scheduler.run_instance', notifier.ERROR, mox.IgnoreArg()) self.mox.ReplayAll() driver.handle_schedule_error(self.context, exception.NoValidHost('test'), instance['uuid'], {}) class SchedulerDriverBaseTestCase(SchedulerTestCase): """Test cases for base scheduler driver class methods that can't will fail if the driver is changed""" def test_unimplemented_schedule_run_instance(self): fake_args = (1, 2, 3) fake_kwargs = {'cat': 'meow'} fake_request_spec = {'instance_properties': {'uuid': 'uuid'}} self.assertRaises(NotImplementedError, self.driver.schedule_run_instance, self.context, fake_request_spec, None, None, None, None, None) def test_unimplemented_schedule_prep_resize(self): fake_args = (1, 2, 3) fake_kwargs = {'cat': 'meow'} fake_request_spec = {'instance_properties': {'uuid': 'uuid'}} self.assertRaises(NotImplementedError, self.driver.schedule_prep_resize, self.context, {}, fake_request_spec, {}, {}, {}, None) class SchedulerDriverModuleTestCase(test.TestCase): """Test case for scheduler driver module methods.""" def setUp(self): super(SchedulerDriverModuleTestCase, self).setUp() self.context = context.RequestContext('fake_user', 'fake_project') def test_encode_instance(self): instance = {'id': 31337, 'test_arg': 'meow'} result = driver.encode_instance(instance, True) expected = {'id': instance['id'], '_is_precooked': False} self.assertThat(result, matchers.DictMatches(expected)) # Orig dict not changed self.assertNotEqual(result, instance) result = driver.encode_instance(instance, False) expected = {} expected.update(instance) expected['_is_precooked'] = True self.assertThat(result, matchers.DictMatches(expected)) # Orig dict not changed self.assertNotEqual(result, instance)
#!/usr/bin/python # Copyright 2013-present Barefoot Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # Topology with two switches and two hosts. Uses SAI thrift APIs to configure # the switches. Set 'DOCKER_IMAGE=bm-switchsai' when creating the docker image. # # 172.16.101.0/24 172.16.10.0/24 172.16.102.0./24 # h1 ------------------- sw1 ------------------ sw2------- -------------h2 # .5 .1 .1 .2 .1 .5 ############################################################################## from mininet.net import Mininet, VERSION from mininet.log import setLogLevel, info from mininet.cli import CLI from distutils.version import StrictVersion from p4_mininet import P4DockerSwitch import os import sys import time lib_path = os.path.abspath(os.path.join('..', 'targets', 'switch', 'tests', 'pd_thrift')) sys.path.append(lib_path) import switch_sai_thrift.switch_sai_rpc as switch_sai_rpc from switch_sai_thrift.ttypes import * from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol def open_connection(port): transport = TSocket.TSocket('localhost', port) transport = TTransport.TBufferedTransport(transport) protocol = TBinaryProtocol.TBinaryProtocol(transport) client = switch_sai_rpc.Client(protocol) transport.open() return transport, client def close_connection(transport): transport.close() def create_virtual_router(client, v4_enabled, v6_enabled): #v4 enabled vr_attribute1_value = sai_thrift_attribute_value_t(booldata=v4_enabled) vr_attribute1 = sai_thrift_attribute_t(id=0, value=vr_attribute1_value) #v6 enabled vr_attribute2_value = sai_thrift_attribute_value_t(booldata=v6_enabled) vr_attribute2 = sai_thrift_attribute_t(id=1, value=vr_attribute1_value) vr_attr_list = [vr_attribute1, vr_attribute2] vr_id = client.sai_thrift_create_virtual_router(thrift_attr_list=vr_attr_list) return vr_id def create_router_interface(client, vr_id, is_port, port_id, vlan_id, v4_enabled, v6_enabled): #vrf attribute rif_attribute1_value = sai_thrift_attribute_value_t(oid=vr_id) rif_attribute1 = sai_thrift_attribute_t(id=0, value=rif_attribute1_value) if is_port: #port type and port id rif_attribute2_value = sai_thrift_attribute_value_t(u8=0) rif_attribute2 = sai_thrift_attribute_t(id=1, value=rif_attribute2_value) rif_attribute3_value = sai_thrift_attribute_value_t(oid=port_id) rif_attribute3 = sai_thrift_attribute_t(id=2, value=rif_attribute3_value) else: #vlan type and vlan id rif_attribute2_value = sai_thrift_attribute_value_t(u8=1) rif_attribute2 = sai_thrift_attribute_t(id=1, value=rif_attribute2_value) rif_attribute3_value = sai_thrift_attribute_value_t(u16=vlan_id) rif_attribute3 = sai_thrift_attribute_t(id=3, value=rif_attribute3_value) #v4_enabled rif_attribute4_value = sai_thrift_attribute_value_t(booldata=v4_enabled) rif_attribute4 = sai_thrift_attribute_t(id=5, value=rif_attribute4_value) #v6_enabled rif_attribute5_value = sai_thrift_attribute_value_t(booldata=v6_enabled) rif_attribute5 = sai_thrift_attribute_t(id=6, value=rif_attribute5_value) rif_attr_list = [rif_attribute1, rif_attribute2, rif_attribute3, rif_attribute4, rif_attribute5] rif_id = client.sai_thrift_create_router_interface(rif_attr_list) return rif_id def create_route(client, vr_id, addr_family, ip_addr, ip_mask, nhop): if addr_family == 0: addr = sai_thrift_ip_t(ip4=ip_addr) mask = sai_thrift_ip_t(ip4=ip_mask) ip_prefix = sai_thrift_ip_prefix_t(addr_family=0, addr=addr, mask=mask) else: addr = sai_thrift_ip_t(ip6=ip_addr) mask = sai_thrift_ip_t(ip6=ip_mask) ip_prefix = sai_thrift_ip_prefix_t(addr_family=1, addr=addr, mask=mask) route_attribute1_value = sai_thrift_attribute_value_t(oid=nhop) route_attribute1 = sai_thrift_attribute_t(id=2, value=route_attribute1_value) route = sai_thrift_unicast_route_entry_t(vr_id, ip_prefix) route_attr_list = [route_attribute1] client.sai_thrift_create_route(thrift_unicast_route_entry=route, thrift_attr_list=route_attr_list) def create_nhop(client, addr_family, ip_addr, rif_id): if addr_family == 0: addr = sai_thrift_ip_t(ip4=ip_addr) ipaddr = sai_thrift_ip_address_t(addr_family=0, addr=addr) else: addr = sai_thrift_ip_t(ip6=ip_addr) ipaddr = sai_thrift_ip_address_t(addr_family=1, addr=addr) nhop_attribute1_value = sai_thrift_attribute_value_t(ipaddr=ipaddr) nhop_attribute1 = sai_thrift_attribute_t(id=1, value=nhop_attribute1_value) nhop_attribute2_value = sai_thrift_attribute_value_t(oid=rif_id) nhop_attribute2 = sai_thrift_attribute_t(id=2, value=nhop_attribute2_value) nhop_attr_list = [nhop_attribute1, nhop_attribute2] nhop = client.sai_thrift_create_next_hop(thrift_attr_list=nhop_attr_list) return nhop def create_neighbor(client, addr_family, rif_id, ip_addr, dmac): if addr_family == 0: addr = sai_thrift_ip_t(ip4=ip_addr) ipaddr = sai_thrift_ip_address_t(addr_family=0, addr=addr) else: addr = sai_thrift_ip_t(ip6=ip_addr) ipaddr = sai_thrift_ip_address_t(addr_family=1, addr=addr) neighbor_attribute1_value = sai_thrift_attribute_value_t(mac=dmac) neighbor_attribute1 = sai_thrift_attribute_t(id=0, value=neighbor_attribute1_value) neighbor_attr_list = [neighbor_attribute1] neighbor_entry = sai_thrift_neighbor_entry_t(rif_id=rif_id, ip_address=ipaddr) client.sai_thrift_create_neighbor_entry(neighbor_entry, neighbor_attr_list) def cfg_switch1(): port_list = [] transport, client = open_connection(25000) switch_attr_list = client.sai_thrift_get_switch_attribute() attr_list = switch_attr_list.attr_list for attr in attr_list: if attr.id == 0: print 'max ports: ', attr.value.u32 elif attr.id == 1: for x in attr.value.objlist.object_id_list: port_list.append(x) else: print 'unknown switch attribute' port1 = port_list[0] port2 = port_list[1] vr = create_virtual_router(client, v4_enabled=1, v6_enabled=1) attr_value = sai_thrift_attribute_value_t(mac='00:01:00:00:00:03') attr = sai_thrift_attribute_t(id=17, value=attr_value) client.sai_thrift_set_switch_attribute(attr) rif1 = create_router_interface(client, vr, 1, port1, 0, v4_enabled=1, v6_enabled=1) attr_value = sai_thrift_attribute_value_t(mac='00:01:00:00:00:04') attr = sai_thrift_attribute_t(id=17, value=attr_value) client.sai_thrift_set_switch_attribute(attr) rif2 = create_router_interface(client, vr, 1, port2, 0, v4_enabled=1, v6_enabled=1) nhop1 = create_nhop(client, 0, '172.16.101.5', rif1) create_neighbor(client, 0, rif1, '172.16.101.5', '00:03:00:00:00:01') nhop2 = create_nhop(client, 0, '172.16.10.2', rif2) create_neighbor(client, 0, rif2, '172.16.10.2', '00:02:00:00:00:04') create_route(client, vr, 0, '172.16.101.5', '255.255.255.255', nhop1) create_route(client, vr, 0, '172.16.10.2', '255.255.255.255', nhop2) create_route(client, vr, 0, '172.16.102.0', '255.255.255.0', nhop2) close_connection(transport) def cfg_switch2(): port_list = [] transport, client = open_connection(25001) switch_attr_list = client.sai_thrift_get_switch_attribute() attr_list = switch_attr_list.attr_list for attr in attr_list: if attr.id == 0: print 'max ports: ', attr.value.u32 elif attr.id == 1: for x in attr.value.objlist.object_id_list: port_list.append(x) else: print 'unknown switch attribute' port1 = port_list[0] port2 = port_list[1] vr = create_virtual_router(client, v4_enabled=1, v6_enabled=1) attr_value = sai_thrift_attribute_value_t(mac='00:02:00:00:00:03') attr = sai_thrift_attribute_t(id=17, value=attr_value) client.sai_thrift_set_switch_attribute(attr) rif1 = create_router_interface(client, vr, 1, port1, 0, v4_enabled=1, v6_enabled=1) attr_value = sai_thrift_attribute_value_t(mac='00:02:00:00:00:04') attr = sai_thrift_attribute_t(id=17, value=attr_value) client.sai_thrift_set_switch_attribute(attr) rif2 = create_router_interface(client, vr, 1, port2, 0, v4_enabled=1, v6_enabled=1) nhop1 = create_nhop(client, 0, '172.16.102.5', rif1) create_neighbor(client, 0, rif1, '172.16.102.5', '00:04:00:00:00:01') nhop2 = create_nhop(client, 0, '172.16.10.1', rif2) create_neighbor(client, 0, rif2, '172.16.10.1', '00:01:00:00:00:04') create_route(client, vr, 0, '172.16.102.5', '255.255.255.255', nhop1) create_route(client, vr, 0, '172.16.10.1', '255.255.255.255', nhop2) create_route(client, vr, 0, '172.16.101.0', '255.255.255.0', nhop2) close_connection(transport) def main(): net = Mininet( controller = None ) # add hosts h1 = net.addHost( 'h1', ip = '172.16.101.5/24', mac = '00:03:00:00:00:01' ) h2 = net.addHost( 'h2', ip = '172.16.102.5/24', mac = '00:04:00:00:00:01' ) # add switch 1 sw1 = net.addSwitch( 'sw1', target_name = "p4dockerswitch", cls = P4DockerSwitch, sai_port = 25000, pcap_dump = True ) # add switch 2 sw2 = net.addSwitch( 'sw2', target_name = "p4dockerswitch", cls = P4DockerSwitch, sai_port = 25001, pcap_dump = True ) # add links if StrictVersion(VERSION) <= StrictVersion('2.2.0') : net.addLink( sw1, h1, port1 = 1 ) net.addLink( sw1, sw2, port1 = 2, port2 = 2 ) net.addLink( sw2, h2, port1 = 1 ) else: net.addLink( sw1, h1, port1 = 1, fast=False ) net.addLink( sw1, sw2, port1 = 2, port2 = 2, fast=False ) net.addLink( sw2, h2, port1 = 1, fast=False ) net.start() print 'Waiting 10 seconds for switches to intialize...' time.sleep(10) # configure hosts h1.setARP( ip = '172.16.101.1', mac = '00:01:00:00:00:03' ) h2.setARP( ip = '172.16.102.1', mac = '00:02:00:00:00:03' ) h1.setDefaultRoute( 'via 172.16.101.1' ) h2.setDefaultRoute( 'via 172.16.102.1' ) # configure switches cfg_switch1() cfg_switch2() CLI( net ) net.stop() if __name__ == '__main__': setLogLevel( 'info' ) main()
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Extensions supporting Federation.""" from keystone.common import controller from keystone.common import dependency from keystone.common import wsgi from keystone import config from keystone.contrib.federation import utils from keystone import exception CONF = config.CONF @dependency.requires('federation_api') class IdentityProvider(controller.V3Controller): """Identity Provider representation. Two new class parameters: - _mutable_parameters - set of parameters that can be changed by users. Usually used by cls.check_immutable_params() - _public_parameters - set of parameters that are exposed to the user. Usually used by cls.filter_params() """ collection_name = 'identity_providers' member_name = 'identity_provider' _mutable_parameters = frozenset(['description', 'enabled']) _public_parameters = frozenset(['id', 'enabled', 'description', 'links']) @classmethod def check_immutable_params(cls, ref, keys=None): """Raise exception when disallowed parameter is stored in the keys. Check whether the ref dictionary representing a request has only mutable parameters included. If not, raise an exception. This method checks only root-level keys from a ref dictionary. :param ref: a dictionary representing deserialized request to be stored :param keys: a set with mutable parameters. If None, use default class attribute - _mutable_parameters :raises exception.ImmutableAttributeError """ if keys is None: keys = cls._mutable_parameters ref_keys = set(ref.keys()) blocked_keys = ref_keys.difference(keys) if not blocked_keys: #No immutable parameters changed return exception_args = {'target': cls.__name__, 'attribute': blocked_keys.pop()} raise exception.ImmutableAttributeError(**exception_args) @classmethod def filter_params(cls, ref, keys=None): """Remove unspecified parameters from the dictionary. This function removes unspecified parameters from the dictionary. See check_immutable_parameters for corresponding function that raises exceptions. This method checks only root-level keys from a ref dictionary. :param ref: a dictionary representing deserialized response to be serialized :param keys: a set of attribute names, that are allowed in the request. If None, use the class attribute _public_parameters """ if keys is None: keys = cls._public_parameters ref_keys = set(ref.keys()) blocked_keys = ref_keys - keys for blocked_param in blocked_keys: del ref[blocked_param] return ref @classmethod def base_url(cls, path=None): """Construct a path and pass it to V3Controller.base_url method.""" path = '/OS-FEDERATION/' + cls.collection_name return controller.V3Controller.base_url(path=path) @classmethod def _add_related_links(cls, ref): """Add URLs for entities related with Identity Provider. Add URLs pointing to: - protocols tied to the Identity Provider """ ref.setdefault('links', {}) base_path = ref['links'].get('self') if base_path is None: base_path = '/'.join([IdentityProvider.base_url(), ref['id']]) for name in ['protocols']: ref['links'][name] = '/'.join([base_path, name]) @classmethod def _add_self_referential_link(cls, ref): id = ref.get('id') self_path = '/'.join([cls.base_url(), id]) ref.setdefault('links', {}) ref['links']['self'] = self_path @classmethod def wrap_member(cls, context, ref): cls._add_self_referential_link(ref) cls._add_related_links(ref) return {cls.member_name: ref} #TODO(marek-denis): Implement, when mapping engine is ready def _delete_tokens_issued_by_idp(self, idp_id): """Delete tokens created upon authentication from an IdP After the IdP is deregistered, users authenticating via such IdP should no longer be allowed to use federated services. Thus, delete all the tokens issued upon authentication from IdP with idp_id id :param idp_id: id of Identity Provider for which related tokens should be removed. """ raise exception.NotImplemented() @controller.protected() def create_identity_provider(self, context, idp_id, identity_provider): mutable_params = set(['description', 'enabled']) public_params = set(['id', 'description', 'enabled']) identity_provider = self._normalize_dict(identity_provider) identity_provider.setdefault('enabled', False) IdentityProvider.check_immutable_params(identity_provider, keys=mutable_params) idp_ref = self.federation_api.create_idp(idp_id, identity_provider) idp_ref = IdentityProvider.filter_params(idp_ref, keys=public_params) response = IdentityProvider.wrap_member(context, idp_ref) return wsgi.render_response(body=response, status=('201', 'Created')) @controller.protected() def list_identity_providers(self, context): ref = self.federation_api.list_idps() ref = [self.filter_params(x) for x in ref] return IdentityProvider.wrap_collection(context, ref) @controller.protected() def get_identity_provider(self, context, idp_id): ref = self.federation_api.get_idp(idp_id) ref = self.filter_params(ref) return IdentityProvider.wrap_member(context, ref) @controller.protected() def delete_identity_provider(self, context, idp_id): self.federation_api.delete_idp(idp_id) @controller.protected() def update_identity_provider(self, context, idp_id, identity_provider): identity_provider = self._normalize_dict(identity_provider) IdentityProvider.check_immutable_params(identity_provider) idp_ref = self.federation_api.update_idp(idp_id, identity_provider) return IdentityProvider.wrap_member(context, idp_ref) @dependency.requires('federation_api') class FederationProtocol(IdentityProvider): """A federation protocol representation. See IdentityProvider docstring for explanation on _mutable_parameters and _public_parameters class attributes. """ collection_name = 'protocols' member_name = 'protocol' _public_parameters = frozenset(['id', 'mapping_id', 'links']) _mutable_parameters = set(['mapping_id']) @classmethod def _add_self_referential_link(cls, ref): """Add 'links' entry to the response dictionary. Calls IdentityProvider.base_url() class method, as it constructs proper URL along with the 'identity providers' part included. :param ref: response dictionary """ ref.setdefault('links', {}) base_path = ref['links'].get('identity_provider') if base_path is None: base_path = [IdentityProvider.base_url(), ref['idp_id']] base_path = '/'.join(base_path) self_path = [base_path, 'protocols', ref['id']] self_path = '/'.join(self_path) ref['links']['self'] = self_path @classmethod def _add_related_links(cls, ref): """Add new entries to the 'links' subdictionary in the response. Adds 'identity_provider' key with URL pointing to related identity provider as a value. :param ref: response dictionary """ ref.setdefault('links', {}) base_path = '/'.join([IdentityProvider.base_url(), ref['idp_id']]) ref['links']['identity_provider'] = base_path @classmethod def wrap_member(cls, context, ref): cls._add_related_links(ref) cls._add_self_referential_link(ref) ref = cls.filter_params(ref) return {cls.member_name: ref} @controller.protected() def create_protocol(self, context, idp_id, protocol_id, protocol): ref = self._normalize_dict(protocol) keys = self._mutable_parameters.copy() FederationProtocol.check_immutable_params(ref, keys=keys) ref = self.federation_api.create_protocol(idp_id, protocol_id, ref) response = FederationProtocol.wrap_member(context, ref) return wsgi.render_response(body=response, status=('201', 'Created')) @controller.protected() def update_protocol(self, context, idp_id, protocol_id, protocol): ref = self._normalize_dict(protocol) FederationProtocol.check_immutable_params(ref) ref = self.federation_api.update_protocol(idp_id, protocol_id, protocol) return FederationProtocol.wrap_member(context, ref) @controller.protected() def get_protocol(self, context, idp_id, protocol_id): ref = self.federation_api.get_protocol(idp_id, protocol_id) return FederationProtocol.wrap_member(context, ref) @controller.protected() def list_protocols(self, context, idp_id): protocols_ref = self.federation_api.list_protocols(idp_id) protocols = list(protocols_ref) return FederationProtocol.wrap_collection(context, protocols) @controller.protected() def delete_protocol(self, context, idp_id, protocol_id): self.federation_api.delete_protocol(idp_id, protocol_id) @dependency.requires('federation_api') class MappingController(controller.V3Controller): collection_name = 'mappings' member_name = 'mapping' @classmethod def base_url(cls, path=None): path = '/OS-FEDERATION/' + cls.collection_name return controller.V3Controller.base_url(path) @controller.protected() def create_mapping(self, context, mapping_id, mapping): ref = self._normalize_dict(mapping) utils.validate_mapping_structure(ref) mapping_ref = self.federation_api.create_mapping(mapping_id, ref) response = MappingController.wrap_member(context, mapping_ref) return wsgi.render_response(body=response, status=('201', 'Created')) @controller.protected() def list_mappings(self, context): ref = self.federation_api.list_mappings() return MappingController.wrap_collection(context, ref) @controller.protected() def get_mapping(self, context, mapping_id): ref = self.federation_api.get_mapping(mapping_id) return MappingController.wrap_member(context, ref) @controller.protected() def delete_mapping(self, context, mapping_id): self.federation_api.delete_mapping(mapping_id) @controller.protected() def update_mapping(self, context, mapping_id, mapping): mapping = self._normalize_dict(mapping) utils.validate_mapping_structure(mapping) mapping_ref = self.federation_api.update_mapping(mapping_id, mapping) return MappingController.wrap_member(context, mapping_ref)
#!/usr/bin/python # ---------------------------------------------------------------------------- # modify the runtime template for prebuilt engine # # Copyright 2014 (C) zhangbin # # License: MIT # ---------------------------------------------------------------------------- ''' modify the runtime template for prebuilt engine ''' import os import sys LUA_TEMPLATE_PATH = "templates/lua-template-runtime" # # WIN32_LINK_CPP_LIBS = [ # "libbox2d", "libcocos2d", "libSpine" # ] # # WIN32_LINK_LUA_LIBS = [ "libluacocos2d", "libsimulator" ] # # WIN32_LINK_JS_LIBS = [ "libjscocos2d" ] XCODE_LINK_CPP_LIBS = [ "libcocos2d" ] XCODE_LINK_LUA_LIBS = [ "libluacocos2d", "libsimulator" ] XCODE_LINK_JS_LIBS = [ "libjscocos2d", "libsimulator" ] class TemplateModifier(object): def __init__(self, engine_path, libs_path, version, is_for_package): if os.path.isabs(engine_path): self.engine_path = engine_path else: self.engine_path = os.path.abspath(engine_path) if os.path.isabs(libs_path): self.libs_path = libs_path else: self.libs_path = os.path.abspath(libs_path) self.version = version self.is_for_package = is_for_package def modify_xcode_proj(self, proj_file_path, language): proj_modifier_path = os.path.join(os.path.dirname(__file__), 'proj_modifier') sys.path.append(proj_modifier_path) import modify_pbxproj pbx_proj = modify_pbxproj.XcodeProject.Load(proj_file_path) replace_engine_strs = [] if language == "cpp": targetName = "HelloCpp" link_libs = XCODE_LINK_CPP_LIBS replace_engine_strs.append("$(SRCROOT)/../cocos2d") elif language == "lua": targetName = "HelloLua" link_libs = XCODE_LINK_CPP_LIBS + XCODE_LINK_LUA_LIBS replace_engine_strs.append("$(SRCROOT)/../../cocos2d-x") else: targetName = "HelloJavascript" link_libs = XCODE_LINK_CPP_LIBS + XCODE_LINK_JS_LIBS replace_engine_strs.append("$(SRCROOT)/../../cocos2d-x") replace_engine_strs.append("../../cocos2d-x") ios_target_name = "%s-mobile" % targetName mac_target_name = "%s-desktop" % targetName # remove the target dependencies pbx_proj.remove_proj_reference("cocos2d_libs.xcodeproj") if language == "lua": pbx_proj.remove_proj_reference("cocos2d_lua_bindings.xcodeproj") pbx_proj.remove_proj_reference("libsimulator.xcodeproj") if language == "js": pbx_proj.remove_proj_reference("cocos2d_js_bindings.xcodeproj") pbx_proj.remove_proj_reference("libsimulator.xcodeproj") pbx_proj.remove_file_by_path("../../cocos2d-x/cocos/scripting/js-bindings/script") common_group = pbx_proj.get_or_create_group("JS Common") pbx_proj.add_file_if_doesnt_exist("../../../script", common_group, tree="<group>") # pbx_proj.remove_group_by_name("JS Common") # add libraries search path libs_path = self.libs_path if self.is_for_package: libs_path = "/Applications/Cocos/frameworks/%s/prebuilt" % self.version ios_template_prebuilt_path = os.path.join(libs_path, "ios") pbx_proj.add_library_search_paths(ios_template_prebuilt_path, target_name=ios_target_name, recursive=False) mac_template_prebuilt_path = os.path.join(libs_path, "mac") pbx_proj.add_library_search_paths(mac_template_prebuilt_path, target_name=mac_target_name, recursive=False) # add libraries for targets ios_lib_group = pbx_proj.get_or_create_group("ios-libs") mac_lib_group = pbx_proj.get_or_create_group("mac-libs") for lib in link_libs: ios_lib_name = "%s iOS.a" % lib mac_lib_name = "%s Mac.a" % lib ios_lib_path = os.path.join(ios_template_prebuilt_path, ios_lib_name) pbx_proj.add_file_if_doesnt_exist(ios_lib_path, ios_lib_group, tree="<group>", target=ios_target_name) mac_lib_path = os.path.join(mac_template_prebuilt_path, mac_lib_name) pbx_proj.add_file_if_doesnt_exist(mac_lib_path, mac_lib_group, tree="<group>", target=mac_target_name) # add studio resources to the xcode project of cpp template if language == "cpp": pbx_proj.remove_file_by_path("CloseNormal.png") pbx_proj.remove_file_by_path("CloseSelected.png") pbx_proj.remove_file_by_path("HelloWorld.png") pbx_proj.remove_file_by_path("Marker Felt.ttf") pbx_proj.remove_file_by_path("fonts") pbx_proj.remove_file_by_path("res") res_group = pbx_proj.get_or_create_group("Resources") pbx_proj.add_file_if_doesnt_exist("../Resources/res", res_group, tree="<group>") if pbx_proj.modified: print("Save xcode project") pbx_proj.save() # modify the engine path f = open(proj_file_path) file_content = f.read() f.close() install_path = self.engine_path if self.is_for_package: install_path = "/Applications/Cocos/frameworks/%s" % self.version for old_engine_path in replace_engine_strs: file_content = file_content.replace(old_engine_path, install_path) f = open(proj_file_path, "w") f.write(file_content) f.close() def modify_vs_proj(self, proj_file_path, language): proj_modifier_path = os.path.join(os.path.dirname(__file__), "proj_modifier") sys.path.append(proj_modifier_path) import modify_vcxproj vcx_proj = modify_vcxproj.VCXProject(proj_file_path) # remove the project references vcx_proj.remove_proj_reference() install_path = self.engine_path if self.is_for_package: install_path = "$(COCOS_FRAMEWORKS)\\%s\\" % self.version copy_libs_cmd = "if not exist \"$(OutDir)\" mkdir \"$(OutDir)\"\n" \ "xcopy /Y /Q \"$(EngineRoot)\\prebuilt\\win32\\*.*\" \"$(OutDir)\"\n" vcx_proj.set_event_command('PreLinkEvent', copy_libs_cmd, 'debug') vcx_proj.set_event_command('PreLinkEvent', copy_libs_cmd, 'release') if language == "js": custom_step_event = vcx_proj.get_event_command('CustomBuildStep') custom_step_event.replace("$(ProjectDir)..\\..\\cocos2d-x\\cocos\\scripting\\js-bindings\\script", "$(ProjectDir)..\\..\\..\\script") vcx_proj.set_event_command("CustomBuildStep", custom_step_event, create_new=False) vcx_proj.remove_predefine_macro("_DEBUG", 'debug') # # copy_libs_cmd = "if not exist \"$(OutDir)\" mkdir \"$(OutDir)\"\n" \ # "xcopy /Y /Q \"$(EngineRoot)tools\\framework-compile\\libs\\windows\\*.*\" \"$(OutDir)\"\n" # if self.is_for_package: # copy_libs_cmd = "if not exist \"$(OutDir)\" mkdir \"$(OutDir)\"\n" \ # "xcopy /Y /Q \"%s\\prebuilt\\win32\\*.*\" \"$(OutDir)\"\n" % install_path # if language == "cpp": # copy_libs_cmd = copy_libs_cmd + "xcopy \"$(ProjectDir)..\\Resources\" \"$(OutDir)\" /D /E /I /F /Y\n" # # vcx_proj.set_event_command("PreLinkEvent", copy_libs_cmd) # # if language == "lua": # link_cmd = "libcmt.lib;%(IgnoreSpecificDefaultLibraries)" # vcx_proj.set_item("Link", "IgnoreSpecificDefaultLibraries", link_cmd) # # debug_prebuild = vcx_proj.get_event_command("PreBuildEvent", "debug") # debug_prebuild = debug_prebuild.replace("$(ProjectDir)..\\..\\cocos2d-x\\cocos\\scripting\\js-bindings\\script", # "$(ProjectDir)..\\..\\..\\script") # vcx_proj.set_event_command("PreBuildEvent", debug_prebuild, "debug") # # release_prebuild = vcx_proj.get_event_command("PreBuildEvent", "release") # release_prebuild = release_prebuild.replace("$(ProjectDir)..\\..\\cocos2d-x\\cocos\\scripting\\js-bindings\\script", # "$(ProjectDir)..\\..\\..\\script") # vcx_proj.set_event_command("PreBuildEvent", release_prebuild, "release") vcx_proj.save() replace_strs = [] if self.is_for_package: replace_strs.append("$(EngineRoot)") if language == "cpp": # link_libs = WIN32_LINK_CPP_LIBS replace_strs.append("$(ProjectDir)..\\cocos2d") replace_strs.append("..\\cocos2d") elif language == "lua": # link_libs = WIN32_LINK_CPP_LIBS + WIN32_LINK_LUA_LIBS replace_strs.append("$(ProjectDir)..\\..\\cocos2d-x") replace_strs.append("..\\..\\cocos2d-x") else: # link_libs = WIN32_LINK_CPP_LIBS + WIN32_LINK_JS_LIBS replace_strs.append("$(ProjectDir)..\\..\\cocos2d-x") replace_strs.append("..\\..\\cocos2d-x") # modify the Runtime.cpp vcx_proj_path = os.path.dirname(proj_file_path) cpp_path = os.path.join(vcx_proj_path, os.path.pardir, "Classes/runtime/Runtime.cpp") if os.path.exists(cpp_path): f = open(cpp_path) file_content = f.read() f.close() file_content = file_content.replace("#ifndef _DEBUG", "#ifndef COCOS2D_DEBUG") f = open(cpp_path, "w") f.write(file_content) f.close() f = open(proj_file_path) file_content = f.read() f.close() if language == "lua": # replace the "lua\lua;" to "lua\luajit;" file_content = file_content.replace("lua\\lua;", "lua\\luajit\\include;") file_content = file_content.replace("MultiThreadedDebugDLL", "MultiThreadedDLL") for str in replace_strs: file_content = file_content.replace(str, install_path) file_content = file_content.replace('%s\\' % install_path, install_path) f = open(proj_file_path, "w") f.write(file_content) f.close()
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from xml.dom import minidom from writers import gpo_editor_writer, xml_formatted_writer class AdmxElementType: '''The different types of ADMX elements that can be used to display a policy. This is related to the 'type' field in policy_templates.json, but there isn't a perfect 1:1 mapping. This class is also used when writing ADML files, to ensure that the ADML generated from policy_templates.json is compatible with the ADMX generated from policy_templates.json""" ''' MAIN = 1 STRING = 2 MULTI_STRING = 3 INT = 4 ENUM = 5 LIST = 6 GROUP = 7 @staticmethod def GetType(policy, allow_multi_strings=False): '''Returns the ADMX element type that should be used for the given policy. This logic is shared between the ADMX writer and the ADML writer, to ensure that the ADMX and ADML generated from policy_tempates.json are compatible. Args: policy: A dict describing the policy, as found in policy_templates.json. allow_multi_strings: If true, the use of multi-line textbox elements is allowed, so this function will sometimes return MULTI_STRING. If false it falls back to single-line textboxes instead by returning STRING. Returns: One of the enum values of AdmxElementType. Raises: Exception: If policy['type'] is not recognized. ''' policy_type = policy['type'] policy_example = policy.get('example_value') # TODO(olsen): Some policies are defined in policy_templates.json as type # string, but the string is actually a JSON object. We should change the # schema so they are 'dict' or similar, but until then, we use this # heuristic to decide whether they are actually JSON and so could benefit # from being displayed to the user as a multi-line string: if (policy_type == 'string' and allow_multi_strings and policy_example is not None and policy_example.strip().startswith('{')): return AdmxElementType.MULTI_STRING admx_element_type = AdmxElementType._POLICY_TYPE_MAP.get(policy_type) if admx_element_type is None: raise Exception('Unknown policy type %s.' % policy_type) if (admx_element_type == AdmxElementType.MULTI_STRING and not allow_multi_strings): return AdmxElementType.STRING return admx_element_type AdmxElementType._POLICY_TYPE_MAP = { 'main': AdmxElementType.MAIN, 'string': AdmxElementType.STRING, 'dict': AdmxElementType.MULTI_STRING, 'external': AdmxElementType.MULTI_STRING, 'int': AdmxElementType.INT, 'int-enum': AdmxElementType.ENUM, 'string-enum': AdmxElementType.ENUM, 'list': AdmxElementType.LIST, 'string-enum-list': AdmxElementType.LIST, 'group': AdmxElementType.GROUP } def GetWriter(config): '''Factory method for instanciating the ADMXWriter. Every Writer needs a GetWriter method because the TemplateFormatter uses this method to instantiate a Writer. ''' return ADMXWriter(['win', 'win7'], config) class ADMXWriter(xml_formatted_writer.XMLFormattedWriter, gpo_editor_writer.GpoEditorWriter): '''Class for generating an ADMX policy template. It is used by the PolicyTemplateGenerator to write the admx file. ''' # DOM root node of the generated ADMX document. _doc = None # The ADMX "policies" element that contains the ADMX "policy" elements that # are generated. _active_policies_elem = None def Init(self): # Shortcut to platform-specific ADMX/ADM specific configuration. assert len(self.platforms) <= 2 self.winconfig = self.config['win_config'][self.platforms[0]] def _AdmlString(self, name): '''Creates a reference to the named string in an ADML file. Args: name: Name of the referenced ADML string. ''' name = name.replace('.', '_') return '$(string.' + name + ')' def _AdmlStringExplain(self, name): '''Creates a reference to the named explanation string in an ADML file. Args: name: Name of the referenced ADML explanation. ''' name = name.replace('.', '_') return '$(string.' + name + '_Explain)' def _AdmlPresentation(self, name): '''Creates a reference to the named presentation element in an ADML file. Args: name: Name of the referenced ADML presentation element. ''' return '$(presentation.' + name + ')' def _AddPolicyNamespaces(self, parent, prefix, namespace): '''Generates the ADMX "policyNamespace" element and adds the elements to the passed parent element. The namespace of the generated ADMX document is define via the ADMX "target" element. Used namespaces are declared with an ADMX "using" element. ADMX "target" and "using" elements are children of the ADMX "policyNamespace" element. Args: parent: The parent node to which all generated elements are added. prefix: A logical name that can be used in the generated ADMX document to refere to this namespace. namespace: Namespace of the generated ADMX document. ''' policy_namespaces_elem = self.AddElement(parent, 'policyNamespaces') attributes = { 'prefix': prefix, 'namespace': namespace, } self.AddElement(policy_namespaces_elem, 'target', attributes) if 'admx_using_namespaces' in self.config: prefix_namespace_map = self.config['admx_using_namespaces'] for prefix in prefix_namespace_map: attributes = { 'prefix': prefix, 'namespace': prefix_namespace_map[prefix], } self.AddElement(policy_namespaces_elem, 'using', attributes) attributes = { 'prefix': 'windows', 'namespace': 'Microsoft.Policies.Windows', } self.AddElement(policy_namespaces_elem, 'using', attributes) def _AddCategory(self, parent, name, display_name, parent_category_name=None): '''Adds an ADMX category element to the passed parent node. The following snippet shows an example of a category element where "chromium" is the value of the parameter name: <category displayName="$(string.chromium)" name="chromium"/> Each parent node can have only one category with a given name. Adding the same category again with the same attributes is ignored, but adding it again with different attributes is an error. Args: parent: The parent node to which all generated elements are added. name: Name of the category. display_name: Display name of the category. parent_category_name: Name of the parent category. Defaults to None. ''' existing = filter(lambda e: e.getAttribute('name') == name, parent.getElementsByTagName('category')) if existing: assert len(existing) == 1 assert existing[0].getAttribute('name') == name assert existing[0].getAttribute('displayName') == display_name return attributes = { 'name': name, 'displayName': display_name, } category_elem = self.AddElement(parent, 'category', attributes) if parent_category_name: attributes = {'ref': parent_category_name} self.AddElement(category_elem, 'parentCategory', attributes) def _AddCategories(self, categories): '''Generates the ADMX "categories" element and adds it to the categories main node. The "categories" element defines the category for the policies defined in this ADMX document. Here is an example of an ADMX "categories" element: <categories> <category displayName="$(string.googlechrome)" name="googlechrome"> <parentCategory ref="Google:Cat_Google"/> </category> </categories> Args: categories_path: The categories path e.g. ['google', 'googlechrome']. For each level in the path a "category" element will be generated, unless the level contains a ':', in which case it is treated as external references and no element is generated. Except for the root level, each level refers to its parent. Since the root level category has no parent it does not require a parent reference. ''' category_name = None for category in categories: parent_category_name = category_name category_name = category if (":" not in category_name): self._AddCategory(self._categories_elem, category_name, self._AdmlString(category_name), parent_category_name) def _AddSupportedOn(self, parent, supported_os_list): '''Generates the "supportedOn" ADMX element and adds it to the passed parent node. The "supportedOn" element contains information about supported Windows OS versions. The following code snippet contains an example of a "supportedOn" element: <supportedOn> <definitions> <definition name="$(supported_os)" displayName="$(string.$(supported_os))"/> </definitions> ... </supportedOn> Args: parent: The parent element to which all generated elements are added. supported_os: List with all supported Win OSes. ''' supported_on_elem = self.AddElement(parent, 'supportedOn') definitions_elem = self.AddElement(supported_on_elem, 'definitions') for supported_os in supported_os_list: attributes = { 'name': supported_os, 'displayName': self._AdmlString(supported_os) } self.AddElement(definitions_elem, 'definition', attributes) def _AddStringPolicy(self, parent, name, id=None): '''Generates ADMX elements for a String-Policy and adds them to the passed parent node. ''' attributes = { 'id': id or name, 'valueName': name, 'maxLength': '1000000', } self.AddElement(parent, 'text', attributes) def _AddMultiStringPolicy(self, parent, name): '''Generates ADMX elements for a multi-line String-Policy and adds them to the passed parent node. ''' # We currently also show a single-line textbox - see http://crbug/829328 self._AddStringPolicy(parent, name, id=name + '_Legacy') attributes = { 'id': name, 'valueName': name, 'maxLength': '1000000', } self.AddElement(parent, 'multiText', attributes) def _AddIntPolicy(self, parent, policy): '''Generates ADMX elements for an Int-Policy and adds them to the passed parent node. ''' #default max value for an integer max = 2000000000 min = 0 if self.PolicyHasRestrictions(policy): schema = policy['schema'] if 'minimum' in schema and schema['minimum'] >= 0: min = schema['minimum'] if 'maximum' in schema and schema['maximum'] >= 0: max = schema['maximum'] assert type(min) == int assert type(max) == int attributes = { 'id': policy['name'], 'valueName': policy['name'], 'maxValue': str(max), 'minValue': str(min), } self.AddElement(parent, 'decimal', attributes) def _AddEnumPolicy(self, parent, policy): '''Generates ADMX elements for an Enum-Policy and adds them to the passed parent element. ''' name = policy['name'] items = policy['items'] attributes = { 'id': name, 'valueName': name, } enum_elem = self.AddElement(parent, 'enum', attributes) for item in items: attributes = {'displayName': self._AdmlString(name + "_" + item['name'])} item_elem = self.AddElement(enum_elem, 'item', attributes) value_elem = self.AddElement(item_elem, 'value') value_string = str(item['value']) if policy['type'] == 'int-enum': self.AddElement(value_elem, 'decimal', {'value': value_string}) else: self.AddElement(value_elem, 'string', {}, value_string) def _AddListPolicy(self, parent, key, name): '''Generates ADMX XML elements for a List-Policy and adds them to the passed parent element. ''' attributes = { # The ID must be in sync with ID of the corresponding element in the # ADML file. 'id': name + 'Desc', 'valuePrefix': '', 'key': key + '\\' + name, } self.AddElement(parent, 'list', attributes) def _AddMainPolicy(self, parent): '''Generates ADMX elements for a Main-Policy amd adds them to the passed parent element. ''' enabled_value_elem = self.AddElement(parent, 'enabledValue') self.AddElement(enabled_value_elem, 'decimal', {'value': '1'}) disabled_value_elem = self.AddElement(parent, 'disabledValue') self.AddElement(disabled_value_elem, 'decimal', {'value': '0'}) def PolicyHasRestrictions(self, policy): if 'schema' in policy: return any(keyword in policy['schema'] \ for keyword in ['minimum', 'maximum']) return False def _GetElements(self, policy_group_elem): '''Returns the ADMX "elements" child from an ADMX "policy" element. If the "policy" element has no "elements" child yet, a new child is created. Args: policy_group_elem: The ADMX "policy" element from which the child element "elements" is returned. Raises: Exception: The policy_group_elem does not contain a ADMX "policy" element. ''' if policy_group_elem.tagName != 'policy': raise Exception('Expected a "policy" element but got a "%s" element' % policy_group_elem.tagName) elements_list = policy_group_elem.getElementsByTagName('elements') if len(elements_list) == 0: return self.AddElement(policy_group_elem, 'elements') elif len(elements_list) == 1: return elements_list[0] else: raise Exception('There is supposed to be only one "elements" node but' ' there are %s.' % str(len(elements_list))) def _GetAdmxElementType(self, policy): '''Returns the ADMX element type for a particular Policy.''' return AdmxElementType.GetType(policy, allow_multi_strings=False) def _WritePolicy(self, policy, name, key, parent): '''Generates ADMX elements for a Policy.''' policies_elem = self._active_policies_elem policy_name = policy['name'] attributes = { 'name': name, 'class': self.GetClass(policy), 'displayName': self._AdmlString(policy_name), 'explainText': self._AdmlStringExplain(policy_name), 'presentation': self._AdmlPresentation(policy_name), 'key': key, } is_win7_only = self.IsPolicyOnWin7Only(policy) supported_key = ('win_supported_os_win7' if is_win7_only else 'win_supported_os') supported_on_text = self.config[supported_key] # Store the current "policy" AMDX element in self for later use by the # WritePolicy method. policy_elem = self.AddElement(policies_elem, 'policy', attributes) self.AddElement(policy_elem, 'parentCategory', {'ref': parent}) self.AddElement(policy_elem, 'supportedOn', {'ref': supported_on_text}) element_type = self._GetAdmxElementType(policy) if element_type == AdmxElementType.MAIN: self.AddAttribute(policy_elem, 'valueName', policy_name) self._AddMainPolicy(policy_elem) elif element_type == AdmxElementType.STRING: parent = self._GetElements(policy_elem) self._AddStringPolicy(parent, policy_name) elif element_type == AdmxElementType.MULTI_STRING: parent = self._GetElements(policy_elem) self._AddMultiStringPolicy(parent, policy_name) elif element_type == AdmxElementType.INT: parent = self._GetElements(policy_elem) self._AddIntPolicy(parent, policy) elif element_type == AdmxElementType.ENUM: parent = self._GetElements(policy_elem) self._AddEnumPolicy(parent, policy) elif element_type == AdmxElementType.LIST: parent = self._GetElements(policy_elem) self._AddListPolicy(parent, key, policy_name) elif element_type == AdmxElementType.GROUP: pass else: raise Exception('Unknown element type %s.' % element_type) def WritePolicy(self, policy): if self.CanBeMandatory(policy): self._WritePolicy(policy, policy['name'], self.winconfig['reg_mandatory_key_name'], self._active_mandatory_policy_group_name) def WriteRecommendedPolicy(self, policy): self._WritePolicy(policy, policy['name'] + '_recommended', self.winconfig['reg_recommended_key_name'], self._active_recommended_policy_group_name) def _BeginPolicyGroup(self, group, name, parent): '''Generates ADMX elements for a Policy-Group. ''' attributes = { 'name': name, 'displayName': self._AdmlString(group['name'] + '_group'), } category_elem = self.AddElement(self._categories_elem, 'category', attributes) attributes = {'ref': parent} self.AddElement(category_elem, 'parentCategory', attributes) def BeginPolicyGroup(self, group): self._BeginPolicyGroup(group, group['name'], self.winconfig['mandatory_category_path'][-1]) self._active_mandatory_policy_group_name = group['name'] def EndPolicyGroup(self): self._active_mandatory_policy_group_name = \ self.winconfig['mandatory_category_path'][-1] def BeginRecommendedPolicyGroup(self, group): self._BeginPolicyGroup(group, group['name'] + '_recommended', self.winconfig['recommended_category_path'][-1]) self._active_recommended_policy_group_name = group['name'] + '_recommended' def EndRecommendedPolicyGroup(self): self._active_recommended_policy_group_name = \ self.winconfig['recommended_category_path'][-1] def BeginTemplate(self): '''Generates the skeleton of the ADMX template. An ADMX template contains an ADMX "PolicyDefinitions" element with four child nodes: "policies" "policyNamspaces", "resources", "supportedOn" and "categories" ''' dom_impl = minidom.getDOMImplementation('') self._doc = dom_impl.createDocument(None, 'policyDefinitions', None) if self._GetChromiumVersionString() is not None: self.AddComment(self._doc.documentElement, self.config['build'] + \ ' version: ' + self._GetChromiumVersionString()) policy_definitions_elem = self._doc.documentElement policy_definitions_elem.attributes['revision'] = '1.0' policy_definitions_elem.attributes['schemaVersion'] = '1.0' self._AddPolicyNamespaces(policy_definitions_elem, self.config['admx_prefix'], self.winconfig['namespace']) self.AddElement(policy_definitions_elem, 'resources', {'minRequiredRevision': '1.0'}) self._AddSupportedOn( policy_definitions_elem, [self.config['win_supported_os'], self.config['win_supported_os_win7']]) self._categories_elem = self.AddElement(policy_definitions_elem, 'categories') self._AddCategories(self.winconfig['mandatory_category_path']) self._AddCategories(self.winconfig['recommended_category_path']) self._active_policies_elem = self.AddElement(policy_definitions_elem, 'policies') self._active_mandatory_policy_group_name = \ self.winconfig['mandatory_category_path'][-1] self._active_recommended_policy_group_name = \ self.winconfig['recommended_category_path'][-1] def GetTemplateText(self): return self.ToPrettyXml(self._doc) def GetClass(self, policy): return 'Both'
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import pytest import subprocess import time import ray from ray.utils import _random_string from ray.tests.utils import (run_and_get_output, run_string_as_driver, run_string_as_driver_nonblocking) def test_error_isolation(call_ray_start): redis_address = call_ray_start # Connect a driver to the Ray cluster. ray.init(redis_address=redis_address) # There shouldn't be any errors yet. assert len(ray.errors()) == 0 error_string1 = "error_string1" error_string2 = "error_string2" @ray.remote def f(): raise Exception(error_string1) # Run a remote function that throws an error. with pytest.raises(Exception): ray.get(f.remote()) # Wait for the error to appear in Redis. while len(ray.errors()) != 1: time.sleep(0.1) print("Waiting for error to appear.") # Make sure we got the error. assert len(ray.errors()) == 1 assert error_string1 in ray.errors()[0]["message"] # Start another driver and make sure that it does not receive this # error. Make the other driver throw an error, and make sure it # receives that error. driver_script = """ import ray import time ray.init(redis_address="{}") time.sleep(1) assert len(ray.errors()) == 0 @ray.remote def f(): raise Exception("{}") try: ray.get(f.remote()) except Exception as e: pass while len(ray.errors()) != 1: print(len(ray.errors())) time.sleep(0.1) assert len(ray.errors()) == 1 assert "{}" in ray.errors()[0]["message"] print("success") """.format(redis_address, error_string2, error_string2) out = run_string_as_driver(driver_script) # Make sure the other driver succeeded. assert "success" in out # Make sure that the other error message doesn't show up for this # driver. assert len(ray.errors()) == 1 assert error_string1 in ray.errors()[0]["message"] def test_remote_function_isolation(call_ray_start): # This test will run multiple remote functions with the same names in # two different drivers. Connect a driver to the Ray cluster. redis_address = call_ray_start ray.init(redis_address=redis_address) # Start another driver and make sure that it can define and call its # own commands with the same names. driver_script = """ import ray import time ray.init(redis_address="{}") @ray.remote def f(): return 3 @ray.remote def g(x, y): return 4 for _ in range(10000): result = ray.get([f.remote(), g.remote(0, 0)]) assert result == [3, 4] print("success") """.format(redis_address) out = run_string_as_driver(driver_script) @ray.remote def f(): return 1 @ray.remote def g(x): return 2 for _ in range(10000): result = ray.get([f.remote(), g.remote(0)]) assert result == [1, 2] # Make sure the other driver succeeded. assert "success" in out def test_driver_exiting_quickly(call_ray_start): # This test will create some drivers that submit some tasks and then # exit without waiting for the tasks to complete. redis_address = call_ray_start ray.init(redis_address=redis_address) # Define a driver that creates an actor and exits. driver_script1 = """ import ray ray.init(redis_address="{}") @ray.remote class Foo(object): def __init__(self): pass Foo.remote() print("success") """.format(redis_address) # Define a driver that creates some tasks and exits. driver_script2 = """ import ray ray.init(redis_address="{}") @ray.remote def f(): return 1 f.remote() print("success") """.format(redis_address) # Create some drivers and let them exit and make sure everything is # still alive. for _ in range(3): out = run_string_as_driver(driver_script1) # Make sure the first driver ran to completion. assert "success" in out out = run_string_as_driver(driver_script2) # Make sure the first driver ran to completion. assert "success" in out def test_receive_late_worker_logs(): # Make sure that log messages from tasks appear in the stdout even if the # script exits quickly. log_message = "some helpful debugging message" # Define a driver that creates a task that prints something, ensures that # the task runs, and then exits. driver_script = """ import ray import random import time log_message = "{}" @ray.remote class Actor(object): def log(self): print(log_message) @ray.remote def f(): print(log_message) ray.init(num_cpus=2) a = Actor.remote() ray.get([a.log.remote(), f.remote()]) ray.get([a.log.remote(), f.remote()]) """.format(log_message) for _ in range(2): out = run_string_as_driver(driver_script) assert out.count(log_message) == 4 @pytest.mark.parametrize( "call_ray_start", ["ray start --head --num-cpus=1 --num-gpus=1"], indirect=True) def test_drivers_release_resources(call_ray_start): redis_address = call_ray_start # Define a driver that creates an actor and exits. driver_script1 = """ import time import ray ray.init(redis_address="{}") @ray.remote def f(duration): time.sleep(duration) @ray.remote(num_gpus=1) def g(duration): time.sleep(duration) @ray.remote(num_gpus=1) class Foo(object): def __init__(self): pass # Make sure some resources are available for us to run tasks. ray.get(f.remote(0)) ray.get(g.remote(0)) # Start a bunch of actors and tasks that use resources. These should all be # cleaned up when this driver exits. foos = [Foo.remote() for _ in range(100)] [f.remote(10 ** 6) for _ in range(100)] print("success") """.format(redis_address) driver_script2 = (driver_script1 + "import sys\nsys.stdout.flush()\ntime.sleep(10 ** 6)\n") def wait_for_success_output(process_handle, timeout=10): # Wait until the process prints "success" and then return. start_time = time.time() while time.time() - start_time < timeout: output_line = ray.utils.decode( process_handle.stdout.readline()).strip() print(output_line) if output_line == "success": return raise Exception("Timed out waiting for process to print success.") # Make sure we can run this driver repeatedly, which means that resources # are getting released in between. for _ in range(5): out = run_string_as_driver(driver_script1) # Make sure the first driver ran to completion. assert "success" in out # Also make sure that this works when the driver exits ungracefully. process_handle = run_string_as_driver_nonblocking(driver_script2) wait_for_success_output(process_handle) # Kill the process ungracefully. process_handle.kill() def test_calling_start_ray_head(): # Test that we can call start-ray.sh with various command line # parameters. TODO(rkn): This test only tests the --head code path. We # should also test the non-head node code path. # Test starting Ray with no arguments. run_and_get_output(["ray", "start", "--head"]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with a redis port specified. run_and_get_output(["ray", "start", "--head", "--redis-port", "6379"]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with a node IP address specified. run_and_get_output( ["ray", "start", "--head", "--node-ip-address", "127.0.0.1"]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with the object manager and node manager ports # specified. run_and_get_output([ "ray", "start", "--head", "--object-manager-port", "12345", "--node-manager-port", "54321" ]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with the number of CPUs specified. run_and_get_output(["ray", "start", "--head", "--num-cpus", "2"]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with the number of GPUs specified. run_and_get_output(["ray", "start", "--head", "--num-gpus", "100"]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with the max redis clients specified. run_and_get_output( ["ray", "start", "--head", "--redis-max-clients", "100"]) subprocess.Popen(["ray", "stop"]).wait() if "RAY_USE_NEW_GCS" not in os.environ: # Test starting Ray with redis shard ports specified. run_and_get_output([ "ray", "start", "--head", "--redis-shard-ports", "6380,6381,6382" ]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with all arguments specified. run_and_get_output([ "ray", "start", "--head", "--redis-port", "6379", "--redis-shard-ports", "6380,6381,6382", "--object-manager-port", "12345", "--num-cpus", "2", "--num-gpus", "0", "--redis-max-clients", "100", "--resources", "{\"Custom\": 1}" ]) subprocess.Popen(["ray", "stop"]).wait() # Test starting Ray with invalid arguments. with pytest.raises(Exception): run_and_get_output( ["ray", "start", "--head", "--redis-address", "127.0.0.1:6379"]) subprocess.Popen(["ray", "stop"]).wait() @pytest.mark.parametrize( "call_ray_start", [ "ray start --head --num-cpus=1 " + "--node-ip-address=localhost --redis-port=6379" ], indirect=True) def test_using_hostnames(call_ray_start): ray.init(node_ip_address="localhost", redis_address="localhost:6379") @ray.remote def f(): return 1 assert ray.get(f.remote()) == 1 def test_connecting_in_local_case(ray_start_regular): address_info = ray_start_regular # Define a driver that just connects to Redis. driver_script = """ import ray ray.init(redis_address="{}") print("success") """.format(address_info["redis_address"]) out = run_string_as_driver(driver_script) # Make sure the other driver succeeded. assert "success" in out def test_run_driver_twice(ray_start_regular): # We used to have issue 2165 and 2288: # https://github.com/ray-project/ray/issues/2165 # https://github.com/ray-project/ray/issues/2288 # both complain that driver will hang when run for the second time. # This test is used to verify the fix for above issue, it will run the # same driver for twice and verify whether both of them succeed. address_info = ray_start_regular driver_script = """ import ray import ray.tune as tune import os import time def train_func(config, reporter): # add a reporter arg for i in range(2): time.sleep(0.1) reporter(timesteps_total=i, mean_accuracy=i+97) # report metrics os.environ["TUNE_RESUME_PROMPT_OFF"] = "True" ray.init(redis_address="{}") ray.tune.register_trainable("train_func", train_func) tune.run_experiments({{ "my_experiment": {{ "run": "train_func", "stop": {{"mean_accuracy": 99}}, "config": {{ "layer1": {{ "class_name": tune.grid_search(["a"]), "config": {{"lr": tune.grid_search([1, 2])}} }}, }}, "local_dir": os.path.expanduser("~/tmp") }} }}) print("success") """.format(address_info["redis_address"]) for i in range(2): out = run_string_as_driver(driver_script) assert "success" in out def test_driver_exiting_when_worker_blocked(call_ray_start): # This test will create some drivers that submit some tasks and then # exit without waiting for the tasks to complete. redis_address = call_ray_start ray.init(redis_address=redis_address) # Define a driver that creates two tasks, one that runs forever and the # other blocked on the first. driver_script = """ import time import ray ray.init(redis_address="{}") @ray.remote def f(): time.sleep(10**6) @ray.remote def g(): ray.get(f.remote()) g.remote() time.sleep(1) print("success") """.format(redis_address) # Create some drivers and let them exit and make sure everything is # still alive. for _ in range(3): out = run_string_as_driver(driver_script) # Make sure the first driver ran to completion. assert "success" in out nonexistent_id_bytes = _random_string() nonexistent_id_hex = ray.utils.binary_to_hex(nonexistent_id_bytes) # Define a driver that creates one task that depends on a nonexistent # object. This task will be queued as waiting to execute. driver_script = """ import time import ray ray.init(redis_address="{}") @ray.remote def g(x): return g.remote(ray.ObjectID(ray.utils.hex_to_binary("{}"))) time.sleep(1) print("success") """.format(redis_address, nonexistent_id_hex) # Create some drivers and let them exit and make sure everything is # still alive. for _ in range(3): out = run_string_as_driver(driver_script) # Simulate the nonexistent dependency becoming available. ray.worker.global_worker.put_object( ray.ObjectID(nonexistent_id_bytes), None) # Make sure the first driver ran to completion. assert "success" in out @ray.remote def f(): return 1 # Make sure we can still talk with the raylet. ray.get(f.remote())
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SparseReshape.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test class SparseReshapeTest(test.TestCase): def _SparseTensorPlaceholder(self): return sparse_tensor.SparseTensor( array_ops.placeholder(dtypes.int64), array_ops.placeholder(dtypes.float64), array_ops.placeholder(dtypes.int64)) def _SparseTensorValue_5x6(self): ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]).astype(np.int64) val = np.array([0, 10, 13, 14, 32, 33]).astype(np.float64) shape = np.array([5, 6]).astype(np.int64) return sparse_tensor.SparseTensorValue(ind, val, shape) def _SparseTensorValue_2x3x4(self): ind = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 2], [1, 0, 3], [1, 1, 1], [1, 1, 3], [1, 2, 2]]) val = np.array([1, 10, 12, 103, 111, 113, 122]) shape = np.array([2, 3, 4]) return sparse_tensor.SparseTensorValue(ind, val, shape) def testStaticShapeInfoPreserved(self): sp_input = sparse_tensor.SparseTensor.from_value( self._SparseTensorValue_5x6()) self.assertAllEqual((5, 6), sp_input.get_shape()) sp_output = sparse_ops.sparse_reshape(sp_input, shape=(1, 5, 2, 3)) self.assertAllEqual((1, 5, 2, 3), sp_output.get_shape()) def testSameShape(self): with self.test_session(use_gpu=False) as sess: input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(input_val, [5, 6]) output_val = sess.run(sp_output) self.assertAllEqual(output_val.indices, input_val.indices) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, input_val.dense_shape) def testFeedSameShape(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [5, 6]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, input_val.indices) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, input_val.dense_shape) def testWorksWellWithTfShape(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() shape = array_ops.shape(sp_input) # tf.shape generates int32 output sp_output = sparse_ops.sparse_reshape(sp_input, shape) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, input_val.indices) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, input_val.dense_shape) def testFeedSameShapeWithInferredDim(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [-1, 6]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, input_val.indices) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, input_val.dense_shape) def testFeedNewShapeSameRank(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [3, 10]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 0], [0, 6], [0, 9], [1, 0], [2, 0], [2, 1]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [3, 10]) def testFeedNewShapeSameRankWithInferredDim(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [3, -1]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 0], [0, 6], [0, 9], [1, 0], [2, 0], [2, 1]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [3, 10]) def testUpRank(self): with self.test_session(use_gpu=False) as sess: input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(input_val, [2, 3, 5]) output_val = sess.run(sp_output) self.assertAllEqual(output_val.indices, np.array([[0, 0, 0], [0, 1, 1], [0, 1, 4], [0, 2, 0], [1, 1, 0], [1, 1, 1]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [2, 3, 5]) def testFeedUpRank(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [2, 3, 5]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 0, 0], [0, 1, 1], [0, 1, 4], [0, 2, 0], [1, 1, 0], [1, 1, 1]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [2, 3, 5]) def testFeedUpRankWithInferredDim(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [2, -1, 5]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 0, 0], [0, 1, 1], [0, 1, 4], [0, 2, 0], [1, 1, 0], [1, 1, 1]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [2, 3, 5]) def testFeedDownRank(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_2x3x4() sp_output = sparse_ops.sparse_reshape(sp_input, [6, 4]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 1], [1, 0], [1, 2], [3, 3], [4, 1], [4, 3], [5, 2]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [6, 4]) def testFeedDownRankWithInferredDim(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_2x3x4() sp_output = sparse_ops.sparse_reshape(sp_input, [6, -1]) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, np.array([[0, 1], [1, 0], [1, 2], [3, 3], [4, 1], [4, 3], [5, 2]])) self.assertAllEqual(output_val.values, input_val.values) self.assertAllEqual(output_val.dense_shape, [6, 4]) def testFeedMultipleInferredDims(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [4, -1, -1]) with self.assertRaisesOpError("only one output dimension may be -1"): sess.run(sp_output, {sp_input: input_val}) def testProvideStaticallyMismatchedSizes(self): input_val = self._SparseTensorValue_5x6() sp_input = sparse_tensor.SparseTensor.from_value(input_val) with self.assertRaisesRegexp(ValueError, "Cannot reshape"): sparse_ops.sparse_reshape(sp_input, [4, 7]) def testFeedMismatchedSizes(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [4, 7]) with self.assertRaisesOpError( "Input to reshape is a tensor with 30 dense values"): sess.run(sp_output, {sp_input: input_val}) def testFeedMismatchedSizesWithInferredDim(self): with self.test_session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input_val = self._SparseTensorValue_5x6() sp_output = sparse_ops.sparse_reshape(sp_input, [4, -1]) with self.assertRaisesOpError("requested shape requires a multiple"): sess.run(sp_output, {sp_input: input_val}) def testFeedPartialShapes(self): with self.test_session(use_gpu=False): # Incorporate new rank into shape information if known sp_input = self._SparseTensorPlaceholder() sp_output = sparse_ops.sparse_reshape(sp_input, [2, 3, 5]) self.assertListEqual(sp_output.indices.get_shape().as_list(), [None, 3]) self.assertListEqual(sp_output.dense_shape.get_shape().as_list(), [3]) # Incorporate known shape information about input indices in output # indices sp_input = self._SparseTensorPlaceholder() sp_input.indices.set_shape([5, None]) sp_output = sparse_ops.sparse_reshape(sp_input, [2, 3, 5]) self.assertListEqual(sp_output.indices.get_shape().as_list(), [5, 3]) self.assertListEqual(sp_output.dense_shape.get_shape().as_list(), [3]) # Even if new_shape has no shape information, we know the ranks of # output indices and shape sp_input = self._SparseTensorPlaceholder() sp_input.indices.set_shape([5, None]) new_shape = array_ops.placeholder(dtypes.int64) sp_output = sparse_ops.sparse_reshape(sp_input, new_shape) self.assertListEqual(sp_output.indices.get_shape().as_list(), [5, None]) self.assertListEqual(sp_output.dense_shape.get_shape().as_list(), [None]) def testFeedDenseReshapeSemantics(self): with self.test_session(use_gpu=False) as sess: # Compute a random rank-5 initial shape and new shape, randomly sparsify # it, and check that the output of SparseReshape has the same semantics # as a dense reshape. factors = np.array([2] * 4 + [3] * 4 + [5] * 4) # 810k total elements orig_rank = np.random.randint(2, 7) orig_map = np.random.randint(orig_rank, size=factors.shape) orig_shape = [np.prod(factors[orig_map == d]) for d in range(orig_rank)] new_rank = np.random.randint(2, 7) new_map = np.random.randint(new_rank, size=factors.shape) new_shape = [np.prod(factors[new_map == d]) for d in range(new_rank)] orig_dense = np.random.uniform(size=orig_shape) orig_indices = np.transpose(np.nonzero(orig_dense < 0.5)) orig_values = orig_dense[orig_dense < 0.5] new_dense = np.reshape(orig_dense, new_shape) new_indices = np.transpose(np.nonzero(new_dense < 0.5)) new_values = new_dense[new_dense < 0.5] sp_input = self._SparseTensorPlaceholder() input_val = sparse_tensor.SparseTensorValue(orig_indices, orig_values, orig_shape) sp_output = sparse_ops.sparse_reshape(sp_input, new_shape) output_val = sess.run(sp_output, {sp_input: input_val}) self.assertAllEqual(output_val.indices, new_indices) self.assertAllEqual(output_val.values, new_values) self.assertAllEqual(output_val.dense_shape, new_shape) if __name__ == "__main__": test.main()
# Copyright 2012 Vaibhav Bajpai # Copyright 2009 Shikhar Bhushan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import getpass import os import re import six import sys import socket import threading from binascii import hexlify try: import selectors except ImportError: import selectors2 as selectors from ncclient.capabilities import Capabilities from ncclient.logging_ import SessionLoggerAdapter import paramiko from ncclient.transport.errors import AuthenticationError, SessionCloseError, SSHError, SSHUnknownHostError, NetconfFramingError from ncclient.transport.session import Session from ncclient.transport.session import NetconfBase import logging logger = logging.getLogger("ncclient.transport.ssh") PORT_NETCONF_DEFAULT = 830 PORT_SSH_DEFAULT = 22 BUF_SIZE = 4096 # v1.0: RFC 4742 MSG_DELIM = "]]>]]>" MSG_DELIM_LEN = len(MSG_DELIM) # v1.1: RFC 6242 END_DELIM = '\n##\n' TICK = 0.1 # # Define delimiters for chunks and messages for netconf 1.1 chunk enoding. # When matched: # # * result.group(0) will contain whole matched string # * result.group(1) will contain the digit string for a chunk # * result.group(2) will be defined if '##' found # RE_NC11_DELIM = re.compile(br'\n(?:#([0-9]+)|(##))\n') def default_unknown_host_cb(host, fingerprint): """An unknown host callback returns `True` if it finds the key acceptable, and `False` if not. This default callback always returns `False`, which would lead to :meth:`connect` raising a :exc:`SSHUnknownHost` exception. Supply another valid callback if you need to verify the host key programmatically. *host* is the hostname that needs to be verified *fingerprint* is a hex string representing the host key fingerprint, colon-delimited e.g. `"4b:69:6c:72:6f:79:20:77:61:73:20:68:65:72:65:21"` """ return False def _colonify(fp): fp = fp.decode('UTF-8') finga = fp[:2] for idx in range(2, len(fp), 2): finga += ":" + fp[idx:idx+2] return finga if sys.version < '3': def textify(buf): return buf else: def textify(buf): return buf.decode('UTF-8') if sys.version < '3': from six import StringIO else: from io import BytesIO as StringIO class SSHSession(Session): "Implements a :rfc:`4742` NETCONF session over SSH." def __init__(self, device_handler): capabilities = Capabilities(device_handler.get_capabilities()) Session.__init__(self, capabilities) self._host = None self._host_keys = paramiko.HostKeys() self._transport = None self._connected = False self._channel = None self._channel_id = None self._channel_name = None self._buffer = StringIO() # parsing-related, see _parse() self._device_handler = device_handler self._parsing_state10 = 0 self._parsing_pos10 = 0 self._parsing_pos11 = 0 self._parsing_state11 = 0 self._expchunksize = 0 self._curchunksize = 0 self._inendpos = 0 self._size_num_list = [] self._message_list = [] self._closing = threading.Event() self.logger = SessionLoggerAdapter(logger, {'session': self}) def _dispatch_message(self, raw): self.logger.info("Received:\n%s", raw) return super(SSHSession, self)._dispatch_message(raw) def _parse(self): "Messages ae delimited by MSG_DELIM. The buffer could have grown by a maximum of BUF_SIZE bytes everytime this method is called. Retains state across method calls and if a byte has been read it will not be considered again." return self._parse10() def _parse10(self): """Messages are delimited by MSG_DELIM. The buffer could have grown by a maximum of BUF_SIZE bytes everytime this method is called. Retains state across method calls and if a chunk has been read it will not be considered again.""" self.logger.debug("parsing netconf v1.0") buf = self._buffer buf.seek(self._parsing_pos10) if MSG_DELIM in buf.read().decode('UTF-8'): buf.seek(0) msg, _, remaining = buf.read().decode('UTF-8').partition(MSG_DELIM) msg = msg.strip() if sys.version < '3': self._dispatch_message(msg.encode()) else: self._dispatch_message(msg) # create new buffer which contains remaining of old buffer self._buffer = StringIO() self._buffer.write(remaining.encode()) self._parsing_pos10 = 0 if len(remaining) > 0: # There could be another entire message in the # buffer, so we should try to parse again. self.logger.debug('Trying another round of parsing since there is still data') self._parse10() else: # handle case that MSG_DELIM is split over two chunks self._parsing_pos10 = buf.tell() - MSG_DELIM_LEN if self._parsing_pos10 < 0: self._parsing_pos10 = 0 def _parse11(self): """Messages are split into chunks. Chunks and messages are delimited by the regex #RE_NC11_DELIM defined earlier in this file. Each time we get called here either a chunk delimiter or an end-of-message delimiter should be found iff there is enough data. If there is not enough data, we will wait for more. If a delimiter is found in the wrong place, a #NetconfFramingError will be raised.""" self.logger.debug("_parse11: starting") # suck in whole string that we have (this is what we will work on in # this function) and initialize a couple of useful values self._buffer.seek(0, os.SEEK_SET) data = self._buffer.getvalue() data_len = len(data) start = 0 self.logger.debug('_parse11: working with buffer of %d bytes', data_len) while True and start < data_len: # match to see if we found at least some kind of delimiter self.logger.debug('_parse11: matching from %d bytes from start of buffer', start) re_result = RE_NC11_DELIM.match(data[start:]) if not re_result: # not found any kind of delimiter just break; this should only # ever happen if we just have the first few characters of a # message such that we don't yet have a full delimiter self.logger.debug('_parse11: no delimiter found, buffer="%s"', data[start:].decode()) break # save useful variables for reuse re_start = re_result.start() re_end = re_result.end() self.logger.debug('_parse11: regular expression start=%d, end=%d', re_start, re_end) # If the regex doesn't start at the beginning of the buffer, # we're in trouble, so throw an error if re_start != 0: raise NetconfFramingError('_parse11: delimiter not at start of match buffer', data[start:]) if re_result.group(2): # we've found the end of the message, need to form up # whole message, save back remainder (if any) to buffer # and dispatch the message start += re_end message = ''.join(self._message_list) self._message_list = [] self.logger.debug('_parse11: found end of message delimiter') self._dispatch_message(message) break elif re_result.group(1): # we've found a chunk delimiter, and group(2) is the digit # string that will tell us how many bytes past the end of # where it was found that we need to have available to # save the next chunk off self.logger.debug('_parse11: found chunk delimiter') digits = int(re_result.group(1)) self.logger.debug('_parse11: chunk size %d bytes', digits) if (data_len-start) >= (re_end + digits): # we have enough data for the chunk fragment = textify(data[start+re_end:start+re_end+digits]) self._message_list.append(fragment) start += re_end + digits self.logger.debug('_parse11: appending %d bytes', digits) self.logger.debug('_parse11: fragment = "%s"', fragment) else: # we don't have enough bytes, just break out for now # after updating start pointer to start of new chunk start += re_start self.logger.debug('_parse11: not enough data for chunk yet') self.logger.debug('_parse11: setting start to %d', start) break # Now out of the loop, need to see if we need to save back any content if start > 0: self.logger.debug( '_parse11: saving back rest of message after %d bytes, original size %d', start, data_len) self._buffer = StringIO(data[start:]) if start < data_len: self.logger.debug('_parse11: still have data, may have another full message!') self._parse11() self.logger.debug('_parse11: ending') def load_known_hosts(self, filename=None): """Load host keys from an openssh :file:`known_hosts`-style file. Can be called multiple times. If *filename* is not specified, looks in the default locations i.e. :file:`~/.ssh/known_hosts` and :file:`~/ssh/known_hosts` for Windows. """ if filename is None: filename = os.path.expanduser('~/.ssh/known_hosts') try: self._host_keys.load(filename) except IOError: # for windows filename = os.path.expanduser('~/ssh/known_hosts') try: self._host_keys.load(filename) except IOError: pass else: self._host_keys.load(filename) def close(self): self._closing.set() if self._transport.is_active(): self._transport.close() # Wait for the transport thread to close. while self.is_alive() and (self is not threading.current_thread()): self.join(10) if self._channel: self._channel.close() self._channel = None self._connected = False # REMEMBER to update transport.rst if sig. changes, since it is hardcoded there def connect( self, host, port = PORT_NETCONF_DEFAULT, timeout = None, unknown_host_cb = default_unknown_host_cb, username = None, password = None, key_filename = None, allow_agent = True, hostkey_verify = True, hostkey_b64 = None, look_for_keys = True, ssh_config = None, sock_fd = None, bind_addr = None): """Connect via SSH and initialize the NETCONF session. First attempts the publickey authentication method and then password authentication. To disable attempting publickey authentication altogether, call with *allow_agent* and *look_for_keys* as `False`. *host* is the hostname or IP address to connect to *port* is by default 830 (PORT_NETCONF_DEFAULT), but some devices use the default SSH port of 22 (PORT_SSH_DEFAULT) so this may need to be specified *timeout* is an optional timeout for socket connect *unknown_host_cb* is called when the server host key is not recognized. It takes two arguments, the hostname and the fingerprint (see the signature of :func:`default_unknown_host_cb`) *username* is the username to use for SSH authentication *password* is the password used if using password authentication, or the passphrase to use for unlocking keys that require it *key_filename* is a filename where a the private key to be used can be found *allow_agent* enables querying SSH agent (if found) for keys *hostkey_verify* enables hostkey verification from ~/.ssh/known_hosts *hostkey_b64* only connect when server presents a public hostkey matching this (obtain from server /etc/ssh/ssh_host_*pub or ssh-keyscan) *look_for_keys* enables looking in the usual locations for ssh keys (e.g. :file:`~/.ssh/id_*`) *ssh_config* enables parsing of an OpenSSH configuration file, if set to its path, e.g. :file:`~/.ssh/config` or to True (in this case, use :file:`~/.ssh/config`). *sock_fd* is an already open socket which shall be used for this connection. Useful for NETCONF outbound ssh. Use host=None together with a valid sock_fd number *bind_addr* is a (local) source IP address to use, must be reachable from the remote device. """ if not (host or sock_fd): raise SSHError("Missing host or socket fd") self._host = host # Optionally, parse .ssh/config config = {} if ssh_config is True: ssh_config = "~/.ssh/config" if sys.platform != "win32" else "~/ssh/config" if ssh_config is not None: config = paramiko.SSHConfig() with open(os.path.expanduser(ssh_config)) as ssh_config_file_obj: config.parse(ssh_config_file_obj) # Save default Paramiko SSH port so it can be reverted paramiko_default_ssh_port = paramiko.config.SSH_PORT # Change the default SSH port to the port specified by the user so expand_variables # replaces %p with the passed in port rather than 22 (the defauld paramiko.config.SSH_PORT) paramiko.config.SSH_PORT = port config = config.lookup(host) # paramiko.config.SSHconfig::expand_variables is called by lookup so we can set the SSH port # back to the default paramiko.config.SSH_PORT = paramiko_default_ssh_port host = config.get("hostname", host) if username is None: username = config.get("user") if key_filename is None: key_filename = config.get("identityfile") if hostkey_verify: userknownhostsfile = config.get("userknownhostsfile") if userknownhostsfile: self.load_known_hosts(os.path.expanduser(userknownhostsfile)) if timeout is None: timeout = config.get("connecttimeout") if timeout: timeout = int(timeout) if username is None: username = getpass.getuser() if sock_fd is None: proxycommand = config.get("proxycommand") if proxycommand: self.logger.debug("Configuring Proxy. %s", proxycommand) if not isinstance(proxycommand, six.string_types): proxycommand = [os.path.expanduser(elem) for elem in proxycommand] else: proxycommand = os.path.expanduser(proxycommand) sock = paramiko.proxy.ProxyCommand(proxycommand) else: for res in socket.getaddrinfo(host, port, socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: sock = socket.socket(af, socktype, proto) sock.settimeout(timeout) except socket.error: continue try: if bind_addr: sock.bind((bind_addr, 0)) sock.connect(sa) except socket.error: sock.close() continue break else: raise SSHError("Could not open socket to %s:%s" % (host, port)) else: if sys.version_info[0] < 3: s = socket.fromfd(int(sock_fd), socket.AF_INET, socket.SOCK_STREAM) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, _sock=s) else: sock = socket.fromfd(int(sock_fd), socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(timeout) self._transport = paramiko.Transport(sock) self._transport.set_log_channel(logger.name) if config.get("compression") == 'yes': self._transport.use_compression() if hostkey_b64: # If we need to connect with a specific hostkey, negotiate for only its type hostkey_obj = None for key_cls in [paramiko.DSSKey, paramiko.Ed25519Key, paramiko.RSAKey, paramiko.ECDSAKey]: try: hostkey_obj = key_cls(data=base64.b64decode(hostkey_b64)) except paramiko.SSHException: # Not a key of this type - try the next pass if not hostkey_obj: # We've tried all known host key types and haven't found a suitable one to use - bail raise SSHError("Couldn't find suitable paramiko key class for host key %s" % hostkey_b64) self._transport._preferred_keys = [hostkey_obj.get_name()] elif self._host_keys: # Else set preferred host keys to those we possess for the host # (avoids situation where known_hosts contains a valid key for the host, but that key type is not selected during negotiation) if port == PORT_SSH_DEFAULT: known_hosts_lookup = host else: known_hosts_lookup = '[%s]:%s' % (host, port) known_host_keys_for_this_host = self._host_keys.lookup(known_hosts_lookup) if known_host_keys_for_this_host: self._transport._preferred_keys = [x.key.get_name() for x in known_host_keys_for_this_host._entries] # Connect try: self._transport.start_client() except paramiko.SSHException as e: raise SSHError('Negotiation failed: %s' % e) server_key_obj = self._transport.get_remote_server_key() fingerprint = _colonify(hexlify(server_key_obj.get_fingerprint())) if hostkey_verify: is_known_host = False # For looking up entries for nonstandard (22) ssh ports in known_hosts # we enclose host in brackets and append port number if port == PORT_SSH_DEFAULT: known_hosts_lookup = host else: known_hosts_lookup = '[%s]:%s' % (host, port) if hostkey_b64: # If hostkey specified, remote host /must/ use that hostkey if(hostkey_obj.get_name() == server_key_obj.get_name() and hostkey_obj.asbytes() == server_key_obj.asbytes()): is_known_host = True else: # Check known_hosts is_known_host = self._host_keys.check(known_hosts_lookup, server_key_obj) if not is_known_host and not unknown_host_cb(host, fingerprint): raise SSHUnknownHostError(known_hosts_lookup, fingerprint) # Authenticating with our private key/identity if key_filename is None: key_filenames = [] elif isinstance(key_filename, (str, bytes)): key_filenames = [key_filename] else: key_filenames = key_filename self._auth(username, password, key_filenames, allow_agent, look_for_keys) self._connected = True # there was no error authenticating self._closing.clear() # TODO: leopoul: Review, test, and if needed rewrite this part subsystem_names = self._device_handler.get_ssh_subsystem_names() for subname in subsystem_names: self._channel = self._transport.open_session() self._channel_id = self._channel.get_id() channel_name = "%s-subsystem-%s" % (subname, str(self._channel_id)) self._channel.set_name(channel_name) try: self._channel.invoke_subsystem(subname) except paramiko.SSHException as e: self.logger.info("%s (subsystem request rejected)", e) handle_exception = self._device_handler.handle_connection_exceptions(self) # Ignore the exception, since we continue to try the different # subsystem names until we find one that can connect. # have to handle exception for each vendor here if not handle_exception: continue self._channel_name = self._channel.get_name() self._post_connect() return raise SSHError("Could not open connection, possibly due to unacceptable" " SSH subsystem name.") def _auth(self, username, password, key_filenames, allow_agent, look_for_keys): saved_exception = None for key_filename in key_filenames: for cls in (paramiko.RSAKey, paramiko.DSSKey, paramiko.ECDSAKey): try: key = cls.from_private_key_file(key_filename, password) self.logger.debug("Trying key %s from %s", hexlify(key.get_fingerprint()), key_filename) self._transport.auth_publickey(username, key) return except Exception as e: saved_exception = e self.logger.debug(e) if allow_agent: for key in paramiko.Agent().get_keys(): try: self.logger.debug("Trying SSH agent key %s", hexlify(key.get_fingerprint())) self._transport.auth_publickey(username, key) return except Exception as e: saved_exception = e self.logger.debug(e) keyfiles = [] if look_for_keys: rsa_key = os.path.expanduser("~/.ssh/id_rsa") dsa_key = os.path.expanduser("~/.ssh/id_dsa") ecdsa_key = os.path.expanduser("~/.ssh/id_ecdsa") if os.path.isfile(rsa_key): keyfiles.append((paramiko.RSAKey, rsa_key)) if os.path.isfile(dsa_key): keyfiles.append((paramiko.DSSKey, dsa_key)) if os.path.isfile(ecdsa_key): keyfiles.append((paramiko.ECDSAKey, ecdsa_key)) # look in ~/ssh/ for windows users: rsa_key = os.path.expanduser("~/ssh/id_rsa") dsa_key = os.path.expanduser("~/ssh/id_dsa") ecdsa_key = os.path.expanduser("~/ssh/id_ecdsa") if os.path.isfile(rsa_key): keyfiles.append((paramiko.RSAKey, rsa_key)) if os.path.isfile(dsa_key): keyfiles.append((paramiko.DSSKey, dsa_key)) if os.path.isfile(ecdsa_key): keyfiles.append((paramiko.ECDSAKey, ecdsa_key)) for cls, filename in keyfiles: try: key = cls.from_private_key_file(filename, password) self.logger.debug("Trying discovered key %s in %s", hexlify(key.get_fingerprint()), filename) self._transport.auth_publickey(username, key) return except Exception as e: saved_exception = e self.logger.debug(e) if password is not None: try: self._transport.auth_password(username, password) return except Exception as e: saved_exception = e self.logger.debug(e) if saved_exception is not None: # need pep-3134 to do this right raise AuthenticationError(repr(saved_exception)) raise AuthenticationError("No authentication methods available") def run(self): chan = self._channel q = self._q def start_delim(data_len): return '\n#%s\n' % (data_len) try: s = selectors.DefaultSelector() s.register(chan, selectors.EVENT_READ) self.logger.debug('selector type = %s', s.__class__.__name__) while True: # Will wakeup evey TICK seconds to check if something # to send, more quickly if something to read (due to # select returning chan in readable list). events = s.select(timeout=TICK) if events: data = chan.recv(BUF_SIZE) if data: self._buffer.seek(0, os.SEEK_END) self._buffer.write(data) if self._base == NetconfBase.BASE_11: self._parse11() else: self._parse10() elif self._closing.is_set(): # End of session, expected break else: # End of session, unexpected raise SessionCloseError(self._buffer.getvalue()) if not q.empty() and chan.send_ready(): self.logger.debug("Sending message") data = q.get() if self._base == NetconfBase.BASE_11: data = "%s%s%s" % (start_delim(len(data)), data, END_DELIM) else: data = "%s%s" % (data, MSG_DELIM) self.logger.info("Sending:\n%s", data) while data: n = chan.send(data) if n <= 0: raise SessionCloseError(self._buffer.getvalue(), data) data = data[n:] except Exception as e: self.logger.debug("Broke out of main loop, error=%r", e) self._dispatch_error(e) self.close() @property def host(self): """Host this session is connected to, or None if not connected.""" if hasattr(self, '_host'): return self._host return None @property def transport(self): "Underlying `paramiko.Transport <http://www.lag.net/paramiko/docs/paramiko.Transport-class.html>`_ object. This makes it possible to call methods like :meth:`~paramiko.Transport.set_keepalive` on it." return self._transport
import sys import time import unittest import mock from promstats import Stats, _PY_35 version_info = sys.version_info def _patch_url_opener(test_case): """A shortcut for patching URL opener on different Py versions.""" if version_info.major >= 3: patch_module = 'urllib.request.OpenerDirector.open' else: patch_module = 'urllib2.OpenerDirector.open' return mock.patch(patch_module)(test_case) class StatsTestCase(unittest.TestCase): def _assertMetricsCollected(self, metric_instance, etalon_data): """Verify the collected metrics against etalon data.""" collected = metric_instance.collect()[0] collected_samples = collected.samples for metric_value in etalon_data: self.assertIn(metric_value, collected_samples) def test_increment(self): stats = Stats('greasyspoon') stats.increment('bacon', tags=['spam:eggs', 'scrambled_eggs:ham']) bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'counter') self.assertSetEqual( set(bacon_metric._labelnames), {'scrambled_eggs', 'spam'}) self._assertMetricsCollected( bacon_metric, [('bacon', {'scrambled_eggs': 'ham', 'spam': 'eggs'}, 1.0)] ) def test_increment_value(self): stats = Stats('greasyspoon') stats.increment( 'bacon', value=9, tags=['spam:eggs', 'scrambled_eggs:ham']) bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'counter') self.assertSetEqual( set(bacon_metric._labelnames), {'scrambled_eggs', 'spam'}) self._assertMetricsCollected( bacon_metric, [('bacon', {'scrambled_eggs': 'ham', 'spam': 'eggs'}, 9.0)] ) def test_increment_wrong_tag(self): stats = Stats('greasyspoon') with mock.patch('promstats._util.logger.warning') as warn: stats.increment('bacon', ['spam:eggs', 'a']) warn.assert_called_with( 'Your tag %s is not in proper format, skipping it.' ' It should be a semicolon-delimited string,' ' representing a key-value pair.', 'a', ) def test_gauge(self): stats = Stats('greasyspoon') stats.gauge( 'bacon', 2.71828, ['spam:eggs', 'scrambled_eggs:ham']) stats.gauge( 'bacon', 3.14159, ['spam:sausage', 'scrambled_eggs:eggs']) bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'gauge') self.assertSetEqual( set(bacon_metric._labelnames), {'scrambled_eggs', 'spam'}) self._assertMetricsCollected( bacon_metric, [ ( 'bacon', {'scrambled_eggs': 'ham', 'spam': 'eggs'}, 2.71828), ( 'bacon', {'scrambled_eggs': 'eggs', 'spam': 'sausage'}, 3.14159), ], ) def test_gauge_wo_tags(self): stats = Stats('greasyspoon') stats.gauge('bacon', 2.71828) bacon_metric = stats.metrics.get('bacon') self._assertMetricsCollected(bacon_metric, [('bacon', {}, 2.71828)]) def test_summary(self): stats = Stats('greasyspoon') stats.summary( 'bacon', 2.71828, ['spam:eggs', 'scrambled_eggs:ham'], ) stats.summary( 'bacon', 3.14159, ['spam:sausage', 'scrambled_eggs:eggs'], ) bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'summary') self.assertSetEqual( set(bacon_metric._labelnames), {'scrambled_eggs', 'spam'}) self._assertMetricsCollected( bacon_metric, [ ( 'bacon_count', {'scrambled_eggs': 'eggs', 'spam': 'sausage'}, 1.0, ), ( 'bacon_sum', {'scrambled_eggs': 'eggs', 'spam': 'sausage'}, 3.14159, ), ( 'bacon_count', {'scrambled_eggs': 'ham', 'spam': 'eggs'}, 1.0, ), ( 'bacon_sum', {'scrambled_eggs': 'ham', 'spam': 'eggs'}, 2.71828, ), ], ) def test_histogram(self): stats = Stats('greasyspoon') stats.histogram( 'bacon', 2.71828, ['spam:eggs', 'scrambled_eggs:ham']) stats.histogram( 'bacon', 3.14159, ['spam:sausage', 'scrambled_eggs:eggs']) bacon_metric = stats.metrics.get('bacon') self.assertEqual( bacon_metric._type, 'histogram') self.assertSetEqual( set(bacon_metric._labelnames), {'scrambled_eggs', 'spam'}) self._assertMetricsCollected( bacon_metric, [ ('bacon_bucket', {'le': '0.005', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.01', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.025', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.05', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.075', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.1', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.25', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.5', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '0.75', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '1.0', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '2.5', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 0.0), ('bacon_bucket', {'le': '5.0', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 1.0), ('bacon_bucket', {'le': '7.5', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 1.0), ('bacon_bucket', {'le': '10.0', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 1.0), ('bacon_bucket', {'le': '+Inf', 'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 1.0), ('bacon_count', {'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 1.0), ('bacon_sum', {'spam': 'sausage', 'scrambled_eggs': 'eggs'}, 3.14159), ('bacon_bucket', {'le': '0.005', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.01', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.025', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.05', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.075', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.1', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.25', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.5', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '0.75', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '1.0', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '2.5', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 0.0), ('bacon_bucket', {'le': '5.0', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 1.0), ('bacon_bucket', {'le': '7.5', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 1.0), ('bacon_bucket', {'le': '10.0', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 1.0), ('bacon_bucket', {'le': '+Inf', 'spam': 'eggs', 'scrambled_eggs': 'ham'}, 1.0), ('bacon_count', {'spam': 'eggs', 'scrambled_eggs': 'ham'}, 1.0), ('bacon_sum', {'spam': 'eggs', 'scrambled_eggs': 'ham'}, 2.71828)] ) def test_timed(self): stats = Stats('greasyspoon') @stats.timed( 'bacon', ['sausage:eggs', 'ham:scrambled_eggs'], verbose_name='Number of eggs in a basket.') def measured(): time.sleep(1) measured() bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'histogram') self.assertSetEqual(set(bacon_metric._labelnames), {'sausage', 'ham'}) # The last entry in samples - a concrete timing. self.assertGreater(bacon_metric.collect()[0].samples[-1][-1], 1) def test_timed_repr(self): stats = Stats('greasyspoon') timer = stats.timed( 'bacon', ['sausage:eggs', 'ham:scrambled_eggs'], verbose_name='Number of eggs in a basket.') self.assertEqual(repr(timer), 'Timer') timer.__enter__() self.assertRegexpMatches(repr(timer), 'Timer<([0-9.e+-]+)>') def func(): pass # pragma: no cover timer(func) self.assertRegexpMatches(repr(timer), 'Timer<([0-9.e+-]+)>\[func\]') def test_timed_context(self): stats = Stats('greasyspoon') ret_value = mock.Mock() def measured(): time.sleep(1) return ret_value with stats.timed( 'bacon', ['sausage:eggs', 'ham:scrambled_eggs'], verbose_name='Number of eggs in a basket.'): res = measured() self.assertIs(res, ret_value) bacon_metric = stats.metrics.get('bacon') self.assertEqual(bacon_metric._type, 'histogram') self.assertSetEqual(set(bacon_metric._labelnames), {'sausage', 'ham'}) # The last entry in samples - a concrete timing. self.assertGreater(bacon_metric.collect()[0].samples[-1][-1], 1) def test_push_custom_handler(self): pushgateway_handler = mock.MagicMock() stats = Stats('greasyspoon', pushgateway_handler=pushgateway_handler) stats.increment( 'sausage', ['bacon:scrambled_eggs'], verbose_name='Name of sausages eat.', ) stats.push() pushgateway_handler.assert_called_once_with( data=b'# HELP sausage Name of sausages eat.\n' b'# TYPE sausage counter\n' b'sausage{bacon="scrambled_eggs"} 1.0\n', headers=[ ( 'Content-Type', 'text/plain; version=0.0.4; charset=utf-8', ), ], method='POST', timeout=None, url='http://localhost:9112/metrics/job/greasyspoon', ) @_patch_url_opener def test_push_custom_uri(self, request_open): mocked_response = mock.MagicMock() mocked_response.code = 200 request_open.return_value = mocked_response stats = Stats( 'greasyspoon', pushgateway_uri='http://pushgateway:2000/', ) stats.increment( 'sausage', ['bacon:scrambled_eggs'], verbose_name='Name of sausages eat.', ) stats.push() self.assertEqual( request_open.call_args[0][0].get_full_url(), 'http://pushgateway:2000//metrics/job/greasyspoon' ) @_patch_url_opener def test_no_tags_given_to_histogram(self, _): """Tests against the bug fixed in 0.1.1""" stats = Stats('greasyspoon') stats.histogram('sausage', 1.0) self.assertIn('sausage', stats.metrics) @_patch_url_opener def test_pushadd(self, request_open): mocked_response = mock.MagicMock() mocked_response.code = 200 request_open.return_value = mocked_response stats = Stats('greasyspoon') stats.pushgateway_uri = 'magicponies:65630' stats.increment( 'sausage', ['bacon:scrambled_eggs'], verbose_name='Name of sausages eat.', ) stats.histogram( 'bacon', 2.71828, ['spam:eggs', 'scrambled_eggs:ham']) stats.histogram( 'bacon', 3.14159, ['spam:sausage', 'scrambled_eggs:eggs']) stats.gauge( 'spam', 2.718281828, ['sausage:bacon'], verbose_name='Number of spam emails sent.', ) stats.pushadd() stats_push_request = request_open.call_args[0][0] self.assertEqual(stats_push_request.get_method(), 'PUT') self.assertEqual( 'http://magicponies:65630/metrics/job/greasyspoon', stats_push_request.get_full_url(), ) sent_data = stats_push_request.data self.assertIn( b'HELP sausage Name of sausages eat.\n# TYPE sausage counter', sent_data, ) self.assertIn( b'HELP bacon \n# TYPE bacon histogram', sent_data, ) self.assertIn( b'HELP spam Number of spam emails sent.\n# TYPE spam gauge', sent_data, ) @_patch_url_opener def test_push(self, request_open): mocked_response = mock.MagicMock() mocked_response.code = 200 request_open.return_value = mocked_response stats = Stats('greasyspoon') stats.pushgateway_uri = 'magicponies:65630' stats.increment( 'sausage', ['bacon:scrambled_eggs'], verbose_name='Name of sausages eat.') stats.histogram( 'bacon', 2.71828, ['spam:eggs', 'scrambled_eggs:ham']) stats.histogram( 'bacon', 3.14159, ['spam:sausage', 'scrambled_eggs:eggs']) stats.gauge( 'spam', 2.718281828, ['sausage:bacon'], verbose_name='Number of spam emails sent.') stats.push() stats_push_request = request_open.call_args[0][0] self.assertEqual(stats_push_request.get_method(), 'POST') self.assertEqual( 'http://magicponies:65630/metrics/job/greasyspoon', stats_push_request.get_full_url()) sent_data = stats_push_request.data self.assertIn( b'HELP sausage Name of sausages eat.\n# TYPE sausage counter', sent_data, ) self.assertIn( b'HELP bacon \n# TYPE bacon histogram', sent_data, ) self.assertIn( b'HELP spam Number of spam emails sent.\n# TYPE spam gauge', sent_data, ) if _PY_35: from ._async import AsyncTestMixin test_asynctimed = AsyncTestMixin.test_asynctimed if __name__ == '__main__': unittest.main() # pragma: no cover
"""Build Environment used for isolation during sdist building """ # The following comment should be removed at some point in the future. # mypy: strict-optional=False # mypy: disallow-untyped-defs=False import logging import os import sys import textwrap from collections import OrderedDict from distutils.sysconfig import get_python_lib from sysconfig import get_paths from pip._vendor.pkg_resources import Requirement, VersionConflict, WorkingSet from pip import __file__ as pip_location from pip._internal.utils.subprocess import call_subprocess from pip._internal.utils.temp_dir import TempDirectory from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.ui import open_spinner if MYPY_CHECK_RUNNING: from typing import Tuple, Set, Iterable, Optional, List from pip._internal.index.package_finder import PackageFinder logger = logging.getLogger(__name__) class _Prefix: def __init__(self, path): # type: (str) -> None self.path = path self.setup = False self.bin_dir = get_paths( 'nt' if os.name == 'nt' else 'posix_prefix', vars={'base': path, 'platbase': path} )['scripts'] # Note: prefer distutils' sysconfig to get the # library paths so PyPy is correctly supported. purelib = get_python_lib(plat_specific=False, prefix=path) platlib = get_python_lib(plat_specific=True, prefix=path) if purelib == platlib: self.lib_dirs = [purelib] else: self.lib_dirs = [purelib, platlib] class BuildEnvironment(object): """Creates and manages an isolated environment to install build deps """ def __init__(self): # type: () -> None self._temp_dir = TempDirectory(kind="build-env") self._prefixes = OrderedDict(( (name, _Prefix(os.path.join(self._temp_dir.path, name))) for name in ('normal', 'overlay') )) self._bin_dirs = [] # type: List[str] self._lib_dirs = [] # type: List[str] for prefix in reversed(list(self._prefixes.values())): self._bin_dirs.append(prefix.bin_dir) self._lib_dirs.extend(prefix.lib_dirs) # Customize site to: # - ensure .pth files are honored # - prevent access to system site packages system_sites = { os.path.normcase(site) for site in ( get_python_lib(plat_specific=False), get_python_lib(plat_specific=True), ) } self._site_dir = os.path.join(self._temp_dir.path, 'site') if not os.path.exists(self._site_dir): os.mkdir(self._site_dir) with open(os.path.join(self._site_dir, 'sitecustomize.py'), 'w') as fp: fp.write(textwrap.dedent( ''' import os, site, sys # First, drop system-sites related paths. original_sys_path = sys.path[:] known_paths = set() for path in {system_sites!r}: site.addsitedir(path, known_paths=known_paths) system_paths = set( os.path.normcase(path) for path in sys.path[len(original_sys_path):] ) original_sys_path = [ path for path in original_sys_path if os.path.normcase(path) not in system_paths ] sys.path = original_sys_path # Second, add lib directories. # ensuring .pth file are processed. for path in {lib_dirs!r}: assert not path in sys.path site.addsitedir(path) ''' ).format(system_sites=system_sites, lib_dirs=self._lib_dirs)) def __enter__(self): self._save_env = { name: os.environ.get(name, None) for name in ('PATH', 'PYTHONNOUSERSITE', 'PYTHONPATH') } path = self._bin_dirs[:] old_path = self._save_env['PATH'] if old_path: path.extend(old_path.split(os.pathsep)) pythonpath = [self._site_dir] os.environ.update({ 'PATH': os.pathsep.join(path), 'PYTHONNOUSERSITE': '1', 'PYTHONPATH': os.pathsep.join(pythonpath), }) def __exit__(self, exc_type, exc_val, exc_tb): for varname, old_value in self._save_env.items(): if old_value is None: os.environ.pop(varname, None) else: os.environ[varname] = old_value def cleanup(self): # type: () -> None self._temp_dir.cleanup() def check_requirements(self, reqs): # type: (Iterable[str]) -> Tuple[Set[Tuple[str, str]], Set[str]] """Return 2 sets: - conflicting requirements: set of (installed, wanted) reqs tuples - missing requirements: set of reqs """ missing = set() conflicting = set() if reqs: ws = WorkingSet(self._lib_dirs) for req in reqs: try: if ws.find(Requirement.parse(req)) is None: missing.add(req) except VersionConflict as e: conflicting.add((str(e.args[0].as_requirement()), str(e.args[1]))) return conflicting, missing def install_requirements( self, finder, # type: PackageFinder requirements, # type: Iterable[str] prefix_as_string, # type: str message # type: Optional[str] ): # type: (...) -> None prefix = self._prefixes[prefix_as_string] assert not prefix.setup prefix.setup = True if not requirements: return args = [ sys.executable, os.path.dirname(pip_location), 'install', '--ignore-installed', '--no-user', '--prefix', prefix.path, '--no-warn-script-location', ] # type: List[str] if logger.getEffectiveLevel() <= logging.DEBUG: args.append('-v') for format_control in ('no_binary', 'only_binary'): formats = getattr(finder.format_control, format_control) args.extend(('--' + format_control.replace('_', '-'), ','.join(sorted(formats or {':none:'})))) index_urls = finder.index_urls if index_urls: args.extend(['-i', index_urls[0]]) for extra_index in index_urls[1:]: args.extend(['--extra-index-url', extra_index]) else: args.append('--no-index') for link in finder.find_links: args.extend(['--find-links', link]) for host in finder.trusted_hosts: args.extend(['--trusted-host', host]) if finder.allow_all_prereleases: args.append('--pre') args.append('--') args.extend(requirements) with open_spinner(message) as spinner: call_subprocess(args, spinner=spinner) class NoOpBuildEnvironment(BuildEnvironment): """A no-op drop-in replacement for BuildEnvironment """ def __init__(self): pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def cleanup(self): pass def install_requirements(self, finder, requirements, prefix, message): raise NotImplementedError()
import signal import sys import unittest from unittest import mock import asyncio from asyncio import base_subprocess from asyncio import subprocess from asyncio import test_utils try: from test import support except ImportError: from asyncio import test_support as support if sys.platform != 'win32': from asyncio import unix_events # Program blocking PROGRAM_BLOCKED = [sys.executable, '-c', 'import time; time.sleep(3600)'] # Program copying input to output PROGRAM_CAT = [ sys.executable, '-c', ';'.join(('import sys', 'data = sys.stdin.buffer.read()', 'sys.stdout.buffer.write(data)'))] class TestSubprocessTransport(base_subprocess.BaseSubprocessTransport): def _start(self, *args, **kwargs): self._proc = mock.Mock() self._proc.stdin = None self._proc.stdout = None self._proc.stderr = None class SubprocessTransportTests(test_utils.TestCase): def setUp(self): self.loop = self.new_test_loop() self.set_event_loop(self.loop) def create_transport(self, waiter=None): protocol = mock.Mock() protocol.connection_made._is_coroutine = False protocol.process_exited._is_coroutine = False transport = TestSubprocessTransport( self.loop, protocol, ['test'], False, None, None, None, 0, waiter=waiter) return (transport, protocol) def test_proc_exited(self): waiter = asyncio.Future(loop=self.loop) transport, protocol = self.create_transport(waiter) transport._process_exited(6) self.loop.run_until_complete(waiter) self.assertEqual(transport.get_returncode(), 6) self.assertTrue(protocol.connection_made.called) self.assertTrue(protocol.process_exited.called) self.assertTrue(protocol.connection_lost.called) self.assertEqual(protocol.connection_lost.call_args[0], (None,)) self.assertFalse(transport._closed) self.assertIsNone(transport._loop) self.assertIsNone(transport._proc) self.assertIsNone(transport._protocol) # methods must raise ProcessLookupError if the process exited self.assertRaises(ProcessLookupError, transport.send_signal, signal.SIGTERM) self.assertRaises(ProcessLookupError, transport.terminate) self.assertRaises(ProcessLookupError, transport.kill) transport.close() class SubprocessMixin: def test_stdin_stdout(self): args = PROGRAM_CAT @asyncio.coroutine def run(data): proc = yield from asyncio.create_subprocess_exec( *args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, loop=self.loop) # feed data proc.stdin.write(data) yield from proc.stdin.drain() proc.stdin.close() # get output and exitcode data = yield from proc.stdout.read() exitcode = yield from proc.wait() return (exitcode, data) task = run(b'some data') task = asyncio.wait_for(task, 60.0, loop=self.loop) exitcode, stdout = self.loop.run_until_complete(task) self.assertEqual(exitcode, 0) self.assertEqual(stdout, b'some data') def test_communicate(self): args = PROGRAM_CAT @asyncio.coroutine def run(data): proc = yield from asyncio.create_subprocess_exec( *args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, loop=self.loop) stdout, stderr = yield from proc.communicate(data) return proc.returncode, stdout task = run(b'some data') task = asyncio.wait_for(task, 60.0, loop=self.loop) exitcode, stdout = self.loop.run_until_complete(task) self.assertEqual(exitcode, 0) self.assertEqual(stdout, b'some data') def test_shell(self): create = asyncio.create_subprocess_shell('exit 7', loop=self.loop) proc = self.loop.run_until_complete(create) exitcode = self.loop.run_until_complete(proc.wait()) self.assertEqual(exitcode, 7) def test_start_new_session(self): # start the new process in a new session create = asyncio.create_subprocess_shell('exit 8', start_new_session=True, loop=self.loop) proc = self.loop.run_until_complete(create) exitcode = self.loop.run_until_complete(proc.wait()) self.assertEqual(exitcode, 8) def test_kill(self): args = PROGRAM_BLOCKED create = asyncio.create_subprocess_exec(*args, loop=self.loop) proc = self.loop.run_until_complete(create) proc.kill() returncode = self.loop.run_until_complete(proc.wait()) if sys.platform == 'win32': self.assertIsInstance(returncode, int) # expect 1 but sometimes get 0 else: self.assertEqual(-signal.SIGKILL, returncode) def test_terminate(self): args = PROGRAM_BLOCKED create = asyncio.create_subprocess_exec(*args, loop=self.loop) proc = self.loop.run_until_complete(create) proc.terminate() returncode = self.loop.run_until_complete(proc.wait()) if sys.platform == 'win32': self.assertIsInstance(returncode, int) # expect 1 but sometimes get 0 else: self.assertEqual(-signal.SIGTERM, returncode) @unittest.skipIf(sys.platform == 'win32', "Don't have SIGHUP") def test_send_signal(self): code = 'import time; print("sleeping", flush=True); time.sleep(3600)' args = [sys.executable, '-c', code] create = asyncio.create_subprocess_exec(*args, stdout=subprocess.PIPE, loop=self.loop) proc = self.loop.run_until_complete(create) @asyncio.coroutine def send_signal(proc): # basic synchronization to wait until the program is sleeping line = yield from proc.stdout.readline() self.assertEqual(line, b'sleeping\n') proc.send_signal(signal.SIGHUP) returncode = (yield from proc.wait()) return returncode returncode = self.loop.run_until_complete(send_signal(proc)) self.assertEqual(-signal.SIGHUP, returncode) def prepare_broken_pipe_test(self): # buffer large enough to feed the whole pipe buffer large_data = b'x' * support.PIPE_MAX_SIZE # the program ends before the stdin can be feeded create = asyncio.create_subprocess_exec( sys.executable, '-c', 'pass', stdin=subprocess.PIPE, loop=self.loop) proc = self.loop.run_until_complete(create) return (proc, large_data) def test_stdin_broken_pipe(self): proc, large_data = self.prepare_broken_pipe_test() @asyncio.coroutine def write_stdin(proc, data): proc.stdin.write(data) yield from proc.stdin.drain() coro = write_stdin(proc, large_data) # drain() must raise BrokenPipeError or ConnectionResetError with test_utils.disable_logger(): self.assertRaises((BrokenPipeError, ConnectionResetError), self.loop.run_until_complete, coro) self.loop.run_until_complete(proc.wait()) def test_communicate_ignore_broken_pipe(self): proc, large_data = self.prepare_broken_pipe_test() # communicate() must ignore BrokenPipeError when feeding stdin with test_utils.disable_logger(): self.loop.run_until_complete(proc.communicate(large_data)) self.loop.run_until_complete(proc.wait()) def test_pause_reading(self): limit = 10 size = (limit * 2 + 1) @asyncio.coroutine def test_pause_reading(): code = '\n'.join(( 'import sys', 'sys.stdout.write("x" * %s)' % size, 'sys.stdout.flush()', )) connect_read_pipe = self.loop.connect_read_pipe @asyncio.coroutine def connect_read_pipe_mock(*args, **kw): transport, protocol = yield from connect_read_pipe(*args, **kw) transport.pause_reading = mock.Mock() transport.resume_reading = mock.Mock() return (transport, protocol) self.loop.connect_read_pipe = connect_read_pipe_mock proc = yield from asyncio.create_subprocess_exec( sys.executable, '-c', code, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, limit=limit, loop=self.loop) stdout_transport = proc._transport.get_pipe_transport(1) stdout, stderr = yield from proc.communicate() # The child process produced more than limit bytes of output, # the stream reader transport should pause the protocol to not # allocate too much memory. return (stdout, stdout_transport) # Issue #22685: Ensure that the stream reader pauses the protocol # when the child process produces too much data stdout, transport = self.loop.run_until_complete(test_pause_reading()) self.assertEqual(stdout, b'x' * size) self.assertTrue(transport.pause_reading.called) self.assertTrue(transport.resume_reading.called) def test_stdin_not_inheritable(self): # Tulip issue #209: stdin must not be inheritable, otherwise # the Process.communicate() hangs @asyncio.coroutine def len_message(message): code = 'import sys; data = sys.stdin.read(); print(len(data))' proc = yield from asyncio.create_subprocess_exec( sys.executable, '-c', code, stdin=asyncio.subprocess.PIPE, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, close_fds=False, loop=self.loop) stdout, stderr = yield from proc.communicate(message) exitcode = yield from proc.wait() return (stdout, exitcode) output, exitcode = self.loop.run_until_complete(len_message(b'abc')) self.assertEqual(output.rstrip(), b'3') self.assertEqual(exitcode, 0) def test_cancel_process_wait(self): # Issue #23140: cancel Process.wait() @asyncio.coroutine def cancel_wait(): proc = yield from asyncio.create_subprocess_exec( *PROGRAM_BLOCKED, loop=self.loop) # Create an internal future waiting on the process exit task = self.loop.create_task(proc.wait()) self.loop.call_soon(task.cancel) try: yield from task except asyncio.CancelledError: pass # Cancel the future task.cancel() # Kill the process and wait until it is done proc.kill() yield from proc.wait() self.loop.run_until_complete(cancel_wait()) def test_cancel_make_subprocess_transport_exec(self): @asyncio.coroutine def cancel_make_transport(): coro = asyncio.create_subprocess_exec(*PROGRAM_BLOCKED, loop=self.loop) task = self.loop.create_task(coro) self.loop.call_soon(task.cancel) try: yield from task except asyncio.CancelledError: pass # ignore the log: # "Exception during subprocess creation, kill the subprocess" with test_utils.disable_logger(): self.loop.run_until_complete(cancel_make_transport()) def test_cancel_post_init(self): @asyncio.coroutine def cancel_make_transport(): coro = self.loop.subprocess_exec(asyncio.SubprocessProtocol, *PROGRAM_BLOCKED) task = self.loop.create_task(coro) self.loop.call_soon(task.cancel) try: yield from task except asyncio.CancelledError: pass # ignore the log: # "Exception during subprocess creation, kill the subprocess" with test_utils.disable_logger(): self.loop.run_until_complete(cancel_make_transport()) test_utils.run_briefly(self.loop) def test_close_kill_running(self): @asyncio.coroutine def kill_running(): create = self.loop.subprocess_exec(asyncio.SubprocessProtocol, *PROGRAM_BLOCKED) transport, protocol = yield from create kill_called = False def kill(): nonlocal kill_called kill_called = True orig_kill() proc = transport.get_extra_info('subprocess') orig_kill = proc.kill proc.kill = kill returncode = transport.get_returncode() transport.close() yield from transport._wait() return (returncode, kill_called) # Ignore "Close running child process: kill ..." log with test_utils.disable_logger(): returncode, killed = self.loop.run_until_complete(kill_running()) self.assertIsNone(returncode) # transport.close() must kill the process if it is still running self.assertTrue(killed) test_utils.run_briefly(self.loop) def test_close_dont_kill_finished(self): @asyncio.coroutine def kill_running(): create = self.loop.subprocess_exec(asyncio.SubprocessProtocol, *PROGRAM_BLOCKED) transport, protocol = yield from create proc = transport.get_extra_info('subprocess') # kill the process (but asyncio is not notified immediatly) proc.kill() proc.wait() proc.kill = mock.Mock() proc_returncode = proc.poll() transport_returncode = transport.get_returncode() transport.close() return (proc_returncode, transport_returncode, proc.kill.called) # Ignore "Unknown child process pid ..." log of SafeChildWatcher, # emitted because the test already consumes the exit status: # proc.wait() with test_utils.disable_logger(): result = self.loop.run_until_complete(kill_running()) test_utils.run_briefly(self.loop) proc_returncode, transport_return_code, killed = result self.assertIsNotNone(proc_returncode) self.assertIsNone(transport_return_code) # transport.close() must not kill the process if it finished, even if # the transport was not notified yet self.assertFalse(killed) if sys.platform != 'win32': # Unix class SubprocessWatcherMixin(SubprocessMixin): Watcher = None def setUp(self): policy = asyncio.get_event_loop_policy() self.loop = policy.new_event_loop() self.set_event_loop(self.loop) watcher = self.Watcher() watcher.attach_loop(self.loop) policy.set_child_watcher(watcher) self.addCleanup(policy.set_child_watcher, None) class SubprocessSafeWatcherTests(SubprocessWatcherMixin, test_utils.TestCase): Watcher = unix_events.SafeChildWatcher class SubprocessFastWatcherTests(SubprocessWatcherMixin, test_utils.TestCase): Watcher = unix_events.FastChildWatcher else: # Windows class SubprocessProactorTests(SubprocessMixin, test_utils.TestCase): def setUp(self): self.loop = asyncio.ProactorEventLoop() self.set_event_loop(self.loop) if __name__ == '__main__': unittest.main()
import re import sys import time import datetime import traceback from decimal import Decimal import threading import electrum from electrum import WalletStorage, Wallet from electrum_gui.kivy.i18n import _ from electrum.contacts import Contacts from electrum.paymentrequest import InvoiceStore from electrum.util import profiler, InvalidPassword from electrum.plugins import run_hook from electrum.util import format_satoshis, format_satoshis_plain from electrum.paymentrequest import PR_UNPAID, PR_PAID, PR_UNKNOWN, PR_EXPIRED from kivy.app import App from kivy.core.window import Window from kivy.logger import Logger from kivy.utils import platform from kivy.properties import (OptionProperty, AliasProperty, ObjectProperty, StringProperty, ListProperty, BooleanProperty) from kivy.cache import Cache from kivy.clock import Clock from kivy.factory import Factory from kivy.metrics import inch, metrics from kivy.lang import Builder # lazy imports for factory so that widgets can be used in kv Factory.register('InstallWizard', module='electrum_gui.kivy.uix.dialogs.installwizard') Factory.register('InfoBubble', module='electrum_gui.kivy.uix.dialogs') Factory.register('OutputList', module='electrum_gui.kivy.uix.dialogs') Factory.register('OutputItem', module='electrum_gui.kivy.uix.dialogs') #from kivy.core.window import Window #Window.softinput_mode = 'below_target' # delayed imports: for startup speed on android notification = app = ref = None util = False # register widget cache for keeping memory down timeout to forever to cache # the data Cache.register('electrum_widgets', timeout=0) from kivy.uix.screenmanager import Screen from kivy.uix.tabbedpanel import TabbedPanel from kivy.uix.label import Label from kivy.uix.checkbox import CheckBox from kivy.uix.switch import Switch from kivy.core.clipboard import Clipboard Factory.register('TabbedCarousel', module='electrum_gui.kivy.uix.screens') # Register fonts without this you won't be able to use bold/italic... # inside markup. from kivy.core.text import Label Label.register('Roboto', 'gui/kivy/data/fonts/Roboto.ttf', 'gui/kivy/data/fonts/Roboto.ttf', 'gui/kivy/data/fonts/Roboto-Bold.ttf', 'gui/kivy/data/fonts/Roboto-Bold.ttf') from electrum.util import base_units class ElectrumWindow(App): electrum_config = ObjectProperty(None) language = StringProperty('en') def set_URI(self, uri): self.switch_to('send') self.send_screen.set_URI(uri) def on_new_intent(self, intent): if intent.getScheme() != 'bitcoin': return uri = intent.getDataString() self.set_URI(uri) def on_language(self, instance, language): Logger.info('language: {}'.format(language)) _.switch_lang(language) def on_quotes(self, d): #Logger.info("on_quotes") pass def on_history(self, d): #Logger.info("on_history") if self.history_screen: self.history_screen.update() def _get_bu(self): return self.electrum_config.get('base_unit', 'mBTC') def _set_bu(self, value): assert value in base_units.keys() self.electrum_config.set_key('base_unit', value, True) self.update_status() if self.history_screen: self.history_screen.update() base_unit = AliasProperty(_get_bu, _set_bu) status = StringProperty('') fiat_unit = StringProperty('') def on_fiat_unit(self, a, b): if self.history_screen: self.history_screen.update() def decimal_point(self): return base_units[self.base_unit] def btc_to_fiat(self, amount_str): if not amount_str: return '' rate = run_hook('exchange_rate') if not rate: return '' fiat_amount = self.get_amount(amount_str + ' ' + self.base_unit) * rate / pow(10, 8) return "{:.2f}".format(fiat_amount).rstrip('0').rstrip('.') def fiat_to_btc(self, fiat_amount): if not fiat_amount: return '' rate = run_hook('exchange_rate') if not rate: return '' satoshis = int(pow(10,8) * Decimal(fiat_amount) / Decimal(rate)) return format_satoshis_plain(satoshis, self.decimal_point()) def get_amount(self, amount_str): a, u = amount_str.split() assert u == self.base_unit try: x = Decimal(a) except: return None p = pow(10, self.decimal_point()) return int(p * x) _orientation = OptionProperty('landscape', options=('landscape', 'portrait')) def _get_orientation(self): return self._orientation orientation = AliasProperty(_get_orientation, None, bind=('_orientation',)) '''Tries to ascertain the kind of device the app is running on. Cane be one of `tablet` or `phone`. :data:`orientation` is a read only `AliasProperty` Defaults to 'landscape' ''' _ui_mode = OptionProperty('phone', options=('tablet', 'phone')) def _get_ui_mode(self): return self._ui_mode ui_mode = AliasProperty(_get_ui_mode, None, bind=('_ui_mode',)) '''Defines tries to ascertain the kind of device the app is running on. Cane be one of `tablet` or `phone`. :data:`ui_mode` is a read only `AliasProperty` Defaults to 'phone' ''' wallet = ObjectProperty(None) '''Holds the electrum wallet :attr:`wallet` is a `ObjectProperty` defaults to None. ''' def __init__(self, **kwargs): # initialize variables self._clipboard = Clipboard self.info_bubble = None self.qrscanner = None self.nfcscanner = None self.tabs = None self.is_exit = False super(ElectrumWindow, self).__init__(**kwargs) title = _('Electrum App') self.electrum_config = config = kwargs.get('config', None) self.language = config.get('language', 'en') self.network = network = kwargs.get('network', None) self.plugins = kwargs.get('plugins', []) self.gui_object = kwargs.get('gui_object', None) #self.config = self.gui_object.config self.contacts = Contacts(self.electrum_config) self.invoices = InvoiceStore(self.electrum_config) # create triggers so as to minimize updation a max of 2 times a sec self._trigger_update_wallet =\ Clock.create_trigger(self.update_wallet, .5) self._trigger_update_status =\ Clock.create_trigger(self.update_status, .5) self._trigger_notify_transactions = \ Clock.create_trigger(self.notify_transactions, 5) # cached dialogs self._settings_dialog = None self._password_dialog = None def on_pr(self, pr): if pr.verify(self.contacts): key = self.invoices.add(pr) if self.invoices_screen: self.invoices_screen.update() status = self.invoices.get_status(key) if status == PR_PAID: self.show_error("invoice already paid") self.send_screen.do_clear() else: if pr.has_expired(): self.show_error(_('Payment request has expired')) else: self.switch_to('send') self.send_screen.set_request(pr) else: self.show_error("invoice error:" + pr.error) self.send_screen.do_clear() def on_qr(self, data): if data.startswith('bitcoin:'): self.set_URI(data) return # try to decode transaction from electrum.bitcoin import base_decode from electrum.transaction import Transaction try: text = base_decode(data, None, base=43).encode('hex') tx = Transaction(text) except: tx = None if tx: self.tx_dialog(tx) return # show error self.show_error("Unable to decode QR data") def update_tab(self, name): s = getattr(self, name + '_screen', None) if s: s.update() @profiler def update_tabs(self): for tab in ['invoices', 'send', 'history', 'receive', 'requests']: self.update_tab(tab) def switch_to(self, name): s = getattr(self, name + '_screen', None) if self.send_screen is None: s = self.tabs.ids[name + '_screen'] s.load_screen() panel = self.tabs.ids.panel tab = self.tabs.ids[name + '_tab'] panel.switch_to(tab) def show_request(self, addr): self.switch_to('receive') self.receive_screen.screen.address = addr def show_pr_details(self, req, status, is_invoice): from electrum.util import format_time requestor = req.get('requestor') exp = req.get('exp') memo = req.get('memo') amount = req.get('amount') popup = Builder.load_file('gui/kivy/uix/ui_screens/invoice.kv') popup.is_invoice = is_invoice popup.amount = amount popup.requestor = requestor if is_invoice else req.get('address') popup.exp = format_time(exp) if exp else '' popup.description = memo if memo else '' popup.signature = req.get('signature', '') popup.status = status txid = req.get('txid') popup.tx_hash = txid or '' popup.on_open = lambda: popup.ids.output_list.update(req.get('outputs', [])) popup.open() def qr_dialog(self, title, data, show_text=False): from uix.dialogs.qr_dialog import QRDialog popup = QRDialog(title, data, show_text) popup.open() def scan_qr(self, on_complete): if platform != 'android': return from jnius import autoclass from android import activity PythonActivity = autoclass('org.renpy.android.PythonActivity') Intent = autoclass('android.content.Intent') intent = Intent("com.google.zxing.client.android.SCAN") intent.putExtra("SCAN_MODE", "QR_CODE_MODE") def on_qr_result(requestCode, resultCode, intent): if requestCode == 0: if resultCode == -1: # RESULT_OK: contents = intent.getStringExtra("SCAN_RESULT") if intent.getStringExtra("SCAN_RESULT_FORMAT") == 'QR_CODE': on_complete(contents) else: self.show_error("wrong format " + intent.getStringExtra("SCAN_RESULT_FORMAT")) activity.bind(on_activity_result=on_qr_result) try: PythonActivity.mActivity.startActivityForResult(intent, 0) except: self.show_error(_('Could not start Barcode Scanner.') + ' ' + _('Please install the Barcode Scanner app from ZXing')) def build(self): return Builder.load_file('gui/kivy/main.kv') def _pause(self): if platform == 'android': # move activity to back from jnius import autoclass python_act = autoclass('org.renpy.android.PythonActivity') mActivity = python_act.mActivity mActivity.moveTaskToBack(True) def on_start(self): ''' This is the start point of the kivy ui ''' import time Logger.info('Time to on_start: {} <<<<<<<<'.format(time.clock())) Logger.info("dpi: {} {}".format(metrics.dpi, metrics.dpi_rounded)) win = Window win.bind(size=self.on_size, on_keyboard=self.on_keyboard) win.bind(on_key_down=self.on_key_down) win.softinput_mode = 'below_target' self.on_size(win, win.size) self.init_ui() self.load_wallet_by_name(self.electrum_config.get_wallet_path()) # init plugins run_hook('init_kivy', self) # default tab self.switch_to('history') # bind intent for bitcoin: URI scheme if platform == 'android': from android import activity from jnius import autoclass PythonActivity = autoclass('org.renpy.android.PythonActivity') mactivity = PythonActivity.mActivity self.on_new_intent(mactivity.getIntent()) activity.bind(on_new_intent=self.on_new_intent) # URI passed in config uri = self.electrum_config.get('url') if uri: self.set_URI(uri) def load_wallet_by_name(self, wallet_path): if not wallet_path: return config = self.electrum_config storage = WalletStorage(wallet_path) Logger.info('Electrum: Check for existing wallet') if storage.file_exists: wallet = Wallet(storage) action = wallet.get_action() else: action = 'new' if action is not None: # start installation wizard Logger.debug('Electrum: Wallet not found. Launching install wizard') wizard = Factory.InstallWizard(config, self.network, storage) wizard.bind(on_wizard_complete=lambda instance, wallet: self.load_wallet(wallet)) wizard.run(action) else: self.load_wallet(wallet) self.on_resume() def on_stop(self): self.stop_wallet() def stop_wallet(self): if self.wallet: self.wallet.stop_threads() def on_key_down(self, instance, key, keycode, codepoint, modifiers): if 'ctrl' in modifiers: # q=24 w=25 if keycode in (24, 25): self.stop() elif keycode == 27: # r=27 # force update wallet self.update_wallet() elif keycode == 112: # pageup #TODO move to next tab pass elif keycode == 117: # pagedown #TODO move to prev tab pass #TODO: alt+tab_number to activate the particular tab def on_keyboard(self, instance, key, keycode, codepoint, modifiers): if key == 27 and self.is_exit is False: self.is_exit = True self.show_info(_('Press again to exit')) return True self.is_exit = False # override settings button if key in (319, 282): #f1/settings button on android #self.gui.main_gui.toggle_settings(self) return True def settings_dialog(self): if self._settings_dialog is None: from uix.dialogs.settings import SettingsDialog self._settings_dialog = SettingsDialog(self) self._settings_dialog.update() self._settings_dialog.open() def popup_dialog(self, name): if name == 'settings': self.settings_dialog() elif name == 'wallets': from uix.dialogs.wallets import WalletDialog d = WalletDialog() d.open() else: popup = Builder.load_file('gui/kivy/uix/ui_screens/'+name+'.kv') popup.open() @profiler def init_ui(self): ''' Initialize The Ux part of electrum. This function performs the basic tasks of setting up the ui. ''' from weakref import ref self.funds_error = False # setup UX self.screens = {} #setup lazy imports for mainscreen Factory.register('AnimatedPopup', module='electrum_gui.kivy.uix.dialogs') Factory.register('QRCodeWidget', module='electrum_gui.kivy.uix.qrcodewidget') # preload widgets. Remove this if you want to load the widgets on demand #Cache.append('electrum_widgets', 'AnimatedPopup', Factory.AnimatedPopup()) #Cache.append('electrum_widgets', 'QRCodeWidget', Factory.QRCodeWidget()) # load and focus the ui self.root.manager = self.root.ids['manager'] self.history_screen = None self.contacts_screen = None self.send_screen = None self.invoices_screen = None self.receive_screen = None self.requests_screen = None self.icon = "icons/electrum.png" # connect callbacks if self.network: interests = ['updated', 'status', 'new_transaction'] self.network.register_callback(self.on_network, interests) #self.wallet = None self.tabs = self.root.ids['tabs'] def on_network(self, event, *args): if event == 'updated': self._trigger_update_wallet() elif event == 'status': self._trigger_update_status() elif event == 'new_transaction': self._trigger_notify_transactions(*args) @profiler def load_wallet(self, wallet): self.stop_wallet() self.wallet = wallet self.wallet.start_threads(self.network) self.current_account = self.wallet.storage.get('current_account', None) self.update_wallet() # Once GUI has been initialized check if we want to announce something # since the callback has been called before the GUI was initialized if self.receive_screen: self.receive_screen.clear() self.update_tabs() self.notify_transactions() run_hook('load_wallet', wallet, self) def update_status(self, *dt): if not self.wallet: return if self.network is None or not self.network.is_running(): self.status = _("Offline") elif self.network.is_connected(): server_height = self.network.get_server_height() server_lag = self.network.get_local_height() - server_height if not self.wallet.up_to_date or server_height == 0: self.status = _("Synchronizing...") elif server_lag > 1: self.status = _("Server lagging (%d blocks)"%server_lag) else: c, u, x = self.wallet.get_account_balance(self.current_account) text = self.format_amount(c+x+u) self.status = str(text.strip() + ' ' + self.base_unit) else: self.status = _("Not connected") def get_max_amount(self): inputs = self.wallet.get_spendable_coins(None) addr = str(self.send_screen.screen.address) or self.wallet.dummy_address() amount, fee = self.wallet.get_max_amount(self.electrum_config, inputs, addr, None) return format_satoshis_plain(amount, self.decimal_point()) def format_amount(self, x, is_diff=False, whitespaces=False): return format_satoshis(x, is_diff, 0, self.decimal_point(), whitespaces) def format_amount_and_units(self, x): return format_satoshis_plain(x, self.decimal_point()) + ' ' + self.base_unit @profiler def update_wallet(self, *dt): self._trigger_update_status() #if self.wallet.up_to_date or not self.network or not self.network.is_connected(): self.update_tabs() @profiler def notify_transactions(self, *dt): if not self.network or not self.network.is_connected(): return # temporarily disabled for merge return iface = self.network ptfn = iface.pending_transactions_for_notifications if len(ptfn) > 0: # Combine the transactions if there are more then three tx_amount = len(ptfn) if(tx_amount >= 3): total_amount = 0 for tx in ptfn: is_relevant, is_mine, v, fee = self.wallet.get_tx_value(tx) if(v > 0): total_amount += v self.notify(_("{txs}s new transactions received. Total amount" "received in the new transactions {amount}s" "{unit}s").format(txs=tx_amount, amount=self.format_amount(total_amount), unit=self.base_unit())) iface.pending_transactions_for_notifications = [] else: for tx in iface.pending_transactions_for_notifications: if tx: iface.pending_transactions_for_notifications.remove(tx) is_relevant, is_mine, v, fee = self.wallet.get_tx_value(tx) if(v > 0): self.notify( _("{txs} new transaction received. {amount} {unit}"). format(txs=tx_amount, amount=self.format_amount(v), unit=self.base_unit)) def notify(self, message): try: global notification, os if not notification: from plyer import notification import os icon = (os.path.dirname(os.path.realpath(__file__)) + '/../../' + self.icon) notification.notify('Electrum', message, app_icon=icon, app_name='Electrum') except ImportError: Logger.Error('Notification: needs plyer; `sudo pip install plyer`') def on_pause(self): # pause nfc if self.qrscanner: self.qrscanner.stop() if self.nfcscanner: self.nfcscanner.nfc_disable() return True def on_resume(self): if self.qrscanner and qrscanner.get_parent_window(): self.qrscanner.start() if self.nfcscanner: self.nfcscanner.nfc_enable() def on_size(self, instance, value): width, height = value self._orientation = 'landscape' if width > height else 'portrait' self._ui_mode = 'tablet' if min(width, height) > inch(3.51) else 'phone' def on_ref_label(self, label, touch): if label.touched: label.touched = False self.qr_dialog(label.name, label.data, True) else: label.touched = True self._clipboard.copy(label.data) Clock.schedule_once(lambda dt: self.show_info(_('Text copied to clipboard.\nTap again to display it as QR code.'))) def set_send(self, address, amount, label, message): self.send_payment(address, amount=amount, label=label, message=message) def show_error(self, error, width='200dp', pos=None, arrow_pos=None, exit=False, icon='atlas://gui/kivy/theming/light/error', duration=0, modal=False): ''' Show a error Message Bubble. ''' self.show_info_bubble( text=error, icon=icon, width=width, pos=pos or Window.center, arrow_pos=arrow_pos, exit=exit, duration=duration, modal=modal) def show_info(self, error, width='200dp', pos=None, arrow_pos=None, exit=False, duration=0, modal=False): ''' Show a Info Message Bubble. ''' self.show_error(error, icon='atlas://gui/kivy/theming/light/important', duration=duration, modal=modal, exit=exit, pos=pos, arrow_pos=arrow_pos) def show_info_bubble(self, text=_('Hello World'), pos=None, duration=0, arrow_pos='bottom_mid', width=None, icon='', modal=False, exit=False): '''Method to show a Information Bubble .. parameters:: text: Message to be displayed pos: position for the bubble duration: duration the bubble remains on screen. 0 = click to hide width: width of the Bubble arrow_pos: arrow position for the bubble ''' info_bubble = self.info_bubble if not info_bubble: info_bubble = self.info_bubble = Factory.InfoBubble() win = Window if info_bubble.parent: win.remove_widget(info_bubble if not info_bubble.modal else info_bubble._modal_view) if not arrow_pos: info_bubble.show_arrow = False else: info_bubble.show_arrow = True info_bubble.arrow_pos = arrow_pos img = info_bubble.ids.img if text == 'texture': # icon holds a texture not a source image # display the texture in full screen text = '' img.texture = icon info_bubble.fs = True info_bubble.show_arrow = False img.allow_stretch = True info_bubble.dim_background = True info_bubble.background_image = 'atlas://gui/kivy/theming/light/card' else: info_bubble.fs = False info_bubble.icon = icon #if img.texture and img._coreimage: # img.reload() img.allow_stretch = False info_bubble.dim_background = False info_bubble.background_image = 'atlas://data/images/defaulttheme/bubble' info_bubble.message = text if not pos: pos = (win.center[0], win.center[1] - (info_bubble.height/2)) info_bubble.show(pos, duration, width, modal=modal, exit=exit) def tx_dialog(self, tx): from uix.dialogs.tx_dialog import TxDialog d = TxDialog(self, tx) d.open() def sign_tx(self, *args): threading.Thread(target=self._sign_tx, args=args).start() def _sign_tx(self, tx, password, on_success, on_failure): try: self.wallet.sign_transaction(tx, password) except InvalidPassword: Clock.schedule_once(lambda dt: on_failure(_("Invalid PIN"))) return Clock.schedule_once(lambda dt: on_success(tx)) def _broadcast_thread(self, tx, on_complete): ok, txid = self.network.broadcast(tx) Clock.schedule_once(lambda dt: on_complete(ok, txid)) def broadcast(self, tx, pr=None): def on_complete(ok, txid): self.show_info(txid) if ok and pr: pr.set_paid(tx.hash()) self.invoices.save() self.update_tab('invoices') if self.network and self.network.is_connected(): self.show_info(_('Sending')) threading.Thread(target=self._broadcast_thread, args=(tx, on_complete)).start() else: self.show_info(_('Cannot broadcast transaction') + ':\n' + _('Not connected')) def description_dialog(self, screen): from uix.dialogs.label_dialog import LabelDialog text = screen.message def callback(text): screen.message = text d = LabelDialog(_('Enter description'), text, callback) d.open() @profiler def amount_dialog(self, screen, show_max): from uix.dialogs.amount_dialog import AmountDialog amount = screen.amount if amount: amount, u = str(amount).split() assert u == self.base_unit def cb(amount): screen.amount = amount popup = AmountDialog(show_max, amount, cb) popup.open() def protected(self, msg, f, args): if self.wallet.use_encryption: self.password_dialog(msg, f, args) else: apply(f, args + (None,)) def show_seed(self, label): self.protected(_("Enter your PIN code in order to decrypt your seed"), self._show_seed, (label,)) def _show_seed(self, label, password): if self.wallet.use_encryption and password is None: return try: seed = self.wallet.get_seed(password) except: self.show_error("Invalid PIN") return label.text = _('Seed') + ':\n' + seed def change_password(self, cb): if self.wallet.use_encryption: self.protected(_("Changing PIN code.") + '\n' + _("Enter your current PIN:"), self._change_password, (cb,)) else: self._change_password(cb, None) def _change_password(self, cb, old_password): if self.wallet.use_encryption: if old_password is None: return try: self.wallet.check_password(old_password) except InvalidPassword: self.show_error("Invalid PIN") return self.password_dialog(_('Enter new PIN'), self._change_password2, (cb, old_password,)) def _change_password2(self, cb, old_password, new_password): self.password_dialog(_('Confirm new PIN'), self._change_password3, (cb, old_password, new_password)) def _change_password3(self, cb, old_password, new_password, confirmed_password): if new_password == confirmed_password: self.wallet.update_password(old_password, new_password) cb() else: self.show_error("PIN numbers do not match") def password_dialog(self, msg, f, args): def callback(pw): Clock.schedule_once(lambda x: apply(f, args + (pw,)), 0.1) if self._password_dialog is None: from uix.dialogs.password_dialog import PasswordDialog self._password_dialog = PasswordDialog() self._password_dialog.init(msg, callback) self._password_dialog.open()
# vim: set et sw=4 sts=4 fileencoding=utf-8: # # Python camera library for the Rasperry-Pi camera module # Copyright (c) 2013-2015 Dave Jones <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ The color module defines a class for representing a color, along with various ancillary classes which can be used to manipulate aspects of a color. .. note:: All classes in this module are available from the :mod:`picamera` namespace without having to import :mod:`picamera.color` directly. The following classes are defined in the module: Color ===== .. autoclass:: Color :members: Red === .. autoclass:: Red :members: Green ===== .. autoclass:: Green :members: Blue ==== .. autoclass:: Blue :members: Hue === .. autoclass:: Hue :members: Saturation ========== .. autoclass:: Saturation :members: Lightness ========= .. autoclass:: Lightness :members: """ from __future__ import ( unicode_literals, print_function, division, absolute_import, ) # Make Py2's zip equivalent to Py3's try: from itertools import izip as zip except ImportError: pass # Make Py2's str and range equivalent to Py3's str = type('') import colorsys from math import pi, sqrt from fractions import Fraction from collections import namedtuple # From the CSS Color Module Level 3 specification, section 4.3 # <http://www.w3.org/TR/css3-color/#svg-color> NAMED_COLORS = { 'aliceblue': '#f0f8ff', 'antiquewhite': '#faebd7', 'aqua': '#00ffff', 'aquamarine': '#7fffd4', 'azure': '#f0ffff', 'beige': '#f5f5dc', 'bisque': '#ffe4c4', 'black': '#000000', 'blanchedalmond': '#ffebcd', 'blue': '#0000ff', 'blueviolet': '#8a2be2', 'brown': '#a52a2a', 'burlywood': '#deb887', 'cadetblue': '#5f9ea0', 'chartreuse': '#7fff00', 'chocolate': '#d2691e', 'coral': '#ff7f50', 'cornflowerblue': '#6495ed', 'cornsilk': '#fff8dc', 'crimson': '#dc143c', 'cyan': '#00ffff', 'darkblue': '#00008b', 'darkcyan': '#008b8b', 'darkgoldenrod': '#b8860b', 'darkgray': '#a9a9a9', 'darkgreen': '#006400', 'darkgrey': '#a9a9a9', 'darkkhaki': '#bdb76b', 'darkmagenta': '#8b008b', 'darkolivegreen': '#556b2f', 'darkorange': '#ff8c00', 'darkorchid': '#9932cc', 'darkred': '#8b0000', 'darksalmon': '#e9967a', 'darkseagreen': '#8fbc8f', 'darkslateblue': '#483d8b', 'darkslategray': '#2f4f4f', 'darkslategrey': '#2f4f4f', 'darkturquoise': '#00ced1', 'darkviolet': '#9400d3', 'deeppink': '#ff1493', 'deepskyblue': '#00bfff', 'dimgray': '#696969', 'dimgrey': '#696969', 'dodgerblue': '#1e90ff', 'firebrick': '#b22222', 'floralwhite': '#fffaf0', 'forestgreen': '#228b22', 'fuchsia': '#ff00ff', 'gainsboro': '#dcdcdc', 'ghostwhite': '#f8f8ff', 'gold': '#ffd700', 'goldenrod': '#daa520', 'gray': '#808080', 'green': '#008000', 'greenyellow': '#adff2f', 'grey': '#808080', 'honeydew': '#f0fff0', 'hotpink': '#ff69b4', 'indianred': '#cd5c5c', 'indigo': '#4b0082', 'ivory': '#fffff0', 'khaki': '#f0e68c', 'lavender': '#e6e6fa', 'lavenderblush': '#fff0f5', 'lawngreen': '#7cfc00', 'lemonchiffon': '#fffacd', 'lightblue': '#add8e6', 'lightcoral': '#f08080', 'lightcyan': '#e0ffff', 'lightgoldenrodyellow': '#fafad2', 'lightgray': '#d3d3d3', 'lightgreen': '#90ee90', 'lightgrey': '#d3d3d3', 'lightpink': '#ffb6c1', 'lightsalmon': '#ffa07a', 'lightseagreen': '#20b2aa', 'lightskyblue': '#87cefa', 'lightslategray': '#778899', 'lightslategrey': '#778899', 'lightsteelblue': '#b0c4de', 'lightyellow': '#ffffe0', 'lime': '#00ff00', 'limegreen': '#32cd32', 'linen': '#faf0e6', 'magenta': '#ff00ff', 'maroon': '#800000', 'mediumaquamarine': '#66cdaa', 'mediumblue': '#0000cd', 'mediumorchid': '#ba55d3', 'mediumpurple': '#9370db', 'mediumseagreen': '#3cb371', 'mediumslateblue': '#7b68ee', 'mediumspringgreen': '#00fa9a', 'mediumturquoise': '#48d1cc', 'mediumvioletred': '#c71585', 'midnightblue': '#191970', 'mintcream': '#f5fffa', 'mistyrose': '#ffe4e1', 'moccasin': '#ffe4b5', 'navajowhite': '#ffdead', 'navy': '#000080', 'oldlace': '#fdf5e6', 'olive': '#808000', 'olivedrab': '#6b8e23', 'orange': '#ffa500', 'orangered': '#ff4500', 'orchid': '#da70d6', 'palegoldenrod': '#eee8aa', 'palegreen': '#98fb98', 'paleturquoise': '#afeeee', 'palevioletred': '#db7093', 'papayawhip': '#ffefd5', 'peachpuff': '#ffdab9', 'peru': '#cd853f', 'pink': '#ffc0cb', 'plum': '#dda0dd', 'powderblue': '#b0e0e6', 'purple': '#800080', 'red': '#ff0000', 'rosybrown': '#bc8f8f', 'royalblue': '#4169e1', 'saddlebrown': '#8b4513', 'salmon': '#fa8072', 'sandybrown': '#f4a460', 'seagreen': '#2e8b57', 'seashell': '#fff5ee', 'sienna': '#a0522d', 'silver': '#c0c0c0', 'skyblue': '#87ceeb', 'slateblue': '#6a5acd', 'slategray': '#708090', 'slategrey': '#708090', 'snow': '#fffafa', 'springgreen': '#00ff7f', 'steelblue': '#4682b4', 'tan': '#d2b48c', 'teal': '#008080', 'thistle': '#d8bfd8', 'tomato': '#ff6347', 'turquoise': '#40e0d0', 'violet': '#ee82ee', 'wheat': '#f5deb3', 'white': '#ffffff', 'whitesmoke': '#f5f5f5', 'yellow': '#ffff00', 'yellowgreen': '#9acd32', } class Red(float): """ Represents the red component of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value, or by querying the :attr:`Color.red` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color.from_rgb(0, 0, 0) + Red(0.5) <Color "#7f0000"> >>> Color('#f00') - Color('#900').red <Color "#660000"> >>> (Red(0.1) * Color('red')).red Red(0.1) """ def __repr__(self): return "Red(%s)" % self class Green(float): """ Represents the green component of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value, or by querying the :attr:`Color.green` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color(0, 0, 0) + Green(0.1) <Color "#001900"> >>> Color.from_yuv(1, -0.4, -0.6) - Green(1) <Color "#50002f"> >>> (Green(0.5) * Color('white')).rgb (Red(1.0), Green(0.5), Blue(1.0)) """ def __repr__(self): return "Green(%s)" % self class Blue(float): """ Represents the blue component of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value, or by querying the :attr:`Color.blue` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color(0, 0, 0) + Blue(0.2) <Color "#000033"> >>> Color.from_hls(0.5, 0.5, 1.0) - Blue(1) <Color "#00fe00"> >>> Blue(0.9) * Color('white') <Color "#ffffe5"> """ def __repr__(self): return "Blue(%s)" % self class Hue(float): """ Represents the hue of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value in the range [0.0, 1.0) representing an angle around the `HSL hue wheel`_. As this is a circular mapping, 0.0 and 1.0 effectively mean the same thing, i.e. out of range values will be normalized into the range [0.0, 1.0). The class can also be constructed with the keyword arguments ``deg`` or ``rad`` if you wish to specify the hue value in degrees or radians instead, respectively. Instances can also be constructed by querying the :attr:`Color.hue` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color(1, 0, 0).hls (0.0, 0.5, 1.0) >>> (Color(1, 0, 0) + Hue(deg=180)).hls (0.5, 0.5, 1.0) Note that whilst multiplication by a :class:`Hue` doesn't make much sense, it is still supported. However, the circular nature of a hue value can lead to suprising effects. In particular, since 1.0 is equivalent to 0.0 the following may be observed:: >>> (Hue(1.0) * Color.from_hls(0.5, 0.5, 1.0)).hls (0.0, 0.5, 1.0) .. _HSL hue wheel: https://en.wikipedia.org/wiki/Hue """ def __new__(cls, n=None, deg=None, rad=None): if n is not None: return super(Hue, cls).__new__(cls, n % 1.0) elif deg is not None: return super(Hue, cls).__new__(cls, (deg / 360.0) % 1.0) elif rad is not None: return super(Hue, cls).__new__(cls, (rad / (2 * pi)) % 1.0) else: raise ValueError('You must specify a value, or deg or rad') def __repr__(self): return "Hue(deg=%s)" % self.deg @property def deg(self): return self * 360.0 @property def rad(self): return self * 2 * pi class Lightness(float): """ Represents the lightness of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value, or by querying the :attr:`Color.lightness` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color(0, 0, 0) + Lightness(0.1) <Color "#191919"> >>> Color.from_rgb_bytes(0x80, 0x80, 0) - Lightness(0.2) <Color "#191900"> >>> Lightness(0.9) * Color('wheat') <Color "#f0cd8d"> """ def __repr__(self): return "Lightness(%s)" % self class Saturation(float): """ Represents the saturation of a :class:`Color` for use in transformations. Instances of this class can be constructed directly with a float value, or by querying the :attr:`Color.saturation` attribute. Addition, subtraction, and multiplication are supported with :class:`Color` instances. For example:: >>> Color(0.9, 0.9, 0.6) + Saturation(0.1) <Color "#ebeb92"> >>> Color('red') - Saturation(1) <Color "#7f7f7f"> >>> Saturation(0.5) * Color('wheat') <Color "#e4d9c3"> """ def __repr__(self): return "Lightness(%s)" % self clamp_float = lambda v: max(0.0, min(1.0, v)) clamp_bytes = lambda v: max(0, min(255, v)) make_linear = lambda c: c / 12.92 if c <= 0.04045 else ((c + 0.055) / 1.055) ** 2.4 matrix_mult = lambda m, n: ( sum(mval * nval for mval, nval in zip(mrow, n)) for mrow in m ) class Color(namedtuple('Color', ('red', 'green', 'blue'))): """ The Color class is a tuple which represents a color as red, green, and blue components. The class has a flexible constructor which allows you to create an instance from a variety of color systems including `RGB`_, `Y'UV`_, `Y'IQ`_, `HLS`_, and `HSV`_. There are also explicit constructors for each of these systems to allow you to force the use of a system in your code. For example, an instance of :class:`Color` can be constructed in any of the following ways:: >>> Color('#f00') <Color "#ff0000"> >>> Color('green') <Color "#008000"> >>> Color(0, 0, 1) <Color "#0000ff"> >>> Color(hue=0, saturation=1, value=0.5) <Color "#7f0000"> >>> Color(y=0.4, u=-0.05, v=0.615) <Color "#ff0f4c"> The specific forms that the default constructor will accept are enumerated below: +------------------------------+------------------------------------------+ | Style | Description | +==============================+==========================================+ | Single positional parameter | Equivalent to calling | | | :meth:`Color.from_string`. | +------------------------------+------------------------------------------+ | Three positional parameters | Equivalent to calling | | | :meth:`Color.from_rgb` if all three | | | parameters are between 0.0 and 1.0, or | | | :meth:`Color.from_rgb_bytes` otherwise. | +------------------------------+ | | Three named parameters, | | | "r", "g", "b" | | +------------------------------+ | | Three named parameters, | | | "red", "green", "blue" | | +------------------------------+------------------------------------------+ | Three named parameters, | Equivalent to calling | | "y", "u", "v" | :meth:`Color.from_yuv` if "y" is between | | | 0.0 and 1.0, "u" is between -0.436 and | | | 0.436, and "v" is between -0.615 and | | | 0.615, or :meth:`Color.from_yuv_bytes` | | | otherwise. | +------------------------------+------------------------------------------+ | Three named parameters, | Equivalent to calling | | "y", "i", "q" | :meth:`Color.from_yiq`. | +------------------------------+------------------------------------------+ | Three named parameters, | Equivalent to calling | | "h", "l", "s" | :meth:`Color.from_hls`. | +------------------------------+ | | Three named parameters, | | | "hue", "lightness", | | | "saturation" | | +------------------------------+------------------------------------------+ | Three named parameters | Equivalent to calling | | "h", "s", "v" | :meth:`Color.from_hsv` | +------------------------------+ | | Three named parameters | | | "hue", "saturation", "value" | | +------------------------------+------------------------------------------+ If the constructor parameters do not conform to any of the variants in the table above, a :exc:`ValueError` will be thrown. Internally, the color is *always* represented as 3 float values corresponding to the red, green, and blue components of the color. These values take a value from 0.0 to 1.0 (least to full intensity). The class provides several attributes which can be used to convert one color system into another:: >>> Color('#f00').hls (0.0, 0.5, 1.0) >>> Color.from_string('green').hue Hue(deg=120.0) >>> Color.from_rgb_bytes(0, 0, 255).yuv (0.114, 0.435912, -0.099978) As :class:`Color` derives from tuple, instances are immutable. While this provides the advantage that they can be used as keys in a dict, it does mean that colors themselves cannot be directly manipulated (e.g. by reducing the red component). However, several auxilliary classes in the module provide the ability to perform simple transformations of colors via operators which produce a new :class:`Color` instance. For example:: >>> Color('red') - Red(0.5) <Color "#7f0000"> >>> Color('green') + Red(0.5) <Color "#7f8000"> >>> Color.from_hls(0.5, 0.5, 1.0) <Color "#00feff"> >>> Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8) <Color "#00cbcc"> >>> (Color.from_hls(0.5, 0.5, 1.0) * Lightness(0.8)).hls (0.5, 0.4, 1.0) From the last example above one can see that even attributes not directly stored by the color (such as lightness) can be manipulated in this fashion. In this case a :class:`Color` instance is constructed from HLS (hue, lightness, saturation) values with a lightness of 0.5. This is multiplied by a :class:`Lightness` instance with a value of 0.8 which constructs a new :class:`Color` with the same hue and saturation, but a lightness of 0.5 * 0.8 = 0.4. If an instance is converted to a string (with :func:`str`) it will return a string containing the 7-character HTML code for the color (e.g. "#ff0000" for red). As can be seen in the examples above, a similar representation is returned for :func:`repr`. .. _RGB: https://en.wikipedia.org/wiki/RGB_color_space .. _Y'UV: https://en.wikipedia.org/wiki/YUV .. _Y'IQ: https://en.wikipedia.org/wiki/YIQ .. _HLS: https://en.wikipedia.org/wiki/HSL_and_HSV .. _HSV: https://en.wikipedia.org/wiki/HSL_and_HSV """ def __new__(cls, *args, **kwargs): def from_rgb(r, g, b): if 0.0 <= r <= 1.0 and 0.0 <= g <= 1.0 and 0.0 <= b <= 1.0: return cls.from_rgb(r, g, b) else: return cls.from_rgb_bytes(r, g, b) def from_yuv(y, u, v): if 0.0 <= y <= 1.0 and -0.436 <= u <= 0.436 and -0.615 <= v <= 0.615: return cls.from_yuv(y, u, v) else: return cls.from_yuv_bytes(y, u, v) if kwargs: try: return { frozenset('rgb'): from_rgb, frozenset('yuv'): from_yuv, frozenset('yiq'): cls.from_yiq, frozenset('hls'): cls.from_hls, frozenset('hsv'): cls.from_hsv, frozenset(('red', 'green', 'blue')): lambda red, green, blue: from_rgb(red, green, blue), frozenset(('hue', 'lightness', 'saturation')): lambda hue, lightness, saturation: cls.from_hls(hue, lightness, saturation), frozenset(('hue', 'saturation', 'value')): lambda hue, saturation, value: cls.from_hsv(hue, saturation, value), }[frozenset(kwargs.keys())](**kwargs) except KeyError: pass else: if len(args) == 1: return cls.from_string(args[0]) elif len(args) == 3: return from_rgb(*args) raise ValueError('Unable to construct Color from provided arguments') @classmethod def from_string(cls, s): """ Construct a :class:`Color` from a 4 or 7 character CSS-like representation (e.g. "#f00" or "#ff0000" for red), or from one of the named colors (e.g. "green" or "wheat") from the `CSS standard`_. Any other string format will result in a :exc:`ValueError`. .. _CSS standard: http://www.w3.org/TR/css3-color/#svg-color """ if isinstance(s, bytes): s = s.decode('ascii') if s.startswith('#'): if len(s) == 7: return cls.from_rgb_bytes( int(s[1:3], base=16), int(s[3:5], base=16), int(s[5:7], base=16) ) elif len(s) == 4: return cls.from_rgb_bytes( int(s[1:2], base=16) * 0x11, int(s[2:3], base=16) * 0x11, int(s[3:4], base=16) * 0x11 ) raise ValueError('Unrecognized color format "%s"' % s) try: return cls.from_string(NAMED_COLORS[s.lower()]) except KeyError: raise ValueError('Unrecognized color name "%s"' % s) @classmethod def from_rgb(cls, r, g, b): """ Construct a :class:`Color` from three `RGB`_ float values between 0.0 and 1.0. """ return super(Color, cls).__new__(cls, r, g, b) @classmethod def from_rgb_bytes(cls, r, g, b): """ Construct a :class:`Color` from three `RGB`_ byte values between 0 and 255. """ return super(Color, cls).__new__(cls, r / 255.0, g / 255.0, b / 255.0) @classmethod def from_yuv(cls, y, u, v): """ Construct a :class:`Color` from three `Y'UV`_ float values. The Y value may be between 0.0 and 1.0. U may be between -0.436 and 0.436, while V may be between -0.615 and 0.615. """ return super(Color, cls).__new__( cls, clamp_float(y + 1.14 * v), clamp_float(y - 0.395 * u - 0.581 * v), clamp_float(y + 2.033 * u), ) @classmethod def from_yuv_bytes(cls, y, u, v): """ Construct a :class:`Color` from three `Y'UV`_ byte values between 0 and 255. The U and V values are biased by 128 to prevent negative values as is typical in video applications. The Y value is biased by 16 for the same purpose. """ c = y - 16 d = u - 128 e = v - 128 return cls.from_rgb_bytes( clamp_bytes((298 * c + 409 * e + 128) >> 8), clamp_bytes((298 * c - 100 * d - 208 * e + 128) >> 8), clamp_bytes((298 * c + 516 * d + 128) >> 8), ) @classmethod def from_yiq(cls, y, i, q): """ Construct a :class:`Color` from three `Y'IQ`_ float values. Y' can be between 0.0 and 1.0, while I and Q can be between -1.0 and 1.0. """ return super(Color, cls).__new__(cls, *colorsys.yiq_to_rgb(y, i, q)) @classmethod def from_hls(cls, h, l, s): """ Construct a :class:`Color` from `HLS`_ (hue, lightness, saturation) floats between 0.0 and 1.0. """ return super(Color, cls).__new__(cls, *colorsys.hls_to_rgb(h, l, s)) @classmethod def from_hsv(cls, h, s, v): """ Construct a :class:`Color` from `HSV`_ (hue, saturation, value) floats between 0.0 and 1.0. """ return super(Color, cls).__new__(cls, *colorsys.hsv_to_rgb(h, s, v)) def __add__(self, other): if isinstance(other, Red): return Color(clamp_float(self.red + other), self.green, self.blue) elif isinstance(other, Green): return Color(self.red, clamp_float(self.green + other), self.blue) elif isinstance(other, Blue): return Color(self.red, self.green, clamp_float(self.blue + other)) elif isinstance(other, Hue): h, l, s = self.hls return Color.from_hls((h + other) % 1.0, l, s) elif isinstance(other, Lightness): h, l, s = self.hls return Color.from_hls(h, clamp_float(l + other), s) elif isinstance(other, Saturation): h, l, s = self.hls return Color.from_hls(h, l, clamp_float(s + other)) return NotImplemented def __radd__(self, other): # Addition is commutative if isinstance(other, (Red, Green, Blue, Hue, Lightness, Saturation)): return self.__add__(other) return NotImplemented def __sub__(self, other): if isinstance(other, Red): return Color(clamp_float(self.red - other), self.green, self.blue) elif isinstance(other, Green): return Color(self.red, clamp_float(self.green - other), self.blue) elif isinstance(other, Blue): return Color(self.red, self.green, clamp_float(self.blue - other)) elif isinstance(other, Hue): h, l, s = self.hls return Color.from_hls((h - other) % 1.0, l, s) elif isinstance(other, Lightness): h, l, s = self.hls return Color.from_hls(h, clamp_float(l - other), s) elif isinstance(other, Saturation): h, l, s = self.hls return Color.from_hls(h, l, clamp_float(s - other)) return NotImplemented def __rsub__(self, other): if isinstance(other, Red): return Color(clamp_float(other - self.red), self.green, self.blue) elif isinstance(other, Green): return Color(self.red, clamp_float(other - self.green), self.blue) elif isinstance(other, Blue): return Color(self.red, self.green, clamp_float(other - self.blue)) elif isinstance(other, Hue): h, l, s = self.hls return Color.from_hls((other - h) % 1.0, l, s) elif isinstance(other, Lightness): h, l, s = self.hls return Color.from_hls(h, clamp_float(other - l), s) elif isinstance(other, Saturation): h, l, s = self.hls return Color.from_hls(h, l, clamp_float(other - s)) return NotImplemented def __mul__(self, other): if isinstance(other, Red): return Color(clamp_float(self.red * other), self.green, self.blue) elif isinstance(other, Green): return Color(self.red, clamp_float(self.green * other), self.blue) elif isinstance(other, Blue): return Color(self.red, self.green, clamp_float(self.blue * other)) elif isinstance(other, Hue): h, l, s = self.hls return Color.from_hls((h * other) % 1.0, l, s) elif isinstance(other, Lightness): h, l, s = self.hls return Color.from_hls(h, clamp_float(l * other), s) elif isinstance(other, Saturation): h, l, s = self.hls return Color.from_hls(h, l, clamp_float(s * other)) return NotImplemented def __rmul__(self, other): # Multiplication is commutative if isinstance(other, (Red, Green, Blue, Hue, Lightness, Saturation)): return self.__mul__(other) def __str__(self): return '#%02x%02x%02x' % self.rgb_bytes def __repr__(self): return '<Color "%s">' % str(self) @property def rgb(self): """ Returns a 3-tuple of (red, green, blue) float values (between 0.0 and 1.0). """ return (self.red, self.green, self.blue) @property def rgb_bytes(self): """ Returns a 3-tuple of (red, green, blue) byte values. """ return ( int(self.red * 255), int(self.green * 255), int(self.blue * 255), ) @property def yuv(self): """ Returns a 3-tuple of (y, u, v) float values; y values can be between 0.0 and 1.0, u values are between -0.436 and 0.436, and v values are between -0.615 and 0.615. """ r, g, b = self.rgb y = 0.299 * r + 0.587 * g + 0.114 * b return ( y, 0.492 * (b - y), 0.877 * (r - y), ) @property def yuv_bytes(self): """ Returns a 3-tuple of (y, u, v) byte values. Y values are biased by 16 in the result to prevent negatives. U and V values are biased by 128 for the same purpose. """ r, g, b = self.rgb_bytes return ( (( 66 * r + 129 * g + 25 * b + 128) >> 8) + 16, ((-38 * r - 73 * g + 112 * b + 128) >> 8) + 128, ((112 * r - 94 * g - 18 * b + 128) >> 8) + 128, ) @property def yiq(self): """ Returns a 3-tuple of (y, i, q) float values; y values can be between 0.0 and 1.0, whilst i and q values can be between -1.0 and 1.0. """ return colorsys.rgb_to_yiq(self.red, self.green, self.blue) @property def cie_xyz(self): """ Returns a 3-tuple of (X, Y, Z) float values representing the color in the `CIE 1931 color space`. .. _CIE 1931 color space: https://en.wikipedia.org/wiki/CIE_1931_color_space """ return tuple(matrix_mult( ((0.4124564, 0.3575761, 0.1804375), (0.2126729, 0.7151522, 0.0721750), (0.0193339, 0.1191920, 0.9503041), ), (make_linear(self.red), make_linear(self.green), make_linear(self.blue) ) )) @property def cie_lab(self): """ Returns a 3-tuple of (L*, a*, b*) float values representing the color in the `CIE Lab color space` with the `D65 standard illuminant`_. .. _CIE Lab color space: https://en.wikipedia.org/wiki/Lab_color_space .. _D65 standard illuminant: https://en.wikipedia.org/wiki/Illuminant_D65 """ K = Fraction(1, 3) * Fraction(29, 6) ** 2 e = Fraction(6, 29) ** 3 D65 = (0.95047, 1.0, 1.08883) x, y, z = (n / m for n, m in zip(self.cie_xyz, D65)) fx, fy, fz = ( n ** Fraction(1, 3) if n > e else K * n + Fraction(4, 29) for n in (x, y, z) ) return (116 * fy - 16, 500 * (fx - fy), 200 * (fy - fz)) @property def cie_luv(self): """ Returns a 3-tuple of (L*, u*, v*) float values representing the color in the `CIE Luv color space` with the `D65 standard illuminant`_. .. _CIE Luv color space: https://en.wikipedia.org/wiki/CIELUV """ U = lambda x, y, z: 4 * x / (x + 15 * y + 3 * z) V = lambda x, y, z: 9 * y / (x + 15 * y + 3 * z) K = Fraction(29, 3) ** 3 e = Fraction(6, 29) ** 3 D65 = (0.95047, 1.0, 1.08883) XYZ = self.cie_xyz yr = XYZ[1] / D65[1] L = 116 * yr ** Fraction(1, 3) - 16 if yr > e else K * yr u = 13 * L * (U(*XYZ) - U(*D65)) v = 13 * L * (V(*XYZ) - V(*D65)) return (L, u, v) @property def hls(self): """ Returns a 3-tuple of (hue, lightness, saturation) float values (between 0.0 and 1.0). """ return colorsys.rgb_to_hls(self.red, self.green, self.blue) @property def hsv(self): """ Returns a 3-tuple of (hue, saturation, value) float values (between 0.0 and 1.0). """ return colorsys.rgb_to_hsv(self.red, self.green, self.blue) @property def red(self): """ Returns the red component of the color as a :class:`Red` instance which can be used in operations with other :class:`Color` instances. """ # super() calls needed here to avoid recursion return Red(super(Color, self).red) @property def green(self): """ Returns the green component of the color as a :class:`Green` instance which can be used in operations with other :class:`Color` instances. """ return Green(super(Color, self).green) @property def blue(self): """ Returns the blue component of the color as a :class:`Blue` instance which can be used in operations with other :class:`Color` instances. """ return Blue(super(Color, self).blue) @property def hue(self): """ Returns the hue of the color as a :class:`Hue` instance which can be used in operations with other :class:`Color` instances. """ return Hue(self.hls[0]) @property def lightness(self): """ Returns the lightness of the color as a :class:`Lightness` instance which can be used in operations with other :class:`Color` instances. """ return Lightness(self.hls[1]) @property def saturation(self): """ Returns the saturation of the color as a :class:`Saturation` instance which can be used in operations with other :class:`Color` instances. """ return Saturation(self.hls[2]) def difference(self, other, method='cie1976'): """ Determines the difference between this color and *other* using the specified *method*. The *method* is specified as a string, and the following methods are valid: * 'euclid' - Calculate the `Euclidian distance`_. This is by far the fastest method, but also the least accurate in terms of human perception. * 'cie1976' - This is the default method. Use the `CIE 1976`_ formula for calculating the difference between two colors in CIE Lab space. * 'cie1994' - Use the `CIE 1994`_ formula with the "graphic arts" bias for calculating the difference. * 'cie2000' - Use the `CIE 2000`_ formula for calculating the difference. * 'cmc1984a' - Use the `CMC l:c`_ formula for calculating the difference with a 2:1 (accepability) ratio. * 'cmc1984i' - Use the `CMC l:c`_ formula for calculating the difference with a 1:1 (imperceptibility) ratio. Note that the Euclidian distance will be significantly different to the other calculations; effectively this just measures the distance between the two colors by treating them as coordinates in a three dimensional Euclidian space. All other methods are means of calculating a `Delta E`_ value in which 2.3 is considered a `just-noticeable difference`_ (JND). .. _Delta E: https://en.wikipedia.org/wiki/Color_difference .. _Just Noticeable Difference: https://en.wikipedia.org/wiki/Just-noticeable_difference .. _Euclidian distance: https://en.wikipedia.org/wiki/Euclidean_distance .. _CIE 1976: https://en.wikipedia.org/wiki/Color_difference#CIE76 .. _CIE 1994: https://en.wikipedia.org/wiki/Color_difference#CIE94 .. _CIE 2000: https://en.wikipedia.org/wiki/Color_difference#CIEDE2000 .. _CMC l:c: https://en.wikipedia.org/wiki/Color_difference#CMC_l:c_.281984.29 """ if method == 'euclid': return sqrt(sum((Cs - Co) ** 2 for Cs, Co in zip(self, other))) elif method == 'cie1976': return sqrt(sum((Cs - Co) ** 2 for Cs, Co in zip(self.cie_lab, other.cie_lab))) elif method == 'cie1994': raise NotImplementedError elif method == 'cie2000': raise NotImplementedError elif method == 'cmc1984a': raise NotImplementedError elif method == 'cmc1984i': raise NotImplementedError else: raise ValueError('invalid method: %s' % method)
""" ============================= Generic SpectralModel wrapper ============================= .. moduleauthor:: Adam Ginsburg <[email protected]> """ import numpy as np from pyspeckit.mpfit import mpfit,mpfitException from pyspeckit.spectrum.parinfo import ParinfoList,Parinfo import copy from astropy import log import matplotlib.cbook as mpcb import fitter from . import mpfit_messages from pyspeckit.specwarnings import warn try: from collections import OrderedDict except ImportError: from ordereddict import OrderedDict except ImportError: warn( "OrderedDict is required for modeling. If you have python <2.7, install the ordereddict module." ) class SpectralModel(fitter.SimpleFitter): """ A wrapper class for a spectra model. Includes internal functions to generate multi-component models, annotations, integrals, and individual components. The declaration can be complex, since you should name individual variables, set limits on them, set the units the fit will be performed in, and set the annotations to be used. Check out some of the hyperfine codes (hcn, n2hp) for examples. """ def __init__(self, modelfunc, npars, shortvarnames=("A","\\Delta x","\\sigma"), fitunits=None, centroid_par=None, fwhm_func=None, fwhm_pars=None, integral_func=None, use_lmfit=False, **kwargs): """ Spectral Model Initialization Create a Spectral Model class for data fitting Parameters ---------- modelfunc : function the model function to be fitted. Should take an X-axis (spectroscopic axis) as an input followed by input parameters. Returns an array with the same shape as the input X-axis npars : int number of parameters required by the model parnames : list (optional) a list or tuple of the parameter names parvalues : list (optional) the initial guesses for the input parameters (defaults to ZEROS) parlimits : list (optional) the upper/lower limits for each variable (defaults to ZEROS) parfixed : list (optional) Can declare any variables to be fixed (defaults to ZEROS) parerror : list (optional) technically an output parameter... hmm (defaults to ZEROS) partied : list (optional) not the past tense of party. Can declare, via text, that some parameters are tied to each other. Defaults to zeros like the others, but it's not clear if that's a sensible default fitunits : str (optional) convert X-axis to these units before passing to model parsteps : list (optional) minimum step size for each paremeter (defaults to ZEROS) npeaks : list (optional) default number of peaks to assume when fitting (can be overridden) shortvarnames : list (optional) TeX names of the variables to use when annotating Returns ------- A tuple containing (model best-fit parameters, the model, parameter errors, chi^2 value) """ self.modelfunc = modelfunc if self.__doc__ is None: self.__doc__ = modelfunc.__doc__ elif modelfunc.__doc__ is not None: self.__doc__ += modelfunc.__doc__ self.npars = npars self.default_npars = npars self.fitunits = fitunits # this needs to be set once only self.shortvarnames = shortvarnames self.default_parinfo = None self.default_parinfo, kwargs = self._make_parinfo(**kwargs) self.parinfo = copy.copy(self.default_parinfo) self.modelfunc_kwargs = kwargs self.use_lmfit = use_lmfit # default name of parameter that represents the profile centroid self.centroid_par = centroid_par # FWHM function and parameters self.fwhm_func = fwhm_func self.fwhm_pars = fwhm_pars # analytic integral function self.integral_func = integral_func def __call__(self, *args, **kwargs): use_lmfit = kwargs.pop('use_lmfit') if 'use_lmfit' in kwargs else self.use_lmfit if use_lmfit: return self.lmfitter(*args,**kwargs) return self.fitter(*args,**kwargs) def make_parinfo(self, **kwargs): return self._make_parinfo(**kwargs)[0] def _make_parinfo(self, params=None, parnames=None, parvalues=None, parlimits=None, parlimited=None, parfixed=None, parerror=None, partied=None, fitunits=None, parsteps=None, npeaks=1, parinfo=None, names=None, values=None, limits=None, limited=None, fixed=None, error=None, tied=None, steps=None, negamp=None, limitedmin=None, limitedmax=None, minpars=None, maxpars=None, vheight=False, debug=False, **kwargs): """ Generate a `ParinfoList` that matches the inputs This code is complicated - it can take inputs in a variety of different forms with different priority. It will return a `ParinfoList` (and therefore must have values within parameter ranges) """ # for backwards compatibility - partied = tied, etc. for varname in str.split("parnames,parvalues,parsteps,parlimits,parlimited,parfixed,parerror,partied",","): shortvarname = varname.replace("par","") if locals()[shortvarname] is not None: # HACK! locals() failed for unclear reasons... exec("%s = %s" % (varname,shortvarname)) if params is not None and parvalues is not None: raise ValueError("parvalues and params both specified; they're redundant so that's not allowed.") elif params is not None and parvalues is None: parvalues = params if parnames is not None: self.parnames = parnames elif parnames is None and self.parnames is not None: parnames = self.parnames elif self.default_parinfo is not None and parnames is None: parnames = [p['parname'] for p in self.default_parinfo] if limitedmin is not None: if limitedmax is not None: parlimited = zip(limitedmin,limitedmax) else: parlimited = zip(limitedmin,(False,)*len(parnames)) elif limitedmax is not None: parlimited = zip((False,)*len(parnames),limitedmax) elif self.default_parinfo is not None and parlimited is None: parlimited = [p['limited'] for p in self.default_parinfo] if minpars is not None: if maxpars is not None: parlimits = zip(minpars,maxpars) else: parlimits = zip(minpars,(False,)*len(parnames)) elif maxpars is not None: parlimits = zip((False,)*len(parnames),maxpars) elif self.default_parinfo is not None and parlimits is None: parlimits = [p['limits'] for p in self.default_parinfo] self.npeaks = npeaks # the height / parvalue popping needs to be done before the temp_pardict is set in order to make sure # that the height guess isn't assigned to the amplitude self.vheight = vheight if (vheight and len(self.parinfo) == self.default_npars and len(parvalues) == self.default_npars + 1): # if the right number of parameters are passed, the first is the height self.parinfo = [ {'n':0, 'value':parvalues.pop(0), 'limits':(0,0), 'limited': (False,False), 'fixed':False, 'parname':'HEIGHT', 'error': 0, 'tied':"" } ] elif vheight and len(self.parinfo) == self.default_npars and len(parvalues) == self.default_npars: # if you're one par short, guess zero self.parinfo = [ {'n':0, 'value': 0, 'limits':(0,0), 'limited': (False,False), 'fixed':False, 'parname':'HEIGHT', 'error': 0, 'tied':"" } ] elif vheight and len(self.parinfo) == self.default_npars+1 and len(parvalues) == self.default_npars+1: # the right numbers are passed *AND* there is already a height param self.parinfo = [ {'n':0, 'value':parvalues.pop(0), 'limits':(0,0), 'limited': (False,False), 'fixed':False, 'parname':'HEIGHT', 'error': 0, 'tied':"" } ] #heightparnum = (i for i,s in self.parinfo if 'HEIGHT' in s['parname']) #for hpn in heightparnum: # self.parinfo[hpn]['value'] = parvalues[0] elif vheight: raise ValueError('VHEIGHT is specified but a case was found that did not allow it to be included.') else: self.parinfo = [] if debug: log.debug("After VHEIGHT parse len(parinfo): %i vheight: %s" % (len(self.parinfo), vheight)) # this is a clever way to turn the parameter lists into a dict of lists # clever = hard to read temp_pardict = OrderedDict([(varname, np.zeros(self.npars*self.npeaks, dtype='bool')) if locals()[varname] is None else (varname, list(locals()[varname]) ) for varname in str.split("parnames,parvalues,parsteps,parlimits,parlimited,parfixed,parerror,partied",",")]) temp_pardict['parlimits'] = parlimits if parlimits is not None else [(0,0)] * (self.npars*self.npeaks) temp_pardict['parlimited'] = parlimited if parlimited is not None else [(False,False)] * (self.npars*self.npeaks) for k,v in temp_pardict.iteritems(): if (self.npars*self.npeaks) / len(v) > 1: temp_pardict[k] = list(v) * ((self.npars*self.npeaks) / len(v)) # generate the parinfo dict # note that 'tied' must be a blank string (i.e. ""), not False, if it is not set # parlimited, parfixed, and parlimits are all two-element items (tuples or lists) self.parinfo += [ {'n':ii+self.npars*jj+vheight, 'value':float(temp_pardict['parvalues'][ii+self.npars*jj]), 'step':temp_pardict['parsteps'][ii+self.npars*jj], 'limits':temp_pardict['parlimits'][ii+self.npars*jj], 'limited':temp_pardict['parlimited'][ii+self.npars*jj], 'fixed':temp_pardict['parfixed'][ii+self.npars*jj], 'parname':temp_pardict['parnames'][ii].upper()+"%0i" % jj, 'error':float(temp_pardict['parerror'][ii+self.npars*jj]), 'tied':temp_pardict['partied'][ii+self.npars*jj] if temp_pardict['partied'][ii+self.npars*jj] else ""} for jj in xrange(self.npeaks) for ii in xrange(self.npars) ] # order matters! if debug: log.debug("After Generation step len(parinfo): %i vheight: %s" % (len(self.parinfo), vheight)) if debug > True: import pdb; pdb.set_trace() # special keyword to specify emission/absorption lines if negamp is not None: if negamp: for p in self.parinfo: if 'AMP' in p['parname']: p['limited'] = (p['limited'][0], True) p['limits'] = (p['limits'][0], 0) else: for p in self.parinfo: if 'AMP' in p['parname']: p['limited'] = (True, p['limited'][1]) p['limits'] = (0, p['limits'][1]) # This is effectively an override of all that junk above (3/11/2012) # Much of it is probably unnecessary, but it was easier to do this than # rewrite the above self.parinfo = ParinfoList([Parinfo(p) for p in self.parinfo]) # New feature: scaleability for par in self.parinfo: if par.parname.lower().strip('0123456789') in ('amplitude','amp'): par.scaleable = True return self.parinfo, kwargs def n_modelfunc(self, pars=None, debug=False, **kwargs): """ Simple wrapper to deal with N independent peaks for a given spectral model """ if pars is None: pars = self.parinfo elif not isinstance(pars, ParinfoList): try: partemp = copy.copy(self.parinfo) partemp._from_Parameters(pars) pars = partemp except AttributeError: if debug: log.debug("Reading pars as LMPar failed.") if debug > 1: import pdb; pdb.set_trace() pass if hasattr(pars,'values'): # important to treat as Dictionary, since lmfit params & parinfo both have .items parnames,parvals = zip(*pars.items()) parnames = [p.lower() for p in parnames] parvals = [p.value for p in parvals] else: parvals = list(pars) if debug: log.debug("pars to n_modelfunc: {0}, parvals:{1}".format(pars, parvals)) def L(x): v = np.zeros(len(x)) if self.vheight: v += parvals[0] # use len(pars) instead of self.npeaks because we want this to work # independent of the current best fit for jj in xrange((len(parvals)-self.vheight)/self.npars): lower_parind = jj*self.npars+self.vheight upper_parind = (jj+1)*self.npars+self.vheight v += self.modelfunc(x, *parvals[lower_parind:upper_parind], **kwargs) return v return L def mpfitfun(self,x,y,err=None): """ Wrapper function to compute the fit residuals in an mpfit-friendly format """ if err is None: def f(p,fjac=None): residuals = (y-self.n_modelfunc(p, **self.modelfunc_kwargs)(x)) return [0,residuals] else: def f(p,fjac=None): residuals = (y-self.n_modelfunc(p, **self.modelfunc_kwargs)(x))/err return [0,residuals] return f def lmfitfun(self,x,y,err=None,debug=False): """ Wrapper function to compute the fit residuals in an lmfit-friendly format """ def f(p): #pars = [par.value for par in p.values()] kwargs = {} kwargs.update(self.modelfunc_kwargs) if debug: log.debug("Pars, kwarg keys: {0},{1}".format(p,kwargs.keys())) if err is None: return (y-self.n_modelfunc(p,**kwargs)(x)) else: return (y-self.n_modelfunc(p,**kwargs)(x))/err return f def lmfitter(self, xax, data, err=None, parinfo=None, quiet=True, debug=False, **kwargs): """ Use lmfit instead of mpfit to do the fitting Parameters ---------- xax : SpectroscopicAxis The X-axis of the spectrum data : ndarray The data to fit err : ndarray (optional) The error on the data. If unspecified, will be uniform unity parinfo : ParinfoList The guesses, parameter limits, etc. See `pyspeckit.spectrum.parinfo` for details quiet : bool If false, print out some messages about the fitting """ try: import lmfit except ImportError as e: raise ImportError( "Could not import lmfit, try using mpfit instead." ) self.xax = xax # the 'stored' xax is just a link to the original if hasattr(xax,'convert_to_unit') and self.fitunits is not None: # some models will depend on the input units. For these, pass in an X-axis in those units # (gaussian, voigt, lorentz profiles should not depend on units. Ammonia, formaldehyde, # H-alpha, etc. should) xax = copy.copy(xax) xax.convert_to_unit(self.fitunits, quiet=quiet) elif self.fitunits is not None: raise TypeError("X axis does not have a convert method") if np.any(np.isnan(data)) or np.any(np.isinf(data)): err[np.isnan(data) + np.isinf(data)] = np.inf data[np.isnan(data) + np.isinf(data)] = 0 if np.any(np.isnan(err)): raise ValueError("One or more of the error values is NaN." " This is not allowed. Errors can be infinite " "(which is equivalent to giving zero weight to " "a data point), but otherwise they must be positive " "floats.") elif np.any(err<0): raise ValueError("At least one error value is negative, which is " "not allowed as negative errors are not " "meaningful in the optimization process.") if parinfo is None: parinfo, kwargs = self._make_parinfo(debug=debug, **kwargs) if debug: log.debug(parinfo) LMParams = parinfo.as_Parameters() if debug: log.debug("LMParams: "+"\n".join([repr(p) for p in LMParams.values()])) log.debug("parinfo: {0}".format(parinfo)) minimizer = lmfit.minimize(self.lmfitfun(xax,np.array(data),err,debug=debug),LMParams,**kwargs) if not quiet: log.info("There were %i function evaluations" % (minimizer.nfev)) #modelpars = [p.value for p in parinfo.values()] #modelerrs = [p.stderr for p in parinfo.values() if p.stderr is not None else 0] self.LMParams = LMParams self.parinfo._from_Parameters(LMParams) if debug: log.debug(LMParams) log.debug(parinfo) self.mp = minimizer self.mpp = self.parinfo.values self.mpperr = self.parinfo.errors self.mppnames = self.parinfo.names modelkwargs = {} modelkwargs.update(self.modelfunc_kwargs) self.model = self.n_modelfunc(self.parinfo, **modelkwargs)(xax) if hasattr(minimizer,'chisqr'): chi2 = minimizer.chisqr else: try: chi2 = (((data-self.model)/err)**2).sum() except TypeError: chi2 = ((data-self.model)**2).sum() if np.isnan(chi2): warn( "Warning: chi^2 is nan" ) if hasattr(self.mp,'ier') and self.mp.ier not in [1,2,3,4]: log.warning("Fitter failed: %s, %s" % (self.mp.message, self.mp.lmdif_message)) return self.mpp,self.model,self.mpperr,chi2 def fitter(self, xax, data, err=None, quiet=True, veryverbose=False, debug=False, parinfo=None, **kwargs): """ Run the fitter using mpfit. kwargs will be passed to _make_parinfo and mpfit. Parameters ---------- xax : SpectroscopicAxis The X-axis of the spectrum data : ndarray The data to fit err : ndarray (optional) The error on the data. If unspecified, will be uniform unity parinfo : ParinfoList The guesses, parameter limits, etc. See `pyspeckit.spectrum.parinfo` for details quiet : bool pass to mpfit. If False, will print out the parameter values for each iteration of the fitter veryverbose : bool print out a variety of mpfit output parameters debug : bool raise an exception (rather than a warning) if chi^2 is nan """ if parinfo is None: parinfo, kwargs = self._make_parinfo(debug=debug, **kwargs) else: if debug: log.debug("Using user-specified parinfo dict") # clean out disallowed kwargs (don't want to pass them to mpfit) #throwaway, kwargs = self._make_parinfo(debug=debug, **kwargs) self.xax = xax # the 'stored' xax is just a link to the original if hasattr(xax,'as_unit') and self.fitunits is not None: # some models will depend on the input units. For these, pass in an X-axis in those units # (gaussian, voigt, lorentz profiles should not depend on units. Ammonia, formaldehyde, # H-alpha, etc. should) xax = copy.copy(xax) # xax.convert_to_unit(self.fitunits, quiet=quiet) xax = xax.as_unit(self.fitunits, quiet=quiet, **kwargs) elif self.fitunits is not None: raise TypeError("X axis does not have a convert method") if np.any(np.isnan(data)) or np.any(np.isinf(data)): err[np.isnan(data) + np.isinf(data)] = np.inf data[np.isnan(data) + np.isinf(data)] = 0 if np.any(np.isnan(err)): raise ValueError("One or more of the error values is NaN." " This is not allowed. Errors can be infinite " "(which is equivalent to giving zero weight to " "a data point), but otherwise they must be positive " "floats.") elif np.any(err<0): raise ValueError("At least one error value is negative, which is " "not allowed as negative errors are not " "meaningful in the optimization process.") if debug: for p in parinfo: log.debug( p ) log.debug( "\n".join(["%s %i: tied: %s value: %s" % (p['parname'],p['n'],p['tied'],p['value']) for p in parinfo]) ) mp = mpfit(self.mpfitfun(xax,data,err),parinfo=parinfo,quiet=quiet,**kwargs) mpp = mp.params if mp.perror is not None: mpperr = mp.perror else: mpperr = mpp*0 chi2 = mp.fnorm if mp.status == 0: if "parameters are not within PARINFO limits" in mp.errmsg: log.warn( parinfo ) raise mpfitException(mp.errmsg) for i,(p,e) in enumerate(zip(mpp,mpperr)): self.parinfo[i]['value'] = p self.parinfo[i]['error'] = e if veryverbose: log.info("Fit status: {0}".format(mp.status)) log.info("Fit error message: {0}".format(mp.errmsg)) log.info("Fit message: {0}".format(mpfit_messages[mp.status])) for i,p in enumerate(mpp): log.info("{0}: {1} +/- {2}".format(self.parinfo[i]['parname'], p,mpperr[i])) log.info("Chi2: {0} Reduced Chi2: {1} DOF:{2}".format(mp.fnorm, mp.fnorm/(len(data)-len(mpp)), len(data)-len(mpp))) self.mp = mp self.mpp = self.parinfo.values self.mpperr = self.parinfo.errors self.mppnames = self.parinfo.names self.model = self.n_modelfunc(self.parinfo,**self.modelfunc_kwargs)(xax) if debug: log.debug("Modelpars: {0}".format(self.mpp)) if np.isnan(chi2): if debug: raise ValueError("Error: chi^2 is nan") else: log.warn("Warning: chi^2 is nan") return mpp,self.model,mpperr,chi2 def slope(self, xinp): """ Find the local slope of the model at location x (x must be in xax's units) """ if hasattr(self, 'model'): dm = np.diff(self.model) # convert requested x to pixels xpix = self.xax.x_to_pix(xinp) dmx = np.average(dm[xpix-1:xpix+1]) if np.isfinite(dmx): return dmx else: return 0 def annotations(self, shortvarnames=None, debug=False): """ Return a list of TeX-formatted labels The values and errors are formatted so that only the significant digits are displayed. Rounding is performed using the decimal package. Parameters ---------- shortvarnames : list A list of variable names (tex is allowed) to include in the annotations. Defaults to self.shortvarnames Examples -------- >>> # Annotate a Gaussian >>> sp.specfit.annotate(shortvarnames=['A','\\Delta x','\\sigma']) """ from decimal import Decimal # for formatting svn = self.shortvarnames if shortvarnames is None else shortvarnames # if pars need to be replicated.... if len(svn) < self.npeaks*self.npars: svn = svn * self.npeaks parvals = self.parinfo.values parerrs = self.parinfo.errors loop_list = [(parvals[ii+jj*self.npars+self.vheight], parerrs[ii+jj*self.npars+self.vheight], svn[ii+jj*self.npars], self.parinfo.fixed[ii+jj*self.npars+self.vheight], jj) for jj in range(self.npeaks) for ii in range(self.npars)] label_list = [] for (value, error, varname, fixed, varnumber) in loop_list: if debug: log.debug("".join(value, error, varname, fixed, varnumber)) if fixed or error==0: label = ("$%s(%i)$=%8s" % (varname,varnumber, Decimal("%g" % value).quantize( Decimal("%0.6g" % (value)) ))) else: label = ("$%s(%i)$=%8s $\\pm$ %8s" % (varname,varnumber, Decimal("%g" % value).quantize( Decimal("%0.2g" % (min(np.abs([value,error])))) ), Decimal("%g" % error).quantize(Decimal("%0.2g" % (error))),)) label_list.append(label) labels = tuple(mpcb.flatten(label_list)) return labels def components(self, xarr, pars, **kwargs): """ Return a numpy ndarray of shape [npeaks x modelshape] of the independent components of the fits """ modelcomponents = np.array( [self.modelfunc(xarr, *pars[i*self.npars:(i+1)*self.npars], **dict(self.modelfunc_kwargs.items()+kwargs.items())) for i in range(self.npeaks)]) if len(modelcomponents.shape) == 3: newshape = [modelcomponents.shape[0]*modelcomponents.shape[1], modelcomponents.shape[2]] modelcomponents = np.reshape(modelcomponents, newshape) return modelcomponents def integral(self, modelpars, dx=None, **kwargs): """ Extremely simple integrator: IGNORES modelpars; just sums self.model """ if dx is not None: return (self.model*dx).sum() else: return self.model.sum() def analytic_integral(self, modelpars=None, npeaks=None, npars=None): """ Placeholder for analyic integrals; these must be defined for individual models """ if self.integral_func is None: raise NotImplementedError("Analytic integrals must be implemented independently for each model type") # all of these parameters are allowed to be overwritten if modelpars is None: modelpars = self.parinfo.values if npeaks is None: npeaks = self.npeaks if npars is None: npars = self.npars return np.sum([ self.integral_func(modelpars[npars*ii:npars*(1+ii)]) for ii in xrange(npeaks)]) def component_integrals(self, xarr, dx=None): """ Compute the integrals of each component """ components = self.components(xarr, self.parinfo.values) if dx is None: dx = 1 integrals = [com.sum()*dx for com in components] return integrals def analytic_fwhm(self, parinfo=None): """ Return the FWHMa of the model components *if* a fwhm_func has been defined Done with incomprehensible list comprehensions instead of nested for loops... readability sacrificed for speed and simplicity. This is unpythonic. """ if self.fwhm_func is None and self.fwhm_pars is None: raise TypeError("fwhm_func not implemented for model %s" % self.__name__) if parinfo is None: parinfo = self.parinfo fwhm = [self.fwhm_func( *[self.parinfo[str.upper(p+'%i' % n)] for p in self.fwhm_pars] ) for n in xrange(self.npeaks)] return fwhm def analytic_centroids(self, centroidpar=None): """ Return the *analytic* centroids of the model components Parameters ---------- centroidpar : None or string The name of the parameter in the fit that represents the centroid *some models have default centroid parameters - these will be used if centroidpar is unspecified* Returns ------- List of the centroid values (even if there's only 1) """ if centroidpar is None: centroidpar = self.centroid_par centr = [par.value for par in self.parinfo if str.upper(centroidpar) in par.parname] return centr def computed_centroid(self, xarr=None): """ Return the *computed* centroid of the model Parameters ---------- xarr : None or np.ndarray The X coordinates of the model over which the centroid should be computed. If unspecified, the centroid will be in pixel units """ if xarr is None: xarr = np.arange(self.model.size) centr = (self.model*xarr).sum() / self.model.sum() return centr def logp(self, xarr, data, error, pars=None): """ Return the log probability of the model. If the parameter is out of range, return -inf """ if pars is None: pars = self.parinfo else: parinfo = copy.copy(self.parinfo) for value,parameter in zip(pars,parinfo): try: parameter.value = value except ValueError: return -np.inf model = self.n_modelfunc(pars, **self.modelfunc_kwargs)(xarr) difference = np.abs(data-model) # prob = 1/(2*np.pi)**0.5/error * exp(-difference**2/(2.*error**2)) #logprob = np.log(1./(2.*np.pi)**0.5/error) * (-difference**2/(2.*error**2)) logprob = (-difference**2/(2.*error**2)) totallogprob = np.sum(logprob) return totallogprob def get_emcee_sampler(self, xarr, data, error, **kwargs): """ Get an emcee walker for the data & model Parameters ---------- xarr : pyspeckit.units.SpectroscopicAxis data : np.ndarray error : np.ndarray Examples -------- >>> import pyspeckit >>> x = pyspeckit.units.SpectroscopicAxis(np.linspace(-10,10,50), unit='km/s') >>> e = np.random.randn(50) >>> d = np.exp(-np.asarray(x)**2/2.)*5 + e >>> sp = pyspeckit.Spectrum(data=d, xarr=x, error=np.ones(50)*e.std()) >>> sp.specfit(fittype='gaussian') >>> emcee_sampler = sp.specfit.fitter.get_emcee_sampler(sp.xarr, sp.data, sp.error) >>> p0 = sp.specfit.parinfo >>> emcee_sampler.run_mcmc(p0,100) """ try: import emcee except ImportError: return def probfunc(pars): return self.logp(xarr, data, error, pars=pars) raise NotImplementedError("emcee's metropolis-hastings sampler is not implemented; use pymc") sampler = emcee.MHSampler(self.npars*self.npeaks+self.vheight, probfunc, **kwargs) return sampler def get_emcee_ensemblesampler(self, xarr, data, error, nwalkers, **kwargs): """ Get an emcee walker ensemble for the data & model Parameters ---------- data : np.ndarray error : np.ndarray nwalkers : int Number of walkers to use Examples -------- >>> import pyspeckit >>> x = pyspeckit.units.SpectroscopicAxis(np.linspace(-10,10,50), unit='km/s') >>> e = np.random.randn(50) >>> d = np.exp(-np.asarray(x)**2/2.)*5 + e >>> sp = pyspeckit.Spectrum(data=d, xarr=x, error=np.ones(50)*e.std()) >>> sp.specfit(fittype='gaussian') >>> nwalkers = sp.specfit.fitter.npars * 2 >>> emcee_ensemble = sp.specfit.fitter.get_emcee_ensemblesampler(sp.xarr, sp.data, sp.error, nwalkers) >>> p0 = np.array([sp.specfit.parinfo.values] * nwalkers) >>> p0 *= np.random.randn(*p0.shape) / 10. + 1.0 >>> pos,logprob,state = emcee_ensemble.run_mcmc(p0,100) """ try: import emcee except ImportError: return def probfunc(pars): return self.logp(xarr, data, error, pars=pars) sampler = emcee.EnsembleSampler(nwalkers, self.npars*self.npeaks+self.vheight, probfunc, **kwargs) return sampler def get_pymc(self, xarr, data, error, use_fitted_values=False, inf=np.inf, use_adaptive=False, return_dict=False, **kwargs): """ Create a pymc MCMC sampler. Defaults to 'uninformative' priors Parameters ---------- data : np.ndarray error : np.ndarray use_fitted_values : bool Each parameter with a measured error will have a prior defined by the Normal distribution with sigma = par.error and mean = par.value Examples -------- >>> x = pyspeckit.units.SpectroscopicAxis(np.linspace(-10,10,50), unit='km/s') >>> e = np.random.randn(50) >>> d = np.exp(-np.asarray(x)**2/2.)*5 + e >>> sp = pyspeckit.Spectrum(data=d, xarr=x, error=np.ones(50)*e.std()) >>> sp.specfit(fittype='gaussian') >>> MCuninformed = sp.specfit.fitter.get_pymc(sp.xarr, sp.data, sp.error) >>> MCwithpriors = sp.specfit.fitter.get_pymc(sp.xarr, sp.data, sp.error, use_fitted_values=True) >>> MCuninformed.sample(1000) >>> MCuninformed.stats()['AMPLITUDE0'] >>> # WARNING: This will fail because width cannot be set <0, but it may randomly reach that... >>> # How do you define a likelihood distribution with a lower limit?! >>> MCwithpriors.sample(1000) >>> MCwithpriors.stats()['AMPLITUDE0'] """ old_errsettings = np.geterr() try: import pymc finally: # pymc breaks error settings np.seterr(**old_errsettings) #def lowerlimit_like(x,lolim): # "lower limit (log likelihood - set very positive for unacceptable values)" # return (x>=lolim) / 1e10 #def upperlimit_like(x,uplim): # "upper limit" # return (x<=uplim) / 1e10 #LoLim = pymc.distributions.stochastic_from_dist('lolim', logp=lowerlimit_like, dtype=np.float, mv=False) #UpLim = pymc.distributions.stochastic_from_dist('uplim', logp=upperlimit_like, dtype=np.float, mv=False) funcdict = {} # very, very worrisome: pymc changes the values of parinfo parcopy = copy.deepcopy(self.parinfo) for par in parcopy: lolim = par.limits[0] if par.limited[0] else -inf uplim = par.limits[1] if par.limited[1] else inf if par.fixed: funcdict[par.parname] = pymc.distributions.Uniform(par.parname, par.value, par.value, value=par.value) elif use_fitted_values: if par.error > 0: if any(par.limited): try: funcdict[par.parname] = pymc.distributions.TruncatedNormal(par.parname, par.value, 1./par.error**2, lolim, uplim) except AttributeError: # old versions used this? funcdict[par.parname] = pymc.distributions.TruncNorm(par.parname, par.value, 1./par.error**2, lolim, uplim) else: funcdict[par.parname] = pymc.distributions.Normal(par.parname, par.value, 1./par.error**2) else: if any(par.limited): funcdict[par.parname] = pymc.distributions.Uniform(par.parname, lolim, uplim, value=par.value) else: funcdict[par.parname] = pymc.distributions.Uninformative(par.parname, value=par.value) elif any(par.limited): lolim = par.limits[0] if par.limited[0] else -1e10 uplim = par.limits[1] if par.limited[1] else 1e10 funcdict[par.parname] = pymc.distributions.Uniform(par.parname, lower=lolim, upper=uplim, value=par.value) else: funcdict[par.parname] = pymc.distributions.Uninformative(par.parname, value=par.value) d = dict(funcdict) def modelfunc(xarr, pars=parcopy, **kwargs): for k,v in kwargs.iteritems(): if k in pars.keys(): pars[k].value = v return self.n_modelfunc(pars, **self.modelfunc_kwargs)(xarr) funcdict['xarr'] = xarr funcdet=pymc.Deterministic(name='f',eval=modelfunc,parents=funcdict,doc="The model function") d['f'] = funcdet datamodel = pymc.distributions.Normal('data',mu=funcdet,tau=1/np.asarray(error)**2,observed=True,value=np.asarray(data)) d['data']=datamodel if return_dict: return d mc = pymc.MCMC(d) if use_adaptive: mc.use_step_method(pymc.AdaptiveMetropolis,[d[p] for p in self.parinfo.names]) return mc class AstropyModel(SpectralModel): def __init__(self, model, shortvarnames=None, **kwargs): """ Override the SpectralModel initialization """ if hasattr(self,__doc__): # how do you extend a docstring really? self.__doc__ += SpectralModel.__doc__ if shortvarnames is None: shortvarnames = model.param_names super(AstropyModel,self).__init__(model, len(model.parameters), shortvarnames=shortvarnames, model=model, **kwargs) self.mp = None self.vheight = False self.npeaks = 1 def _make_parinfo(self, model=None): self.parinfo = ParinfoList([ Parinfo(parname=name,value=value) for name,value in zip(model.param_names,model.parameters)]) return self.parinfo, {} def _parse_parinfo(self, parinfo): """ Parse a ParinfoList into astropy.models parameters """ if len(parinfo) > self.npars: if len(parinfo) % self.npars != 0: raise ValueError("Need to have an integer number of models") else: self.modelfunc.param_names = parinfo.names self.modelfunc.parameters = parinfo.values else: self.modelfunc.param_names = parinfo.names self.modelfunc.parameters = parinfo.values def fitter(self, xax, data, err=None, quiet=True, veryverbose=False, debug=False, parinfo=None, params=None, npeaks=None, **kwargs): import astropy.models as models if npeaks is not None and npeaks > 1: raise NotImplementedError("Astropy models cannot be used to fit multiple peaks yet") if parinfo is not None: self._parse_parinfo(parinfo) if params is not None: self.modelfunc.parameters = params self.astropy_fitter = models.fitting.NonLinearLSQFitter(self.modelfunc) if err is None: self.astropy_fitter(xax, data, **kwargs) else: self.astropy_fitter(xax, data, weights=1./err**2, **kwargs) mpp = self.astropy_fitter.fitpars cov = self.astropy_fitter.covar if cov is None: mpperr = np.zeros(len(mpp)) else: mpperr = cov.diagonal() self.model = self.astropy_fitter.model(xax) if err is None: chi2 = ((data-self.model)**2).sum() else: chi2 = ((data-self.model)**2/err**2).sum() # update object paramters self.modelfunc.parameters = mpp self._make_parinfo(self.modelfunc) return mpp,self.model,mpperr,chi2 def n_modelfunc(self, pars=None, debug=False, **kwargs): """ Only deals with single-peak functions """ try: self._parse_parinfo(pars) except AttributeError: self.modelfunc.parameters = pars return self.modelfunc
"""A script testing the extraction pipeline of RHEA Steps 1) Initialise Format, Extractor and RadialVelocity 2) Define file paths for science, flat and dark frames 3) Extract/import spectra 4) Create/import reference spectra 5) Calculate radial velocities 6) Plot radial velocities """ import numpy as np try: import pyfits except: import astropy.io.fits as pyfits import pymfe import glob from astropy.time import Time import astropy.coordinates as coordinates from astropy.coordinates import SkyCoord from astropy import units as u import PyAstronomy.pyasl as pyasl import pdb #=============================================================================== # Parameters/Constants/Variables/Initialisation #=============================================================================== # Constants/Variables do_bcor = False med_cut = 0.6 plot_title = "gammaCrucis" coord = SkyCoord('01 44 04.08338 -15 56 14.9262',unit=(u.hourangle, u.deg)) # Initialise objects rhea2_format = pymfe.rhea.Format() #rhea2_format.fib_image_width_in_pix = 7.0 #Attempted over-write as a test rhea2_extract = pymfe.Extractor(rhea2_format, transpose_data=False) xx, wave, blaze = rhea2_format.spectral_format() rv = pymfe.rv.RadialVelocity() #Q-factor test showed that with 10 orders, we should be getting 4m/s rms per frame # 3e8/5e3/np.sqrt(4e4*0.3*2000*10) # c/(Q*sqrt(Ncounts*ccdgain*npix_per_order*norders) #dd = pyfits.getdata(files[0]) #plt.imshow(dd.T, aspect='auto',cmap=cm.gray,interpolation='nearest') #plt.plot(xx.T + dd.shape[1]/2) #=============================================================================== # File paths (Observations, Flats and Darks, save/load directories) #=============================================================================== # Science Frames #star = "gammaCrucis" #star = "tauCeti" star = "thar" #star = "sun" base_path = "/priv/mulga1/jbento/rhea2_data/20160221_sun/" files = glob.glob(base_path + "*" + star + "*[0123456789].fit*") #FIT for non-Th/Ar # Flats and Darks #star_dark = pyfits.getdata(base_path + "Dark frames\\Masterdark_target.fit") star_dark = pyfits.getdata(base_path + "20151130_Masterdark_thar.fit") #flat_dark = pyfits.getdata(base_path + "Dark frames\\Masterdark_flat.fit") flat_files = [base_path + "20151130_Masterflat_calibrated.fit"]*len(files) files.sort() # Remove bad section... only for sun #!!!MJI: Dodgy. Why remove for raw *and* extracted files? #files.pop(912) #files.pop(912) #files.pop(912) print len(files) # Set to len(0) arrays when extracting ThAr #star_dark = np.empty(0) flat_dark = np.empty(0) flat_files = np.empty(0) # Extracted spectra output out_path = "/priv/mulga1/mireland/rhea/Solar_Extracted/" extracted_files = glob.glob(out_path + "*" + star + "*[0123456789]_extracted.fits") extracted_files.sort() #extracted_files.pop(912) #extracted_files.pop(912) #extracted_files.pop(912) print len(extracted_files) # Saved reference spectrum ref_path = out_path + "reference_spectrum_74gammaCrucis.fits" ref_path = out_path + "reference_spectrum_17_thar.fits" # RV csv output base_rv_path = out_path + star #=============================================================================== # Extract and save spectra #=============================================================================== # Extract spectra #fluxes, vars, bcors, mjds = rv.extract_spectra(files, rhea2_extract, # star_dark=star_dark, # flat_files=flat_files, # flat_dark=flat_dark, # coord=coord, do_bcor=do_bcor) # Save spectra (Make sure to save "wave" generated from rhea2_format) #rv.save_fluxes(files, fluxes, vars, bcors, wave, mjds, out_path) #=============================================================================== # Create and save/import reference spectrum #=============================================================================== # OPTION 1: Create and save a new reference spectrum # Load the first 10 observations to use as a reference #!!!MJI Dodgy thing 1: to hack the extracted_files used, there are TWO # locations below to hack it. #fluxes, vars, wave, bcors, mjds = rv.load_fluxes(extracted_files) #wave_ref, ref_spect = rv.create_ref_spect(wave, fluxes, vars, bcors, # med_cut=med_cut,gauss_sdev=1.0) #rv.save_ref_spect(extracted_files, ref_spect, vars, wave_ref, bcors, mjds, # out_path, star) # OPTION 2: Import a pre-existing reference spectrum ref_spect, vars_ref, wave_ref, bcors_ref, mjds_ref = rv.load_ref_spect(ref_path) #=============================================================================== # Barycentrically correct based on the sun's location from moment to moment #=============================================================================== # This loop is messy and there is probably a nicer way to do this...but it works # The Linux servers are not happy with opening much more than 100 files, # crashing and displaying a too many files warning. This is despite each .fits # file being closed when the data have been loaded from it. A similar issue does # not occur when initially extracting the files (975 were extracted in one go # with no issues). # Parameters to process files in batches of "increment" num_files = len(extracted_files) num_rvs_extracted = 0 increment = 100 low = 0 high = increment all_rvs_calculated = False # Will be concatenated at end to give final arrays rv_list = [] rv_sig_list = [] bcors_list = [] mjds_list = [] # Obviously cannot open more files than exist if high > num_files: high = num_files while not all_rvs_calculated: num_rvs_extracted += high - low # Load in a segment of files fluxes, vars, wave, bcors, mjds = rv.load_fluxes(extracted_files[low:high]) # bcors = [] # Calculate the barycentric correction for each observation, based on the # instantaneous position of the sun # for t in mjds: # time = Time(t, format="mjd") # coord = SkyCoord(coordinates.get_sun(time)) # location = location=('151.2094','-33.865',100.0) # # bcors.append(1e3*pyasl.helcorr(float(location[0]), float(location[1]), # location[2], coord.ra.deg, coord.dec.deg, time.jd)[0] ) nf = fluxes.shape[0] nm = fluxes.shape[1] ny = fluxes.shape[2] # Calculate the RVs rvs, rv_sigs, fitted_spects = rv.calculate_rv_shift(wave_ref, ref_spect, fluxes, vars, bcors, wave, return_fitted_spects=True, bad_threshold=20) rv_list.append(rvs) rv_sig_list.append(rv_sigs) bcors_list.append(bcors) mjds_list.append(mjds) # Move to next segment low += increment high += increment if high > num_files: high = num_files if num_rvs_extracted == num_files: all_rvs_calculated = True # Done, join together and save all_rvs = np.concatenate(rv_list) all_rv_sigs = np.concatenate(rv_sig_list) all_bcors = np.concatenate(bcors_list) all_mjds = np.concatenate(mjds_list) #=============================================================================== # Save the extracted radial velocities #=============================================================================== # Save RVs bcor_rvs = all_rvs - all_bcors.repeat(nm).reshape( (num_files,nm) ) rv.save_rvs(all_rvs, all_rv_sigs, all_bcors, all_mjds, bcor_rvs, base_rv_path) #Some plotting code... #plt.plot(wave[13], fluxes[0][13]) #plt.plot(wave[13], fitted_spects[0][13]) #plt.xlabel('Wavelength') #plt.ylabel('Flux')
import hashlib import warnings import logging import io import unittest import ssl import socket from itertools import chain from mock import patch, Mock from urllib3 import add_stderr_logger, disable_warnings from urllib3.util.request import make_headers, rewind_body, _FAILEDTELL from urllib3.util.retry import Retry from urllib3.util.timeout import Timeout from urllib3.util.url import ( get_host, parse_url, split_first, Url, ) from urllib3.util.ssl_ import ( resolve_cert_reqs, resolve_ssl_version, ssl_wrap_socket, _const_compare_digest_backport, ) from urllib3.exceptions import ( LocationParseError, TimeoutStateError, InsecureRequestWarning, SNIMissingWarning, InvalidHeader, UnrewindableBodyError, ) from urllib3.util.connection import ( allowed_gai_family, _has_ipv6 ) from urllib3.util import is_fp_closed, ssl_ from urllib3.packages import six from . import clear_warnings # This number represents a time in seconds, it doesn't mean anything in # isolation. Setting to a high-ish value to avoid conflicts with the smaller # numbers used for timeouts TIMEOUT_EPOCH = 1000 class TestUtil(unittest.TestCase): def test_get_host(self): url_host_map = { # Hosts 'http://google.com/mail': ('http', 'google.com', None), 'http://google.com/mail/': ('http', 'google.com', None), 'google.com/mail': ('http', 'google.com', None), 'http://google.com/': ('http', 'google.com', None), 'http://google.com': ('http', 'google.com', None), 'http://www.google.com': ('http', 'www.google.com', None), 'http://mail.google.com': ('http', 'mail.google.com', None), 'http://google.com:8000/mail/': ('http', 'google.com', 8000), 'http://google.com:8000': ('http', 'google.com', 8000), 'https://google.com': ('https', 'google.com', None), 'https://google.com:8000': ('https', 'google.com', 8000), 'http://user:[email protected]:1234': ('http', '127.0.0.1', 1234), 'http://google.com/foo=http://bar:42/baz': ('http', 'google.com', None), 'http://google.com?foo=http://bar:42/baz': ('http', 'google.com', None), 'http://google.com#foo=http://bar:42/baz': ('http', 'google.com', None), # IPv4 '173.194.35.7': ('http', '173.194.35.7', None), 'http://173.194.35.7': ('http', '173.194.35.7', None), 'http://173.194.35.7/test': ('http', '173.194.35.7', None), 'http://173.194.35.7:80': ('http', '173.194.35.7', 80), 'http://173.194.35.7:80/test': ('http', '173.194.35.7', 80), # IPv6 '[2a00:1450:4001:c01::67]': ('http', '[2a00:1450:4001:c01::67]', None), 'http://[2a00:1450:4001:c01::67]': ('http', '[2a00:1450:4001:c01::67]', None), 'http://[2a00:1450:4001:c01::67]/test': ('http', '[2a00:1450:4001:c01::67]', None), 'http://[2a00:1450:4001:c01::67]:80': ('http', '[2a00:1450:4001:c01::67]', 80), 'http://[2a00:1450:4001:c01::67]:80/test': ('http', '[2a00:1450:4001:c01::67]', 80), # More IPv6 from http://www.ietf.org/rfc/rfc2732.txt 'http://[fedc:ba98:7654:3210:fedc:ba98:7654:3210]:8000/index.html': ( 'http', '[fedc:ba98:7654:3210:fedc:ba98:7654:3210]', 8000), 'http://[1080:0:0:0:8:800:200c:417a]/index.html': ( 'http', '[1080:0:0:0:8:800:200c:417a]', None), 'http://[3ffe:2a00:100:7031::1]': ('http', '[3ffe:2a00:100:7031::1]', None), 'http://[1080::8:800:200c:417a]/foo': ('http', '[1080::8:800:200c:417a]', None), 'http://[::192.9.5.5]/ipng': ('http', '[::192.9.5.5]', None), 'http://[::ffff:129.144.52.38]:42/index.html': ('http', '[::ffff:129.144.52.38]', 42), 'http://[2010:836b:4179::836b:4179]': ('http', '[2010:836b:4179::836b:4179]', None), } for url, expected_host in url_host_map.items(): returned_host = get_host(url) self.assertEqual(returned_host, expected_host) def test_invalid_host(self): # TODO: Add more tests invalid_host = [ 'http://google.com:foo', 'http://::1/', 'http://::1:80/', 'http://google.com:-80', six.u('http://google.com:\xb2\xb2'), # \xb2 = ^2 ] for location in invalid_host: self.assertRaises(LocationParseError, get_host, location) def test_host_normalization(self): """ Asserts the scheme and hosts with a normalizable scheme are converted to lower-case. """ url_host_map = { # Hosts 'HTTP://GOOGLE.COM/mail/': ('http', 'google.com', None), 'GOogle.COM/mail': ('http', 'google.com', None), 'HTTP://GoOgLe.CoM:8000/mail/': ('http', 'google.com', 8000), 'HTTP://user:[email protected]:1234': ('http', 'example.com', 1234), '173.194.35.7': ('http', '173.194.35.7', None), 'HTTP://173.194.35.7': ('http', '173.194.35.7', None), 'HTTP://[2a00:1450:4001:c01::67]:80/test': ('http', '[2a00:1450:4001:c01::67]', 80), 'HTTP://[FEDC:BA98:7654:3210:FEDC:BA98:7654:3210]:8000/index.html': ( 'http', '[fedc:ba98:7654:3210:fedc:ba98:7654:3210]', 8000), 'HTTPS://[1080:0:0:0:8:800:200c:417A]/index.html': ( 'https', '[1080:0:0:0:8:800:200c:417a]', None), 'abOut://eXamPlE.com?info=1': ('about', 'eXamPlE.com', None), 'http+UNIX://%2fvar%2frun%2fSOCKET/path': ( 'http+unix', '%2fvar%2frun%2fSOCKET', None), } for url, expected_host in url_host_map.items(): returned_host = get_host(url) self.assertEqual(returned_host, expected_host) def test_parse_url_normalization(self): """Assert parse_url normalizes the scheme/host, and only the scheme/host""" test_urls = [ ('HTTP://GOOGLE.COM/MAIL/', 'http://google.com/MAIL/'), ('HTTP://JeremyCline:[email protected]:8080/', 'http://JeremyCline:[email protected]:8080/'), ('HTTPS://Example.Com/?Key=Value', 'https://example.com/?Key=Value'), ('Https://Example.Com/#Fragment', 'https://example.com/#Fragment'), ] for url, expected_normalized_url in test_urls: actual_normalized_url = parse_url(url).url self.assertEqual(actual_normalized_url, expected_normalized_url) parse_url_host_map = [ ('http://google.com/mail', Url('http', host='google.com', path='/mail')), ('http://google.com/mail/', Url('http', host='google.com', path='/mail/')), ('http://google.com/mail', Url('http', host='google.com', path='mail')), ('google.com/mail', Url(host='google.com', path='/mail')), ('http://google.com/', Url('http', host='google.com', path='/')), ('http://google.com', Url('http', host='google.com')), ('http://google.com?foo', Url('http', host='google.com', path='', query='foo')), # Path/query/fragment ('', Url()), ('/', Url(path='/')), ('#?/!google.com/?foo#bar', Url(path='', fragment='?/!google.com/?foo#bar')), ('/foo', Url(path='/foo')), ('/foo?bar=baz', Url(path='/foo', query='bar=baz')), ('/foo?bar=baz#banana?apple/orange', Url(path='/foo', query='bar=baz', fragment='banana?apple/orange')), # Port ('http://google.com/', Url('http', host='google.com', path='/')), ('http://google.com:80/', Url('http', host='google.com', port=80, path='/')), ('http://google.com:80', Url('http', host='google.com', port=80)), # Auth ('http://foo:bar@localhost/', Url('http', auth='foo:bar', host='localhost', path='/')), ('http://foo@localhost/', Url('http', auth='foo', host='localhost', path='/')), ('http://foo:bar@baz@localhost/', Url('http', auth='foo:bar@baz', host='localhost', path='/')), ('http://@', Url('http', host=None, auth='')) ] non_round_tripping_parse_url_host_map = { # Path/query/fragment '?': Url(path='', query=''), '#': Url(path='', fragment=''), # Empty Port 'http://google.com:': Url('http', host='google.com'), 'http://google.com:/': Url('http', host='google.com', path='/'), } def test_parse_url(self): for url, expected_Url in chain(self.parse_url_host_map, self.non_round_tripping_parse_url_host_map.items()): returned_Url = parse_url(url) self.assertEqual(returned_Url, expected_Url) def test_unparse_url(self): for url, expected_Url in self.parse_url_host_map: self.assertEqual(url, expected_Url.url) def test_parse_url_invalid_IPv6(self): self.assertRaises(ValueError, parse_url, '[::1') def test_Url_str(self): U = Url('http', host='google.com') self.assertEqual(str(U), U.url) def test_request_uri(self): url_host_map = { 'http://google.com/mail': '/mail', 'http://google.com/mail/': '/mail/', 'http://google.com/': '/', 'http://google.com': '/', '': '/', '/': '/', '?': '/?', '#': '/', '/foo?bar=baz': '/foo?bar=baz', } for url, expected_request_uri in url_host_map.items(): returned_url = parse_url(url) self.assertEqual(returned_url.request_uri, expected_request_uri) def test_netloc(self): url_netloc_map = { 'http://google.com/mail': 'google.com', 'http://google.com:80/mail': 'google.com:80', 'google.com/foobar': 'google.com', 'google.com:12345': 'google.com:12345', } for url, expected_netloc in url_netloc_map.items(): self.assertEqual(parse_url(url).netloc, expected_netloc) def test_make_headers(self): self.assertEqual( make_headers(accept_encoding=True), {'accept-encoding': 'gzip,deflate'}) self.assertEqual( make_headers(accept_encoding='foo,bar'), {'accept-encoding': 'foo,bar'}) self.assertEqual( make_headers(accept_encoding=['foo', 'bar']), {'accept-encoding': 'foo,bar'}) self.assertEqual( make_headers(accept_encoding=True, user_agent='banana'), {'accept-encoding': 'gzip,deflate', 'user-agent': 'banana'}) self.assertEqual( make_headers(user_agent='banana'), {'user-agent': 'banana'}) self.assertEqual( make_headers(keep_alive=True), {'connection': 'keep-alive'}) self.assertEqual( make_headers(basic_auth='foo:bar'), {'authorization': 'Basic Zm9vOmJhcg=='}) self.assertEqual( make_headers(proxy_basic_auth='foo:bar'), {'proxy-authorization': 'Basic Zm9vOmJhcg=='}) self.assertEqual( make_headers(disable_cache=True), {'cache-control': 'no-cache'}) def test_rewind_body(self): body = io.BytesIO(b'test data') self.assertEqual(body.read(), b'test data') # Assert the file object has been consumed self.assertEqual(body.read(), b'') # Rewind it back to just be b'data' rewind_body(body, 5) self.assertEqual(body.read(), b'data') def test_rewind_body_failed_tell(self): body = io.BytesIO(b'test data') body.read() # Consume body # Simulate failed tell() body_pos = _FAILEDTELL self.assertRaises(UnrewindableBodyError, rewind_body, body, body_pos) def test_rewind_body_bad_position(self): body = io.BytesIO(b'test data') body.read() # Consume body # Pass non-integer position self.assertRaises(ValueError, rewind_body, body, None) self.assertRaises(ValueError, rewind_body, body, object()) def test_rewind_body_failed_seek(self): class BadSeek(): def seek(self, pos, offset=0): raise IOError self.assertRaises(UnrewindableBodyError, rewind_body, BadSeek(), 2) def test_split_first(self): test_cases = { ('abcd', 'b'): ('a', 'cd', 'b'), ('abcd', 'cb'): ('a', 'cd', 'b'), ('abcd', ''): ('abcd', '', None), ('abcd', 'a'): ('', 'bcd', 'a'), ('abcd', 'ab'): ('', 'bcd', 'a'), } for input, expected in test_cases.items(): output = split_first(*input) self.assertEqual(output, expected) def test_add_stderr_logger(self): handler = add_stderr_logger(level=logging.INFO) # Don't actually print debug logger = logging.getLogger('urllib3') self.assertTrue(handler in logger.handlers) logger.debug('Testing add_stderr_logger') logger.removeHandler(handler) def test_disable_warnings(self): with warnings.catch_warnings(record=True) as w: clear_warnings() warnings.warn('This is a test.', InsecureRequestWarning) self.assertEqual(len(w), 1) disable_warnings() warnings.warn('This is a test.', InsecureRequestWarning) self.assertEqual(len(w), 1) def _make_time_pass(self, seconds, timeout, time_mock): """ Make some time pass for the timeout object """ time_mock.return_value = TIMEOUT_EPOCH timeout.start_connect() time_mock.return_value = TIMEOUT_EPOCH + seconds return timeout def test_invalid_timeouts(self): try: Timeout(total=-1) self.fail("negative value should throw exception") except ValueError as e: self.assertTrue('less than' in str(e)) try: Timeout(connect=2, total=-1) self.fail("negative value should throw exception") except ValueError as e: self.assertTrue('less than' in str(e)) try: Timeout(read=-1) self.fail("negative value should throw exception") except ValueError as e: self.assertTrue('less than' in str(e)) try: Timeout(connect=False) self.fail("boolean values should throw exception") except ValueError as e: self.assertTrue('cannot be a boolean' in str(e)) try: Timeout(read=True) self.fail("boolean values should throw exception") except ValueError as e: self.assertTrue('cannot be a boolean' in str(e)) try: Timeout(connect=0) self.fail("value <= 0 should throw exception") except ValueError as e: self.assertTrue('less than or equal' in str(e)) try: Timeout(read="foo") self.fail("string value should not be allowed") except ValueError as e: self.assertTrue('int, float or None' in str(e)) @patch('urllib3.util.timeout.current_time') def test_timeout(self, current_time): timeout = Timeout(total=3) # make 'no time' elapse timeout = self._make_time_pass(seconds=0, timeout=timeout, time_mock=current_time) self.assertEqual(timeout.read_timeout, 3) self.assertEqual(timeout.connect_timeout, 3) timeout = Timeout(total=3, connect=2) self.assertEqual(timeout.connect_timeout, 2) timeout = Timeout() self.assertEqual(timeout.connect_timeout, Timeout.DEFAULT_TIMEOUT) # Connect takes 5 seconds, leaving 5 seconds for read timeout = Timeout(total=10, read=7) timeout = self._make_time_pass(seconds=5, timeout=timeout, time_mock=current_time) self.assertEqual(timeout.read_timeout, 5) # Connect takes 2 seconds, read timeout still 7 seconds timeout = Timeout(total=10, read=7) timeout = self._make_time_pass(seconds=2, timeout=timeout, time_mock=current_time) self.assertEqual(timeout.read_timeout, 7) timeout = Timeout(total=10, read=7) self.assertEqual(timeout.read_timeout, 7) timeout = Timeout(total=None, read=None, connect=None) self.assertEqual(timeout.connect_timeout, None) self.assertEqual(timeout.read_timeout, None) self.assertEqual(timeout.total, None) timeout = Timeout(5) self.assertEqual(timeout.total, 5) def test_timeout_str(self): timeout = Timeout(connect=1, read=2, total=3) self.assertEqual(str(timeout), "Timeout(connect=1, read=2, total=3)") timeout = Timeout(connect=1, read=None, total=3) self.assertEqual(str(timeout), "Timeout(connect=1, read=None, total=3)") @patch('urllib3.util.timeout.current_time') def test_timeout_elapsed(self, current_time): current_time.return_value = TIMEOUT_EPOCH timeout = Timeout(total=3) self.assertRaises(TimeoutStateError, timeout.get_connect_duration) timeout.start_connect() self.assertRaises(TimeoutStateError, timeout.start_connect) current_time.return_value = TIMEOUT_EPOCH + 2 self.assertEqual(timeout.get_connect_duration(), 2) current_time.return_value = TIMEOUT_EPOCH + 37 self.assertEqual(timeout.get_connect_duration(), 37) def test_resolve_cert_reqs(self): self.assertEqual(resolve_cert_reqs(None), ssl.CERT_NONE) self.assertEqual(resolve_cert_reqs(ssl.CERT_NONE), ssl.CERT_NONE) self.assertEqual(resolve_cert_reqs(ssl.CERT_REQUIRED), ssl.CERT_REQUIRED) self.assertEqual(resolve_cert_reqs('REQUIRED'), ssl.CERT_REQUIRED) self.assertEqual(resolve_cert_reqs('CERT_REQUIRED'), ssl.CERT_REQUIRED) def test_resolve_ssl_version(self): self.assertEqual(resolve_ssl_version(ssl.PROTOCOL_TLSv1), ssl.PROTOCOL_TLSv1) self.assertEqual(resolve_ssl_version("PROTOCOL_TLSv1"), ssl.PROTOCOL_TLSv1) self.assertEqual(resolve_ssl_version("TLSv1"), ssl.PROTOCOL_TLSv1) self.assertEqual(resolve_ssl_version(ssl.PROTOCOL_SSLv23), ssl.PROTOCOL_SSLv23) def test_is_fp_closed_object_supports_closed(self): class ClosedFile(object): @property def closed(self): return True self.assertTrue(is_fp_closed(ClosedFile())) def test_is_fp_closed_object_has_none_fp(self): class NoneFpFile(object): @property def fp(self): return None self.assertTrue(is_fp_closed(NoneFpFile())) def test_is_fp_closed_object_has_fp(self): class FpFile(object): @property def fp(self): return True self.assertTrue(not is_fp_closed(FpFile())) def test_is_fp_closed_object_has_neither_fp_nor_closed(self): class NotReallyAFile(object): pass self.assertRaises(ValueError, is_fp_closed, NotReallyAFile()) def test_ssl_wrap_socket_loads_the_cert_chain(self): socket = object() mock_context = Mock() ssl_wrap_socket(ssl_context=mock_context, sock=socket, certfile='/path/to/certfile') mock_context.load_cert_chain.assert_called_once_with( '/path/to/certfile', None) @patch('urllib3.util.ssl_.create_urllib3_context') def test_ssl_wrap_socket_creates_new_context(self, create_urllib3_context): socket = object() ssl_wrap_socket(sock=socket, cert_reqs='CERT_REQUIRED') create_urllib3_context.assert_called_once_with( None, 'CERT_REQUIRED', ciphers=None ) def test_ssl_wrap_socket_loads_verify_locations(self): socket = object() mock_context = Mock() ssl_wrap_socket(ssl_context=mock_context, ca_certs='/path/to/pem', sock=socket) mock_context.load_verify_locations.assert_called_once_with( '/path/to/pem', None) def test_ssl_wrap_socket_loads_certificate_directories(self): socket = object() mock_context = Mock() ssl_wrap_socket(ssl_context=mock_context, ca_cert_dir='/path/to/pems', sock=socket) mock_context.load_verify_locations.assert_called_once_with( None, '/path/to/pems') def test_ssl_wrap_socket_with_no_sni(self): socket = object() mock_context = Mock() # Ugly preservation of original value HAS_SNI = ssl_.HAS_SNI ssl_.HAS_SNI = False ssl_wrap_socket(ssl_context=mock_context, sock=socket) mock_context.wrap_socket.assert_called_once_with(socket) ssl_.HAS_SNI = HAS_SNI def test_ssl_wrap_socket_with_no_sni_warns(self): socket = object() mock_context = Mock() # Ugly preservation of original value HAS_SNI = ssl_.HAS_SNI ssl_.HAS_SNI = False with patch('warnings.warn') as warn: ssl_wrap_socket(ssl_context=mock_context, sock=socket) mock_context.wrap_socket.assert_called_once_with(socket) ssl_.HAS_SNI = HAS_SNI self.assertTrue(warn.call_count >= 1) warnings = [call[0][1] for call in warn.call_args_list] self.assertTrue(SNIMissingWarning in warnings) def test_const_compare_digest_fallback(self): target = hashlib.sha256(b'abcdef').digest() self.assertTrue(_const_compare_digest_backport(target, target)) prefix = target[:-1] self.assertFalse(_const_compare_digest_backport(target, prefix)) suffix = target + b'0' self.assertFalse(_const_compare_digest_backport(target, suffix)) incorrect = hashlib.sha256(b'xyz').digest() self.assertFalse(_const_compare_digest_backport(target, incorrect)) def test_has_ipv6_disabled_on_compile(self): with patch('socket.has_ipv6', False): self.assertFalse(_has_ipv6('::1')) def test_has_ipv6_enabled_but_fails(self): with patch('socket.has_ipv6', True): with patch('socket.socket') as mock: instance = mock.return_value instance.bind = Mock(side_effect=Exception('No IPv6 here!')) self.assertFalse(_has_ipv6('::1')) def test_has_ipv6_enabled_and_working(self): with patch('socket.has_ipv6', True): with patch('socket.socket') as mock: instance = mock.return_value instance.bind.return_value = True self.assertTrue(_has_ipv6('::1')) def test_ip_family_ipv6_enabled(self): with patch('urllib3.util.connection.HAS_IPV6', True): self.assertEqual(allowed_gai_family(), socket.AF_UNSPEC) def test_ip_family_ipv6_disabled(self): with patch('urllib3.util.connection.HAS_IPV6', False): self.assertEqual(allowed_gai_family(), socket.AF_INET) def test_parse_retry_after(self): invalid = [ "-1", "+1", "1.0", six.u("\xb2"), # \xb2 = ^2 ] retry = Retry() for value in invalid: self.assertRaises(InvalidHeader, retry.parse_retry_after, value) self.assertEqual(retry.parse_retry_after("0"), 0) self.assertEqual(retry.parse_retry_after("1000"), 1000) self.assertEqual(retry.parse_retry_after("\t42 "), 42)
# -*- coding: utf-8 -*- """ Survey module with XForm Survey objects and utility functions. """ import codecs import os import re import tempfile import xml.etree.ElementTree as ETree from collections import defaultdict from datetime import datetime from functools import lru_cache from pyxform import constants from pyxform.errors import PyXFormError, ValidationError from pyxform.external_instance import ExternalInstance from pyxform.instance import SurveyInstance from pyxform.instance_info import InstanceInfo from pyxform.question import Question from pyxform.section import Section from pyxform.survey_element import SurveyElement from pyxform.utils import ( BRACKETED_TAG_REGEX, LAST_SAVED_INSTANCE_NAME, LAST_SAVED_REGEX, NSMAP, PatchedText, get_languages_with_bad_tags, has_dynamic_label, node, ) from pyxform.validators import enketo_validate, odk_validate RE_PULLDATA = re.compile(r"(pulldata\s*\(\s*)(.*?),") def register_nsmap(): """Function to register NSMAP namespaces with ETree""" for prefix, uri in NSMAP.items(): prefix_no_xmlns = prefix.replace("xmlns", "").replace(":", "") ETree.register_namespace(prefix_no_xmlns, uri) register_nsmap() @lru_cache(maxsize=None) def is_parent_a_repeat(survey, xpath): """ Returns the XPATH of the first repeat of the given xpath in the survey, otherwise False will be returned. """ parent_xpath = "/".join(xpath.split("/")[:-1]) if not parent_xpath: return False if survey.any_repeat(parent_xpath): return parent_xpath return is_parent_a_repeat(survey, parent_xpath) @lru_cache(maxsize=None) def share_same_repeat_parent(survey, xpath, context_xpath, reference_parent=False): """ Returns a tuple of the number of steps from the context xpath to the shared repeat parent and the xpath to the target xpath from the shared repeat parent. For example, xpath = /data/repeat_a/group_a/name context_xpath = /data/repeat_a/group_b/age returns (2, '/group_a/name')' """ def _get_steps_and_target_xpath(context_parent, xpath_parent, include_parent=False): parts = [] steps = 1 if not include_parent: remainder_xpath = xpath[len(xpath_parent) :] context_parts = context_xpath[len(xpath_parent) + 1 :].split("/") xpath_parts = xpath[len(xpath_parent) + 1 :].split("/") else: split_idx = len(xpath_parent.split("/")) context_parts = context_xpath.split("/")[split_idx - 1 :] xpath_parts = xpath.split("/")[split_idx - 1 :] remainder_xpath = "/".join(xpath_parts) for index, item in enumerate(context_parts[:-1]): try: if xpath[len(context_parent) + 1 :].split("/")[index] != item: steps = len(context_parts[index:]) parts = xpath_parts[index:] break else: parts = remainder_xpath.split("/")[index + 2 :] except IndexError: steps = len(context_parts[index - 1 :]) parts = xpath_parts[index - 1 :] break return (steps, "/" + "/".join(parts) if parts else remainder_xpath) context_parent = is_parent_a_repeat(survey, context_xpath) xpath_parent = is_parent_a_repeat(survey, xpath) if context_parent and xpath_parent and xpath_parent in context_parent: if (not context_parent == xpath_parent and reference_parent) or bool( is_parent_a_repeat(survey, context_parent) ): context_shared_ancestor = is_parent_a_repeat(survey, context_parent) if context_shared_ancestor == xpath_parent: # Check if context_parent is a child repeat of the xpath_parent # If the context_parent is a child of the xpath_parent reference the entire # xpath_parent in the generated nodeset context_parent = context_shared_ancestor elif context_parent == xpath_parent and context_shared_ancestor: # If the context_parent is a child of another # repeat and is equal to the xpath_parent # we avoid refrencing the context_parent and instead reference the shared # ancestor reference_parent = False return _get_steps_and_target_xpath(context_parent, xpath_parent, reference_parent) elif context_parent and xpath_parent: # Check if context_parent and xpath_parent share a common # repeat ancestor context_shared_ancestor = is_parent_a_repeat(survey, context_parent) xpath_shared_ancestor = is_parent_a_repeat(survey, xpath_parent) if ( xpath_shared_ancestor and context_shared_ancestor and xpath_shared_ancestor == context_shared_ancestor ): return _get_steps_and_target_xpath( context_shared_ancestor, xpath_shared_ancestor ) return (None, None) class Survey(Section): """ Survey class - represents the full XForm XML. """ FIELDS = Section.FIELDS.copy() FIELDS.update( { "_xpath": dict, "_created": datetime.now, # This can't be dumped to json "setvalues_by_triggering_ref": dict, "title": str, "id_string": str, "sms_keyword": str, "sms_separator": str, "sms_allow_media": bool, "sms_date_format": str, "sms_datetime_format": str, "sms_response": str, constants.COMPACT_PREFIX: str, constants.COMPACT_DELIMITER: str, "file_name": str, "default_language": str, "_translations": dict, "submission_url": str, "auto_send": str, "auto_delete": str, "public_key": str, "instance_xmlns": str, "version": str, "choices": dict, "style": str, "attribute": dict, "namespaces": str, } ) # yapf: disable def validate(self): if self.id_string in [None, "None"]: raise PyXFormError("Survey cannot have an empty id_string") super(Survey, self).validate() self._validate_uniqueness_of_section_names() def _validate_uniqueness_of_section_names(self): root_node_name = self.name section_names = [] for element in self.iter_descendants(): if isinstance(element, Section): if element.name in section_names: if element.name == root_node_name: # The root node name is rarely explictly set; explain # the problem in a more helpful way (#510) raise PyXFormError( 'The name "%s" is the same as the form name. ' "Use a different section name " '(or change the form name in the "name" column of ' "the settings sheet)." % element.name ) raise PyXFormError( "There are two sections with the name %s." % element.name ) section_names.append(element.name) def get_nsmap(self): """Add additional namespaces""" namespaces = getattr(self, constants.NAMESPACES, None) if namespaces and isinstance(namespaces, str): nslist = [ ns.split("=") for ns in namespaces.split() if len(ns.split("=")) == 2 and ns.split("=")[0] != "" ] xmlns = "xmlns:" nsmap = NSMAP.copy() nsmap.update( dict( [ (xmlns + k, v.replace('"', "").replace("'", "")) for k, v in nslist if xmlns + k not in nsmap ] ) ) return nsmap return NSMAP def xml(self): """ calls necessary preparation methods, then returns the xml. """ self.validate() self._setup_xpath_dictionary() for triggering_reference in self.setvalues_by_triggering_ref.keys(): if not (re.match(BRACKETED_TAG_REGEX, triggering_reference)): raise PyXFormError( "Only references to other fields are allowed in the 'trigger' column." ) # try to resolve reference and fail if can't self.insert_xpaths(triggering_reference, self) body_kwargs = {} if hasattr(self, constants.STYLE) and getattr(self, constants.STYLE): body_kwargs["class"] = getattr(self, constants.STYLE) nsmap = self.get_nsmap() return node( "h:html", node("h:head", node("h:title", self.title), self.xml_model()), node("h:body", *self.xml_control(), **body_kwargs), **nsmap ) def get_setvalues_for_question_name(self, question_name): return self.setvalues_by_triggering_ref.get("${%s}" % question_name) @staticmethod def _generate_static_instances(list_name, choice_list): """ Generates <instance> elements for static data (e.g. choices for select type questions) Note that per commit message 0578242 and in xls2json.py R539, an instance is only output for select items defined in the choices sheet when the item has a choice_filter, and it is that way for backwards compatibility. """ instance_element_list = [] multi_language = isinstance(choice_list[0].get("label"), dict) has_media = bool(choice_list[0].get("media")) for idx, choice in enumerate(choice_list): choice_element_list = [] # Add a unique id to the choice element in case there is itext # it references if ( multi_language or has_media or has_dynamic_label(choice_list, multi_language) ): itext_id = "-".join([list_name, str(idx)]) choice_element_list.append(node("itextId", itext_id)) for name, value in sorted(choice.items()): if isinstance(value, str) and name != "label": choice_element_list.append(node(name, str(value))) if ( not multi_language and not has_media and not has_dynamic_label(choice_list, multi_language) and isinstance(value, str) and name == "label" ): choice_element_list.append(node(name, str(value))) instance_element_list.append(node("item", *choice_element_list)) return InstanceInfo( type="choice", context="survey", name=list_name, src=None, instance=node("instance", node("root", *instance_element_list), id=list_name), ) @staticmethod def _generate_external_instances(element): if isinstance(element, ExternalInstance): name = element["name"] extension = element["type"].split("-")[0] prefix = "file-csv" if extension == "csv" else "file" src = "jr://{}/{}.{}".format(prefix, name, extension) return InstanceInfo( type="external", context="[type: {t}, name: {n}]".format( t=element["parent"]["type"], n=element["parent"]["name"] ), name=name, src=src, instance=node("instance", id=name, src=src), ) return None @staticmethod def _validate_external_instances(instances): """ Must have unique names. - Duplications could come from across groups; this checks the form. - Errors are pooled together into a (hopefully) helpful message. """ seen = {} for i in instances: element = i.name if seen.get(element) is None: seen[element] = [i] else: seen[element].append(i) errors = [] for element, copies in seen.items(): if len(copies) > 1: contexts = ", ".join(x.context for x in copies) errors.append( "Instance names must be unique within a form. " "The name '{i}' was found {c} time(s), " "under these contexts: {contexts}".format( i=element, c=len(copies), contexts=contexts ) ) if errors: raise ValidationError("\n".join(errors)) @staticmethod def _generate_pulldata_instances(element): def get_pulldata_functions(element): """ Returns a list of different pulldata(... function strings if pulldata function is defined at least once for any of: calculate, constraint, readonly, required, relevant :param: element (pyxform.survey.Survey): """ functions_present = [] for formula_name in constants.EXTERNAL_INSTANCES: if "pulldata(" in str(element["bind"].get(formula_name)): functions_present.append(element["bind"][formula_name]) if "pulldata(" in str(element["choice_filter"]): functions_present.append(element["choice_filter"]) if "pulldata(" in str(element["default"]): functions_present.append(element["default"]) return functions_present def get_instance_info(element, file_id): uri = "jr://file-csv/{}.csv".format(file_id) return InstanceInfo( type=u"pulldata", context="[type: {t}, name: {n}]".format( t=element[u"parent"][u"type"], n=element[u"parent"][u"name"] ), name=file_id, src=uri, instance=node("instance", id=file_id, src=uri), ) pulldata_usages = get_pulldata_functions(element) if len(pulldata_usages) > 0: pulldata_instances = [] for usage in pulldata_usages: for call_match in re.finditer(RE_PULLDATA, usage): groups = call_match.groups() if len(groups) == 2: first_argument = ( # first argument to pulldata() groups[1].replace("'", "").replace('"', "").strip() ) pulldata_instances.append( get_instance_info(element, first_argument) ) return pulldata_instances return None @staticmethod def _generate_from_file_instances(element): itemset = element.get("itemset") if itemset and (itemset.endswith(".csv") or itemset.endswith(".xml")): file_id, ext = os.path.splitext(itemset) uri = "jr://%s/%s" % ( "file" if ext == ".xml" else "file-%s" % ext[1:], itemset, ) return InstanceInfo( type="file", context="[type: {t}, name: {n}]".format( t=element["parent"]["type"], n=element["parent"]["name"] ), name=file_id, src=uri, instance=node("instance", id=file_id, src=uri), ) return None # True if a last-saved instance should be generated, false otherwise @staticmethod def _generate_last_saved_instance(element): for expression_type in constants.EXTERNAL_INSTANCES: last_saved_expression = re.search( LAST_SAVED_REGEX, str(element["bind"].get(expression_type)) ) if last_saved_expression: return True return re.search(LAST_SAVED_REGEX, str(element["choice_filter"])) or re.search( LAST_SAVED_REGEX, str(element["default"]) ) @staticmethod def _get_last_saved_instance(): name = "__last-saved" # double underscore used to minimize risk of name conflicts uri = "jr://instance/last-saved" return InstanceInfo( type="instance", context=None, name=name, src=uri, instance=node("instance", id=name, src=uri), ) def _generate_instances(self): """ Get instances from all the different ways that they may be generated. An opportunity to validate instances before output to the XML model. Instance names used for the id attribute are generated as follows: - xml-external: item name value (for type==xml-external) - pulldata: first arg to calculation->pulldata() - select from file: file name arg to type->itemset - choices: list_name (for type==select_*) - last-saved: static name of jr://instance/last-saved Validation and business rules for output of instances: - xml-external item name must be unique across the XForm and the form is considered invalid if there is a duplicate name. This differs from other item types which allow duplicates if not in the same group. - for all instance sources, if the same instance name is encountered, the following rules are used to allow re-using instances but prevent overwriting conflicting instances: - same id, same src URI: skip adding the second (duplicate) instance - same id, different src URI: raise an error - otherwise: output the instance There are two other things currently supported by pyxform that involve external files and are not explicitly handled here, but may be relevant to future efforts to harmonise / simplify external data workflows: - `search` appearance/function: works a lot like pulldata but the csv isn't made explicit in the form. - `select_one_external`: implicitly relies on a `itemsets.csv` file and uses XPath-like expressions for querying. """ instances = [] generate_last_saved = False for i in self.iter_descendants(): i_ext = self._generate_external_instances(element=i) i_pull = self._generate_pulldata_instances(element=i) i_file = self._generate_from_file_instances(element=i) if not generate_last_saved: generate_last_saved = self._generate_last_saved_instance(element=i) for x in [i_ext, i_pull, i_file]: if x is not None: instances += x if isinstance(x, list) else [x] if generate_last_saved: instances += [self._get_last_saved_instance()] # Append last so the choice instance is excluded on a name clash. for name, value in self.choices.items(): instances += [ self._generate_static_instances(list_name=name, choice_list=value) ] # Check that external instances have unique names. if instances: ext_only = [x for x in instances if x.type == "external"] self._validate_external_instances(instances=ext_only) seen = {} for i in instances: if i.name in seen.keys() and seen[i.name].src != i.src: # Instance id exists with different src URI -> error. msg = ( "The same instance id will be generated for different " "external instance source URIs. Please check the form." " Instance name: '{i}', Existing type: '{e}', " "Existing URI: '{iu}', Duplicate type: '{d}', " "Duplicate URI: '{du}', Duplicate context: '{c}'.".format( i=i.name, iu=seen[i.name].src, e=seen[i.name].type, d=i.type, du=i.src, c=i.context, ) ) raise PyXFormError(msg) elif i.name in seen.keys() and seen[i.name].src == i.src: # Instance id exists with same src URI -> ok, don't duplicate. continue else: # Instance doesn't exist yet -> add it. yield i.instance seen[i.name] = i def xml_model(self): """ Generate the xform <model> element """ self._setup_translations() self._setup_media() self._add_empty_translations() model_kwargs = {"odk:xforms-version": constants.CURRENT_XFORMS_VERSION} model_children = [] if self._translations: model_children.append(self.itext()) model_children += [node("instance", self.xml_instance())] model_children += list(self._generate_instances()) model_children += self.xml_bindings() model_children += self.xml_actions() if self.submission_url or self.public_key or self.auto_send or self.auto_delete: submission_attrs = dict() if self.submission_url: submission_attrs["action"] = self.submission_url submission_attrs["method"] = "post" if self.public_key: submission_attrs["base64RsaPublicKey"] = self.public_key if self.auto_send: submission_attrs["orx:auto-send"] = self.auto_send if self.auto_delete: submission_attrs["orx:auto-delete"] = self.auto_delete submission_node = node("submission", **submission_attrs) model_children.insert(0, submission_node) return node("model", *model_children, **model_kwargs) def xml_instance(self, **kwargs): result = Section.xml_instance(self, **kwargs) # set these first to prevent overwriting id and version for key, value in self.attribute.items(): result.setAttribute(str(key), value) result.setAttribute("id", self.id_string) # add instance xmlns attribute to the instance node if self.instance_xmlns: result.setAttribute("xmlns", self.instance_xmlns) if self.version: result.setAttribute("version", self.version) if self.prefix: result.setAttribute("odk:prefix", self.prefix) if self.delimiter: result.setAttribute("odk:delimiter", self.delimiter) return result def _add_to_nested_dict(self, dicty, path, value): if len(path) == 1: dicty[path[0]] = value return if path[0] not in dicty: dicty[path[0]] = {} self._add_to_nested_dict(dicty[path[0]], path[1:], value) def _setup_translations(self): """ set up the self._translations dict which will be referenced in the setup media and itext functions """ def _setup_choice_translations(name, choice_value, itext_id): for media_type_or_language, value in choice_value.items(): # noqa if isinstance(value, dict): for language, val in value.items(): self._add_to_nested_dict( self._translations, [language, itext_id, media_type_or_language], val, ) else: if name == "media": self._add_to_nested_dict( self._translations, [self.default_language, itext_id, media_type_or_language], value, ) else: self._add_to_nested_dict( self._translations, [media_type_or_language, itext_id, "long"], value, ) self._translations = defaultdict(dict) # pylint: disable=W0201 for element in self.iter_descendants(): # Skip creation of translations for choices in filtered selects # The creation of these translations is done futher below in this # function parent = element.get("parent") if parent and not parent.get("choice_filter"): for d in element.get_translations(self.default_language): translation_path = d["path"] form = "long" if "guidance_hint" in d["path"]: translation_path = d["path"].replace("guidance_hint", "hint") form = "guidance" self._translations[d["lang"]][translation_path] = self._translations[ d["lang"] ].get(translation_path, {}) self._translations[d["lang"]][translation_path].update( { form: { "text": d["text"], "output_context": d["output_context"], } } ) # This code sets up translations for choices in filtered selects. for list_name, choice_list in self.choices.items(): multi_language = isinstance(choice_list[0].get("label"), dict) has_media = bool(choice_list[0].get("media")) if ( not multi_language and not has_media and not has_dynamic_label(choice_list, multi_language) ): continue for idx, choice in zip(range(len(choice_list)), choice_list): for name, choice_value in choice.items(): itext_id = "-".join([list_name, str(idx)]) if isinstance(choice_value, dict): _setup_choice_translations(name, choice_value, itext_id) elif name == "label": self._add_to_nested_dict( self._translations, [self.default_language, itext_id, "long"], choice_value, ) def _add_empty_translations(self): """ Adds translations so that every itext element has the same elements \ accross every language. When translations are not provided "-" will be used. This disables any of the default_language fallback functionality. """ paths = {} for lang, translation in self._translations.items(): for path, content in translation.items(): paths[path] = paths.get(path, set()).union(content.keys()) for lang, translation in self._translations.items(): for path, content_types in paths.items(): if path not in self._translations[lang]: self._translations[lang][path] = {} for content_type in content_types: if content_type not in self._translations[lang][path]: self._translations[lang][path][content_type] = "-" def _setup_media(self): """ Traverse the survey, find all the media, and put in into the \ _translations data structure which looks like this: {language : {element_xpath : {media_type : media}}} It matches the xform nesting order. """ def _set_up_media_translations(media_dict, translation_key): # This is probably papering over a real problem, but anyway, # in py3, sometimes if an item is on an xform with multiple # languages and the item only has media defined in # "default" # (e.g. no "image" vs. "image::lang"), the media dict will be # nested inside of a dict with key "default", e.g. # {"default": {"image": "my_image.jpg"}} media_dict_default = media_dict.get("default", None) if isinstance(media_dict_default, dict): media_dict = media_dict_default for media_type, possibly_localized_media in media_dict.items(): if media_type not in SurveyElement.SUPPORTED_MEDIA: raise PyXFormError("Media type: " + media_type + " not supported") if isinstance(possibly_localized_media, dict): # media is localized localized_media = possibly_localized_media else: # media is not localized so create a localized version # using the default language localized_media = {self.default_language: possibly_localized_media} for language, media in localized_media.items(): # Create the required dictionaries in _translations, # then add media as a leaf value: if language not in self._translations: self._translations[language] = {} translations_language = self._translations[language] if translation_key not in translations_language: translations_language[translation_key] = {} translations_trans_key = translations_language[translation_key] if media_type not in translations_trans_key: translations_trans_key[media_type] = {} translations_trans_key[media_type] = media if not self._translations: self._translations = defaultdict(dict) # pylint: disable=W0201 for survey_element in self.iter_descendants(): # Skip set up of media for choices in filtered selects. # Translations for the media content should have been set up # in _setup_translations parent = survey_element.get("parent") if parent and not parent.get("choice_filter"): translation_key = survey_element.get_xpath() + ":label" media_dict = survey_element.get("media") _set_up_media_translations(media_dict, translation_key) def itext(self): """ This function creates the survey's itext nodes from _translations @see _setup_media _setup_translations itext nodes are localized images/audio/video/text @see http://code.google.com/p/opendatakit/wiki/XFormDesignGuidelines """ result = [] for lang, translation in self._translations.items(): if lang == self.default_language: result.append(node("translation", lang=lang, default="true()")) else: result.append(node("translation", lang=lang)) for label_name, content in translation.items(): itext_nodes = [] label_type = label_name.partition(":")[-1] if not isinstance(content, dict): raise Exception() for media_type, media_value in content.items(): if isinstance(media_value, dict): value, output_inserted = self.insert_output_values( media_value["text"], context=media_value["output_context"] ) else: value, output_inserted = self.insert_output_values(media_value) if label_type == "hint": if media_type == "guidance": itext_nodes.append( node( "value", value, form="guidance", toParseString=output_inserted, ) ) else: itext_nodes.append( node("value", value, toParseString=output_inserted) ) continue if media_type == "long": # I'm ignoring long types for now because I don't know # how they are supposed to work. itext_nodes.append( node("value", value, toParseString=output_inserted) ) elif media_type == "image": if value != "-": itext_nodes.append( node( "value", "jr://images/" + value, form=media_type, toParseString=output_inserted, ) ) else: if value != "-": itext_nodes.append( node( "value", "jr://" + media_type + "/" + value, form=media_type, toParseString=output_inserted, ) ) result[-1].appendChild(node("text", *itext_nodes, id=label_name)) return node("itext", *result) def date_stamp(self): """Returns a date string with the format of %Y_%m_%d.""" return self._created.strftime("%Y_%m_%d") def _to_ugly_xml(self): return '<?xml version="1.0"?>' + self.xml().toxml() def _to_pretty_xml(self): """ I want the to_xml method to by default validate the xml we are producing. """ # Hacky way of pretty printing xml without adding extra white # space to text # TODO: check out pyxml # http://ronrothman.com/public/leftbraned/xml-dom-minidom-toprettyxml-and-silly-whitespace/ xml_with_linebreaks = self.xml().toprettyxml(indent=" ") text_re = re.compile(r"(>)\n\s*(\s[^<>\s].*?)\n\s*(\s</)", re.DOTALL) output_re = re.compile(r"\n.*(<output.*>)\n(\s\s)*") pretty_xml = text_re.sub(lambda m: "".join(m.group(1, 2, 3)), xml_with_linebreaks) inline_output = output_re.sub(r"\g<1>", pretty_xml) return '<?xml version="1.0"?>\n' + inline_output def __repr__(self): return self.__unicode__() def __unicode__(self): return "<pyxform.survey.Survey instance at %s>" % hex(id(self)) def _setup_xpath_dictionary(self): self._xpath = {} # pylint: disable=attribute-defined-outside-init for element in self.iter_descendants(): if isinstance(element, (Question, Section)): if element.name in self._xpath: self._xpath[element.name] = None else: self._xpath[element.name] = element.get_xpath() def _var_repl_function( self, matchobj, context, use_current=False, reference_parent=False ): """ Given a dictionary of xpaths, return a function we can use to replace ${varname} with the xpath to varname. """ name = matchobj.group(2) last_saved = matchobj.group(1) is not None is_indexed_repeat = matchobj.string.find("indexed-repeat(") > -1 indexed_repeat_regex = re.compile(r"indexed-repeat\([^)]+\)") function_args_regex = re.compile(r"\b[^()]+\((.*)\)$") instance_regex = re.compile(r"instance\([^)]+.+") bracket_regex = re.compile(r"\[([^]]+)\]") def _in_secondary_instance_predicate(): """ check if ${} expression represented by matchobj is in a predicate for a path expression for a secondary instance """ if instance_regex.search(matchobj.string) is not None: bracket_regex_match_iter = bracket_regex.finditer(matchobj.string) # Check whether current ${varname} is in the correct bracket_regex_match for bracket_regex_match in bracket_regex_match_iter: if ( matchobj.start() >= bracket_regex_match.start() and matchobj.end() <= bracket_regex_match.end() ): return True return False return False def _relative_path(name): """Given name in ${name}, return relative xpath to ${name}.""" return_path = None xpath, context_xpath = self._xpath[name], context.get_xpath() # share same root i.e repeat_a from /data/repeat_a/... if ( len(context_xpath.split("/")) > 2 and xpath.split("/")[2] == context_xpath.split("/")[2] ): # if context xpath and target xpath fall under the same # repeat use relative xpath referencing. steps, ref_path = share_same_repeat_parent( self, xpath, context_xpath, reference_parent ) if steps: ref_path = ref_path if ref_path.endswith(name) else "/%s" % name prefix = " current()/" if use_current else " " return_path = prefix + "/".join([".."] * steps) + ref_path + " " return return_path def _is_return_relative_path(): """Determine condition to return relative xpath of current ${name}.""" indexed_repeat_relative_path_args_index = [0, 1, 3, 5] current_matchobj = matchobj if not last_saved and context: if not is_indexed_repeat: return True # It is possible to have multiple indexed-repeat in an expression indexed_repeats_iter = indexed_repeat_regex.finditer(matchobj.string) for indexed_repeat in indexed_repeats_iter: # Make sure current ${name} is in the correct indexed-repeat if current_matchobj.end() > indexed_repeat.end(): try: next(indexed_repeats_iter) continue except StopIteration: return True # ${name} outside of indexed-repeat always using relative path if ( current_matchobj.end() < indexed_repeat.start() or current_matchobj.start() > indexed_repeat.end() ): return True indexed_repeat_name_index = None indexed_repeat_args = ( function_args_regex.match(indexed_repeat.group()) .group(1) .split(",") ) name_arg = "${{{0}}}".format(name) for idx, arg in enumerate(indexed_repeat_args): if name_arg in arg.strip(): indexed_repeat_name_index = idx return ( indexed_repeat_name_index is not None and indexed_repeat_name_index not in indexed_repeat_relative_path_args_index ) return False intro = ( "There has been a problem trying to replace %s with the " "XPath to the survey element named '%s'." % (matchobj.group(0), name) ) if name not in self._xpath: raise PyXFormError(intro + " There is no survey element with this name.") if self._xpath[name] is None: raise PyXFormError( intro + " There are multiple survey elements" " with this name." ) if _is_return_relative_path(): if not use_current: use_current = _in_secondary_instance_predicate() relative_path = _relative_path(name) if relative_path: return relative_path last_saved_prefix = ( "instance('" + LAST_SAVED_INSTANCE_NAME + "')" if last_saved else "" ) return " " + last_saved_prefix + self._xpath[name] + " " def insert_xpaths(self, text, context, use_current=False, reference_parent=False): """ Replace all instances of ${var} with the xpath to var. """ def _var_repl_function(matchobj): return self._var_repl_function( matchobj, context, use_current, reference_parent ) return re.sub(BRACKETED_TAG_REGEX, _var_repl_function, str(text)) def _var_repl_output_function(self, matchobj, context): """ A regex substitution function that will replace ${varname} with an output element that has the xpath to varname. """ return '<output value="' + self._var_repl_function(matchobj, context) + '" />' def insert_output_values(self, text, context=None): """ Replace all the ${variables} in text with xpaths. Returns that and a boolean indicating if there were any ${variables} present. """ def _var_repl_output_function(matchobj): return self._var_repl_output_function(matchobj, context) # There was a bug where escaping is completely turned off in labels # where variable replacement is used. # For exampke, `${name} < 3` causes an error but `< 3` does not. # This is my hacky fix for it, which does string escaping prior to # variable replacement: text_node = PatchedText() text_node.data = text xml_text = text_node.toxml() # need to make sure we have reason to replace # since at this point < is &lt, # the net effect &lt gets translated again to &amp;lt; if str(xml_text).find("{") != -1: result = re.sub(BRACKETED_TAG_REGEX, _var_repl_output_function, str(xml_text)) return result, not result == xml_text return text, False # pylint: disable=too-many-arguments def print_xform_to_file( self, path=None, validate=True, pretty_print=True, warnings=None, enketo=False ): """ Print the xForm to a file and optionally validate it as well by throwing exceptions and adding warnings to the warnings array. """ if warnings is None: warnings = [] if not path: path = self._print_name + ".xml" try: with codecs.open(path, mode="w", encoding="utf-8") as file_obj: if pretty_print: file_obj.write(self._to_pretty_xml()) else: file_obj.write(self._to_ugly_xml()) except Exception as error: if os.path.exists(path): os.unlink(path) raise error if validate: warnings.extend(odk_validate.check_xform(path)) if enketo: warnings.extend(enketo_validate.check_xform(path)) # Warn if one or more translation is missing a valid IANA subtag translations = self._translations.keys() if translations: bad_languages = get_languages_with_bad_tags(translations) if bad_languages: warnings.append( "\tThe following language declarations do not contain " "valid machine-readable codes: " + ", ".join(bad_languages) + ". " + "Learn more: http://xlsform.org#multiple-language-support" ) def to_xml(self, validate=True, pretty_print=True, warnings=None, enketo=False): """ Generates the XForm XML. validate is True by default - pass the XForm XML through ODK Validator. pretty_print is True by default - formats the XML for readability. warnings - if a list is passed it stores all warnings generated enketo - pass the XForm XML though Enketo Validator. Return XForm XML string. """ # On Windows, NamedTemporaryFile must be opened exclusively. # So it must be explicitly created, opened, closed, and removed. tmp = tempfile.NamedTemporaryFile(delete=False) tmp.close() try: # this will throw an exception if the xml is not valid self.print_xform_to_file( path=tmp.name, validate=validate, pretty_print=pretty_print, warnings=warnings, enketo=enketo, ) finally: if os.path.exists(tmp.name): os.remove(tmp.name) if pretty_print: return self._to_pretty_xml() return self._to_ugly_xml() def instantiate(self): """ Instantiate as in return a instance of SurveyInstance for collected data. """ return SurveyInstance(self)
# -*- coding: utf-8 -*- """ This module offers timezone implementations subclassing the abstract :py:`datetime.tzinfo` type. There are classes to handle tzfile format files (usually are in :file:`/etc/localtime`, :file:`/usr/share/zoneinfo`, etc), TZ environment string (in all known formats), given ranges (with help from relative deltas), local machine timezone, fixed offset timezone, and UTC timezone. """ import datetime import struct import time import sys import os import bisect import copy from contextlib import contextmanager from six import string_types, PY3 from ._common import tzname_in_python2, _tzinfo try: from .win import tzwin, tzwinlocal except ImportError: tzwin = tzwinlocal = None ZERO = datetime.timedelta(0) EPOCH = datetime.datetime.utcfromtimestamp(0) EPOCHORDINAL = EPOCH.toordinal() class tzutc(datetime.tzinfo): def utcoffset(self, dt): return ZERO def dst(self, dt): return ZERO @tzname_in_python2 def tzname(self, dt): return "UTC" def __eq__(self, other): if not isinstance(other, (tzutc, tzoffset)): return NotImplemented return (isinstance(other, tzutc) or (isinstance(other, tzoffset) and other._offset == ZERO)) def __ne__(self, other): return not (self == other) def __repr__(self): return "%s()" % self.__class__.__name__ __reduce__ = object.__reduce__ class tzoffset(datetime.tzinfo): def __init__(self, name, offset): self._name = name self._offset = datetime.timedelta(seconds=offset) def utcoffset(self, dt): return self._offset def dst(self, dt): return ZERO @tzname_in_python2 def tzname(self, dt): return self._name def __eq__(self, other): if not isinstance(other, tzoffset): return NotImplemented return self._offset == other._offset def __ne__(self, other): return not (self == other) def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__, repr(self._name), self._offset.days*86400+self._offset.seconds) __reduce__ = object.__reduce__ class tzlocal(_tzinfo): def __init__(self): super(tzlocal, self).__init__() self._std_offset = datetime.timedelta(seconds=-time.timezone) if time.daylight: self._dst_offset = datetime.timedelta(seconds=-time.altzone) else: self._dst_offset = self._std_offset self._dst_saved = self._dst_offset - self._std_offset self._hasdst = bool(self._dst_saved) def utcoffset(self, dt): if dt is None and self._hasdst: return None if self._isdst(dt): return self._dst_offset else: return self._std_offset def dst(self, dt): if dt is None and self._hasdst: return None if self._isdst(dt): return self._dst_offset - self._std_offset else: return ZERO @tzname_in_python2 def tzname(self, dt): return time.tzname[self._isdst(dt)] def _isdst(self, dt): # We can't use mktime here. It is unstable when deciding if # the hour near to a change is DST or not. # # timestamp = time.mktime((dt.year, dt.month, dt.day, dt.hour, # dt.minute, dt.second, dt.weekday(), 0, -1)) # return time.localtime(timestamp).tm_isdst # # The code above yields the following result: # # >>> import tz, datetime # >>> t = tz.tzlocal() # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRDT' # >>> datetime.datetime(2003,2,16,0,tzinfo=t).tzname() # 'BRST' # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRST' # >>> datetime.datetime(2003,2,15,22,tzinfo=t).tzname() # 'BRDT' # >>> datetime.datetime(2003,2,15,23,tzinfo=t).tzname() # 'BRDT' # # Here is a more stable implementation: # if not self._hasdst: return False dstval = self._naive_is_dst(dt) # Check for ambiguous times: if not dstval and self._fold is not None: dst_fold_offset = self._naive_is_dst(dt - self._dst_saved) if dst_fold_offset: return self._fold return dstval def _naive_is_dst(self, dt): timestamp = _datetime_to_timestamp(dt) return time.localtime(timestamp + time.timezone).tm_isdst def __eq__(self, other): if not isinstance(other, tzlocal): return NotImplemented return (self._std_offset == other._std_offset and self._dst_offset == other._dst_offset) def __ne__(self, other): return not (self == other) def __repr__(self): return "%s()" % self.__class__.__name__ __reduce__ = object.__reduce__ class _ttinfo(object): __slots__ = ["offset", "delta", "isdst", "abbr", "isstd", "isgmt", "dstoffset"] def __init__(self): for attr in self.__slots__: setattr(self, attr, None) def __repr__(self): l = [] for attr in self.__slots__: value = getattr(self, attr) if value is not None: l.append("%s=%s" % (attr, repr(value))) return "%s(%s)" % (self.__class__.__name__, ", ".join(l)) def __eq__(self, other): if not isinstance(other, _ttinfo): return NotImplemented return (self.offset == other.offset and self.delta == other.delta and self.isdst == other.isdst and self.abbr == other.abbr and self.isstd == other.isstd and self.isgmt == other.isgmt and self.dstoffset == other.dstoffset) def __ne__(self, other): return not (self == other) def __getstate__(self): state = {} for name in self.__slots__: state[name] = getattr(self, name, None) return state def __setstate__(self, state): for name in self.__slots__: if name in state: setattr(self, name, state[name]) class _tzfile(object): """ Lightweight class for holding the relevant transition and time zone information read from binary tzfiles. """ attrs = ['trans_list', 'trans_idx', 'ttinfo_list', 'ttinfo_std', 'ttinfo_dst', 'ttinfo_before', 'ttinfo_first'] def __init__(self, **kwargs): for attr in self.attrs: setattr(self, attr, kwargs.get(attr, None)) class tzfile(_tzinfo): # http://www.twinsun.com/tz/tz-link.htm # ftp://ftp.iana.org/tz/tz*.tar.gz def __init__(self, fileobj, filename=None): super(tzfile, self).__init__() file_opened_here = False if isinstance(fileobj, string_types): self._filename = fileobj fileobj = open(fileobj, 'rb') file_opened_here = True elif filename is not None: self._filename = filename elif hasattr(fileobj, "name"): self._filename = fileobj.name else: self._filename = repr(fileobj) if fileobj is not None: if not file_opened_here: fileobj = _ContextWrapper(fileobj) with fileobj as file_stream: tzobj = self._read_tzfile(file_stream) self._set_tzdata(tzobj) def _set_tzdata(self, tzobj): """ Set the time zone data of this object from a _tzfile object """ # Copy the relevant attributes over as private attributes for attr in _tzfile.attrs: setattr(self, '_' + attr, getattr(tzobj, attr)) def _read_tzfile(self, fileobj): out = _tzfile() # From tzfile(5): # # The time zone information files used by tzset(3) # begin with the magic characters "TZif" to identify # them as time zone information files, followed by # sixteen bytes reserved for future use, followed by # six four-byte values of type long, written in a # ``standard'' byte order (the high-order byte # of the value is written first). if fileobj.read(4).decode() != "TZif": raise ValueError("magic not found") fileobj.read(16) ( # The number of UTC/local indicators stored in the file. ttisgmtcnt, # The number of standard/wall indicators stored in the file. ttisstdcnt, # The number of leap seconds for which data is # stored in the file. leapcnt, # The number of "transition times" for which data # is stored in the file. timecnt, # The number of "local time types" for which data # is stored in the file (must not be zero). typecnt, # The number of characters of "time zone # abbreviation strings" stored in the file. charcnt, ) = struct.unpack(">6l", fileobj.read(24)) # The above header is followed by tzh_timecnt four-byte # values of type long, sorted in ascending order. # These values are written in ``standard'' byte order. # Each is used as a transition time (as returned by # time(2)) at which the rules for computing local time # change. if timecnt: out.trans_list = list(struct.unpack(">%dl" % timecnt, fileobj.read(timecnt*4))) else: out.trans_list = [] # Next come tzh_timecnt one-byte values of type unsigned # char; each one tells which of the different types of # ``local time'' types described in the file is associated # with the same-indexed transition time. These values # serve as indices into an array of ttinfo structures that # appears next in the file. if timecnt: out.trans_idx = struct.unpack(">%dB" % timecnt, fileobj.read(timecnt)) else: out.trans_idx = [] # Each ttinfo structure is written as a four-byte value # for tt_gmtoff of type long, in a standard byte # order, followed by a one-byte value for tt_isdst # and a one-byte value for tt_abbrind. In each # structure, tt_gmtoff gives the number of # seconds to be added to UTC, tt_isdst tells whether # tm_isdst should be set by localtime(3), and # tt_abbrind serves as an index into the array of # time zone abbreviation characters that follow the # ttinfo structure(s) in the file. ttinfo = [] for i in range(typecnt): ttinfo.append(struct.unpack(">lbb", fileobj.read(6))) abbr = fileobj.read(charcnt).decode() # Then there are tzh_leapcnt pairs of four-byte # values, written in standard byte order; the # first value of each pair gives the time (as # returned by time(2)) at which a leap second # occurs; the second gives the total number of # leap seconds to be applied after the given time. # The pairs of values are sorted in ascending order # by time. # Not used, for now (but read anyway for correct file position) if leapcnt: leap = struct.unpack(">%dl" % (leapcnt*2), fileobj.read(leapcnt*8)) # Then there are tzh_ttisstdcnt standard/wall # indicators, each stored as a one-byte value; # they tell whether the transition times associated # with local time types were specified as standard # time or wall clock time, and are used when # a time zone file is used in handling POSIX-style # time zone environment variables. if ttisstdcnt: isstd = struct.unpack(">%db" % ttisstdcnt, fileobj.read(ttisstdcnt)) # Finally, there are tzh_ttisgmtcnt UTC/local # indicators, each stored as a one-byte value; # they tell whether the transition times associated # with local time types were specified as UTC or # local time, and are used when a time zone file # is used in handling POSIX-style time zone envi- # ronment variables. if ttisgmtcnt: isgmt = struct.unpack(">%db" % ttisgmtcnt, fileobj.read(ttisgmtcnt)) # Build ttinfo list out.ttinfo_list = [] for i in range(typecnt): gmtoff, isdst, abbrind = ttinfo[i] # Round to full-minutes if that's not the case. Python's # datetime doesn't accept sub-minute timezones. Check # http://python.org/sf/1447945 for some information. gmtoff = 60 * ((gmtoff + 30) // 60) tti = _ttinfo() tti.offset = gmtoff tti.dstoffset = datetime.timedelta(0) tti.delta = datetime.timedelta(seconds=gmtoff) tti.isdst = isdst tti.abbr = abbr[abbrind:abbr.find('\x00', abbrind)] tti.isstd = (ttisstdcnt > i and isstd[i] != 0) tti.isgmt = (ttisgmtcnt > i and isgmt[i] != 0) out.ttinfo_list.append(tti) # Replace ttinfo indexes for ttinfo objects. out.trans_idx = [out.ttinfo_list[idx] for idx in out.trans_idx] # Set standard, dst, and before ttinfos. before will be # used when a given time is before any transitions, # and will be set to the first non-dst ttinfo, or to # the first dst, if all of them are dst. out.ttinfo_std = None out.ttinfo_dst = None out.ttinfo_before = None if out.ttinfo_list: if not out.trans_list: out.ttinfo_std = out.ttinfo_first = out.ttinfo_list[0] else: for i in range(timecnt-1, -1, -1): tti = out.trans_idx[i] if not out.ttinfo_std and not tti.isdst: out.ttinfo_std = tti elif not out.ttinfo_dst and tti.isdst: out.ttinfo_dst = tti if out.ttinfo_std and out.ttinfo_dst: break else: if out.ttinfo_dst and not out.ttinfo_std: out.ttinfo_std = out.ttinfo_dst for tti in out.ttinfo_list: if not tti.isdst: out.ttinfo_before = tti break else: out.ttinfo_before = out.ttinfo_list[0] # Now fix transition times to become relative to wall time. # # I'm not sure about this. In my tests, the tz source file # is setup to wall time, and in the binary file isstd and # isgmt are off, so it should be in wall time. OTOH, it's # always in gmt time. Let me know if you have comments # about this. laststdoffset = None for i, tti in enumerate(out.trans_idx): if not tti.isdst: offset = tti.offset laststdoffset = offset else: if laststdoffset is not None: # Store the DST offset as well and update it in the list tti.dstoffset = tti.offset - laststdoffset out.trans_idx[i] = tti offset = laststdoffset or 0 out.trans_list[i] += offset # In case we missed any DST offsets on the way in for some reason, make # a second pass over the list, looking for the /next/ DST offset. laststdoffset = None for i in reversed(range(len(out.trans_idx))): tti = out.trans_idx[i] if tti.isdst: if not (tti.dstoffset or laststdoffset is None): tti.dstoffset = tti.offset - laststdoffset else: laststdoffset = tti.offset if not isinstance(tti.dstoffset, datetime.timedelta): tti.dstoffset = datetime.timedelta(seconds=tti.dstoffset) out.trans_idx[i] = tti out.trans_idx = tuple(out.trans_idx) out.trans_list = tuple(out.trans_list) return out def _find_last_transition(self, dt): # If there's no list, there are no transitions to find if not self._trans_list: return None timestamp = _datetime_to_timestamp(dt) # Find where the timestamp fits in the transition list - if the # timestamp is a transition time, it's part of the "after" period. idx = bisect.bisect_right(self._trans_list, timestamp) # We want to know when the previous transition was, so subtract off 1 return idx - 1 def _get_ttinfo(self, idx): # For no list or after the last transition, default to _ttinfo_std if idx is None or (idx + 1) == len(self._trans_list): return self._ttinfo_std # If there is a list and the time is before it, return _ttinfo_before if idx < 0: return self._ttinfo_before return self._trans_idx[idx] def _find_ttinfo(self, dt): idx = self._resolve_ambiguous_time(dt) return self._get_ttinfo(idx) def _resolve_ambiguous_time(self, dt, idx=None): if idx is None: idx = self._find_last_transition(dt) # If we're fold-naive or we have no transitions, return the index. if self._fold is None or idx is None: return idx timestamp = _datetime_to_timestamp(dt) tti = self._get_ttinfo(idx) if idx > 0: # Calculate the difference in offsets from the current to previous od = self._get_ttinfo(idx - 1).offset - tti.offset tt = self._trans_list[idx] # Transition time if timestamp < tt + od: if self._fold: return idx - 1 else: return idx if idx < len(self._trans_list): # Calculate the difference in offsets from the previous to current od = self._get_ttinfo(idx + 1).offset - tti.offset tt = self._trans_list[idx + 1] if timestamp > tt - od: if self._fold: return idx + 1 else: return idx return idx def utcoffset(self, dt): if dt is None: return None if not self._ttinfo_std: return ZERO return self._find_ttinfo(dt).delta def dst(self, dt): if not self._ttinfo_dst: return ZERO tti = self._find_ttinfo(dt) if not tti.isdst: return ZERO # The documentation says that utcoffset()-dst() must # be constant for every dt. return tti.dstoffset @tzname_in_python2 def tzname(self, dt): if not self._ttinfo_std: return None return self._find_ttinfo(dt).abbr def __eq__(self, other): if not isinstance(other, tzfile): return NotImplemented return (self._trans_list == other._trans_list and self._trans_idx == other._trans_idx and self._ttinfo_list == other._ttinfo_list) def __ne__(self, other): return not (self == other) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self._filename)) def __reduce__(self): return self.__reduce_ex__(None) def __reduce_ex__(self, protocol): return (self.__class__, (None, self._filename), self.__dict__) class tzrange(datetime.tzinfo): def __init__(self, stdabbr, stdoffset=None, dstabbr=None, dstoffset=None, start=None, end=None): global relativedelta from dateutil import relativedelta self._std_abbr = stdabbr self._dst_abbr = dstabbr if stdoffset is not None: self._std_offset = datetime.timedelta(seconds=stdoffset) else: self._std_offset = ZERO if dstoffset is not None: self._dst_offset = datetime.timedelta(seconds=dstoffset) elif dstabbr and stdoffset is not None: self._dst_offset = self._std_offset+datetime.timedelta(hours=+1) else: self._dst_offset = ZERO if dstabbr and start is None: self._start_delta = relativedelta.relativedelta( hours=+2, month=4, day=1, weekday=relativedelta.SU(+1)) else: self._start_delta = start if dstabbr and end is None: self._end_delta = relativedelta.relativedelta( hours=+1, month=10, day=31, weekday=relativedelta.SU(-1)) else: self._end_delta = end def utcoffset(self, dt): if dt is None: return None if self._isdst(dt): return self._dst_offset else: return self._std_offset def dst(self, dt): if self._isdst(dt): return self._dst_offset-self._std_offset else: return ZERO @tzname_in_python2 def tzname(self, dt): if self._isdst(dt): return self._dst_abbr else: return self._std_abbr def _isdst(self, dt): if not self._start_delta: return False year = datetime.datetime(dt.year, 1, 1) start = year+self._start_delta end = year+self._end_delta dt = dt.replace(tzinfo=None) if start < end: return dt >= start and dt < end else: return dt >= start or dt < end def __eq__(self, other): if not isinstance(other, tzrange): return NotImplemented return (self._std_abbr == other._std_abbr and self._dst_abbr == other._dst_abbr and self._std_offset == other._std_offset and self._dst_offset == other._dst_offset and self._start_delta == other._start_delta and self._end_delta == other._end_delta) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return "%s(...)" % self.__class__.__name__ __reduce__ = object.__reduce__ class tzstr(tzrange): def __init__(self, s): global parser from dateutil import parser self._s = s res = parser._parsetz(s) if res is None: raise ValueError("unknown string format") # Here we break the compatibility with the TZ variable handling. # GMT-3 actually *means* the timezone -3. if res.stdabbr in ("GMT", "UTC"): res.stdoffset *= -1 # We must initialize it first, since _delta() needs # _std_offset and _dst_offset set. Use False in start/end # to avoid building it two times. tzrange.__init__(self, res.stdabbr, res.stdoffset, res.dstabbr, res.dstoffset, start=False, end=False) if not res.dstabbr: self._start_delta = None self._end_delta = None else: self._start_delta = self._delta(res.start) if self._start_delta: self._end_delta = self._delta(res.end, isend=1) def _delta(self, x, isend=0): kwargs = {} if x.month is not None: kwargs["month"] = x.month if x.weekday is not None: kwargs["weekday"] = relativedelta.weekday(x.weekday, x.week) if x.week > 0: kwargs["day"] = 1 else: kwargs["day"] = 31 elif x.day: kwargs["day"] = x.day elif x.yday is not None: kwargs["yearday"] = x.yday elif x.jyday is not None: kwargs["nlyearday"] = x.jyday if not kwargs: # Default is to start on first sunday of april, and end # on last sunday of october. if not isend: kwargs["month"] = 4 kwargs["day"] = 1 kwargs["weekday"] = relativedelta.SU(+1) else: kwargs["month"] = 10 kwargs["day"] = 31 kwargs["weekday"] = relativedelta.SU(-1) if x.time is not None: kwargs["seconds"] = x.time else: # Default is 2AM. kwargs["seconds"] = 7200 if isend: # Convert to standard time, to follow the documented way # of working with the extra hour. See the documentation # of the tzinfo class. delta = self._dst_offset-self._std_offset kwargs["seconds"] -= delta.seconds+delta.days*86400 return relativedelta.relativedelta(**kwargs) def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self._s)) class _tzicalvtzcomp(object): def __init__(self, tzoffsetfrom, tzoffsetto, isdst, tzname=None, rrule=None): self.tzoffsetfrom = datetime.timedelta(seconds=tzoffsetfrom) self.tzoffsetto = datetime.timedelta(seconds=tzoffsetto) self.tzoffsetdiff = self.tzoffsetto-self.tzoffsetfrom self.isdst = isdst self.tzname = tzname self.rrule = rrule class _tzicalvtz(datetime.tzinfo): def __init__(self, tzid, comps=[]): self._tzid = tzid self._comps = comps self._cachedate = [] self._cachecomp = [] def _find_comp(self, dt): if len(self._comps) == 1: return self._comps[0] dt = dt.replace(tzinfo=None) try: return self._cachecomp[self._cachedate.index(dt)] except ValueError: pass lastcomp = None lastcompdt = None for comp in self._comps: if not comp.isdst: # Handle the extra hour in DST -> STD compdt = comp.rrule.before(dt-comp.tzoffsetdiff, inc=True) else: compdt = comp.rrule.before(dt, inc=True) if compdt and (not lastcompdt or lastcompdt < compdt): lastcompdt = compdt lastcomp = comp if not lastcomp: # RFC says nothing about what to do when a given # time is before the first onset date. We'll look for the # first standard component, or the first component, if # none is found. for comp in self._comps: if not comp.isdst: lastcomp = comp break else: lastcomp = comp[0] self._cachedate.insert(0, dt) self._cachecomp.insert(0, lastcomp) if len(self._cachedate) > 10: self._cachedate.pop() self._cachecomp.pop() return lastcomp def utcoffset(self, dt): if dt is None: return None return self._find_comp(dt).tzoffsetto def dst(self, dt): comp = self._find_comp(dt) if comp.isdst: return comp.tzoffsetdiff else: return ZERO @tzname_in_python2 def tzname(self, dt): return self._find_comp(dt).tzname def __repr__(self): return "<tzicalvtz %s>" % repr(self._tzid) __reduce__ = object.__reduce__ class tzical(object): def __init__(self, fileobj): global rrule from dateutil import rrule if isinstance(fileobj, string_types): self._s = fileobj # ical should be encoded in UTF-8 with CRLF fileobj = open(fileobj, 'r') elif hasattr(fileobj, "name"): self._s = fileobj.name else: self._s = repr(fileobj) self._vtz = {} self._parse_rfc(fileobj.read()) def keys(self): return list(self._vtz.keys()) def get(self, tzid=None): if tzid is None: keys = list(self._vtz.keys()) if len(keys) == 0: raise ValueError("no timezones defined") elif len(keys) > 1: raise ValueError("more than one timezone available") tzid = keys[0] return self._vtz.get(tzid) def _parse_offset(self, s): s = s.strip() if not s: raise ValueError("empty offset") if s[0] in ('+', '-'): signal = (-1, +1)[s[0] == '+'] s = s[1:] else: signal = +1 if len(s) == 4: return (int(s[:2])*3600+int(s[2:])*60)*signal elif len(s) == 6: return (int(s[:2])*3600+int(s[2:4])*60+int(s[4:]))*signal else: raise ValueError("invalid offset: "+s) def _parse_rfc(self, s): lines = s.splitlines() if not lines: raise ValueError("empty string") # Unfold i = 0 while i < len(lines): line = lines[i].rstrip() if not line: del lines[i] elif i > 0 and line[0] == " ": lines[i-1] += line[1:] del lines[i] else: i += 1 tzid = None comps = [] invtz = False comptype = None for line in lines: if not line: continue name, value = line.split(':', 1) parms = name.split(';') if not parms: raise ValueError("empty property name") name = parms[0].upper() parms = parms[1:] if invtz: if name == "BEGIN": if value in ("STANDARD", "DAYLIGHT"): # Process component pass else: raise ValueError("unknown component: "+value) comptype = value founddtstart = False tzoffsetfrom = None tzoffsetto = None rrulelines = [] tzname = None elif name == "END": if value == "VTIMEZONE": if comptype: raise ValueError("component not closed: "+comptype) if not tzid: raise ValueError("mandatory TZID not found") if not comps: raise ValueError( "at least one component is needed") # Process vtimezone self._vtz[tzid] = _tzicalvtz(tzid, comps) invtz = False elif value == comptype: if not founddtstart: raise ValueError("mandatory DTSTART not found") if tzoffsetfrom is None: raise ValueError( "mandatory TZOFFSETFROM not found") if tzoffsetto is None: raise ValueError( "mandatory TZOFFSETFROM not found") # Process component rr = None if rrulelines: rr = rrule.rrulestr("\n".join(rrulelines), compatible=True, ignoretz=True, cache=True) comp = _tzicalvtzcomp(tzoffsetfrom, tzoffsetto, (comptype == "DAYLIGHT"), tzname, rr) comps.append(comp) comptype = None else: raise ValueError("invalid component end: "+value) elif comptype: if name == "DTSTART": rrulelines.append(line) founddtstart = True elif name in ("RRULE", "RDATE", "EXRULE", "EXDATE"): rrulelines.append(line) elif name == "TZOFFSETFROM": if parms: raise ValueError( "unsupported %s parm: %s " % (name, parms[0])) tzoffsetfrom = self._parse_offset(value) elif name == "TZOFFSETTO": if parms: raise ValueError( "unsupported TZOFFSETTO parm: "+parms[0]) tzoffsetto = self._parse_offset(value) elif name == "TZNAME": if parms: raise ValueError( "unsupported TZNAME parm: "+parms[0]) tzname = value elif name == "COMMENT": pass else: raise ValueError("unsupported property: "+name) else: if name == "TZID": if parms: raise ValueError( "unsupported TZID parm: "+parms[0]) tzid = value elif name in ("TZURL", "LAST-MODIFIED", "COMMENT"): pass else: raise ValueError("unsupported property: "+name) elif name == "BEGIN" and value == "VTIMEZONE": tzid = None comps = [] invtz = True def __repr__(self): return "%s(%s)" % (self.__class__.__name__, repr(self._s)) if sys.platform != "win32": TZFILES = ["/etc/localtime", "localtime"] TZPATHS = ["/usr/share/zoneinfo", "/usr/lib/zoneinfo", "/etc/zoneinfo"] else: TZFILES = [] TZPATHS = [] def gettz(name=None): tz = None if not name: try: name = os.environ["TZ"] except KeyError: pass if name is None or name == ":": for filepath in TZFILES: if not os.path.isabs(filepath): filename = filepath for path in TZPATHS: filepath = os.path.join(path, filename) if os.path.isfile(filepath): break else: continue if os.path.isfile(filepath): try: tz = tzfile(filepath) break except (IOError, OSError, ValueError): pass else: tz = tzlocal() else: if name.startswith(":"): name = name[:-1] if os.path.isabs(name): if os.path.isfile(name): tz = tzfile(name) else: tz = None else: for path in TZPATHS: filepath = os.path.join(path, name) if not os.path.isfile(filepath): filepath = filepath.replace(' ', '_') if not os.path.isfile(filepath): continue try: tz = tzfile(filepath) break except (IOError, OSError, ValueError): pass else: tz = None if tzwin is not None: try: tz = tzwin(name) except WindowsError: tz = None if not tz: from dateutil.zoneinfo import gettz tz = gettz(name) if not tz: for c in name: # name must have at least one offset to be a tzstr if c in "0123456789": try: tz = tzstr(name) except ValueError: pass break else: if name in ("GMT", "UTC"): tz = tzutc() elif name in time.tzname: tz = tzlocal() return tz def _total_seconds(td): # Python 2.6 doesn't have a total_seconds() method on timedelta objects return ((td.seconds + td.days * 86400) * 1000000 + td.microseconds) // 1000000 _total_seconds = getattr(datetime.timedelta, 'total_seconds', _total_seconds) def _datetime_to_timestamp(dt): """ Convert a :class:`datetime.datetime` object to an epoch timestamp in seconds since January 1, 1970, ignoring the time zone. """ return _total_seconds((dt.replace(tzinfo=None) - EPOCH)) class _ContextWrapper(object): """ Class for wrapping contexts so that they are passed through in a with statement. """ def __init__(self, context): self.context = context def __enter__(self): return self.context def __exit__(*args, **kwargs): pass # vim:ts=4:sw=4:et
import time from collections import OrderedDict, defaultdict from functools import reduce, wraps from inspect import signature import matplotlib.pyplot as plt from rfho import as_list import tensorflow as tf import rfho as rf try: from IPython.display import IFrame import IPython except ImportError: print('Looks like IPython is not installed...') IFrame, IPython = None, None import gzip import os import _pickle as pickle import numpy as np try: from tabulate import tabulate except ImportError: print('Might want to install library "tabulate" for a better dictionary printing') tabulate = None def join_paths(*paths): return reduce(lambda acc, new_path: os.path.join(acc, new_path), paths) SAVE_SETTINGS = { 'NOTEBOOK_TITLE': '' } _EXP_ROOT_FOLDER = os.getenv('RFHO_EXP_FOLDER') if _EXP_ROOT_FOLDER is None: print('Environment variable RFHO_EXP_FOLDER not found. Current directory will be used') _EXP_ROOT_FOLDER = join_paths(os.getcwd(), 'Experiments') print('Experiment save directory is ', _EXP_ROOT_FOLDER) FOLDER_NAMINGS = { # TODO should go into a settings file? 'EXP_ROOT': _EXP_ROOT_FOLDER, 'OBJ_DIR': 'Obj_data', 'PLOTS_DIR': 'Plots', 'MODELS_DIR': 'Models', 'GEPHI_DIR': 'GePhi', } def check_or_create_dir(directory, notebook_mode=True, create=True): if not os.path.exists(directory) and create: os.mkdir(directory) print('folder', directory, 'has been created') if notebook_mode and SAVE_SETTINGS['NOTEBOOK_TITLE']: directory = join_paths(directory, SAVE_SETTINGS['NOTEBOOK_TITLE']) # += '/' + settings['NOTEBOOK_TITLE'] if not os.path.exists(directory) and create: os.mkdir(directory) print('folder ', directory, 'has been created') return directory def save_fig(name, root_dir=None, notebook_mode=True, default_overwrite=False, extension='pdf', **savefig_kwargs): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['PLOTS_DIR']), notebook_mode=notebook_mode) filename = join_paths(directory, '%s.%s' % (name, extension)) # directory + '/%s.pdf' % name if not default_overwrite and os.path.isfile(filename): # if IPython is not None: # IPython.display.display(tuple(IFrame(filename, width=800, height=600))) # FIXME not working! overwrite = input('A file named %s already exists. Overwrite (Leave string empty for NO!)?' % filename) if not overwrite: print('No changes done.') return plt.savefig(filename, **savefig_kwargs) # print('file saved') def save_obj(obj, name, root_dir=None, notebook_mode=True, default_overwrite=False): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['OBJ_DIR']), notebook_mode=notebook_mode) filename = join_paths(directory, '%s.pkgz' % name) # directory + '/%s.pkgz' % name if not default_overwrite and os.path.isfile(filename): overwrite = input('A file named %s already exists. Overwrite (Leave string empty for NO!)?' % filename) if not overwrite: print('No changes done.') return print('Overwriting...') with gzip.open(filename, 'wb') as f: pickle.dump(obj, f) # print('File saved!') def save_text(text, name, root_dir=None, notebook_mode=True, default_overwrite=False): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir), notebook_mode=notebook_mode) filename = join_paths(directory, '%s.txt' % name) # directory + '/%s.pkgz' % name if not default_overwrite and os.path.isfile(filename): overwrite = input('A file named %s already exists. Overwrite (Leave string empty for NO!)?' % filename) if not overwrite: print('No changes done.') return print('Overwriting...') with open(filename, "w") as text_file: text_file.write(text) def load_obj(name, root_dir=None, notebook_mode=True): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['OBJ_DIR']), notebook_mode=notebook_mode, create=False) filename = join_paths(directory, name if name.endswith('.pkgz') else name + '.pkgz') with gzip.open(filename, 'rb') as f: return pickle.load(f) def save_model(session, model, step, root_dir=None, notebook_mode=True): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['MODELS_DIR']), notebook_mode=notebook_mode) filename = join_paths(directory, '%s' % model.name) model.saver.save(session, filename, global_step=step) def load_model(session, model, step, root_dir=None, notebook_mode=True): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['MODELS_DIR']), notebook_mode=notebook_mode, create=False) filename = join_paths(directory, model.name) model.saver.restore(session, filename + "-" + str(step)) def save_adjacency_matrix_for_gephi(matrix, name, root_dir=None, notebook_mode=True, class_names=None): if root_dir is None: root_dir = os.getcwd() directory = check_or_create_dir(join_paths(root_dir, FOLDER_NAMINGS['GEPHI_DIR']), notebook_mode=notebook_mode) filename = join_paths(directory, '%s.csv' % name) m, n = np.shape(matrix) assert m == n, '%s should be a square matrix.' % matrix if not class_names: class_names = [str(k) for k in range(n)] left = np.array([class_names]).T matrix = np.hstack([left, matrix]) up = np.vstack([[''], left]).T matrix = np.vstack([up, matrix]) np.savetxt(filename, matrix, delimiter=';', fmt='%s') def save_setting(local_variables, root_dir=None, excluded=None, default_overwrite=False, collect_data=True, notebook_mode=True, do_print=True, append_string=''): dictionary = generate_setting_dict(local_variables, excluded=excluded) if do_print: if tabulate: print(tabulate(dictionary.items(), headers=('settings var names', 'values'))) else: print('SETTING:') for k, v in dictionary.items(): print(k, v, sep=': ') print() if collect_data: save_obj(dictionary, 'setting' + append_string, root_dir=root_dir, default_overwrite=default_overwrite, notebook_mode=notebook_mode) def generate_setting_dict(local_variables, excluded=None): """ Generates a dictionary of (name, values) of local variables (typically obtained by vars()) that can be saved at the beginning of the experiment. Furthermore, if an object obj in local_variables implements the function setting(), it saves the result of obj.setting() as value in the dictionary. :param local_variables: :param excluded: (optional, default []) variable or list of variables to be excluded. :return: A dictionary """ excluded = as_list(excluded) or [] setting_dict = {k: v.setting() if hasattr(v, 'setting') else v for k, v in local_variables.items() if v not in excluded} import datetime setting_dict['datetime'] = str(datetime.datetime.now()) return setting_dict class Timer: """ Stopwatch class for timing the experiments. Uses `time` module. """ _div_unit = {'ms': 1. / 1000, 'sec': 1., 'min': 60., 'hr': 3600.} def __init__(self, unit='sec', round_off=True): self._starting_times = [] self._stopping_times = [] self._running = False self.round_off = round_off assert unit in Timer._div_unit self.unit = unit def reset(self): self._starting_times = [] self._stopping_times = [] self._running = False def start(self): if not self._running: self._starting_times.append(time.time()) self._running = True return self def stop(self): if self._running: self._stopping_times.append(time.time()) self._running = False return self def raw_elapsed_time_list(self): def _maybe_add_last(): t2 = self._stopping_times if len(self._starting_times) == len(self._stopping_times) else \ self._stopping_times + [time.time()] return zip(self._starting_times, t2) return [t2 - t1 for t1, t2 in _maybe_add_last()] def elapsed_time(self): res = sum(self.raw_elapsed_time_list()) / Timer._div_unit[self.unit] return res if not self.round_off else int(res) class Saver: """ Class for recording experiment data """ SKIP = 'SKIP' # skip saving value in save_dict def __init__(self, experiment_names, *items, append_date_to_name=True, root_directory=FOLDER_NAMINGS['EXP_ROOT'], timer=None, do_print=True, collect_data=True, default_overwrite=False): """ Initialize a saver to collect data. (Intended to be used together with OnlinePlotStream.) :param experiment_names: string or list of strings which represent the name of the folder (and sub-folders) experiment oand :param items: a list of (from pairs to at most) 5-tuples that represent the things you want to save. The first arg of each tuple should be a string that will be the key of the save_dict. Then there can be either a callable with signature (step) -> None Should pass the various args in ths order: fetches: tensor or list of tensors to compute; feeds (optional): to be passed to tf.Session.run. Can be a callable with signature (step) -> feed_dict options (optional): to be passed to tf.Session.run run_metadata (optional): to be passed to tf.Session.run :param timer: optional timer object. If None creates a new one. If false does not register time. If None or Timer it adds to the save_dict an entry time that record elapsed_time. The time required to perform data collection and saving are not counted, since typically the aim is to record the true algorithm execution time! :param root_directory: string, name of root directory (default ~HOME/Experiments) :param do_print: (optional, default True) will print by default `save_dict` each time method `save` is executed :param collect_data: (optional, default True) will save by default `save_dict` each time method `save` is executed """ experiment_names = as_list(experiment_names) if append_date_to_name: from datetime import datetime experiment_names += [datetime.today().strftime('%d-%m-%y__%Hh%Mm')] self.experiment_names = list(experiment_names) if not os.path.isabs(experiment_names[0]): self.directory = join_paths(root_directory) # otherwise assume no use of root_directory if collect_data: check_or_create_dir(root_directory, notebook_mode=False) else: self.directory = '' for name in self.experiment_names: self.directory = join_paths(self.directory, name) check_or_create_dir(self.directory, notebook_mode=False, create=collect_data) self.do_print = do_print self.collect_data = collect_data self.default_overwrite = default_overwrite assert isinstance(timer, Timer) or timer is None or timer is False, 'timer param not good...' if timer is None: timer = Timer() self.timer = timer self.clear_items() self.add_items(*items) # noinspection PyAttributeOutsideInit def clear_items(self): """ Removes all previously inserted items :return: """ self._processed_items = [] self._step = -1 @staticmethod def process_items(*items): """ Add items to the save dictionary :param items: a list of (from pairs to at most) 5-tuples that represent the things you want to save. The first arg of each tuple should be a string that will be the key of the save_dict. Then there can be either a callable with signature (step) -> result or () -> result or tensorflow things... In this second case you should pass the following args in ths order: fetches: tensor or list of tensors to compute; feeds (optional): to be passed to tf.Session.run. Can be a callable with signature (step) -> feed_dict or () -> feed_dict options (optional): to be passed to tf.Session.run run_metadata (optional): to be passed to tf.Session.run :return: None """ assert len(items) == 0 or isinstance(items[0], str), 'Check items! first arg %s. Should be a string.' \ 'All args: %s' % (items[0], items) processed_args = [] k = 0 while k < len(items): part = [items[k]] k += 1 while k < len(items) and not isinstance(items[k], str): part.append(items[k]) k += 1 assert len(part) >= 2, 'Check args! Last part %s' % part if callable(part[1]): # python stuff if len(part) == 2: part.append(True) # always true default condition else: # tensorflow stuff part += [None] * (6 - len(part)) # representing name, fetches, feeds, options, metadata if part[3] is None: part[3] = True # default condition processed_args.append(part) # self._processed_items += processed_args # return [pt[0] for pt in processed_args] return processed_args def add_items(self, *items): """ Adds internally items to this saver :param items: :return: """ processed_items = Saver.process_items(*items) self._processed_items += processed_items return [pt[0] for pt in processed_items] def save(self, step=None, session=None, append_string="", do_print=None, collect_data=None, processed_items=None, _res=None): """ Builds and save a dictionary with the keys and values specified at construction time or by method `add_items` :param processed_items: optional, processed item list (returned by add_items) if None uses internally stored items :param session: Optional tensorflow session, otherwise uses default session :param step: optional step, if None (default) uses internal step (int preferred, otherwise does not work well with `pack_save_dictionaries`). :param append_string: (optional str) string to append at the file name to `str(step)` :param do_print: (default as object field) :param collect_data: (default as object field) :param _res: used internally by context managers :return: the dictionary """ from tensorflow import get_default_session if step is None: self._step += 1 step = self._step if not processed_items: processed_items = self._processed_items if do_print is None: do_print = self.do_print if collect_data is None: collect_data = self.collect_data if session: ss = session else: ss = get_default_session() if ss is None and do_print: print('WARNING, No tensorflow session available') if self.timer: self.timer.stop() def _maybe_call(_method): if not callable(_method): return _method if len(signature(_method).parameters) == 0: return _method() elif len(signature(_method).parameters) == 1: return _method(step) else: # complete signature? return _method(step, _res) save_dict = OrderedDict([(pt[0], _maybe_call(pt[1]) if callable(pt[1]) else ss.run(pt[1], feed_dict=_maybe_call(pt[2]), options=pt[4], run_metadata=pt[5]) if _maybe_call(pt[2 if callable(pt[1]) else 3]) else Saver.SKIP) for pt in processed_items] ) if self.timer: save_dict['Elapsed time (%s)' % self.timer.unit] = self.timer.elapsed_time() if do_print: if tabulate: print(tabulate(save_dict.items(), headers=('Step %s' % step, 'Values'), floatfmt='.5f')) else: print('SAVE DICT:') for key, v in save_dict.items(): print(key, v, sep=': ') print() if collect_data: self.save_obj(save_dict, str(step) + append_string) if self.timer: self.timer.start() return save_dict def pack_save_dictionaries(self, name='all', append_string='', erase_others=True): """ Creates an unique file starting from file created by method `save`. The file contains a dictionary with keys equal to save_dict keys and values list of values form original files. :param name: :param append_string: :param erase_others: :return: The generated dictionary """ import glob all_files = sorted(glob.glob(join_paths( self.directory, FOLDER_NAMINGS['OBJ_DIR'], '[0-9]*%s.pkgz' % append_string)), key=os.path.getctime) # sort by creation time if len(all_files) == 0: print('No file found') return objs = [load_obj(path, root_dir='', notebook_mode=False) for path in all_files] # packed_dict = OrderedDict([(k, []) for k in objs[0]]) # noinspection PyArgumentList packed_dict = defaultdict(list, OrderedDict()) for obj in objs: [packed_dict[k].append(v) for k, v in obj.items()] self.save_obj(packed_dict, name=name + append_string) if erase_others: [os.remove(f) for f in all_files] return packed_dict def record(self, *what, append_string=''): # TODO this is un initial (maybe bad) idea. """ Context manager for saver. saves executions :param what: :param append_string: :return: """ return Records.on_hyperiteration(self, *what, append_string=append_string) # FIXME to be finished def save_text(self, text, name): return save_text(text=text, name=name, root_dir=self.directory, default_overwrite=self.default_overwrite, notebook_mode=False) def save_fig(self, name, extension='pdf', **savefig_kwargs): """ Object-oriented version of `save_fig` :param extension: :param name: name of the figure (.pdf extension automatically added) :return: """ return save_fig(name, root_dir=self.directory, extension=extension, default_overwrite=self.default_overwrite, notebook_mode=False, **savefig_kwargs) def save_obj(self, obj, name): """ Object-oriented version of `save_obj` :param obj: object to save :param name: name of the file (.pkgz extension automatically added) :return: """ return save_obj(obj, name, root_dir=self.directory, default_overwrite=self.default_overwrite, notebook_mode=False) def save_adjacency_matrix_for_gephi(self, matrix, name, class_names=None): """ Object-oriented version of `save_adjacency_matrix_for_gephi` :param matrix: :param name: :param class_names: :return: """ return save_adjacency_matrix_for_gephi(matrix, name, root_dir=self.directory, notebook_mode=False, class_names=class_names) def save_setting(self, local_variables, excluded=None, append_string=''): """ Object-oriented version of `save_setting` :param local_variables: :param excluded: :param append_string: :return: """ excluded = as_list(excluded or []) excluded.append(self) # no reason to save itself... return save_setting(local_variables, root_dir=self.directory, excluded=excluded, default_overwrite=self.default_overwrite, collect_data=self.collect_data, notebook_mode=False, do_print=self.do_print, append_string=append_string) def load_obj(self, name): """ Object-oriented version of `load_obj` :param name: name of the file (.pkgz extension automatically added) :return: unpacked object """ return load_obj(name, root_dir=self.directory, notebook_mode=False) def save_model(self, session, model, step): save_model(session, model, step, root_dir=self.directory, notebook_mode=False) def load_model(self, session, model, step): load_model(session, model, step, root_dir=self.directory) # noinspection PyPep8Naming def Loader(folder_name): """ utility method for creating a Saver with loading intentions, does not create timer nor append time to name. just give the folder name for the saver :param folder_name: (string or list of strings) either absolute or relative, in which case root_directory will be used :return: a `Saver` object """ return Saver(folder_name, append_date_to_name=False, timer=False, collect_data=False) class Records: """ Contains (for the moment) static convenience methods for recording quantities """ class on_hyperiteration: """ context for record at each hyperiteration """ def __init__(self, saver, *record_what, append_string='', do_print=None, collect_data=None): self.saver = saver self.append_string = append_string if self.append_string: self.append_string = '__' + self.append_string self.do_print = do_print self.collect_data = collect_data self._unwrapped = [] self._record_what = record_what or [] self._processed_items = [] self._step = 0 def __enter__(self): self._wrap() def __exit__(self, exc_type, exc_val, exc_tb): if self.collect_data: if exc_tb: self.saver.save_obj((str(exc_type), str(exc_val), str(exc_tb)), 'exception' + self.append_string) self.saver.pack_save_dictionaries(append_string=self.append_string) self._unwrap() # TODO is this a good thing? or should we leave it to do manually self.saver.clear_items() if self.saver.timer: self.saver.timer.stop() def _wrap(self): self._unwrapped.append(rf.HyperOptimizer.initialize) rf.HyperOptimizer.initialize = self._initialize_wrapper(rf.HyperOptimizer.initialize) self._unwrapped.append(rf.HyperOptimizer.run) rf.HyperOptimizer.run = self._saver_wrapper(rf.HyperOptimizer.run) # mmm... def _unwrap(self): rf.HyperOptimizer.initialize = self._unwrapped[0] rf.HyperOptimizer.run = self._unwrapped[1] def _saver_wrapper(self, f): @wraps(f) def _saver_wrapped(*args, **kwargs): res = f(*args, **kwargs) self._execute_save(res, *args, **kwargs) return res return _saver_wrapped def _initialize_wrapper(self, f): # this should be good since @wraps(f) def _initialize_wrapped(*args, **kwargs): first_init = f(*args, **kwargs) # add savers just at the first initialization if first_init: self._processed_items += rf.flatten_list( [Saver.process_items(*e(*args, **kwargs)) for e in self._record_what]) self._execute_save('INIT', *args, **kwargs) return first_init return _initialize_wrapped # noinspection PyUnusedLocal def _execute_save(self, res, *args, **kwargs): # maybe args and kwargs could be useful... self.saver.save(step=self._step, append_string=self.append_string, processed_items=self._processed_items, do_print=self.do_print, collect_data=self.collect_data, _res=res) self._step += 1 # noinspection PyClassHasNoInit,PyPep8Naming class on_forward(on_hyperiteration): # context class """ Saves at every iteration (before call of method `step_forward`) """ def _wrap(self): self._unwrapped.append(rf.HyperOptimizer.initialize) rf.HyperOptimizer.initialize = self._initialize_wrapper(rf.HyperOptimizer.initialize) self._unwrapped.append(rf.ForwardHG.step_forward) rf.ForwardHG.step_forward = self._saver_wrapper(rf.ForwardHG.step_forward) # mmm... def _unwrap(self): rf.HyperOptimizer.initialize = self._unwrapped[0] rf.ForwardHG.step_forward = self._unwrapped[1] @staticmethod def direct(*items): """ Everything passed in items is passed directly to `Saver. :param items: :return: """ # noinspection PyUnusedLocal def _call(*args, **kwargs): return items return _call @staticmethod def norms_of_z(): """ :return: """ def _call(*args, **kwargs): hg = args[0] if isinstance(hg, rf.HyperOptimizer): hg = hg.hyper_gradients # guess most common case assert isinstance(hg, rf.ForwardHG) _rs = Records.tensors(*hg.zs, op=tf.norm)(args, kwargs) return _rs return _call @staticmethod def norms_of_d_dynamics_d_hypers(fd=None): """ In `ForwardHG` records the norm of the partial derivatives of the dynamics w.r.t. the hyperparameters. :param fd: :return: """ if fd is None: fd = lambda stp, rs: rs def _call(*args, **kwargs): hg = args[0] if isinstance(hg, rf.HyperOptimizer): hg = hg.hyper_gradients # guess most common case assert isinstance(hg, rf.ForwardHG) _rs = Records.tensors(*hg.d_dynamics_d_hypers, op=tf.norm, fd=fd, condition=lambda stp, rs: rs != 'INIT')(args, kwargs) return _rs return _call @staticmethod def hyperparameters(): """ Simple one! record all hyperparameter values, assuming the usage of `HyperOptimizer` :return: a function """ # noinspection PyUnusedLocal def _call(*args, **kwargs): hyper_optimizer = args[0] assert isinstance(hyper_optimizer, rf.HyperOptimizer) return rf.flatten_list( [rf.simple_name(hyp), hyp] for hyp in hyper_optimizer.hyper_list) return _call @staticmethod def hypergradients(): """ Record all hypergradient values, assuming the usage of `HyperOptimizer` :return: """ # noinspection PyUnusedLocal def _call(*args, **kwargs): hyper_optimizer = args[0] assert isinstance(hyper_optimizer, rf.HyperOptimizer) return rf.flatten_list( ['grad::' + rf.simple_name(hyp), hyper_optimizer.hyper_gradients.hyper_gradients_dict[hyp]] for hyp in hyper_optimizer.hyper_list) return _call @staticmethod def tensors(*tensors, key=None, scope=None, name_contains=None, rec_name='', op=tf.identity, fd=None, condition=True): """ Little more difficult... attempts to record tensor named name :param name_contains: record all tensors which name contains this string. Can be a list. :type condition: bool | function :param condition: optional condition for triggering the saving of tensors, can have different signatures :param tensors: varargs of tensor names :param scope: optional for collections :param key: to record collections :param op: optional operation to apply to each tensor :param rec_name: optional name to prepend to all tensors recorded by this :param fd: # given to _process_feed_dicts_for_rec :return: """ if rec_name: rec_name += '::' # maybe find a better way def _call(*args, **_kwargs): if tensors: _tensors = [tf.get_default_graph().get_tensor_by_name(tns + ':0') if isinstance(tns, str) else tns for tns in tensors] elif key: _tensors = tf.get_collection(key, scope=scope) elif name_contains: _names = rf.flatten_list([[n.name for n in tf.get_default_graph().as_graph_def().node if nc in n.name] for nc in as_list(name_contains)]) return Records.tensors(*_names, rec_name=rec_name, op=op, fd=fd, condition=True)(*args, **_kwargs) else: raise NotImplemented('One between key and names should be given') # try with dictionary of form (string (simple name of placeholder), data) _rs2 = rf.flatten_list([rec_name + rf.simple_name(tns.name), op(tns), Records._process_feed_dicts_for_rec(fd, *args, **_kwargs), condition] for tns in _tensors) return _rs2 return _call @staticmethod def model(): # TODO discuss with others to see what's best way to save models... """ Should save the model(s) in a useful way.. :return: """ raise NotImplemented() @staticmethod def setting(): # TODO I have no precise idea on how to implement this... """ Should save experiment meta-info like params, dataset, beginning/end... name of experiment function, git version and so on. :return: """ raise NotImplemented() @staticmethod def _process_feed_dicts_for_rec(fd, *args, **kwargs): # TODO add more functionality... """ # try with dictionary of form (string (simple name of placeholder), data) :param fd: :param args: # might be useful?? :param kwargs: :return: """ if fd is None or callable(fd): return fd def _std_process_dict(_dict): return {tf.get_default_graph().get_tensor_by_name(n + ':0'): v for n, v in _dict.items()} def _fds(): if isinstance(fd, dict): _rs = _std_process_dict(fd) elif isinstance(fd, (list, tuple)): # (x, y, dataset) if len(fd) == 3 and isinstance(fd[2], rf.Dataset): # very common scenario _rs = {tf.get_default_graph().get_tensor_by_name(fd[0] + ':0'): fd[2].data, tf.get_default_graph().get_tensor_by_name(fd[1] + ':0'): fd[2].target, } else: raise NotImplemented('not understood') else: raise NotImplemented('not understood') return _rs return _fds if __name__ == '__main__': sav1 = Saver('tbd', 'random', lambda step: np.random.randn(), default_overwrite=True ) sav1.timer.start() sav1.save(0) time.sleep(2) sav1.save(1) time.sleep(1) sav1.save(2) sav1.pack_save_dictionaries()
# Copyright 2017 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from collections import OrderedDict import json import multiprocessing import optparse import os import shlex import sys # Add testrunner to the path. sys.path.insert( 0, os.path.dirname( os.path.dirname(os.path.abspath(__file__)))) from testrunner.local import testsuite from testrunner.local import utils from testrunner.test_config import TestConfig from testrunner.testproc import progress from testrunner.testproc.rerun import RerunProc from testrunner.testproc.shard import ShardProc from testrunner.testproc.sigproc import SignalProc from testrunner.testproc.timeout import TimeoutProc BASE_DIR = ( os.path.dirname( os.path.dirname( os.path.dirname( os.path.abspath(__file__))))) DEFAULT_OUT_GN = 'out.gn' # Map of test name synonyms to lists of test suites. Should be ordered by # expected runtimes (suites with slow test cases first). These groups are # invoked in separate steps on the bots. TEST_MAP = { # This needs to stay in sync with test/bot_default.isolate. "bot_default": [ "debugger", "mjsunit", "cctest", "wasm-spec-tests", "inspector", "webkit", "mkgrokdump", "fuzzer", "message", "preparser", "intl", "unittests", ], # This needs to stay in sync with test/default.isolate. "default": [ "debugger", "mjsunit", "cctest", "wasm-spec-tests", "inspector", "mkgrokdump", "fuzzer", "message", "preparser", "intl", "unittests", ], # This needs to stay in sync with test/d8_default.isolate. "d8_default": [ # TODO(machenbach): uncomment after infra side lands. #"debugger", "mjsunit", "webkit", #"message", #"preparser", #"intl", ], # This needs to stay in sync with test/optimize_for_size.isolate. "optimize_for_size": [ "debugger", "mjsunit", "cctest", "inspector", "webkit", "intl", ], "unittests": [ "unittests", ], } # Double the timeout for these: SLOW_ARCHS = ["arm", "mips", "mipsel", "mips64", "mips64el", "s390", "s390x", "arm64"] class ModeConfig(object): def __init__(self, flags, timeout_scalefactor, status_mode, execution_mode): self.flags = flags self.timeout_scalefactor = timeout_scalefactor self.status_mode = status_mode self.execution_mode = execution_mode DEBUG_FLAGS = ["--nohard-abort", "--enable-slow-asserts", "--verify-heap"] RELEASE_FLAGS = ["--nohard-abort"] MODES = { "debug": ModeConfig( flags=DEBUG_FLAGS, timeout_scalefactor=4, status_mode="debug", execution_mode="debug", ), "optdebug": ModeConfig( flags=DEBUG_FLAGS, timeout_scalefactor=4, status_mode="debug", execution_mode="debug", ), "release": ModeConfig( flags=RELEASE_FLAGS, timeout_scalefactor=1, status_mode="release", execution_mode="release", ), # Normal trybot release configuration. There, dchecks are always on which # implies debug is set. Hence, the status file needs to assume debug-like # behavior/timeouts. "tryrelease": ModeConfig( flags=RELEASE_FLAGS, timeout_scalefactor=1, status_mode="debug", execution_mode="release", ), # This mode requires v8 to be compiled with dchecks and slow dchecks. "slowrelease": ModeConfig( flags=RELEASE_FLAGS + ["--enable-slow-asserts"], timeout_scalefactor=2, status_mode="debug", execution_mode="release", ), } PROGRESS_INDICATORS = { 'verbose': progress.VerboseProgressIndicator, 'dots': progress.DotsProgressIndicator, 'color': progress.ColorProgressIndicator, 'mono': progress.MonochromeProgressIndicator, } class TestRunnerError(Exception): pass class BuildConfig(object): def __init__(self, build_config): # In V8 land, GN's x86 is called ia32. if build_config['v8_target_cpu'] == 'x86': self.arch = 'ia32' else: self.arch = build_config['v8_target_cpu'] self.is_debug = build_config['is_debug'] self.asan = build_config['is_asan'] self.cfi_vptr = build_config['is_cfi'] self.dcheck_always_on = build_config['dcheck_always_on'] self.gcov_coverage = build_config['is_gcov_coverage'] self.msan = build_config['is_msan'] self.no_i18n = not build_config['v8_enable_i18n_support'] self.no_snap = not build_config['v8_use_snapshot'] self.predictable = build_config['v8_enable_verify_predictable'] self.tsan = build_config['is_tsan'] self.ubsan_vptr = build_config['is_ubsan_vptr'] # Export only for MIPS target if self.arch in ['mips', 'mipsel', 'mips64', 'mips64el']: self.mips_arch_variant = build_config['mips_arch_variant'] self.mips_use_msa = build_config['mips_use_msa'] def __str__(self): detected_options = [] if self.asan: detected_options.append('asan') if self.cfi_vptr: detected_options.append('cfi_vptr') if self.dcheck_always_on: detected_options.append('dcheck_always_on') if self.gcov_coverage: detected_options.append('gcov_coverage') if self.msan: detected_options.append('msan') if self.no_i18n: detected_options.append('no_i18n') if self.no_snap: detected_options.append('no_snap') if self.predictable: detected_options.append('predictable') if self.tsan: detected_options.append('tsan') if self.ubsan_vptr: detected_options.append('ubsan_vptr') return '\n'.join(detected_options) class BaseTestRunner(object): def __init__(self, basedir=None): self.basedir = basedir or BASE_DIR self.outdir = None self.build_config = None self.mode_name = None self.mode_options = None def execute(self, sys_args=None): if sys_args is None: # pragma: no cover sys_args = sys.argv[1:] try: parser = self._create_parser() options, args = self._parse_args(parser, sys_args) if options.swarming: # Swarming doesn't print how isolated commands are called. Lets make # this less cryptic by printing it ourselves. print ' '.join(sys.argv) self._load_build_config(options) try: self._process_default_options(options) self._process_options(options) except TestRunnerError: parser.print_help() raise args = self._parse_test_args(args) suites = self._get_suites(args, options) self._prepare_suites(suites, options) self._setup_env() print(">>> Running tests for %s.%s" % (self.build_config.arch, self.mode_name)) tests = [t for s in suites for t in s.tests] return self._do_execute(tests, args, options) except TestRunnerError: return utils.EXIT_CODE_INTERNAL_ERROR except KeyboardInterrupt: return utils.EXIT_CODE_INTERRUPTED def _create_parser(self): parser = optparse.OptionParser() parser.usage = '%prog [options] [tests]' parser.description = """TESTS: %s""" % (TEST_MAP["default"]) self._add_parser_default_options(parser) self._add_parser_options(parser) return parser def _add_parser_default_options(self, parser): parser.add_option("--gn", help="Scan out.gn for the last built" " configuration", default=False, action="store_true") parser.add_option("--outdir", help="Base directory with compile output", default="out") parser.add_option("--buildbot", help="DEPRECATED!", default=False, action="store_true") parser.add_option("--arch", help="The architecture to run tests for") parser.add_option("-m", "--mode", help="The test mode in which to run (uppercase for ninja" " and buildbot builds): %s" % MODES.keys()) parser.add_option("--shell-dir", help="DEPRECATED! Executables from build " "directory will be used") parser.add_option("--total-timeout-sec", default=0, type="int", help="How long should fuzzer run") parser.add_option("--swarming", default=False, action="store_true", help="Indicates running test driver on swarming.") parser.add_option("-j", help="The number of parallel tasks to run", default=0, type=int) # Shard parser.add_option("--shard-count", default=1, type=int, help="Split tests into this number of shards") parser.add_option("--shard-run", default=1, type=int, help="Run this shard from the split up tests.") # Progress parser.add_option("-p", "--progress", choices=PROGRESS_INDICATORS.keys(), default="mono", help="The style of progress indicator (verbose, dots, " "color, mono)") parser.add_option("--json-test-results", help="Path to a file for storing json results.") parser.add_option("--junitout", help="File name of the JUnit output") parser.add_option("--junittestsuite", default="v8tests", help="The testsuite name in the JUnit output file") # Rerun parser.add_option("--rerun-failures-count", default=0, type=int, help="Number of times to rerun each failing test case. " "Very slow tests will be rerun only once.") parser.add_option("--rerun-failures-max", default=100, type=int, help="Maximum number of failing test cases to rerun") # Test config parser.add_option("--command-prefix", default="", help="Prepended to each shell command used to run a test") parser.add_option("--extra-flags", action="append", default=[], help="Additional flags to pass to each test command") parser.add_option("--isolates", action="store_true", default=False, help="Whether to test isolates") parser.add_option("--no-harness", "--noharness", default=False, action="store_true", help="Run without test harness of a given suite") parser.add_option("--random-seed", default=0, type=int, help="Default seed for initializing random generator") parser.add_option("-t", "--timeout", default=60, type=int, help="Timeout for single test in seconds") parser.add_option("-v", "--verbose", default=False, action="store_true", help="Verbose output") # TODO(machenbach): Temporary options for rolling out new test runner # features. parser.add_option("--mastername", default='', help="Mastername property from infrastructure. Not " "setting this option indicates manual usage.") parser.add_option("--buildername", default='', help="Buildername property from infrastructure. Not " "setting this option indicates manual usage.") def _add_parser_options(self, parser): pass def _parse_args(self, parser, sys_args): options, args = parser.parse_args(sys_args) if any(map(lambda v: v and ',' in v, [options.arch, options.mode])): # pragma: no cover print 'Multiple arch/mode are deprecated' raise TestRunnerError() return options, args def _load_build_config(self, options): for outdir in self._possible_outdirs(options): try: self.build_config = self._do_load_build_config(outdir, options.verbose) except TestRunnerError: pass if not self.build_config: # pragma: no cover print 'Failed to load build config' raise TestRunnerError print 'Build found: %s' % self.outdir if str(self.build_config): print '>>> Autodetected:' print self.build_config # Returns possible build paths in order: # gn # outdir # outdir/arch.mode # Each path is provided in two versions: <path> and <path>/mode for buildbot. def _possible_outdirs(self, options): def outdirs(): if options.gn: yield self._get_gn_outdir() return yield options.outdir if options.arch and options.mode: yield os.path.join(options.outdir, '%s.%s' % (options.arch, options.mode)) for outdir in outdirs(): yield os.path.join(self.basedir, outdir) # buildbot option if options.mode: yield os.path.join(self.basedir, outdir, options.mode) def _get_gn_outdir(self): gn_out_dir = os.path.join(self.basedir, DEFAULT_OUT_GN) latest_timestamp = -1 latest_config = None for gn_config in os.listdir(gn_out_dir): gn_config_dir = os.path.join(gn_out_dir, gn_config) if not os.path.isdir(gn_config_dir): continue if os.path.getmtime(gn_config_dir) > latest_timestamp: latest_timestamp = os.path.getmtime(gn_config_dir) latest_config = gn_config if latest_config: print(">>> Latest GN build found: %s" % latest_config) return os.path.join(DEFAULT_OUT_GN, latest_config) def _do_load_build_config(self, outdir, verbose=False): build_config_path = os.path.join(outdir, "v8_build_config.json") if not os.path.exists(build_config_path): if verbose: print("Didn't find build config: %s" % build_config_path) raise TestRunnerError() with open(build_config_path) as f: try: build_config_json = json.load(f) except Exception: # pragma: no cover print("%s exists but contains invalid json. Is your build up-to-date?" % build_config_path) raise TestRunnerError() # In auto-detect mode the outdir is always where we found the build config. # This ensures that we'll also take the build products from there. self.outdir = os.path.dirname(build_config_path) return BuildConfig(build_config_json) def _process_default_options(self, options): # We don't use the mode for more path-magic. # Therefore transform the buildbot mode here to fix build_config value. if options.mode: options.mode = self._buildbot_to_v8_mode(options.mode) build_config_mode = 'debug' if self.build_config.is_debug else 'release' if options.mode: if options.mode not in MODES: # pragma: no cover print '%s mode is invalid' % options.mode raise TestRunnerError() if MODES[options.mode].execution_mode != build_config_mode: print ('execution mode (%s) for %s is inconsistent with build config ' '(%s)' % ( MODES[options.mode].execution_mode, options.mode, build_config_mode)) raise TestRunnerError() self.mode_name = options.mode else: self.mode_name = build_config_mode self.mode_options = MODES[self.mode_name] if options.arch and options.arch != self.build_config.arch: print('--arch value (%s) inconsistent with build config (%s).' % ( options.arch, self.build_config.arch)) raise TestRunnerError() if options.shell_dir: # pragma: no cover print('Warning: --shell-dir is deprecated. Searching for executables in ' 'build directory (%s) instead.' % self.outdir) if options.j == 0: options.j = multiprocessing.cpu_count() options.command_prefix = shlex.split(options.command_prefix) options.extra_flags = sum(map(shlex.split, options.extra_flags), []) def _buildbot_to_v8_mode(self, config): """Convert buildbot build configs to configs understood by the v8 runner. V8 configs are always lower case and without the additional _x64 suffix for 64 bit builds on windows with ninja. """ mode = config[:-4] if config.endswith('_x64') else config return mode.lower() def _process_options(self, options): pass def _setup_env(self): # Use the v8 root as cwd as some test cases use "load" with relative paths. os.chdir(self.basedir) # Many tests assume an English interface. os.environ['LANG'] = 'en_US.UTF-8' symbolizer_option = self._get_external_symbolizer_option() if self.build_config.asan: asan_options = [ symbolizer_option, 'allow_user_segv_handler=1', 'allocator_may_return_null=1', ] if not utils.GuessOS() in ['macos', 'windows']: # LSAN is not available on mac and windows. asan_options.append('detect_leaks=1') else: asan_options.append('detect_leaks=0') os.environ['ASAN_OPTIONS'] = ":".join(asan_options) if self.build_config.cfi_vptr: os.environ['UBSAN_OPTIONS'] = ":".join([ 'print_stacktrace=1', 'print_summary=1', 'symbolize=1', symbolizer_option, ]) if self.build_config.ubsan_vptr: os.environ['UBSAN_OPTIONS'] = ":".join([ 'print_stacktrace=1', symbolizer_option, ]) if self.build_config.msan: os.environ['MSAN_OPTIONS'] = symbolizer_option if self.build_config.tsan: suppressions_file = os.path.join( self.basedir, 'tools', 'sanitizers', 'tsan_suppressions.txt') os.environ['TSAN_OPTIONS'] = " ".join([ symbolizer_option, 'suppressions=%s' % suppressions_file, 'exit_code=0', 'report_thread_leaks=0', 'history_size=7', 'report_destroy_locked=0', ]) def _get_external_symbolizer_option(self): external_symbolizer_path = os.path.join( self.basedir, 'third_party', 'llvm-build', 'Release+Asserts', 'bin', 'llvm-symbolizer', ) if utils.IsWindows(): # Quote, because sanitizers might confuse colon as option separator. external_symbolizer_path = '"%s.exe"' % external_symbolizer_path return 'external_symbolizer_path=%s' % external_symbolizer_path def _parse_test_args(self, args): if not args: args = self._get_default_suite_names() # Expand arguments with grouped tests. The args should reflect the list # of suites as otherwise filters would break. def expand_test_group(name): return TEST_MAP.get(name, [name]) return reduce(list.__add__, map(expand_test_group, args), []) def _get_suites(self, args, options): names = self._args_to_suite_names(args) return self._load_suites(names, options) def _args_to_suite_names(self, args): # Use default tests if no test configuration was provided at the cmd line. all_names = set(utils.GetSuitePaths(os.path.join(self.basedir, 'test'))) args_names = OrderedDict([(arg.split('/')[0], None) for arg in args]) # set return [name for name in args_names if name in all_names] def _get_default_suite_names(self): return [] def _load_suites(self, names, options): test_config = self._create_test_config(options) def load_suite(name): if options.verbose: print '>>> Loading test suite: %s' % name return testsuite.TestSuite.LoadTestSuite( os.path.join(self.basedir, 'test', name), test_config) return map(load_suite, names) def _prepare_suites(self, suites, options): self._load_status_files(suites, options) for s in suites: s.ReadTestCases() def _load_status_files(self, suites, options): # simd_mips is true if SIMD is fully supported on MIPS variables = self._get_statusfile_variables(options) for s in suites: s.ReadStatusFile(variables) def _get_statusfile_variables(self, options): simd_mips = ( self.build_config.arch in ['mipsel', 'mips', 'mips64', 'mips64el'] and self.build_config.mips_arch_variant == "r6" and self.build_config.mips_use_msa) # TODO(all): Combine "simulator" and "simulator_run". # TODO(machenbach): In GN we can derive simulator run from # target_arch != v8_target_arch in the dumped build config. return { "arch": self.build_config.arch, "asan": self.build_config.asan, "byteorder": sys.byteorder, "dcheck_always_on": self.build_config.dcheck_always_on, "deopt_fuzzer": False, "endurance_fuzzer": False, "gc_fuzzer": False, "gc_stress": False, "gcov_coverage": self.build_config.gcov_coverage, "isolates": options.isolates, "mode": self.mode_options.status_mode, "msan": self.build_config.msan, "no_harness": options.no_harness, "no_i18n": self.build_config.no_i18n, "no_snap": self.build_config.no_snap, "novfp3": False, "predictable": self.build_config.predictable, "simd_mips": simd_mips, "simulator": utils.UseSimulator(self.build_config.arch), "simulator_run": False, "system": utils.GuessOS(), "tsan": self.build_config.tsan, "ubsan_vptr": self.build_config.ubsan_vptr, } def _create_test_config(self, options): timeout = options.timeout * self._timeout_scalefactor(options) return TestConfig( command_prefix=options.command_prefix, extra_flags=options.extra_flags, isolates=options.isolates, mode_flags=self.mode_options.flags, no_harness=options.no_harness, noi18n=self.build_config.no_i18n, random_seed=options.random_seed, shell_dir=self.outdir, timeout=timeout, verbose=options.verbose, ) def _timeout_scalefactor(self, options): factor = self.mode_options.timeout_scalefactor # Simulators are slow, therefore allow a longer timeout. if self.build_config.arch in SLOW_ARCHS: factor *= 2 # Predictable mode is slower. if self.build_config.predictable: factor *= 2 return factor # TODO(majeski): remove options & args parameters def _do_execute(self, suites, args, options): raise NotImplementedError() def _prepare_procs(self, procs): procs = filter(None, procs) for i in xrange(0, len(procs) - 1): procs[i].connect_to(procs[i + 1]) procs[0].setup() def _create_shard_proc(self, options): myid, count = self._get_shard_info(options) if count == 1: return None return ShardProc(myid - 1, count) def _get_shard_info(self, options): """ Returns pair: (id of the current shard [1; number of shards], number of shards) """ # Read gtest shard configuration from environment (e.g. set by swarming). # If none is present, use values passed on the command line. shard_count = int( os.environ.get('GTEST_TOTAL_SHARDS', options.shard_count)) shard_run = os.environ.get('GTEST_SHARD_INDEX') if shard_run is not None: # The v8 shard_run starts at 1, while GTEST_SHARD_INDEX starts at 0. shard_run = int(shard_run) + 1 else: shard_run = options.shard_run if options.shard_count > 1: # Log if a value was passed on the cmd line and it differs from the # environment variables. if options.shard_count != shard_count: # pragma: no cover print("shard_count from cmd line differs from environment variable " "GTEST_TOTAL_SHARDS") if (options.shard_run > 1 and options.shard_run != shard_run): # pragma: no cover print("shard_run from cmd line differs from environment variable " "GTEST_SHARD_INDEX") if shard_run < 1 or shard_run > shard_count: # TODO(machenbach): Turn this into an assert. If that's wrong on the # bots, printing will be quite useless. Or refactor this code to make # sure we get a return code != 0 after testing if we got here. print "shard-run not a valid number, should be in [1:shard-count]" print "defaulting back to running all tests" return 1, 1 return shard_run, shard_count def _create_progress_indicators(self, options): procs = [PROGRESS_INDICATORS[options.progress]()] if options.junitout: procs.append(progress.JUnitTestProgressIndicator(options.junitout, options.junittestsuite)) if options.json_test_results: procs.append(progress.JsonTestProgressIndicator( options.json_test_results, self.build_config.arch, self.mode_options.execution_mode)) return procs def _create_timeout_proc(self, options): if not options.total_timeout_sec: return None return TimeoutProc(options.total_timeout_sec) def _create_signal_proc(self): return SignalProc() def _create_rerun_proc(self, options): if not options.rerun_failures_count: return None return RerunProc(options.rerun_failures_count, options.rerun_failures_max)
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to convert SavedModel to frozen GraphDefs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.lite.python.convert import tensor_name from tensorflow.core.framework import types_pb2 from tensorflow.python.client import session from tensorflow.python.framework import graph_util as tf_graph_util from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import constants from tensorflow.python.saved_model import loader def _log_tensor_details(tensor_info): """Log tensor details: name, shape, and type.""" for key in tensor_info: val = tensor_info[key] dtype = types_pb2.DataType.Name(val.dtype) if val.tensor_shape.unknown_rank: shape = "unknown_rank" else: dims = [str(dim.size) for dim in val.tensor_shape.dim] shape = "({})".format(", ".join(dims)) logging.info("Tensor's key in saved_model's tensor_map: %s", key) logging.info(" tensor name: %s, shape: %s, type: %s", val.name, shape, dtype) def _get_meta_graph_def(saved_model_dir, tag_set): """Validate saved_model and extract MetaGraphDef. Args: saved_model_dir: saved_model path to convert. tag_set: Set of tag(s) of the MetaGraphDef to load. Returns: The meta_graph_def used for tflite conversion. Raises: ValueError: No valid MetaGraphDef for given tag_set. """ with session.Session(graph=ops.Graph()) as sess: return loader.load(sess, tag_set, saved_model_dir) def _get_signature_def(meta_graph, signature_key): """Get the signature def from meta_graph with given signature_key. Args: meta_graph: meta_graph_def. signature_key: signature_def in the meta_graph_def. Returns: The signature_def used for tflite conversion. Raises: ValueError: Given signature_key is not valid for this meta_graph. """ signature_def_map = meta_graph.signature_def signature_def_keys = set(signature_def_map.keys()) logging.info( "The given SavedModel MetaGraphDef contains SignatureDefs with the " "following keys: %s", signature_def_keys) if signature_key not in signature_def_keys: raise ValueError("No '{}' in the SavedModel\'s SignatureDefs. Possible " "values are '{}'.".format(signature_key, ",".join(signature_def_keys))) return signature_def_map[signature_key] def _get_inputs_outputs(signature_def): """Get inputs and outputs from SignatureDef. Args: signature_def: SignatureDef in the meta_graph_def for conversion. Returns: The inputs and outputs in the graph for conversion. """ inputs_tensor_info = signature_def.inputs outputs_tensor_info = signature_def.outputs logging.info("input tensors info: ") _log_tensor_details(inputs_tensor_info) logging.info("output tensors info: ") _log_tensor_details(outputs_tensor_info) def gather_names(tensor_info): return [tensor_info[key].name for key in tensor_info] inputs = gather_names(inputs_tensor_info) outputs = gather_names(outputs_tensor_info) return inputs, outputs def _get_tensors(graph, signature_def_tensor_names=None, user_tensor_names=None): """Gets the tensors associated with the tensor names. Either signature_def_tensor_names or user_tensor_names should be provided. If the user provides tensors, the tensors associated with the user provided tensor names are provided. Otherwise, the tensors associated with the names in the SignatureDef are provided. Args: graph: GraphDef representing graph. signature_def_tensor_names: Tensor names stored in either the inputs or outputs of a SignatureDef. (default None) user_tensor_names: Tensor names provided by the user. (default None) Returns: List of tensors. Raises: ValueError: signature_def_tensors and user_tensor_names are undefined or empty. user_tensor_names are not valid. """ tensors = [] if user_tensor_names: # Sort the tensor names. user_tensor_names = sorted(user_tensor_names) tensors = get_tensors_from_tensor_names(graph, user_tensor_names) elif signature_def_tensor_names: tensors = [ graph.get_tensor_by_name(name) for name in sorted(signature_def_tensor_names) ] else: # Throw ValueError if signature_def_tensors and user_tensor_names are both # either undefined or empty. raise ValueError( "Specify either signature_def_tensor_names or user_tensor_names") return tensors def get_tensors_from_tensor_names(graph, tensor_names): """Gets the Tensors associated with the `tensor_names` in the provided graph. Args: graph: TensorFlow Graph. tensor_names: List of strings that represent names of tensors in the graph. Returns: A list of Tensor objects in the same order the names are provided. Raises: ValueError: tensor_names contains an invalid tensor name. """ # Get the list of all of the tensors. tensor_name_to_tensor = { tensor_name(tensor): tensor for op in graph.get_operations() for tensor in op.values() } # Get the tensors associated with tensor_names. tensors = [] invalid_tensors = [] for name in tensor_names: tensor = tensor_name_to_tensor.get(name) if tensor is None: invalid_tensors.append(name) else: tensors.append(tensor) # Throw ValueError if any user input names are not valid tensors. if invalid_tensors: raise ValueError("Invalid tensors '{}' were found.".format( ",".join(invalid_tensors))) return tensors def set_tensor_shapes(tensors, shapes): """Sets Tensor shape for each tensor if the shape is defined. Args: tensors: TensorFlow ops.Tensor. shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}). """ if shapes: for tensor in tensors: shape = shapes.get(tensor_name(tensor)) if shape is not None: tensor.set_shape(shape) def freeze_saved_model(saved_model_dir, input_arrays, input_shapes, output_arrays, tag_set, signature_key): """Converts a SavedModel to a frozen graph. Args: saved_model_dir: SavedModel directory to convert. input_arrays: List of input tensors to freeze graph with. Uses input arrays from SignatureDef when none are provided. input_shapes: Dict of strings representing input tensor names to list of integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}). Automatically determined when input shapes is None (e.g., {"foo" : None}). output_arrays: List of output tensors to freeze graph with. Uses output arrays from SignatureDef when none are provided. tag_set: Set of tags identifying the MetaGraphDef within the SavedModel to analyze. All tags in the tag set must be present. signature_key: Key identifying SignatureDef containing inputs and outputs. Returns: frozen_graph_def: Frozen GraphDef. in_tensors: List of input tensors for the graph. out_tensors: List of output tensors for the graph. Raises: ValueError: SavedModel doesn't contain a MetaGraphDef identified by tag_set. signature_key is not in the MetaGraphDef. assets/ directory is in the MetaGraphDef. input_shapes does not match the length of input_arrays. input_arrays or output_arrays are not valid. """ # Read SignatureDef. meta_graph = _get_meta_graph_def(saved_model_dir, tag_set) signature_def = _get_signature_def(meta_graph, signature_key) inputs, outputs = _get_inputs_outputs(signature_def) # Check SavedModel for assets directory. collection_def = meta_graph.collection_def if constants.ASSETS_KEY in collection_def: raise ValueError("SavedModels with assets/ directory are not supported.") graph = ops.Graph() with session.Session(graph=graph) as sess: loader.load(sess, meta_graph.meta_info_def.tags, saved_model_dir) # Gets input and output tensors. # TODO(zhixianyan): Use TFLite supported Op list to filter outputs. in_tensors = _get_tensors(graph, inputs, input_arrays) out_tensors = _get_tensors(graph, outputs, output_arrays) set_tensor_shapes(in_tensors, input_shapes) output_names = [node.split(":")[0] for node in outputs] frozen_graph_def = tf_graph_util.convert_variables_to_constants( sess, graph.as_graph_def(), output_names) return frozen_graph_def, in_tensors, out_tensors
from __future__ import unicode_literals import collections import copy import datetime import numbers import operator import re import scorched.strings import scorched.exc import scorched.dates from functools import reduce from collections.abc import Iterable from scorched.compat import str from scorched.compat import basestring from scorched.compat import python_2_unicode_compatible PARSERS = ("edismax", "dismax") def is_iter(val): return not isinstance(val, basestring) and isinstance(val, Iterable) class LuceneQuery(object): default_term_re = re.compile(r'^\w+$') def __init__(self, option_flag=None, original=None, multiple_tags_allowed=False): self.normalized = False if original is None: self.option_flag = option_flag self.multiple_tags_allowed = multiple_tags_allowed self.terms = collections.defaultdict(set) self.phrases = collections.defaultdict(set) self.ranges = set() self.subqueries = [] self._and = True self._or = self._not = self._pow = False self.boosts = [] else: self.option_flag = original.option_flag self.multiple_tags_allowed = original.multiple_tags_allowed self.terms = copy.copy(original.terms) self.phrases = copy.copy(original.phrases) self.ranges = copy.copy(original.ranges) self.subqueries = copy.copy(original.subqueries) self._or = original._or self._and = original._and self._not = original._not self._pow = original._pow self.boosts = copy.copy(original.boosts) def clone(self): return LuceneQuery(original=self) def options(self): opts = {} s = self.__unicode_special__() if s: opts[self.option_flag] = s return opts # Below, we sort all our value_sets - this is for predictability when # testing. def serialize_term_queries(self, terms): s = [] for name, value_set in list(terms.items()): if name: tmp = [u'%s:%s' % (name, self.to_query(value)) for value in value_set] if name == '*': tmp = [u'%s:%s' % (name, value) for value in value_set] s += tmp else: s += [self.to_query(value) for value in value_set] return sorted(s) def to_solr(self, value): if isinstance(value, bool): return u"true" if value else u"false" if isinstance(value, datetime.datetime): return str(scorched.dates.solr_date(value)) return str(value) def to_query(self, value): if isinstance(value, scorched.strings.DismaxString): ret = value elif isinstance(value, scorched.strings.WildcardString): ret = value.escape_for_lqs_term() else: ret = scorched.strings.RawString( self.to_solr(value)).escape_for_lqs_term() return ret range_query_templates = { "any": u"[* TO *]", "lt": u"{* TO %s}", "lte": u"[* TO %s]", "gt": u"{%s TO *}", "gte": u"[%s TO *]", "rangeexc": u"{%s TO %s}", "range": u"[%s TO %s]", } def serialize_range_queries(self): s = [] for name, rel, values in sorted(self.ranges): range_s = self.range_query_templates[rel] if values: values = values[0] if not is_iter(values): values = [values] values = sorted(values) values = [self.to_query(v) for v in values] range_s = self.range_query_templates[rel] % tuple( values) s.append(u"%s:%s" % (name, range_s)) return s def child_needs_parens(self, child): if len(child) == 1: return False elif self._or: return not (child._or or child._pow) elif (self._and or self._not): return not (child._and or child._not or child._pow) elif self._pow is not False: return True else: return True @staticmethod def merge_term_dicts(*args): d = collections.defaultdict(set) for arg in args: for k, v in list(arg.items()): d[k].update(v) return dict((k, v) for k, v in list(d.items())) def normalize(self): if self.normalized: return self, False mutated = False _subqueries = [] _terms = self.terms _phrases = self.phrases _ranges = self.ranges for s in self.subqueries: _s, changed = s.normalize() if not _s or changed: mutated = True if _s: if (_s._and and self._and) or (_s._or and self._or): mutated = True _terms = self.merge_term_dicts(_terms, _s.terms) _phrases = self.merge_term_dicts(_phrases, _s.phrases) _ranges = _ranges.union(_s.ranges) _subqueries.extend(_s.subqueries) else: _subqueries.append(_s) if mutated: newself = self.clone() newself.terms = _terms newself.phrases = _phrases newself.ranges = _ranges newself.subqueries = _subqueries self = newself if self._not: if not len(self.subqueries): newself = self.clone() newself._not = False newself._and = True self = newself mutated = True elif len(self.subqueries) == 1: if self.subqueries[0]._not: newself = self.clone() newself.subqueries = self.subqueries[0].subqueries newself._not = False newself._and = True self = newself mutated = True else: raise ValueError elif self._pow: if not len(self.subqueries): newself = self.clone() newself._pow = False self = newself mutated = True elif self._and or self._or: if not self.terms and not self.phrases and not self.ranges \ and not self.boosts: if len(self.subqueries) == 1: self = self.subqueries[0] mutated = True self.normalized = True return self, mutated @python_2_unicode_compatible def __str__(self): return self.__unicode_special__(force_serialize=True) def __unicode_special__(self, level=0, op=None, force_serialize=False): if not self.normalized: self, _ = self.normalize() if self.boosts: # Clone and rewrite to effect the boosts. newself = self.clone() newself.boosts = [] boost_queries = [self.Q(**kwargs) ** boost_score for kwargs, boost_score in self.boosts] newself = newself | (newself & reduce(operator.or_, boost_queries)) newself, _ = newself.normalize() return newself.__unicode_special__(level=level, force_serialize=force_serialize) else: alliter = [self.serialize_term_queries(self.terms), self.serialize_term_queries(self.phrases), self.serialize_range_queries()] u = [] for iterator in alliter: u.extend(iterator) for q in self.subqueries: op_ = u'OR' if self._or else u'AND' if self.child_needs_parens(q): u.append( u"(%s)" % q.__unicode_special__( level=level + 1, op=op_)) else: u.append( u"%s" % q.__unicode_special__(level=level + 1, op=op_)) if self._and: if (not force_serialize and level == 0 and self.multiple_tags_allowed): return u else: return u' AND '.join(u) elif self._or: return u' OR '.join(u) elif self._not: assert len(u) == 1 if level == 0 or (level == 1 and op == "AND"): return u'NOT %s' % u[0] else: return u'(*:* AND NOT %s)' % u[0] elif self._pow is not False: assert len(u) == 1 return u"%s^%s" % (u[0], self._pow) else: raise ValueError def __len__(self): # How many terms in this (sub) query? if len(self.subqueries) == 1: subquery_length = len(self.subqueries[0]) else: subquery_length = len(self.subqueries) return sum([sum(len(v) for v in list(self.terms.values())), sum(len(v) for v in list(self.phrases.values())), len(self.ranges), subquery_length]) def Q(self, *args, **kwargs): q = LuceneQuery() q.add(args, kwargs) return q def __bool__(self): return bool(self.terms) or bool(self.phrases) or bool(self.ranges) or \ bool(self.subqueries) def __or__(self, other): q = LuceneQuery() q._and = False q._or = True q.subqueries = [self, other] return q def __and__(self, other): q = LuceneQuery() q.subqueries = [self, other] return q def __invert__(self): q = LuceneQuery() q._and = False q._not = True q.subqueries = [self] return q def __pow__(self, value): try: float(value) except ValueError: raise ValueError("Non-numeric value supplied for boost") q = LuceneQuery() q.subqueries = [self] q._and = False q._pow = value return q def add(self, args, kwargs): self.normalized = False _args = [] for arg in args: if isinstance(arg, LuceneQuery): self.subqueries.append(arg) else: _args.append(arg) args = _args try: terms_or_phrases = kwargs.pop("__terms_or_phrases") except KeyError: terms_or_phrases = None for value in args: self.add_exact(None, value, terms_or_phrases) for k, v in list(kwargs.items()): try: field_name, rel = k.split("__") except ValueError: field_name, rel = k, 'eq' if not field_name: if (k, v) != ("*", "*"): # the only case where wildcards in field names are allowed raise ValueError("%s is not a valid field name" % k) if rel == 'eq': self.add_exact(field_name, v, terms_or_phrases) else: self.add_range(field_name, rel, v) def add_exact(self, field_name, values, term_or_phrase): # We let people pass in a list of values to match. # This really only makes sense for text fields or # multivalued fields. if not is_iter(values): values = [values] # We can only do a field_name == "*" if: if not field_name or field_name == "*": if len(values) == 1 and values[0] == "*": self.terms["*"].add("*") return insts = values for inst in insts: this_term_or_phrase = term_or_phrase or self.term_or_phrase(inst) if isinstance(inst, numbers.Number): this_term_or_phrase = 'terms' getattr(self, this_term_or_phrase)[field_name].add(inst) def add_range(self, field_name, rel, value): if rel not in self.range_query_templates: raise scorched.exc.SolrError("No such relation '%s' defined" % rel) insts = (value,) if rel in ('range', 'rangeexc'): try: assert len(value) == 2 except (AssertionError, TypeError): raise scorched.exc.SolrError( "'%s__%s' argument must be a length-2 iterable" % ( field_name, rel)) elif rel == 'any': if value is not True: raise scorched.exc.SolrError("'%s__%s' argument must be True") insts = () self.ranges.add((field_name, rel, insts)) def term_or_phrase(self, arg, force=None): return 'terms' if self.default_term_re.match(str(arg)) else 'phrases' def add_boost(self, kwargs, boost_score): self.boosts.append((kwargs, boost_score)) class BaseSearch(object): """Base class for common search options management""" option_modules = ('query_obj', 'filter_obj', 'paginator', 'more_like_this', 'highlighter', 'postings_highlighter', 'faceter', 'grouper', 'sorter', 'facet_querier', 'debugger', 'spellchecker', 'requesthandler', 'field_limiter', 'parser', 'pivoter', 'facet_ranger', 'term_vectors', 'stat') def _init_common_modules(self): self.query_obj = LuceneQuery(u'q') self.filter_obj = LuceneQuery(u'fq', multiple_tags_allowed=True) self.paginator = PaginateOptions() self.highlighter = HighlightOptions() self.postings_highlighter = PostingsHighlightOptions() self.faceter = FacetOptions() self.pivoter = FacetPivotOptions() self.grouper = GroupOptions() self.sorter = SortOptions() self.debugger = DebugOptions() self.spellchecker = SpellcheckOptions() self.requesthandler = RequestHandlerOption() self.field_limiter = FieldLimitOptions() self.facet_ranger = FacetRangeOptions() self.facet_querier = FacetQueryOptions() self.term_vectors = TermVectorOptions() self.stat = StatOptions() def clone(self): return self.__class__(interface=self.interface, original=self) def Q(self, *args, **kwargs): q = LuceneQuery() q.add(args, kwargs) return q def query(self, *args, **kwargs): newself = self.clone() newself.query_obj.add(args, kwargs) return newself def query_by_term(self, *args, **kwargs): return self.query(__terms_or_phrases="terms", *args, **kwargs) def query_by_phrase(self, *args, **kwargs): return self.query(__terms_or_phrases="phrases", *args, **kwargs) def boost_relevancy(self, boost_score, **kwargs): if not self.query_obj: raise TypeError("Can't boost the relevancy of an empty query") try: float(boost_score) except ValueError: raise ValueError("Non-numeric boost value supplied") newself = self.clone() newself.query_obj.add_boost(kwargs, boost_score) return newself def filter(self, *args, **kwargs): newself = self.clone() newself.filter_obj.add(args, kwargs) return newself def filter_by_term(self, *args, **kwargs): return self.filter(__terms_or_phrases="terms", *args, **kwargs) def filter_by_phrase(self, *args, **kwargs): return self.filter(__terms_or_phrases="phrases", *args, **kwargs) def facet_by(self, fields, **kwargs): newself = self.clone() newself.faceter.update(fields, **kwargs) return newself def facet_range(self, fields, **kwargs): newself = self.clone() newself.facet_ranger.update(fields, **kwargs) return newself def pivot_by(self, fields, **kwargs): newself = self.clone() newself.pivoter.update(fields, **kwargs) return newself def group_by(self, field, **kwargs): newself = self.clone() kwargs['field'] = field if 'ngroups' not in kwargs: kwargs['ngroups'] = True newself.grouper.update(None, **kwargs) return newself def facet_query(self, *args, **kwargs): newself = self.clone() newself.facet_querier.update(self.Q(*args, **kwargs)) return newself def highlight(self, fields=None, **kwargs): newself = self.clone() newself.highlighter.update(fields, **kwargs) return newself def postings_highlight(self, fields=None, **kwargs): newself = self.clone() newself.postings_highlighter.update(fields, **kwargs) return newself def mlt(self, fields, query_fields=None, **kwargs): newself = self.clone() newself.more_like_this.update(fields, query_fields, **kwargs) return newself def term_vector(self, fields=None, **kwargs): newself = self.clone() newself.term_vectors.update(fields, **kwargs) return newself def alt_parser(self, parser, **kwargs): if parser not in PARSERS: raise scorched.exc.SolrError( "Parser (%s) is not supported choose between (%s)" % ( parser, PARSERS)) newself = self.clone() if parser == 'dismax': newself.parser = DismaxOptions() elif parser == 'edismax': newself.parser = EdismaxOptions() newself.parser.update(**kwargs) return newself def paginate(self, start=None, rows=None): newself = self.clone() newself.paginator.update(start, rows) return newself def debug(self): newself = self.clone() newself.debugger.update(True) return newself def spellcheck(self): newself = self.clone() newself.spellchecker.update(True) return newself def set_requesthandler(self, handler): newself = self.clone() newself.requesthandler.update(handler) return newself def sort_by(self, field): newself = self.clone() newself.sorter.update(field) return newself def field_limit(self, fields=None, score=False, all_fields=False): newself = self.clone() newself.field_limiter.update(fields, score, all_fields) return newself def options(self): options = {} for option_module in self.option_modules: if hasattr(self, option_module): _attr = getattr(self, option_module) options.update(_attr.options()) return options def results_as(self, constructor): newself = self.clone() return newself def stats(self, fields, **kwargs): newself = self.clone() newself.stat.update(fields, **kwargs) return newself def params(self): return params_from_dict(**self.options()) def constructor(self, result, constructor): construct_docs = lambda docs: [constructor(**d) for d in docs] result.result.docs = construct_docs(result.result.docs) for key in result.more_like_these: result.more_like_these[key].docs = construct_docs( result.more_like_these[key].docs) return result _count = None def count(self): if self._count is None: # We haven't gotten the count yet. Get it. Clone self for this # query or else we'll set rows=0 for remainder. newself = self.clone() r = newself.paginate(None, 0).execute() if r.groups: total = getattr(r.groups, r.group_field)['ngroups'] else: total = r.result.numFound # Set the cache self._count = total return self._count def __getitem__(self, key): if isinstance(key, int): start, rows = key, 1 elif isinstance(key, slice): start, rows = key.start, key.stop-key.start else: raise TypeError('Subscript must be int or slice') return self.paginate(start, rows).execute() class SolrSearch(BaseSearch): def __init__(self, interface, original=None): self.interface = interface if original is None: self.more_like_this = MoreLikeThisOptions() self._init_common_modules() else: for opt in self.option_modules: if hasattr(original, opt): _attr = getattr(original, opt) setattr(self, opt, _attr.clone()) def options(self): options = super(SolrSearch, self).options() if 'q' not in options: options['q'] = '*:*' # search everything return options def execute(self, constructor=None): ret = self.interface.search(**self.options()) if constructor: ret = self.constructor(ret, constructor) return ret def cursor(self, constructor=None, rows=None): if self.paginator.start is not None: raise ValueError( "cannot use the start parameter and cursors at the same time") search = self if rows: search = search.paginate(rows=rows) return SolrCursor(search, constructor) class SolrCursor: def __init__(self, search, constructor): self.search = search self.constructor = constructor def __iter__(self): cursor_mark = "*" while True: options = self.search.options() options['cursorMark'] = cursor_mark ret = self.search.interface.search(**options) if self.constructor: ret = self.search.constructor(ret, self.constructor) for item in ret: yield item if ret.next_cursor_mark == cursor_mark: break cursor_mark = ret.next_cursor_mark class MltSolrSearch(BaseSearch): """Manage parameters to build a MoreLikeThisHandler query""" trivial_encodings = [ "utf_8", "u8", "utf", "utf8", "ascii", "646", "us_ascii"] def __init__(self, interface, content=None, content_charset=None, url=None, original=None): self.interface = interface if original is None: if content is not None and url is not None: raise ValueError( "Cannot specify both content and url") if content is not None: if content_charset is None: content_charset = 'utf-8' if isinstance(content, str): content = content.encode('utf-8') elif content_charset.lower( ).replace('-', '_') not in self.trivial_encodings: content = content.decode(content_charset).encode('utf-8') self.content = content self.url = url self.more_like_this = MoreLikeThisHandlerOptions() self._init_common_modules() else: self.content = original.content self.url = original.url for opt in self.option_modules: if hasattr(original, opt): _attr = getattr(original, opt) setattr(self, opt, _attr.clone()) def query(self, *args, **kwargs): if self.content is not None or self.url is not None: raise ValueError( "Cannot specify query as well as content on an MltSolrSearch") return super(MltSolrSearch, self).query(*args, **kwargs) def query_by_term(self, *args, **kwargs): if self.content is not None or self.url is not None: raise ValueError( "Cannot specify query as well as content on an MltSolrSearch") return super(MltSolrSearch, self).query_by_term(*args, **kwargs) def query_by_phrase(self, *args, **kwargs): if self.content is not None or self.url is not None: raise ValueError( "Cannot specify query as well as content on an MltSolrSearch") return super(MltSolrSearch, self).query_by_phrase(*args, **kwargs) def Q(self, *args, **kwargs): if self.content is not None or self.url is not None: raise ValueError( "Cannot specify query as well as content on an MltSolrSearch") return super(MltSolrSearch, self).Q(*args, **kwargs) def boost_relevancy(self, *args, **kwargs): if self.content is not None or self.url is not None: raise ValueError( "Cannot specify query as well as content on an MltSolrSearch") return super(MltSolrSearch, self).boost_relevancy(*args, **kwargs) def options(self): options = super(MltSolrSearch, self).options() if self.url is not None: options['stream.url'] = self.url if 'q' not in options: options['q'] = '*:*' # search everything return options def execute(self, constructor=None): ret = self.interface.mlt_search(content=self.content, **self.options()) if constructor: ret = self.constructor(ret, constructor) return ret class Options(object): def clone(self): return self.__class__(self) def invalid_value(self, msg=""): assert False, msg def update(self, fields=None, **kwargs): if fields: if not is_iter(fields): fields = [fields] for field in set(fields) - set(self.fields): self.fields[field] = {} elif kwargs: fields = [None] checked_kwargs = self.check_opts(kwargs) for k, v in list(checked_kwargs.items()): for field in fields: self.fields[field][k] = v def check_opts(self, kwargs): checked_kwargs = {} for k, v in list(kwargs.items()): if k not in self.opts: raise scorched.exc.SolrError( "No such option for %s: %s" % (self.option_name, k)) opt_type = self.opts[k] try: if isinstance(opt_type, (list, tuple)): assert v in opt_type elif isinstance(opt_type, type): v = opt_type(v) else: v = opt_type(self, v) except: raise scorched.exc.SolrError( "Invalid value for %s option %s: %s" % (self.option_name, k, v)) checked_kwargs[k] = v return checked_kwargs def options(self): opts = {} if self.fields: opts[self.option_name] = True fields = [field for field in self.fields if field] self.field_names_in_opts(opts, fields) for field_name, field_opts in list(self.fields.items()): if not field_name: for field_opt, v in list(field_opts.items()): opts['%s.%s' % (self.option_name, field_opt)] = v else: for field_opt, v in list(field_opts.items()): opts['f.%s.%s.%s' % (field_name, self.option_name, field_opt)] = v return opts class FacetOptions(Options): option_name = "facet" opts = { "prefix": str, "sort": [True, False, "count", "index"], "limit": int, "offset": lambda self, x: int(x) >= 0 and int(x) or self.invalid_value(), "mincount": lambda self, x: int(x) >= 0 and int(x) or self.invalid_value(), "missing": bool, "method": ["enum", "fc"], "enum.cache.minDf": int, } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): if fields: opts["facet.field"] = sorted(fields) class FacetRangeOptions(Options): option_name = "facet.range" opts = { "start": str, "end": str, "gap": str, "hardend": bool, "limit": int, "mincount": int, "include": ["lower", "upper", "edge", "outer", "all"], "other": ["before", "after", "between", "none", "all"], } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): opts['facet'] = True opts[self.option_name] = list(self.fields.keys()) def options(self): ''' Override options so we can move limit & mincount from facet.range to facet. ''' opts = super(FacetRangeOptions, self).options() for field in self.fields.keys(): for key in ('limit', 'mincount'): oldkey = 'f.%s.facet.range.%s' % (field, key) newkey = 'f.%s.facet.%s' % (field, key) if oldkey in opts: opts[newkey] = opts[oldkey] del opts[oldkey] return opts class FacetPivotOptions(Options): option_name = "facet.pivot" opts = { "mincount": lambda self, x: int(x) >= 0 and int(x) or self.invalid_value(), } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): opts["facet"] = True if fields: field_opts = {} for field in fields: field_opts.update(self.fields[field]) del(self.fields[field]) self.fields[None] = field_opts opts["facet.pivot"] = ','.join(sorted(fields)) class GroupOptions(Options): option_name = "group" opts = { "field": str, "limit": int, "main": bool, "ngroups": bool } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): if fields: opts["facet.field"] = sorted(fields) class DismaxOptions(Options): _name = "dismax" option_name = "defType" opts = { "f": dict, "qf": dict, "mm": int, "pf": dict, "ps": int, "qs": int, "tie": float, "bq": str, "bf": str, } def __init__(self, original=None): if original is None: self.kwargs = {} else: self.kwargs = original.kwargs.copy() def update(self, **kwargs): checked_kwargs = self.check_opts(kwargs) for f in ('qf', 'pf'): field = kwargs.get(f, {}) for k, v in list(field.items()): if v is not None: try: v = float(v) except ValueError: raise scorched.exc.SolrError( "'%s' has non-numerical boost value" % k) self.kwargs.update(checked_kwargs) def options(self): opts = {} opts[self.option_name] = self._name for opt_name, opt_value in list(self.kwargs.items()): opt_type = self.opts[opt_name] opts[opt_name] = opt_type(opt_value) if opt_name in ("qf", "pf"): qf_arg = [] items = sorted(list(opt_value.items()), reverse=True) for k, v in items: if v is None: qf_arg.append(k) else: qf_arg.append("%s^%s" % (k, float(v))) opts[opt_name] = " ".join(qf_arg) return opts class EdismaxOptions(DismaxOptions): _name = "edismax" def options(self): opts = super(EdismaxOptions, self).options() if 'f' in opts: f = opts.pop('f') for field, aliases in f.items(): opts['f.%s.qf' % field] = ' '.join(aliases) return opts class HighlightOptions(Options): option_name = "hl" opts = {"snippets": int, "fragsize": int, "mergeContinuous": bool, "requireFieldMatch": bool, "maxAnalyzedChars": int, "alternateField": str, "maxAlternateFieldLength": int, "formatter": ["simple"], "simple.pre": str, "simple.post": str, "fragmenter": str, "useFastVectorHighlighter": bool, # available as of Solr 3.1 "usePhraseHighlighter": bool, "highlightMultiTerm": bool, "regex.slop": float, "regex.pattern": str, "regex.maxAnalyzedChars": int, "boundaryScanner": str, "bs.maxScan": str, "bs.chars": str, "bs.type": str, "bs.language": str, "bs.country": str, } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): if fields: opts["hl.fl"] = ",".join(sorted(fields)) class PostingsHighlightOptions(Options): option_name = "hl" opts = {"snippets": int, "tag.pre": str, "tag.post": str, "tag.ellipsis": str, "defaultSummary": bool, "encoder": str, "score.k1": float, "score.b": float, "score.pivot": float, "bs.type": str, "bs.language": str, "bs.country": str, "bs.variant": str, "maxAnalyzedChars": str, "multiValuedSeperatorChar": str } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) else: self.fields = copy.copy(original.fields) def field_names_in_opts(self, opts, fields): if fields: opts["hl.fl"] = ",".join(sorted(fields)) class MoreLikeThisOptions(Options): option_name = "mlt" opts = {"count": int, "mintf": int, "mindf": int, "maxdf": int, "minwl": int, "maxwl": int, "maxqt": int, "maxntp": int, "boost": bool, } def __init__(self, original=None): if original is None: self.fields = set() self.query_fields = {} self.kwargs = {} else: self.fields = copy.copy(original.fields) self.query_fields = copy.copy(original.query_fields) self.kwargs = copy.copy(original.kwargs) def update(self, fields, query_fields=None, **kwargs): if fields is None: return if not is_iter(fields): fields = [fields] self.fields.update(fields) if query_fields is not None: for k, v in list(query_fields.items()): if k not in self.fields: raise scorched.exc.SolrError( "'%s' specified in query_fields but not fields" % k) if v is not None: try: v = float(v) except ValueError: raise scorched.exc.SolrError( "'%s' has non-numerical boost value" % k) self.query_fields.update(query_fields) checked_kwargs = self.check_opts(kwargs) self.kwargs.update(checked_kwargs) def options(self): opts = {} if self.fields: opts['mlt'] = True opts['mlt.fl'] = ','.join(sorted(self.fields)) if self.query_fields: qf_arg = [] items = sorted(list(self.query_fields.items()), reverse=True) for k, v in items: if v is None: qf_arg.append(k) else: qf_arg.append("%s^%s" % (k, float(v))) opts["mlt.qf"] = " ".join(qf_arg) for opt_name, opt_value in list(self.kwargs.items()): opt_type = self.opts[opt_name] opts["mlt.%s" % opt_name] = opt_type(opt_value) return opts class MoreLikeThisHandlerOptions(MoreLikeThisOptions): opts = { 'match.include': bool, 'match.offset': int, 'interestingTerms': ["list", "details", "none"], } opts.update(MoreLikeThisOptions.opts) del opts['count'] def options(self): opts = {} if self.fields: opts['mlt.fl'] = ','.join(sorted(self.fields)) if self.query_fields: qf_arg = [] for k, v in list(self.query_fields.items()): if v is None: qf_arg.append(k) else: qf_arg.append("%s^%s" % (k, float(v))) opts["mlt.qf"] = " ".join(qf_arg) for opt_name, opt_value in list(self.kwargs.items()): opts["mlt.%s" % opt_name] = opt_value return opts class TermVectorOptions(Options): option_name = "tv" opts = { "all": bool, "df": bool, "offsets": bool, "positions": bool, "payloads": bool, "tf": bool, "tf_idf": bool, } def __init__(self, original=None): if original is None: self.fields = collections.defaultdict(dict) self.enabled = False else: self.fields = copy.copy(original.fields) self.enabled = original.enabled def field_names_in_opts(self, opts, fields): if fields: opts["tv.fl"] = ",".join(sorted(fields)) def update(self, fields=None, **kwargs): super(TermVectorOptions, self).update(fields, **kwargs) self.enabled = True def options(self): opts = super(TermVectorOptions, self).options() if self.enabled and not opts: opts = {"tv": True} return opts class PaginateOptions(Options): def __init__(self, original=None): if original is None: self.start = None self.rows = None else: self.start = original.start self.rows = original.rows def update(self, start, rows): if start is not None: if start < 0: raise scorched.exc.SolrError( "paginator start index must be 0 or greater") self.start = start if rows is not None: if rows < 0: raise scorched.exc.SolrError( "paginator rows must be 0 or greater") self.rows = rows def options(self): opts = {} if self.start is not None: opts['start'] = self.start if self.rows is not None: opts['rows'] = self.rows return opts class SortOptions(Options): option_name = "sort" def __init__(self, original=None): if original is None: self.fields = [] else: self.fields = copy.copy(original.fields) def update(self, field): # We're not allowing function queries a la Solr1.5 if field.startswith('-'): order = "desc" field = field[1:] elif field.startswith('+'): order = "asc" field = field[1:] else: order = "asc" self.fields.append([order, field]) def options(self): if self.fields: return {"sort": ", ".join( "%s %s" % (field, order) for order, field in self.fields)} else: return {} class DebugOptions(Options): # XXX should be changed to 'debug' added in 4.0 # https://wiki.apache.org/solr/CommonQueryParameters#Debugging option_name = "debugQuery" def __init__(self, original=None): if original is None: self.debug = False else: self.debug = original.debug def update(self, debug): self.debug = debug def options(self): if self.debug: return {"debugQuery": True} else: return {} class SpellcheckOptions(Options): option_name = "spellcheck" def __init__(self, original=None): if original is None: self.spellcheck = False else: self.spellcheck = original.spellcheck def update(self, spellcheck): self.spellcheck = spellcheck def options(self): if self.spellcheck: return {"spellcheck": True} else: return {} class RequestHandlerOption(Options): option_name = "qt" def __init__(self, original=None): if original is None: # XXX 'standard' is deprecated # https://wiki.apache.org/solr/SolrRequestHandler#Old_handleSelect.3Dtrue_Resolution_.28qt_param.29 self.handler = None else: self.handler = original.handler def update(self, handler): self.handler = handler def options(self): ret = {} if self.handler: ret = {"qt": self.handler} return ret class FieldLimitOptions(Options): option_name = "fl" def __init__(self, original=None): if original is None: self.fields = set() self.score = False self.all_fields = False else: self.fields = copy.copy(original.fields) self.score = original.score self.all_fields = original.all_fields def update(self, fields=None, score=False, all_fields=False): if fields is None: fields = [] if not is_iter(fields): fields = [fields] self.fields.update(fields) self.score = score self.all_fields = all_fields def options(self): opts = {} if self.all_fields: fields = set("*") else: fields = self.fields if self.score: fields.add("score") if fields: opts['fl'] = ','.join(sorted(fields)) return opts class FacetQueryOptions(Options): def __init__(self, original=None): if original is None: self.queries = [] else: self.queries = [q.clone() for q in original.queries] def update(self, query): self.queries.append(query) def options(self): if self.queries: return {'facet.query': [str(q) for q in self.queries], 'facet': True} else: return {} class StatOptions(Options): option_name = "stats" opts = { "stats.facet": str, } # NOTE: Solr documentation indicates stats.facet is a legacy parameter, # recommends using stats.field with facet.pivot instead def __init__(self, original=None): if original is None: self.stats = False self.facet = None self.fields = collections.defaultdict(dict) else: self.stats = original.stats self.fields = copy.copy(original.fields) self.facet = original.facet def update(self, fields=None, **kwargs): if 'facet' in kwargs: self.facet = kwargs['facet'] del kwargs['facet'] super(StatOptions, self).update(fields, **kwargs) self.stats = True def field_names_in_opts(self, opts, fields): if fields: opts["stats.field"] = sorted(fields) def options(self): opts = super(StatOptions, self).options() # stats = True set based on option_name if self.facet: opts['stats.facet'] = self.facet return opts def params_from_dict(**kwargs): utf8_params = [] for k, vs in list(kwargs.items()): if isinstance(k, bytes): k = k.decode('utf-8') # We allow for multivalued options with lists. if not is_iter(vs): vs = [vs] for v in vs: if isinstance(v, bool): v = b"true" if v else b"false" if isinstance(v, str): v = v.encode('utf-8') if isinstance(v, numbers.Number): v = str(v).encode('utf-8') utf8_params.append((k, v)) return sorted(utf8_params)
from validator import Validator from collections import defaultdict import re class EtherValidator(Validator): def __init__(self, rule): self.corpus = rule[0] self.doc = rule[1] self.domain = rule[2] self.name = rule[3] self.operator = rule[4] self.argument = rule[5] def _apply_exists(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name if len(col_letters) == 0: report += "Column named '" + self.name + "' not found<br/>" return report, tooltip, cells def _apply_doesntexist(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name if len(col_letters) > 0: report += "Columns named '" + self.name + "' are not allowed<br/>" cells += [letter + "1" for letter in col_letters] return report, tooltip, cells def _apply_span_equals_number(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name if len(col_letters) == 0: report += "Column named " + self.name + " not found<br/>" return report, tooltip, cells for letter in col_letters: for cell in parsed_ether[letter]: if cell.row == "1": continue if self.argument == "1": if cell.span != "1": report += "Cell " + cell.col + cell.row + ": span is not 1<br/>" cells.append(cell.col + cell.row) else: if cell.span != "" and cell.span != self.argument: report += "Cell " + cell.col + cell.row + ": span is not " + self.argument + "<br/>" cells.append(cell.col + cell.row) return report, tooltip, cells def _apply_regex(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name for letter in col_letters: for cell in parsed_ether[letter]: if cell.row == "1": continue match = re.search(self.argument, cell.content) if match is None: report += ("Cell " + cell.col + cell.row + ": content does not match pattern " + self.argument + "<br/>") tooltip += ("Cell " + cell.col + cell.row + ":<br/>" + "Content: " + cell.content + "<br/>" + "Pattern: " + self.argument + "<br/>") cells.append(cell.col + cell.row) return report, tooltip, cells def _binary_op_check_cols_exist(self, colmap): name_letters = colmap[self.name] arg_letters = colmap[self.argument] if len(name_letters) == 0: if self.operator != "==": return "Column named " + self.name + " not found<br/>" if len(arg_letters) == 0: if self.operator != "==": return "Column named " + self.argument + " not found<br/>" return "" def _binary_op_setup(self, parsed_ether): colmap = parsed_ether['__colmap__'] # name -> list of col letters name_letters = colmap[self.name] arg_letters = colmap[self.argument] name_tuples = defaultdict(list) arg_tuples = defaultdict(list) start_rows = defaultdict(list) all_rows = [] for letter in name_letters: for cell in parsed_ether[letter]: start_rows[letter].append(cell.row) # "de-merge" cell so we have an entry for every row in its span with its letter and content for i in range(int(cell.span) or 1): row = str(int(cell.row) + i) name_tuples[row].append((letter, cell.content)) all_rows.append(row) # same as above with arg_letters for letter in arg_letters: for cell in parsed_ether[letter]: start_rows[letter].append(cell.row) for i in range(int(cell.span) or 1): row = str(int(cell.row) + i) arg_tuples[row].append((letter, cell.content)) if row not in all_rows: all_rows.append(row) name_start_cells = [] name_start_rows = set() # for O(1) lookup for letter in name_letters: name_start_cells += [(letter, row) for row in start_rows[letter]] name_start_rows = name_start_rows.union(set(row for row in start_rows[letter])) arg_start_cells = [] arg_start_rows = set() for letter in arg_letters: arg_start_cells += [(letter, row) for row in start_rows[letter]] arg_start_rows = arg_start_rows.union(set(row for row in start_rows[letter])) return name_letters, arg_letters, name_tuples, arg_tuples, start_rows, all_rows, \ name_start_cells, name_start_rows, arg_start_cells, arg_start_rows def _apply_subspan(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name err = self._binary_op_check_cols_exist(colmap) if err: report += err return report, tooltip, cells name_letters, arg_letters, name_tuples, \ arg_tuples, start_rows, all_rows, \ name_start_cells, name_start_rows, \ arg_start_cells, arg_start_rows = self._binary_op_setup(parsed_ether) for row in all_rows: # check to see if all cells in rhs are contained within cells on lhs if row in arg_tuples and row not in name_tuples: for letter, _ in arg_tuples[row]: cells.append(letter + row) report += ("Cell " + letter + row + " must appear in the span of a cell in one of these columns: " + ", ".join(name_letters) + "<br/>") return report, tooltip, cells def _apply_equal_span_length(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name err = self._binary_op_check_cols_exist(colmap) if err: report += err return report, tooltip, cells name_letters, arg_letters, name_tuples, \ arg_tuples, start_rows, all_rows, \ name_start_cells, name_start_rows, \ arg_start_cells, arg_start_rows = self._binary_op_setup(parsed_ether) for row in all_rows: if row == "1": continue name_len = len(name_tuples[row]) arg_len = len(arg_tuples[row]) if name_len > arg_len: for letter, _ in name_tuples[row][arg_len:]: if row not in name_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " has no corresponding value in one of these columns: " + ", ".join(arg_letters) + "<br/>") elif arg_len > name_len: for letter, _ in arg_tuples[row][name_len:]: if row not in arg_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " has no corresponding value in one of these columns: " + ", ".join(name_letters) + "<br/>") for letter, row in name_start_cells: if row not in arg_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " needs a span of equal length beginning in one of these columns: " + ", ".join(arg_letters) + "<br/>") for letter, row in arg_start_cells: if row not in name_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " needs a span of equal length beginning in one of these columns: " + ", ".join(name_letters) + "<br/>") return report, tooltip, cells def _apply_equal_span_length_and_content(self, parsed_ether): report = '' tooltip = '' cells = [] colmap = parsed_ether['__colmap__'] # name -> list of col letters col_letters = colmap[self.name] # list of letters with col name err = self._binary_op_check_cols_exist(colmap) if err: report += err return report, tooltip, cells name_letters, arg_letters, name_tuples, \ arg_tuples, start_rows, all_rows, \ name_start_cells, name_start_rows, \ arg_start_cells, arg_start_rows = self._binary_op_setup(parsed_ether) for row in all_rows: if row == "1": continue name_len = len(name_tuples[row]) arg_len = len(arg_tuples[row]) if name_len > arg_len: for letter, _ in name_tuples[row][arg_len:]: if row not in name_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " has no corresponding value in one of these columns: " + ", ".join(arg_letters) + "<br/>") elif arg_len > name_len: for letter, _ in arg_tuples[row][name_len:]: if row not in arg_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " has no corresponding value in one of these columns: " + ", ".join(name_letters) + "<br/>") for i in range(min(len(name_tuples[row]), len(arg_tuples[row]))): name_letter, name_content = name_tuples[row][i] arg_letter, arg_content = arg_tuples[row][i] if arg_content != name_content and (row in start_rows[arg_letter] or row in start_rows[name_letter]): cells.append(name_letter + row) cells.append(arg_letter + row) report += ("Cells " + name_letter + row + " and " + arg_letter + row + " must have equivalent content.<br/>") for letter, row in name_start_cells: if row not in arg_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " needs a span of equal length beginning in one of these columns: " + ", ".join(arg_letters) + "<br/>") for letter, row in arg_start_cells: if row not in name_start_rows: cells.append(letter + row) report += ("Cell " + letter + row + " needs a span of equal length beginning in one of these columns: " + ", ".join(name_letters) + "<br/>") return report, tooltip, cells def _apply_rule(self, parsed_ether): if self.name is None: return "", "", [] if self.operator == "exists": return self._apply_exists(parsed_ether) if self.operator == "doesntexist": return self._apply_doesntexist(parsed_ether) elif self.operator == "|": return self._apply_span_equals_number(parsed_ether) elif self.operator == "~": return self._apply_regex(parsed_ether) elif self.operator == ">": return self._apply_subspan(parsed_ether) elif self.operator == "=": return self._apply_equal_span_length(parsed_ether) elif self.operator == "==": return self._apply_equal_span_length_and_content(parsed_ether) else: raise Exception("Unknown EtherCalc validation operator: '" + str(self.operator) + "'") def applies(self, doc_name, doc_corpus): if self.corpus is not None and re.search(self.corpus, doc_corpus) is None: return False if self.doc is not None and re.search(self.doc, doc_name) is None: return False return True def validate(self, parsed_ether): report, tooltip, cells = self._apply_rule(parsed_ether) return {"report": report, "tooltip": tooltip, "cells": cells}
""" Copyright: Jev Kuznetsov Licence: BSD Interface to interactive brokers together with gui widgets """ import sys # import os from time import sleep from PyQt4.QtCore import (SIGNAL, SLOT) from PyQt4.QtGui import (QApplication, QFileDialog, QDialog, QVBoxLayout, QHBoxLayout, QDialogButtonBox, QTableView, QPushButton, QWidget, QLabel, QLineEdit, QGridLayout, QHeaderView) import ib from ib.ext.Contract import Contract from ib.opt import ibConnection, message from ib.ext.Order import Order import logger as logger from qtpandas import DataFrameModel, TableView from eventSystem import Sender import numpy as np import pandas from pandas import DataFrame, Index from datetime import datetime import os import datetime as dt import time priceTicks = {1: 'bid', 2: 'ask', 4: 'last', 6: 'high', 7: 'low', 9: 'close', 14: 'open'} timeFormat = "%Y%m%d %H:%M:%S" dateFormat = "%Y%m%d" def createContract(symbol, secType='STK', exchange='SMART', currency='USD'): """ contract factory function """ contract = Contract() contract.m_symbol = symbol contract.m_secType = secType contract.m_exchange = exchange contract.m_currency = currency return contract def _str2datetime(s): """ convert string to datetime """ return datetime.strptime(s, '%Y%m%d') def readActivityFlex(fName): """ parse trade log in a csv file produced by IB 'Activity Flex Query' the file should contain these columns: ['Symbol','TradeDate','Quantity','TradePrice','IBCommission'] Returns: A DataFrame with parsed trade data """ import csv rows = [] with open(fName, 'rb') as f: reader = csv.reader(f) for row in reader: rows.append(row) header = ['TradeDate', 'Symbol', 'Quantity', 'TradePrice', 'IBCommission'] types = dict(zip(header, [_str2datetime, str, int, float, float])) idx = dict(zip(header, [rows[0].index(h) for h in header])) data = dict(zip(header, [[] for h in header])) for row in rows[1:]: print row for col in header: val = types[col](row[idx[col]]) data[col].append(val) return DataFrame(data)[header].sort(column='TradeDate') class Subscriptions(DataFrameModel, Sender): """ a data table containing price & subscription data """ def __init__(self, tws=None): super(Subscriptions, self).__init__() self.df = DataFrame() # this property holds the data in a table format self._nextId = 1 self._id2symbol = {} # id-> symbol lookup dict self._header = ['id', 'position', 'bid', 'ask', 'last'] # columns of the _data table # register callbacks if tws is not None: tws.register(self.priceHandler, message.TickPrice) tws.register(self.accountHandler, message.UpdatePortfolio) def add(self, symbol, subId=None): """ Add a subscription to data table return : subscription id """ if subId is None: subId = self._nextId data = dict(zip(self._header, [subId, 0, np.nan, np.nan, np.nan])) row = DataFrame(data, index=Index([symbol])) self.df = self.df.append(row[self._header]) # append data and set correct column order self._nextId = subId + 1 self._rebuildIndex() self.emit(SIGNAL("layoutChanged()")) return subId def priceHandler(self, msg): """ handler function for price updates. register this with ibConnection class """ if priceTicks[msg.field] not in self._header: # do nothing for ticks that are not in _data table return self.df[priceTicks[msg.field]][self._id2symbol[msg.tickerId]] = msg.price #notify viewer col = self._header.index(priceTicks[msg.field]) row = self.df.index.tolist().index(self._id2symbol[msg.tickerId]) idx = self.createIndex(row, col) self.emit(SIGNAL("dataChanged(QModelIndex,QModelIndex)"), idx, idx) def accountHandler(self, msg): if msg.contract.m_symbol in self.df.index.tolist(): self.df['position'][msg.contract.m_symbol] = msg.position def _rebuildIndex(self): """ udate lookup dictionary id-> symbol """ symbols = self.df.index.tolist() ids = self.df['id'].values.tolist() self._id2symbol = dict(zip(ids, symbols)) def __repr__(self): return str(self.df) class Broker(object): """ Broker class acts as a wrapper around ibConnection from ibPy. It tracks current subscriptions and provides data models to viewiers . """ def __init__(self, name='broker'): """ initialize broker class """ self.name = name self.log = logger.getLogger(self.name) self.log.debug('Initializing broker. Pandas version={0}'.format(pandas.__version__)) self.contracts = {} # a dict to keep track of subscribed contracts self.tws = ibConnection() # tws interface self.nextValidOrderId = None self.dataModel = Subscriptions(self.tws) # data container self.tws.registerAll(self.defaultHandler) #self.tws.register(self.debugHandler,message.TickPrice) self.tws.register(self.nextValidIdHandler, 'NextValidId') self.log.debug('Connecting to tws') self.tws.connect() self.tws.reqAccountUpdates(True, '') def subscribeStk(self, symbol, secType='STK', exchange='SMART', currency='USD'): """ subscribe to stock data """ self.log.debug('Subscribing to ' + symbol) # if symbol in self.data.symbols: # print 'Already subscribed to {0}'.format(symbol) # return c = Contract() c.m_symbol = symbol c.m_secType = secType c.m_exchange = exchange c.m_currency = currency subId = self.dataModel.add(symbol) self.tws.reqMktData(subId, c, '', False) self.contracts[symbol] = c return subId @property def data(self): return self.dataModel.df def placeOrder(self, symbol, shares, limit=None, exchange='SMART', transmit=0): """ place an order on already subscribed contract """ if symbol not in self.contracts.keys(): self.log.error("Can't place order, not subscribed to %s" % symbol) return action = {-1: 'SELL', 1: 'BUY'} o = Order() o.m_orderId = self.getOrderId() o.m_action = action[cmp(shares, 0)] o.m_totalQuantity = abs(shares) o.m_transmit = transmit if limit is not None: o.m_orderType = 'LMT' o.m_lmtPrice = limit self.log.debug('Placing %s order for %i %s (id=%i)' % (o.m_action, o.m_totalQuantity, symbol, o.m_orderId)) self.tws.placeOrder(o.m_orderId, self.contracts[symbol], o) def getOrderId(self): self.nextValidOrderId += 1 return self.nextValidOrderId - 1 def unsubscribeStk(self, symbol): self.log.debug('Function not implemented') def disconnect(self): self.tws.disconnect() def __del__(self): """destructor, clean up """ print 'Broker is cleaning up after itself.' self.tws.disconnect() def debugHandler(self, msg): print msg def defaultHandler(self, msg): """ default message handler """ #print msg.typeName if msg.typeName == 'Error': self.log.error(msg) def nextValidIdHandler(self, msg): self.nextValidOrderId = msg.orderId self.log.debug('Next valid order id:{0}'.format(self.nextValidOrderId)) def saveData(self, fname): """ save current dataframe to csv """ self.log.debug("Saving data to {0}".format(fname)) self.dataModel.df.to_csv(fname) # def __getattr__(self, name): # """ x.__getattr__('name') <==> x.name # an easy way to call ibConnection methods # @return named attribute from instance tws # """ # return getattr(self.tws, name) class _HistDataHandler(object): """ handles incoming messages """ def __init__(self, tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler, message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open': [], 'high': [], 'low': [], 'close': [], 'volume': [], 'count': [], 'WAP': []} def msgHandler(self, msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return if len(msg.date) > 8: self._timestamp.append(dt.datetime.strptime(msg.date, timeFormat)) else: self._timestamp.append(dt.datetime.strptime(msg.date, dateFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): """ return downloaded data as a DataFrame """ df = DataFrame(data=self._data, index=Index(self._timestamp)) return df class Downloader(object): def __init__(self, debug=False): self._log = logger.getLogger('DLD') self._log.debug( 'Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__, ib.version)) self.tws = ibConnection() self._dataHandler = _HistDataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler, message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self, msg): print '[debug]', msg def requestData(self, contract, endDateTime, durationStr='1 D', barSizeSetting='30 secs', whatToShow='TRADES', useRTH=1, formatDate=1): self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol, endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(10) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId, contract, endDateTime, durationStr, barSizeSetting, whatToShow, useRTH, formatDate) self._reqId += 1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time() - startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data def getIntradayData(self, contract, dateTuple): """ get full day data on 1-s interval date: a tuple of (yyyy,mm,dd) """ openTime = dt.datetime(*dateTuple) + dt.timedelta(hours=16) closeTime = dt.datetime(*dateTuple) + dt.timedelta(hours=22) timeRange = pandas.date_range(openTime, closeTime, freq='30min') datasets = [] for t in timeRange: datasets.append(self.requestData(contract, t.strftime(timeFormat))) return pandas.concat(datasets) def disconnect(self): self.tws.disconnect() class TimeKeeper(object): def __init__(self): self._log = logger.getLogger('TK') dataDir = os.path.expanduser('~') + '/twpData' if not os.path.exists(dataDir): os.mkdir(dataDir) self._timeFormat = "%Y%m%d %H:%M:%S" self.dataFile = os.path.normpath(os.path.join(dataDir, 'requests.txt')) self._log.debug('Data file: {0}'.format(self.dataFile)) def addRequest(self): """ adds a timestamp of current request""" with open(self.dataFile, 'a') as f: f.write(dt.datetime.now().strftime(self._timeFormat) + '\n') def nrRequests(self, timeSpan=600): """ return number of requests in past timespan (s) """ delta = dt.timedelta(seconds=timeSpan) now = dt.datetime.now() requests = 0 with open(self.dataFile, 'r') as f: lines = f.readlines() for line in lines: if now - dt.datetime.strptime(line.strip(), self._timeFormat) < delta: requests += 1 if requests == 0: # erase all contents if no requests are relevant open(self.dataFile, 'w').close() self._log.debug('past requests: {0}'.format(requests)) return requests #---------------test functions----------------- def dummyHandler(msg): print msg def testConnection(): """ a simple test to check working of streaming prices etc """ tws = ibConnection() tws.registerAll(dummyHandler) tws.connect() c = createContract('SPY') tws.reqMktData(1, c, '', False) sleep(3) print 'testConnection done.' def testSubscriptions(): s = Subscriptions() s.add('SPY') #s.add('XLE') print s def testBroker(): b = Broker() sleep(2) b.subscribeStk('SPY') b.subscribeStk('XLE') b.subscribeStk('GOOG') b.placeOrder('ABC', 125, 55.1) sleep(3) return b #---------------------GUI stuff-------------------------------------------- class AddSubscriptionDlg(QDialog): def __init__(self, parent=None): super(AddSubscriptionDlg, self).__init__(parent) symbolLabel = QLabel('Symbol') self.symbolEdit = QLineEdit() secTypeLabel = QLabel('secType') self.secTypeEdit = QLineEdit('STK') exchangeLabel = QLabel('exchange') self.exchangeEdit = QLineEdit('SMART') currencyLabel = QLabel('currency') self.currencyEdit = QLineEdit('USD') buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) lay = QGridLayout() lay.addWidget(symbolLabel, 0, 0) lay.addWidget(self.symbolEdit, 0, 1) lay.addWidget(secTypeLabel, 1, 0) lay.addWidget(self.secTypeEdit, 1, 1) lay.addWidget(exchangeLabel, 2, 0) lay.addWidget(self.exchangeEdit, 2, 1) lay.addWidget(currencyLabel, 3, 0) lay.addWidget(self.currencyEdit, 3, 1) lay.addWidget(buttonBox, 4, 0, 1, 2) self.setLayout(lay) self.connect(buttonBox, SIGNAL("accepted()"), self, SLOT("accept()")) self.connect(buttonBox, SIGNAL("rejected()"), self, SLOT("reject()")) self.setWindowTitle("Add subscription") class BrokerWidget(QWidget): def __init__(self, broker, parent=None): super(BrokerWidget, self).__init__(parent) self.broker = broker self.dataTable = TableView() self.dataTable.setModel(self.broker.dataModel) self.dataTable.horizontalHeader().setResizeMode(QHeaderView.Stretch) #self.dataTable.resizeColumnsToContents() dataLabel = QLabel('Price Data') dataLabel.setBuddy(self.dataTable) dataLayout = QVBoxLayout() dataLayout.addWidget(dataLabel) dataLayout.addWidget(self.dataTable) addButton = QPushButton("&Add Symbol") saveDataButton = QPushButton("&Save Data") #deleteButton = QPushButton("&Delete") buttonLayout = QVBoxLayout() buttonLayout.addWidget(addButton) buttonLayout.addWidget(saveDataButton) buttonLayout.addStretch() layout = QHBoxLayout() layout.addLayout(dataLayout) layout.addLayout(buttonLayout) self.setLayout(layout) self.connect(addButton, SIGNAL('clicked()'), self.addSubscription) self.connect(saveDataButton, SIGNAL('clicked()'), self.saveData) #self.connect(deleteButton,SIGNAL('clicked()'),self.deleteSubscription) def addSubscription(self): dialog = AddSubscriptionDlg(self) if dialog.exec_(): self.broker.subscribeStk(str(dialog.symbolEdit.text()), str(dialog.secTypeEdit.text()), str(dialog.exchangeEdit.text()), str(dialog.currencyEdit.text())) def saveData(self): """ save data to a .csv file """ fname = unicode(QFileDialog.getSaveFileName(self, caption="Save data to csv", filter='*.csv')) if fname: self.broker.saveData(fname) # def deleteSubscription(self): # pass class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.resize(640, 480) self.setWindowTitle('Broker test') self.broker = Broker() self.broker.subscribeStk('SPY') self.broker.subscribeStk('XLE') self.broker.subscribeStk('GOOG') brokerWidget = BrokerWidget(self.broker, self) lay = QVBoxLayout() lay.addWidget(brokerWidget) self.setLayout(lay) def startGui(): app = QApplication(sys.argv) form = Form() form.show() app.exec_() if __name__ == "__main__": import ib print 'iby version:', ib.version #testConnection() #testBroker() #testSubscriptions() print message.messageTypeNames() startGui() print 'All done'
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'MixFavourite.user' db.alter_column(u'spa_mixfavourite', 'user_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])) def backwards(self, orm): # Changing field 'MixFavourite.user' db.alter_column(u'spa_mixfavourite', 'user_id', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['spa.UserProfile'])) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'spa._activity': { 'Meta': {'object_name': '_Activity'}, 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'uid': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'activity'", 'null': 'True', 'to': u"orm['auth.User']"}) }, 'spa._lookup': { 'Meta': {'object_name': '_Lookup'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'spa.chatmessage': { 'Meta': {'object_name': 'ChatMessage'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'timestamp': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'chat_messages'", 'null': 'True', 'to': "orm['spa.UserProfile']"}) }, 'spa.comment': { 'Meta': {'object_name': 'Comment'}, 'comment': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'date_created': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'comments'", 'null': 'True', 'to': "orm['spa.Mix']"}), 'time_index': ('django.db.models.fields.IntegerField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}) }, 'spa.event': { 'Meta': {'object_name': 'Event'}, 'attendees': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'attendees'", 'symmetrical': 'False', 'to': u"orm['auth.User']"}), 'date_created': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 5, 25, 0, 0)'}), 'event_date': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 5, 25, 0, 0)'}), 'event_description': ('tinymce.views.HTMLField', [], {}), 'event_recurrence': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['spa.Recurrence']"}), 'event_time': ('django.db.models.fields.TimeField', [], {'default': 'datetime.datetime(2013, 5, 25, 0, 0)'}), 'event_title': ('django.db.models.fields.CharField', [], {'max_length': '250'}), 'event_venue': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['spa.Venue']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}) }, 'spa.genre': { 'Meta': {'object_name': 'Genre'}, 'description': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True'}) }, 'spa.label': { 'Meta': {'object_name': 'Label'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'spa.mix': { 'Meta': {'object_name': 'Mix'}, 'description': ('django.db.models.fields.TextField', [], {}), 'download_allowed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'download_url': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'duration': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'genres': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['spa.Genre']", 'symmetrical': 'False'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_featured': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'local_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'blank': 'True'}), 'mix_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '50'}), 'stream_url': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '150'}), 'uid': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '38', 'blank': 'True'}), 'upload_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 5, 25, 0, 0)'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['spa.UserProfile']"}), 'waveform_generated': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'spa.mixdownload': { 'Meta': {'object_name': 'MixDownload', '_ormbases': ['spa._Activity']}, u'_activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['spa._Activity']", 'unique': 'True', 'primary_key': 'True'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'downloads'", 'to': "orm['spa.Mix']"}) }, 'spa.mixfavourite': { 'Meta': {'object_name': 'MixFavourite'}, 'date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'favourites'", 'to': "orm['spa.Mix']"}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'users'", 'to': u"orm['auth.User']"}) }, 'spa.mixlike': { 'Meta': {'object_name': 'MixLike', '_ormbases': ['spa._Activity']}, u'_activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['spa._Activity']", 'unique': 'True', 'primary_key': 'True'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'likes'", 'to': "orm['spa.Mix']"}) }, 'spa.mixplay': { 'Meta': {'object_name': 'MixPlay', '_ormbases': ['spa._Activity']}, u'_activity_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['spa._Activity']", 'unique': 'True', 'primary_key': 'True'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'plays'", 'to': "orm['spa.Mix']"}) }, 'spa.purchaselink': { 'Meta': {'object_name': 'PurchaseLink'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'provider': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'track': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'purchase_link'", 'to': "orm['spa.Tracklist']"}), 'url': ('django.db.models.fields.URLField', [], {'max_length': '200'}) }, 'spa.recurrence': { 'Meta': {'object_name': 'Recurrence', '_ormbases': ['spa._Lookup']}, u'_lookup_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['spa._Lookup']", 'unique': 'True', 'primary_key': 'True'}) }, 'spa.release': { 'Meta': {'object_name': 'Release'}, 'embed_code': ('django.db.models.fields.TextField', [], {'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'release_artist': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'release_date': ('django.db.models.fields.DateField', [], {'default': 'datetime.datetime(2013, 5, 25, 0, 0)'}), 'release_description': ('django.db.models.fields.TextField', [], {}), 'release_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'release_label': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['spa.Label']"}), 'release_title': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['spa.UserProfile']"}) }, 'spa.releaseaudio': { 'Meta': {'object_name': 'ReleaseAudio'}, 'description': ('django.db.models.fields.TextField', [], {}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'local_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'release': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'release_audio'", 'null': 'True', 'to': "orm['spa.Release']"}) }, 'spa.tracklist': { 'Meta': {'object_name': 'Tracklist'}, 'artist': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '255'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'index': ('django.db.models.fields.SmallIntegerField', [], {}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'mix': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'tracklist'", 'to': "orm['spa.Mix']"}), 'remixer': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'timeindex': ('django.db.models.fields.TimeField', [], {'null': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '255'}) }, 'spa.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'activity_sharing': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'activity_sharing_networks': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'avatar_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'avatar_type': ('django.db.models.fields.CharField', [], {'default': "'social'", 'max_length': '15'}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '2048', 'blank': 'True'}), 'display_name': ('django.db.models.fields.CharField', [], {'max_length': '35', 'blank': 'True'}), 'followers': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'followers_rel_+'", 'null': 'True', 'to': "orm['spa.UserProfile']"}), 'following': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'following_rel_+'", 'null': 'True', 'to': "orm['spa.UserProfile']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'default': 'None', 'max_length': '50', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'userprofile'", 'unique': 'True', 'to': u"orm['auth.User']"}) }, 'spa.venue': { 'Meta': {'object_name': 'Venue'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'venue_address': ('django.db.models.fields.CharField', [], {'max_length': '1024'}), 'venue_image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'venue_name': ('django.db.models.fields.CharField', [], {'max_length': '250'}) } } complete_apps = ['spa']
# -*- coding: utf-8 -*- """ @file @brief Defines a :epkg:`sphinx` extension for a quote. """ from docutils import nodes from docutils.parsers.rst import directives import sphinx from sphinx.locale import _ from docutils.parsers.rst.directives.admonitions import BaseAdmonition from docutils.statemachine import StringList from sphinx.util.nodes import nested_parse_with_titles class quote_node(nodes.admonition): """ Defines ``quote`` node. """ pass class QuoteNode(BaseAdmonition): """ A ``quotedef`` entry, displayed in the form of an admonition. It takes the following options: * *author* * *book* * *year* * *pages* * *tag* * *source* * *lid* or *label* * *index*, additional index words beside the title and the author * *date*, if the text was written or declared at specific date Example:: .. quote:: :author: author :book: book :year: year :pages: pages (optional) :tag: something :lid: id (used for further reference) :source: optional :index: word A monkey could... """ node_class = quote_node has_content = True required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = { 'author': directives.unchanged, 'book': directives.unchanged, 'year': directives.unchanged, 'pages': directives.unchanged, 'tag': directives.unchanged, 'lid': directives.unchanged, 'label': directives.unchanged, 'source': directives.unchanged, 'class': directives.class_option, 'index': directives.unchanged, 'date': directives.unchanged, } def run(self): """ Builds the mathdef text. """ env = self.state.document.settings.env if hasattr( self.state.document.settings, "env") else None docname = None if env is None else env.docname if docname is not None: docname = docname.replace("\\", "/").split("/")[-1] if not self.options.get('class'): self.options['class'] = ['admonition-quote'] # body (quote,) = super(QuoteNode, self).run() if isinstance(quote, nodes.system_message): return [quote] # pragma: no cover # mid tag = self.options.get('tag', 'quotetag').strip() if len(tag) == 0: raise ValueError("tag is empty") # pragma: no cover def __(text): if text: return _(text) return "" # book author = __(self.options.get('author', "").strip()) book = __(self.options.get('book', "").strip()) pages = __(self.options.get('pages', "").strip()) year = __(self.options.get('year', "").strip()) source = __(self.options.get('source', "").strip()) index = __(self.options.get('index', "").strip()) date = __(self.options.get('date', "").strip()) indexes = [] if index: indexes.append(index) # pragma: no cover # add a label lid = self.options.get('lid', self.options.get('label', None)) if lid: tnl = ['', ".. _{0}:".format(lid), ""] else: tnl = [] # pragma: no cover if author: tnl.append("**{0}**, ".format(author)) indexes.append(author) if book: tnl.append("*{0}*".format(book)) indexes.append(book) if pages: tnl.append(", {0}".format(pages)) if date: tnl.append(" ({0})".format(date)) if source: if source.startswith("http"): tnl.append(", `source <{0}>`_".format(source)) else: tnl.append(", {0}".format(source)) tnl.append('') tnl.append(".. index:: " + ", ".join(indexes)) tnl.append('') content = StringList(tnl) content = content + self.content node = quote_node() try: nested_parse_with_titles(self.state, content, node) except Exception as e: # pragma: no cover from sphinx.util import logging logger = logging.getLogger("blogpost") logger.warning( "[blogpost] unable to parse '{0}' - '{1}' - {2}".format(author, book, e)) raise e node['tag'] = tag node['author'] = author node['pages'] = pages node['year'] = year node['label'] = lid node['source'] = source node['book'] = book node['index'] = index node['content'] = '\n'.join(self.content) node['classes'] += ["quote"] return [node] def visit_quote_node(self, node): """ visit_quote_node """ self.visit_admonition(node) def depart_quote_node(self, node): """ depart_quote_node, see https://github.com/sphinx-doc/sphinx/blob/master/sphinx/writers/html.py """ self.depart_admonition(node) def visit_quote_node_rst(self, node): """ visit_quote_node """ self.new_state(0) self.add_text(".. quote::") for k, v in sorted(node.attributes.items()): if k in ("content", 'classes'): continue if v: self.new_state(4) self.add_text(":{0}: {1}".format(k, v)) self.end_state(wrap=False, end=None) self.add_text(self.nl) self.new_state(4) self.add_text(node['content']) self.end_state() self.end_state() raise nodes.SkipNode def depart_quote_node_rst(self, node): """ depart_quote_node, see https://github.com/sphinx-doc/sphinx/blob/master/sphinx/writers/html.py """ pass def setup(app): """ setup for ``mathdef`` (sphinx) """ if hasattr(app, "add_mapping"): app.add_mapping('quote', quote_node) app.add_node(quote_node, html=(visit_quote_node, depart_quote_node), epub=(visit_quote_node, depart_quote_node), elatex=(visit_quote_node, depart_quote_node), latex=(visit_quote_node, depart_quote_node), text=(visit_quote_node, depart_quote_node), md=(visit_quote_node, depart_quote_node), rst=(visit_quote_node_rst, depart_quote_node_rst)) app.add_directive('quote', QuoteNode) return {'version': sphinx.__display_version__, 'parallel_read_safe': True}
"""Implementation of JSONEncoder """ import re from decimal import Decimal def _import_speedups(): try: from simplejson import _speedups return _speedups.encode_basestring_ascii, _speedups.make_encoder except ImportError: return None, None c_encode_basestring_ascii, c_make_encoder = _import_speedups() from simplejson.decoder import PosInf ESCAPE = re.compile(ur'[\x00-\x1f\\"\b\f\n\r\t\u2028\u2029]') ESCAPE_ASCII = re.compile(r'([\\"]|[^\ -~])') HAS_UTF8 = re.compile(r'[\x80-\xff]') ESCAPE_DCT = { '\\': '\\\\', '"': '\\"', '\b': '\\b', '\f': '\\f', '\n': '\\n', '\r': '\\r', '\t': '\\t', u'\u2028': '\\u2028', u'\u2029': '\\u2029', } for i in range(0x20): #ESCAPE_DCT.setdefault(chr(i), '\\u{0:04x}'.format(i)) ESCAPE_DCT.setdefault(chr(i), '\\u%04x' % (i,)) FLOAT_REPR = repr def encode_basestring(s): """Return a JSON representation of a Python string """ if isinstance(s, str) and HAS_UTF8.search(s) is not None: s = s.decode('utf-8') def replace(match): return ESCAPE_DCT[match.group(0)] return u'"' + ESCAPE.sub(replace, s) + u'"' def py_encode_basestring_ascii(s): """Return an ASCII-only JSON representation of a Python string """ if isinstance(s, str) and HAS_UTF8.search(s) is not None: s = s.decode('utf-8') def replace(match): s = match.group(0) try: return ESCAPE_DCT[s] except KeyError: n = ord(s) if n < 0x10000: #return '\\u{0:04x}'.format(n) return '\\u%04x' % (n,) else: # surrogate pair n -= 0x10000 s1 = 0xd800 | ((n >> 10) & 0x3ff) s2 = 0xdc00 | (n & 0x3ff) #return '\\u{0:04x}\\u{1:04x}'.format(s1, s2) return '\\u%04x\\u%04x' % (s1, s2) return '"' + str(ESCAPE_ASCII.sub(replace, s)) + '"' encode_basestring_ascii = ( c_encode_basestring_ascii or py_encode_basestring_ascii) class JSONEncoder(object): """Extensible JSON <http://json.org> encoder for Python data structures. Supports the following objects and types by default: +-------------------+---------------+ | Python | JSON | +===================+===============+ | dict, namedtuple | object | +-------------------+---------------+ | list, tuple | array | +-------------------+---------------+ | str, unicode | string | +-------------------+---------------+ | int, long, float | number | +-------------------+---------------+ | True | true | +-------------------+---------------+ | False | false | +-------------------+---------------+ | None | null | +-------------------+---------------+ To extend this to recognize other objects, subclass and implement a ``.default()`` method with another method that returns a serializable object for ``o`` if possible, otherwise it should call the superclass implementation (to raise ``TypeError``). """ item_separator = ', ' key_separator = ': ' def __init__(self, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None, use_decimal=True, namedtuple_as_object=True, tuple_as_array=True): """Constructor for JSONEncoder, with sensible defaults. If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, long, float or None. If skipkeys is True, such items are simply skipped. If ensure_ascii is true, the output is guaranteed to be str objects with all incoming unicode characters escaped. If ensure_ascii is false, the output will be unicode object. If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such check takes place. If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a ValueError to encode such floats. If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to ensure that JSON serializations can be compared on a day-to-day basis. If indent is a string, then JSON array elements and object members will be pretty-printed with a newline followed by that string repeated for each level of nesting. ``None`` (the default) selects the most compact representation without any newlines. For backwards compatibility with versions of simplejson earlier than 2.1.0, an integer is also accepted and is converted to a string with that many spaces. If specified, separators should be a (item_separator, key_separator) tuple. The default is (', ', ': '). To get the most compact JSON representation you should specify (',', ':') to eliminate whitespace. If specified, default is a function that gets called for objects that can't otherwise be serialized. It should return a JSON encodable version of the object or raise a ``TypeError``. If encoding is not None, then all input strings will be transformed into unicode using that encoding prior to JSON-encoding. The default is UTF-8. If use_decimal is true (not the default), ``decimal.Decimal`` will be supported directly by the encoder. For the inverse, decode JSON with ``parse_float=decimal.Decimal``. If namedtuple_as_object is true (the default), objects with ``_asdict()`` methods will be encoded as JSON objects. If tuple_as_array is true (the default), tuple (and subclasses) will be encoded as JSON arrays. """ self.skipkeys = skipkeys self.ensure_ascii = ensure_ascii self.check_circular = check_circular self.allow_nan = allow_nan self.sort_keys = sort_keys self.use_decimal = use_decimal self.namedtuple_as_object = namedtuple_as_object self.tuple_as_array = tuple_as_array if indent is not None and not isinstance(indent, basestring): indent = indent * ' ' self.indent = indent if separators is not None: self.item_separator, self.key_separator = separators elif indent is not None: self.item_separator = ',' if default is not None: self.default = default self.encoding = encoding def default(self, o): """Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a ``TypeError``). For example, to support arbitrary iterators, you could implement default like this:: def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) return JSONEncoder.default(self, o) """ raise TypeError(repr(o) + " is not JSON serializable") def encode(self, o): """Return a JSON string representation of a Python data structure. >>> from simplejson import JSONEncoder >>> JSONEncoder().encode({"foo": ["bar", "baz"]}) '{"foo": ["bar", "baz"]}' """ # This is for extremely simple cases and benchmarks. if isinstance(o, basestring): if isinstance(o, str): _encoding = self.encoding if (_encoding is not None and not (_encoding == 'utf-8')): o = o.decode(_encoding) if self.ensure_ascii: return encode_basestring_ascii(o) else: return encode_basestring(o) # This doesn't pass the iterator directly to ''.join() because the # exceptions aren't as detailed. The list call should be roughly # equivalent to the PySequence_Fast that ''.join() would do. chunks = self.iterencode(o, _one_shot=True) if not isinstance(chunks, (list, tuple)): chunks = list(chunks) if self.ensure_ascii: return ''.join(chunks) else: return u''.join(chunks) def iterencode(self, o, _one_shot=False): """Encode the given object and yield each string representation as available. For example:: for chunk in JSONEncoder().iterencode(bigobject): mysocket.write(chunk) """ if self.check_circular: markers = {} else: markers = None if self.ensure_ascii: _encoder = encode_basestring_ascii else: _encoder = encode_basestring if self.encoding != 'utf-8': def _encoder(o, _orig_encoder=_encoder, _encoding=self.encoding): if isinstance(o, str): o = o.decode(_encoding) return _orig_encoder(o) def floatstr(o, allow_nan=self.allow_nan, _repr=FLOAT_REPR, _inf=PosInf, _neginf=-PosInf): # Check for specials. Note that this type of test is processor # and/or platform-specific, so do tests which don't depend on # the internals. if o != o: text = 'NaN' elif o == _inf: text = 'Infinity' elif o == _neginf: text = '-Infinity' else: return _repr(o) if not allow_nan: raise ValueError( "Out of range float values are not JSON compliant: " + repr(o)) return text key_memo = {} if (_one_shot and c_make_encoder is not None and self.indent is None): _iterencode = c_make_encoder( markers, self.default, _encoder, self.indent, self.key_separator, self.item_separator, self.sort_keys, self.skipkeys, self.allow_nan, key_memo, self.use_decimal, self.namedtuple_as_object, self.tuple_as_array) else: _iterencode = _make_iterencode( markers, self.default, _encoder, self.indent, floatstr, self.key_separator, self.item_separator, self.sort_keys, self.skipkeys, _one_shot, self.use_decimal, self.namedtuple_as_object, self.tuple_as_array) try: return _iterencode(o, 0) finally: key_memo.clear() class JSONEncoderForHTML(JSONEncoder): """An encoder that produces JSON safe to embed in HTML. To embed JSON content in, say, a script tag on a web page, the characters &, < and > should be escaped. They cannot be escaped with the usual entities (e.g. &amp;) because they are not expanded within <script> tags. """ def encode(self, o): # Override JSONEncoder.encode because it has hacks for # performance that make things more complicated. chunks = self.iterencode(o, True) if self.ensure_ascii: return ''.join(chunks) else: return u''.join(chunks) def iterencode(self, o, _one_shot=False): chunks = super(JSONEncoderForHTML, self).iterencode(o, _one_shot) for chunk in chunks: chunk = chunk.replace('&', '\\u0026') chunk = chunk.replace('<', '\\u003c') chunk = chunk.replace('>', '\\u003e') yield chunk def _make_iterencode(markers, _default, _encoder, _indent, _floatstr, _key_separator, _item_separator, _sort_keys, _skipkeys, _one_shot, _use_decimal, _namedtuple_as_object, _tuple_as_array, ## HACK: hand-optimized bytecode; turn globals into locals False=False, True=True, ValueError=ValueError, basestring=basestring, Decimal=Decimal, dict=dict, float=float, id=id, int=int, isinstance=isinstance, list=list, long=long, str=str, tuple=tuple, ): def _iterencode_list(lst, _current_indent_level): if not lst: yield '[]' return if markers is not None: markerid = id(lst) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = lst buf = '[' if _indent is not None: _current_indent_level += 1 newline_indent = '\n' + (_indent * _current_indent_level) separator = _item_separator + newline_indent buf += newline_indent else: newline_indent = None separator = _item_separator first = True for value in lst: if first: first = False else: buf = separator if isinstance(value, basestring): yield buf + _encoder(value) elif value is None: yield buf + 'null' elif value is True: yield buf + 'true' elif value is False: yield buf + 'false' elif isinstance(value, (int, long)): yield buf + str(value) elif isinstance(value, float): yield buf + _floatstr(value) elif _use_decimal and isinstance(value, Decimal): yield buf + str(value) else: yield buf if isinstance(value, list): chunks = _iterencode_list(value, _current_indent_level) else: _asdict = _namedtuple_as_object and getattr(value, '_asdict', None) if _asdict and callable(_asdict): chunks = _iterencode_dict(_asdict(), _current_indent_level) elif _tuple_as_array and isinstance(value, tuple): chunks = _iterencode_list(value, _current_indent_level) elif isinstance(value, dict): chunks = _iterencode_dict(value, _current_indent_level) else: chunks = _iterencode(value, _current_indent_level) for chunk in chunks: yield chunk if newline_indent is not None: _current_indent_level -= 1 yield '\n' + (_indent * _current_indent_level) yield ']' if markers is not None: del markers[markerid] def _iterencode_dict(dct, _current_indent_level): if not dct: yield '{}' return if markers is not None: markerid = id(dct) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = dct yield '{' if _indent is not None: _current_indent_level += 1 newline_indent = '\n' + (_indent * _current_indent_level) item_separator = _item_separator + newline_indent yield newline_indent else: newline_indent = None item_separator = _item_separator first = True if _sort_keys: items = dct.items() items.sort(key=lambda kv: kv[0]) else: items = dct.iteritems() for key, value in items: if isinstance(key, basestring): pass # JavaScript is weakly typed for these, so it makes sense to # also allow them. Many encoders seem to do something like this. elif isinstance(key, float): key = _floatstr(key) elif key is True: key = 'true' elif key is False: key = 'false' elif key is None: key = 'null' elif isinstance(key, (int, long)): key = str(key) elif _skipkeys: continue else: raise TypeError("key " + repr(key) + " is not a string") if first: first = False else: yield item_separator yield _encoder(key) yield _key_separator if isinstance(value, basestring): yield _encoder(value) elif value is None: yield 'null' elif value is True: yield 'true' elif value is False: yield 'false' elif isinstance(value, (int, long)): yield str(value) elif isinstance(value, float): yield _floatstr(value) elif _use_decimal and isinstance(value, Decimal): yield str(value) else: if isinstance(value, list): chunks = _iterencode_list(value, _current_indent_level) else: _asdict = _namedtuple_as_object and getattr(value, '_asdict', None) if _asdict and callable(_asdict): chunks = _iterencode_dict(_asdict(), _current_indent_level) elif _tuple_as_array and isinstance(value, tuple): chunks = _iterencode_list(value, _current_indent_level) elif isinstance(value, dict): chunks = _iterencode_dict(value, _current_indent_level) else: chunks = _iterencode(value, _current_indent_level) for chunk in chunks: yield chunk if newline_indent is not None: _current_indent_level -= 1 yield '\n' + (_indent * _current_indent_level) yield '}' if markers is not None: del markers[markerid] def _iterencode(o, _current_indent_level): if isinstance(o, basestring): yield _encoder(o) elif o is None: yield 'null' elif o is True: yield 'true' elif o is False: yield 'false' elif isinstance(o, (int, long)): yield str(o) elif isinstance(o, float): yield _floatstr(o) elif isinstance(o, list): for chunk in _iterencode_list(o, _current_indent_level): yield chunk else: _asdict = _namedtuple_as_object and getattr(o, '_asdict', None) if _asdict and callable(_asdict): for chunk in _iterencode_dict(_asdict(), _current_indent_level): yield chunk elif (_tuple_as_array and isinstance(o, tuple)): for chunk in _iterencode_list(o, _current_indent_level): yield chunk elif isinstance(o, dict): for chunk in _iterencode_dict(o, _current_indent_level): yield chunk elif _use_decimal and isinstance(o, Decimal): yield str(o) else: if markers is not None: markerid = id(o) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = o o = _default(o) for chunk in _iterencode(o, _current_indent_level): yield chunk if markers is not None: del markers[markerid] return _iterencode
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for checkpointable object SavedModel save.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from tensorflow.python.eager import backprop from tensorflow.python.eager import def_function from tensorflow.python.eager import test from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import core from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.saved_model import loader from tensorflow.python.saved_model import save from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import adam from tensorflow.python.training.checkpointable import tracking from tensorflow.python.training.checkpointable import util class _ModelWithOptimizer(training.Model): def __init__(self): super(_ModelWithOptimizer, self).__init__() self.dense = core.Dense(1) self.optimizer = adam.AdamOptimizer(0.01) @def_function.function( input_signature=(tensor_spec.TensorSpec([None, 2], dtypes.float32), tensor_spec.TensorSpec([None], dtypes.float32))) def call(self, x, y): with backprop.GradientTape() as tape: loss = math_ops.reduce_mean((self.dense(x) - y) ** 2.) trainable_variables = self.trainable_variables gradients = tape.gradient(loss, trainable_variables) self.optimizer.apply_gradients(zip(gradients, trainable_variables)) return {"loss": loss} class SaveTest(test.TestCase): def _import_and_infer( self, save_dir, inputs, signature_key=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY): """Import a SavedModel into a TF 1.x-style graph and run `signature_key`.""" graph = ops.Graph() with graph.as_default(), self.session(graph) as session: model = loader.load(session, [], save_dir) signature = model.signature_def[signature_key] self.assertEqual(set(inputs.keys()), set(signature.inputs.keys())) feed_dict = {} for arg_name in inputs.keys(): feed_dict[graph.get_tensor_by_name(signature.inputs[arg_name].name)] = ( inputs[arg_name]) output_dict = {} for output_name, output_tensor_info in signature.outputs.items(): output_dict[output_name] = graph.get_tensor_by_name( output_tensor_info.name) return session.run(output_dict, feed_dict=feed_dict) def test_method_save_signature(self): root = tracking.Checkpointable() root.f = def_function.function( lambda x: 2. * x, input_signature=[tensor_spec.TensorSpec(None, dtypes.float32)]) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir, root.f) self.assertEqual( {"output_0": 2.}, self._import_and_infer(save_dir, {"x": 1.})) def test_method_save_concrete(self): root = tracking.Checkpointable() root.f = def_function.function( lambda z: {"out": 2. * z}) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save( root, save_dir, {"non_default_key": root.f.get_concrete_function( tensor_spec.TensorSpec(None, dtypes.float32))}) self.assertEqual( {"out": 2.}, self._import_and_infer( save_dir, {"z": 1.}, signature_key="non_default_key")) def test_non_concrete_error(self): root = tracking.Checkpointable() root.f = def_function.function(lambda x: 2. * x) root.f(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "must be converted to concrete functions"): save.save(root, save_dir, root.f) def test_nested_inputs(self): root = tracking.Checkpointable() root.f = def_function.function( lambda x: 2. * x[0], input_signature=([tensor_spec.TensorSpec(None, dtypes.float32), tensor_spec.TensorSpec(None, dtypes.float32)],)) root.f([constant_op.constant(1.), constant_op.constant(1.)]) # Concrete functions must always have uniquely named Tensor inputs. Save # relies on this. with self.assertRaisesRegexp( ValueError, "two arguments named 'x'"): root.f.get_concrete_function() def test_nested_outputs(self): root = tracking.Checkpointable() root.f = def_function.function(lambda x: (2. * x, (3. * x, 4. * x))) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "non-flat outputs"): save.save(root, save_dir, to_save) def test_nested_dict_outputs(self): root = tracking.Checkpointable() root.f = def_function.function( lambda x: {"a": 2. * x, "b": (3. * x, 4. * x)}) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp( ValueError, "dictionary containing non-Tensor value"): save.save(root, save_dir, to_save) def test_variable(self): root = tracking.Checkpointable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function( lambda x: root.v1 * root.v2 * x) root.f(constant_op.constant(1.)) to_save = root.f.get_concrete_function(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(root, save_dir, to_save) self.assertAllEqual({"output_0": 12.}, self._import_and_infer(save_dir, {"x": 2.})) def test_optimizer(self): x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) model = _ModelWithOptimizer() first_loss = model(x, y) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir, model.call) second_loss = model(x, y) self.assertNotEqual(first_loss, second_loss) self.assertAllClose( second_loss, self._import_and_infer(save_dir, {"x": [[3., 4.]], "y": [2.]})) def test_trivial_save_exception(self): save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp(ValueError, "signature"): save.save(tracking.Checkpointable(), save_dir) def test_single_method_default_signature(self): model = _ModelWithOptimizer() x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) model(x, y) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir) self.assertIn("loss", self._import_and_infer(save_dir, {"x": [[3., 4.]], "y": [2.]})) def test_single_function_default_signature(self): model = tracking.Checkpointable() model.f = def_function.function(lambda: 3., input_signature=()) model.f() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(model, save_dir) self.assertAllClose({"output_0": 3.}, self._import_and_infer(save_dir, {})) def test_ambiguous_signatures(self): model = _ModelWithOptimizer() x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) model(x, y) model.second_function = def_function.function(lambda: 1.) save_dir = os.path.join(self.get_temp_dir(), "saved_model") with self.assertRaisesRegexp(ValueError, "call.*second_function"): save.save(model, save_dir) def test_docstring(self): class Adder(util.Checkpoint): @def_function.function(input_signature=[tensor_spec.TensorSpec( shape=None, dtype=dtypes.float32)]) def add(self, x): return x + x + 1. to_save = Adder() to_save.add(constant_op.constant(1.)) save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(to_save, save_dir) self.assertAllClose({"output_0": 7.}, self._import_and_infer(save_dir, {"x": 3.})) def test_default_attr_stripping(self): class Complex(util.Checkpoint): @def_function.function(input_signature=[]) def __call__(self): return math_ops.complex( constant_op.constant(1.), constant_op.constant(2.), name="complex") to_save = Complex() to_save() save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(to_save, save_dir) graph = ops.Graph() with graph.as_default(), self.session(graph) as session: loader.load(session, [], save_dir) func, = graph._functions.values() complex_node, = [ node for node in func.definition.node_def if node.op == "Complex"] self.assertNotIn("T", complex_node.attr) self.assertNotIn("Tout", complex_node.attr) class MemoryTests(test.TestCase): def setUp(self): self._model = _ModelWithOptimizer() @test_util.assert_no_garbage_created def test_no_reference_cycles(self): x = constant_op.constant([[3., 4.]]) y = constant_op.constant([2.]) self._model(x, y) if sys.version_info[0] < 3: # TODO(allenl): debug reference cycles in Python 2.x self.skipTest("This test only works in Python 3+. Reference cycles are " "created in older Python versions.") save_dir = os.path.join(self.get_temp_dir(), "saved_model") save.save(self._model, save_dir, self._model.call) if __name__ == "__main__": test.main()
#!/usr/bin/env python """ Interact with the Censys Search API through the command line. """ import os import sys import csv import time import json import argparse from pathlib import Path from typing import Union, Optional, List, Tuple import requests from censys.base import CensysAPIBase from censys.config import get_config, write_config, DEFAULT from censys.ipv4 import CensysIPv4 from censys.websites import CensysWebsites from censys.certificates import CensysCertificates from censys.exceptions import ( CensysCLIException, CensysNotFoundException, CensysUnauthorizedException, ) Fields = List[str] Results = List[dict] Index = Union[CensysIPv4, CensysWebsites, CensysCertificates] class CensysAPISearch: """ This class searches the Censys API, taking in options from the command line and returning the results to a CSV or JSON file, or to stdout. Args: api_id (str, optional): The API ID provided by Censys. api_secret (str, optional): The API secret provided by Censys. start_page (int, optional): Page number to start from. Defaults to 1. max_pages (int, optional): The maximum number of pages. Defaults to 10. """ csv_fields: Fields = list() """A list of fields to be used by the CSV writer.""" def __init__(self, **kwargs): self.api_user = kwargs.get("api_id") self.api_pass = kwargs.get("api_secret") self.start_page = kwargs.get("start_page", 1) self.max_pages = kwargs.get("max_pages", 10) @staticmethod def _write_csv(file_path: str, search_results: Results, fields: Fields) -> bool: """ This method writes the search results to a new file in CSV format. Args: file_path (str): Name of the file to write to on the disk. search_results (Results): A list of results from the query. fields (Fields): A list of fields to write as headers. Returns: bool: True if wrote to file successfully. """ with open(file_path, "w") as output_file: if search_results and isinstance(search_results, list): # Get the header row from the first result writer = csv.DictWriter(output_file, fieldnames=fields) writer.writeheader() for result in search_results: # Use the Dict writer to process and write results to CSV writer.writerow(result) print(f"Wrote results to file {file_path}") # method returns True, if the file has been written successfully. return True @staticmethod def _write_json(file_path: str, search_results: Results) -> bool: """ This method writes the search results to a new file in JSON format. Args: file_path (str): Name of the file to write to on the disk. search_results (Results): A list of results from the query. Returns: bool: True if wrote to file successfully. """ with open(file_path, "w") as output_file: # Since the results are already in JSON, just write them to a file. json.dump(search_results, output_file, indent=4) print(f"Wrote results to file {file_path}") return True @staticmethod def _write_screen(search_results: Results) -> bool: """ This method writes the search results to screen. Args: search_results (Results): A list of results from the query. Returns: bool: True if wrote to file successfully. """ print(json.dumps(search_results, indent=4)) return True def write_file( self, results_list: Results, file_format: str = "screen", file_path: Optional[str] = None, ) -> bool: """ This method just sorts which format will be used to store the results of the query. Args: results_list (Results): A list of results from the API query. file_format (str, optional): The format of the output. file_path (str optional): A path to write results to. Returns: bool: True if wrote out successfully. """ if file_format and isinstance(file_format, str): file_format = file_format.lower() if not file_path: # This method just creates some dynamic file names file_name_ext = f"{time.time()}.{file_format}" file_path = f"censys-query-output.{file_name_ext}" if file_format == "json": return self._write_json(file_path, results_list) if file_format == "csv": return self._write_csv(file_path, results_list, fields=self.csv_fields) return self._write_screen(results_list) def _combine_fields( self, default_fields: Fields, user_fields: Fields, overwrite: bool = False, ) -> Fields: """ This method is used to specify which fields will be returned in the results. Args: default_fields (Fields): A list of fields that are returned by default. user_fields (Fields): A list of user-specified fields. Max 20. overwrite (bool, optional): Whether to overwrite or append default fields with user fields. Defaults to False. Raises: CensysCLIException: Too many fields specified. Returns: Fields: A list of fields. """ field_list: Fields = default_fields if user_fields: if overwrite: field_list = user_fields else: field_list = list(set(user_fields + default_fields)) # This is the hard limit for the number of fields that can be in a query. if len(list(field_list)) > 20: raise CensysCLIException( "Too many fields specified. The maximum number of fields is 20." ) self.csv_fields = list(field_list) return list(field_list) def _process_search( self, query: str, search_index: Index, fields: Fields ) -> Results: """ This method provides a common way to process searches from the API. Args: query (str): The string to send to the API as a query. search_index (Index): The data set to be queried. fields (Fields): A list of fields to be returned for each result. Returns: Results: A list of results from the query. """ records = [] while True: response = search_index.paged_search( query=query, fields=fields, page=self.start_page ) for record in response["results"]: records.append(record) # Break while loop when last page is reached if ( response["metadata"]["page"] >= response["metadata"]["pages"] or response["metadata"]["page"] >= self.max_pages ): break self.start_page += 1 return records def search_ipv4(self, **kwargs) -> Results: """ A method to search the IPv4 data set via the API. Args: query (str): The string search query. fields (list, optional): The fields that should be returned with a query. overwrite (bool, optional): Whether to overwrite or append default fields with user fields. Defaults to False. Returns: Results: A list of results from the query. """ default_fields = [ "updated_at", "protocols", "metadata.description", "autonomous_system.name", "23.telnet.banner.banner", "80.http.get.title", "80.http.get.metadata.description", "8080.http.get.metadata.description", "8888.http.get.metadata.description", "443.https.get.metadata.description", "443.https.get.title", "443.https.tls.certificate.parsed.subject_dn", "443.https.tls.certificate.parsed.names", "443.https.tls.certificate.parsed.subject.common_name", "443.https.tls.certificate.parsed.extensions.subject_alt_name.dns_names", ] query = kwargs.get("query", "") fields = kwargs.get("fields", []) overwrite = kwargs.get("overwrite", False) index = CensysIPv4(api_id=self.api_user, api_secret=self.api_pass) return self._process_search( query, index, self._combine_fields(default_fields, fields, overwrite=overwrite), ) def search_certificates(self, **kwargs) -> Results: """ A method to search the Certificates data set via the API. Args: query (str): The string search query. fields (list, optional): The fields that should be returned with a query. overwrite (bool, optional): Whether to overwrite or append default fields with user fields. Defaults to False. Returns: Results: A list of results from the query. """ default_fields = [ "metadata.updated_at", "parsed.issuer.common_name", "parsed.names", "parsed.serial_number", "parsed.self_signed", "parsed.subject.common_name", "parsed.validity.start", "parsed.validity.end", "parsed.validity.length", "metadata.source", "metadata.seen_in_scan", "tags", ] query = kwargs.get("query", "") fields = kwargs.get("fields", []) overwrite = kwargs.get("overwrite", False) index = CensysCertificates(api_id=self.api_user, api_secret=self.api_pass) return self._process_search( query, index, self._combine_fields(default_fields, fields, overwrite=overwrite), ) def search_websites(self, **kwargs) -> Results: """ A method to search the Websites (Alexa Top 1M) data set via the API. Args: query (str): The string search query. fields (list, optional): The fields that should be returned with a query. overwrite (bool, optional): Whether to overwrite or append default fields with user fields. Defaults to False. Returns: Results: A list of results from the query. """ default_fields = [ "443.https.tls.version", "alexa_rank", "domain", "ports", "protocols", "tags", "updated_at", ] query = kwargs.get("query", "") fields = kwargs.get("fields", []) overwrite = kwargs.get("overwrite", False) index = CensysWebsites(api_id=self.api_user, api_secret=self.api_pass) return self._process_search( query, index, self._combine_fields(default_fields, fields, overwrite=overwrite), ) class CensysHNRI: """ This class searches the Censys API, check the user's current IP for risks. Args: api_id (str, optional): The API ID provided by Censys. api_secret (str, optional): The API secret provided by Censys. """ HIGH_RISK_DEFINITION: List[str] = ["telnet", "redis", "postgres", "vnc"] MEDIUM_RISK_DEFINITION: List[str] = ["ssh", "http", "https"] def __init__(self, api_id: str, api_secret: str): self.index = CensysIPv4(api_id, api_secret) @staticmethod def get_current_ip() -> str: """ Uses ipify.org to get the current IP address. Returns: str: IP address. """ response = requests.get("https://api.ipify.org?format=json") current_ip = response.json().get("ip") return current_ip def translate_risk(self, protocols: list) -> Tuple[list, list]: """ Interpret protocols to risks. Args: protocols (list): List of slash divided ports/protocols. Returns: Tuple[list, list]: Lists of high and medium risks. """ high_risk = [] medium_risk = [] for protocol in protocols: port, protocol = protocol.split("/") string = f"{protocol} on {port}" if protocol in self.HIGH_RISK_DEFINITION: high_risk.append({"port": port, "protocol": protocol, "string": string}) elif protocol in self.MEDIUM_RISK_DEFINITION: medium_risk.append( {"port": port, "protocol": protocol, "string": string} ) elif protocol == "banner": medium_risk.append( {"port": port, "protocol": "unknown protocol", "string": string} ) else: medium_risk.append( {"port": port, "protocol": protocol, "string": string} ) return high_risk, medium_risk @staticmethod def risks_to_string(high_risk: list, medium_risk: list) -> str: """ Risks to printable string. Args: high_risk (list): Lists of high risks. medium_risk (list): Lists of medium risks. Raises: CensysCLIException: No information/risks found. Returns: str: Printable string for CLI. """ len_high_risk = len(high_risk) len_medium_risk = len(medium_risk) if len_high_risk + len_medium_risk == 0: raise CensysCLIException response = "" if len_high_risk > 0: response = ( response + "High Risks Found: \n" + "\n".join([risk.get("string") for risk in high_risk]) ) else: response = response + "You don't have any High Risks in your network\n" if len_medium_risk > 0: response = ( response + "Medium Risks Found: \n" + "\n".join([risk.get("string") for risk in medium_risk]) ) else: response = response + "You don't have any Medium Risks in your network\n" return response def view_current_ip_risks(self) -> str: """ Gets protocol information for the current IP and returns any risks. Returns: str: Printable """ current_ip = self.get_current_ip() try: results = self.index.view(current_ip) protocols = results.get("protocols", []) high_risk, medium_risk = self.translate_risk(protocols) return self.risks_to_string(high_risk, medium_risk) except (CensysNotFoundException, CensysCLIException): return "No Risks were found on your network" def search(args): """ search subcommand. Args: args (Namespace): Argparse Namespace. """ censys_args = {} if args.start_page: censys_args["start_page"] = args.start_page if args.max_pages: censys_args["max_pages"] = args.max_pages if args.api_id: censys_args["api_id"] = args.api_id if args.api_secret: censys_args["api_secret"] = args.api_secret censys = CensysAPISearch(**censys_args) search_args = {"query": args.query} if args.fields: search_args["fields"] = args.fields if args.overwrite: search_args["overwrite"] = args.overwrite indexes = { "ipv4": censys.search_ipv4, "certs": censys.search_certificates, "websites": censys.search_websites, } index_type = args.index_type or args.query_type index_func = indexes[index_type] results = index_func(**search_args) try: censys.write_file(results, file_format=args.format, file_path=args.output) except ValueError as error: # pragma: no cover print(f"Error writing log file. Error: {error}") def hnri(args): """ hnri subcommand. Args: args (Namespace): Argparse Namespace. """ client = CensysHNRI(args.api_id, args.api_secret) risks = client.view_current_ip_risks() print(risks) def cli_config(_): # pragma: no cover """ config subcommand. Args: _: Argparse Namespace. """ api_id_prompt = "Censys API ID" api_secret_prompt = "Censys API Secret" config = get_config() api_id = config.get(DEFAULT, "api_id") api_secret = config.get(DEFAULT, "api_secret") if api_id and api_secret: redacted_id = api_id.replace(api_id[:32], 32 * "*") redacted_secret = api_secret.replace(api_secret[:28], 28 * "*") api_id_prompt = f"{api_id_prompt} [{redacted_id}]" api_secret_prompt = f"{api_secret_prompt} [{redacted_secret}]" api_id = input(api_id_prompt + ": ").strip() or api_id api_secret = input(api_secret_prompt + ": ").strip() or api_secret if not (api_id and api_secret): print("Please enter valid credentials") sys.exit(1) try: client = CensysAPIBase(api_id, api_secret) account = client.account() email = account.get("email") # Assumes that login was successfully config.set(DEFAULT, "api_id", api_id) config.set(DEFAULT, "api_secret", api_secret) write_config(config) print(f"\nSuccessfully authenticated for {email}") sys.exit(0) except CensysUnauthorizedException: print("Failed to authenticate") sys.exit(1) def get_parser() -> argparse.ArgumentParser: """ Gets ArgumentParser for CLI. Returns: argparse.ArgumentParser """ config = get_config() auth = argparse.ArgumentParser(add_help=False) auth.add_argument( "--api-id", default=os.getenv("CENSYS_API_ID") or config.get(DEFAULT, "api_id"), required=False, help="a Censys API ID \ (alternatively you can use the env variable CENSYS_API_ID)", ) auth.add_argument( "--api-secret", default=os.getenv("CENSYS_API_SECRET") or config.get(DEFAULT, "api_secret"), required=False, help="a Censys API SECRET \ (alternatively you can use the env variable CENSYS_API_SECRET)", ) parser = argparse.ArgumentParser() parser.set_defaults() subparsers = parser.add_subparsers() # Search Specific Args search_parser = subparsers.add_parser( "search", description="Query Censys Search for resource data by providing a query \ string, the resource index, and the fields to be returned", help="query Censys search", parents=[auth], ) search_parser.add_argument( "-q", "--query", type=str, required=True, help="a string written in Censys Search syntax", ) index_types = ["ipv4", "certs", "websites"] index_metavar = "ipv4|certs|websites" index_default = "ipv4" search_parser.add_argument( "--index-type", type=str, default=index_default, choices=index_types, metavar=index_metavar, help="which resource index to query", ) # Backwards compatibility search_parser.add_argument( "--query_type", type=str, default=index_default, choices=index_types, metavar=index_metavar, help=argparse.SUPPRESS, ) search_parser.add_argument( "--fields", nargs="+", help="list of index-specific fields" ) search_parser.add_argument( "--overwrite", action="store_true", default=False, help="overwrite instead of append fields returned by default \ with fields provided in the fields argument", ) search_parser.add_argument( "-f", "--format", type=str, default="screen", metavar="json|csv|screen", help="format of output", ) search_parser.add_argument( "-o", "--output", type=Path, help="output file path", ) search_parser.add_argument( "--start-page", default=1, type=int, help="page number to start from" ) search_parser.add_argument( "--max-pages", default=1, type=int, help="maximum number of pages of results to return", ) search_parser.set_defaults(func=search) # HNRI Specific Args hnri_parser = subparsers.add_parser( "hnri", description="Home Network Risk Identifier (H.N.R.I.)", help="home network risk identifier", parents=[auth], ) hnri_parser.set_defaults(func=hnri) # Config Specific Args config_parser = subparsers.add_parser( "config", description="Configure Censys API Settings", help="configure Censys API settings", ) config_parser.set_defaults(func=cli_config) return parser def main(): """main cli function""" parser = get_parser() # Executes by subcommand args = parser.parse_args() try: args.func(args) except AttributeError: parser.print_help() parser.exit() except KeyboardInterrupt: # pragma: no cover sys.exit(1) if __name__ == "__main__": # pragma: no cover main()
from __future__ import unicode_literals import datetime import os import re import sys import types from django.conf import settings from django.http import (HttpResponse, HttpResponseServerError, HttpResponseNotFound, HttpRequest, build_request_repr) from django.template import Template, Context, TemplateDoesNotExist from django.template.defaultfilters import force_escape, pprint from django.utils.datastructures import MultiValueDict from django.utils.html import escape from django.utils.encoding import force_bytes, smart_text from django.utils.module_loading import import_by_path from django.utils import six HIDDEN_SETTINGS = re.compile('API|TOKEN|KEY|SECRET|PASS|PROFANITIES_LIST|SIGNATURE') CLEANSED_SUBSTITUTE = '********************' def linebreak_iter(template_source): yield 0 p = template_source.find('\n') while p >= 0: yield p+1 p = template_source.find('\n', p+1) yield len(template_source) + 1 def cleanse_setting(key, value): """Cleanse an individual setting key/value of sensitive content. If the value is a dictionary, recursively cleanse the keys in that dictionary. """ try: if HIDDEN_SETTINGS.search(key): cleansed = CLEANSED_SUBSTITUTE else: if isinstance(value, dict): cleansed = dict((k, cleanse_setting(k, v)) for k,v in value.items()) else: cleansed = value except TypeError: # If the key isn't regex-able, just return as-is. cleansed = value return cleansed def get_safe_settings(): "Returns a dictionary of the settings module, with sensitive settings blurred out." settings_dict = {} for k in dir(settings): if k.isupper(): settings_dict[k] = cleanse_setting(k, getattr(settings, k)) return settings_dict def technical_500_response(request, exc_type, exc_value, tb): """ Create a technical server error response. The last three arguments are the values returned from sys.exc_info() and friends. """ reporter = ExceptionReporter(request, exc_type, exc_value, tb) if request.is_ajax(): text = reporter.get_traceback_text() return HttpResponseServerError(text, content_type='text/plain') else: html = reporter.get_traceback_html() return HttpResponseServerError(html, content_type='text/html') # Cache for the default exception reporter filter instance. default_exception_reporter_filter = None def get_exception_reporter_filter(request): global default_exception_reporter_filter if default_exception_reporter_filter is None: # Load the default filter for the first time and cache it. default_exception_reporter_filter = import_by_path( settings.DEFAULT_EXCEPTION_REPORTER_FILTER)() if request: return getattr(request, 'exception_reporter_filter', default_exception_reporter_filter) else: return default_exception_reporter_filter class ExceptionReporterFilter(object): """ Base for all exception reporter filter classes. All overridable hooks contain lenient default behaviors. """ def get_request_repr(self, request): if request is None: return repr(None) else: return build_request_repr(request, POST_override=self.get_post_parameters(request)) def get_post_parameters(self, request): if request is None: return {} else: return request.POST def get_traceback_frame_variables(self, request, tb_frame): return list(six.iteritems(tb_frame.f_locals)) class SafeExceptionReporterFilter(ExceptionReporterFilter): """ Use annotations made by the sensitive_post_parameters and sensitive_variables decorators to filter out sensitive information. """ def is_active(self, request): """ This filter is to add safety in production environments (i.e. DEBUG is False). If DEBUG is True then your site is not safe anyway. This hook is provided as a convenience to easily activate or deactivate the filter on a per request basis. """ return settings.DEBUG is False def get_cleansed_multivaluedict(self, request, multivaluedict): """ Replaces the keys in a MultiValueDict marked as sensitive with stars. This mitigates leaking sensitive POST parameters if something like request.POST['nonexistent_key'] throws an exception (#21098). """ sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', []) if self.is_active(request) and sensitive_post_parameters: multivaluedict = multivaluedict.copy() for param in sensitive_post_parameters: if param in multivaluedict: multivaluedict[param] = CLEANSED_SUBSTITUTE return multivaluedict def get_post_parameters(self, request): """ Replaces the values of POST parameters marked as sensitive with stars (*********). """ if request is None: return {} else: sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', []) if self.is_active(request) and sensitive_post_parameters: cleansed = request.POST.copy() if sensitive_post_parameters == '__ALL__': # Cleanse all parameters. for k, v in cleansed.items(): cleansed[k] = CLEANSED_SUBSTITUTE return cleansed else: # Cleanse only the specified parameters. for param in sensitive_post_parameters: if param in cleansed: cleansed[param] = CLEANSED_SUBSTITUTE return cleansed else: return request.POST def cleanse_special_types(self, request, value): if isinstance(value, HttpRequest): # Cleanse the request's POST parameters. value = self.get_request_repr(value) elif isinstance(value, MultiValueDict): # Cleanse MultiValueDicts (request.POST is the one we usually care about) value = self.get_cleansed_multivaluedict(request, value) return value def get_traceback_frame_variables(self, request, tb_frame): """ Replaces the values of variables marked as sensitive with stars (*********). """ # Loop through the frame's callers to see if the sensitive_variables # decorator was used. current_frame = tb_frame.f_back sensitive_variables = None while current_frame is not None: if (current_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in current_frame.f_locals): # The sensitive_variables decorator was used, so we take note # of the sensitive variables' names. wrapper = current_frame.f_locals['sensitive_variables_wrapper'] sensitive_variables = getattr(wrapper, 'sensitive_variables', None) break current_frame = current_frame.f_back cleansed = {} if self.is_active(request) and sensitive_variables: if sensitive_variables == '__ALL__': # Cleanse all variables for name, value in tb_frame.f_locals.items(): cleansed[name] = CLEANSED_SUBSTITUTE else: # Cleanse specified variables for name, value in tb_frame.f_locals.items(): if name in sensitive_variables: value = CLEANSED_SUBSTITUTE else: value = self.cleanse_special_types(request, value) cleansed[name] = value else: # Potentially cleanse the request and any MultiValueDicts if they # are one of the frame variables. for name, value in tb_frame.f_locals.items(): cleansed[name] = self.cleanse_special_types(request, value) if (tb_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in tb_frame.f_locals): # For good measure, obfuscate the decorated function's arguments in # the sensitive_variables decorator's frame, in case the variables # associated with those arguments were meant to be obfuscated from # the decorated function's frame. cleansed['func_args'] = CLEANSED_SUBSTITUTE cleansed['func_kwargs'] = CLEANSED_SUBSTITUTE return cleansed.items() class ExceptionReporter(object): """ A class to organize and coordinate reporting on exceptions. """ def __init__(self, request, exc_type, exc_value, tb, is_email=False): self.request = request self.filter = get_exception_reporter_filter(self.request) self.exc_type = exc_type self.exc_value = exc_value self.tb = tb self.is_email = is_email self.template_info = None self.template_does_not_exist = False self.loader_debug_info = None # Handle deprecated string exceptions if isinstance(self.exc_type, six.string_types): self.exc_value = Exception('Deprecated String Exception: %r' % self.exc_type) self.exc_type = type(self.exc_value) def format_path_status(self, path): if not os.path.exists(path): return "File does not exist" if not os.path.isfile(path): return "Not a file" if not os.access(path, os.R_OK): return "File is not readable" return "File exists" def get_traceback_data(self): """Return a dictionary containing traceback information.""" if self.exc_type and issubclass(self.exc_type, TemplateDoesNotExist): from django.template.loader import template_source_loaders self.template_does_not_exist = True self.loader_debug_info = [] # If the template_source_loaders haven't been populated yet, you need # to provide an empty list for this for loop to not fail. if template_source_loaders is None: template_source_loaders = [] for loader in template_source_loaders: try: source_list_func = loader.get_template_sources # NOTE: This assumes exc_value is the name of the template that # the loader attempted to load. template_list = [{ 'name': t, 'status': self.format_path_status(t), } for t in source_list_func(str(self.exc_value))] except AttributeError: template_list = [] loader_name = loader.__module__ + '.' + loader.__class__.__name__ self.loader_debug_info.append({ 'loader': loader_name, 'templates': template_list, }) if (settings.TEMPLATE_DEBUG and hasattr(self.exc_value, 'django_template_source')): self.get_template_exception_info() frames = self.get_traceback_frames() for i, frame in enumerate(frames): if 'vars' in frame: frame['vars'] = [(k, force_escape(pprint(v))) for k, v in frame['vars']] frames[i] = frame unicode_hint = '' if self.exc_type and issubclass(self.exc_type, UnicodeError): start = getattr(self.exc_value, 'start', None) end = getattr(self.exc_value, 'end', None) if start is not None and end is not None: unicode_str = self.exc_value.args[1] unicode_hint = smart_text(unicode_str[max(start-5, 0):min(end+5, len(unicode_str))], 'ascii', errors='replace') from django import get_version c = { 'is_email': self.is_email, 'unicode_hint': unicode_hint, 'frames': frames, 'request': self.request, 'filtered_POST': self.filter.get_post_parameters(self.request), 'settings': get_safe_settings(), 'sys_executable': sys.executable, 'sys_version_info': '%d.%d.%d' % sys.version_info[0:3], 'server_time': datetime.datetime.now(), 'django_version_info': get_version(), 'sys_path' : sys.path, 'template_info': self.template_info, 'template_does_not_exist': self.template_does_not_exist, 'loader_debug_info': self.loader_debug_info, } # Check whether exception info is available if self.exc_type: c['exception_type'] = self.exc_type.__name__ if self.exc_value: c['exception_value'] = smart_text(self.exc_value, errors='replace') if frames: c['lastframe'] = frames[-1] return c def get_traceback_html(self): "Return HTML version of debug 500 HTTP error page." t = Template(TECHNICAL_500_TEMPLATE, name='Technical 500 template') c = Context(self.get_traceback_data(), use_l10n=False) return t.render(c) def get_traceback_text(self): "Return plain text version of debug 500 HTTP error page." t = Template(TECHNICAL_500_TEXT_TEMPLATE, name='Technical 500 template') c = Context(self.get_traceback_data(), autoescape=False, use_l10n=False) return t.render(c) def get_template_exception_info(self): origin, (start, end) = self.exc_value.django_template_source template_source = origin.reload() context_lines = 10 line = 0 upto = 0 source_lines = [] before = during = after = "" for num, next in enumerate(linebreak_iter(template_source)): if start >= upto and end <= next: line = num before = escape(template_source[upto:start]) during = escape(template_source[start:end]) after = escape(template_source[end:next]) source_lines.append( (num, escape(template_source[upto:next])) ) upto = next total = len(source_lines) top = max(1, line - context_lines) bottom = min(total, line + 1 + context_lines) # In some rare cases, exc_value.args might be empty. try: message = self.exc_value.args[0] except IndexError: message = '(Could not get exception message)' self.template_info = { 'message': message, 'source_lines': source_lines[top:bottom], 'before': before, 'during': during, 'after': after, 'top': top, 'bottom': bottom, 'total': total, 'line': line, 'name': origin.name, } def _get_lines_from_file(self, filename, lineno, context_lines, loader=None, module_name=None): """ Returns context_lines before and after lineno from file. Returns (pre_context_lineno, pre_context, context_line, post_context). """ source = None if loader is not None and hasattr(loader, "get_source"): source = loader.get_source(module_name) if source is not None: source = source.splitlines() if source is None: try: with open(filename, 'rb') as fp: source = fp.read().splitlines() except (OSError, IOError): pass if source is None: return None, [], None, [] # If we just read the source from a file, or if the loader did not # apply tokenize.detect_encoding to decode the source into a Unicode # string, then we should do that ourselves. if isinstance(source[0], six.binary_type): encoding = 'ascii' for line in source[:2]: # File coding may be specified. Match pattern from PEP-263 # (http://www.python.org/dev/peps/pep-0263/) match = re.search(br'coding[:=]\s*([-\w.]+)', line) if match: encoding = match.group(1).decode('ascii') break source = [six.text_type(sline, encoding, 'replace') for sline in source] lower_bound = max(0, lineno - context_lines) upper_bound = lineno + context_lines pre_context = source[lower_bound:lineno] context_line = source[lineno] post_context = source[lineno+1:upper_bound] return lower_bound, pre_context, context_line, post_context def get_traceback_frames(self): frames = [] tb = self.tb while tb is not None: # Support for __traceback_hide__ which is used by a few libraries # to hide internal frames. if tb.tb_frame.f_locals.get('__traceback_hide__'): tb = tb.tb_next continue filename = tb.tb_frame.f_code.co_filename function = tb.tb_frame.f_code.co_name lineno = tb.tb_lineno - 1 loader = tb.tb_frame.f_globals.get('__loader__') module_name = tb.tb_frame.f_globals.get('__name__') or '' pre_context_lineno, pre_context, context_line, post_context = self._get_lines_from_file(filename, lineno, 7, loader, module_name) if pre_context_lineno is not None: frames.append({ 'tb': tb, 'type': 'django' if module_name.startswith('django.') else 'user', 'filename': filename, 'function': function, 'lineno': lineno + 1, 'vars': self.filter.get_traceback_frame_variables(self.request, tb.tb_frame), 'id': id(tb), 'pre_context': pre_context, 'context_line': context_line, 'post_context': post_context, 'pre_context_lineno': pre_context_lineno + 1, }) tb = tb.tb_next return frames def format_exception(self): """ Return the same data as from traceback.format_exception. """ import traceback frames = self.get_traceback_frames() tb = [ (f['filename'], f['lineno'], f['function'], f['context_line']) for f in frames ] list = ['Traceback (most recent call last):\n'] list += traceback.format_list(tb) list += traceback.format_exception_only(self.exc_type, self.exc_value) return list def technical_404_response(request, exception): "Create a technical 404 error response. The exception should be the Http404." try: tried = exception.args[0]['tried'] except (IndexError, TypeError, KeyError): tried = [] else: if (not tried # empty URLconf or (request.path == '/' and len(tried) == 1 # default URLconf and len(tried[0]) == 1 and tried[0][0].app_name == tried[0][0].namespace == 'admin')): return default_urlconf(request) urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) if isinstance(urlconf, types.ModuleType): urlconf = urlconf.__name__ t = Template(TECHNICAL_404_TEMPLATE, name='Technical 404 template') c = Context({ 'urlconf': urlconf, 'root_urlconf': settings.ROOT_URLCONF, 'request_path': request.path_info[1:], # Trim leading slash 'urlpatterns': tried, 'reason': force_bytes(exception, errors='replace'), 'request': request, 'settings': get_safe_settings(), }) return HttpResponseNotFound(t.render(c), content_type='text/html') def default_urlconf(request): "Create an empty URLconf 404 error response." t = Template(DEFAULT_URLCONF_TEMPLATE, name='Default URLconf template') c = Context({}) return HttpResponse(t.render(c), content_type='text/html') # # Templates are embedded in the file so that we know the error handler will # always work even if the template loader is broken. # TECHNICAL_500_TEMPLATE = """ <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"> <title>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}{% if request %} at {{ request.path_info|escape }}{% endif %}</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } code, pre { font-size: 100%; white-space: pre-wrap; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } table.vars { margin:5px 0 2px 40px; } table.vars td, table.req td { font-family:monospace; } table td.code { width:100%; } table td.code pre { overflow:hidden; } table.source th { color:#666; } table.source td { font-family:monospace; white-space:pre; border-bottom:1px solid #eee; } ul.traceback { list-style-type:none; color: #222; } ul.traceback li.frame { padding-bottom:1em; color:#666; } ul.traceback li.user { background-color:#e0e0e0; color:#000 } div.context { padding:10px 0; overflow:hidden; } div.context ol { padding-left:30px; margin:0 10px; list-style-position: inside; } div.context ol li { font-family:monospace; white-space:pre; color:#777; cursor:pointer; } div.context ol li pre { display:inline; } div.context ol.context-line li { color:#505050; background-color:#dfdfdf; } div.context ol.context-line li span { position:absolute; right:32px; } .user div.context ol.context-line li { background-color:#bbb; color:#000; } .user div.context ol li { color:#666; } div.commands { margin-left: 40px; } div.commands a { color:#555; text-decoration:none; } .user div.commands a { color: black; } #summary { background: #ffc; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #template, #template-not-exist { background:#f6f6f6; } #template-not-exist ul { margin: 0 0 0 20px; } #unicode-hint { background:#eee; } #traceback { background:#eee; } #requestinfo { background:#f6f6f6; padding-left:120px; } #summary table { border:none; background:transparent; } #requestinfo h2, #requestinfo h3 { position:relative; margin-left:-100px; } #requestinfo h3 { margin-bottom:-1em; } .error { background: #ffc; } .specific { color:#cc3300; font-weight:bold; } h2 span.commands { font-size:.7em;} span.commands a:link {color:#5E5694;} pre.exception_value { font-family: sans-serif; color: #666; font-size: 1.5em; margin: 10px 0 10px 0; } </style> {% if not is_email %} <script type="text/javascript"> //<!-- function getElementsByClassName(oElm, strTagName, strClassName){ // Written by Jonathan Snook, http://www.snook.ca/jon; Add-ons by Robert Nyman, http://www.robertnyman.com var arrElements = (strTagName == "*" && document.all)? document.all : oElm.getElementsByTagName(strTagName); var arrReturnElements = new Array(); strClassName = strClassName.replace(/\-/g, "\\-"); var oRegExp = new RegExp("(^|\\s)" + strClassName + "(\\s|$)"); var oElement; for(var i=0; i<arrElements.length; i++){ oElement = arrElements[i]; if(oRegExp.test(oElement.className)){ arrReturnElements.push(oElement); } } return (arrReturnElements) } function hideAll(elems) { for (var e = 0; e < elems.length; e++) { elems[e].style.display = 'none'; } } window.onload = function() { hideAll(getElementsByClassName(document, 'table', 'vars')); hideAll(getElementsByClassName(document, 'ol', 'pre-context')); hideAll(getElementsByClassName(document, 'ol', 'post-context')); hideAll(getElementsByClassName(document, 'div', 'pastebin')); } function toggle() { for (var i = 0; i < arguments.length; i++) { var e = document.getElementById(arguments[i]); if (e) { e.style.display = e.style.display == 'none' ? 'block' : 'none'; } } return false; } function varToggle(link, id) { toggle('v' + id); var s = link.getElementsByTagName('span')[0]; var uarr = String.fromCharCode(0x25b6); var darr = String.fromCharCode(0x25bc); s.innerHTML = s.innerHTML == uarr ? darr : uarr; return false; } function switchPastebinFriendly(link) { s1 = "Switch to copy-and-paste view"; s2 = "Switch back to interactive view"; link.innerHTML = link.innerHTML == s1 ? s2 : s1; toggle('browserTraceback', 'pastebinTraceback'); return false; } //--> </script> {% endif %} </head> <body> <div id="summary"> <h1>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}{% if request %} at {{ request.path_info|escape }}{% endif %}</h1> <pre class="exception_value">{% if exception_value %}{{ exception_value|force_escape }}{% else %}No exception message supplied{% endif %}</pre> <table class="meta"> {% if request %} <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> {% endif %} <tr> <th>Django Version:</th> <td>{{ django_version_info }}</td> </tr> {% if exception_type %} <tr> <th>Exception Type:</th> <td>{{ exception_type }}</td> </tr> {% endif %} {% if exception_type and exception_value %} <tr> <th>Exception Value:</th> <td><pre>{{ exception_value|force_escape }}</pre></td> </tr> {% endif %} {% if lastframe %} <tr> <th>Exception Location:</th> <td>{{ lastframe.filename|escape }} in {{ lastframe.function|escape }}, line {{ lastframe.lineno }}</td> </tr> {% endif %} <tr> <th>Python Executable:</th> <td>{{ sys_executable|escape }}</td> </tr> <tr> <th>Python Version:</th> <td>{{ sys_version_info }}</td> </tr> <tr> <th>Python Path:</th> <td><pre>{{ sys_path|pprint }}</pre></td> </tr> <tr> <th>Server time:</th> <td>{{server_time|date:"r"}}</td> </tr> </table> </div> {% if unicode_hint %} <div id="unicode-hint"> <h2>Unicode error hint</h2> <p>The string that could not be encoded/decoded was: <strong>{{ unicode_hint|force_escape }}</strong></p> </div> {% endif %} {% if template_does_not_exist %} <div id="template-not-exist"> <h2>Template-loader postmortem</h2> {% if loader_debug_info %} <p>Django tried loading these templates, in this order:</p> <ul> {% for loader in loader_debug_info %} <li>Using loader <code>{{ loader.loader }}</code>: <ul> {% for t in loader.templates %}<li><code>{{ t.name }}</code> ({{ t.status }})</li>{% endfor %} </ul> </li> {% endfor %} </ul> {% else %} <p>Django couldn't find any templates because your <code>TEMPLATE_LOADERS</code> setting is empty!</p> {% endif %} </div> {% endif %} {% if template_info %} <div id="template"> <h2>Error during template rendering</h2> <p>In template <code>{{ template_info.name }}</code>, error at line <strong>{{ template_info.line }}</strong></p> <h3>{{ template_info.message }}</h3> <table class="source{% if template_info.top %} cut-top{% endif %}{% ifnotequal template_info.bottom template_info.total %} cut-bottom{% endifnotequal %}"> {% for source_line in template_info.source_lines %} {% ifequal source_line.0 template_info.line %} <tr class="error"><th>{{ source_line.0 }}</th> <td>{{ template_info.before }}<span class="specific">{{ template_info.during }}</span>{{ template_info.after }}</td></tr> {% else %} <tr><th>{{ source_line.0 }}</th> <td>{{ source_line.1 }}</td></tr> {% endifequal %} {% endfor %} </table> </div> {% endif %} {% if frames %} <div id="traceback"> <h2>Traceback <span class="commands">{% if not is_email %}<a href="#" onclick="return switchPastebinFriendly(this);">Switch to copy-and-paste view</a></span>{% endif %}</h2> {% autoescape off %} <div id="browserTraceback"> <ul class="traceback"> {% for frame in frames %} <li class="frame {{ frame.type }}"> <code>{{ frame.filename|escape }}</code> in <code>{{ frame.function|escape }}</code> {% if frame.context_line %} <div class="context" id="c{{ frame.id }}"> {% if frame.pre_context and not is_email %} <ol start="{{ frame.pre_context_lineno }}" class="pre-context" id="pre{{ frame.id }}">{% for line in frame.pre_context %}<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>{% endfor %}</ol> {% endif %} <ol start="{{ frame.lineno }}" class="context-line"><li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ frame.context_line|escape }}</pre>{% if not is_email %} <span>...</span>{% endif %}</li></ol> {% if frame.post_context and not is_email %} <ol start='{{ frame.lineno|add:"1" }}' class="post-context" id="post{{ frame.id }}">{% for line in frame.post_context %}<li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li>{% endfor %}</ol> {% endif %} </div> {% endif %} {% if frame.vars %} <div class="commands"> {% if is_email %} <h2>Local Vars</h2> {% else %} <a href="#" onclick="return varToggle(this, '{{ frame.id }}')"><span>&#x25b6;</span> Local vars</a> {% endif %} </div> <table class="vars" id="v{{ frame.id }}"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in frame.vars|dictsort:"0" %} <tr> <td>{{ var.0|force_escape }}</td> <td class="code"><pre>{{ var.1 }}</pre></td> </tr> {% endfor %} </tbody> </table> {% endif %} </li> {% endfor %} </ul> </div> {% endautoescape %} <form action="http://dpaste.com/" name="pasteform" id="pasteform" method="post"> {% if not is_email %} <div id="pastebinTraceback" class="pastebin"> <input type="hidden" name="language" value="PythonConsole"> <input type="hidden" name="title" value="{{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %}"> <input type="hidden" name="source" value="Django Dpaste Agent"> <input type="hidden" name="poster" value="Django"> <textarea name="content" id="traceback_area" cols="140" rows="25"> Environment: {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri|escape }} {% endif %} Django Version: {{ django_version_info }} Python Version: {{ sys_version_info }} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template Loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} ({{ t.status }}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your TEMPLATE_LOADERS setting is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %}{% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %} Traceback: {% for frame in frames %}File "{{ frame.filename|escape }}" in {{ frame.function|escape }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line|escape }}{% endif %} {% endfor %} Exception Type: {{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %} Exception Value: {{ exception_value|force_escape }} </textarea> <br><br> <input type="submit" value="Share this traceback on a public Web site"> </div> </form> </div> {% endif %} {% endif %} <div id="requestinfo"> <h2>Request information</h2> {% if request %} <h3 id="get-info">GET</h3> {% if request.GET %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.GET.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No GET data</p> {% endif %} <h3 id="post-info">POST</h3> {% if filtered_POST %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in filtered_POST.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No POST data</p> {% endif %} <h3 id="files-info">FILES</h3> {% if request.FILES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.FILES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No FILES data</p> {% endif %} <h3 id="cookie-info">COOKIES</h3> {% if request.COOKIES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.COOKIES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No cookie data</p> {% endif %} <h3 id="meta-info">META</h3> <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.META.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>Request data not supplied</p> {% endif %} <h3 id="settings-info">Settings</h3> <h4>Using settings module <code>{{ settings.SETTINGS_MODULE }}</code></h4> <table class="req"> <thead> <tr> <th>Setting</th> <th>Value</th> </tr> </thead> <tbody> {% for var in settings.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> </div> {% if not is_email %} <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard 500 page. </p> </div> {% endif %} </body> </html> """ TECHNICAL_500_TEXT_TEMPLATE = """{% load firstof from future %}{% firstof exception_type 'Report' %}{% if request %} at {{ request.path_info }}{% endif %} {% firstof exception_value 'No exception message supplied' %} {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri }}{% endif %} Django Version: {{ django_version_info }} Python Executable: {{ sys_executable }} Python Version: {{ sys_version_info }} Python Path: {{ sys_path }} Server time: {{server_time|date:"r"}} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} ({{ t.status }}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your TEMPLATE_LOADERS setting is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %}{% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %}{% if frames %} Traceback: {% for frame in frames %}File "{{ frame.filename }}" in {{ frame.function }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line }}{% endif %} {% endfor %} {% if exception_type %}Exception Type: {{ exception_type }}{% if request %} at {{ request.path_info }}{% endif %} {% if exception_value %}Exception Value: {{ exception_value }}{% endif %}{% endif %}{% endif %} {% if request %}Request information: GET:{% for k, v in request.GET.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No GET data{% endfor %} POST:{% for k, v in filtered_POST.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No POST data{% endfor %} FILES:{% for k, v in request.FILES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No FILES data{% endfor %} COOKIES:{% for k, v in request.COOKIES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No cookie data{% endfor %} META:{% for k, v in request.META.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} {% else %}Request data not supplied {% endif %} Settings: Using settings module {{ settings.SETTINGS_MODULE }}{% for k, v in settings.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard 500 page. """ TECHNICAL_404_TEMPLATE = """ <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <title>Page not found at {{ request.path_info|escape }}</title> <meta name="robots" content="NONE,NOARCHIVE"> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; background:#eee; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; margin-bottom:.4em; } h1 span { font-size:60%; color:#666; font-weight:normal; } table { border:none; border-collapse: collapse; width:100%; } td, th { vertical-align:top; padding:2px 3px; } th { width:12em; text-align:right; color:#666; padding-right:.5em; } #info { background:#f6f6f6; } #info ol { margin: 0.5em 4em; } #info ol li { font-family: monospace; } #summary { background: #ffc; } #explanation { background:#eee; border-bottom: 0px none; } </style> </head> <body> <div id="summary"> <h1>Page not found <span>(404)</span></h1> <table class="meta"> <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> </table> </div> <div id="info"> {% if urlpatterns %} <p> Using the URLconf defined in <code>{{ urlconf }}</code>, Django tried these URL patterns, in this order: </p> <ol> {% for pattern in urlpatterns %} <li> {% for pat in pattern %} {{ pat.regex.pattern }} {% if forloop.last and pat.name %}[name='{{ pat.name }}']{% endif %} {% endfor %} </li> {% endfor %} </ol> <p>The current URL, <code>{{ request_path|escape }}</code>, didn't match any of these.</p> {% else %} <p>{{ reason }}</p> {% endif %} </div> <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard 404 page. </p> </div> </body> </html> """ DEFAULT_URLCONF_TEMPLATE = """ <!DOCTYPE html> <html lang="en"><head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"><title>Welcome to Django</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } #summary { background: #e0ebff; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #instructions { background:#f6f6f6; } #summary table { border:none; background:transparent; } </style> </head> <body> <div id="summary"> <h1>It worked!</h1> <h2>Congratulations on your first Django-powered page.</h2> </div> <div id="instructions"> <p> Of course, you haven't actually done any work yet. Next, start your first app by running <code>python manage.py startapp [appname]</code>. </p> </div> <div id="explanation"> <p> You're seeing this message because you have <code>DEBUG = True</code> in your Django settings file and you haven't configured any URLs. Get to work! </p> </div> </body></html> """
#!/usr/bin/env python import os try: __IPYTHON__ import sys del sys.argv[1:] except: pass import srwl_bl import srwlib import srwlpy import srwl_uti_smp def set_optics(v=None): el = [] pp = [] names = ['Fixed_Mask', 'Fixed_Mask_M1A', 'M1A', 'M1A_Watchpoint', 'Watchpoint', 'M2A_VDM', 'M2A_VDM_Grating', 'Grating', 'Grating_Aperture', 'Aperture', 'Watchpoint2', 'M3A_HFM', 'M3A_HFM_Watchpoint3', 'Watchpoint3', 'Pinhole', 'Watchpoint4', 'Watchpoint4_Sample', 'Sample'] for el_name in names: if el_name == 'Fixed_Mask': # Fixed_Mask: aperture 26.2m el.append(srwlib.SRWLOptA( _shape=v.op_Fixed_Mask_shape, _ap_or_ob='a', _Dx=v.op_Fixed_Mask_Dx, _Dy=v.op_Fixed_Mask_Dy, _x=v.op_Fixed_Mask_x, _y=v.op_Fixed_Mask_y, )) pp.append(v.op_Fixed_Mask_pp) elif el_name == 'Fixed_Mask_M1A': # Fixed_Mask_M1A: drift 26.2m el.append(srwlib.SRWLOptD( _L=v.op_Fixed_Mask_M1A_L, )) pp.append(v.op_Fixed_Mask_M1A_pp) elif el_name == 'M1A': # M1A: mirror 27.2m mirror_file = v.op_M1A_hfn assert os.path.isfile(mirror_file), \ 'Missing input file {}, required by M1A beamline element'.format(mirror_file) el.append(srwlib.srwl_opt_setup_surf_height_1d( srwlib.srwl_uti_read_data_cols(mirror_file, "\t", 0, 1), _dim=v.op_M1A_dim, _ang=abs(v.op_M1A_ang), _amp_coef=v.op_M1A_amp_coef, _size_x=v.op_M1A_size_x, _size_y=v.op_M1A_size_y, )) pp.append(v.op_M1A_pp) elif el_name == 'M1A_Watchpoint': # M1A_Watchpoint: drift 27.2m el.append(srwlib.SRWLOptD( _L=v.op_M1A_Watchpoint_L, )) pp.append(v.op_M1A_Watchpoint_pp) elif el_name == 'Watchpoint': # Watchpoint: watch 40.4m pass elif el_name == 'M2A_VDM': # M2A_VDM: mirror 40.4m mirror_file = v.op_M2A_VDM_hfn assert os.path.isfile(mirror_file), \ 'Missing input file {}, required by M2A_VDM beamline element'.format(mirror_file) el.append(srwlib.srwl_opt_setup_surf_height_1d( srwlib.srwl_uti_read_data_cols(mirror_file, "\t", 0, 1), _dim=v.op_M2A_VDM_dim, _ang=abs(v.op_M2A_VDM_ang), _amp_coef=v.op_M2A_VDM_amp_coef, _size_x=v.op_M2A_VDM_size_x, _size_y=v.op_M2A_VDM_size_y, )) pp.append(v.op_M2A_VDM_pp) elif el_name == 'M2A_VDM_Grating': # M2A_VDM_Grating: drift 40.4m el.append(srwlib.SRWLOptD( _L=v.op_M2A_VDM_Grating_L, )) pp.append(v.op_M2A_VDM_Grating_pp) elif el_name == 'Grating': # Grating: grating 40.46m mirror = srwlib.SRWLOptMirPl( _size_tang=v.op_Grating_size_tang, _size_sag=v.op_Grating_size_sag, _nvx=v.op_Grating_nvx, _nvy=v.op_Grating_nvy, _nvz=v.op_Grating_nvz, _tvx=v.op_Grating_tvx, _tvy=v.op_Grating_tvy, _x=v.op_Grating_x, _y=v.op_Grating_y, ) el.append(srwlib.SRWLOptG( _mirSub=mirror, _m=v.op_Grating_m, _grDen=v.op_Grating_grDen, _grDen1=v.op_Grating_grDen1, _grDen2=v.op_Grating_grDen2, _grDen3=v.op_Grating_grDen3, _grDen4=v.op_Grating_grDen4, )) pp.append(v.op_Grating_pp) elif el_name == 'Grating_Aperture': # Grating_Aperture: drift 40.46m el.append(srwlib.SRWLOptD( _L=v.op_Grating_Aperture_L, )) pp.append(v.op_Grating_Aperture_pp) elif el_name == 'Aperture': # Aperture: aperture 42.46m el.append(srwlib.SRWLOptA( _shape=v.op_Aperture_shape, _ap_or_ob='a', _Dx=v.op_Aperture_Dx, _Dy=v.op_Aperture_Dy, _x=v.op_Aperture_x, _y=v.op_Aperture_y, )) pp.append(v.op_Aperture_pp) elif el_name == 'Watchpoint2': # Watchpoint2: watch 42.46m pass elif el_name == 'M3A_HFM': # M3A_HFM: sphericalMirror 42.46m el.append(srwlib.SRWLOptMirSph( _r=v.op_M3A_HFM_r, _size_tang=v.op_M3A_HFM_size_tang, _size_sag=v.op_M3A_HFM_size_sag, _nvx=v.op_M3A_HFM_nvx, _nvy=v.op_M3A_HFM_nvy, _nvz=v.op_M3A_HFM_nvz, _tvx=v.op_M3A_HFM_tvx, _tvy=v.op_M3A_HFM_tvy, _x=v.op_M3A_HFM_x, _y=v.op_M3A_HFM_y, )) pp.append(v.op_M3A_HFM_pp) elif el_name == 'M3A_HFM_Watchpoint3': # M3A_HFM_Watchpoint3: drift 42.46m el.append(srwlib.SRWLOptD( _L=v.op_M3A_HFM_Watchpoint3_L, )) pp.append(v.op_M3A_HFM_Watchpoint3_pp) elif el_name == 'Watchpoint3': # Watchpoint3: watch 54.36m pass elif el_name == 'Pinhole': # Pinhole: aperture 54.36m el.append(srwlib.SRWLOptA( _shape=v.op_Pinhole_shape, _ap_or_ob='a', _Dx=v.op_Pinhole_Dx, _Dy=v.op_Pinhole_Dy, _x=v.op_Pinhole_x, _y=v.op_Pinhole_y, )) pp.append(v.op_Pinhole_pp) elif el_name == 'Watchpoint4': # Watchpoint4: watch 54.36m pass elif el_name == 'Watchpoint4_Sample': # Watchpoint4_Sample: drift 54.36m el.append(srwlib.SRWLOptD( _L=v.op_Watchpoint4_Sample_L, )) pp.append(v.op_Watchpoint4_Sample_pp) elif el_name == 'Sample': # Sample: watch 55.5m pass pp.append(v.op_fin_pp) return srwlib.SRWLOptC(el, pp) varParam = srwl_bl.srwl_uti_ext_options([ ['name', 's', 'NSLS-II CSX-1 beamline', 'simulation name'], #---Data Folder ['fdir', 's', '', 'folder (directory) name for reading-in input and saving output data files'], #---Electron Beam ['ebm_nm', 's', '', 'standard electron beam name'], ['ebm_nms', 's', '', 'standard electron beam name suffix: e.g. can be Day1, Final'], ['ebm_i', 'f', 0.5, 'electron beam current [A]'], ['ebm_e', 'f', 3.0, 'electron beam avarage energy [GeV]'], ['ebm_de', 'f', 0.0, 'electron beam average energy deviation [GeV]'], ['ebm_x', 'f', 0.0, 'electron beam initial average horizontal position [m]'], ['ebm_y', 'f', 0.0, 'electron beam initial average vertical position [m]'], ['ebm_xp', 'f', 0.0, 'electron beam initial average horizontal angle [rad]'], ['ebm_yp', 'f', 0.0, 'electron beam initial average vertical angle [rad]'], ['ebm_z', 'f', 0., 'electron beam initial average longitudinal position [m]'], ['ebm_dr', 'f', 0.0, 'electron beam longitudinal drift [m] to be performed before a required calculation'], ['ebm_ens', 'f', 0.00089, 'electron beam relative energy spread'], ['ebm_emx', 'f', 7.6e-10, 'electron beam horizontal emittance [m]'], ['ebm_emy', 'f', 8e-12, 'electron beam vertical emittance [m]'], # Definition of the beam through Twiss: ['ebm_betax', 'f', 1.84, 'horizontal beta-function [m]'], ['ebm_betay', 'f', 1.17, 'vertical beta-function [m]'], ['ebm_alphax', 'f', 0.0, 'horizontal alpha-function [rad]'], ['ebm_alphay', 'f', 0.0, 'vertical alpha-function [rad]'], ['ebm_etax', 'f', 0.0, 'horizontal dispersion function [m]'], ['ebm_etay', 'f', 0.0, 'vertical dispersion function [m]'], ['ebm_etaxp', 'f', 0.0, 'horizontal dispersion function derivative [rad]'], ['ebm_etayp', 'f', 0.0, 'vertical dispersion function derivative [rad]'], #---Undulator ['und_bx', 'f', 0.0, 'undulator horizontal peak magnetic field [T]'], ['und_by', 'f', 0.3513, 'undulator vertical peak magnetic field [T]'], ['und_phx', 'f', 0.0, 'initial phase of the horizontal magnetic field [rad]'], ['und_phy', 'f', 0.0, 'initial phase of the vertical magnetic field [rad]'], ['und_b2e', '', '', 'estimate undulator fundamental photon energy (in [eV]) for the amplitude of sinusoidal magnetic field defined by und_b or und_bx, und_by', 'store_true'], ['und_e2b', '', '', 'estimate undulator field amplitude (in [T]) for the photon energy defined by w_e', 'store_true'], ['und_per', 'f', 0.0492, 'undulator period [m]'], ['und_len', 'f', 1.85, 'undulator length [m]'], ['und_zc', 'f', 1.25, 'undulator center longitudinal position [m]'], ['und_sx', 'i', -1, 'undulator horizontal magnetic field symmetry vs longitudinal position'], ['und_sy', 'i', 1, 'undulator vertical magnetic field symmetry vs longitudinal position'], ['und_g', 'f', 6.72, 'undulator gap [mm] (assumes availability of magnetic measurement or simulation data)'], ['und_ph', 'f', 0.0, 'shift of magnet arrays [mm] for which the field should be set up'], ['und_mdir', 's', '', 'name of magnetic measurements sub-folder'], ['und_mfs', 's', '', 'name of magnetic measurements for different gaps summary file'], #---Calculation Types # Electron Trajectory ['tr', '', '', 'calculate electron trajectory', 'store_true'], ['tr_cti', 'f', 0.0, 'initial time moment (c*t) for electron trajectory calculation [m]'], ['tr_ctf', 'f', 0.0, 'final time moment (c*t) for electron trajectory calculation [m]'], ['tr_np', 'f', 10000, 'number of points for trajectory calculation'], ['tr_mag', 'i', 1, 'magnetic field to be used for trajectory calculation: 1- approximate, 2- accurate'], ['tr_fn', 's', 'res_trj.dat', 'file name for saving calculated trajectory data'], ['tr_pl', 's', '', 'plot the resulting trajectiry in graph(s): ""- dont plot, otherwise the string should list the trajectory components to plot'], #Single-Electron Spectrum vs Photon Energy ['ss', '', '', 'calculate single-e spectrum vs photon energy', 'store_true'], ['ss_ei', 'f', 10.0, 'initial photon energy [eV] for single-e spectrum vs photon energy calculation'], ['ss_ef', 'f', 2000.0, 'final photon energy [eV] for single-e spectrum vs photon energy calculation'], ['ss_ne', 'i', 2000, 'number of points vs photon energy for single-e spectrum vs photon energy calculation'], ['ss_x', 'f', 0.0, 'horizontal position [m] for single-e spectrum vs photon energy calculation'], ['ss_y', 'f', 0.0, 'vertical position [m] for single-e spectrum vs photon energy calculation'], ['ss_meth', 'i', 1, 'method to use for single-e spectrum vs photon energy calculation: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler"'], ['ss_prec', 'f', 0.01, 'relative precision for single-e spectrum vs photon energy calculation (nominal value is 0.01)'], ['ss_pol', 'i', 6, 'polarization component to extract after spectrum vs photon energy calculation: 0- Linear Horizontal, 1- Linear Vertical, 2- Linear 45 degrees, 3- Linear 135 degrees, 4- Circular Right, 5- Circular Left, 6- Total'], ['ss_mag', 'i', 1, 'magnetic field to be used for single-e spectrum vs photon energy calculation: 1- approximate, 2- accurate'], ['ss_ft', 's', 'f', 'presentation/domain: "f"- frequency (photon energy), "t"- time'], ['ss_u', 'i', 1, 'electric field units: 0- arbitrary, 1- sqrt(Phot/s/0.1%bw/mm^2), 2- sqrt(J/eV/mm^2) or sqrt(W/mm^2), depending on representation (freq. or time)'], ['ss_fn', 's', 'res_spec_se.dat', 'file name for saving calculated single-e spectrum vs photon energy'], ['ss_pl', 's', '', 'plot the resulting single-e spectrum in a graph: ""- dont plot, "e"- show plot vs photon energy'], #Multi-Electron Spectrum vs Photon Energy (taking into account e-beam emittance, energy spread and collection aperture size) ['sm', '', '', 'calculate multi-e spectrum vs photon energy', 'store_true'], ['sm_ei', 'f', 10.0, 'initial photon energy [eV] for multi-e spectrum vs photon energy calculation'], ['sm_ef', 'f', 2000.0, 'final photon energy [eV] for multi-e spectrum vs photon energy calculation'], ['sm_ne', 'i', 2000, 'number of points vs photon energy for multi-e spectrum vs photon energy calculation'], ['sm_x', 'f', 0.0, 'horizontal center position [m] for multi-e spectrum vs photon energy calculation'], ['sm_rx', 'f', 0.003, 'range of horizontal position / horizontal aperture size [m] for multi-e spectrum vs photon energy calculation'], ['sm_nx', 'i', 1, 'number of points vs horizontal position for multi-e spectrum vs photon energy calculation'], ['sm_y', 'f', 0.0, 'vertical center position [m] for multi-e spectrum vs photon energy calculation'], ['sm_ry', 'f', 0.003, 'range of vertical position / vertical aperture size [m] for multi-e spectrum vs photon energy calculation'], ['sm_ny', 'i', 1, 'number of points vs vertical position for multi-e spectrum vs photon energy calculation'], ['sm_mag', 'i', 1, 'magnetic field to be used for calculation of multi-e spectrum spectrum or intensity distribution: 1- approximate, 2- accurate'], ['sm_hi', 'i', 1, 'initial UR spectral harmonic to be taken into account for multi-e spectrum vs photon energy calculation'], ['sm_hf', 'i', 15, 'final UR spectral harmonic to be taken into account for multi-e spectrum vs photon energy calculation'], ['sm_prl', 'f', 1.0, 'longitudinal integration precision parameter for multi-e spectrum vs photon energy calculation'], ['sm_pra', 'f', 1.0, 'azimuthal integration precision parameter for multi-e spectrum vs photon energy calculation'], ['sm_meth', 'i', -1, 'method to use for spectrum vs photon energy calculation in case of arbitrary input magnetic field: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler", -1- dont use this accurate integration method (rather use approximate if possible)'], ['sm_prec', 'f', 0.01, 'relative precision for spectrum vs photon energy calculation in case of arbitrary input magnetic field (nominal value is 0.01)'], ['sm_nm', 'i', 1, 'number of macro-electrons for calculation of spectrum in case of arbitrary input magnetic field'], ['sm_na', 'i', 5, 'number of macro-electrons to average on each node at parallel (MPI-based) calculation of spectrum in case of arbitrary input magnetic field'], ['sm_ns', 'i', 5, 'saving periodicity (in terms of macro-electrons) for intermediate intensity at calculation of multi-electron spectrum in case of arbitrary input magnetic field'], ['sm_type', 'i', 1, 'calculate flux (=1) or flux per unit surface (=2)'], ['sm_pol', 'i', 6, 'polarization component to extract after calculation of multi-e flux or intensity: 0- Linear Horizontal, 1- Linear Vertical, 2- Linear 45 degrees, 3- Linear 135 degrees, 4- Circular Right, 5- Circular Left, 6- Total'], ['sm_rm', 'i', 1, 'method for generation of pseudo-random numbers for e-beam phase-space integration: 1- standard pseudo-random number generator, 2- Halton sequences, 3- LPtau sequences (to be implemented)'], ['sm_fn', 's', 'res_spec_me.dat', 'file name for saving calculated milti-e spectrum vs photon energy'], ['sm_pl', 's', '', 'plot the resulting spectrum-e spectrum in a graph: ""- dont plot, "e"- show plot vs photon energy'], #to add options for the multi-e calculation from "accurate" magnetic field #Power Density Distribution vs horizontal and vertical position ['pw', '', '', 'calculate SR power density distribution', 'store_true'], ['pw_x', 'f', 0.0, 'central horizontal position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_rx', 'f', 0.03, 'range of horizontal position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_nx', 'i', 100, 'number of points vs horizontal position for calculation of power density distribution'], ['pw_y', 'f', 0.0, 'central vertical position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_ry', 'f', 0.03, 'range of vertical position [m] for calculation of power density distribution vs horizontal and vertical position'], ['pw_ny', 'i', 100, 'number of points vs vertical position for calculation of power density distribution'], ['pw_pr', 'f', 1.0, 'precision factor for calculation of power density distribution'], ['pw_meth', 'i', 1, 'power density computation method (1- "near field", 2- "far field")'], ['pw_zst', 'f', 0., 'initial longitudinal position along electron trajectory of power density distribution (effective if pow_sst < pow_sfi)'], ['pw_zfi', 'f', 0., 'final longitudinal position along electron trajectory of power density distribution (effective if pow_sst < pow_sfi)'], ['pw_mag', 'i', 1, 'magnetic field to be used for power density calculation: 1- approximate, 2- accurate'], ['pw_fn', 's', 'res_pow.dat', 'file name for saving calculated power density distribution'], ['pw_pl', 's', '', 'plot the resulting power density distribution in a graph: ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], #Single-Electron Intensity distribution vs horizontal and vertical position ['si', '', '', 'calculate single-e intensity distribution (without wavefront propagation through a beamline) vs horizontal and vertical position', 'store_true'], #Single-Electron Wavefront Propagation ['ws', '', '', 'calculate single-electron (/ fully coherent) wavefront propagation', 'store_true'], #Multi-Electron (partially-coherent) Wavefront Propagation ['wm', '', '', 'calculate multi-electron (/ partially coherent) wavefront propagation', 'store_true'], ['w_e', 'f', 750.0, 'photon energy [eV] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ef', 'f', -1.0, 'final photon energy [eV] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ne', 'i', 1, 'number of points vs photon energy for calculation of intensity distribution'], ['w_x', 'f', 0.0, 'central horizontal position [m] for calculation of intensity distribution'], ['w_rx', 'f', 0.004, 'range of horizontal position [m] for calculation of intensity distribution'], ['w_nx', 'i', 100, 'number of points vs horizontal position for calculation of intensity distribution'], ['w_y', 'f', 0.0, 'central vertical position [m] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ry', 'f', 0.004, 'range of vertical position [m] for calculation of intensity distribution vs horizontal and vertical position'], ['w_ny', 'i', 100, 'number of points vs vertical position for calculation of intensity distribution'], ['w_smpf', 'f', 0.3, 'sampling factor for calculation of intensity distribution vs horizontal and vertical position'], ['w_meth', 'i', 1, 'method to use for calculation of intensity distribution vs horizontal and vertical position: 0- "manual", 1- "auto-undulator", 2- "auto-wiggler"'], ['w_prec', 'f', 0.01, 'relative precision for calculation of intensity distribution vs horizontal and vertical position'], ['w_u', 'i', 1, 'electric field units: 0- arbitrary, 1- sqrt(Phot/s/0.1%bw/mm^2), 2- sqrt(J/eV/mm^2) or sqrt(W/mm^2), depending on representation (freq. or time)'], ['si_pol', 'i', 6, 'polarization component to extract after calculation of intensity distribution: 0- Linear Horizontal, 1- Linear Vertical, 2- Linear 45 degrees, 3- Linear 135 degrees, 4- Circular Right, 5- Circular Left, 6- Total'], ['si_type', 'i', 0, 'type of a characteristic to be extracted after calculation of intensity distribution: 0- Single-Electron Intensity, 1- Multi-Electron Intensity, 2- Single-Electron Flux, 3- Multi-Electron Flux, 4- Single-Electron Radiation Phase, 5- Re(E): Real part of Single-Electron Electric Field, 6- Im(E): Imaginary part of Single-Electron Electric Field, 7- Single-Electron Intensity, integrated over Time or Photon Energy'], ['w_mag', 'i', 1, 'magnetic field to be used for calculation of intensity distribution vs horizontal and vertical position: 1- approximate, 2- accurate'], ['si_fn', 's', 'res_int_se.dat', 'file name for saving calculated single-e intensity distribution (without wavefront propagation through a beamline) vs horizontal and vertical position'], ['si_pl', 's', '', 'plot the input intensity distributions in graph(s): ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], ['ws_fni', 's', 'res_int_pr_se.dat', 'file name for saving propagated single-e intensity distribution vs horizontal and vertical position'], ['ws_pl', 's', '', 'plot the resulting intensity distributions in graph(s): ""- dont plot, "x"- vs horizontal position, "y"- vs vertical position, "xy"- vs horizontal and vertical position'], ['wm_nm', 'i', 30000, 'number of macro-electrons (coherent wavefronts) for calculation of multi-electron wavefront propagation'], ['wm_na', 'i', 5, 'number of macro-electrons (coherent wavefronts) to average on each node for parallel (MPI-based) calculation of multi-electron wavefront propagation'], ['wm_ns', 'i', 5, 'saving periodicity (in terms of macro-electrons / coherent wavefronts) for intermediate intensity at multi-electron wavefront propagation calculation'], ['wm_ch', 'i', 0, 'type of a characteristic to be extracted after calculation of multi-electron wavefront propagation: #0- intensity (s0); 1- four Stokes components; 2- mutual intensity cut vs x; 3- mutual intensity cut vs y; 40- intensity(s0), mutual intensity cuts and degree of coherence vs X & Y'], ['wm_ap', 'i', 0, 'switch specifying representation of the resulting Stokes parameters: coordinate (0) or angular (1)'], ['wm_x0', 'f', 0, 'horizontal center position for mutual intensity cut calculation'], ['wm_y0', 'f', 0, 'vertical center position for mutual intensity cut calculation'], ['wm_ei', 'i', 0, 'integration over photon energy is required (1) or not (0); if the integration is required, the limits are taken from w_e, w_ef'], ['wm_rm', 'i', 1, 'method for generation of pseudo-random numbers for e-beam phase-space integration: 1- standard pseudo-random number generator, 2- Halton sequences, 3- LPtau sequences (to be implemented)'], ['wm_am', 'i', 0, 'multi-electron integration approximation method: 0- no approximation (use the standard 5D integration method), 1- integrate numerically only over e-beam energy spread and use convolution to treat transverse emittance'], ['wm_fni', 's', 'res_int_pr_me.dat', 'file name for saving propagated multi-e intensity distribution vs horizontal and vertical position'], #to add options ['op_r', 'f', 26.2, 'longitudinal position of the first optical element [m]'], # Former appParam: ['rs_type', 's', 'u', 'source type, (u) idealized undulator, (t), tabulated undulator, (m) multipole, (g) gaussian beam'], #---Beamline optics: # Fixed_Mask: aperture ['op_Fixed_Mask_shape', 's', 'r', 'shape'], ['op_Fixed_Mask_Dx', 'f', 0.005, 'horizontalSize'], ['op_Fixed_Mask_Dy', 'f', 0.005, 'verticalSize'], ['op_Fixed_Mask_x', 'f', 0.0, 'horizontalOffset'], ['op_Fixed_Mask_y', 'f', 0.0, 'verticalOffset'], # Fixed_Mask_M1A: drift ['op_Fixed_Mask_M1A_L', 'f', 1.0, 'length'], # M1A: mirror ['op_M1A_hfn', 's', 'mirror_1d.dat', 'heightProfileFile'], ['op_M1A_dim', 's', 'x', 'orientation'], ['op_M1A_ang', 'f', 0.0218166, 'grazingAngle'], ['op_M1A_amp_coef', 'f', 0.01, 'heightAmplification'], ['op_M1A_size_x', 'f', 0.00545, 'horizontalTransverseSize'], ['op_M1A_size_y', 'f', 0.025, 'verticalTransverseSize'], # M1A_Watchpoint: drift ['op_M1A_Watchpoint_L', 'f', 13.2, 'length'], # M2A_VDM: mirror ['op_M2A_VDM_hfn', 's', 'mirror_1d.dat', 'heightProfileFile'], ['op_M2A_VDM_dim', 's', 'y', 'orientation'], ['op_M2A_VDM_ang', 'f', 0.0290353, 'grazingAngle'], ['op_M2A_VDM_amp_coef', 'f', 0.01, 'heightAmplification'], ['op_M2A_VDM_size_x', 'f', 0.025, 'horizontalTransverseSize'], ['op_M2A_VDM_size_y', 'f', 0.1, 'verticalTransverseSize'], # M2A_VDM_Grating: drift ['op_M2A_VDM_Grating_L', 'f', 0.06, 'length'], # Grating: grating ['op_Grating_size_tang', 'f', 0.3, 'tangentialSize'], ['op_Grating_size_sag', 'f', 0.015, 'sagittalSize'], ['op_Grating_nvx', 'f', 0.0, 'normalVectorX'], ['op_Grating_nvy', 'f', 0.999657108688, 'normalVectorY'], ['op_Grating_nvz', 'f', -0.0261852066962, 'normalVectorZ'], ['op_Grating_tvx', 'f', 0.0, 'tangentialVectorX'], ['op_Grating_tvy', 'f', 0.0261852066962, 'tangentialVectorY'], ['op_Grating_x', 'f', 0.0, 'horizontalOffset'], ['op_Grating_y', 'f', 0.0, 'verticalOffset'], ['op_Grating_m', 'f', 1.0, 'diffractionOrder'], ['op_Grating_grDen', 'f', 100.0, 'grooveDensity0'], ['op_Grating_grDen1', 'f', 0.0548, 'grooveDensity1'], ['op_Grating_grDen2', 'f', 3.9e-06, 'grooveDensity2'], ['op_Grating_grDen3', 'f', 0.0, 'grooveDensity3'], ['op_Grating_grDen4', 'f', 0.0, 'grooveDensity4'], # Grating_Aperture: drift ['op_Grating_Aperture_L', 'f', 2.0, 'length'], # Aperture: aperture ['op_Aperture_shape', 's', 'r', 'shape'], ['op_Aperture_Dx', 'f', 0.001, 'horizontalSize'], ['op_Aperture_Dy', 'f', 0.001, 'verticalSize'], ['op_Aperture_x', 'f', 0.0, 'horizontalOffset'], ['op_Aperture_y', 'f', 0.0, 'verticalOffset'], # M3A_HFM: sphericalMirror ['op_M3A_HFM_hfn', 's', '', 'heightProfileFile'], ['op_M3A_HFM_dim', 's', 'x', 'orientation'], ['op_M3A_HFM_r', 'f', 846.5455704, 'radius'], ['op_M3A_HFM_size_tang', 'f', 0.3, 'tangentialSize'], ['op_M3A_HFM_size_sag', 'f', 0.1, 'sagittalSize'], ['op_M3A_HFM_ang', 'f', 0.0218166, 'grazingAngle'], ['op_M3A_HFM_nvx', 'f', 0.999762027421, 'normalVectorX'], ['op_M3A_HFM_nvy', 'f', 0.0, 'normalVectorY'], ['op_M3A_HFM_nvz', 'f', -0.0218148693884, 'normalVectorZ'], ['op_M3A_HFM_tvx', 'f', 0.0218148693884, 'tangentialVectorX'], ['op_M3A_HFM_tvy', 'f', 0.0, 'tangentialVectorY'], ['op_M3A_HFM_amp_coef', 'f', 1.0, 'heightAmplification'], ['op_M3A_HFM_x', 'f', 0.0, 'horizontalOffset'], ['op_M3A_HFM_y', 'f', 0.0, 'verticalOffset'], # M3A_HFM_Watchpoint3: drift ['op_M3A_HFM_Watchpoint3_L', 'f', 11.9, 'length'], # Pinhole: aperture ['op_Pinhole_shape', 's', 'c', 'shape'], ['op_Pinhole_Dx', 'f', 1e-05, 'horizontalSize'], ['op_Pinhole_Dy', 'f', 1e-05, 'verticalSize'], ['op_Pinhole_x', 'f', 0.0, 'horizontalOffset'], ['op_Pinhole_y', 'f', 0.0, 'verticalOffset'], # Watchpoint4_Sample: drift ['op_Watchpoint4_Sample_L', 'f', 1.14, 'length'], #---Propagation parameters ['op_Fixed_Mask_pp', 'f', [0, 0, 1.0, 0, 0, 1.3, 1.0, 1.3, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Fixed_Mask'], ['op_Fixed_Mask_M1A_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Fixed_Mask_M1A'], ['op_M1A_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M1A'], ['op_M1A_Watchpoint_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M1A_Watchpoint'], ['op_M2A_VDM_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M2A_VDM'], ['op_M2A_VDM_Grating_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M2A_VDM_Grating'], ['op_Grating_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0580381, 0.998314, 1.0, 0.0], 'Grating'], ['op_Grating_Aperture_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Grating_Aperture'], ['op_Aperture_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Aperture'], ['op_M3A_HFM_pp', 'f', [0, 0, 1.0, 0, 0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M3A_HFM'], ['op_M3A_HFM_Watchpoint3_pp', 'f', [0, 0, 1.0, 1, 0, 1.0, 8.0, 1.0, 16.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'M3A_HFM_Watchpoint3'], ['op_Pinhole_pp', 'f', [0, 0, 1.0, 0, 0, 0.1, 20.0, 0.1, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Pinhole'], ['op_Watchpoint4_Sample_pp', 'f', [0, 0, 1.0, 3, 0, 0.3, 1.0, 0.3, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'Watchpoint4_Sample'], ['op_fin_pp', 'f', [0, 0, 1.0, 0, 0, 0.2, 1.0, 0.35, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 'final post-propagation (resize) parameters'], #[ 0]: Auto-Resize (1) or not (0) Before propagation #[ 1]: Auto-Resize (1) or not (0) After propagation #[ 2]: Relative Precision for propagation with Auto-Resizing (1. is nominal) #[ 3]: Allow (1) or not (0) for semi-analytical treatment of the quadratic (leading) phase terms at the propagation #[ 4]: Do any Resizing on Fourier side, using FFT, (1) or not (0) #[ 5]: Horizontal Range modification factor at Resizing (1. means no modification) #[ 6]: Horizontal Resolution modification factor at Resizing #[ 7]: Vertical Range modification factor at Resizing #[ 8]: Vertical Resolution modification factor at Resizing #[ 9]: Type of wavefront Shift before Resizing (not yet implemented) #[10]: New Horizontal wavefront Center position after Shift (not yet implemented) #[11]: New Vertical wavefront Center position after Shift (not yet implemented) #[12]: Optional: Orientation of the Output Optical Axis vector in the Incident Beam Frame: Horizontal Coordinate #[13]: Optional: Orientation of the Output Optical Axis vector in the Incident Beam Frame: Vertical Coordinate #[14]: Optional: Orientation of the Output Optical Axis vector in the Incident Beam Frame: Longitudinal Coordinate #[15]: Optional: Orientation of the Horizontal Base vector of the Output Frame in the Incident Beam Frame: Horizontal Coordinate #[16]: Optional: Orientation of the Horizontal Base vector of the Output Frame in the Incident Beam Frame: Vertical Coordinate ]) def main(): v = srwl_bl.srwl_uti_parse_options(varParam, use_sys_argv=True) op = set_optics(v) v.ss = True v.ss_pl = 'e' v.sm = True v.sm_pl = 'e' v.pw = True v.pw_pl = 'xy' v.si = True v.si_pl = 'xy' v.tr = True v.tr_pl = 'xz' v.ws = True v.ws_pl = 'xy' mag = None if v.rs_type == 'm': mag = srwlib.SRWLMagFldC() mag.arXc.append(0) mag.arYc.append(0) mag.arMagFld.append(srwlib.SRWLMagFldM(v.mp_field, v.mp_order, v.mp_distribution, v.mp_len)) mag.arZc.append(v.mp_zc) srwl_bl.SRWLBeamline(_name=v.name, _mag_approx=mag).calc_all(v, op) if __name__ == '__main__': main()
#!/usr/bin/env python from __future__ import print_function from collections import defaultdict from collections import deque from subprocess import call from optparse import OptionParser from tempfile import mkstemp import os import random import re import shlex import shutil import subprocess import sys import time import resource FNULL = open('/dev/null', 'w') base_path = os.path.dirname(sys.argv[0])[:-len('src/py/')] file_limit = resource.getrlimit(resource.RLIMIT_NOFILE)[1] class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' def main(): (options, args) = get_options() start_time = time.time() fasta_file = options.fasta_file error_files = [] reads_untrimmed_location = [options.first_mates, options.second_mates] reads_trimmed_location = [] shell_file = options.output_dir + "/commands.sh" sam_output_location_dir = options.output_dir + "/sam/" sam_output_location = sam_output_location_dir + "library.sam" singleton_output_dir = options.output_dir + "/singleton/" singleton_output_location = singleton_output_dir + "singletons.csv" ensure_dir(sam_output_location_dir) ensure_dir(singleton_output_dir) global shell_file_fp shell_file_fp = open(shell_file, 'w') setup_shell_file() bins_dir = options.output_dir + "/bins/" ensure_dir(bins_dir) input_fasta_saved = options.fasta_file output_dir_saved = options.output_dir all_contig_lengths = {} if options.min_contig_length > 0: step("FILTERING ASSEMBLY CONTIGS LESS THAN " + str(options.min_contig_length) + ' BPs') all_contig_lengths = filter_short_contigs(options) results(options.fasta_file) fasta_file = options.fasta_file input_fasta_saved = options.fasta_file step("ALIGNING READS") unaligned_dir = run_bowtie2(options, sam_output_location) contig_lengths = get_contig_lengths(sam_output_location) step("RUNNING SAMTOOLS") bam_location, sorted_bam_location, pileup_file = \ run_samtools(options, sam_output_location, index=True) if options.coverage_file is None: step("CALCULATING CONTIG COVERAGE") options.coverage_file = calculate_contig_coverage(options, pileup_file) results(options.coverage_file) pileup_file = run_abundance_by_kmers(options) results(options.coverage_file) contig_abundances = get_contig_abundances(options.coverage_file) step("CALCULATING ASSEMBLY PROBABILITY") run_lap(options, sam_output_location, reads_trimmed_location) if options.threads > 1: step("PARTITIONING COVERAGE FILE") run_split_pileup(options, pileup_file) step("DEPTH OF COVERAGE") error_files.append(run_depth_of_coverage(options, pileup_file)) contig_to_bin_map, bin_dir_dict = bin_coverage(options,bins_dir) split_sam_by_bin(sam_output_location, contig_to_bin_map, bin_dir_dict) outputBreakpointDir = options.output_dir + "/breakpoint/" ouputBreakpointLocation = outputBreakpointDir + "errorsDetected.csv" ensure_dir(outputBreakpointDir) step("BREAKPOINT") error_files.append(run_breakpoint_finder(options,\ unaligned_dir, outputBreakpointDir)) for bin_dir in os.listdir(bins_dir): #if 'bin' in bin_dir: coverages = bin_dir options.fasta_file = os.path.abspath(output_dir_saved) + '/bins/'\ + bin_dir + '/' + os.path.basename(input_fasta_saved) options.output_dir = os.path.abspath(output_dir_saved) + '/bins/'\ + bin_dir bin_dir_infix = '/bins/' + bin_dir + '/' bin_dir = os.path.abspath(options.output_dir) + '/bins/' + bin_dir + '/' #warning("Bin dir is: %s" % bin_dir) sam_output_location_dir = options.output_dir + '/sam/' sam_output_location = sam_output_location_dir + 'library.sam' step("RUNNING SAMTOOLS ON COVERAGE BIN " + coverages) bam_location, sorted_bam_location, pileup_file = \ run_samtools(options, sam_output_location, with_pileup=False) #step("DEPTH OF COVERAGE") #error_files.append(run_depth_of_coverage(options, pileup_file)) step("MATE-PAIR HAPPINESS ON COVERAGE BIN " + coverages) try: error_files.append(run_reapr(options, sorted_bam_location)) except: e = sys.exc_info()[0] error("Reapr failed to run with: %s" % str(e)) options.output_dir = output_dir_saved options.fasta_file = input_fasta_saved step("SUMMARY") summary_file = open(options.output_dir + "/summary.gff", 'w') suspicious_file = open(options.output_dir + "/suspicious.gff", 'w') summary_table_file = open(options.output_dir + "/summary.tsv", 'w') #suspicious_table_file = open(options.output_dir + "/suspicious.tsv", 'w') misassemblies = [] for error_file in error_files: if error_file: for line in open(error_file, 'r'): misassemblies.append(line.strip().split('\t')) # Sort misassemblies by start site. misassemblies.sort(key = lambda misassembly: (misassembly[0], int(misassembly[3]), int(misassembly[4]))) final_misassemblies = [] for misassembly in misassemblies: # Truncate starting/ending region if it is near the end of the contigs. if int(misassembly[3]) <= options.ignore_end_distances and \ int(misassembly[4]) > options.ignore_end_distances: misassembly[3] = str(options.ignore_end_distances + 1) if int(misassembly[4]) >= (contig_lengths[misassembly[0]] - options.ignore_end_distances) and \ int(misassembly[3]) < (contig_lengths[misassembly[0]] - options.ignore_end_distances): misassembly[4] = str(contig_lengths[misassembly[0]] - options.ignore_end_distances - 1) # Don't print a flagged region if it occurs near the ends of the contig. if int(misassembly[3]) > options.ignore_end_distances and \ int(misassembly[4]) < (contig_lengths[misassembly[0]] - options.ignore_end_distances): summary_file.write('\t'.join(misassembly) + '\n') final_misassemblies.append(misassembly) summary_file.close() results(options.output_dir + "/summary.gff") #===== # Open Read Frame (ORF) filtering #=== orf_filtered_misassemblies = [] if options.orf_file: call_arr = ["sort", "-T ./", "-k1,1", "-k4,4n", options.orf_file, "-o", options.output_dir + "/" + options.orf_file + "_sorted"] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr) call_arr = ["sort", "-T ./", "-k1,1", "-k4,4n", summary_file.name, "-o", summary_file.name+"_sorted"] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout = FNULL, stderr = FNULL) call_arr = ["mv" , summary_file.name + "_sorted", summary_file.name] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout = FNULL, stderr = FNULL) call_arr = ["mv" , options.output_dir + "/" + options.orf_file+"_sorted", options.orf_file] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout = FNULL, stderr = FNULL) #We have been given an orf file, we should filter based on its contents orf_summary_file = open(options.output_dir + "/orf_filtered_summary.gff", 'w') summary_file = open(summary_file.name, 'r') orf_fp = open(options.orf_file, 'r') cur_orf = orf_fp.readline() split_cur_orf = cur_orf.split('\t') split_cur_orf[3],split_cur_orf[4] = int(split_cur_orf[3]),int(split_cur_orf[4]) #Cycle through misassemblies for cur_missassembly in summary_file: split_mis = cur_missassembly.split('\t') split_mis[3],split_mis[4] = int(split_mis[3]), int(split_mis[4]) while True: #Misassembly before any orfs contigs if not cur_orf or ( split_cur_orf[0] > split_mis[0] ): break #Misassembly after current orf contig elif split_cur_orf[0] < split_mis[0]: cur_orf = None cur_orf = orf_fp.readline() while cur_orf: split_cur_orf = cur_orf.split('\t') split_cur_orf[3],split_cur_orf[4] = int(split_cur_orf[3]),int(split_cur_orf[4]) if split_cur_orf[0] >= split_mis[0]: break cur_orf = orf_fp.readline() if not cur_orf: break #First and second again else: #Perfect ##DO WORK #Break to move on while True: if not cur_orf: break #Done elif split_mis[4] < split_cur_orf[3]: break # Advance error file to next line elif ( split_mis[3] < split_cur_orf[3] and split_mis[4]<split_cur_orf[4] )\ or ( split_mis[3] >= split_cur_orf[3] and split_mis[4] <= split_cur_orf[4] )\ or ( split_mis[3] >= split_cur_orf[3] and split_mis[3] <= split_cur_orf[4] and split_mis[4] >= split_cur_orf[4] )\ or ( split_mis[3] < split_cur_orf[3] and split_mis[4] >= split_cur_orf[4] ): orf_summary_file.write(cur_missassembly) orf_filtered_misassemblies.append(cur_missassembly.strip().split('\t')) break #Error output #Advance Error file elif split_mis[3] > split_cur_orf[4]: cur_orf = orf_fp.readline() if cur_orf: split_cur_orf = cur_orf.split('\t') split_cur_orf[3],split_cur_orf[4] = int(split_cur_orf[3]),int(split_cur_orf[4]) #Advance orf file, reevaluate else: break break # Find regions with multiple misassembly signatures. #suspicious_regions = find_suspicious_regions(misassemblies, options.min_suspicious_regions) suspicious_regions = find_sliding_suspicious_regions(final_misassemblies, options.suspicious_window_size, options.min_suspicious_regions) final_suspicious_misassemblies = [] for region in suspicious_regions: #if int(region[3]) > options.ignore_end_distances and \ # int(region[4]) <= (contig_lengths[region[0]] - options.ignore_end_distances): if int(region[4]) > (contig_lengths[region[0]] - options.ignore_end_distances): region[4] = str(contig_lengths[region[0]] - options.ignore_end_distances) suspicious_file.write('\t'.join(region) + '\n') final_suspicious_misassemblies.append(region) results(options.output_dir + "/suspicious.gff") # Output summary table. generate_summary_table(options.output_dir + "/summary.tsv", all_contig_lengths, \ contig_lengths, contig_abundances, final_misassemblies) results(options.output_dir + "/summary.tsv") if options.orf_file: generate_summary_table(options.output_dir + "/orf_summary.tsv", \ all_contig_lengths, contig_lengths, contig_abundances, orf_filtered_misassemblies,orf=True) joined_summary_fp = open(options.output_dir + "/joined_summary.tsv", 'w') call_arr = ["join", "-a1" , "-o", "0", "1.2", "1.3", "1.4", "1.5", "1.6", "1.7", "1.8", "1.9", "1.10", "2.3","2.4","2.5","2.6","2.7","2.8","2.9","2.10", '-e', "0", '-1', '1', '-2', '1' , "-t", ' ', options.output_dir + "/summary.tsv", options.output_dir + "/orf_summary.tsv"] out_cmd(joined_summary_fp.name, FNULL.name, call_arr) call(call_arr, stdout = joined_summary_fp, stderr = FNULL) # Output suspicious table. #generate_summary_table(options.output_dir + "/suspicious.tsv", all_contig_lengths, \ # contig_lengths, final_suspicious_misassemblies) #results(options.output_dir + "/suspicious.tsv") if options.email: notify_complete(options.email,time.time()-start_time) def get_options(): parser = OptionParser() parser.add_option("-a", "--assembly-fasta", dest="fasta_file", \ help="Candidate assembly file", metavar="FILE") parser.add_option("-r", "--reads", dest="reads_filenames", \ help="First Read File", metavar="FILE") parser.add_option("-1", "--1", dest="first_mates", \ help="Fastq filenames separated by commas that contain the first mates.") parser.add_option("-2", "--2", dest="second_mates", \ help="Fastq filenames separated by commas that contain the second mates.") parser.add_option("-c", "--coverage-file", dest="coverage_file", \ help="Assembly created per-contig coverage file") parser.add_option("-o", "--output-dir", dest="output_dir", \ help = "Output directory", default="data/output/") parser.add_option("-w", "--window-size", dest="window_size", \ help = "Sliding window size when determining misassemblies.", default = "201") parser.add_option("-q", "--fastq", dest="fastq_file", \ default=False, action='store_true', \ help="if set, input reads are fastq format (fasta by default).") parser.add_option("-p", "--threads", dest="threads", \ help = "Number of threads", default="8") parser.add_option("-I", "--minins", dest="min_insert_size", \ help="Min insert sizes for mate pairs separated by commas.", default="0") parser.add_option("-X", "--maxins", dest="max_insert_size", \ help="Max insert sizes for mate pairs separated by commas.", default="500") parser.add_option("-n", "--orientation", dest="orientation", default="fr", \ help="Orientation of the mates.") parser.add_option("-m", "--mu" , dest="mu", default = "180", \ help="average mate pair insert sizes.") parser.add_option("-t", "--sigma" , dest="sigma", default = "18", \ help="standard deviation of mate pair insert sizes.") parser.add_option("-x", "--max-alignments", dest="max_alignments", default = "10000", \ help="bowtie2 parameter to set the max number of alignments.") parser.add_option("-e", "--email", dest="email", \ help="Email to notify when job completes") parser.add_option("-g", "--min-coverage", dest="min_coverage", type="int", default=0, \ help="Minimum average coverage to run misassembly detection.") parser.add_option("-l", "--coverage-multiplier", dest="coverage_multiplier", type=float, default=0.0, \ help="When binning by coverage, the new high = high + high * multiplier") parser.add_option("-s", "--min-suspicious", dest="min_suspicious_regions", default=2, type=int, \ help="Minimum number of overlapping flagged miassemblies to mark region as suspicious.") parser.add_option("-d", "--suspicious-window-size", dest="suspicious_window_size", default=2000, type=int, \ help="Mark region as suspicious if multiple signatures occur within this window size.") parser.add_option('-z', "--min-contig-length", dest="min_contig_length", default=1000, type=int, \ help="Ignore contigs smaller than this length.") parser.add_option('-b', "--ignore-ends", dest="ignore_end_distances", default=0, type=int, \ help="Ignore flagged regions within b bps from the ends of the contigs.") parser.add_option('-k', "--breakpoint-bin", dest="breakpoints_bin", default="50", type=str, \ help="Bin sized used to find breakpoints.") parser.add_option('-f', "--orf-file", dest="orf_file", help="gff formatted file containing orfs") parser.add_option("--kmer", dest="kmer_length", help="kmer length used for abundance estimation", \ default = "15") (options, args) = parser.parse_args() should_err = False if not options.fasta_file: warning("You need to provide a fasta file with -a") should_err = True #if not options.read_file_1: # warning("You need to provide the first read file with -r") # should_err = True #if not options.read_file_2: # warning("You need to provide the second read file with -d") # should_err = True if not options.coverage_file: warning("Coverage file not provided, will create one.") #should_err = True if should_err: parser.print_help() exit(-1) return (options,args) def ran_command(st, fp): fp.write(st) def ensure_dir(f): d = os.path.dirname(f) if not os.path.exists(d): os.makedirs(d) assert os.path.exists(d) def notify_complete(target_email,t): call(['echo "Completed in %d" | mail -s "Job Completed" %s' % (t, target_email) ],shell=True) def setup_shell_file(): if shell_file_fp: shell_file_fp.write("#!/bin/bash\n") def line(x): print ("-"*x, file=sys.stderr) def step(*objs): line(75) print(bcolors.HEADER + "STEP:\t" + bcolors.ENDC, *objs, file=sys.stderr) def out_cmd(std_out = "", std_err = "", *objs): #line(75) if shell_file_fp: if std_out != "": std_out_sht = " 1>%s " % (std_out) else: std_out_sht = "" if std_err != "": std_err_sht = " 2>%s " % (std_err) else: std_err_sht = "" shell_file_fp.write(' '.join(*objs) + std_out_sht + std_err_sht + "\n") shell_file_fp.flush() print(bcolors.OKBLUE + "COMMAND:\t" + bcolors.ENDC, ' '.join(*objs), file=sys.stderr) def results(*objs): print(bcolors.WARNING + "RESULTS:\t" + bcolors.ENDC,*objs, file=sys.stderr) def warning(*objs): print("INFO:\t",*objs, file=sys.stderr) def error(*objs): print(bcolors.WARNING + "ERROR:\t" + bcolors.ENDC, *objs, file=sys.stderr) def filter_short_contigs(options): """ Filter out contigs less than a certain length. """ filtered_fasta_filename = options.output_dir + '/filtered_assembly.fasta' filtered_assembly_file = open(filtered_fasta_filename, 'w') all_contig_lengths = {} curr_length = 0 with open(options.fasta_file,'r') as assembly: for contig in contig_reader(assembly): curr_length = len(''.join(contig['sequence'])) if curr_length >= options.min_contig_length: filtered_assembly_file.write(contig['name']) filtered_assembly_file.writelines(contig['sequence']) filtered_assembly_file.write('\n') all_contig_lengths[contig['name'].strip()[1:]] = curr_length filtered_assembly_file.close() options.fasta_file = filtered_fasta_filename return all_contig_lengths def get_contig_lengths(sam_filename): """ Return a dictionary of contig names => contig lengths from a SAM file. """ sam_file = open(sam_filename, 'r') # Build dictionary of contig lengths. contig_lengths = {} pattern = re.compile('SN:(?P<contig>[\w_\|\.\-]+)\s*LN:(?P<length>\d+)') line = sam_file.readline() while line.startswith("@"): if line.startswith("@SQ"): matches = pattern.search(line) if len(matches.groups()) == 2: contig_lengths[matches.group('contig')] = int(matches.group('length')) line = sam_file.readline() return contig_lengths def get_contig_abundances(abundance_filename): """ Return a dictionary of contig names => contig abundances from the '/coverage/temp.cvg'. """ abundance_file = open(abundance_filename, 'r') # Build a dictionary of contig abundances. contig_abundances = {} for line in abundance_file: contig_and_abundance = line.strip().split() contig_abundances[contig_and_abundance[0]] = int(round(float(contig_and_abundance[1]))) return contig_abundances def find_sliding_suspicious_regions(misassemblies, sliding_window = 2000, min_cutoff = 2): """ Output any region that has multiple misassembly signature types within the sliding window. """ regions =[] for misassembly in misassemblies: regions.append([misassembly[0], misassembly[3], 'START', misassembly[2]]) regions.append([misassembly[0], misassembly[4], 'END', misassembly[2]]) regions.sort(key = lambda region: (region[0], int(region[1]))) """ Example: relocref 36601 START Breakpoint_finder relocref 36801 END Breakpoint_finder relocref 67968 START REAPR relocref 68054 START REAPR relocref 69866 END REAPR relocref 69867 START REAPR relocref 71833 END REAPR relocref 73001 START Breakpoint_finder relocref 73201 END Breakpoint_finder """ # Store all the signatures, starting, and ending points within a given window. #start_points = deque([]) #end_points = deque([]) #signatures = deque([]) signatures = [] curr_contig = None count = 0 suspicious_regions = [] for index in xrange(0, len(misassemblies)): curr_contig = misassemblies[index][0] count = 0 second_index = index + 1 signatures = [misassemblies[index][2]] start_point = int(misassemblies[index][3]) end_point = int(misassemblies[index][4]) + sliding_window # While we are on the same contig, and still in the sliding window... while second_index < len(misassemblies) and \ misassemblies[second_index][0] == curr_contig and \ int(misassemblies[second_index][3]) < (int(misassemblies[index][4]) + sliding_window): if misassemblies[second_index][2] not in signatures: signatures.append(misassemblies[second_index][2]) count += 1 if int(misassemblies[second_index][4]) > end_point: end_point = int(misassemblies[second_index][4]) second_index += 1 if len(signatures) >= min_cutoff: suspicious_regions.append([misassemblies[index][0], '.', 'SUSPICIOUS', str(start_point), str(end_point), '.', '.', '.', 'color=#181009;' + ','.join(signatures)]) # Hack to correct for overlapping suspicious regions. compressed_suspicious_regions = [] prev_region = None for region in suspicious_regions: if prev_region is None: prev_region = region else: if prev_region[0] == region[0] and int(prev_region[4]) >= int(region[3]): prev_region[4] = region[4] else: compressed_suspicious_regions.append(prev_region) prev_region = region if prev_region: compressed_suspicious_regions.append(prev_region) return compressed_suspicious_regions def find_suspicious_regions(misassemblies, min_cutoff = 2): """ Given a list of miassemblies in gff format """ regions =[] for misassembly in misassemblies: regions.append([misassembly[0], misassembly[3], 'START', misassembly[2]]) regions.append([misassembly[0], misassembly[4], 'END', misassembly[2]]) regions.sort(key = lambda region: (region[0], int(region[1]))) """ Example: relocref 36601 START Breakpoint_finder relocref 36801 END Breakpoint_finder relocref 67968 START REAPR relocref 68054 START REAPR relocref 69866 END REAPR relocref 69867 START REAPR relocref 71833 END REAPR relocref 73001 START Breakpoint_finder relocref 73201 END Breakpoint_finder """ curr_contig = None curr_index = 0 curr_length = -1 start_indexes = [] start_region = 0 end_index = 0 signatures = [] recording = False signature_starts = defaultdict(list) curr_coverage = 0 suspicious_regions = [] for region in regions: if curr_contig is None: curr_contig = region[0] recording = False signature_starts = defaultdict(list) # We have found a new contig, process the previous contig results. if region[0] != curr_contig: curr_contig = region[0] recording = False if region[2] == 'START': curr_coverage += 1 if region[3] not in signatures: signatures.append(region[3]) signature_starts[region[3]].append(region[1]) # Record start point. if curr_coverage == min_cutoff: start_region = region[1] recording == True start_indexes.append(region[1]) else: curr_coverage -= 1 end_index = region[1] if region[3] in signatures: signatures.remove(region[3]) # If we were recording, and min signatures drop belows threshold, # then we need to output our results if curr_coverage < min_cutoff and recording: min_start = None suspicious_regions.append([region[0], '.', 'SUSPICIOUS', str(start_region), str(end_index), '.', '.', '.', 'color=#181009;' + ','.join(signatures)]) signatures = [] recording = False if curr_coverage >= min_cutoff: recording = True # Hack to correct for overlapping suspicious regions. compressed_suspicious_regions = [] prev_region = None for region in suspicious_regions: if prev_region is None: prev_region = region else: if prev_region[0] == region[0] and int(prev_region[4]) >= int(region[3]): prev_region[4] = region[4] else: compressed_suspicious_regions.append(prev_region) prev_region = region if prev_region: compressed_suspicious_regions.append(prev_region) return compressed_suspicious_regions def generate_summary_table(table_filename, all_contig_lengths, filtered_contig_lengths, contig_abundances, misassemblies, orf=False): """ Output the misassemblies in a table format: contig_name contig_length low_cov low_cov_bps high_cov high_cov_bps ... CONTIG1 12000 1 100 0 0 ... CONTIG2 100 NA NA NA ... """ table_file = open(table_filename, 'w') if orf: table_file.write("contig_name\tcontig_length\tabundance\torf_low_cov\torf_low_cov_bps\torf_high_cov\torf_high_cov_bps\torf_reapr\torf_reapr_bps\torf_breakpoints\torf_breakpoints_bps\n") else: table_file.write("contig_name\tcontig_length\tabundance\tlow_cov\tlow_cov_bps\thigh_cov\thigh_cov_bps\treapr\treapr_bps\tbreakpoints\tbreakpoints_bps\n") prev_contig = None curr_contig = None # Misassembly signatures low_coverage = 0 low_coverage_bps = 0 high_coverage = 0 high_coverage_bps = 0 reapr = 0 reapr_bps = 0 breakpoints = 0 breakpoints_bps = 0 processed_contigs = set() for misassembly in misassemblies: """ contig00001 REAPR Read_orientation 88920 97033 . . . Note=Warning: Bad read orientation;colour=1 contig00001 REAPR FCD 89074 90927 0.546142 . . Note=Error: FCD failure;colour=17 contig00001 DEPTH_COV low_coverage 90818 95238 29.500000 . . low=30.000000;high=70.000000;color=#7800ef """ curr_contig = misassembly[0] if prev_contig is None: prev_contig = curr_contig if curr_contig != prev_contig: # Output previous contig stats. table_file.write(prev_contig + '\t' + str(filtered_contig_lengths[prev_contig]) + '\t' + str(contig_abundances[prev_contig]) + '\t' + \ str(low_coverage) + '\t' + str(low_coverage_bps) + '\t' + str(high_coverage) + '\t' + \ str(high_coverage_bps) + '\t' + str(reapr) + '\t' + str(reapr_bps) + '\t' + str(breakpoints) + '\t' + \ str(breakpoints_bps) + '\n') processed_contigs.add(prev_contig) # Reset misassembly signature counts. low_coverage = 0 low_coverage_bps = 0 high_coverage = 0 high_coverage_bps = 0 reapr = 0 reapr_bps = 0 breakpoints = 0 breakpoints_bps = 0 prev_contig = curr_contig # Process the current contig misassembly. if misassembly[1] == 'REAPR': if 'Warning' not in misassembly[8]: reapr += 1 reapr_bps += (int(misassembly[4]) - int(misassembly[3]) + 1) elif misassembly[1] == 'DEPTH_COV': if misassembly[2] == 'Low_coverage': low_coverage += 1 low_coverage_bps += (int(misassembly[4]) - int(misassembly[3]) + 1) else: high_coverage += 1 high_coverage_bps += (int(misassembly[4]) - int(misassembly[3]) + 1) elif misassembly[1] == 'Breakpoint_finder': breakpoints += 1 breakpoints_bps += (int(misassembly[4]) - int(misassembly[3]) + 1) else: print("Unhandled error: " + misassembly[1]) if prev_contig: # Output previous contig stats. table_file.write(prev_contig + '\t' + str(filtered_contig_lengths[prev_contig]) + '\t' + str(contig_abundances[prev_contig]) + '\t' + \ str(low_coverage) + '\t' + str(low_coverage_bps) + '\t' + str(high_coverage) + '\t' + \ str(high_coverage_bps) + '\t' + str(reapr) + '\t' + str(reapr_bps) + '\t' + str(breakpoints) + '\t' + \ str(breakpoints_bps) + '\n') processed_contigs.add(prev_contig) # We need to add the remaining, error-free contigs. for contig in filtered_contig_lengths: if contig not in processed_contigs: table_file.write(contig + '\t' + str(filtered_contig_lengths[contig]) + '\t' + str(contig_abundances[contig]) + '\t' + \ '0\t0\t0\t0\t0\t0\t0\t0\n') processed_contigs.add(contig) # Finally, add the contigs that were filtered out prior to evaluation. for contig in all_contig_lengths: if contig not in processed_contigs: table_file.write(contig + '\t' + str(all_contig_lengths[contig]) + '\t' + 'NA\t' + \ 'NA\tNA\tNA\tNA\tNA\tNA\tNA\tNA\n') processed_contigs.add(contig) def calculate_contig_coverage(options, pileup_file): """ Calculate contig coverage. The coverage of a contig is the mean per-bp coverage. """ coverage_filename = options.output_dir + '/coverage/temp.cvg' coverage_file = open(coverage_filename, 'w') prev_contig = None curr_contig = None length = 0 curr_coverage = 0 for record in open(pileup_file, 'r'): fields = record.strip().split() if prev_contig != fields[0]: if prev_contig: coverage_file.write(prev_contig + '\t' + str(float(curr_coverage) / length) + '\n') prev_contig = fields[0] length = 0 curr_coverage = 0 curr_coverage += int(fields[3]) length += 1 if prev_contig: coverage_file.write(prev_contig + '\t' + str(float(curr_coverage) / length) + '\n') coverage_file.close() return coverage_filename def build_bowtie2_index(index_name, reads_file): """ Build a Bowtie2 index. """ command = os.path.join(base_path, "bin/bowtie2-2.2.2/bowtie2-build ") + os.path.abspath(reads_file) + " " + os.path.abspath(index_name) # Bad workaround. out_cmd(FNULL.name, FNULL.name, [command]) bowtie2_build_proc = subprocess.Popen(command, shell = True, stdout = FNULL, stderr = FNULL) bowtie_output, err = bowtie2_build_proc.communicate() bowtie2_build_proc.wait() return index_name def run_bowtie2(options = None, output_sam = 'temp.sam'): """ Run Bowtie2 with the given options and save the SAM file. """ # Using bowtie2. # Create the bowtie2 index if it wasn't given as input. #if not assembly_index: if not os.path.exists(os.path.abspath(options.output_dir) + '/indexes'): os.makedirs(os.path.abspath(options.output_dir) + '/indexes') fd, index_path = mkstemp(prefix='temp_',\ dir=(os.path.abspath(options.output_dir) + '/indexes/')) try: os.mkdirs(os.path.dirname(index_path)) except: pass fasta_file = options.fasta_file build_bowtie2_index(os.path.abspath(index_path), os.path.abspath(fasta_file)) assembly_index = os.path.abspath(index_path) unaligned_dir = os.path.abspath(options.output_dir) + '/unaligned_reads/' ensure_dir(unaligned_dir) unaligned_file = unaligned_dir + 'unaligned.reads' #input_sam_file = output_sam_file read_type = " -f " if options.fastq_file: read_type = " -q " bowtie2_args = "" bowtie2_unaligned_check_args = "" if options.first_mates: bowtie2_args = "-a -x " + assembly_index + " -1 " + options.first_mates\ + " -2 " + options.second_mates + " -p " + options.threads\ + " --very-sensitive -a " + " --reorder --"\ + options.orientation + " -I " + options.min_insert_size\ + " -X " + options.max_insert_size + " --no-mixed" #+ " --un-conc "\ #+ unaligned_file bowtie2_unaligned_check_args = "-a -x " + assembly_index + read_type + " -U "\ + options.first_mates + "," + options.second_mates + " --very-sensitive -a "\ + " --reorder -p " + options.threads + " --un " + unaligned_file else: bowtie2_args = "-a -x " + assembly_index + read_type + " -U "\ + options.reads_filenames + " --very-sensitive -a "\ + " --reorder -p " + options.threads + " --un " + unaligned_file if not options: sys.stderr.write("[ERROR] No Bowtie2 options specified" + '\n') return # Using bowtie 2. command = os.path.join(base_path, "bin/bowtie2-2.2.2/bowtie2 ") + bowtie2_args + " -S " + output_sam out_cmd( FNULL.name, FNULL.name,[command]) #call(command.split()) args = shlex.split(command) bowtie_proc = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=FNULL) bowtie_output, err = bowtie_proc.communicate() if bowtie2_unaligned_check_args != "": command = os.path.join(base_path, "bin/bowtie2-2.2.2/bowtie2 ") + bowtie2_unaligned_check_args + " -S " + output_sam + "_2.sam" out_cmd( FNULL.name, FNULL.name, [command]) args = shlex.split(command) bowtie_proc = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=FNULL) bowtie_output, err = bowtie_proc.communicate() return unaligned_dir def run_breakpoint_finder(options,unaligned,breakpoint_dir): ''' attempts to find breakpoints ''' std_err_file = open(breakpoint_dir + 'splitter_std_err.log', 'w') call_arr = [os.path.join(base_path,'src/py/breakpoint_splitter.py'),\ '-u', unaligned,\ '-o', breakpoint_dir + 'split_reads/'] out_cmd( "", std_err_file.name, call_arr) call(call_arr, stderr=std_err_file) std_err_file.close() std_err_file = open(breakpoint_dir + 'std_err.log','w') call_arr = [os.path.join(base_path, 'src/py/breakpoint_finder.py'),\ '-a', options.fasta_file,\ '-r', breakpoint_dir + 'split_reads/',\ '-b', options.breakpoints_bin, '-o', breakpoint_dir,\ '-c', options.coverage_file,\ '-p', options.threads] out_cmd( "", std_err_file.name,call_arr) call(call_arr,stderr=std_err_file) results(breakpoint_dir + 'interesting_bins.gff') return breakpoint_dir + 'interesting_bins.gff' def split_sam_by_bin(sam_output_location, contig_to_bin_map, bin_dir_dict): common_header = "" output_bin = {} output_fp = {} for bin in set(contig_to_bin_map.values()): output_bin[bin] = "" bin_dir = bin_dir_dict[bin] if os.path.exists(bin_dir): ensure_dir(bin_dir + "sam/") output_fp[bin] = open(bin_dir + "sam/"\ + os.path.basename(sam_output_location), 'w') else: error("Bin dir did not exist") error("%s" % (str(bin_dir_dict))) with open(sam_output_location, 'r') as sam_file: for line in sam_file: if line.split()[0] == "@HD" or line.split()[0] == "@PG"\ or line.split()[0] == "@CO" or line.split()[0] == "@RG": for fp in output_fp.values(): fp.write(line) elif line.split()[0] == "@SQ": # TODO: Clean up. if line.split()[1].split(':')[1] in contig_to_bin_map: bin = contig_to_bin_map[line.split()[1].split(':')[1]] output_fp[bin].write(line) else: line_split = line.split('\t') if line_split[2] == '*': pass else: # TODO: Clean up. if line_split[2] in contig_to_bin_map: bin = contig_to_bin_map[line_split[2]] output_fp[bin].write(line) def increment_coverage_window(options, low, high): """ Find new low/high boundaries for coverage bins. """ low = high prev_high = high high = int(high + high * options.coverage_multiplier) if high == prev_high: high = high + 1 #warning("Incremented coverage window to: %d -~- %d" % (low, high)) return low, high def bin_coverage(options, bin_dir): contig_to_coverage_map = {} contig_to_bin_map = {} bin_to_name_map = {} with open(options.coverage_file,'r') as coverage_file: for line in coverage_file: split_line = line.split() if float(split_line[1]) >= options.min_coverage: # Only store contigs who are above minimum avg coverage. contig_to_coverage_map[split_line[0]] = float(split_line[1]) else: warning("Not binning contig: %s due to lower than minimum coverage %f"\ % (split_line[0], options.min_coverage)) max_cvg = max(contig_to_coverage_map.values()) high = int(options.min_coverage + options.min_coverage * .1) if high <= options.min_coverage: high = high + 1 low = options.min_coverage curr_bin = 0 bins = [] while len(contig_to_bin_map) < len(contig_to_coverage_map): slice_dict = {k: v for k,v in contig_to_coverage_map.iteritems() if low<=v and high>v} for contig in slice_dict.keys(): contig_to_bin_map[contig] = curr_bin bin_to_name_map[curr_bin] = (low, high) low, high = increment_coverage_window(options, low, high) curr_bin += 1 bin_set = set(contig_to_bin_map.values()) fp_dict = {} bin_dir_dict = {} open_fp_count = 0 unopened_fp = {} processed_file_names = {} for bin in bin_set: #a_new_bin = bin_dir + "bin" + str(bin) + "/" a_new_bin = bin_dir + str(bin_to_name_map[bin][0]) + "x-" + str(bin_to_name_map[bin][1]) + "x/" bin_dir_dict[bin] = a_new_bin ensure_dir(a_new_bin) shutil.copy(options.coverage_file, a_new_bin +\ os.path.basename(options.coverage_file)) if open_fp_count < (file_limit/2): fp_dict[bin] = open(a_new_bin + os.path.basename(options.fasta_file),'w') open_fp_count += 1 else: unopened_fp[bin] = a_new_bin + os.path.basename(options.fasta_file) #fp_dict[bin].close() #fp_dict[bin] = a_new_bin + os.path.basename(options.fasta_file) warning("Contig to bin map is: %s" %(str(contig_to_bin_map))) while True: with open(options.fasta_file,'r') as assembly: for contig in contig_reader(assembly): # TODO: Clean up. if contig['name'][1:].strip() in contig_to_bin_map: bin = contig_to_bin_map[contig['name'][1:].strip()] if bin in fp_dict.keys() and not fp_dict[bin].closed: with fp_dict[bin] as bin_file: bin_file.write(contig['name']) bin_file.writelines(contig['sequence']) else: warning("Throwing away contig: %s due to not being in contig_to_bin_map" % (contig['name'][1:].strip())) temp_key_list = fp_dict.keys()[:] for bin in temp_key_list: fp_dict[bin].close() open_fp_count -= 1 processed_file_names[bin] = fp_dict[bin] del fp_dict[bin] if len(unopened_fp.keys()) == 0: break temp_key_list = unopened_fp.keys()[:] for bin in temp_key_list: if open_fp_count < (file_limit /2 ): fp_dict[bin] = open(unopened_fp[bin],'w') del unopened_fp[bin] opened_fp_count += 1 else: break for fp in processed_file_names.values(): name = fp.name if os.stat(name).st_size <= 10: warning("Would have removed tree: %s for file: %s" % (os.path.dirname(name), name)) shutil.rmtree(os.path.dirname(name)) return contig_to_bin_map,bin_dir_dict def contig_reader(fasta_file): save_line = "" contig = {} in_contig = False for line in fasta_file: if line[0] == '>' and in_contig: save_line = line ret_contig = contig contig = {} contig['sequence'] = [] contig['name'] = line.split()[0].strip() + "\n" yield ret_contig elif line[0] == '>': contig['name'] = line.split()[0].strip() + "\n" contig['sequence'] = [] in_contig = True else: contig['sequence'].append(line.strip()) yield contig def run_lap(options, sam_output_location, reads_trimmed_location): """ Calculate the LAP using the previously computed SAM file. """ output_probs_dir = options.output_dir + "/lap/" ensure_dir(output_probs_dir) output_probs_location = output_probs_dir + "output.prob" fp = open(output_probs_location, "w") reads = [options.reads_filenames] if options.first_mates: reads = [options.first_mates, options.second_mates] call_arr = [] if options.first_mates: call_arr = [os.path.join(base_path, "bin/lap/aligner/calc_prob.py"), "-a", options.fasta_file, "-s", sam_output_location, "-q", "-1", options.first_mates, "-2", options.second_mates, "-n", options.coverage_file, '-o', options.orientation, "-I", options.min_insert_size, "-X", options.max_insert_size, '-p', options.threads] else: call_arr = [os.path.join(base_path, "bin/lap/aligner/calc_prob.py"), "-a", options.fasta_file, "-s", sam_output_location, "-q", "-i", ','.join(reads), "-n", options.coverage_file, '-p', options.threads] out_cmd(fp.name, "", call_arr) #warning("That command outputs to: ", output_probs_location) results(output_probs_location) call(call_arr, stdout=fp) output_sum_probs_location = output_probs_dir + "output.sum" call_arr = [os.path.join(base_path, "bin/lap/aligner/sum_prob.py"), "-i", output_probs_location, "-t", "1e-80"] out_cmd( output_sum_probs_location, "", call_arr) call(call_arr, stdout=open(output_sum_probs_location,'w')) results(output_sum_probs_location) def run_samtools(options, sam_output_location, with_pileup = True, index=False): """ Takes a sam file and runs samtools to create bam, sorted bam, and mpileup. """ bam_dir = options.output_dir + "/bam/" ensure_dir(bam_dir) bam_location = bam_dir + "library.bam" sorted_bam_location = bam_dir + "sorted_library" bam_fp = open(bam_location, 'w+') error_file_location = bam_dir + "error.log" error_fp = open(error_file_location, 'w+') #warning("About to run samtools view to create bam") call_arr = [os.path.join(base_path, "bin/Reapr_1.0.17/src/samtools"), "view", "-bS", sam_output_location] out_cmd(bam_fp.name, error_fp.name, call_arr) #warning("That command outputs to file: ", bam_location) call(call_arr, stdout = bam_fp, stderr = error_fp) #warning("About to attempt to sort bam") call_arr = [os.path.join(base_path, "bin/Reapr_1.0.17/src/samtools"), "sort", bam_location, sorted_bam_location] out_cmd( "", FNULL.name, call_arr) call(call_arr, stderr = FNULL) coverage_file_dir = options.output_dir + "/coverage/" ensure_dir(coverage_file_dir) pileup_file = coverage_file_dir + "mpileup_output.out" p_fp = open(pileup_file, 'w') if with_pileup: call_arr = [os.path.join(base_path, "bin/Reapr_1.0.17/src/samtools"), "mpileup", "-A", "-f", options.fasta_file, sorted_bam_location + ".bam"] out_cmd(p_fp.name, FNULL.name, call_arr) results(pileup_file) #warning("That command outputs to file: ", pileup_file) call(call_arr, stdout = p_fp, stderr = FNULL) if index: call_arr = [os.path.join(base_path, "bin/Reapr_1.0.17/src/samtools"), "index", sorted_bam_location + ".bam"] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout = FNULL, stderr = FNULL) return (bam_location, sorted_bam_location, pileup_file) def run_split_pileup(options, pileup_file): """ Split the pileup file into a number of chunks. """ call_arr = [os.path.join(base_path, "src/py/split_pileup.py"), "-p", pileup_file, "-c", options.threads] out_cmd("","",call_arr) call(call_arr) def run_abundance_by_kmers(options): """ Pileup based on k-mer abundances.""" coverage_filename = options.output_dir + '/coverage/temp_kmer.cvg' coverage_file = open(coverage_filename, 'w') options.kmer_pileup_file = options.output_dir + "/coverage/kmer_pileup" options.coverage_file = options.output_dir + '/coverage/temp_kmer.cvg' # ./src/py/abundance_by_kmers.py -a test/test_kmer_abun.fna -r test/test_kmers_abun_lib.fastq -k 15 -t 4 -e .98 -p tmp_kmer_abun_15_30 -m 30 call_arr = [os.path.join(base_path, "src/py/abundance_by_kmers.py"), \ "-a", options.fasta_file,\ "-r", options.reads_filenames,\ "-k", options.kmer_length,\ "-t", options.threads,\ "-e", ".98", "-p", options.kmer_pileup_file] out_cmd("","",call_arr) call(call_arr, stdout=coverage_file) return options.kmer_pileup_file def run_depth_of_coverage(options, pileup_file): """ Run depth of coverage. """ dp_fp = options.output_dir + "/coverage/errors_cov.gff" abundance_file = options.coverage_file #call_arr = ["src/py/depth_of_coverage.py", "-a", abundance_file, "-m", pileup_file, "-w", options.window_size, "-o", dp_fp, "-g", "-e"] call_arr = [os.path.join(base_path, "src/py/depth_of_coverage.py"), "-m", pileup_file, "-w", options.window_size, "-o", dp_fp, "-g", "-e", "-c", options.threads] out_cmd("","",call_arr) call(call_arr) results(dp_fp) return dp_fp def run_reapr(options, sorted_bam_location): """ Run REAPR. """ reapr_command = os.path.join(base_path, "bin/Reapr_1.0.17/reapr") #warning("About to run facheck") call_arr = [reapr_command, "facheck", options.fasta_file ] out_cmd("","",call_arr) call(call_arr) reapr_output_dir = options.output_dir + "/reapr" reapr_perfect_prefix = options.output_dir + "/r_perfect_prefix" #warning("About to run reapr pipeline") call_arr = [reapr_command, "pipeline", options.fasta_file,\ sorted_bam_location + ".bam", reapr_output_dir] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout=FNULL, stderr=FNULL) call_arr = ["gunzip", reapr_output_dir + "/03.score.errors.gff"] out_cmd(FNULL.name, FNULL.name, call_arr) call(call_arr, stdout=FNULL, stderr=FNULL) if os.path.exists(reapr_output_dir + "/03.score.errors.gff"): return reapr_output_dir + "/03.score.errors.gff" else: return None if __name__ == '__main__': main()
#!/usr/bin/python # -*- coding: utf-8 -*- # thumbor imaging service # https://github.com/thumbor/thumbor/wiki # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license # Copyright (c) 2011 globo.com [email protected] from unittest import TestCase import mock from preggy import expect from thumbor.app import ThumborServiceApp import thumbor.utils from thumbor.config import Config import thumbor.server from thumbor.server import ( get_as_integer, get_config, configure_log, get_importer, validate_config, get_context, get_application, run_server, main, ) from thumbor.engines import BaseEngine from tests.fixtures.custom_error_handler import ErrorHandler as CustomErrorHandler class ServerTestCase(TestCase): def test_can_get_value_as_integer(self): expect(get_as_integer("1")).to_equal(1) expect(get_as_integer("a")).to_be_null() expect(get_as_integer("")).to_be_null() expect(get_as_integer(None)).to_be_null() def test_can_get_config_from_path(self): config = get_config('./tests/fixtures/thumbor_config_server_test.conf') expect(config).not_to_be_null() expect(config.ALLOWED_SOURCES).to_be_like(['mydomain.com']) @mock.patch('logging.basicConfig') def test_can_configure_log_from_config(self, basic_config_mock): conf = Config() configure_log(conf, 'DEBUG') params = dict( datefmt='%Y-%m-%d %H:%M:%S', level=10, format='%(asctime)s %(name)s:%(levelname)s %(message)s' ) basic_config_mock.assert_called_with(**params) @mock.patch('logging.config.dictConfig') def test_can_configure_log_from_dict_config(self, dict_config_mock): conf = Config( THUMBOR_LOG_CONFIG={ "level": "INFO" } ) configure_log(conf, 'DEBUG') params = dict( level="INFO", ) dict_config_mock.assert_called_with(params) def test_can_import_default_modules(self): conf = Config() importer = get_importer(conf) expect(importer).not_to_be_null() expect(importer.filters).not_to_be_empty() def test_can_import_with_custom_error_handler_class(self): conf = Config( USE_CUSTOM_ERROR_HANDLING=True, ERROR_HANDLER_MODULE='tests.fixtures.custom_error_handler', ) importer = get_importer(conf) expect(importer).not_to_be_null() expect(importer.error_handler_class).not_to_be_null() expect(importer.error_handler_class).to_be_instance_of(CustomErrorHandler) def test_validate_config_security_key(self): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY=None) with expect.error_to_happen( RuntimeError, message="No security key was found for this instance of thumbor. " "Please provide one using the conf file or a security key file."): validate_config(conf, server_parameters) def test_validate_config_security_key_from_config(self): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY='something') validate_config(conf, server_parameters) expect(server_parameters.security_key).to_equal('something') @mock.patch.object(thumbor.server, 'which') def test_validate_gifsicle_path(self, which_mock): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY='test', USE_GIFSICLE_ENGINE=True) which_mock.return_value = '/usr/bin/gifsicle' validate_config(conf, server_parameters) expect(server_parameters.gifsicle_path).to_equal('/usr/bin/gifsicle') @mock.patch.object(thumbor.server, 'which') def test_validate_null_gifsicle_path(self, which_mock): server_parameters = mock.Mock(security_key=None) conf = Config(SECURITY_KEY='test', USE_GIFSICLE_ENGINE=True) which_mock.return_value = None with expect.error_to_happen( RuntimeError, message="If using USE_GIFSICLE_ENGINE configuration to True, " "the `gifsicle` binary must be in the PATH and must be an executable." ): validate_config(conf, server_parameters) def test_get_context(self): server_parameters = mock.Mock(security_key=None, app_class='thumbor.app.ThumborServiceApp') conf = Config(SECURITY_KEY='test') importer = get_importer(conf) context = get_context(server_parameters, conf, importer) expect(context).not_to_be_null() def test_get_application(self): server_parameters = mock.Mock(security_key=None, app_class='thumbor.app.ThumborServiceApp') conf = Config(SECURITY_KEY='test') importer = get_importer(conf) context = get_context(server_parameters, conf, importer) app = get_application(context) expect(app).not_to_be_null() expect(app).to_be_instance_of(ThumborServiceApp) @mock.patch.object(thumbor.server, 'HTTPServer') def test_can_run_server_with_default_params(self, server_mock): application = mock.Mock() context = mock.Mock() context.server = mock.Mock(fd=None, port=1234, ip='0.0.0.0') server_instance_mock = mock.Mock() server_mock.return_value = server_instance_mock run_server(application, context) server_instance_mock.bind.assert_called_with(1234, '0.0.0.0') server_instance_mock.start.assert_called_with(1) @mock.patch.object(thumbor.server, 'HTTPServer') @mock.patch.object(thumbor.server, 'socket') def test_can_run_server_with_fd(self, socket_mock, server_mock): application = mock.Mock() context = mock.Mock() context.server = mock.Mock(fd=11, port=1234, ip='0.0.0.0') server_instance_mock = mock.Mock() server_mock.return_value = server_instance_mock socket_mock.fromfd.return_value = "socket mock" run_server(application, context) server_instance_mock.add_socket.assert_called_with("socket mock") server_instance_mock.start.assert_called_with(1) @mock.patch.object(thumbor.server, 'HTTPServer') @mock.patch('__builtin__.open', create=True) @mock.patch.object(thumbor.server, 'socket') def test_can_run_server_with_null_fd(self, socket_mock, open_mock, server_mock): application = mock.Mock() context = mock.Mock() context.server = mock.Mock(fd="/path/bin", port=1234, ip='0.0.0.0') server_instance_mock = mock.Mock() server_mock.return_value = server_instance_mock socket_mock.fromfd.return_value = "socket mock" socket_mock.fileno.return_value = 12 open_mock.return_value = socket_mock run_server(application, context) server_instance_mock.add_socket.assert_called_with("socket mock") server_instance_mock.start.assert_called_with(1) @mock.patch.object(thumbor.server, 'HTTPServer') @mock.patch.object(thumbor.server, 'get_server_parameters') @mock.patch('tornado.ioloop.IOLoop.instance', create=True) def test_can_run_main(self, ioloop_mock, get_server_parameters_mock, server_mock): server_parameters = mock.Mock( config_path='./tests/fixtures/thumbor_config_server_test.conf', log_level='DEBUG', security_key='sec', app_class='thumbor.app.ThumborServiceApp', fd=None, ip='0.0.0.0', port=1234, ) get_server_parameters_mock.return_value = server_parameters ioloop_instance_mock = mock.Mock() ioloop_mock.return_value = ioloop_instance_mock main() ioloop_instance_mock.start.assert_any_call() def cleanup(self): ServerTestCase.cleanup_called = True @mock.patch.object(thumbor.server, 'HTTPServer') @mock.patch.object(thumbor.server, 'get_server_parameters') @mock.patch('tornado.ioloop.IOLoop.instance', create=True) @mock.patch('sys.stdout') def test_main_exits_on_keyboard_interrupt(self, stdout_mock, ioloop_mock, get_server_parameters_mock, server_mock): server_parameters = mock.Mock( config_path='./tests/fixtures/thumbor_config_server_test.conf', log_level='DEBUG', security_key='sec', app_class='thumbor.app.ThumborServiceApp', fd=None, ip='0.0.0.0', port=1234, ) get_server_parameters_mock.return_value = server_parameters old_cleanup = BaseEngine.cleanup BaseEngine.cleanup = self.cleanup ServerTestCase.cleanup_called = False ioloop_instance_mock = mock.Mock() ioloop_mock.return_value = ioloop_instance_mock ioloop_instance_mock.start.side_effect = KeyboardInterrupt() main() stdout_mock.write.assert_called_with('-- thumbor closed by user interruption --\n') self.assertTrue(ServerTestCase.cleanup_called) BaseEngine.cleanup = old_cleanup
import os, signal, subprocess, sys import StringIO import ShUtil import Test import Util import platform import tempfile import re class InternalShellError(Exception): def __init__(self, command, message): self.command = command self.message = message kIsWindows = platform.system() == 'Windows' # Don't use close_fds on Windows. kUseCloseFDs = not kIsWindows # Use temporary files to replace /dev/null on Windows. kAvoidDevNull = kIsWindows # Negate if win32file is not found. kHaveWin32File = kIsWindows def RemoveForce(f): try: os.remove(f) except OSError: pass def WinWaitReleased(f): global kHaveWin32File if not kHaveWin32File: return try: import time import win32file, pywintypes retry_cnt = 256 while True: try: h = win32file.CreateFile( f, win32file.GENERIC_READ, 0, # Exclusive None, win32file.OPEN_EXISTING, win32file.FILE_ATTRIBUTE_NORMAL, None) h.close() return except WindowsError, (winerror, strerror): retry_cnt = retry_cnt - 1 if retry_cnt <= 0: raise elif winerror == 32: # ERROR_SHARING_VIOLATION pass else: raise except pywintypes.error, e: retry_cnt = retry_cnt - 1 if retry_cnt <= 0: raise elif e[0]== 32: # ERROR_SHARING_VIOLATION pass else: raise time.sleep(0.01) except ImportError, e: kHaveWin32File = False return def executeCommand(command, cwd=None, env=None): p = subprocess.Popen(command, cwd=cwd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out,err = p.communicate() exitCode = p.wait() # Detect Ctrl-C in subprocess. if exitCode == -signal.SIGINT: raise KeyboardInterrupt return out, err, exitCode def executeShCmd(cmd, cfg, cwd, results): if isinstance(cmd, ShUtil.Seq): if cmd.op == ';': res = executeShCmd(cmd.lhs, cfg, cwd, results) return executeShCmd(cmd.rhs, cfg, cwd, results) if cmd.op == '&': raise NotImplementedError,"unsupported test command: '&'" if cmd.op == '||': res = executeShCmd(cmd.lhs, cfg, cwd, results) if res != 0: res = executeShCmd(cmd.rhs, cfg, cwd, results) return res if cmd.op == '&&': res = executeShCmd(cmd.lhs, cfg, cwd, results) if res is None: return res if res == 0: res = executeShCmd(cmd.rhs, cfg, cwd, results) return res raise ValueError,'Unknown shell command: %r' % cmd.op assert isinstance(cmd, ShUtil.Pipeline) procs = [] input = subprocess.PIPE stderrTempFiles = [] opened_files = [] named_temp_files = [] # To avoid deadlock, we use a single stderr stream for piped # output. This is null until we have seen some output using # stderr. for i,j in enumerate(cmd.commands): # Apply the redirections, we use (N,) as a sentinal to indicate stdin, # stdout, stderr for N equal to 0, 1, or 2 respectively. Redirects to or # from a file are represented with a list [file, mode, file-object] # where file-object is initially None. redirects = [(0,), (1,), (2,)] for r in j.redirects: if r[0] == ('>',2): redirects[2] = [r[1], 'w', None] elif r[0] == ('>>',2): redirects[2] = [r[1], 'a', None] elif r[0] == ('>&',2) and r[1] in '012': redirects[2] = redirects[int(r[1])] elif r[0] == ('>&',) or r[0] == ('&>',): redirects[1] = redirects[2] = [r[1], 'w', None] elif r[0] == ('>',): redirects[1] = [r[1], 'w', None] elif r[0] == ('>>',): redirects[1] = [r[1], 'a', None] elif r[0] == ('<',): redirects[0] = [r[1], 'r', None] else: raise NotImplementedError,"Unsupported redirect: %r" % (r,) # Map from the final redirections to something subprocess can handle. final_redirects = [] for index,r in enumerate(redirects): if r == (0,): result = input elif r == (1,): if index == 0: raise NotImplementedError,"Unsupported redirect for stdin" elif index == 1: result = subprocess.PIPE else: result = subprocess.STDOUT elif r == (2,): if index != 2: raise NotImplementedError,"Unsupported redirect on stdout" result = subprocess.PIPE else: if r[2] is None: if kAvoidDevNull and r[0] == '/dev/null': r[0] = None r[2] = tempfile.TemporaryFile(mode=r[1]) else: r[2] = open(r[0], r[1]) # Workaround a Win32 and/or subprocess bug when appending. # # FIXME: Actually, this is probably an instance of PR6753. if r[1] == 'a': r[2].seek(0, 2) opened_files.append(r) result = r[2] final_redirects.append(result) stdin, stdout, stderr = final_redirects # If stderr wants to come from stdout, but stdout isn't a pipe, then put # stderr on a pipe and treat it as stdout. if (stderr == subprocess.STDOUT and stdout != subprocess.PIPE): stderr = subprocess.PIPE stderrIsStdout = True else: stderrIsStdout = False # Don't allow stderr on a PIPE except for the last # process, this could deadlock. # # FIXME: This is slow, but so is deadlock. if stderr == subprocess.PIPE and j != cmd.commands[-1]: stderr = tempfile.TemporaryFile(mode='w+b') stderrTempFiles.append((i, stderr)) # Resolve the executable path ourselves. args = list(j.args) args[0] = Util.which(args[0], cfg.environment['PATH']) if not args[0]: raise InternalShellError(j, '%r: command not found' % j.args[0]) # Replace uses of /dev/null with temporary files. if kAvoidDevNull: for i,arg in enumerate(args): if arg == "/dev/null": f = tempfile.NamedTemporaryFile(delete=False) f.close() named_temp_files.append(f.name) args[i] = f.name procs.append(subprocess.Popen(args, cwd=cwd, stdin = stdin, stdout = stdout, stderr = stderr, env = cfg.environment, close_fds = kUseCloseFDs)) # Immediately close stdin for any process taking stdin from us. if stdin == subprocess.PIPE: procs[-1].stdin.close() procs[-1].stdin = None # Update the current stdin source. if stdout == subprocess.PIPE: input = procs[-1].stdout elif stderrIsStdout: input = procs[-1].stderr else: input = subprocess.PIPE # Explicitly close any redirected files. We need to do this now because we # need to release any handles we may have on the temporary files (important # on Win32, for example). Since we have already spawned the subprocess, our # handles have already been transferred so we do not need them anymore. for f in opened_files: f[2].close() # FIXME: There is probably still deadlock potential here. Yawn. procData = [None] * len(procs) procData[-1] = procs[-1].communicate() for i in range(len(procs) - 1): if procs[i].stdout is not None: out = procs[i].stdout.read() else: out = '' if procs[i].stderr is not None: err = procs[i].stderr.read() else: err = '' procData[i] = (out,err) # Read stderr out of the temp files. for i,f in stderrTempFiles: f.seek(0, 0) procData[i] = (procData[i][0], f.read()) exitCode = None for i,(out,err) in enumerate(procData): res = procs[i].wait() # Detect Ctrl-C in subprocess. if res == -signal.SIGINT: raise KeyboardInterrupt results.append((cmd.commands[i], out, err, res)) if cmd.pipe_err: # Python treats the exit code as a signed char. if res < 0: exitCode = min(exitCode, res) else: exitCode = max(exitCode, res) else: exitCode = res # Make sure opened_files is released by other (child) processes. if kIsWindows: for f in opened_files: if f[0] is not None: WinWaitReleased(f[0]) # Remove any named temporary files we created. for f in named_temp_files: RemoveForce(f) if cmd.negate: exitCode = not exitCode return exitCode def executeScriptInternal(test, litConfig, tmpBase, commands, cwd): ln = ' &&\n'.join(commands) try: cmd = ShUtil.ShParser(ln, litConfig.isWindows).parse() except: return (Test.FAIL, "shell parser error on: %r" % ln) results = [] try: exitCode = executeShCmd(cmd, test.config, cwd, results) except InternalShellError,e: out = '' err = e.message exitCode = 255 out = err = '' for i,(cmd, cmd_out,cmd_err,res) in enumerate(results): out += 'Command %d: %s\n' % (i, ' '.join('"%s"' % s for s in cmd.args)) out += 'Command %d Result: %r\n' % (i, res) out += 'Command %d Output:\n%s\n\n' % (i, cmd_out) out += 'Command %d Stderr:\n%s\n\n' % (i, cmd_err) return out, err, exitCode def executeTclScriptInternal(test, litConfig, tmpBase, commands, cwd): import TclUtil cmds = [] for ln in commands: # Given the unfortunate way LLVM's test are written, the line gets # backslash substitution done twice. ln = TclUtil.TclLexer(ln).lex_unquoted(process_all = True) try: tokens = list(TclUtil.TclLexer(ln).lex()) except: return (Test.FAIL, "Tcl lexer error on: %r" % ln) # Validate there are no control tokens. for t in tokens: if not isinstance(t, str): return (Test.FAIL, "Invalid test line: %r containing %r" % (ln, t)) try: cmds.append(TclUtil.TclExecCommand(tokens).parse_pipeline()) except: return (Test.FAIL, "Tcl 'exec' parse error on: %r" % ln) if litConfig.useValgrind: for pipeline in cmds: if pipeline.commands: # Only valgrind the first command in each pipeline, to avoid # valgrinding things like grep, not, and FileCheck. cmd = pipeline.commands[0] cmd.args = litConfig.valgrindArgs + cmd.args cmd = cmds[0] for c in cmds[1:]: cmd = ShUtil.Seq(cmd, '&&', c) # FIXME: This is lame, we shouldn't need bash. See PR5240. bashPath = litConfig.getBashPath() if litConfig.useTclAsSh and bashPath: script = tmpBase + '.script' # Write script file f = open(script,'w') print >>f, 'set -o pipefail' cmd.toShell(f, pipefail = True) f.close() if 0: print >>sys.stdout, cmd print >>sys.stdout, open(script).read() print >>sys.stdout return '', '', 0 command = [litConfig.getBashPath(), script] out,err,exitCode = executeCommand(command, cwd=cwd, env=test.config.environment) return out,err,exitCode else: results = [] try: exitCode = executeShCmd(cmd, test.config, cwd, results) except InternalShellError,e: results.append((e.command, '', e.message + '\n', 255)) exitCode = 255 out = err = '' for i,(cmd, cmd_out, cmd_err, res) in enumerate(results): out += 'Command %d: %s\n' % (i, ' '.join('"%s"' % s for s in cmd.args)) out += 'Command %d Result: %r\n' % (i, res) out += 'Command %d Output:\n%s\n\n' % (i, cmd_out) out += 'Command %d Stderr:\n%s\n\n' % (i, cmd_err) return out, err, exitCode def executeScript(test, litConfig, tmpBase, commands, cwd): bashPath = litConfig.getBashPath(); isWin32CMDEXE = (litConfig.isWindows and not bashPath) script = tmpBase + '.script' if isWin32CMDEXE: script += '.bat' # Write script file f = open(script,'w') if isWin32CMDEXE: f.write('\nif %ERRORLEVEL% NEQ 0 EXIT\n'.join(commands)) else: f.write(' &&\n'.join(commands)) f.write('\n') f.close() if isWin32CMDEXE: command = ['cmd','/c', script] else: if bashPath: command = [bashPath, script] else: command = ['/bin/sh', script] if litConfig.useValgrind: # FIXME: Running valgrind on sh is overkill. We probably could just # run on clang with no real loss. command = litConfig.valgrindArgs + command return executeCommand(command, cwd=cwd, env=test.config.environment) def isExpectedFail(xfails, xtargets, target_triple): # Check if any xfail matches this target. for item in xfails: if item == '*' or item in target_triple: break else: return False # If so, see if it is expected to pass on this target. # # FIXME: Rename XTARGET to something that makes sense, like XPASS. for item in xtargets: if item == '*' or item in target_triple: return False return True def parseIntegratedTestScript(test, normalize_slashes=False, extra_substitutions=[]): """parseIntegratedTestScript - Scan an LLVM/Clang style integrated test script and extract the lines to 'RUN' as well as 'XFAIL' and 'XTARGET' information. The RUN lines also will have variable substitution performed. """ # Get the temporary location, this is always relative to the test suite # root, not test source root. # # FIXME: This should not be here? sourcepath = test.getSourcePath() sourcedir = os.path.dirname(sourcepath) execpath = test.getExecPath() execdir,execbase = os.path.split(execpath) tmpDir = os.path.join(execdir, 'Output') tmpBase = os.path.join(tmpDir, execbase) if test.index is not None: tmpBase += '_%d' % test.index # Normalize slashes, if requested. if normalize_slashes: sourcepath = sourcepath.replace('\\', '/') sourcedir = sourcedir.replace('\\', '/') tmpDir = tmpDir.replace('\\', '/') tmpBase = tmpBase.replace('\\', '/') # We use #_MARKER_# to hide %% while we do the other substitutions. substitutions = list(extra_substitutions) substitutions.extend([('%%', '#_MARKER_#')]) substitutions.extend(test.config.substitutions) substitutions.extend([('%s', sourcepath), ('%S', sourcedir), ('%p', sourcedir), ('%{pathsep}', os.pathsep), ('%t', tmpBase + '.tmp'), ('%T', tmpDir), # FIXME: Remove this once we kill DejaGNU. ('%abs_tmp', tmpBase + '.tmp'), ('#_MARKER_#', '%')]) # Collect the test lines from the script. script = [] xfails = [] xtargets = [] requires = [] for ln in open(sourcepath): if 'RUN:' in ln: # Isolate the command to run. index = ln.index('RUN:') ln = ln[index+4:] # Trim trailing whitespace. ln = ln.rstrip() # Collapse lines with trailing '\\'. if script and script[-1][-1] == '\\': script[-1] = script[-1][:-1] + ln else: script.append(ln) elif 'XFAIL:' in ln: items = ln[ln.index('XFAIL:') + 6:].split(',') xfails.extend([s.strip() for s in items]) elif 'XTARGET:' in ln: items = ln[ln.index('XTARGET:') + 8:].split(',') xtargets.extend([s.strip() for s in items]) elif 'REQUIRES:' in ln: items = ln[ln.index('REQUIRES:') + 9:].split(',') requires.extend([s.strip() for s in items]) elif 'END.' in ln: # Check for END. lines. if ln[ln.index('END.'):].strip() == 'END.': break # Apply substitutions to the script. Allow full regular # expression syntax. Replace each matching occurrence of regular # expression pattern a with substitution b in line ln. def processLine(ln): # Apply substitutions for a,b in substitutions: if kIsWindows: b = b.replace("\\","\\\\") ln = re.sub(a, b, ln) # Strip the trailing newline and any extra whitespace. return ln.strip() script = map(processLine, script) # Verify the script contains a run line. if not script: return (Test.UNRESOLVED, "Test has no run line!") # Check for unterminated run lines. if script[-1][-1] == '\\': return (Test.UNRESOLVED, "Test has unterminated run lines (with '\\')") # Check that we have the required features: missing_required_features = [f for f in requires if f not in test.config.available_features] if missing_required_features: msg = ', '.join(missing_required_features) return (Test.UNSUPPORTED, "Test requires the following features: %s" % msg) isXFail = isExpectedFail(xfails, xtargets, test.suite.config.target_triple) return script,isXFail,tmpBase,execdir def formatTestOutput(status, out, err, exitCode, failDueToStderr, script): output = StringIO.StringIO() print >>output, "Script:" print >>output, "--" print >>output, '\n'.join(script) print >>output, "--" print >>output, "Exit Code: %r" % exitCode, if failDueToStderr: print >>output, "(but there was output on stderr)" else: print >>output if out: print >>output, "Command Output (stdout):" print >>output, "--" output.write(out) print >>output, "--" if err: print >>output, "Command Output (stderr):" print >>output, "--" output.write(err) print >>output, "--" return (status, output.getvalue()) def executeTclTest(test, litConfig): if test.config.unsupported: return (Test.UNSUPPORTED, 'Test is unsupported') # Parse the test script, normalizing slashes in substitutions on Windows # (since otherwise Tcl style lexing will treat them as escapes). res = parseIntegratedTestScript(test, normalize_slashes=kIsWindows) if len(res) == 2: return res script, isXFail, tmpBase, execdir = res if litConfig.noExecute: return (Test.PASS, '') # Create the output directory if it does not already exist. Util.mkdir_p(os.path.dirname(tmpBase)) res = executeTclScriptInternal(test, litConfig, tmpBase, script, execdir) if len(res) == 2: return res # Test for failure. In addition to the exit code, Tcl commands are # considered to fail if there is any standard error output. out,err,exitCode = res if isXFail: ok = exitCode != 0 or err and not litConfig.ignoreStdErr if ok: status = Test.XFAIL else: status = Test.XPASS else: ok = exitCode == 0 and (not err or litConfig.ignoreStdErr) if ok: status = Test.PASS else: status = Test.FAIL if ok: return (status,'') # Set a flag for formatTestOutput so it can explain why the test was # considered to have failed, despite having an exit code of 0. failDueToStderr = exitCode == 0 and err and not litConfig.ignoreStdErr return formatTestOutput(status, out, err, exitCode, failDueToStderr, script) def executeShTest(test, litConfig, useExternalSh, extra_substitutions=[]): if test.config.unsupported: return (Test.UNSUPPORTED, 'Test is unsupported') res = parseIntegratedTestScript(test, useExternalSh, extra_substitutions) if len(res) == 2: return res script, isXFail, tmpBase, execdir = res if litConfig.noExecute: return (Test.PASS, '') # Create the output directory if it does not already exist. Util.mkdir_p(os.path.dirname(tmpBase)) if useExternalSh: res = executeScript(test, litConfig, tmpBase, script, execdir) else: res = executeScriptInternal(test, litConfig, tmpBase, script, execdir) if len(res) == 2: return res out,err,exitCode = res if isXFail: ok = exitCode != 0 if ok: status = Test.XFAIL else: status = Test.XPASS else: ok = exitCode == 0 if ok: status = Test.PASS else: status = Test.FAIL if ok: return (status,'') # Sh tests are not considered to fail just from stderr output. failDueToStderr = False return formatTestOutput(status, out, err, exitCode, failDueToStderr, script)
# -*- coding: utf-8 -*- # Copyright 2017 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Test simple_chrome_builder module.""" from __future__ import print_function import os import mock from chromite.cros_bisect import simple_chrome_builder from chromite.cbuildbot import commands from chromite.lib import commandline from chromite.lib import cros_logging as logging from chromite.lib import cros_test_lib from chromite.lib import gclient from chromite.lib import git from chromite.lib import osutils class TestSimpleChromeBuilder(cros_test_lib.MockTempDirTestCase): """Tests AutotestEvaluator class.""" BOARD = 'samus' DUT_IP = '192.168.1.1' DUT = commandline.DeviceParser(commandline.DEVICE_SCHEME_SSH)(DUT_IP) def setUp(self): self.default_chromium_dir = os.path.join(self.tempdir, 'chromium') self.default_repo_dir = os.path.join(self.tempdir, 'chromium', 'src') self.default_archive_base = os.path.join(self.tempdir, 'build') self.gclient_path = os.path.join(self.tempdir, 'gclient') self.log_output_args = {'log_output': True} # The SimpleChromeBuilder class sets a 'verbose' setting based on the # ambient logging level, so we must set the logger to the default setting # of INFO for this test and then restore the logger to whatever it was # originally set to when we clean the test up. logger = logging.getLogger() self._prev_logging_level = logger.getEffectiveLevel() logger.setLevel(logging.INFO) def tearDown(self): logger = logging.getLogger() logger.setLevel(self._prev_logging_level) def GetBuilder(self, base_dir=None, board=None, reuse_repo=True, chromium_dir=None, build_dir=None, archive_build=True, reuse_build=True): """Obtains a SimpleChromeBuilder instance. Args: base_dir: Base directory. Default self.tempdir. board: Board name. Default self.BOARD. reuse_repo: True to reuse repo. chromium_dir: Optional. If specified, use the chromium repo the path points to. build_dir: Optional. Store build result to it if specified. archive_build: True to archive build. reuse_build: True to reuse previous build. Returns: A SimpleChromeBuilder instance. """ if base_dir is None: base_dir = self.tempdir if board is None: board = self.BOARD options = cros_test_lib.EasyAttr( base_dir=base_dir, board=board, reuse_repo=reuse_repo, chromium_dir=chromium_dir, build_dir=build_dir, archive_build=archive_build, reuse_build=reuse_build) builder = simple_chrome_builder.SimpleChromeBuilder(options) # Override gclient path. builder.gclient = self.gclient_path return builder def testInit(self): builder = self.GetBuilder() base_dir = self.tempdir self.assertEqual(base_dir, builder.base_dir) self.assertEqual(self.default_chromium_dir, builder.chromium_dir) self.assertEqual(self.default_repo_dir, builder.repo_dir) self.assertTrue(builder.reuse_repo) self.assertTrue(builder.reuse_build) self.assertTrue(builder.archive_build) self.assertEqual(self.default_archive_base, builder.archive_base) self.assertTrue(os.path.isdir(builder.archive_base)) self.assertDictEqual(self.log_output_args, builder.log_output_args) def testInitMissingRequiredArgs(self): options = cros_test_lib.EasyAttr() with self.assertRaises(Exception) as cm: simple_chrome_builder.SimpleChromeBuilder(options) exception_message = str(cm.exception) self.assertIn('Missing command line', exception_message) self.assertIn('SimpleChromeBuilder', exception_message) for arg in simple_chrome_builder.SimpleChromeBuilder.REQUIRED_ARGS: self.assertIn(arg, exception_message) def testInitCustomizedDir(self): base_dir = self.tempdir chromium_dir = os.path.join(base_dir, 'another_chromium') build_dir = os.path.join(base_dir, 'another_build') builder = self.GetBuilder(chromium_dir=chromium_dir, build_dir=build_dir) self.assertEqual(base_dir, builder.base_dir) self.assertEqual(chromium_dir, builder.chromium_dir) self.assertEqual(os.path.join(chromium_dir, 'src'), builder.repo_dir) self.assertTrue(builder.reuse_repo) self.assertTrue(builder.reuse_build) self.assertTrue(builder.archive_build) self.assertEqual(build_dir, builder.archive_base) self.assertTrue(os.path.isdir(builder.archive_base)) self.assertDictEqual(self.log_output_args, builder.log_output_args) def testInitFlipFlags(self): builder = self.GetBuilder(reuse_repo=False, archive_build=False, reuse_build=False) base_dir = self.tempdir self.assertEqual(base_dir, builder.base_dir) self.assertEqual(self.default_chromium_dir, builder.chromium_dir) self.assertEqual(self.default_repo_dir, builder.repo_dir) self.assertFalse(builder.reuse_repo) self.assertFalse(builder.reuse_build) self.assertFalse(builder.archive_build) self.assertEqual(self.default_archive_base, builder.archive_base) self.assertFalse(os.path.isdir(builder.archive_base)) self.assertDictEqual(self.log_output_args, builder.log_output_args) def testSetUp(self): command_mock = self.StartPatcher(cros_test_lib.RunCommandMock()) command_mock.AddCmdResult(['fetch', '--nohooks', 'chromium']) write_config_mock = self.PatchObject(gclient, 'WriteConfigFile') git_mock = self.PatchObject(git, 'RunGit') gsync_mock = self.PatchObject(gclient, 'Sync') builder = self.GetBuilder() builder.SetUp() write_config_mock.assert_called_with( self.gclient_path, self.default_chromium_dir, True, None, managed=False) git_mock.assert_called_with(self.default_repo_dir, ['pull', 'origin', 'master']) gsync_mock.assert_called_with( self.gclient_path, self.default_chromium_dir, reset=True, nohooks=True, verbose=False, run_args=self.log_output_args) def testSetUpSkip(self): write_config_mock = self.PatchObject(gclient, 'WriteConfigFile') git_mock = self.PatchObject(git, 'RunGit') gsync_mock = self.PatchObject(gclient, 'Sync') # Make it looks like a git repo. osutils.SafeMakedirs(os.path.join(self.default_repo_dir, '.git')) builder = self.GetBuilder() builder.SetUp() write_config_mock.assert_not_called() git_mock.assert_not_called() gsync_mock.assert_not_called() def testSetUpExistingRepoException(self): write_config_mock = self.PatchObject(gclient, 'WriteConfigFile') git_mock = self.PatchObject(git, 'RunGit') gsync_mock = self.PatchObject(gclient, 'Sync') # Make it looks like a git repo. osutils.SafeMakedirs(os.path.join(self.default_repo_dir, '.git')) builder = self.GetBuilder(reuse_repo=False) self.assertRaisesRegex(Exception, 'Chromium repo exists.*', builder.SetUp) write_config_mock.assert_not_called() git_mock.assert_not_called() gsync_mock.assert_not_called() def testSyncToHead(self): git_mock = self.PatchObject(git, 'CleanAndCheckoutUpstream') builder = self.GetBuilder() builder.SyncToHead() git_mock.assert_called_with(self.default_repo_dir) def testGclientSync(self): gsync_mock = self.PatchObject(gclient, 'Sync') builder = self.GetBuilder() builder.GclientSync() gsync_mock.assert_called_with( self.gclient_path, self.default_chromium_dir, reset=False, nohooks=False, verbose=False, run_args=self.log_output_args) builder.GclientSync(reset=True, nohooks=True) gsync_mock.assert_called_with( self.gclient_path, self.default_chromium_dir, reset=True, nohooks=True, verbose=False, run_args=self.log_output_args) def testBuildReuse(self): commit_label = 'test' # Let the build already be in archive. archive_path = os.path.join( self.default_archive_base, 'out_%s_%s' % (self.BOARD, commit_label), 'Release') osutils.SafeMakedirs(archive_path) builder = self.GetBuilder() build_to_deploy = builder.Build(commit_label) self.assertEqual(archive_path, build_to_deploy) def _ChromeSdkRunSideEffect(self, *args, **unused_kwargs): if args and len(args[0]) == 3: bash_command = args[0][2] if 'gn gen' in bash_command: build_dir = bash_command.split()[2] osutils.SafeMakedirs(os.path.join(self.default_repo_dir, build_dir)) return mock.DEFAULT def testBuild(self): gsync_mock = self.PatchObject(simple_chrome_builder.SimpleChromeBuilder, 'GclientSync') success_result = cros_test_lib.EasyAttr(returncode=0) chrome_sdk_run_mock = self.PatchObject( commands.ChromeSDK, 'Run', side_effect=self._ChromeSdkRunSideEffect, return_value=success_result) chrome_sdk_ninja_mock = self.PatchObject( commands.ChromeSDK, 'Ninja', return_value=success_result) commit_label = 'test' archive_path = os.path.join( self.default_archive_base, 'out_%s_%s' % (self.BOARD, commit_label), 'Release') self.assertFalse(os.path.isdir(archive_path)) builder = self.GetBuilder() build_to_deploy = builder.Build(commit_label) self.assertEqual(archive_path, build_to_deploy) # Check that build_to_deploy exists after builder.Build() self.assertTrue(os.path.isdir(archive_path)) gsync_mock.assert_called() chrome_sdk_run_mock.assert_called_with( ['bash', '-c', 'gn gen out_%s/Release --args="$GN_ARGS"' % self.BOARD], run_args=self.log_output_args) chrome_sdk_ninja_mock.assert_called_with(run_args=self.log_output_args) def testBuildNoArchive(self): gsync_mock = self.PatchObject(simple_chrome_builder.SimpleChromeBuilder, 'GclientSync') success_result = cros_test_lib.EasyAttr(returncode=0) chrome_sdk_run_mock = self.PatchObject( commands.ChromeSDK, 'Run', side_effect=self._ChromeSdkRunSideEffect, return_value=success_result) chrome_sdk_ninja_mock = self.PatchObject( commands.ChromeSDK, 'Ninja', return_value=success_result) commit_label = 'test' archive_path = os.path.join( self.default_archive_base, 'out_%s_%s' % (self.BOARD, commit_label), 'Release') self.assertFalse(os.path.isdir(archive_path)) builder = self.GetBuilder(archive_build=False) build_to_deploy = builder.Build(commit_label) # No archive. Check that archive_path is not created. self.assertNotEqual(archive_path, build_to_deploy) self.assertFalse(os.path.isdir(archive_path)) self.assertEqual(os.path.join('out_%s' % self.BOARD, 'Release'), build_to_deploy) self.assertTrue(os.path.isdir( os.path.join(self.default_repo_dir, build_to_deploy))) gsync_mock.assert_called() chrome_sdk_run_mock.assert_called_with( ['bash', '-c', 'gn gen out_%s/Release --args="$GN_ARGS"' % self.BOARD], run_args=self.log_output_args) chrome_sdk_ninja_mock.assert_called_with(run_args=self.log_output_args) def testDeploy(self): chrome_sdk_run_mock = self.PatchObject(commands.ChromeSDK, 'Run') build_to_deploy = os.path.join('out_%s' % self.BOARD, 'Release') commit_label = 'test' builder = self.GetBuilder() builder.Deploy(self.DUT, build_to_deploy, commit_label) chrome_sdk_run_mock.assert_called_with( ['deploy_chrome', '--build-dir', build_to_deploy, '--to', self.DUT_IP, '--force'], run_args=self.log_output_args) def testDeployWithPort(self): port = '9999' dut = commandline.DeviceParser(commandline.DEVICE_SCHEME_SSH)( self.DUT_IP + ':' + port) chrome_sdk_run_mock = self.PatchObject(commands.ChromeSDK, 'Run') build_to_deploy = os.path.join('out_%s' % self.BOARD, 'Release') commit_label = 'test' builder = self.GetBuilder() builder.Deploy(dut, build_to_deploy, commit_label) chrome_sdk_run_mock.assert_called_with( ['deploy_chrome', '--build-dir', build_to_deploy, '--to', self.DUT_IP, '--force', '--port', port], run_args=self.log_output_args)
# Lint as: python2, python3 # Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Target and sampling related ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import range import tensorflow.compat.v1 as tf from utils import box_utils from utils.object_detection import balanced_positive_negative_sampler def box_matching(boxes, gt_boxes, gt_classes, gt_attributes): """Match boxes to groundtruth boxes. Given the proposal boxes and the groundtruth boxes, classes and attributes, perform the groundtruth matching by taking the argmax of the IoU between boxes and groundtruth boxes. Args: boxes: a tensor of shape of [batch_size, N, 4] representing the box coordiantes to be matched to groundtruth boxes. gt_boxes: a tensor of shape of [batch_size, MAX_INSTANCES, 4] representing the groundtruth box coordinates. It is padded with -1s to indicate the invalid boxes. gt_classes: [batch_size, MAX_INSTANCES] representing the groundtruth box classes. It is padded with -1s to indicate the invalid classes. gt_attributes: [batch_size, MAX_NUM_INSTANCES, num_attributes] representing the groundtruth attributes. It is padded with -1s to indicate the invalid attributes. Returns: matched_gt_boxes: a tensor of shape of [batch_size, N, 4], representing the matched groundtruth box coordinates for each input box. If the box does not overlap with any groundtruth boxes, the matched boxes of it will be set to all 0s. matched_gt_classes: a tensor of shape of [batch_size, N], representing the matched groundtruth classes for each input box. If the box does not overlap with any groundtruth boxes, the matched box classes of it will be set to 0, which corresponds to the background class. matched_gt_attributes: a tensor of shape of [batch_size, N, num_attributes], representing the matched groundtruth attributes for each input box. If the box does not overlap with any groundtruth boxes, the matched box attributes of it will be set to all 0s. matched_gt_indices: a tensor of shape of [batch_size, N], representing the indices of the matched groundtruth boxes in the original gt_boxes tensor. If the box does not overlap with any groundtruth boxes, the index of the matched groundtruth will be set to -1. matched_iou: a tensor of shape of [batch_size, N], representing the IoU between the box and its matched groundtruth box. The matched IoU is the maximum IoU of the box and all the groundtruth boxes. iou: a tensor of shape of [batch_size, N, K], representing the IoU matrix between boxes and the groundtruth boxes. The IoU between a box and the invalid groundtruth boxes whose coordinates are [-1, -1, -1, -1] is -1. """ # Compute IoU between boxes and gt_boxes. # iou <- [batch_size, N, K] iou = box_utils.bbox_overlap(boxes, gt_boxes) # max_iou <- [batch_size, N] # 0.0 -> no match to gt, or -1.0 match to no gt matched_iou = tf.reduce_max(iou, axis=-1) # background_box_mask <- bool, [batch_size, N] background_box_mask = tf.less_equal(matched_iou, 0.0) argmax_iou_indices = tf.argmax(iou, axis=-1, output_type=tf.int32) argmax_iou_indices_shape = tf.shape(argmax_iou_indices) batch_indices = ( tf.expand_dims(tf.range(argmax_iou_indices_shape[0]), axis=-1) * tf.ones([1, argmax_iou_indices_shape[-1]], dtype=tf.int32)) gather_nd_indices = tf.stack([batch_indices, argmax_iou_indices], axis=-1) matched_gt_boxes = tf.gather_nd(gt_boxes, gather_nd_indices) matched_gt_boxes = tf.where( tf.tile(tf.expand_dims(background_box_mask, axis=-1), [1, 1, 4]), tf.zeros_like(matched_gt_boxes, dtype=tf.float32), matched_gt_boxes) matched_gt_classes = tf.gather_nd(gt_classes, gather_nd_indices) matched_gt_classes = tf.where( background_box_mask, tf.zeros_like(matched_gt_classes), matched_gt_classes) _, _, num_attributes = gt_attributes.get_shape().as_list() matched_gt_attributes = tf.gather_nd(gt_attributes, gather_nd_indices) matched_gt_attributes = tf.where( tf.tile( tf.expand_dims(background_box_mask, axis=-1), [1, 1, num_attributes]), tf.zeros_like(matched_gt_attributes, dtype=tf.float32), matched_gt_attributes) matched_gt_indices = tf.where( background_box_mask, -tf.ones_like(argmax_iou_indices), argmax_iou_indices) return (matched_gt_boxes, matched_gt_classes, matched_gt_attributes, matched_gt_indices, matched_iou, iou) def assign_and_sample_proposals(proposed_boxes, gt_boxes, gt_classes, gt_attributes, num_samples_per_image=512, mix_gt_boxes=True, fg_fraction=0.25, fg_iou_thresh=0.5, bg_iou_thresh_hi=0.5, bg_iou_thresh_lo=0.0): """Assigns the proposals with groundtruth classes and performs subsmpling. Given `proposed_boxes`, `gt_boxes`, `gt_classes` and `gt_attributes`, the function uses the following algorithm to generate the final `num_samples_per_image` RoIs. 1. Calculates the IoU between each proposal box and each gt_boxes. 2. Assigns each proposed box with a groundtruth class and box by choosing the largest IoU overlap. 3. Samples `num_samples_per_image` boxes from all proposed boxes, and returns box_targets, class_targets, and RoIs. Args: proposed_boxes: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. gt_attributes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, num_attributes]. This tensor might have paddings with values of -1 indicating the invalid attributes. num_samples_per_image: an integer represents RoI minibatch size per image. mix_gt_boxes: a bool indicating whether to mix the groundtruth boxes before sampling proposals. fg_fraction: a float represents the target fraction of RoI minibatch that is labeled foreground (i.e., class > 0). fg_iou_thresh: a float represents the IoU overlap threshold for an RoI to be considered foreground (if >= fg_iou_thresh). bg_iou_thresh_hi: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). bg_iou_thresh_lo: a float represents the IoU overlap threshold for an RoI to be considered background (class = 0 if overlap in [LO, HI)). Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. sampled_gt_attributes: a tensor of shape of [batch_size, K, num_attributes], storing the attributes of the matched groundtruth attributes of the sampled RoIs. sampled_gt_indices: a tensor of shape of [batch_size, K], storing the indices of the sampled groudntruth boxes in the original `gt_boxes` tensor, i.e. gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i]. """ with tf.name_scope('sample_proposals'): if mix_gt_boxes: boxes = tf.concat([proposed_boxes, gt_boxes], axis=1) else: boxes = proposed_boxes (matched_gt_boxes, matched_gt_classes, matched_gt_attributes, matched_gt_indices, matched_iou, _) = box_matching( boxes, gt_boxes, gt_classes, gt_attributes) positive_match = tf.greater(matched_iou, fg_iou_thresh) negative_match = tf.logical_and( tf.greater_equal(matched_iou, bg_iou_thresh_lo), tf.less(matched_iou, bg_iou_thresh_hi)) ignored_match = tf.less(matched_iou, 0.0) # re-assign negatively matched boxes to the background class. matched_gt_classes = tf.where( negative_match, tf.zeros_like(matched_gt_classes), matched_gt_classes) matched_gt_indices = tf.where( negative_match, tf.zeros_like(matched_gt_indices), matched_gt_indices) sample_candidates = tf.logical_and( tf.logical_or(positive_match, negative_match), tf.logical_not(ignored_match)) sampler = ( balanced_positive_negative_sampler.BalancedPositiveNegativeSampler( positive_fraction=fg_fraction, is_static=True)) batch_size, _ = sample_candidates.get_shape().as_list() sampled_indicators = [] for i in range(batch_size): sampled_indicator = sampler.subsample( sample_candidates[i], num_samples_per_image, positive_match[i]) sampled_indicators.append(sampled_indicator) sampled_indicators = tf.stack(sampled_indicators) _, sampled_indices = tf.nn.top_k( tf.cast(sampled_indicators, dtype=tf.int32), k=num_samples_per_image, sorted=True) sampled_indices_shape = tf.shape(sampled_indices) batch_indices = ( tf.expand_dims(tf.range(sampled_indices_shape[0]), axis=-1) * tf.ones([1, sampled_indices_shape[-1]], dtype=tf.int32)) gather_nd_indices = tf.stack([batch_indices, sampled_indices], axis=-1) sampled_rois = tf.gather_nd(boxes, gather_nd_indices) sampled_gt_boxes = tf.gather_nd(matched_gt_boxes, gather_nd_indices) sampled_gt_classes = tf.gather_nd( matched_gt_classes, gather_nd_indices) sampled_gt_attributes = tf.gather_nd( matched_gt_attributes, gather_nd_indices) sampled_gt_indices = tf.gather_nd( matched_gt_indices, gather_nd_indices) return (sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_attributes, sampled_gt_indices) class ROISampler(object): """Samples RoIs and creates training targets.""" def __init__(self, params): self._num_samples_per_image = params.num_samples_per_image self._fg_fraction = params.fg_fraction self._fg_iou_thresh = params.fg_iou_thresh self._bg_iou_thresh_hi = params.bg_iou_thresh_hi self._bg_iou_thresh_lo = params.bg_iou_thresh_lo self._mix_gt_boxes = params.mix_gt_boxes def __call__(self, rois, gt_boxes, gt_classes, gt_attributes): """Sample and assign RoIs for training. Args: rois: a tensor of shape of [batch_size, N, 4]. N is the number of proposals before groundtruth assignment. The last dimension is the box coordinates w.r.t. the scaled images in [ymin, xmin, ymax, xmax] format. gt_boxes: a tensor of shape of [batch_size, MAX_NUM_INSTANCES, 4]. The coordinates of gt_boxes are in the pixel coordinates of the scaled image. This tensor might have padding of values -1 indicating the invalid box coordinates. gt_classes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES]. This tensor might have paddings with values of -1 indicating the invalid classes. gt_attributes: a tensor with a shape of [batch_size, MAX_NUM_INSTANCES, num_attributes]. This tensor might have paddings with values of -1 indicating the invalid attributes. Returns: sampled_rois: a tensor of shape of [batch_size, K, 4], representing the coordinates of the sampled RoIs, where K is the number of the sampled RoIs, i.e. K = num_samples_per_image. sampled_gt_boxes: a tensor of shape of [batch_size, K, 4], storing the box coordinates of the matched groundtruth boxes of the samples RoIs. sampled_gt_classes: a tensor of shape of [batch_size, K], storing the classes of the matched groundtruth boxes of the sampled RoIs. sampled_gt_attributes: a tensor of shape of [batch_size, K, num_attributes], storing the attributes of the matched groundtruth attributes of the sampled RoIs. sampled_gt_indices: a tensor of shape of [batch_size, K], storing the indices of the sampled groudntruth boxes in the original `gt_boxes`, i.e. gt_boxes[sampled_gt_indices[:, i]] = sampled_gt_boxes[:, i]. """ (sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_attributes, sampled_gt_indices) = assign_and_sample_proposals( rois, gt_boxes, gt_classes, gt_attributes, num_samples_per_image=self._num_samples_per_image, mix_gt_boxes=self._mix_gt_boxes, fg_fraction=self._fg_fraction, fg_iou_thresh=self._fg_iou_thresh, bg_iou_thresh_hi=self._bg_iou_thresh_hi, bg_iou_thresh_lo=self._bg_iou_thresh_lo) return (sampled_rois, sampled_gt_boxes, sampled_gt_classes, sampled_gt_attributes, sampled_gt_indices)
# SDT2PrintMarkdown.py # # Print SDT2 to markdown from .SDT2Classes import * hideDetails = False tables = False pageBreakBeforeMCandDevices = False pageBreakToken = '\n<!--BREAK-->' # tabulator level tab = 0 def incTab(): global tab tab += 1 def decTab(): global tab if (tab > 0): tab -= 1 def newLine(): global tab result = '\n' for i in range(tab): result += '\t' return result # header level headerLevel = 1 def incHeaderLevel(): global headerLevel headerLevel += 1 def decHeaderLevel(): global headerLevel headerLevel -= 1 def markdownHeader(text): global headerLevel result = '\n\n' for i in range(headerLevel): result += '#' result += ' ' + text return result # # Print functions # def print2DomainMarkdown(domain, options): global hideDetails, pageBreakToken, pageBreakBeforeMCandDevices hideDetails = options['hideDetails'] tables = options['markdowntables'] pageBreakBeforeMCandDevices = options['pageBreakBeforeMCandDevices'] if tables: print('Tables are not supported for input format "sdt2"') return '' result = '' result += markdownHeader('Domain "' + domain.id + '"') if (len(domain.includes) > 0): result += newLine() + '- **Includes**' for include in domain.includes: result += printInclude(include) if (len(domain.modules) > 0): incHeaderLevel() result += markdownHeader('ModuleClasses') for module in domain.modules: if pageBreakBeforeMCandDevices: result += newLine() + pageBreakToken result += newLine() + printModuleClass(module) decHeaderLevel() if (len(domain.rootDevices) > 0): incHeaderLevel() result += markdownHeader('RootDevices') for rootDevice in domain.rootDevices: if pageBreakBeforeMCandDevices: result += newLine() + pageBreakToken result += newLine() + printRootDevice(rootDevice) decHeaderLevel() return result def printInclude(include): incTab() result = newLine() + '- Parse: ' + include.parse result += ', Href: ' + include.href decTab() return result # # RootDevice, Device # def printRootDevice(rootDevice): global hideDetails incHeaderLevel() result = markdownHeader('RootDevice "' + rootDevice.id + '"') if (rootDevice.doc and hideDetails == False): result += newLine() + printDoc(rootDevice.doc) if (rootDevice.deviceInfo != None and hideDetails == False): result += newLine() + printDeviceInfo(rootDevice.deviceInfo) if (len(rootDevice.modules) > 0): incHeaderLevel() result += markdownHeader('Modules') for module in rootDevice.modules: result += newLine() + printModule(module) decHeaderLevel() if (len(rootDevice.devices) > 0): incHeaderLevel() result += markdownHeader('Devices') for device in rootDevice.devices: result += printDevice(device) decHeaderLevel() decTab() decHeaderLevel() return result def printDevice(device): global hideDetails incHeaderLevel() result = markdownHeader('Device "' + device.id + '"') if (device.doc): result += newLine() + printDoc(device.doc) if (device.deviceInfo != None and hideDetails == False): result += newLine() + printDeviceInfo(device.deviceInfo) if (len(device.modules) > 0): incHeaderLevel() result += newLine() + markdownHeader('Modules') for module in device.modules: result += newLine() + printModule(module) decHeaderLevel() decHeaderLevel() return result # # DeviceInfo # def printDeviceInfo(deviceInfo): incHeaderLevel() result = markdownHeader('DeviceInfo') if (deviceInfo.name != None): result += newLine() + '- Name: ' + deviceInfo.name if (deviceInfo.vendor != None): result += newLine() + '- Vendor: ' + deviceInfo.vendor if (deviceInfo.serialNumber != None): result += newLine() + '- SerialNumber: ' + deviceInfo.serialNumber if (deviceInfo.vendorURL != None): result += newLine() + '- VendorURL: ' + deviceInfo.vendorURL if (deviceInfo.firmwareVersion != None): result += newLine() + '- FirmwareVersion: ' + deviceInfo.firmwareVersion decHeaderLevel() return result # # Print Module, ModuleClass # def printModule(module): return printModuleDetails(module) def printModuleClass(moduleClass): return printModuleDetails(moduleClass) def printModuleDetails(module): global hideDetails result = '- **' + module.name + '**' if (hideDetails): return result; incTab() if (module.doc != None): result += ' ' + newLine() + printDoc(module.doc) if (module.extends != None): result += printExtends(module.extends) if (len(module.actions) > 0): result += newLine() + '- Actions' for action in module.actions: result += printAction(action) if (len(module.data) > 0): result += newLine() + '- Data' for data in module.data: result += printDataPoint(data) if (len(module.events) > 0): result += newLine() + '- Events' for event in module.events: result += printEvent(event) decTab() return result def printExtends(extends): result = newLine() + '- Extends' incTab() result += newLine() + '- Domain: **' + extends.domain + '**, Class: **' + extends.clazz + '**' decTab() return result # # Action, Argument # def printAction(action): incTab() result = newLine() + '- **' + action.name + '**' incTab() if (action.doc != None): result += ' ' + newLine() + printDoc(action.doc) if (action.type != None): result += newLine() + '- Return Type: ' + action.type if (len(action.arg) > 0): result += newLine() + '- Arguments' for argument in action.arg: result += printArgument(argument) decTab() decTab() return result def printArgument(action): incTab() result = newLine() + '- ' if (action.name != None): result += '**' + action.name + '**' if (action.type != None): result += ' (' + action.type + ')' decTab() return result # # Event # def printEvent(event): incTab() result = newLine() + '- **' + event.name + '**' incTab() if (event.doc != None): result += ' ' + newLine() + printDoc(event.doc) if (len(event.data) > 0): result += newLine() + '- **Data**' for dataPoint in event.data: result += printDataPoint(dataPoint) decTab() decTab() return result # # DataPoint # def printDataPoint(datapoint): incTab() result = newLine() + '- **' + datapoint.name + '**' if (datapoint.type != None): result += ' (' + datapoint.type + ')' incTab() if (datapoint.doc != None): result += ' ' + newLine() + printDoc(datapoint.doc) if (datapoint.writable != None): result += newLine() + '- Writable: ' + datapoint.writable if (datapoint.readable != None): result += newLine() + '- Readable: ' + datapoint.readable if (datapoint.eventable != None): result += newLine() + '- Eventable: ' + datapoint.eventable decTab() decTab() return result # # Doc # def printDoc(doc): result = doc.content.strip() return result
"""CherryPy Application and Tree objects.""" import os import sys import cherrypy from cherrypy._cpcompat import ntou, py3k from cherrypy import _cpconfig, _cplogging, _cprequest, _cpwsgi, tools from cherrypy.lib import httputil class Application(object): """A CherryPy Application. Servers and gateways should not instantiate Request objects directly. Instead, they should ask an Application object for a request object. An instance of this class may also be used as a WSGI callable (WSGI application object) for itself. """ root = None """The top-most container of page handlers for this app. Handlers should be arranged in a hierarchy of attributes, matching the expected URI hierarchy; the default dispatcher then searches this hierarchy for a matching handler. When using a dispatcher other than the default, this value may be None.""" config = {} """A dict of {path: pathconf} pairs, where 'pathconf' is itself a dict of {key: value} pairs.""" namespaces = _cpconfig.NamespaceSet() toolboxes = {'tools': cherrypy.tools} log = None """A LogManager instance. See _cplogging.""" wsgiapp = None """A CPWSGIApp instance. See _cpwsgi.""" request_class = _cprequest.Request response_class = _cprequest.Response relative_urls = False def __init__(self, root, script_name="", config=None): self.log = _cplogging.LogManager(id(self), cherrypy.log.logger_root) self.root = root self.script_name = script_name self.wsgiapp = _cpwsgi.CPWSGIApp(self) self.namespaces = self.namespaces.copy() self.namespaces["log"] = lambda k, v: setattr(self.log, k, v) self.namespaces["wsgi"] = self.wsgiapp.namespace_handler self.config = self.__class__.config.copy() if config: self.merge(config) def __repr__(self): return "%s.%s(%r, %r)" % (self.__module__, self.__class__.__name__, self.root, self.script_name) script_name_doc = """The URI "mount point" for this app. A mount point is that portion of the URI which is constant for all URIs that are serviced by this application; it does not include scheme, host, or proxy ("virtual host") portions of the URI. For example, if script_name is "/my/cool/app", then the URL "http://www.example.com/my/cool/app/page1" might be handled by a "page1" method on the root object. The value of script_name MUST NOT end in a slash. If the script_name refers to the root of the URI, it MUST be an empty string (not "/"). If script_name is explicitly set to None, then the script_name will be provided for each call from request.wsgi_environ['SCRIPT_NAME']. """ def _get_script_name(self): if self._script_name is None: # None signals that the script name should be pulled from WSGI environ. return cherrypy.serving.request.wsgi_environ['SCRIPT_NAME'].rstrip("/") return self._script_name def _set_script_name(self, value): if value: value = value.rstrip("/") self._script_name = value script_name = property(fget=_get_script_name, fset=_set_script_name, doc=script_name_doc) def merge(self, config): """Merge the given config into self.config.""" _cpconfig.merge(self.config, config) # Handle namespaces specified in config. self.namespaces(self.config.get("/", {})) def find_config(self, path, key, default=None): """Return the most-specific value for key along path, or default.""" trail = path or "/" while trail: nodeconf = self.config.get(trail, {}) if key in nodeconf: return nodeconf[key] lastslash = trail.rfind("/") if lastslash == -1: break elif lastslash == 0 and trail != "/": trail = "/" else: trail = trail[:lastslash] return default def get_serving(self, local, remote, scheme, sproto): """Create and return a Request and Response object.""" req = self.request_class(local, remote, scheme, sproto) req.app = self for name, toolbox in self.toolboxes.items(): req.namespaces[name] = toolbox resp = self.response_class() cherrypy.serving.load(req, resp) cherrypy.engine.publish('acquire_thread') cherrypy.engine.publish('before_request') return req, resp def release_serving(self): """Release the current serving (request and response).""" req = cherrypy.serving.request cherrypy.engine.publish('after_request') try: req.close() except: cherrypy.log(traceback=True, severity=40) cherrypy.serving.clear() def __call__(self, environ, start_response): return self.wsgiapp(environ, start_response) class Tree(object): """A registry of CherryPy applications, mounted at diverse points. An instance of this class may also be used as a WSGI callable (WSGI application object), in which case it dispatches to all mounted apps. """ apps = {} """ A dict of the form {script name: application}, where "script name" is a string declaring the URI mount point (no trailing slash), and "application" is an instance of cherrypy.Application (or an arbitrary WSGI callable if you happen to be using a WSGI server).""" def __init__(self): self.apps = {} def mount(self, root, script_name="", config=None): """Mount a new app from a root object, script_name, and config. root An instance of a "controller class" (a collection of page handler methods) which represents the root of the application. This may also be an Application instance, or None if using a dispatcher other than the default. script_name A string containing the "mount point" of the application. This should start with a slash, and be the path portion of the URL at which to mount the given root. For example, if root.index() will handle requests to "http://www.example.com:8080/dept/app1/", then the script_name argument would be "/dept/app1". It MUST NOT end in a slash. If the script_name refers to the root of the URI, it MUST be an empty string (not "/"). config A file or dict containing application config. """ if script_name is None: raise TypeError( "The 'script_name' argument may not be None. Application " "objects may, however, possess a script_name of None (in " "order to inpect the WSGI environ for SCRIPT_NAME upon each " "request). You cannot mount such Applications on this Tree; " "you must pass them to a WSGI server interface directly.") # Next line both 1) strips trailing slash and 2) maps "/" -> "". script_name = script_name.rstrip("/") if isinstance(root, Application): app = root if script_name != "" and script_name != app.script_name: raise ValueError("Cannot specify a different script name and " "pass an Application instance to cherrypy.mount") script_name = app.script_name else: app = Application(root, script_name) # If mounted at "", add favicon.ico if (script_name == "" and root is not None and not hasattr(root, "favicon_ico")): favicon = os.path.join(os.getcwd(), os.path.dirname(__file__), "favicon.ico") root.favicon_ico = tools.staticfile.handler(favicon) if config: app.merge(config) self.apps[script_name] = app return app def graft(self, wsgi_callable, script_name=""): """Mount a wsgi callable at the given script_name.""" # Next line both 1) strips trailing slash and 2) maps "/" -> "". script_name = script_name.rstrip("/") self.apps[script_name] = wsgi_callable def script_name(self, path=None): """The script_name of the app at the given path, or None. If path is None, cherrypy.request is used. """ if path is None: try: request = cherrypy.serving.request path = httputil.urljoin(request.script_name, request.path_info) except AttributeError: return None while True: if path in self.apps: return path if path == "": return None # Move one node up the tree and try again. path = path[:path.rfind("/")] def __call__(self, environ, start_response): # If you're calling this, then you're probably setting SCRIPT_NAME # to '' (some WSGI servers always set SCRIPT_NAME to ''). # Try to look up the app using the full path. env1x = environ if environ.get(ntou('wsgi.version')) == (ntou('u'), 0): env1x = _cpwsgi.downgrade_wsgi_ux_to_1x(environ) path = httputil.urljoin(env1x.get('SCRIPT_NAME', ''), env1x.get('PATH_INFO', '')) sn = self.script_name(path or "/") if sn is None: start_response('404 Not Found', []) return [] app = self.apps[sn] # Correct the SCRIPT_NAME and PATH_INFO environ entries. environ = environ.copy() if not py3k: if environ.get(ntou('wsgi.version')) == (ntou('u'), 0): # Python 2/WSGI u.0: all strings MUST be of type unicode enc = environ[ntou('wsgi.url_encoding')] environ[ntou('SCRIPT_NAME')] = sn.decode(enc) environ[ntou('PATH_INFO')] = path[len(sn.rstrip("/")):].decode(enc) else: # Python 2/WSGI 1.x: all strings MUST be of type str environ['SCRIPT_NAME'] = sn environ['PATH_INFO'] = path[len(sn.rstrip("/")):] else: if environ.get(ntou('wsgi.version')) == (ntou('u'), 0): # Python 3/WSGI u.0: all strings MUST be full unicode environ['SCRIPT_NAME'] = sn environ['PATH_INFO'] = path[len(sn.rstrip("/")):] else: # Python 3/WSGI 1.x: all strings MUST be ISO-8859-1 str environ['SCRIPT_NAME'] = sn.encode('utf-8').decode('ISO-8859-1') environ['PATH_INFO'] = path[len(sn.rstrip("/")):].encode('utf-8').decode('ISO-8859-1') return app(environ, start_response)
data = ( '', # 0x00 '', # 0x01 '', # 0x02 '', # 0x03 '', # 0x04 '', # 0x05 '', # 0x06 '', # 0x07 '', # 0x08 '', # 0x09 '', # 0x0a '', # 0x0b '', # 0x0c '', # 0x0d '', # 0x0e '', # 0x0f '', # 0x10 '', # 0x11 '', # 0x12 '', # 0x13 '', # 0x14 '', # 0x15 '', # 0x16 '', # 0x17 '', # 0x18 '', # 0x19 '', # 0x1a '', # 0x1b '', # 0x1c '', # 0x1d '', # 0x1e '', # 0x1f '', # 0x20 '', # 0x21 '', # 0x22 '', # 0x23 '', # 0x24 '', # 0x25 '', # 0x26 '', # 0x27 '', # 0x28 '', # 0x29 '', # 0x2a '', # 0x2b '', # 0x2c '', # 0x2d '', # 0x2e '', # 0x2f '', # 0x30 '', # 0x31 '', # 0x32 '', # 0x33 '', # 0x34 '', # 0x35 '', # 0x36 '', # 0x37 '', # 0x38 '', # 0x39 '', # 0x3a '', # 0x3b '', # 0x3c '', # 0x3d '', # 0x3e '', # 0x3f '', # 0x40 '', # 0x41 '', # 0x42 '', # 0x43 '', # 0x44 '', # 0x45 '', # 0x46 '', # 0x47 '', # 0x48 '', # 0x49 '', # 0x4a '', # 0x4b '', # 0x4c '', # 0x4d '', # 0x4e '', # 0x4f '0', # 0x50 '1', # 0x51 '2', # 0x52 '3', # 0x53 '4', # 0x54 '5', # 0x55 '6', # 0x56 '7', # 0x57 '8', # 0x58 '9', # 0x59 '', # 0x5a '', # 0x5b '', # 0x5c '', # 0x5d '', # 0x5e '', # 0x5f '', # 0x60 '', # 0x61 '', # 0x62 '', # 0x63 '', # 0x64 '', # 0x65 '', # 0x66 '', # 0x67 '', # 0x68 '', # 0x69 '', # 0x6a '', # 0x6b '', # 0x6c '', # 0x6d '', # 0x6e '', # 0x6f '', # 0x70 '', # 0x71 '', # 0x72 '', # 0x73 '', # 0x74 '', # 0x75 '', # 0x76 '', # 0x77 '', # 0x78 '', # 0x79 '', # 0x7a '', # 0x7b '', # 0x7c '', # 0x7d '', # 0x7e '', # 0x7f '', # 0x80 '', # 0x81 '', # 0x82 '', # 0x83 '', # 0x84 '', # 0x85 '', # 0x86 '', # 0x87 '', # 0x88 '', # 0x89 '', # 0x8a '', # 0x8b '', # 0x8c '', # 0x8d '', # 0x8e '', # 0x8f '', # 0x90 '', # 0x91 '', # 0x92 '', # 0x93 '', # 0x94 '', # 0x95 '', # 0x96 '', # 0x97 '', # 0x98 '', # 0x99 '', # 0x9a '', # 0x9b '', # 0x9c '', # 0x9d '', # 0x9e '', # 0x9f '', # 0xa0 '', # 0xa1 '', # 0xa2 '', # 0xa3 '', # 0xa4 '', # 0xa5 '', # 0xa6 '', # 0xa7 '', # 0xa8 '', # 0xa9 '', # 0xaa '', # 0xab '', # 0xac '', # 0xad '', # 0xae '', # 0xaf '', # 0xb0 '', # 0xb1 '', # 0xb2 '', # 0xb3 '', # 0xb4 '', # 0xb5 '', # 0xb6 '', # 0xb7 '', # 0xb8 '', # 0xb9 '', # 0xba '', # 0xbb '', # 0xbc '', # 0xbd '', # 0xbe '', # 0xbf '', # 0xc0 '', # 0xc1 '', # 0xc2 '', # 0xc3 '', # 0xc4 '', # 0xc5 '', # 0xc6 '', # 0xc7 '', # 0xc8 '', # 0xc9 '', # 0xca '', # 0xcb '', # 0xcc '', # 0xcd '', # 0xce '', # 0xcf '', # 0xd0 '', # 0xd1 '', # 0xd2 '', # 0xd3 '', # 0xd4 '', # 0xd5 '', # 0xd6 '', # 0xd7 '', # 0xd8 '', # 0xd9 '', # 0xda '', # 0xdb '', # 0xdc '', # 0xdd '', # 0xde '', # 0xdf '', # 0xe0 '', # 0xe1 '', # 0xe2 '', # 0xe3 '', # 0xe4 '', # 0xe5 '', # 0xe6 '', # 0xe7 '', # 0xe8 '', # 0xe9 '', # 0xea '', # 0xeb '', # 0xec '', # 0xed '', # 0xee '', # 0xef '', # 0xf0 '', # 0xf1 '', # 0xf2 '', # 0xf3 '', # 0xf4 '', # 0xf5 '', # 0xf6 '', # 0xf7 '', # 0xf8 '', # 0xf9 '', # 0xfa '', # 0xfb '', # 0xfc '', # 0xfd '', # 0xfe '', # 0xff )
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v9.common.types import criteria from google.ads.googleads.v9.common.types import custom_parameter from google.ads.googleads.v9.enums.types import ( ad_group_criterion_approval_status, ) from google.ads.googleads.v9.enums.types import ad_group_criterion_status from google.ads.googleads.v9.enums.types import bidding_source from google.ads.googleads.v9.enums.types import criterion_system_serving_status from google.ads.googleads.v9.enums.types import criterion_type from google.ads.googleads.v9.enums.types import quality_score_bucket __protobuf__ = proto.module( package="google.ads.googleads.v9.resources", marshal="google.ads.googleads.v9", manifest={"AdGroupCriterion",}, ) class AdGroupCriterion(proto.Message): r"""An ad group criterion. This message has `oneof`_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members. .. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields Attributes: resource_name (str): Immutable. The resource name of the ad group criterion. Ad group criterion resource names have the form: ``customers/{customer_id}/adGroupCriteria/{ad_group_id}~{criterion_id}`` criterion_id (int): Output only. The ID of the criterion. This field is ignored for mutates. This field is a member of `oneof`_ ``_criterion_id``. display_name (str): Output only. The display name of the criterion. This field is ignored for mutates. status (google.ads.googleads.v9.enums.types.AdGroupCriterionStatusEnum.AdGroupCriterionStatus): The status of the criterion. This is the status of the ad group criterion entity, set by the client. Note: UI reports may incorporate additional information that affects whether a criterion is eligible to run. In some cases a criterion that's REMOVED in the API can still show as enabled in the UI. For example, campaigns by default show to users of all age ranges unless excluded. The UI will show each age range as "enabled", since they're eligible to see the ads; but AdGroupCriterion.status will show "removed", since no positive criterion was added. quality_info (google.ads.googleads.v9.resources.types.AdGroupCriterion.QualityInfo): Output only. Information regarding the quality of the criterion. ad_group (str): Immutable. The ad group to which the criterion belongs. This field is a member of `oneof`_ ``_ad_group``. type_ (google.ads.googleads.v9.enums.types.CriterionTypeEnum.CriterionType): Output only. The type of the criterion. negative (bool): Immutable. Whether to target (``false``) or exclude (``true``) the criterion. This field is immutable. To switch a criterion from positive to negative, remove then re-add it. This field is a member of `oneof`_ ``_negative``. system_serving_status (google.ads.googleads.v9.enums.types.CriterionSystemServingStatusEnum.CriterionSystemServingStatus): Output only. Serving status of the criterion. approval_status (google.ads.googleads.v9.enums.types.AdGroupCriterionApprovalStatusEnum.AdGroupCriterionApprovalStatus): Output only. Approval status of the criterion. disapproval_reasons (Sequence[str]): Output only. List of disapproval reasons of the criterion. The different reasons for disapproving a criterion can be found here: https://support.google.com/adspolicy/answer/6008942 This field is read-only. labels (Sequence[str]): Output only. The resource names of labels attached to this ad group criterion. bid_modifier (float): The modifier for the bid when the criterion matches. The modifier must be in the range: 0.1 - 10.0. Most targetable criteria types support modifiers. This field is a member of `oneof`_ ``_bid_modifier``. cpc_bid_micros (int): The CPC (cost-per-click) bid. This field is a member of `oneof`_ ``_cpc_bid_micros``. cpm_bid_micros (int): The CPM (cost-per-thousand viewable impressions) bid. This field is a member of `oneof`_ ``_cpm_bid_micros``. cpv_bid_micros (int): The CPV (cost-per-view) bid. This field is a member of `oneof`_ ``_cpv_bid_micros``. percent_cpc_bid_micros (int): The CPC bid amount, expressed as a fraction of the advertised price for some good or service. The valid range for the fraction is [0,1) and the value stored here is 1,000,000 \* [fraction]. This field is a member of `oneof`_ ``_percent_cpc_bid_micros``. effective_cpc_bid_micros (int): Output only. The effective CPC (cost-per- lick) bid. This field is a member of `oneof`_ ``_effective_cpc_bid_micros``. effective_cpm_bid_micros (int): Output only. The effective CPM (cost-per- housand viewable impressions) bid. This field is a member of `oneof`_ ``_effective_cpm_bid_micros``. effective_cpv_bid_micros (int): Output only. The effective CPV (cost-per- iew) bid. This field is a member of `oneof`_ ``_effective_cpv_bid_micros``. effective_percent_cpc_bid_micros (int): Output only. The effective Percent CPC bid amount. This field is a member of `oneof`_ ``_effective_percent_cpc_bid_micros``. effective_cpc_bid_source (google.ads.googleads.v9.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective CPC bid. effective_cpm_bid_source (google.ads.googleads.v9.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective CPM bid. effective_cpv_bid_source (google.ads.googleads.v9.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective CPV bid. effective_percent_cpc_bid_source (google.ads.googleads.v9.enums.types.BiddingSourceEnum.BiddingSource): Output only. Source of the effective Percent CPC bid. position_estimates (google.ads.googleads.v9.resources.types.AdGroupCriterion.PositionEstimates): Output only. Estimates for criterion bids at various positions. final_urls (Sequence[str]): The list of possible final URLs after all cross-domain redirects for the ad. final_mobile_urls (Sequence[str]): The list of possible final mobile URLs after all cross-domain redirects. final_url_suffix (str): URL template for appending params to final URL. This field is a member of `oneof`_ ``_final_url_suffix``. tracking_url_template (str): The URL template for constructing a tracking URL. This field is a member of `oneof`_ ``_tracking_url_template``. url_custom_parameters (Sequence[google.ads.googleads.v9.common.types.CustomParameter]): The list of mappings used to substitute custom parameter tags in a ``tracking_url_template``, ``final_urls``, or ``mobile_final_urls``. keyword (google.ads.googleads.v9.common.types.KeywordInfo): Immutable. Keyword. This field is a member of `oneof`_ ``criterion``. placement (google.ads.googleads.v9.common.types.PlacementInfo): Immutable. Placement. This field is a member of `oneof`_ ``criterion``. mobile_app_category (google.ads.googleads.v9.common.types.MobileAppCategoryInfo): Immutable. Mobile app category. This field is a member of `oneof`_ ``criterion``. mobile_application (google.ads.googleads.v9.common.types.MobileApplicationInfo): Immutable. Mobile application. This field is a member of `oneof`_ ``criterion``. listing_group (google.ads.googleads.v9.common.types.ListingGroupInfo): Immutable. Listing group. This field is a member of `oneof`_ ``criterion``. age_range (google.ads.googleads.v9.common.types.AgeRangeInfo): Immutable. Age range. This field is a member of `oneof`_ ``criterion``. gender (google.ads.googleads.v9.common.types.GenderInfo): Immutable. Gender. This field is a member of `oneof`_ ``criterion``. income_range (google.ads.googleads.v9.common.types.IncomeRangeInfo): Immutable. Income range. This field is a member of `oneof`_ ``criterion``. parental_status (google.ads.googleads.v9.common.types.ParentalStatusInfo): Immutable. Parental status. This field is a member of `oneof`_ ``criterion``. user_list (google.ads.googleads.v9.common.types.UserListInfo): Immutable. User List. This field is a member of `oneof`_ ``criterion``. youtube_video (google.ads.googleads.v9.common.types.YouTubeVideoInfo): Immutable. YouTube Video. This field is a member of `oneof`_ ``criterion``. youtube_channel (google.ads.googleads.v9.common.types.YouTubeChannelInfo): Immutable. YouTube Channel. This field is a member of `oneof`_ ``criterion``. topic (google.ads.googleads.v9.common.types.TopicInfo): Immutable. Topic. This field is a member of `oneof`_ ``criterion``. user_interest (google.ads.googleads.v9.common.types.UserInterestInfo): Immutable. User Interest. This field is a member of `oneof`_ ``criterion``. webpage (google.ads.googleads.v9.common.types.WebpageInfo): Immutable. Webpage This field is a member of `oneof`_ ``criterion``. app_payment_model (google.ads.googleads.v9.common.types.AppPaymentModelInfo): Immutable. App Payment Model. This field is a member of `oneof`_ ``criterion``. custom_affinity (google.ads.googleads.v9.common.types.CustomAffinityInfo): Immutable. Custom Affinity. This field is a member of `oneof`_ ``criterion``. custom_intent (google.ads.googleads.v9.common.types.CustomIntentInfo): Immutable. Custom Intent. This field is a member of `oneof`_ ``criterion``. custom_audience (google.ads.googleads.v9.common.types.CustomAudienceInfo): Immutable. Custom Audience. This field is a member of `oneof`_ ``criterion``. combined_audience (google.ads.googleads.v9.common.types.CombinedAudienceInfo): Immutable. Combined Audience. This field is a member of `oneof`_ ``criterion``. """ class QualityInfo(proto.Message): r"""A container for ad group criterion quality information. Attributes: quality_score (int): Output only. The quality score. This field may not be populated if Google does not have enough information to determine a value. This field is a member of `oneof`_ ``_quality_score``. creative_quality_score (google.ads.googleads.v9.enums.types.QualityScoreBucketEnum.QualityScoreBucket): Output only. The performance of the ad compared to other advertisers. post_click_quality_score (google.ads.googleads.v9.enums.types.QualityScoreBucketEnum.QualityScoreBucket): Output only. The quality score of the landing page. search_predicted_ctr (google.ads.googleads.v9.enums.types.QualityScoreBucketEnum.QualityScoreBucket): Output only. The click-through rate compared to that of other advertisers. """ quality_score = proto.Field(proto.INT32, number=5, optional=True,) creative_quality_score = proto.Field( proto.ENUM, number=2, enum=quality_score_bucket.QualityScoreBucketEnum.QualityScoreBucket, ) post_click_quality_score = proto.Field( proto.ENUM, number=3, enum=quality_score_bucket.QualityScoreBucketEnum.QualityScoreBucket, ) search_predicted_ctr = proto.Field( proto.ENUM, number=4, enum=quality_score_bucket.QualityScoreBucketEnum.QualityScoreBucket, ) class PositionEstimates(proto.Message): r"""Estimates for criterion bids at various positions. Attributes: first_page_cpc_micros (int): Output only. The estimate of the CPC bid required for ad to be shown on first page of search results. This field is a member of `oneof`_ ``_first_page_cpc_micros``. first_position_cpc_micros (int): Output only. The estimate of the CPC bid required for ad to be displayed in first position, at the top of the first page of search results. This field is a member of `oneof`_ ``_first_position_cpc_micros``. top_of_page_cpc_micros (int): Output only. The estimate of the CPC bid required for ad to be displayed at the top of the first page of search results. This field is a member of `oneof`_ ``_top_of_page_cpc_micros``. estimated_add_clicks_at_first_position_cpc (int): Output only. Estimate of how many clicks per week you might get by changing your keyword bid to the value in first_position_cpc_micros. This field is a member of `oneof`_ ``_estimated_add_clicks_at_first_position_cpc``. estimated_add_cost_at_first_position_cpc (int): Output only. Estimate of how your cost per week might change when changing your keyword bid to the value in first_position_cpc_micros. This field is a member of `oneof`_ ``_estimated_add_cost_at_first_position_cpc``. """ first_page_cpc_micros = proto.Field( proto.INT64, number=6, optional=True, ) first_position_cpc_micros = proto.Field( proto.INT64, number=7, optional=True, ) top_of_page_cpc_micros = proto.Field( proto.INT64, number=8, optional=True, ) estimated_add_clicks_at_first_position_cpc = proto.Field( proto.INT64, number=9, optional=True, ) estimated_add_cost_at_first_position_cpc = proto.Field( proto.INT64, number=10, optional=True, ) resource_name = proto.Field(proto.STRING, number=1,) criterion_id = proto.Field(proto.INT64, number=56, optional=True,) display_name = proto.Field(proto.STRING, number=77,) status = proto.Field( proto.ENUM, number=3, enum=ad_group_criterion_status.AdGroupCriterionStatusEnum.AdGroupCriterionStatus, ) quality_info = proto.Field(proto.MESSAGE, number=4, message=QualityInfo,) ad_group = proto.Field(proto.STRING, number=57, optional=True,) type_ = proto.Field( proto.ENUM, number=25, enum=criterion_type.CriterionTypeEnum.CriterionType, ) negative = proto.Field(proto.BOOL, number=58, optional=True,) system_serving_status = proto.Field( proto.ENUM, number=52, enum=criterion_system_serving_status.CriterionSystemServingStatusEnum.CriterionSystemServingStatus, ) approval_status = proto.Field( proto.ENUM, number=53, enum=ad_group_criterion_approval_status.AdGroupCriterionApprovalStatusEnum.AdGroupCriterionApprovalStatus, ) disapproval_reasons = proto.RepeatedField(proto.STRING, number=59,) labels = proto.RepeatedField(proto.STRING, number=60,) bid_modifier = proto.Field(proto.DOUBLE, number=61, optional=True,) cpc_bid_micros = proto.Field(proto.INT64, number=62, optional=True,) cpm_bid_micros = proto.Field(proto.INT64, number=63, optional=True,) cpv_bid_micros = proto.Field(proto.INT64, number=64, optional=True,) percent_cpc_bid_micros = proto.Field(proto.INT64, number=65, optional=True,) effective_cpc_bid_micros = proto.Field( proto.INT64, number=66, optional=True, ) effective_cpm_bid_micros = proto.Field( proto.INT64, number=67, optional=True, ) effective_cpv_bid_micros = proto.Field( proto.INT64, number=68, optional=True, ) effective_percent_cpc_bid_micros = proto.Field( proto.INT64, number=69, optional=True, ) effective_cpc_bid_source = proto.Field( proto.ENUM, number=21, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) effective_cpm_bid_source = proto.Field( proto.ENUM, number=22, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) effective_cpv_bid_source = proto.Field( proto.ENUM, number=23, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) effective_percent_cpc_bid_source = proto.Field( proto.ENUM, number=35, enum=bidding_source.BiddingSourceEnum.BiddingSource, ) position_estimates = proto.Field( proto.MESSAGE, number=10, message=PositionEstimates, ) final_urls = proto.RepeatedField(proto.STRING, number=70,) final_mobile_urls = proto.RepeatedField(proto.STRING, number=71,) final_url_suffix = proto.Field(proto.STRING, number=72, optional=True,) tracking_url_template = proto.Field(proto.STRING, number=73, optional=True,) url_custom_parameters = proto.RepeatedField( proto.MESSAGE, number=14, message=custom_parameter.CustomParameter, ) keyword = proto.Field( proto.MESSAGE, number=27, oneof="criterion", message=criteria.KeywordInfo, ) placement = proto.Field( proto.MESSAGE, number=28, oneof="criterion", message=criteria.PlacementInfo, ) mobile_app_category = proto.Field( proto.MESSAGE, number=29, oneof="criterion", message=criteria.MobileAppCategoryInfo, ) mobile_application = proto.Field( proto.MESSAGE, number=30, oneof="criterion", message=criteria.MobileApplicationInfo, ) listing_group = proto.Field( proto.MESSAGE, number=32, oneof="criterion", message=criteria.ListingGroupInfo, ) age_range = proto.Field( proto.MESSAGE, number=36, oneof="criterion", message=criteria.AgeRangeInfo, ) gender = proto.Field( proto.MESSAGE, number=37, oneof="criterion", message=criteria.GenderInfo, ) income_range = proto.Field( proto.MESSAGE, number=38, oneof="criterion", message=criteria.IncomeRangeInfo, ) parental_status = proto.Field( proto.MESSAGE, number=39, oneof="criterion", message=criteria.ParentalStatusInfo, ) user_list = proto.Field( proto.MESSAGE, number=42, oneof="criterion", message=criteria.UserListInfo, ) youtube_video = proto.Field( proto.MESSAGE, number=40, oneof="criterion", message=criteria.YouTubeVideoInfo, ) youtube_channel = proto.Field( proto.MESSAGE, number=41, oneof="criterion", message=criteria.YouTubeChannelInfo, ) topic = proto.Field( proto.MESSAGE, number=43, oneof="criterion", message=criteria.TopicInfo, ) user_interest = proto.Field( proto.MESSAGE, number=45, oneof="criterion", message=criteria.UserInterestInfo, ) webpage = proto.Field( proto.MESSAGE, number=46, oneof="criterion", message=criteria.WebpageInfo, ) app_payment_model = proto.Field( proto.MESSAGE, number=47, oneof="criterion", message=criteria.AppPaymentModelInfo, ) custom_affinity = proto.Field( proto.MESSAGE, number=48, oneof="criterion", message=criteria.CustomAffinityInfo, ) custom_intent = proto.Field( proto.MESSAGE, number=49, oneof="criterion", message=criteria.CustomIntentInfo, ) custom_audience = proto.Field( proto.MESSAGE, number=74, oneof="criterion", message=criteria.CustomAudienceInfo, ) combined_audience = proto.Field( proto.MESSAGE, number=75, oneof="criterion", message=criteria.CombinedAudienceInfo, ) __all__ = tuple(sorted(__protobuf__.manifest))
# Copyright (c) 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for resource tracker claims.""" import uuid import mock from nova.compute import claims from nova import context from nova import exception from nova import objects from nova.pci import manager as pci_manager from nova import test from nova.tests.unit import fake_instance from nova.tests.unit.pci import fakes as pci_fakes class FakeResourceHandler(object): test_called = False usage_is_instance = False def test_resources(self, usage, limits): self.test_called = True self.usage_is_itype = usage.get('name') == 'fakeitype' return [] class DummyTracker(object): icalled = False rcalled = False def __init__(self): self.new_pci_tracker() def abort_instance_claim(self, *args, **kwargs): self.icalled = True def drop_move_claim(self, *args, **kwargs): self.rcalled = True def new_pci_tracker(self): ctxt = context.RequestContext('testuser', 'testproject') self.pci_tracker = pci_manager.PciDevTracker(ctxt) class ClaimTestCase(test.NoDBTestCase): def setUp(self): super(ClaimTestCase, self).setUp() self.context = context.RequestContext('fake-user', 'fake-project') self.instance = None self.resources = self._fake_resources() self.tracker = DummyTracker() self.empty_requests = objects.InstancePCIRequests( requests=[] ) def _claim(self, limits=None, overhead=None, requests=None, **kwargs): numa_topology = kwargs.pop('numa_topology', None) instance = self._fake_instance(**kwargs) instance.flavor = self._fake_instance_type(**kwargs) if numa_topology: db_numa_topology = { 'id': 1, 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': None, 'instance_uuid': instance.uuid, 'numa_topology': numa_topology._to_json(), 'pci_requests': (requests or self.empty_requests).to_json() } else: db_numa_topology = None if overhead is None: overhead = {'memory_mb': 0} requests = requests or self.empty_requests @mock.patch('nova.db.instance_extra_get_by_instance_uuid', return_value=db_numa_topology) def get_claim(mock_extra_get): return claims.Claim(self.context, instance, self.tracker, self.resources, requests, overhead=overhead, limits=limits) return get_claim() def _fake_instance(self, **kwargs): instance = { 'uuid': str(uuid.uuid1()), 'memory_mb': 1024, 'root_gb': 10, 'ephemeral_gb': 5, 'vcpus': 1, 'system_metadata': {}, 'numa_topology': None } instance.update(**kwargs) return fake_instance.fake_instance_obj(self.context, **instance) def _fake_instance_type(self, **kwargs): instance_type = { 'id': 1, 'name': 'fakeitype', 'memory_mb': 1024, 'vcpus': 1, 'root_gb': 10, 'ephemeral_gb': 5 } instance_type.update(**kwargs) return objects.Flavor(**instance_type) def _fake_resources(self, values=None): resources = { 'memory_mb': 2048, 'memory_mb_used': 0, 'free_ram_mb': 2048, 'local_gb': 20, 'local_gb_used': 0, 'free_disk_gb': 20, 'vcpus': 2, 'vcpus_used': 0, 'numa_topology': objects.NUMATopology( cells=[objects.NUMACell(id=1, cpuset=set([1, 2]), memory=512, memory_usage=0, cpu_usage=0, mempages=[], siblings=[], pinned_cpus=set([])), objects.NUMACell(id=2, cpuset=set([3, 4]), memory=512, memory_usage=0, cpu_usage=0, mempages=[], siblings=[], pinned_cpus=set([]))] )._to_json() } if values: resources.update(values) return objects.ComputeNode(**resources) def test_memory_unlimited(self): self._claim(memory_mb=99999999) def test_disk_unlimited_root(self): self._claim(root_gb=999999) def test_disk_unlimited_ephemeral(self): self._claim(ephemeral_gb=999999) def test_memory_with_overhead(self): overhead = {'memory_mb': 8} limits = {'memory_mb': 2048} self._claim(memory_mb=2040, limits=limits, overhead=overhead) def test_memory_with_overhead_insufficient(self): overhead = {'memory_mb': 9} limits = {'memory_mb': 2048} self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, limits=limits, overhead=overhead, memory_mb=2040) def test_memory_oversubscription(self): self._claim(memory_mb=4096) def test_disk_with_overhead(self): overhead = {'memory_mb': 0, 'disk_gb': 1} limits = {'disk_gb': 100} claim_obj = self._claim(root_gb=99, ephemeral_gb=0, limits=limits, overhead=overhead) self.assertEqual(100, claim_obj.disk_gb) def test_disk_with_overhead_insufficient(self): overhead = {'memory_mb': 0, 'disk_gb': 2} limits = {'disk_gb': 100} self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, limits=limits, overhead=overhead, root_gb=99, ephemeral_gb=0) def test_disk_with_overhead_insufficient_no_root(self): overhead = {'memory_mb': 0, 'disk_gb': 2} limits = {'disk_gb': 1} self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, limits=limits, overhead=overhead, root_gb=0, ephemeral_gb=0) def test_memory_insufficient(self): limits = {'memory_mb': 8192} self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, limits=limits, memory_mb=16384) def test_disk_oversubscription(self): limits = {'disk_gb': 60} self._claim(root_gb=10, ephemeral_gb=40, limits=limits) def test_disk_insufficient(self): limits = {'disk_gb': 45} self.assertRaisesRegex( exception.ComputeResourcesUnavailable, "disk", self._claim, limits=limits, root_gb=10, ephemeral_gb=40) def test_disk_and_memory_insufficient(self): limits = {'disk_gb': 45, 'memory_mb': 8192} self.assertRaisesRegex( exception.ComputeResourcesUnavailable, "memory.*disk", self._claim, limits=limits, root_gb=10, ephemeral_gb=40, memory_mb=16384) @mock.patch('nova.pci.stats.PciDeviceStats.support_requests', return_value=True) def test_pci_pass(self, mock_pci_supports_requests): request = objects.InstancePCIRequest(count=1, spec=[{'vendor_id': 'v', 'product_id': 'p'}]) requests = objects.InstancePCIRequests(requests=[request]) self._claim(requests=requests) mock_pci_supports_requests.assert_called_once_with([request]) @mock.patch('nova.pci.stats.PciDeviceStats.support_requests', return_value=False) def test_pci_fail(self, mock_pci_supports_requests): request = objects.InstancePCIRequest(count=1, spec=[{'vendor_id': 'v', 'product_id': 'p'}]) requests = objects.InstancePCIRequests(requests=[request]) self.assertRaisesRegex( exception.ComputeResourcesUnavailable, 'Claim pci failed.', self._claim, requests=requests) mock_pci_supports_requests.assert_called_once_with([request]) @mock.patch('nova.pci.stats.PciDeviceStats.support_requests') def test_pci_pass_no_requests(self, mock_pci_supports_requests): self._claim() self.assertFalse(mock_pci_supports_requests.called) def test_numa_topology_no_limit(self): huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2]), memory=512)]) self._claim(numa_topology=huge_instance) def test_numa_topology_fails(self): huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2, 3, 4, 5]), memory=2048)]) limit_topo = objects.NUMATopologyLimits( cpu_allocation_ratio=1, ram_allocation_ratio=1) self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, limits={'numa_topology': limit_topo}, numa_topology=huge_instance) def test_numa_topology_passes(self): huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2]), memory=512)]) limit_topo = objects.NUMATopologyLimits( cpu_allocation_ratio=1, ram_allocation_ratio=1) self._claim(limits={'numa_topology': limit_topo}, numa_topology=huge_instance) @pci_fakes.patch_pci_whitelist @mock.patch('nova.objects.InstancePCIRequests.get_by_instance') def test_numa_topology_with_pci(self, mock_get_by_instance): dev_dict = { 'compute_node_id': 1, 'address': 'a', 'product_id': 'p', 'vendor_id': 'v', 'numa_node': 1, 'dev_type': 'type-PCI', 'parent_addr': 'a1', 'status': 'available'} self.tracker.new_pci_tracker() self.tracker.pci_tracker._set_hvdevs([dev_dict]) request = objects.InstancePCIRequest(count=1, spec=[{'vendor_id': 'v', 'product_id': 'p'}]) requests = objects.InstancePCIRequests(requests=[request]) mock_get_by_instance.return_value = requests huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2]), memory=512)]) self._claim(requests=requests, numa_topology=huge_instance) @pci_fakes.patch_pci_whitelist @mock.patch('nova.objects.InstancePCIRequests.get_by_instance') def test_numa_topology_with_pci_fail(self, mock_get_by_instance): dev_dict = { 'compute_node_id': 1, 'address': 'a', 'product_id': 'p', 'vendor_id': 'v', 'numa_node': 1, 'dev_type': 'type-PCI', 'parent_addr': 'a1', 'status': 'available'} dev_dict2 = { 'compute_node_id': 1, 'address': 'a', 'product_id': 'p', 'vendor_id': 'v', 'numa_node': 2, 'dev_type': 'type-PCI', 'parent_addr': 'a1', 'status': 'available'} self.tracker.new_pci_tracker() self.tracker.pci_tracker._set_hvdevs([dev_dict, dev_dict2]) request = objects.InstancePCIRequest(count=2, spec=[{'vendor_id': 'v', 'product_id': 'p'}]) requests = objects.InstancePCIRequests(requests=[request]) mock_get_by_instance.return_value = requests huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2]), memory=512)]) self.assertRaises(exception.ComputeResourcesUnavailable, self._claim, requests=requests, numa_topology=huge_instance) @pci_fakes.patch_pci_whitelist @mock.patch('nova.objects.InstancePCIRequests.get_by_instance') def test_numa_topology_with_pci_no_numa_info(self, mock_get_by_instance): dev_dict = { 'compute_node_id': 1, 'address': 'a', 'product_id': 'p', 'vendor_id': 'v', 'numa_node': None, 'dev_type': 'type-PCI', 'parent_addr': 'a1', 'status': 'available'} self.tracker.new_pci_tracker() self.tracker.pci_tracker._set_hvdevs([dev_dict]) request = objects.InstancePCIRequest(count=1, spec=[{'vendor_id': 'v', 'product_id': 'p'}]) requests = objects.InstancePCIRequests(requests=[request]) mock_get_by_instance.return_value = requests huge_instance = objects.InstanceNUMATopology( cells=[objects.InstanceNUMACell( id=1, cpuset=set([1, 2]), memory=512)]) self._claim(requests=requests, numa_topology=huge_instance) def test_abort(self): claim = self._abort() self.assertTrue(claim.tracker.icalled) def _abort(self): claim = None try: with self._claim(memory_mb=4096) as claim: raise test.TestingException("abort") except test.TestingException: pass return claim class MoveClaimTestCase(ClaimTestCase): def _claim(self, limits=None, overhead=None, requests=None, image_meta=None, **kwargs): instance_type = self._fake_instance_type(**kwargs) numa_topology = kwargs.pop('numa_topology', None) image_meta = image_meta or {} self.instance = self._fake_instance(**kwargs) self.instance.numa_topology = None if numa_topology: self.db_numa_topology = { 'id': 1, 'created_at': None, 'updated_at': None, 'deleted_at': None, 'deleted': None, 'instance_uuid': self.instance.uuid, 'numa_topology': numa_topology._to_json(), 'pci_requests': (requests or self.empty_requests).to_json() } else: self.db_numa_topology = None if overhead is None: overhead = {'memory_mb': 0} requests = requests or self.empty_requests @mock.patch('nova.virt.hardware.numa_get_constraints', return_value=numa_topology) @mock.patch('nova.db.instance_extra_get_by_instance_uuid', return_value=self.db_numa_topology) def get_claim(mock_extra_get, mock_numa_get): return claims.MoveClaim(self.context, self.instance, instance_type, image_meta, self.tracker, self.resources, requests, overhead=overhead, limits=limits) return get_claim() def test_abort(self): claim = self._abort() self.assertTrue(claim.tracker.rcalled) def test_image_meta(self): claim = self._claim() self.assertIsInstance(claim.image_meta, objects.ImageMeta) def test_image_meta_object_passed(self): image_meta = objects.ImageMeta() claim = self._claim(image_meta=image_meta) self.assertIsInstance(claim.image_meta, objects.ImageMeta)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PacketCapturesOperations: """PacketCapturesOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_02_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_initial( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, parameters: "_models.PacketCapture", **kwargs: Any ) -> "_models.PacketCaptureResult": cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json, text/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'PacketCapture') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PacketCaptureResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}'} # type: ignore async def begin_create( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, parameters: "_models.PacketCapture", **kwargs: Any ) -> AsyncLROPoller["_models.PacketCaptureResult"]: """Create and start a packet capture on the specified VM. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param packet_capture_name: The name of the packet capture session. :type packet_capture_name: str :param parameters: Parameters that define the create packet capture operation. :type parameters: ~azure.mgmt.network.v2018_02_01.models.PacketCapture :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PacketCaptureResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_02_01.models.PacketCaptureResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, packet_capture_name=packet_capture_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PacketCaptureResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}'} # type: ignore async def get( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> "_models.PacketCaptureResult": """Gets a packet capture session by name. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param packet_capture_name: The name of the packet capture session. :type packet_capture_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: PacketCaptureResult, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_02_01.models.PacketCaptureResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" accept = "application/json, text/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('PacketCaptureResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}'} # type: ignore async def begin_delete( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Deletes the specified packet capture session. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param packet_capture_name: The name of the packet capture session. :type packet_capture_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, packet_capture_name=packet_capture_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}'} # type: ignore async def _stop_initial( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" # Construct URL url = self._stop_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _stop_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}/stop'} # type: ignore async def begin_stop( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Stops a specified packet capture session. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the network watcher. :type network_watcher_name: str :param packet_capture_name: The name of the packet capture session. :type packet_capture_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._stop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, packet_capture_name=packet_capture_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}/stop'} # type: ignore async def _get_status_initial( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> "_models.PacketCaptureQueryStatusResult": cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureQueryStatusResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" accept = "application/json, text/json" # Construct URL url = self._get_status_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('PacketCaptureQueryStatusResult', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('PacketCaptureQueryStatusResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _get_status_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}/queryStatus'} # type: ignore async def begin_get_status( self, resource_group_name: str, network_watcher_name: str, packet_capture_name: str, **kwargs: Any ) -> AsyncLROPoller["_models.PacketCaptureQueryStatusResult"]: """Query the status of a running packet capture session. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param packet_capture_name: The name given to the packet capture session. :type packet_capture_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either PacketCaptureQueryStatusResult or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.network.v2018_02_01.models.PacketCaptureQueryStatusResult] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureQueryStatusResult"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._get_status_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, packet_capture_name=packet_capture_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('PacketCaptureQueryStatusResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'packetCaptureName': self._serialize.url("packet_capture_name", packet_capture_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_get_status.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures/{packetCaptureName}/queryStatus'} # type: ignore def list( self, resource_group_name: str, network_watcher_name: str, **kwargs: Any ) -> AsyncIterable["_models.PacketCaptureListResult"]: """Lists all packet capture sessions within the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either PacketCaptureListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_02_01.models.PacketCaptureListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.PacketCaptureListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-02-01" accept = "application/json, text/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('PacketCaptureListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/packetCaptures'} # type: ignore
#! /usr/bin/env python ''' Andrew Till Fall 2014 PhD Research This clustering module clusters indicators and uses labels to compute a generalized energy mesh: Create observations from subset of indicators, viz. indicators[strt:end] Cluster observations and extract labels Combine labels from each subset Merge labels into existing group structure Create generalized energy mesh using the dual of the input grid ''' #STDLIB import os import time #TPL import numpy as np from scipy import sparse from scipy.sparse.linalg import spsolve from sklearn import cluster from sklearn import neighbors import matplotlib as mpl #import matplotlib.ticker as mtick import matplotlib.pyplot as plt mpl.rcParams.update({'font.size': 18, 'lines.linewidth': 2}) #MINE import plotutil as putil from directories import get_common_directories def define_defaults(): '''Specify default parameters''' # Main parameters verbosity = False resolution = 9 #workOpt = 'amg' #workOpt = 'tmg' #workOpt = 'mg' workOpt = 'har' numElements = 64 # Misc parameters showNumbers = False condenseSubelements = True plotOpt = 'half' # none, first, last, firstlast, all, half energyPenalty = 3.6E-1 dpi = 100 # Specify range of interest (for output fluxes and plotting) numCoarseGroups = 0 #coarseBdrs = [6E-1, 3E0, 54.7, 2E3, 2.5E4] coarseBdrs = [3.0, 54.7, 1.06E3] # How to assign the number of elements per coarse group apportionOpt = 'equal' # Specify how many elements to use in each coarse group listNumElements = [] # Specify which set of materials to use #materialOpt = '4' #materialOpt = 'c5g7' materialOpt = 'manual' # If materialOpt is 'manual', list of materials to use materialsList = ['deb'] importancesLst = [] return {'verbosity': verbosity, 'numelements': numElements, 'apportionopt': apportionOpt, 'workopt': workOpt, 'resolution':resolution, 'coarsebdrs': coarseBdrs, 'numcoarsegroups': numCoarseGroups, 'materialopt': materialOpt, 'shownumbers': showNumbers, 'condensesubelements': condenseSubelements, 'plotopt': plotOpt, 'energypenalty': energyPenalty, 'dpi': dpi, 'listnumelements': listNumElements, 'listmaterials': materialsList} def do_all(inputDict): '''Driver function to read indicators, compute observations, perform clustering, write energy mesh''' ''' >>>>> NB: See compute_map() for external calls! <<<<<< ''' # Create timeDict to house timing results timeDict = {} # Create dataDict to house problem parameters # Future functions should be assumed to modify dataDict dataDict = {} # Initialize dataDict copy_inputDict_to_dataDict(inputDict, dataDict) populate_directories(dataDict) # Determine work options parse_work_opt(dataDict) # Read in energy mesh and indicators indicators = read_energy_and_indicators(dataDict) # Define observations and rescale energy; determine va observations = compute_observations(dataDict, indicators) # Determine coarse group structure and the number of energy elements per coarse group globalLabels, thermalOffset = apportion_elements(dataDict, observations) # Determine number of neighbors for the clustering find_num_neighbors(dataDict, timeDict, observations) # Loop over each coarse group offset = thermalOffset print_timing_header() for coarseGroup in range(len(dataDict['coarseBdrs'])-1): # Cluster within each coarse group and plot offset = cluster_one_coarse_group( dataDict, timeDict, observations, globalLabels, offset, coarseGroup) # Create one plot over all energy plot_summary(dataDict, observations, globalLabels) # Write out generalized energy mesh write_mesh(dataDict, globalLabels) ############################################################################### def copy_inputDict_to_dataDict(inputDict, dataDict): '''Capitalize entries in dataDict using camelCase''' # Inputs / outputs dataDict['verbosity'] = inputDict['verbosity'] dataDict['workOpt'] = inputDict['workopt'] dataDict['useSigt'] = inputDict['sigt'] dataDict['resolution'] = inputDict['resolution'] dataDict['materialOpt'] = inputDict['materialopt'] dataDict['materialsList'] = inputDict['listmaterials'] dataDict['importancesList'] = inputDict['listimportances'] dataDict['numElements'] = inputDict['numelements'] dataDict['numElementsIsTotal'] = inputDict['numelementsistotal'] dataDict['numElementsList'] = inputDict['listnumelements'] dataDict['apportionOpt'] = inputDict['apportionopt'] dataDict['coarseBdrs'] = inputDict['coarsebdrs'] dataDict['numCoarseGroups'] = inputDict['numcoarsegroups'] dataDict['showNumbers'] = inputDict['shownumbers'] dataDict['condenseSubelements'] = inputDict['condensesubelements'] dataDict['plotOpt'] = inputDict['plotopt'] dataDict['energyPenalty'] = inputDict['energypenalty'] dataDict['dpi'] = inputDict['dpi'] def populate_directories(dataDict): '''Add directory entries to dataDict''' # Inputs dirDict = get_common_directories() # Outputs dataDict['indicatorsDatDirr'] = dirDict['dat/indicators'] dataDict['energyDatDirr'] = dirDict['dat/energy_groups'] dataDict['plotDirr'] = dirDict['figures/clustering'] def parse_work_opt(dataDict): '''Populate work option parameters''' # Inputs workOpt = dataDict['workOpt'] forceContiguity = False useEqualMGSpacing = False useEqualIndexSpacing = False if workOpt == 'amg': forceContiguity = True elif workOpt == 'tmg': forceContiguity = True useEqualIndexSpacing = True elif workOpt == 'mg': forceContiguity = True useEqualMGSpacing = True if not forceContiguity: clusterName = 'har' elif useEqualMGSpacing: clusterName = 'mg' elif useEqualIndexSpacing: clusterName = 'tmg' else: clusterName = 'amg' # Outputs dataDict['forceContiguity'] = forceContiguity dataDict['useEqualMGSpacing'] = useEqualMGSpacing dataDict['useEqualIndexSpacing'] = useEqualIndexSpacing dataDict['clusterName'] = clusterName def read_energy_and_indicators(dataDict): '''Read input fine energy mesh and indicators that live on that mesh''' # Inputs resolution = dataDict['resolution'] materialOpt = dataDict['materialOpt'] materialsList = dataDict['materialsList'] importancesList = dataDict['importancesList'] useSigt = dataDict['useSigt'] energyDatDirr = dataDict['energyDatDirr'] indicatorsDatDirr = dataDict['indicatorsDatDirr'] # Read in hyperfine MG energy mesh energyName = 'res-{0}.txt'.format(resolution) energyPath = os.path.join(energyDatDirr, energyName) groupBdrs = load_txt(energyPath, skiprows=2, usecols=[1]) numGroups = len(groupBdrs) - 1 dE = - np.diff(groupBdrs) groupBdrs[groupBdrs == 0] = 1E-5 # Read indicator relative importances if materialOpt == 'c5g7': #importanceDict = {'cUO2': 4, 'clowMOX': 2, 'cmedMOX': 2, 'chighMOX': 2, 'cCR': 1} importanceDict = {'cUO2': 1, 'chighMOX': 1} elif materialOpt == 'graphite': importanceDict = {'graphite': 1} elif materialOpt == 'iron': importanceDict = {'iron': 1} elif materialOpt == 'kpin': importanceDict = {'kFUEL': 1} elif materialOpt == 'kenrichedpin': importanceDict = {'kEFUEL': 4, 'kFUEL': 1} elif materialOpt == 'kcladpin': importanceDict = {'kEFUEL': 10, 'kFUEL': 2.5, 'kZR': 1} elif materialOpt == 'kpin2d': importanceDict = {'kRFUEL': 1} elif materialOpt == 'kenrichedpin2d': importanceDict = {'kREFUEL': 4, 'kRFUEL': 1} elif materialOpt == 'kmoxpin2d': importanceDict = {'kRMFUEL': 4, 'kRFUEL': 1} elif materialOpt == 'kmoxenrichedpin2d': importanceDict = {'kRMFUEL': 4, 'kREFUEL': 4, 'kRFUEL': 1} elif materialOpt == 'trigafuel': importanceDict = {'tFUEL': 1} elif materialOpt == 'ctrigafuel': importanceDict = {'tcFUEL': 1} elif materialOpt == 'ctrigafuel_0': importanceDict = {'tdFUEL_0': 1} elif materialOpt == 'trigamore': importanceDict = {'tFUEL': 10, 'tCLAD': 2, 'tZIRC': 2, 'tIRRADIATIONTUBE': 1} elif materialOpt == 'CASL': importanceDict = {'CASLfuel_P4_211': 1, 'CASLfuel_P4_262': 1, 'CASLfuel_P5_31': 1} elif materialOpt == 'manual': if not importancesList: importancesList = [1]*len(materialsList) importanceDict = {material:importance for material,importance in zip( materialsList, importancesList)} # Appending to materialNames does not alias onto importanceDict materialNames = importanceDict.keys() numMaterials = len(materialNames) # Use infinite medium flux, infinite medium flux with escape xs, and energy itself numIndicators = 2 * numMaterials + 1 # Read indicators indicators = np.zeros((numIndicators, numGroups)) i = 0 for materialName in materialNames: weight = np.power(10, importanceDict[materialName]) fluxName = 'inf_flux_{0}_{1}.txt'.format(materialName, resolution) fluxPath = os.path.join(indicatorsDatDirr, fluxName) indicators[i, :] = weight * load_txt(fluxPath) / dE if useSigt: fluxName = 'tot_xs_{0}_{1}.txt'.format(materialName, resolution) fluxPath = os.path.join(indicatorsDatDirr, fluxName) indicators[i+1, :] = weight * load_txt(fluxPath) else: fluxName = 'inf_flux_{0}_e_{1}.txt'.format(materialName, resolution) fluxPath = os.path.join(indicatorsDatDirr, fluxName) indicators[i+1, :] = weight * load_txt(fluxPath) / dE i += 2 energyGrid = np.sqrt(groupBdrs[1:] * groupBdrs[:-1]) indicators[-1, :] = energyGrid materialNames += 'E' # Outputs dataDict['dE'] = dE dataDict['groupBdrs'] = groupBdrs dataDict['energyGrid'] = energyGrid dataDict['materialNames'] = materialNames dataDict['numGroups'] = numGroups dataDict['numIndicators'] = numIndicators return indicators def compute_observations(dataDict, indicators): '''Compute observations from indicators. Only uses first and last values of coarseBdrs, which are not changed in apportion_elements()''' # Inputs energyPenalty = dataDict['energyPenalty'] groupBdrs = dataDict['groupBdrs'] coarseBdrs = dataDict['coarseBdrs'] numIndicators, numGroups = indicators.shape observations = np.log10(indicators) medians = np.median(observations, axis=1) observations -= medians[:, np.newaxis] # obsRange = np.max(observations[:-1,:]) - np.min(observations[:-1,:]) strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1])) end = np.argmin(np.abs(groupBdrs - coarseBdrs[0])) energyRange = np.max(observations[-1,strt:end]) - np.min(observations[-1,strt:end]) observations[-1,:] *= np.sqrt(numIndicators) * energyPenalty * (obsRange / energyRange) # Transpose to be [numGroups, numPoints]. Copy for later speed observations = observations.transpose().copy() # Outputs return observations def apportion_elements(dataDict, observations): '''Determine the coarse group boundaries and the number of elements in each coarse group. The first and last coarse group boundaries determine the extent of the RRR. coarseBdrs are replaced with an equal lethargy grid if numCoarseGroups is nonzero. numElementsList has precedence over numElements/apportionOpt if both are given. numElements refers to the elements in the RRR unless numElementsIsTotal is True. ''' # Inputs verbosity = dataDict['verbosity'] coarseBdrs = dataDict['coarseBdrs'] numCoarseGroups = dataDict['numCoarseGroups'] numElementsList = dataDict['numElementsList'] groupBdrs = dataDict['groupBdrs'] apportionOpt = dataDict['apportionOpt'] numElements = dataDict['numElements'] numElementsIsTotal = dataDict['numElementsIsTotal'] numGroups = dataDict['numGroups'] indicatorsDatDirr = dataDict['indicatorsDatDirr'] # Determine the coarse group boundaries if numCoarseGroups != 0: # Use an equal lethargy grid with numCoarseGroups groups coarseBdrs = np.logspace(np.log10(coarseBdrs[0]), np.log10(coarseBdrs[-1]), numCoarseGroups+1) else: numCoarseGroups = len(coarseBdrs) - 1 # Determine the total number of elements if numElementsList: numElementsIsTotal = False numElements = np.sum(numElementsList) numElementsIsRRR = not(numElementsIsTotal) # Determine the RRR bounding indices on the fine group structure strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1])) end = np.argmin(np.abs(groupBdrs - coarseBdrs[0])) # Initialize the global labels, which map from subelement index to element index globalLabels = np.zeros(numGroups, dtype=np.int) numThermal = numGroups - end numFast = strt numFastAndThermal = numThermal + numFast # On the old group structure, # [:strt) are fast, [end:) are thermal, and [strt:end) are resonance # On the new element structure, # [:newStrt) are fast, [:newEnd) are thermal, and [newStrt:newEnd) are resonance newStrt = strt if numElementsIsRRR: # numElements is just the number of resonance elements newEnd = newStrt + numElements else: # numElements is the total number of elements: newEnd = end + (numElements - numGroups) thermalOffset = newEnd globalLabels[:strt] = np.arange(numFast) globalLabels[end:] = np.arange(numThermal) + thermalOffset # Determine the total number of elements numElementsTot = numElements if numElementsIsRRR: numElementsTot += numFastAndThermal numElementsRRR = numElementsTot - numFastAndThermal # Determine the number of elements per coarse group and store in numClustersList if numElementsList: numClustersList = numElementsList apportionOpt = 'manual' elif apportionOpt in ['var', 'max', 'L1', 'birch']: numClustersList = auto_apportion(observations, numElementsRRR, groupBdrs, coarseBdrs, apportionOpt, verbosity) else: # apportionOpt == 'equal' # Apportion as equally as possible. Give high-energy coarse groups the remainder numElementsPerCoarseGroup = numElementsRRR // numCoarseGroups remainder = numElementsRRR % numCoarseGroups numClustersList = numElementsPerCoarseGroup * np.ones(numCoarseGroups, dtype=np.int) if remainder: numClustersList[-remainder:] += 1 # Check for validity of the number of clusters list if np.any(numClustersList <= 0): minNumElements = numFastAndThermal + len(coarseBdrs) - 1 raise ValueError('{0} clusters specified, but at least {1} should have been used'.format(numElementsTot, minNumElements)) # Output 0 # Print the number of elements per coarse group print 'final elements per coarse group ({0}):\n'.format(apportionOpt), numClustersList # Output 1 # Save the number of elements per coarse group baseName = 'aptn_{0}'.format(apportionOpt) #filename = '{0}_{1}_{2}.txt'.format(baseName, numElements, resolution) filename = '{0}_e{1}_g{2}.txt'.format(baseName, numElements, numCoarseGroups) filePath = os.path.join(indicatorsDatDirr, filename) # Output with open(filePath, 'w') as fid: fid.write('# Energy mesh with {0} coarse groups and {1} resonance elements\n'.format(numCoarseGroups, numElementsRRR)) fid.write('# coarse_group upper_bound(eV) num_elements\n') for coarseGroup in range(numCoarseGroups): energy = coarseBdrs[coarseGroup] numElem = numClustersList[coarseGroup] # Write the same number of digits as NJOY. This prints from coarseGroup, not groupBdrs. fid.write('{0:g} {1:.6e} {2}\n'.format(coarseGroup, energy, numElem)) fid.write('{0:g} {1:.6e} {2}\n'.format(-1, coarseBdrs[-1], 0)) # Output 2 dataDict['apportionOpt'] = apportionOpt dataDict['numCoarseGroups'] = numCoarseGroups dataDict['coarseBdrs'] = coarseBdrs dataDict['numElementsIsTotal'] = numElementsIsTotal dataDict['numElementsList'] = numElementsList dataDict['numElements'] = numElements dataDict['numElementsTot'] = numElementsTot dataDict['numClustersList'] = numClustersList return globalLabels, thermalOffset def auto_apportion(observations, numElementsRRR, groupBdrs, coarseBdrs, apportionOpt, verbosity): '''Assign the number of clusters / elements proportional to the relative variance within a coarse group''' numCoarseGroups = len(coarseBdrs) - 1 metric = np.zeros(numCoarseGroups) numFineGroupsPerCoarseGroup = np.zeros(numCoarseGroups, dtype=np.int) timeBirch = 0.0 if numCoarseGroups == 1: return np.array([numElementsRRR]) for coarseGroup in range(len(coarseBdrs)-1): # Only look at the fine groups within the current coarse group strt = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup+1])) end = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup])) obs = observations[strt:end, :] # Points are groups and dim are materials numPoints, numDim = obs.shape numFineGroupsPerCoarseGroup[coarseGroup] = numPoints if apportionOpt == 'var': # For each dimension, compute the average over the points means = np.mean(obs, axis=0) # The variance metric is the sum of the square errors from the means # var is actually a standard deviation var = np.sqrt(np.sum(np.square(obs - means[np.newaxis,:])) / (numPoints * numDim)) metric[coarseGroup] = var elif apportionOpt == 'max': # The max error metric is the maximum obs range in over all dimensions, # where each obs range is the difference between the largest and smallest # point values for that dim maxErr = np.max(np.max(obs, axis=0) - np.min(obs, axis=0)) metric[coarseGroup] = maxErr elif apportionOpt == 'L1': # The L1 error metric is the unnormalized sum of the absolute pointwise differences, # where each pointwise difference is a maximum over all dimensions L1Err = np.sum(np.max(np.abs(obs[:-1,:] - obs[1:,:]), axis=1)) metric[coarseGroup] = L1Err elif apportionOpt == 'birch': # The BIRCH error metric uses the number of clusters required to reduce the variance of an # energy element to threshold. A value of 1.0 for threshold would produce clusters # that span a factor of 10 in flux / xs space (based on how obs are defined). # Do not include energy penalty when looking at clusters. threshold = 0.05 clusterer = cluster.Birch(n_clusters=None, threshold=threshold) t0 = time.time() numClusters = len(np.unique(clusterer.fit_predict(obs[:,:-1]))) timeBirch += time.time() - t0 # Converted to float implicitly metric[coarseGroup] = numClusters # Normalize the metric metric /= np.sum(metric) # Each coarse group needs at least one energy element and the number of energy elements # per coarse group should be proportional to the normalized metric (relative variance) desiredElementsPerCoarseGroup = np.minimum(numFineGroupsPerCoarseGroup, np.maximum(1, metric * numElementsRRR)) sumDesiredElements = np.sum(desiredElementsPerCoarseGroup) # Compute a new metric that takes into account the maximum(1,:) newMetric = (desiredElementsPerCoarseGroup - 1) / (sumDesiredElements - numCoarseGroups) fractions, floored = np.modf(newMetric * (numElementsRRR - numCoarseGroups)) elementsPerCoarseGroup = np.array(floored, dtype=np.int) + 1 # Add elements to the largest coarse groups with the largest fractional number of elements remainder = numElementsRRR - np.sum(elementsPerCoarseGroup) if remainder: locLargestFrac = np.argsort(fractions)[-remainder:] elementsPerCoarseGroup[locLargestFrac] += 1 if verbosity and apportionOpt == 'birch': print 'Birch clustering took {0} s'.format(timeBirch) if verbosity: print 'desired elements per coarse group:\n', desiredElementsPerCoarseGroup if remainder: print 'remainder: {0}; smallest large fractional: {1:.3f}'.format( remainder, fractions[locLargestFrac[0]]) # Outputs return elementsPerCoarseGroup def find_num_neighbors(dataDict, timeDict, observations): '''Use connected components to determine the number of neighbors''' # (no inputs from dataDict) t0 = time.time() numMinNeighbors = find_minimum_num_neighbors(observations[:,:-1]) numNeighbors = max(15+numMinNeighbors, 200) # Changed from 100 timeInitialNeighbors = time.time() - t0 # Outputs dataDict['numNeighbors'] = numNeighbors timeDict['timeInitialNeighbors'] = timeInitialNeighbors def cluster_one_coarse_group(dataDict, timeDict, observations, globalLabels, offset, coarseGroup): '''Apply clustering to one coarse group and return the labels of the clustering''' # Inputs groupBdrs = dataDict['groupBdrs'] coarseBdrs = dataDict['coarseBdrs'] energyGrid = dataDict['energyGrid'] numClustersList = dataDict['numClustersList'] numNeighbors = dataDict['numNeighbors'] forceContiguity = dataDict['forceContiguity'] useEqualMGSpacing = dataDict['useEqualMGSpacing'] useEqualIndexSpacing = dataDict['useEqualIndexSpacing'] plotOpt = dataDict['plotOpt'] # Slice arrays for current coarse group strt = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup+1])) end = np.argmin(np.abs(groupBdrs - coarseBdrs[coarseGroup])) obs = observations[strt:end,:] eGrid = energyGrid[strt:end] gBdr = groupBdrs[strt:end+1] numGroups, numPoints = obs.shape numClusters = numClustersList[coarseGroup] # Create connectivity graph based on number of neighbors t0 = time.time() useNeighbors = min(numGroups, numNeighbors) knnGraph = neighbors.kneighbors_graph(obs[:,:-1], useNeighbors, include_self=True) timeNeighbors = time.time() - t0 connectivityGraph = knnGraph # Perform appropriate clustering for the current coarse group t0 = time.time() if not forceContiguity: labels = cluster_using_hierarchical_agglomeration(obs, numClusters, connectivityGraph) elif useEqualMGSpacing: labels = cluster_using_equal_energy_spacing(gBdr, numClusters) elif useEqualIndexSpacing: labels = cluster_using_equal_topological_spacing(obs, numClusters) else: labels = cluster_using_mg_squared_error(obs, numClusters) timeCluster = time.time() - t0 # Reorder labels for maximal downscattering (make labels descendingly sorted) temp = np.zeros((numClusters, 1)) labels, temp = reorder_codebook(labels, temp, eGrid) # Output 0: Set global labels based on local labels and global offset (aliased) offset -= numClusters globalLabels[strt:end] = labels + offset uniqueLabels = np.unique(labels) # Output 1: Print number of neighbors and required times timeDict['timeNeighbors'] = timeNeighbors timeDict['timeCluster'] = timeCluster print_timing(dataDict, timeDict, numGroups, coarseGroup) # Output 2: Plot observations colored by label / cluster if plotOpt not in ['none', 'sum']: plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset) # Output3: return offset ############################################################################### def print_timing_header(): '''Print the header for print_timing()''' # Output print 'coarseGroup, numNeighbors, fracNeighbors, numGroups, timeInitialNeighbors, timeNeighbors, timeCluster' def print_timing(dataDict, timeDict, numGroups, coarseGroup): '''Print interesting size and time information''' # Inputs numNeighbors = dataDict['numNeighbors'] timeInitialNeighbors = timeDict['timeInitialNeighbors'] timeNeighbors = timeDict['timeNeighbors'] timeCluster = timeDict['timeCluster'] # Output print coarseGroup, numNeighbors, float(numNeighbors) / numGroups, numGroups, timeInitialNeighbors, timeNeighbors, timeCluster def plot_summary(dataDict, observations, globalLabels): '''Plot the entire energy range range''' # Inputs groupBdrs = dataDict['groupBdrs'] coarseBdrs = dataDict['coarseBdrs'] energyGrid = dataDict['energyGrid'] numElements = dataDict['numElements'] # Slice arrays for the RRR strt = np.argmin(np.abs(groupBdrs - coarseBdrs[-1])) end = np.argmin(np.abs(groupBdrs - coarseBdrs[0])) obs = observations[strt:end,:] eGrid = energyGrid[strt:end] gBdr = groupBdrs[strt:end+1] numGroups, numPoints = obs.shape labels = globalLabels[strt:end].copy() offset = np.min(labels) labels -= offset uniqueLabels = np.unique(labels) numClusters = numElements coarseGroup = 'sum' # Output plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset) def plot_clustering(dataDict, coarseGroup, uniqueLabels, labels, eGrid, obs, numClusters, numPoints, offset): '''Plot observations in coarse group''' # Inputs forceContiguity = dataDict['forceContiguity'] clusterName = dataDict['clusterName'] materialNames = dataDict['materialNames'] numElements = dataDict['numElements'] numCoarseGroups = dataDict['numCoarseGroups'] plotOpt = dataDict['plotOpt'] plotDirr = dataDict['plotDirr'] showNumbers = dataDict['showNumbers'] dpi = dataDict['dpi'] if plotOpt != 'none': colors = putil.get_colors(max(uniqueLabels)-min(uniqueLabels)+1) #if forceContiguity and not showNumbers: if True or numClusters < 1000: colors = colors[np.argsort(np.random.random(colors.shape[0]))] if plotOpt == 'first': pointsToPlot = [0] elif plotOpt == 'last': pointsToPlot = [numPoints-1] elif plotOpt == 'firstlast': pointsToPlot = [0, numPoints-1] elif plotOpt == 'half': pointsToPlot = range(0, numPoints-1, 2) else: pointsToPlot = range(numPoints) avgLabels, avgEGrid, avgObs = average_observations(labels, eGrid, obs) for ip in pointsToPlot: material = materialNames[ip/2] if ip % 2 == 1: material += '_e' print 'Saving plot for {0}, {1}, {2}'.format(material, numElements, coarseGroup) plt.figure(3) plt.clf() labelColors = [colors[label] for label in labels] #plt.semilogx(eGrid, obs[:,ip], '-', color=[0.2, 0.2, 0.2], rasterized=True) plt.scatter(eGrid, obs[:,ip], c=labelColors, edgecolor='none', rasterized=True) plt.xscale('log') if showNumbers: for label in uniqueLabels: mask = (avgLabels == label) color = colors[label] marker = r'${0}$'.format(label + offset) sz = 10 if len(marker) == 5: sz = 12 white = [1, 1, 1, 1.0] plt.semilogx(avgEGrid[mask], avgObs[mask,ip], linestyle='', markersize=sz, color=white, markeredgecolor=white, rasterized=False, marker='o') plt.semilogx(avgEGrid[mask], avgObs[mask,ip], linestyle='', markersize=sz, color=color, markeredgecolor=color, rasterized=False, marker=marker) if (eGrid[0] / eGrid[-1]) < 5: plt.xscale('linear') plt.xlabel('Energy (eV)') plt.ylabel('Observation (arb.)') plt.title('{0} elements'.format(len(uniqueLabels))) plt.xlim(np.min(eGrid), np.max(eGrid)) # Hack the zoom #plt.xlim([1E3,1E7]) #plt.xlim([7.E6, 1.E7]) baseName = 'p_obs' if forceContiguity: baseName += '_{0}'.format(clusterName) effCoarseGroups = 'of_{0}'.format(numCoarseGroups - 1) if coarseGroup == 'sum': effCoarseGroups = '{0}'.format(numCoarseGroups) plotName = '{0}_{1}_{2}_{3}_{4}.pdf'.format( baseName, numElements, coarseGroup, effCoarseGroups, material) plotPath = os.path.join(plotDirr, plotName) # Output plt.tight_layout() plt.savefig(plotPath, dpi=dpi) def write_mesh(dataDict, globalLabels): '''Write the energy mesh by writing subelements''' # Inputs forceContiguity = dataDict['forceContiguity'] condenseSubelements = dataDict['condenseSubelements'] resolution = dataDict['resolution'] groupBdrs = dataDict['groupBdrs'] clusterName = dataDict['clusterName'] numElements = dataDict['numElements'] numElementsTot = dataDict['numElementsTot'] energyDatDirr = dataDict['energyDatDirr'] if condenseSubelements: globalLabels, groupBdrs = condense_subelements(globalLabels, groupBdrs) numSubelements = len(globalLabels) baseName = 'clust' if forceContiguity: baseName += '-{0}'.format(clusterName) filename = '{0}-{1}-{2}.txt'.format(baseName, numElements, resolution) filePath = os.path.join(energyDatDirr, filename) # Output with open(filePath, 'w') as fid: fid.write('# Energy mesh with {0} elements and {1} subelements\n'.format(numElementsTot, numSubelements)) fid.write('# element upper bound region\n') for label, energy in zip(globalLabels, groupBdrs[:-1]): if energy > 2.5E4: energyType = 'fast' elif energy <= 3.0: energyType = 'thermal' else: energyType = 'resonance' fid.write('{0:g} {1:.8e} {2}\n'.format(label, energy, energyType)) fid.write('-1 {0:.8e} thermal\n'.format(groupBdrs[-1])) ############################################################################### def compute_map(inputDict): '''Callable interface to use these clustering methods from another script. Returns the uncondensed labels''' # Create timeDict to house timing results timeDict = {} # Create dataDict to house problem parameters. Future functions should be assumed to modify dataDict dataDict = {} # Initialize dataDict, assuming inputDict has the observations # indicators sets: dE, groupBdrs, energyGrid (just energyAvg), materialNames, numGroups, numIndicators observations = extract_external_inputDict(inputDict, dataDict) #(not complete) # Determine work options parse_work_opt(dataDict) # Determine coarse group structure and the number of energy elements per coarse group globalLabels, thermalOffset = apportion_elements(dataDict, observations) # Determine number of neighbors for the clustering find_num_neighbors(dataDict, timeDict, observations) # Loop over each coarse group offset = thermalOffset print_timing_header() for coarseGroup in range(len(dataDict['coarseBdrs'])-1): # Cluster within each coarse group and plot offset = cluster_one_coarse_group( dataDict, timeDict, observations, globalLabels, offset, coarseGroup) return globalLabels ############################################################################### def reorder_codebook(codebook, centroids, energyAvg, positionFunc=np.mean): '''Sort so group with highest value of positionFunc is cluster 0''' masks = get_masks(codebook) numGroups, numClusters = masks.shape energyCentroids = np.zeros(numClusters) newCodebook = np.zeros(codebook.size, dtype=np.int64) newCentroids = np.zeros(centroids.shape) for i in range(numClusters): energyCentroids[i] = positionFunc(energyAvg[masks[:,i]]) clusterOrder = np.argsort(-energyCentroids) for ic, cluster in enumerate(clusterOrder): newCodebook[codebook==cluster] = ic newCentroids[ic,:] = centroids[cluster,:] return newCodebook, newCentroids def get_masks(codebook): minCode = min(codebook) maxCode = max(codebook) numCodes = maxCode - minCode + 1 numGroups = len(codebook) masks = np.zeros([numGroups, numCodes], dtype=bool) for i in range(minCode, maxCode+1): masks[:,i] = codebook==i return masks ############################################################################### def cluster_using_mg_squared_error(observations, numGroups): '''This may return fewer groups than numGroups when numGroups is large''' '''If this fails to produce the desired number of groups, split up existing groups starting with LOW energies and going to HIGH''' # Calculate the max difference in obs over all space/angle points between neighboring energy points numPoints, numDim = observations.shape obsErr = np.zeros(numPoints) obsErr[1:] = np.max(np.abs(observations[:-1,:] - observations[1:,:]) , axis=1) # Sum this error cumErr = np.cumsum(np.square(obsErr)) totErr = cumErr[-1] # Evenly divide the total error into numGroups groups errPerGroup = totErr / numGroups labels = np.zeros(numPoints, dtype=np.int) groupBdrLower = 0 for g in range(numGroups): desiredErr = (g + 1) * errPerGroup groupBdrUpper = np.argmin(np.abs(cumErr - desiredErr)) + 1 if groupBdrLower >= groupBdrUpper: groupBdrUpper = groupBdrLower + 1 labels[groupBdrLower:groupBdrUpper] = g groupBdrLower = groupBdrUpper return labels def cluster_using_equal_topological_spacing(observations, numGroups): '''Split observations into numGroups pieces so that an even number of points go into each piece''' numPoints, numDim = observations.shape pointsPerGroup = numPoints // numGroups remainder = numPoints % numGroups labels = np.zeros(numPoints, dtype=np.int) groupBdrLower = 0 for g in range(numGroups): groupBdrUpper = groupBdrLower + pointsPerGroup if g < remainder: groupBdrUpper += 1 labels[groupBdrLower:groupBdrUpper] = g groupBdrLower = groupBdrUpper return labels def cluster_using_equal_energy_spacing(fineGroupBdrs, numGroups): '''This may return fewer groups than numGroups when fineGroupBdrs has unequal spacing and numGroups is large''' '''If this fails to produce the desired number of groups, split up existing groups starting with HIGH energies and going to LOW''' # Calculate an energy mesh using equal log spacing with numGroups groups numFineGroups = len(fineGroupBdrs) - 1 desiredGroupBdrs = np.logspace(np.log10(fineGroupBdrs[0]), np.log10(fineGroupBdrs[-1]), numGroups+1) # Get as close as possible to this mesh using the fineGroupBdrs labels = np.zeros(numFineGroups, dtype=np.int) groupBdrLower = 0 for g in range(numGroups): groupBdrUpper = np.argmin(np.abs(fineGroupBdrs - desiredGroupBdrs[g+1])) if groupBdrLower >= groupBdrUpper: groupBdrUpper = groupBdrLower + 1 labels[groupBdrLower:groupBdrUpper] = g groupBdrLower = groupBdrUpper return labels def cluster_using_hierarchical_agglomeration(obs, numClusters, connectivityGraph): '''Use hierarhical agglomerative clustering with a connectivity graph''' har = cluster.AgglomerativeClustering(n_clusters=numClusters, connectivity=connectivityGraph) har.fit(obs) return har.labels_ # Hack to use Birch: #birch = cluster.Birch(n_clusters=numClusters, threshold=0.05) #return birch.fit_predict(obs) ############################################################################### def condense_subelements(labels, energies): '''Combine all energy points that have the same labels. If dual, combine all energy groups that have the same labels, and interpret energies as group boundaries. Output a dual mesh''' isDual = True if len(energies) == len(labels): isDual = False energies = energies.copy() small = 1E-5 energies[energies == 0] = small if isDual: numBdrs = len(energies) toKeep = np.ones(numBdrs, dtype=bool) toKeep[1:-1] = (labels[1:] != labels[:-1]) labelsOut = labels[toKeep[:-1]] energiesOut = energies[toKeep] else: numEnergies = len(energies) toKeep = np.ones(numEnergies, dtype=bool) toKeep = (labels[1:] != labels[:-1]) groupsToKeep = np.sum(toKeep) + 1 labelsOut = np.zeros(groupsToKeep, dtype=np.int) labelsOut[:-1] = labels[toKeep] labelsOut[-1] = labels[-1] energiesOut = np.zeros(groupsToKeep+1) energiesOut[0] = energies[0] toKeepIndices = np.where(toKeep)[0] energiesOut[1:-1] = np.sqrt(energies[toKeepIndices] * energies[toKeepIndices+1]) energiesOut[-1] = energies[-1] return labelsOut, energiesOut def average_observations(labels, energies, observations): '''Currently only works for primal meshes''' energies = energies.copy() small = 1E-5 energies[energies == 0] = small # numGroups, numPoints = observations.shape # toKeep = np.ones(numGroups+1, dtype=bool) toKeep[1:-1] = (labels[1:] != labels[:-1]) subelementBdrs = np.where(toKeep)[0] numSubelements = len(subelementBdrs) - 1 observationsOut = np.zeros((numSubelements, numPoints)) energiesOut = np.zeros(numSubelements) labelsOut = np.zeros(numSubelements, dtype=int) for i in range(numSubelements): strt, end = subelementBdrs[i], subelementBdrs[i+1] observationsOut[i, :] = np.mean(observations[strt:end, :], axis=0) energiesOut[i] = np.exp(np.mean(np.log(energies[strt:end]))) labelsOut[i] = labels[strt] return labelsOut, energiesOut, observationsOut ############################################################################### def find_minimum_neighbors_radius(observations): '''Find the minimum radius such that the number of connected components is 1. First, find a bounding interval. Then use bisection within the interval.''' # radiusNeighbors = 0.10 bounds = [0, np.inf] foundBounds = [False, False] while not np.all(foundBounds): numRadComponents, radLabels = sparse.csgraph.connected_components( neighbors.radius_neighbors_graph(observations, radiusNeighbors)) if numRadComponents > 1: bounds[0] = radiusNeighbors foundBounds[0] = True radiusNeighbors *= 2 else: bounds[1] = radiusNeighbors foundBounds[1] = True radiusNeighbors /= 2 # converged = False tol = 1E-2 its = 0 maxIts = 10 while (its < maxIts and not converged): its += 1 radiusNeighbors = 0.5 * (bounds[0] + bounds[1]) numRadComponents, radLabels = sparse.csgraph.connected_components( neighbors.radius_neighbors_graph(observations, radiusNeighbors)) if numRadComponents > 1: bounds[0] = radiusNeighbors else: bounds[1] = radiusNeighbors sz = (bounds[1] - bounds[0]) / radiusNeighbors if sz <= tol: converged = True radiusNeighbors = bounds[1] return radiusNeighbors def get_index_neighbors(length): '''Return a neighbors graph that is tridiagonal, viz., the neighbors are determined by index''' arr = np.ones(length) return sparse.spdiags([arr, arr, arr], [-1, 0, 1], length, length) def find_minimum_num_neighbors(observations): '''Find the minimum number of neighbors such that the number of connected components is 1. First, find a bounding interval. Then use bisection within the interval.''' # numNeighbors = 10 numPoints = observations.shape[0] bounds = [0, numPoints] foundBounds = [False, False] while not np.all(foundBounds): numKnnComponents, knnLabels = sparse.csgraph.connected_components( neighbors.kneighbors_graph(observations, numNeighbors, include_self=True)) if numKnnComponents > 1: bounds[0] = numNeighbors foundBounds[0] = True numNeighbors *= 2 else: bounds[1] = numNeighbors foundBounds[1] = True numNeighbors /= 2 if numNeighbors == 0: bounds[0] = 0 foundBounds[0] = True # converged = False minSz = 1 its = 0 maxIts = 10 while (its < maxIts and not converged): its += 1 numNeighbors = int(np.round(0.5 * (bounds[0] + bounds[1]))) numKnnComponents, knnLabels = sparse.csgraph.connected_components( neighbors.kneighbors_graph(observations, numNeighbors, include_self=True)) if numKnnComponents > 1: bounds[0] = numNeighbors else: bounds[1] = numNeighbors sz = bounds[1] - bounds[0] if sz <= minSz: converged = True numNeighbors = bounds[1] if not converged: print "Not converged!" return numNeighbors ############################################################################### def load_txt(filePath, skiprows=1, usecols=[1]): return np.loadtxt(filePath, skiprows=skiprows, usecols=usecols) ############################################################################### def define_input_parser(): import argparse # parser = argparse.ArgumentParser(description='Minimizer of observation errors and creator of generalized energy meshes.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) defaults = define_defaults() # If nothing is specified, verbosity is False. If -v or --verbose is specified, verbosity is 1. If -v N is specified, verbosity is N. parser.add_argument('-v', '--verbose', dest='verbosity', nargs='?', const=1, default=defaults['verbosity'], choices=[0,1,2,3,4], type=int) parser.add_argument('-e', '--elements', dest='numelements', help="Number of total energy elements to use for the energy mesh. Ignored if the 'numcoarsegroups' option is used.", type=int, default=defaults['numelements']) parser.add_argument('-T', '--totalnumelements', dest='numelementsistotal', help="If specified, the number of energy elements is taken to be the total number of elements. If not specified, the number of energy elements is taken to be the number of elements in the resolved resonance region. Ignored if the 'numcoarsegroups' option is used.", action='store_true', default=False) parser.add_argument('-a', '--apportionopt', help="Specify how to assign the number of energy elements per coarse group, if not explicitly specified using 'listnumelements'. 'equal' means use an equal number of elements per coarse group. 'var', 'max', 'birch', and 'L1' are four ways that assign elements in proportion to the relative variance within a coarse group. 'L1' is not normalized to the number of fine points per coarse group and is more useful for 'amg' and 'tmg' work options. 'birch' uses the number of Birch clusters, and is approximate.", choices=['equal', 'var', 'max', 'birch', 'L1'], default=defaults['apportionopt']) parser.add_argument('-S', '--sigt', help='If specified, use Sigma_t as the other indicator. If not specified, use phi calculated with an escape cross sections as the other indicator. Always use the infinite-medium flux as the first indicator. Fluxes are normalized in shape to be more constant: the Maxwellian-1/E-fission source shape is divided out.', action='store_true', default=False) parser.add_argument('-w', '--workopt', help='What to do. har means do hierarchical agglomerative clustering (with restricted connectivity based on a set number of nearest neighbors). mg means do even spacing in lethargy (or as close as possible given the input energy mesh). amg means minimize squared error within each group. tmg means evenly divide in index (topology) space from input grid', choices=['amg','tmg','mg','har'], default=defaults['workopt']) parser.add_argument('-c', '--coarsebdrs', help='The resolved resonance range and how it is to be split into coarse groups (one clustering calculation per coarse group).', type=float, nargs='+', default=defaults['coarsebdrs']) parser.add_argument('-n', '--numcoarsegroups', help="The number of coarse groups to be used. If nonzero, overwrites the internal members of 'coarsebdrs'", type=int, default=defaults['numcoarsegroups']) parser.add_argument('-l', '--listnumelements', help='Number of elements to be put in each coarse boundary. Number of arguments should be one less than the number of coarse boundaries. Takes priority over "elements" if set', type=int, nargs='+', default=defaults['listnumelements']) parser.add_argument('-r', '--resolution', help='Resolution to use for the pointwise flux calculations', type=int, choices=range(11), default=defaults['resolution']) parser.add_argument('-m', '--materialopt', help="Unless 'manual' is used, specifies a set of materials to use. If 'manual' is used, give a space-separated list of material names in 'listmaterials'.", choices=['4','5','c5g7', 'graphite', 'iron', 'kpin', 'kenrichedpin', 'kcladpin', 'kpin2d', 'kenrichedpin2d', 'kmoxpin2d', 'kmoxenrichedpin2d', 'trigafuel', 'ctrigafuel', 'ctrigafuel_0', 'trigamore', 'CASL', 'manual'], default=defaults['materialopt']) parser.add_argument('-i', '--indicatormaterials', dest='listmaterials', help="When manual 'materialopt' is used, specify the materials to use.", nargs='+', default=defaults['listmaterials']) parser.add_argument('-I', '--importances', dest='listimportances', help="When manual 'materialopt' is used, specify the weightings (importances) to use when clustering.", nargs='+', type=int, default=[]) parser.add_argument('-p', '--plotopt', help='Which observations to plot', choices=['none', 'first', 'last', 'firstlast', 'half', 'all', 'sum'], default=defaults['plotopt']) parser.add_argument('-s', '--shownumbers', help='If true, show element numbers on the plots', type=int, default=defaults['shownumbers']) parser.add_argument('-E', '--energypenalty', help='The energy variable is added to the observations to encourage contiguity for high numbers of elements. A value of 0 will not penalize in energy at all. A very large value will yield equal-lethargy-spaced MG', type=float, default=defaults['energypenalty']) parser.add_argument('-C', '--condensesubelements', help='If true, condense contiguous energy ranges before outputting', type=int, default=defaults['condensesubelements']) parser.add_argument('-d', '--dpi', help='Resolution to use for output plots', type=int, default=defaults['dpi']) return parser ############################################################################### if __name__ == '__main__': parser = define_input_parser() inputDict = vars(parser.parse_args()) if inputDict['verbosity'] > 1: print 'Summary of inputs:' print inputDict do_all(inputDict)
import tensorflow as tf from sklearn.metrics import confusion_matrix, classification_report, accuracy_score from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np from library.utils import file_utils from sklearn.preprocessing import StandardScaler, MinMaxScaler import math import os, glob, time from os.path import basename from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file from library.preprocessing import ZCA # Resources # https://www.youtube.com/watch?v=3VEXX73tnw4 class TFMLPClassifier: def __init__(self, logs=True, log_dir='./logs/', learning_rate=0.01, activation_fn='softmax', restore=True, num_iterations=100, device='cpu', session_type='default', descent_method='adam', init_weights='random', display_step=10, reg_const=0.01, regularize=False, learning_rate_type='constant', model_name='./model/mlp_classifier_model.ckpt', save_model=False, transform=True, test_log=True, transform_method='StandardScaler', tolerance=1e-7, train_validate_split=None, separate_writer=False, batch_size=100, nodes_in_layers=[5, 5], activation_req=False, verbose=False): # Docs self.tensorboard_logs = logs self.verbose = verbose self.tensorboard_log_dir = log_dir self.merged_summary_op = None self.summary_writer = None self.train_writer = None self.validate_writer = None self.test_writer = None self.model = None self.model_name = model_name self.save_model = save_model self.train_loss_summary = None self.train_acc_summary = None self.validate_acc_summary = None self.test_acc_summary = None self.w_hist = None self.w_im = None self.b_hist = None self.restore = restore self.separate_writer = separate_writer # self.session = None self.device = device self.session_type = session_type # Parameters self.learning_rate = learning_rate self.max_iterations = num_iterations self.display_step = display_step self.tolerance = tolerance self.descent_method = descent_method self.init_weights = init_weights self.reg_const = reg_const self.regularize = regularize self.activation = activation_fn self.learning_rate_type = learning_rate_type self.batch_size = batch_size self.hidden_layers = nodes_in_layers # Data transform methods self.transform = transform self.transform_method = transform_method # Graph inputs self.x = None self.y_true = None self.y_true_cls = None self.num_features = None self.num_classes = None # Validation and testing self.y_pred = None self.y_pred_cls = None # self.init_var = None self.last_epoch = 0 self.global_step = 0 self.optimizer = None self.train_accuracy = None self.validate_accuracy = None self.test_log = test_log self.test_accuracy = None self.activation_req = activation_req self.weights = {} self.biases = {} self.layers = {} self.output_layer = None self.loss = None self.correct_prediction = None self.cross_entropy = None # self.train_validate_split = train_validate_split def print_parameters(self): print('Linear Classifier') def make_placeholders_for_inputs(self, num_features, num_classes): with tf.device('/cpu:0'): with tf.name_scope('Inputs'): with tf.name_scope('Data'): self.x = tf.placeholder(tf.float32, [None, num_features], name='X') with tf.name_scope('Train_Labels'): self.y_true = tf.placeholder(tf.float32, [None, num_classes], name='y_label') self.y_true_cls = tf.placeholder(tf.int64, [None], name='y_class') with tf.name_scope('Input_Image'): image_shaped_input = tf.reshape(self.x, [-1, 32, 32, 3]) tf.summary.image('Training_Images', image_shaped_input, 1) def make_weights(self, num_features, num_classes, number_of_layers=1): prev_layer_weights = num_features for layer_no in range(number_of_layers): weight = None weight_key = 'weight_' + str(layer_no) if self.init_weights == 'zeros': weight = tf.Variable(tf.zeros([prev_layer_weights, self.hidden_layers[layer_no]]), name='W_'+str(layer_no)+'_zeros') elif self.init_weights == 'random': weight = tf.Variable(tf.random_normal([prev_layer_weights, self.hidden_layers[layer_no]]), name='W_'+str(layer_no)+'_random_normal') else: weight = tf.Variable(tf.random_normal([prev_layer_weights, self.hidden_layers[layer_no]]), name='W_'+str(layer_no)+'_random_normal') self.weights[weight_key] = weight prev_layer_weights = self.hidden_layers[layer_no] def make_bias(self, num_features, num_classes, number_of_layers=1): for layer_no in range(number_of_layers): bias = None bias_key = 'bias_' + str(layer_no) bias = tf.Variable(tf.random_normal([self.hidden_layers[layer_no]]), name='b_'+str(layer_no)) self.biases[bias_key] = bias def make_layers(self, number_of_layers): prev_layer = self.x for layer_no in range(number_of_layers): layer = None weight_key = 'weight_' + str(layer_no) bias_key = 'bias_' + str(layer_no) layer_key = 'layer_' + str(layer_no) if self.activation == 'sigmoid': layer = tf.nn.sigmoid(tf.add(tf.matmul(prev_layer, self.weights[weight_key]), self.biases[bias_key]), name='Layer_'+str(layer_no)+'_sigmoid') elif self.activation == 'softmax': layer = tf.nn.softmax(tf.add(tf.matmul(prev_layer, self.weights[weight_key]), self.biases[bias_key]), name='Layer_' + str(layer_no)+'_softmax') elif self.activation == 'relu': layer = tf.nn.relu(tf.add(tf.matmul(prev_layer, self.weights[weight_key]), self.biases[bias_key]), name='Layer_' + str(layer_no)+'_relu') else: layer = tf.nn.relu(tf.add(tf.matmul(prev_layer, self.weights[weight_key]), self.biases[bias_key]), name='Layer_' + str(layer_no)+'_relu') self.layers[layer_key] = layer prev_layer = self.layers[layer_key] def make_output_layer(self): layer_key = layer_key = 'layer_' + str(len(self.hidden_layers)-1) print(len(self.hidden_layers)) print(layer_key) print(self.weights.keys()) print(self.biases.keys()) print('output') output = tf.Variable( tf.random_normal([self.hidden_layers[-1], self.num_classes])) print('bias') bias_output = tf.Variable(tf.random_normal([self.num_classes])) print('layer') self.output_layer = tf.add(tf.matmul(self.layers[layer_key], output), bias_output, name='out_layer') def make_parameters(self, num_features, num_classes): with tf.device('/cpu:0'): number_of_layers = len(self.hidden_layers) with tf.name_scope('Parameters'): with tf.name_scope('Weights'): self.make_weights(num_features, num_classes, number_of_layers) with tf.name_scope('Bias'): self.make_bias(num_features, num_classes, number_of_layers) with tf.name_scope('Hidden_Layers'): self.make_layers(number_of_layers) with tf.name_scope('Output_Layer'): self.make_output_layer() def make_predictions(self): with tf.device('/cpu:0'): with tf.name_scope('Predictions'): if self.activation_req is True: if self.activation == 'softmax': self.y_pred = tf.nn.softmax(self.output_layer) elif self.activation == 'relu': self.y_pred = tf.nn.relu(self.output_layer) elif self.activation == 'sigmoid': self.y_pred = tf.nn.sigmoid(self.output_layer) else: self.y_pred = self.output_layer self.y_pred_cls = tf.argmax(self.y_pred, dimension=1) def make_optimization(self): with tf.device('/cpu:0'): with tf.name_scope('Cross_Entropy'): self.cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=self.output_layer, labels=self.y_true) with tf.name_scope('Loss_Function'): if self.regularize is True: ridge_param = tf.cast(tf.constant(self.reg_const), dtype=tf.float32) ridge_loss = tf.reduce_mean(tf.square(self.weights)) self.loss = tf.add(tf.reduce_mean(self.cross_entropy), tf.multiply(ridge_param, ridge_loss)) else: self.loss = tf.reduce_mean(self.cross_entropy) self.train_loss_summary = tf.summary.scalar('Training_Error', self.loss) with tf.name_scope('Optimizer'): if self.learning_rate_type == 'exponential': learning_rate = tf.train.exponential_decay(self.learning_rate, self.global_step, self.display_step, 0.96, staircase=True) else: learning_rate = self.learning_rate if self.descent_method == 'gradient': self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\ .minimize(self.loss) elif self.descent_method == 'adam': self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)\ .minimize(self.loss) else: self.optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)\ .minimize(self.loss) self.correct_prediction = tf.equal(self.y_pred_cls, self.y_true_cls) def make_accuracy(self): with tf.device('/cpu:0'): with tf.name_scope('Train_Accuracy'): self.train_accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) if self.separate_writer is True: self.train_acc_summary = tf.summary.scalar('Train_Accuracy', self.train_accuracy) else: self.train_acc_summary = tf.summary.scalar('Train_Accuracy', self.train_accuracy) if self.train_validate_split is not None: with tf.name_scope('Validate_Accuracy'): self.validate_accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) if self.separate_writer is True: self.validate_acc_summary = tf.summary.scalar('Validate_Accuracy', self.validate_accuracy) else: self.validate_acc_summary = tf.summary.scalar('Validation_Accuracy', self.validate_accuracy) if self.test_log is True: with tf.name_scope('Test_Accuracy'): self.test_accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) if self.separate_writer is True: self.test_acc_summary = tf.summary.scalar('Test_Accuracy', self.test_accuracy) else: self.test_acc_summary = tf.summary.scalar('Test_Accuracy', self.test_accuracy) def create_graph(self, num_features, num_classes): self.num_features = num_features self.num_classes = num_classes self.global_step = tf.Variable(0, name='last_successful_epoch', trainable=False, dtype=tf.int32) self.last_epoch = tf.assign(self.global_step, self.global_step + 1, name='assign_updated_epoch') # Step 1: Creating placeholders for inputs self.make_placeholders_for_inputs(num_features, num_classes) # Step 2: Creating initial parameters for the variables self.make_parameters(num_features, num_classes) # Step 3: Make predictions for the data self.make_predictions() # Step 4: Perform optimization operation self.make_optimization() # Step 5: Calculate accuracies self.make_accuracy() # Step 6: Initialize all the required variables with tf.device('/cpu:0'): self.init_var = tf.global_variables_initializer() if self.verbose is True: print('X : ' + str(self.x)) print('Y_true : ' + str(self.y_true)) print('Y_true_cls : ' + str(self.y_true_cls)) print('W : ' + str(self.weights)) for i in range(len(self.hidden_layers)): weight_key = 'weight_' + str(i) print(' weight_%d : %s' % (i,str(self.weights[weight_key]))) print('b : ' + str(self.biases)) for i in range(len(self.hidden_layers)): bias_key = 'bias_' + str(i) print(' bias_%d : %s' % (i,str(self.biases[bias_key]))) print('Layers : ' + str(self.layers)) for i in range(len(self.hidden_layers)): layer_key = 'layer_' + str(i) print(' layer_%d : %s' % (i,str(self.layers[layer_key]))) print('Output layer : ' + str(self.output_layer)) print('Y_pred : ' + str(self.y_pred)) print('Y_pred_cls : ' + str(self.y_pred_cls)) print('cross_entropy : ' + str(self.cross_entropy)) print('train_loss : ' + str(self.loss)) print('optimizer : ' + str(self.optimizer)) print('correct_prediction : ' + str(self.correct_prediction)) print('Train Accuracy : ' + str(self.train_accuracy)) print('Validate Accuracy : ' + str(self.validate_accuracy)) print('Test Accuracy : ' + str(self.test_accuracy)) return True def fit(self, data, labels, classes, test_data=None, test_labels=None, test_classes=None): if self.device == 'cpu': print('Using CPU') config = tf.ConfigProto( log_device_placement=True, allow_soft_placement=True, #allow_growth=True, #device_count={'CPU': 0} ) else: print('Using GPU') config = tf.ConfigProto( log_device_placement=True, allow_soft_placement=True, #allow_growth=True, #device_count={'GPU': 0} ) if self.session_type == 'default': self.session = tf.Session(config=config) if self.session_type == 'interactive': self.session = tf.InteractiveSession(config=config) print('Session: ' + str(self.session)) self.session.run(self.init_var) if self.tensorboard_logs is True: file_utils.mkdir_p(self.tensorboard_log_dir) self.merged_summary_op = tf.summary.merge_all() if self.restore is False: file_utils.delete_all_files_in_dir(self.tensorboard_log_dir) if self.separate_writer is False: self.summary_writer = tf.summary.FileWriter(self.tensorboard_log_dir, graph=self.session.graph) else: self.train_writer = tf.summary.FileWriter(self.tensorboard_log_dir + 'train', graph=self.session.graph) if self.train_validate_split is not None: self.validate_writer = tf.summary.FileWriter(self.tensorboard_log_dir + 'validate', graph=self.session.graph) if self.test_log is True: self.test_writer = tf.summary.FileWriter(self.tensorboard_log_dir + 'test', graph=self.session.graph) if self.save_model is True: self.model = tf.train.Saver(max_to_keep=5) if self.train_validate_split is not None: train_data, validate_data, train_labels, validate_labels, train_classes, validate_classes = \ train_test_split(data, labels, classes, train_size=self.train_validate_split) if self.verbose is True: print('Data shape: ' + str(data.shape)) print('Labels shape: ' + str(labels.shape)) print('Classes shape: ' + str(classes.shape)) print('Train Data shape: ' + str(train_data.shape)) print('Train Labels shape: ' + str(train_labels.shape)) print('Train Classes shape: ' + str(train_classes.shape)) print('Validate Data shape: ' + str(validate_data.shape)) print('Validate Labels shape: ' + str(validate_labels.shape)) print('Validate Classes shape: ' + str(validate_classes.shape)) if self.test_log is False: self.optimize(train_data, train_labels, train_classes, validate_data=validate_data, validate_labels=validate_labels, validate_classes=validate_classes) else: self.optimize(train_data, train_labels, train_classes, validate_data=validate_data, validate_labels=validate_labels, validate_classes=validate_classes, test_data=test_data, test_labels=test_labels, test_classes=test_classes) else: if self.test_log is False: self.optimize(data, labels, classes) else: self.optimize(data, labels, classes, test_data=test_data, test_labels=test_labels, test_classes=test_classes) def optimize(self, train_data, train_labels, train_classes, validate_data=None, validate_labels=None, validate_classes=None, test_data = None, test_labels = None, test_classes = None): if self.transform is True: if self.transform_method == 'StandardScaler': ss = StandardScaler() train_data = ss.fit_transform(train_data) if self.train_validate_split is not None: validate_data = ss.fit_transform(validate_data) if self.test_log is True: test_data = ss.fit_transform(test_data) if self.transform_method == 'MinMaxScaler': ss = MinMaxScaler() train_data = ss.fit_transform(train_data) if self.train_validate_split is not None: validate_data = ss.fit_transform(validate_data) if self.test_log is True: test_data = ss.fit_transform(test_data) file_name = os.path.splitext(os.path.abspath(self.model_name))[0] num_files = len(sorted(glob.glob(os.path.abspath(file_name + '*.meta')))) if num_files > 0: checkpoint_file = os.path.abspath(sorted(glob.glob(file_name + '*.data-00000-of-00001'), reverse=True)[0]) if os.path.exists(checkpoint_file): print('Restoring model from %s' % checkpoint_file) meta_file = os.path.abspath(sorted(glob.glob(file_name + '*.meta'), reverse=True)[0]) print('Loading: %s' %meta_file) saver = tf.train.import_meta_graph(meta_file) print('Loading: %s' %os.path.abspath(checkpoint_file)) cpk = tf.train.latest_checkpoint(os.path.dirname(meta_file)) print('Checkpoint: ' + str(cpk)) print('Tensors') print(print_tensors_in_checkpoint_file(file_name=cpk, all_tensors='', tensor_name='')) saver.restore(self.session, tf.train.latest_checkpoint(os.path.dirname(meta_file))) print('Last epoch to restore: ' + str(self.session.run(self.global_step))) if self.train_validate_split is not None: if self.test_log is False: self.run(train_data, train_labels, train_classes, validate_data=validate_data, validate_labels=validate_labels, validate_classes=validate_classes) else: self.run(train_data, train_labels, train_classes, validate_data=validate_data, validate_labels=validate_labels, validate_classes=validate_classes, test_data=test_data, test_labels=test_labels, test_classes=test_classes) else: if self.test_log is False: self.run(train_data, train_labels, train_classes) else: self.run(train_data, train_labels, train_classes, test_data=test_data, test_labels=test_labels, test_classes=test_classes) def run(self, train_data, train_labels, train_classes, validate_data=None, validate_labels=None, validate_classes=None, test_data=None, test_labels=None, test_classes=None): if self.train_validate_split is not None: feed_dict_validate = {self.x: validate_data, self.y_true: validate_labels, self.y_true_cls: validate_classes} if self.test_log is True: feed_dict_test = {self.x: test_data, self.y_true: test_labels, self.y_true_cls: test_classes} epoch = self.session.run(self.global_step) print('Last successful epoch: ' + str(epoch)) converged = False prev_cost = 0 start = time.time() end_batch_index = 0 num_batches = int(train_data.shape[0] / self.batch_size) while (epoch != self.max_iterations) and converged is False: start_batch_index = 0 for batch in range(num_batches): # print('Training on batch %d' %batch) end_batch_index = start_batch_index + self.batch_size if end_batch_index < train_data.shape[0]: train_batch_data = train_data[start_batch_index:end_batch_index, :] train_batch_labels = train_labels[start_batch_index:end_batch_index, :] train_batch_classes = train_classes[start_batch_index:end_batch_index] else: train_batch_data = train_data[start_batch_index:, :] train_batch_labels = train_labels[start_batch_index:, :] train_batch_classes = train_classes[start_batch_index:] feed_dict_train = {self.x: train_batch_data, self.y_true: train_batch_labels, self.y_true_cls: train_batch_classes} _, cost, train_acc, curr_epoch = self.session.run([self.optimizer, self.loss, self.train_accuracy, self.last_epoch], feed_dict=feed_dict_train) train_loss_summary = self.session.run(self.train_loss_summary, feed_dict=feed_dict_train) train_acc_summary = self.session.run(self.train_acc_summary, feed_dict=feed_dict_train) start_batch_index += self.batch_size if self.train_validate_split is not None: validate_acc, validate_summary = \ self.session.run([self.validate_accuracy, self.validate_acc_summary], feed_dict=feed_dict_validate) if self.test_log is True: test_acc, test_summary = \ self.session.run([self.test_accuracy, self.test_acc_summary], feed_dict=feed_dict_test) if self.separate_writer is False: self.summary_writer.add_summary(train_loss_summary, epoch) self.summary_writer.add_summary(train_acc_summary, epoch) self.summary_writer.add_summary(validate_summary, epoch) self.summary_writer.add_summary(test_summary, epoch) else: self.train_writer.add_summary(train_loss_summary, epoch) self.train_writer.add_summary(train_acc_summary, epoch) if self.train_validate_split is not None: self.validate_writer.add_summary(validate_summary, epoch) if self.test_log is True: self.test_writer.add_summary(test_summary, epoch) if epoch % self.display_step == 0: duration = time.time() - start if self.train_validate_split is not None and self.test_log is False: print('>>> Epoch [%*d/%*d] | Error: %.4f | Train Acc.: %.4f | Validate Acc.: %.4f | ' 'Duration: %.4f seconds' %(int(len(str(self.max_iterations))), epoch, int(len(str(self.max_iterations))), self.max_iterations, cost, train_acc, validate_acc, duration)) elif self.train_validate_split is not None and self.test_log is True: print('>>> Epoch [%*d/%*d] | Error: %.4f | Train Acc.: %.4f | Validate Acc.: %.4f | ' 'Test Acc.: %.4f | Duration: %.4f seconds' %(int(len(str(self.max_iterations))), epoch, int(len(str(self.max_iterations))), self.max_iterations, cost, train_acc, validate_acc, test_acc, duration)) elif self.train_validate_split is None and self.test_log is True: print('>>> Epoch [%*d/%*d] | Error: %.4f | Train Acc.: %.4f | ' 'Test Acc.: %.4f | Duration: %.4f seconds' %(int(len(str(self.max_iterations))), epoch, int(len(str(self.max_iterations))), self.max_iterations, cost, train_acc, test_acc, duration)) else: print('>>> Epoch [%*d/%*d] | Error: %.4f | Train Acc.: %.4f | Duration of run: %.4f seconds' % (int(len(str(self.max_iterations))), epoch, int(len(str(self.max_iterations))), self.max_iterations, cost, train_acc)) start = time.time() if self.save_model is True: model_directory = os.path.dirname(self.model_name) file_utils.mkdir_p(model_directory) self.model.save(self.session, self.model_name, global_step=epoch) if epoch == 0: prev_cost = cost else: if math.fabs(cost-prev_cost) < self.tolerance: converged = False epoch += 1 # print('Current success step: ' + str(self.session.run(self.global_step))) def fit_and_test(self, data, labels, classes, test_data, test_labels, test_classes): self.fit(data, labels, classes) def predict(self, data): if self.transform is True: if self.transform_method == 'StandardScaler': ss = StandardScaler() data = ss.fit_transform(data) if self.transform_method == 'MinMaxScaler': ss = MinMaxScaler() data = ss.fit_transform(data) feed_dict_data = {self.x: data} predictions = self.session.run(self.y_pred_cls, feed_dict=feed_dict_data) predictions = np.array(predictions) return predictions def load_model(self, model_name): self.model.restore(self.session, model_name) def close(self): self.session.close() def print_accuracy(self, test_data, test_labels, test_classes): predict_classes = self.predict(test_data) return accuracy_score(test_classes, predict_classes, normalize=True) def print_classification_results(self, test_data, test_labels, test_classes): if self.transform is True: if self.transform_method == 'StandardScaler': ss = StandardScaler() test_data = ss.fit_transform(test_data) if self.transform_method == 'MinMaxScaler': ss = MinMaxScaler() test_data = ss.fit_transform(test_data) feed_dict_test = {self.x: test_data, self.y_true: test_labels, self.y_true_cls: test_classes} cls_true = test_classes cls_pred = self.session.run(self.y_pred_cls, feed_dict=feed_dict_test) cm = confusion_matrix(y_true=cls_true, y_pred=cls_pred) print('Confusion matrix') print(cm) print('Detailed classification report') print(classification_report(y_true=cls_true, y_pred=cls_pred)) def __exit__(self, exc_type, exc_val, exc_tb): self.session.close() if self.separate_writer is False: self.summary_writer.close() else: self.train_writer.close() if self.train_validate_split is not None: self.validate_writer.close() if self.test_log is True: self.test_writer.close() def __del__(self): self.session.close() if self.separate_writer is False: self.summary_writer.close() else: self.train_writer.close() if self.train_validate_split is not None: self.validate_writer.close() if self.test_log is True: self.test_writer.close()
# -*- coding: utf-8 -*- # This file is part of MediaFile. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Automatically-generated blanket testing for the MediaFile metadata layer. """ from __future__ import division, absolute_import, print_function import os import shutil import datetime import time import unittest from six import assertCountEqual from test import _common from mediafile import MediaFile, Image, \ ImageType, CoverArtField, UnreadableFileError import mutagen class ArtTestMixin(object): """Test reads and writes of the ``art`` property. """ @property def png_data(self): if not self._png_data: image_file = os.path.join(_common.RSRC, b'image-2x3.png') with open(image_file, 'rb') as f: self._png_data = f.read() return self._png_data _png_data = None @property def jpg_data(self): if not self._jpg_data: image_file = os.path.join(_common.RSRC, b'image-2x3.jpg') with open(image_file, 'rb') as f: self._jpg_data = f.read() return self._jpg_data _jpg_data = None @property def tiff_data(self): if not self._jpg_data: image_file = os.path.join(_common.RSRC, b'image-2x3.tiff') with open(image_file, 'rb') as f: self._jpg_data = f.read() return self._jpg_data _jpg_data = None def test_set_png_art(self): mediafile = self._mediafile_fixture('empty') mediafile.art = self.png_data mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.art, self.png_data) def test_set_jpg_art(self): mediafile = self._mediafile_fixture('empty') mediafile.art = self.jpg_data mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.art, self.jpg_data) def test_delete_art(self): mediafile = self._mediafile_fixture('empty') mediafile.art = self.jpg_data mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNotNone(mediafile.art) del mediafile.art mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNone(mediafile.art) class ImageStructureTestMixin(ArtTestMixin): """Test reading and writing multiple image tags. The tests use the `image` media file fixture. The tags of these files include two images, on in the PNG format, the other in JPEG format. If the tag format supports it they also include additional metadata. """ def test_read_image_structures(self): mediafile = self._mediafile_fixture('image') self.assertEqual(len(mediafile.images), 2) image = next(i for i in mediafile.images if i.mime_type == 'image/png') self.assertEqual(image.data, self.png_data) self.assertExtendedImageAttributes(image, desc=u'album cover', type=ImageType.front) image = next(i for i in mediafile.images if i.mime_type == 'image/jpeg') self.assertEqual(image.data, self.jpg_data) self.assertExtendedImageAttributes(image, desc=u'the artist', type=ImageType.artist) def test_set_image_structure(self): mediafile = self._mediafile_fixture('empty') image = Image(data=self.png_data, desc=u'album cover', type=ImageType.front) mediafile.images = [image] mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(len(mediafile.images), 1) image = mediafile.images[0] self.assertEqual(image.data, self.png_data) self.assertEqual(image.mime_type, 'image/png') self.assertExtendedImageAttributes(image, desc=u'album cover', type=ImageType.front) def test_add_image_structure(self): mediafile = self._mediafile_fixture('image') self.assertEqual(len(mediafile.images), 2) image = Image(data=self.png_data, desc=u'the composer', type=ImageType.composer) mediafile.images += [image] mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(len(mediafile.images), 3) images = (i for i in mediafile.images if i.desc == u'the composer') image = next(images, None) self.assertExtendedImageAttributes( image, desc=u'the composer', type=ImageType.composer ) def test_delete_image_structures(self): mediafile = self._mediafile_fixture('image') self.assertEqual(len(mediafile.images), 2) del mediafile.images mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(len(mediafile.images), 0) def test_guess_cover(self): mediafile = self._mediafile_fixture('image') self.assertEqual(len(mediafile.images), 2) cover = CoverArtField.guess_cover_image(mediafile.images) self.assertEqual(cover.desc, u'album cover') self.assertEqual(mediafile.art, cover.data) def assertExtendedImageAttributes(self, image, **kwargs): # noqa """Ignore extended image attributes in the base tests. """ pass class ExtendedImageStructureTestMixin(ImageStructureTestMixin): """Checks for additional attributes in the image structure. Like the base `ImageStructureTestMixin`, per-format test classes should include this mixin to add image-related tests. """ def assertExtendedImageAttributes(self, image, desc=None, type=None): # noqa self.assertEqual(image.desc, desc) self.assertEqual(image.type, type) def test_add_tiff_image(self): mediafile = self._mediafile_fixture('image') self.assertEqual(len(mediafile.images), 2) image = Image(data=self.tiff_data, desc=u'the composer', type=ImageType.composer) mediafile.images += [image] mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(len(mediafile.images), 3) # WMA does not preserve the order, so we have to work around this image = list(filter(lambda i: i.mime_type == 'image/tiff', mediafile.images))[0] self.assertExtendedImageAttributes( image, desc=u'the composer', type=ImageType.composer) class LazySaveTestMixin(object): """Mediafile should only write changes when tags have changed """ @unittest.skip(u'not yet implemented') def test_unmodified(self): mediafile = self._mediafile_fixture('full') mtime = self._set_past_mtime(mediafile.filename) self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) mediafile.save() self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) @unittest.skip(u'not yet implemented') def test_same_tag_value(self): mediafile = self._mediafile_fixture('full') mtime = self._set_past_mtime(mediafile.filename) self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) mediafile.title = mediafile.title mediafile.save() self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) def test_update_same_tag_value(self): mediafile = self._mediafile_fixture('full') mtime = self._set_past_mtime(mediafile.filename) self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) mediafile.update({'title': mediafile.title}) mediafile.save() self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) @unittest.skip(u'not yet implemented') def test_tag_value_change(self): mediafile = self._mediafile_fixture('full') mtime = self._set_past_mtime(mediafile.filename) self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) mediafile.title = mediafile.title mediafile.album = u'another' mediafile.save() self.assertNotEqual(os.stat(mediafile.filename).st_mtime, mtime) def test_update_changed_tag_value(self): mediafile = self._mediafile_fixture('full') mtime = self._set_past_mtime(mediafile.filename) self.assertEqual(os.stat(mediafile.filename).st_mtime, mtime) mediafile.update({'title': mediafile.title, 'album': u'another'}) mediafile.save() self.assertNotEqual(os.stat(mediafile.filename).st_mtime, mtime) def _set_past_mtime(self, path): mtime = round(time.time() - 10000) os.utime(path, (mtime, mtime)) return mtime class GenreListTestMixin(object): """Tests access to the ``genres`` property as a list. """ def test_read_genre_list(self): mediafile = self._mediafile_fixture('full') assertCountEqual(self, mediafile.genres, ['the genre']) def test_write_genre_list(self): mediafile = self._mediafile_fixture('empty') mediafile.genres = [u'one', u'two'] mediafile.save() mediafile = MediaFile(mediafile.filename) assertCountEqual(self, mediafile.genres, [u'one', u'two']) def test_write_genre_list_get_first(self): mediafile = self._mediafile_fixture('empty') mediafile.genres = [u'one', u'two'] mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.genre, u'one') def test_append_genre_list(self): mediafile = self._mediafile_fixture('full') self.assertEqual(mediafile.genre, u'the genre') mediafile.genres += [u'another'] mediafile.save() mediafile = MediaFile(mediafile.filename) assertCountEqual(self, mediafile.genres, [u'the genre', u'another']) class ReadWriteTestBase(ArtTestMixin, GenreListTestMixin, _common.TempDirMixin): """Test writing and reading tags. Subclasses must set ``extension`` and ``audio_properties``. The basic tests for all audio formats encompass three files provided in our `rsrc` folder: `full.*`, `empty.*`, and `unparseable.*`. Respectively, they should contain a full slate of common fields listed in `full_initial_tags` below; no fields contents at all; and an unparseable release date field. To add support for a new file format to MediaFile, add these three files and then create a `ReadWriteTestBase` subclass by copying n' pasting one of the existing subclasses below. You will want to update the `format` field in that subclass, and you will probably need to fiddle with the `bitrate` and other format-specific fields. You can also add image tests (using an additional `image.*` fixture file) by including one of the image-related mixins. """ full_initial_tags = { 'title': u'full', 'artist': u'the artist', 'album': u'the album', 'genre': u'the genre', 'composer': u'the composer', 'grouping': u'the grouping', 'year': 2001, 'month': None, 'day': None, 'date': datetime.date(2001, 1, 1), 'track': 2, 'tracktotal': 3, 'disc': 4, 'disctotal': 5, 'lyrics': u'the lyrics', 'comments': u'the comments', 'bpm': 6, 'comp': True, 'mb_trackid': '8b882575-08a5-4452-a7a7-cbb8a1531f9e', 'mb_releasetrackid': 'c29f3a57-b439-46fd-a2e2-93776b1371e0', 'mb_albumid': '9e873859-8aa4-4790-b985-5a953e8ef628', 'mb_artistid': '7cf0ea9d-86b9-4dad-ba9e-2355a64899ea', 'art': None, 'label': u'the label', } tag_fields = [ 'title', 'artist', 'album', 'genre', 'lyricist', 'composer', 'composer_sort', 'arranger', 'grouping', 'year', 'month', 'day', 'date', 'track', 'tracktotal', 'disc', 'disctotal', 'lyrics', 'comments', 'copyright', 'bpm', 'comp', 'mb_trackid', 'mb_releasetrackid', 'mb_workid', 'mb_albumid', 'mb_artistid', 'art', 'label', 'rg_track_peak', 'rg_track_gain', 'rg_album_peak', 'rg_album_gain', 'r128_track_gain', 'r128_album_gain', 'albumartist', 'mb_albumartistid', 'artist_sort', 'albumartist_sort', 'acoustid_fingerprint', 'acoustid_id', 'mb_releasegroupid', 'asin', 'catalognum', 'barcode', 'isrc', 'disctitle', 'script', 'language', 'country', 'albumstatus', 'media', 'albumdisambig', 'artist_credit', 'albumartist_credit', 'original_year', 'original_month', 'original_day', 'original_date', 'initial_key', ] def setUp(self): self.create_temp_dir() def tearDown(self): self.remove_temp_dir() def test_read_nonexisting(self): mediafile = self._mediafile_fixture('full') os.remove(mediafile.filename) self.assertRaises(UnreadableFileError, MediaFile, mediafile.filename) def test_save_nonexisting(self): mediafile = self._mediafile_fixture('full') os.remove(mediafile.filename) try: mediafile.save() except UnreadableFileError: pass def test_delete_nonexisting(self): mediafile = self._mediafile_fixture('full') os.remove(mediafile.filename) try: mediafile.delete() except UnreadableFileError: pass def test_read_audio_properties(self): mediafile = self._mediafile_fixture('full') for key, value in self.audio_properties.items(): if isinstance(value, float): self.assertAlmostEqual(getattr(mediafile, key), value, delta=0.1) else: self.assertEqual(getattr(mediafile, key), value) def test_read_full(self): mediafile = self._mediafile_fixture('full') self.assertTags(mediafile, self.full_initial_tags) def test_read_empty(self): mediafile = self._mediafile_fixture('empty') for field in self.tag_fields: value = getattr(mediafile, field) if isinstance(value, list): assert not value else: self.assertIsNone(value) def test_write_empty(self): mediafile = self._mediafile_fixture('empty') tags = self._generate_tags() for key, value in tags.items(): setattr(mediafile, key, value) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertTags(mediafile, tags) def test_update_empty(self): mediafile = self._mediafile_fixture('empty') tags = self._generate_tags() mediafile.update(tags) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertTags(mediafile, tags) def test_overwrite_full(self): mediafile = self._mediafile_fixture('full') tags = self._generate_tags() for key, value in tags.items(): setattr(mediafile, key, value) mediafile.save() # Make sure the tags are already set when writing a second time for key, value in tags.items(): setattr(mediafile, key, value) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertTags(mediafile, tags) def test_update_full(self): mediafile = self._mediafile_fixture('full') tags = self._generate_tags() mediafile.update(tags) mediafile.save() # Make sure the tags are already set when writing a second time mediafile.update(tags) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertTags(mediafile, tags) def test_write_date_components(self): mediafile = self._mediafile_fixture('full') mediafile.year = 2001 mediafile.month = 1 mediafile.day = 2 mediafile.original_year = 1999 mediafile.original_month = 12 mediafile.original_day = 30 mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.year, 2001) self.assertEqual(mediafile.month, 1) self.assertEqual(mediafile.day, 2) self.assertEqual(mediafile.date, datetime.date(2001, 1, 2)) self.assertEqual(mediafile.original_year, 1999) self.assertEqual(mediafile.original_month, 12) self.assertEqual(mediafile.original_day, 30) self.assertEqual(mediafile.original_date, datetime.date(1999, 12, 30)) def test_write_incomplete_date_components(self): mediafile = self._mediafile_fixture('empty') mediafile.year = 2001 mediafile.month = None mediafile.day = 2 mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.year, 2001) self.assertIsNone(mediafile.month) self.assertIsNone(mediafile.day) self.assertEqual(mediafile.date, datetime.date(2001, 1, 1)) def test_write_dates(self): mediafile = self._mediafile_fixture('full') mediafile.date = datetime.date(2001, 1, 2) mediafile.original_date = datetime.date(1999, 12, 30) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.year, 2001) self.assertEqual(mediafile.month, 1) self.assertEqual(mediafile.day, 2) self.assertEqual(mediafile.date, datetime.date(2001, 1, 2)) self.assertEqual(mediafile.original_year, 1999) self.assertEqual(mediafile.original_month, 12) self.assertEqual(mediafile.original_day, 30) self.assertEqual(mediafile.original_date, datetime.date(1999, 12, 30)) def test_r128_gain_stored_as_q8_number(self): def round_trip(x): q_num = round(x * pow(2, 8)) return q_num / pow(2, 8) mediafile = self._mediafile_fixture('full') track = -1.1 self.assertNotEqual(track, round_trip(track)) mediafile.r128_track_gain = track self.assertEqual(mediafile.r128_track_gain, round_trip(track)) album = 4.2 self.assertNotEqual(album, round_trip(album)) mediafile.r128_album_gain = album self.assertEqual(mediafile.r128_album_gain, round_trip(album)) def test_write_packed(self): mediafile = self._mediafile_fixture('empty') mediafile.tracktotal = 2 mediafile.track = 1 mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.track, 1) self.assertEqual(mediafile.tracktotal, 2) def test_write_counters_without_total(self): mediafile = self._mediafile_fixture('full') self.assertEqual(mediafile.track, 2) self.assertEqual(mediafile.tracktotal, 3) self.assertEqual(mediafile.disc, 4) self.assertEqual(mediafile.disctotal, 5) mediafile.track = 10 delattr(mediafile, 'tracktotal') mediafile.disc = 10 delattr(mediafile, 'disctotal') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.track, 10) self.assertEqual(mediafile.tracktotal, None) self.assertEqual(mediafile.disc, 10) self.assertEqual(mediafile.disctotal, None) def test_unparseable_date(self): """The `unparseable.*` fixture should not crash but should return None for all parts of the release date. """ mediafile = self._mediafile_fixture('unparseable') self.assertIsNone(mediafile.date) self.assertIsNone(mediafile.year) self.assertIsNone(mediafile.month) self.assertIsNone(mediafile.day) def test_delete_tag(self): mediafile = self._mediafile_fixture('full') keys = self.full_initial_tags.keys() for key in set(keys) - set(['art', 'month', 'day']): self.assertIsNotNone(getattr(mediafile, key)) for key in keys: delattr(mediafile, key) mediafile.save() mediafile = MediaFile(mediafile.filename) for key in keys: value = getattr(mediafile, key) if isinstance(value, list): assert not value else: self.assertIsNone(value) def test_delete_packed_total(self): mediafile = self._mediafile_fixture('full') delattr(mediafile, 'tracktotal') delattr(mediafile, 'disctotal') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.track, self.full_initial_tags['track']) self.assertEqual(mediafile.disc, self.full_initial_tags['disc']) def test_delete_partial_date(self): mediafile = self._mediafile_fixture('empty') mediafile.date = datetime.date(2001, 12, 3) mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNotNone(mediafile.date) self.assertIsNotNone(mediafile.year) self.assertIsNotNone(mediafile.month) self.assertIsNotNone(mediafile.day) delattr(mediafile, 'month') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNotNone(mediafile.date) self.assertIsNotNone(mediafile.year) self.assertIsNone(mediafile.month) self.assertIsNone(mediafile.day) def test_delete_year(self): mediafile = self._mediafile_fixture('full') self.assertIsNotNone(mediafile.date) self.assertIsNotNone(mediafile.year) delattr(mediafile, 'year') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNone(mediafile.date) self.assertIsNone(mediafile.year) def assertTags(self, mediafile, tags): # noqa errors = [] for key, value in tags.items(): try: value2 = getattr(mediafile, key) except AttributeError: errors.append(u'Tag %s does not exist' % key) else: if value2 != value: errors.append(u'Tag %s: %r != %r' % (key, value2, value)) if any(errors): errors = [u'Tags did not match'] + errors self.fail('\n '.join(errors)) def _mediafile_fixture(self, name): name = name + '.' + self.extension if not isinstance(name, bytes): name = name.encode('utf8') src = os.path.join(_common.RSRC, name) target = os.path.join(self.temp_dir, name) shutil.copy(src, target) return MediaFile(target) def _generate_tags(self, base=None): """Return dictionary of tags, mapping tag names to values. """ tags = {} for key in self.tag_fields: if key.startswith('rg_'): # ReplayGain is float tags[key] = 1.0 elif key.startswith('r128_'): # R128 is int tags[key] = -1 else: tags[key] = 'value\u2010%s' % key for key in ['disc', 'disctotal', 'track', 'tracktotal', 'bpm']: tags[key] = 1 for key in ['artists', 'albumartists']: tags[key] = ['multival', 'test'] tags['art'] = self.jpg_data tags['comp'] = True tags['url'] = "https://example.com/" date = datetime.date(2001, 4, 3) tags['date'] = date tags['year'] = date.year tags['month'] = date.month tags['day'] = date.day original_date = datetime.date(1999, 5, 6) tags['original_date'] = original_date tags['original_year'] = original_date.year tags['original_month'] = original_date.month tags['original_day'] = original_date.day return tags class PartialTestMixin(object): tags_without_total = { 'track': 2, 'tracktotal': 0, 'disc': 4, 'disctotal': 0, } def test_read_track_without_total(self): mediafile = self._mediafile_fixture('partial') self.assertEqual(mediafile.track, 2) self.assertIsNone(mediafile.tracktotal) self.assertEqual(mediafile.disc, 4) self.assertIsNone(mediafile.disctotal) class MP3Test(ReadWriteTestBase, PartialTestMixin, ExtendedImageStructureTestMixin, unittest.TestCase): extension = 'mp3' audio_properties = { 'length': 1.0, 'bitrate': 80000, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': 'MP3', 'samplerate': 44100, 'bitdepth': 0, 'channels': 1, } def test_unknown_apic_type(self): mediafile = self._mediafile_fixture('image_unknown_type') self.assertEqual(mediafile.images[0].type, ImageType.other) def test_bitrate_mode(self): mediafile = self._mediafile_fixture('cbr') self.assertEqual(mediafile.bitrate_mode, 'CBR') def test_encoder_info(self): mediafile = self._mediafile_fixture('cbr') self.assertEqual(mediafile.encoder_info, 'LAME 3.100.0+') def test_encoder_settings(self): mediafile = self._mediafile_fixture('cbr') self.assertEqual(mediafile.encoder_settings, '-b 80') class MP4Test(ReadWriteTestBase, PartialTestMixin, ImageStructureTestMixin, unittest.TestCase): extension = 'm4a' audio_properties = { 'length': 1.0, 'bitrate': 64000, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': 'AAC', 'samplerate': 44100, 'bitdepth': 16, 'channels': 2, } def test_add_tiff_image_fails(self): mediafile = self._mediafile_fixture('empty') with self.assertRaises(ValueError): mediafile.images = [Image(data=self.tiff_data)] def test_guess_cover(self): # There is no metadata associated with images, we pick one at random pass class AlacTest(ReadWriteTestBase, unittest.TestCase): extension = 'alac.m4a' audio_properties = { 'length': 1.0, 'bitrate': 21830, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', # 'format': 'ALAC', 'samplerate': 44100, 'bitdepth': 16, 'channels': 1, } class MusepackTest(ReadWriteTestBase, unittest.TestCase): extension = 'mpc' audio_properties = { 'length': 1.0, 'bitrate': 24023, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'Musepack', 'samplerate': 44100, 'bitdepth': 0, 'channels': 2, } class WMATest(ReadWriteTestBase, ExtendedImageStructureTestMixin, unittest.TestCase): extension = 'wma' audio_properties = { 'length': 1.0, 'bitrate': 128000, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'Windows Media', 'samplerate': 44100, 'bitdepth': 0, 'channels': 1, } def test_write_genre_list_get_first(self): # WMA does not preserve list order mediafile = self._mediafile_fixture('empty') mediafile.genres = [u'one', u'two'] mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIn(mediafile.genre, [u'one', u'two']) def test_read_pure_tags(self): mediafile = self._mediafile_fixture('pure') self.assertEqual(mediafile.comments, u'the comments') self.assertEqual(mediafile.title, u'the title') self.assertEqual(mediafile.artist, u'the artist') class OggTest(ReadWriteTestBase, ExtendedImageStructureTestMixin, unittest.TestCase): extension = 'ogg' audio_properties = { 'length': 1.0, 'bitrate': 48000, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'OGG', 'samplerate': 44100, 'bitdepth': 0, 'channels': 1, } def test_read_date_from_year_tag(self): mediafile = self._mediafile_fixture('year') self.assertEqual(mediafile.year, 2000) self.assertEqual(mediafile.date, datetime.date(2000, 1, 1)) def test_write_date_to_year_tag(self): mediafile = self._mediafile_fixture('empty') mediafile.year = 2000 mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.mgfile['YEAR'], [u'2000']) def test_legacy_coverart_tag(self): mediafile = self._mediafile_fixture('coverart') self.assertTrue('coverart' in mediafile.mgfile) self.assertEqual(mediafile.art, self.png_data) mediafile.art = self.png_data mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertFalse('coverart' in mediafile.mgfile) def test_date_tag_with_slashes(self): mediafile = self._mediafile_fixture('date_with_slashes') self.assertEqual(mediafile.year, 2005) self.assertEqual(mediafile.month, 6) self.assertEqual(mediafile.day, 5) class FlacTest(ReadWriteTestBase, PartialTestMixin, ExtendedImageStructureTestMixin, unittest.TestCase): extension = 'flac' audio_properties = { 'length': 1.0, 'bitrate': 108688, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'FLAC', 'samplerate': 44100, 'bitdepth': 16, 'channels': 1, } class ApeTest(ReadWriteTestBase, ExtendedImageStructureTestMixin, unittest.TestCase): extension = 'ape' audio_properties = { 'length': 1.0, 'bitrate': 112608, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'APE', 'samplerate': 44100, 'bitdepth': 16, 'channels': 1, } class WavpackTest(ReadWriteTestBase, unittest.TestCase): extension = 'wv' audio_properties = { 'length': 1.0, 'bitrate': 109312, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'WavPack', 'samplerate': 44100, 'bitdepth': 16 if mutagen.version >= (1, 45, 0) else 0, 'channels': 1, } class OpusTest(ReadWriteTestBase, unittest.TestCase): extension = 'opus' audio_properties = { 'length': 1.0, 'bitrate': 66792, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'Opus', 'samplerate': 48000, 'bitdepth': 0, 'channels': 1, } class AIFFTest(ReadWriteTestBase, unittest.TestCase): extension = 'aiff' audio_properties = { 'length': 1.0, 'bitrate': 705600, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'AIFF', 'samplerate': 44100, 'bitdepth': 16, 'channels': 1, } class WAVETest(ReadWriteTestBase, unittest.TestCase): extension = 'wav' audio_properties = { 'length': 1.0, 'bitrate': 88200, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'WAVE', 'samplerate': 44100, 'bitdepth': 16, 'channels': 1, } full_initial_tags = { 'title': u'full', 'artist': u'the artist', 'album': u'the album', 'genre': u'the genre', 'track': 2, 'tracktotal': 3, } tag_fields = [ 'title', 'artist', 'album', 'genre', 'track', 'original_year', 'original_month', 'original_day', 'original_date', ] # Only a small subset of fields are supported by LIST/INFO # metadata format in WAVE, so some fields have been removed # from the inherited test cases below. Concerned fields are # commented above each test case. # Missing fields: disc, disctotal def test_write_counters_without_total(self): mediafile = self._mediafile_fixture('full') self.assertEqual(mediafile.track, 2) self.assertEqual(mediafile.tracktotal, 3) # Missing fields: date, year def test_delete_year(self): mediafile = self._mediafile_fixture('full') self.assertIsNotNone(mediafile.original_year) delattr(mediafile, 'original_year') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertIsNone(mediafile.original_year) # Missing fields: disctotal def test_delete_packed_total(self): mediafile = self._mediafile_fixture('full') delattr(mediafile, 'tracktotal') mediafile.save() mediafile = MediaFile(mediafile.filename) self.assertEqual(mediafile.track, self.full_initial_tags['track']) # Check whether we have a Mutagen version with DSF support. We can # remove this once we require a version that includes the feature. try: import mutagen.dsf # noqa except ImportError: HAVE_DSF = False else: HAVE_DSF = True @unittest.skipIf(not HAVE_DSF, "Mutagen does not have DSF support") class DSFTest(ReadWriteTestBase, unittest.TestCase): extension = 'dsf' audio_properties = { 'length': 0.01, 'bitrate': 11289600, 'bitrate_mode': '', 'encoder_info': '', 'encoder_settings': '', 'format': u'DSD Stream File', 'samplerate': 5644800, 'bitdepth': 1, 'channels': 2, } class MediaFieldTest(unittest.TestCase): def test_properties_from_fields(self): path = os.path.join(_common.RSRC, b'full.mp3') mediafile = MediaFile(path) for field in MediaFile.fields(): self.assertTrue(hasattr(mediafile, field)) def test_properties_from_readable_fields(self): path = os.path.join(_common.RSRC, b'full.mp3') mediafile = MediaFile(path) for field in MediaFile.readable_fields(): self.assertTrue(hasattr(mediafile, field)) def test_known_fields(self): fields = list(ReadWriteTestBase.tag_fields) fields.extend( ('encoder', 'images', 'genres', 'albumtype', 'artists', 'albumartists', 'url', 'mb_artistids', 'mb_albumartistids') ) assertCountEqual(self, MediaFile.fields(), fields) def test_fields_in_readable_fields(self): readable = MediaFile.readable_fields() for field in MediaFile.fields(): self.assertIn(field, readable) def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == '__main__': unittest.main(defaultTest='suite')
#! /usr/bin/env python """DBF accessing helpers. FIXME: more documentation needed Examples: Create new table, setup structure, add records: dbf = Dbf(filename, new=True) dbf.addField( ("NAME", "C", 15), ("SURNAME", "C", 25), ("INITIALS", "C", 10), ("BIRTHDATE", "D"), ) for (n, s, i, b) in ( ("John", "Miller", "YC", (1980, 10, 11)), ("Andy", "Larkin", "", (1980, 4, 11)), ): rec = dbf.newRecord() rec["NAME"] = n rec["SURNAME"] = s rec["INITIALS"] = i rec["BIRTHDATE"] = b rec.store() dbf.close() Open existed dbf, read some data: dbf = Dbf(filename, True) for rec in dbf: for fldName in dbf.fieldNames: print '%s:\t %s (%s)' % (fldName, rec[fldName], type(rec[fldName])) print dbf.close() """ """History (most recent first): 11-feb-2007 [als] export INVALID_VALUE; Dbf: added .ignoreErrors, .INVALID_VALUE 04-jul-2006 [als] added export declaration 20-dec-2005 [yc] removed fromStream and newDbf methods: use argument of __init__ call must be used instead; added class fields pointing to the header and record classes. 17-dec-2005 [yc] split to several modules; reimplemented 13-dec-2005 [yc] adapted to the changes of the `strutil` module. 13-sep-2002 [als] support FoxPro Timestamp datatype 15-nov-1999 [jjk] documentation updates, add demo 24-aug-1998 [jjk] add some encodeValue methods (not tested), other tweaks 08-jun-1998 [jjk] fix problems, add more features 20-feb-1998 [jjk] fix problems, add more features 19-feb-1998 [jjk] add create/write capabilities 18-feb-1998 [jjk] from dbfload.py """ __version__ = "$Revision: 1.7 $"[11:-2] __date__ = "$Date: 2007/02/11 09:23:13 $"[7:-2] __author__ = "Jeff Kunce <[email protected]>" __all__ = ["Dbf"] from . import header from . import record from utils import INVALID_VALUE class Dbf(object): """DBF accessor. FIXME: docs and examples needed (dont' forget to tell about problems adding new fields on the fly) Implementation notes: ``_new`` field is used to indicate whether this is a new data table. `addField` could be used only for the new tables! If at least one record was appended to the table it's structure couldn't be changed. """ __slots__ = ("name", "header", "stream", "_changed", "_new", "_ignore_errors") HeaderClass = header.DbfHeader RecordClass = record.DbfRecord INVALID_VALUE = INVALID_VALUE # initialization and creation helpers def __init__(self, f, readOnly=False, new=False, ignoreErrors=False): """Initialize instance. Arguments: f: Filename or file-like object. new: True if new data table must be created. Assume data table exists if this argument is False. readOnly: if ``f`` argument is a string file will be opend in read-only mode; in other cases this argument is ignored. This argument is ignored even if ``new`` argument is True. headerObj: `header.DbfHeader` instance or None. If this argument is None, new empty header will be used with the all fields set by default. ignoreErrors: if set, failing field value conversion will return ``INVALID_VALUE`` instead of raising conversion error. """ if isinstance(f, basestring): # a filename self.name = f if new: # new table (table file must be # created or opened and truncated) self.stream = file(f, "w+b") else: # tabe file must exist self.stream = file(f, ("r+b", "rb")[bool(readOnly)]) else: # a stream self.name = getattr(f, "name", "") self.stream = f if new: # if this is a new table, header will be empty self.header = self.HeaderClass() else: # or instantiated using stream self.header = self.HeaderClass.fromStream(self.stream) self.ignoreErrors = ignoreErrors self._new = bool(new) self._changed = False # properties closed = property(lambda self: self.stream.closed) recordCount = property(lambda self: self.header.recordCount) fieldNames = property( lambda self: [_fld.name for _fld in self.header.fields]) fieldDefs = property(lambda self: self.header.fields) changed = property(lambda self: self._changed or self.header.changed) def ignoreErrors(self, value): """Update `ignoreErrors` flag on the header object and self""" self.header.ignoreErrors = self._ignore_errors = bool(value) ignoreErrors = property( lambda self: self._ignore_errors, ignoreErrors, doc="""Error processing mode for DBF field value conversion if set, failing field value conversion will return ``INVALID_VALUE`` instead of raising conversion error. """) # protected methods def _fixIndex(self, index): """Return fixed index. This method fails if index isn't a numeric object (long or int). Or index isn't in a valid range (less or equal to the number of records in the db). If ``index`` is a negative number, it will be treated as a negative indexes for list objects. Return: Return value is numeric object maning valid index. """ if not isinstance(index, (int, long)): raise TypeError("Index must be a numeric object") if index < 0: # index from the right side # fix it to the left-side index index += len(self) + 1 if index >= len(self): raise IndexError("Record index out of range") return index # iterface methods def close(self): self.flush() self.stream.close() def flush(self): """Flush data to the associated stream.""" if self.changed: self.header.setCurrentDate() self.header.write(self.stream) self.stream.flush() self._changed = False def indexOfFieldName(self, name): """Index of field named ``name``.""" # FIXME: move this to header class return self.header.fields.index(name) def newRecord(self): """Return new record, which belong to this table.""" return self.RecordClass(self) def append(self, record): """Append ``record`` to the database.""" record.index = self.header.recordCount record._write() self.header.recordCount += 1 self._changed = True self._new = False def addField(self, *defs): """Add field definitions. For more information see `header.DbfHeader.addField`. """ if self._new: self.header.addField(*defs) else: raise TypeError("At least one record was added, " "structure can't be changed") # 'magic' methods (representation and sequence interface) def __repr__(self): return "Dbf stream '%s'\n" % self.stream + repr(self.header) def __len__(self): """Return number of records.""" return self.recordCount def __getitem__(self, index): """Return `DbfRecord` instance.""" return self.RecordClass.fromStream(self, self._fixIndex(index)) def __setitem__(self, index, record): """Write `DbfRecord` instance to the stream.""" record.index = self._fixIndex(index) record._write() self._changed = True self._new = False # def __del__(self): # """Flush stream upon deletion of the object.""" # self.flush() def demo_read(filename): _dbf = Dbf(filename, True) for _rec in _dbf: print print(repr(_rec)) _dbf.close() def demo_create(filename): _dbf = Dbf(filename, new=True) _dbf.addField( ("NAME", "C", 15), ("SURNAME", "C", 25), ("INITIALS", "C", 10), ("BIRTHDATE", "D"), ) for (_n, _s, _i, _b) in ( ("John", "Miller", "YC", (1981, 1, 2)), ("Andy", "Larkin", "AL", (1982, 3, 4)), ("Bill", "Clinth", "", (1983, 5, 6)), ("Bobb", "McNail", "", (1984, 7, 8)), ): _rec = _dbf.newRecord() _rec["NAME"] = _n _rec["SURNAME"] = _s _rec["INITIALS"] = _i _rec["BIRTHDATE"] = _b _rec.store() print(repr(_dbf)) _dbf.close() if __name__ == '__main__': import sys _name = len(sys.argv) > 1 and sys.argv[1] or "county.dbf" demo_create(_name) demo_read(_name) # vim: set et sw=4 sts=4 :
"""Helper objects for maintaining PLM state and interfaces.""" import logging import binascii import insteonplm.utils __all__ = "Address" _LOGGER = logging.getLogger(__name__) class Address: """Datatype definition for INSTEON device address handling.""" def __init__(self, addr): """Create an Address object.""" self._is_x10 = False self.addr = self._normalize(addr) def __repr__(self): """Representation of the Address object.""" return self.id def __str__(self): """Return the Address object as a string.""" return self.id def __eq__(self, other): """Test for equality.""" equals = False if hasattr(other, "addr"): equals = self.addr == other.addr return equals def __ne__(self, other): """Test for not equals.""" not_equals = True if hasattr(other, "addr"): not_equals = self.addr != other.addr return not_equals def __lt__(self, other): """Test for less than.""" if isinstance(other, Address): return str(self) < str(other) raise TypeError def __gt__(self, other): """Test for greater than.""" if isinstance(other, Address): return str(self) > str(other) raise TypeError def __hash__(self): """Create a hash code for the Address object.""" return hash(self.id) def matches_pattern(self, other): """Test Address object matches the pattern of another object.""" matches = False if hasattr(other, "addr"): if self.addr is None or other.addr is None: matches = True else: matches = self.addr == other.addr return matches def _normalize(self, addr): """Take any format of address and turn it into a hex string.""" normalize = None if isinstance(addr, Address): normalize = addr.addr self._is_x10 = addr.is_x10 elif isinstance(addr, bytearray): normalize = binascii.unhexlify(binascii.hexlify(addr).decode()) elif isinstance(addr, bytes): normalize = addr elif isinstance(addr, str): addr = addr.replace(".", "") addr = addr[0:6] if addr[0:3].lower() == "x10": x10_addr = Address.x10(addr[3:4], int(addr[4:6])) normalize = x10_addr.addr self._is_x10 = True else: normalize = binascii.unhexlify(addr.lower()) elif addr is None: normalize = None else: _LOGGER.warning( "Address class init with unknown type %s: %r", type(addr), addr ) return normalize @property def human(self): """Emit the address in human-readible format (AA.BB.CC).""" addrstr = "00.00.00" if self.addr: if self._is_x10: housecode_byte = self.addr[1] housecode = insteonplm.utils.byte_to_housecode(housecode_byte) unitcode_byte = self.addr[2] unitcode = insteonplm.utils.byte_to_unitcode(unitcode_byte) addrstr = "X10.{}.{:02d}".format(housecode.upper(), unitcode) else: addrstr = "{}.{}.{}".format( self.hex[0:2], self.hex[2:4], self.hex[4:6] ).upper() return addrstr @property def hex(self): """Emit the address in bare hex format (aabbcc).""" addrstr = "000000" if self.addr is not None: addrstr = binascii.hexlify(self.addr).decode() return addrstr @property def bytes(self): """Emit the address in bytes format.""" addrbyte = b"\x00\x00\x00" if self.addr is not None: addrbyte = self.addr return addrbyte @property def id(self): """Return the ID of the device address.""" dev_id = "" if self._is_x10: dev_id = "x10{}{:02d}".format(self.x10_housecode, self.x10_unitcode) else: dev_id = self.hex return dev_id @property def is_x10(self): """Test if this is an X10 address.""" return self._is_x10 @is_x10.setter def is_x10(self, val: bool): """Set if this is an X10 address.""" self._is_x10 = val @property def x10_housecode_byte(self): """Emit the X10 house code byte value.""" housecode = None if self.is_x10: housecode = self.addr[1] return housecode @property def x10_unitcode_byte(self): """Emit the X10 unit code byte value.""" unitcode = None if self.is_x10: unitcode = self.addr[2] return unitcode @property def x10_housecode(self): """Emit the X10 house code.""" housecode = None if self.is_x10: housecode = insteonplm.utils.byte_to_housecode(self.addr[1]) return housecode @property def x10_unitcode(self): """Emit the X10 unit code.""" unitcode = None if self.is_x10: unitcode = insteonplm.utils.byte_to_unitcode(self.addr[2]) return unitcode @classmethod def x10(cls, housecode, unitcode): """Create an X10 device address.""" if housecode.lower() in [ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", ]: byte_housecode = insteonplm.utils.housecode_to_byte(housecode) else: if isinstance(housecode, str): _LOGGER.error("X10 house code error: %s", housecode) else: _LOGGER.error("X10 house code is not a string") raise ValueError # 20, 21 and 22 for All Units Off, All Lights On and All Lights Off # 'fake' units if unitcode in range(1, 17) or unitcode in range(20, 23): byte_unitcode = insteonplm.utils.unitcode_to_byte(unitcode) else: if isinstance(unitcode, int): _LOGGER.error("X10 unit code error: %d", unitcode) else: _LOGGER.error("X10 unit code is not an integer 1 - 16") raise ValueError addr = Address(bytearray([0x00, byte_housecode, byte_unitcode])) addr.is_x10 = True return addr
""" visicon copyright info: name='visicon', version='0.1', description='IP address visualisation', author='Antisense', author_email='[email protected]', url='http://code.google.com/p/visicon', ======= An attempt at visualising a user based on their IP address. Visicon would optimally be a direct port of Visiglyph [1]_ (a variation on Identicon [2]_), but may not ever be, hence the different name, a portmanteau of the two implementations. Prerequisites: :: - Python Imaging Library (PIL) >= 1.1.6 .. [1] http://digitalconsumption.com/forum/Visiglyphs-for-IP-visualisation .. [2] http://www.docuverse.com/blog/donpark/2007/01/18/visual-security-9-block-ip-identification """ from hashlib import md5 # import os # import random # import sys # Try to import PIL in either of the two ways it can be installed. try: from PIL import Image, ImageDraw except ImportError: import Image import ImageDraw T = TRANSPARENT = -1 class Visicon(object): """ Visicon ======= The Visicon class itself. This is versatile in that it isn't restricted to IP addresses, but could technically be used with any sort of string. The class uses md5 (or an md5-like algorithm) to encrypt the string, and then generates a unique image from the first four bytes of the hash when prompted to (upon calling ``Visicon.render``). """ resize = 0 min_size = 24 def __init__(self, string, seed, size=24, background=0xffffff): """ Visicon.__init__(self, string, seed, size=24) -> Visicon Initialises the Visicon, storing everything that could possibly be interpreted from the supplied ``string`` and ``seed``. """ self.string = string self.seed = seed self.hash = md5(self.string + self.seed).hexdigest() self.size = size dec = lambda hex: int(hex, 16) self.block_one = dec(self.hash[0]) self.block_two = dec(self.hash[1]) self.block_centre = dec(self.hash[2]) & 7 self.rotate_one = dec(self.hash[3]) & 3 self.rotate_two = dec(self.hash[4]) & 3 self.fg_colour = (dec(self.hash[5:7]) & 239, dec( self.hash[7:9]) & 239, dec(self.hash[9:11]) & 239) self.fg_colour2 = (dec(self.hash[11:13]) & 239, dec( self.hash[13:15]) & 239, dec(self.hash[15:17]) & 239) self.background = background if self.size < self.min_size: self.resize = self.size self.size = self.min_size self.img_size = self.size * 3 self.quarter = self.size / 4 self.quarter3 = self.quarter * 3 self.half = self.size / 2 self.third = self.size / 3 self.double = self.size * 2 self.centre = self.img_size / 2 if self.background is not TRANSPARENT: self.image = Image.new( 'RGB', (self.img_size,) * 2, color=self.background) else: self.image = Image.new('RGBA', (self.img_size,) * 2) def draw_image(self): """ draw(self) -> Image.Image Draws the Visicon, returning the result as an ``Image.Image`` instance. """ self.draw = ImageDraw.Draw(self.image) self.draw_corners() self.draw_sides() self.draw_centre() return self.image.resize((self.size,) * 2, Image.ANTIALIAS) def draw_corners(self): """ draw_corners(self) -> None Draws the corners of the image. """ corners = ( {'x': 0, 'y': 0}, {'x': 0, 'y': self.double}, {'x': self.double, 'y': self.double}, {'x': self.double, 'y': 0} ) for n, corner in enumerate(corners): rotation = self.rotate_one + n self.draw_glyph(self.block_one, rotation, corner, self.fg_colour) def draw_centre(self): """ draw_centre(self) -> None Draws the centre part of the image. """ self.draw_glyph(self.block_centre, 0, {'x': self.size, 'y': self.size}, self.fg_colour, False) def draw_sides(self): """ draw_sides(self) -> None Draws the sides of the image. """ sides = ( {'x': self.size, 'y': 0}, {'x': 0, 'y': self.size}, {'x': self.size, 'y': self.double}, {'x': self.double, 'y': self.size} ) for n, side in enumerate(sides): rotation = self.rotate_two + n self.draw_glyph(self.block_two, rotation, side, self.fg_colour2) def draw_glyph(self, block, rotation, modifier, colour, outer=True): """ draw_glyph(self, block, rotation, modifier, colour,\ outer=True) -> None Draws a glyph on the image, based on the far-too-many arguments. """ if outer: if block is 1: # mountains points = [ 0, 0, self.quarter, self.size, self.half, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) points = [ self.half, 0, self.quarter3, self.size, self.size, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 2: # half triangle points = [ 0, 0, self.size, 0, 0, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 3: # centre triangle points = [ 0, 0, self.half, self.size, self.size, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 4: # half block points = [ 0, 0, 0, self.size, self.half, self.size, self.half, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 5: # half diamond points = [ self.quarter, 0, 0, self.half, self.quarter, self.size, self.half, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 6: # spike points = [ 0, 0, self.size, self.half, self.size, self.size, self.half, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 7: # quarter triangle points = [ 0, 0, self.half, self.size, 0, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 8: # diag triangle points = [ 0, 0, self.size, self.half, self.half, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 9: # centered mini triangle points = [ self.quarter, self.quarter, self.quarter3, self.quarter, self.quarter, self.quarter3 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 10: # diag mountains points = [ 0, 0, self.half, 0, self.half, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) points = [ self.half, self.half, self.size, self.half, self.size, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 11: # quarter block points = [ 0, 0, 0, self.half, self.half, self.half, self.half, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 12: # point out triangle points = [ 0, self.half, self.half, self.size, self.size, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 13: # point in triangle points = [ 0, 0, self.half, self.half, self.size, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 14: # diag point in points = [ self.half, self.half, 0, self.half, self.half, self.size ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 15: # diag point out points = [ 0, 0, self.half, 0, 0, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) else: # diag side point out points = [ 0, 0, self.half, 0, self.half, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) else: if block is 1: # circle self.draw.ellipse(( (self.centre - self.quarter3, self.centre - self.quarter3), (self.centre + self.quarter3, self.centre + self.quarter3) ), fill=colour) elif block is 2: # quarter square points = [ self.quarter, self.quarter, self.quarter, self.quarter3, self.quarter3, self.quarter3, self.quarter3, self.quarter ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 3: # full square points = [ 0, 0, 0, self.size, self.size, self.size, self.size, 0 ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 4: # quarter diamond points = [ self.half, self.quarter, self.quarter3, self.half, self.half, self.quarter3, self.quarter, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) elif block is 5: # diamond points = [ self.half, 0, 0, self.half, self.half, self.size, self.size, self.half ] points = self.rotate_points(points, rotation, modifier) self.draw.polygon(points, fill=colour) def rotate_points(self, points, rotation, modifier): """ rotate_points(self, points, rotation, modifier) -> tuple Rotate a set of points out from set modifiers. """ rotation = rotation % 4 if rotation is 1: n = 0 while n < len(points): tmp1 = n val1 = points[tmp1] tmp2 = n + 1 val2 = points[tmp2] points[tmp1] = val2 + modifier['x'] points[tmp2] = self.size - val1 + modifier['y'] n += 2 elif rotation is 2: n = 0 while n < len(points): tmp1 = n val1 = points[tmp1] tmp2 = n + 1 val2 = points[tmp2] points[tmp1] = self.size - val1 + modifier['x'] points[tmp2] = self.size - val2 + modifier['y'] n += 2 elif rotation is 3: n = 0 while n < len(points): tmp1 = n val1 = points[tmp1] tmp2 = n + 1 val2 = points[tmp2] points[tmp1] = self.size - val2 + modifier['x'] points[tmp2] = val1 + modifier['y'] n += 2 else: n = 0 while n < len(points): tmp1 = n val1 = points[tmp1] tmp2 = n + 1 val2 = points[tmp2] points[tmp1] = val1 + modifier['x'] points[tmp2] = val2 + modifier['y'] n += 2 return points
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt # Database Module # -------------------- from __future__ import unicode_literals import MySQLdb from MySQLdb.times import DateTimeDeltaType from markdown2 import UnicodeWithAttrs import warnings import datetime import frappe import frappe.defaults import frappe.async import re import frappe.model.meta from frappe.utils import now, get_datetime, cstr from frappe import _ from types import StringType, UnicodeType class Database: """ Open a database connection with the given parmeters, if use_default is True, use the login details from `conf.py`. This is called by the request handler and is accessible using the `db` global variable. the `sql` method is also global to run queries """ def __init__(self, host=None, user=None, password=None, ac_name=None, use_default = 0): self.host = host or frappe.conf.db_host or 'localhost' self.user = user or frappe.conf.db_name self._conn = None if ac_name: self.user = self.get_db_login(ac_name) or frappe.conf.db_name if use_default: self.user = frappe.conf.db_name self.transaction_writes = 0 self.auto_commit_on_many_writes = 0 self.password = password or frappe.conf.db_password self.value_cache = {} def get_db_login(self, ac_name): return ac_name def connect(self): """Connects to a database as set in `site_config.json`.""" warnings.filterwarnings('ignore', category=MySQLdb.Warning) self._conn = MySQLdb.connect(user=self.user, host=self.host, passwd=self.password, use_unicode=True, charset='utf8') self._conn.converter[246]=float self._conn.converter[12]=get_datetime self._conn.encoders[UnicodeWithAttrs] = self._conn.encoders[UnicodeType] self._conn.encoders[DateTimeDeltaType] = self._conn.encoders[StringType] MYSQL_OPTION_MULTI_STATEMENTS_OFF = 1 self._conn.set_server_option(MYSQL_OPTION_MULTI_STATEMENTS_OFF) self._cursor = self._conn.cursor() if self.user != 'root': self.use(self.user) frappe.local.rollback_observers = [] def use(self, db_name): """`USE` db_name.""" self._conn.select_db(db_name) self.cur_db_name = db_name def validate_query(self, q): """Throw exception for dangerous queries: `ALTER`, `DROP`, `TRUNCATE` if not `Administrator`.""" cmd = q.strip().lower().split()[0] if cmd in ['alter', 'drop', 'truncate'] and frappe.session.user != 'Administrator': frappe.throw(_("Not permitted"), frappe.PermissionError) def sql(self, query, values=(), as_dict = 0, as_list = 0, formatted = 0, debug=0, ignore_ddl=0, as_utf8=0, auto_commit=0, update=None): """Execute a SQL query and fetch all rows. :param query: SQL query. :param values: List / dict of values to be escaped and substituted in the query. :param as_dict: Return as a dictionary. :param as_list: Always return as a list. :param formatted: Format values like date etc. :param debug: Print query and `EXPLAIN` in debug log. :param ignore_ddl: Catch exception if table, column missing. :param as_utf8: Encode values as UTF 8. :param auto_commit: Commit after executing the query. :param update: Update this dict to all rows (if returned `as_dict`). Examples: # return customer names as dicts frappe.db.sql("select name from tabCustomer", as_dict=True) # return names beginning with a frappe.db.sql("select name from tabCustomer where name like %s", "a%") # values as dict frappe.db.sql("select name from tabCustomer where name like %(name)s and owner=%(owner)s", {"name": "a%", "owner":"[email protected]"}) """ if not self._conn: self.connect() # in transaction validations self.check_transaction_status(query) # autocommit if auto_commit: self.commit() # execute try: if values!=(): if isinstance(values, dict): values = dict(values) # MySQL-python==1.2.5 hack! if not isinstance(values, (dict, tuple, list)): values = (values,) if debug: try: self.explain_query(query, values) frappe.errprint(query % values) except TypeError: frappe.errprint([query, values]) if (frappe.conf.get("logging") or False)==2: frappe.log("<<<< query") frappe.log(query) frappe.log("with values:") frappe.log(values) frappe.log(">>>>") self._cursor.execute(query, values) else: if debug: self.explain_query(query) frappe.errprint(query) if (frappe.conf.get("logging") or False)==2: frappe.log("<<<< query") frappe.log(query) frappe.log(">>>>") self._cursor.execute(query) except Exception, e: # ignore data definition errors if ignore_ddl and e.args[0] in (1146,1054,1091): pass # NOTE: causes deadlock # elif e.args[0]==2006: # # mysql has gone away # self.connect() # return self.sql(query=query, values=values, # as_dict=as_dict, as_list=as_list, formatted=formatted, # debug=debug, ignore_ddl=ignore_ddl, as_utf8=as_utf8, # auto_commit=auto_commit, update=update) else: raise if auto_commit: self.commit() # scrub output if required if as_dict: ret = self.fetch_as_dict(formatted, as_utf8) if update: for r in ret: r.update(update) return ret elif as_list: return self.convert_to_lists(self._cursor.fetchall(), formatted, as_utf8) elif as_utf8: return self.convert_to_lists(self._cursor.fetchall(), formatted, as_utf8) else: return self._cursor.fetchall() def explain_query(self, query, values=None): """Print `EXPLAIN` in error log.""" try: frappe.errprint("--- query explain ---") if values is None: self._cursor.execute("explain " + query) else: self._cursor.execute("explain " + query, values) import json frappe.errprint(json.dumps(self.fetch_as_dict(), indent=1)) frappe.errprint("--- query explain end ---") except: frappe.errprint("error in query explain") def sql_list(self, query, values=(), debug=False): """Return data as list of single elements (first column). Example: # doctypes = ["DocType", "DocField", "User", ...] doctypes = frappe.db.sql_list("select name from DocType") """ return [r[0] for r in self.sql(query, values, debug=debug)] def sql_ddl(self, query, values=(), debug=False): """Commit and execute a query. DDL (Data Definition Language) queries that alter schema autocommit in MariaDB.""" self.commit() self.sql(query, debug=debug) def check_transaction_status(self, query): """Raises exception if more than 20,000 `INSERT`, `UPDATE` queries are executed in one transaction. This is to ensure that writes are always flushed otherwise this could cause the system to hang.""" if self.transaction_writes and \ query and query.strip().split()[0].lower() in ['start', 'alter', 'drop', 'create', "begin", "truncate"]: raise Exception, 'This statement can cause implicit commit' if query and query.strip().lower() in ('commit', 'rollback'): self.transaction_writes = 0 if query[:6].lower() in ('update', 'insert', 'delete'): self.transaction_writes += 1 if self.transaction_writes > 200000: if self.auto_commit_on_many_writes: frappe.db.commit() else: frappe.throw(_("Too many writes in one request. Please send smaller requests"), frappe.ValidationError) def fetch_as_dict(self, formatted=0, as_utf8=0): """Internal. Converts results to dict.""" result = self._cursor.fetchall() ret = [] needs_formatting = self.needs_formatting(result, formatted) for r in result: row_dict = frappe._dict({}) for i in range(len(r)): if needs_formatting: val = self.convert_to_simple_type(r[i], formatted) else: val = r[i] if as_utf8 and type(val) is unicode: val = val.encode('utf-8') row_dict[self._cursor.description[i][0]] = val ret.append(row_dict) return ret def needs_formatting(self, result, formatted): """Returns true if the first row in the result has a Date, Datetime, Long Int.""" if result and result[0]: for v in result[0]: if isinstance(v, (datetime.date, datetime.timedelta, datetime.datetime, long)): return True if formatted and isinstance(v, (int, float)): return True return False def get_description(self): """Returns result metadata.""" return self._cursor.description def convert_to_simple_type(self, v, formatted=0): """Format date, time, longint values.""" return v from frappe.utils import formatdate, fmt_money if isinstance(v, (datetime.date, datetime.timedelta, datetime.datetime, long)): if isinstance(v, datetime.date): v = unicode(v) if formatted: v = formatdate(v) # time elif isinstance(v, (datetime.timedelta, datetime.datetime)): v = unicode(v) # long elif isinstance(v, long): v=int(v) # convert to strings... (if formatted) if formatted: if isinstance(v, float): v=fmt_money(v) elif isinstance(v, int): v = unicode(v) return v def convert_to_lists(self, res, formatted=0, as_utf8=0): """Convert tuple output to lists (internal).""" nres = [] needs_formatting = self.needs_formatting(res, formatted) for r in res: nr = [] for c in r: if needs_formatting: val = self.convert_to_simple_type(c, formatted) else: val = c if as_utf8 and type(val) is unicode: val = val.encode('utf-8') nr.append(val) nres.append(nr) return nres def convert_to_utf8(self, res, formatted=0): """Encode result as UTF-8.""" nres = [] for r in res: nr = [] for c in r: if type(c) is unicode: c = c.encode('utf-8') nr.append(self.convert_to_simple_type(c, formatted)) nres.append(nr) return nres def build_conditions(self, filters): """Convert filters sent as dict, lists to SQL conditions. filter's key is passed by map function, build conditions like: * ifnull(`fieldname`, default_value) = %(fieldname)s * `fieldname` [=, !=, >, >=, <, <=] %(fieldname)s """ conditions = [] values = {} def _build_condition(key): """ filter's key is passed by map function build conditions like: * ifnull(`fieldname`, default_value) = %(fieldname)s * `fieldname` [=, !=, >, >=, <, <=] %(fieldname)s """ _operator = "=" _rhs = " %(" + key + ")s" value = filters.get(key) values[key] = value if isinstance(value, (list, tuple)): # value is a tuble like ("!=", 0) _operator = value[0] values[key] = value[1] if isinstance(value[1], (tuple, list)): # value is a list in tuple ("in", ("A", "B")) inner_list = [] for i, v in enumerate(value[1]): inner_key = "{0}_{1}".format(key, i) values[inner_key] = v inner_list.append("%({0})s".format(inner_key)) _rhs = " ({0})".format(", ".join(inner_list)) del values[key] if _operator not in ["=", "!=", ">", ">=", "<", "<=", "like", "in", "not in", "not like"]: _operator = "=" if "[" in key: split_key = key.split("[") condition = "ifnull(`" + split_key[0] + "`, " + split_key[1][:-1] + ") " \ + _operator + _rhs else: condition = "`" + key + "` " + _operator + _rhs conditions.append(condition) if isinstance(filters, basestring): filters = { "name": filters } for f in filters: _build_condition(f) return " and ".join(conditions), values def get(self, doctype, filters=None, as_dict=True, cache=False): """Returns `get_value` with fieldname='*'""" return self.get_value(doctype, filters, "*", as_dict=as_dict, cache=cache) def get_value(self, doctype, filters=None, fieldname="name", ignore=None, as_dict=False, debug=False, order_by=None, cache=False): """Returns a document property or list of properties. :param doctype: DocType name. :param filters: Filters like `{"x":"y"}` or name of the document. `None` if Single DocType. :param fieldname: Column name. :param ignore: Don't raise exception if table, column is missing. :param as_dict: Return values as dict. :param debug: Print query in error log. :param order_by: Column to order by Example: # return first customer starting with a frappe.db.get_value("Customer", {"name": ("like a%")}) # return last login of **User** `[email protected]` frappe.db.get_value("User", "[email protected]", "last_login") last_login, last_ip = frappe.db.get_value("User", "[email protected]", ["last_login", "last_ip"]) # returns default date_format frappe.db.get_value("System Settings", None, "date_format") """ ret = self.get_values(doctype, filters, fieldname, ignore, as_dict, debug, order_by, cache=cache) return ((len(ret[0]) > 1 or as_dict) and ret[0] or ret[0][0]) if ret else None def get_values(self, doctype, filters=None, fieldname="name", ignore=None, as_dict=False, debug=False, order_by=None, update=None, cache=False): """Returns multiple document properties. :param doctype: DocType name. :param filters: Filters like `{"x":"y"}` or name of the document. :param fieldname: Column name. :param ignore: Don't raise exception if table, column is missing. :param as_dict: Return values as dict. :param debug: Print query in error log. :param order_by: Column to order by Example: # return first customer starting with a customers = frappe.db.get_values("Customer", {"name": ("like a%")}) # return last login of **User** `[email protected]` user = frappe.db.get_values("User", "[email protected]", "*")[0] """ out = None if cache and isinstance(filters, basestring) and \ (doctype, filters, fieldname) in self.value_cache: return self.value_cache[(doctype, filters, fieldname)] if isinstance(filters, list): out = self._get_value_for_many_names(doctype, filters, fieldname, debug=debug) else: fields = fieldname if fieldname!="*": if isinstance(fieldname, basestring): fields = [fieldname] else: fields = fieldname if (filters is not None) and (filters!=doctype or doctype=="DocType"): try: out = self._get_values_from_table(fields, filters, doctype, as_dict, debug, order_by, update) except Exception, e: if ignore and e.args[0] in (1146, 1054): # table or column not found, return None out = None elif (not ignore) and e.args[0]==1146: # table not found, look in singles out = self.get_values_from_single(fields, filters, doctype, as_dict, debug, update) else: raise else: out = self.get_values_from_single(fields, filters, doctype, as_dict, debug, update) if cache and isinstance(filters, basestring): self.value_cache[(doctype, filters, fieldname)] = out return out def get_values_from_single(self, fields, filters, doctype, as_dict=False, debug=False, update=None): """Get values from `tabSingles` (Single DocTypes) (internal). :param fields: List of fields, :param filters: Filters (dict). :param doctype: DocType name. """ # TODO # if not frappe.model.meta.is_single(doctype): # raise frappe.DoesNotExistError("DocType", doctype) if fields=="*" or isinstance(filters, dict): # check if single doc matches with filters values = self.get_singles_dict(doctype) if isinstance(filters, dict): for key, value in filters.items(): if values.get(key) != value: return [] if as_dict: return values and [values] or [] if isinstance(fields, list): return [map(lambda d: values.get(d), fields)] else: r = self.sql("""select field, value from tabSingles where field in (%s) and doctype=%s""" \ % (', '.join(['%s'] * len(fields)), '%s'), tuple(fields) + (doctype,), as_dict=False, debug=debug) if as_dict: if r: r = frappe._dict(r) if update: r.update(update) return [r] else: return [] else: return r and [[i[1] for i in r]] or [] def get_singles_dict(self, doctype): """Get Single DocType as dict. :param doctype: DocType of the single object whose value is requested Example: # Get coulmn and value of the single doctype Accounts Settings account_settings = frappe.db.get_singles_dict("Accounts Settings") """ return frappe._dict(self.sql("""select field, value from tabSingles where doctype=%s""", doctype)) def get_all(self, *args, **kwargs): return frappe.get_all(*args, **kwargs) def get_list(self, *args, **kwargs): return frappe.get_list(*args, **kwargs) def get_single_value(self, doctype, fieldname, cache=False): """Get property of Single DocType. Cache locally by default :param doctype: DocType of the single object whose value is requested :param fieldname: `fieldname` of the property whose value is requested Example: # Get the default value of the company from the Global Defaults doctype. company = frappe.db.get_single_value('Global Defaults', 'default_company') """ value = self.value_cache.setdefault(doctype, {}).get(fieldname) if value: return value val = self.sql("""select value from tabSingles where doctype=%s and field=%s""", (doctype, fieldname)) val = val[0][0] if val else None if val=="0" or val=="1": # check type val = int(val) self.value_cache[doctype][fieldname] = val return val def get_singles_value(self, *args, **kwargs): """Alias for get_single_value""" return self.get_single_value(*args, **kwargs) def _get_values_from_table(self, fields, filters, doctype, as_dict, debug, order_by=None, update=None): fl = [] if isinstance(fields, (list, tuple)): for f in fields: if "(" in f or " as " in f: # function fl.append(f) else: fl.append("`" + f + "`") fl = ", ".join(fl) else: fl = fields if fields=="*": as_dict = True conditions, values = self.build_conditions(filters) order_by = ("order by " + order_by) if order_by else "" r = self.sql("select {0} from `tab{1}` where {2} {3}".format(fl, doctype, conditions, order_by), values, as_dict=as_dict, debug=debug, update=update) return r def _get_value_for_many_names(self, doctype, names, field, debug=False): names = filter(None, names) if names: return dict(self.sql("select name, `%s` from `tab%s` where name in (%s)" \ % (field, doctype, ", ".join(["%s"]*len(names))), names, debug=debug)) else: return {} def update(self, *args, **kwargs): """Update multiple values. Alias for `set_value`.""" return self.set_value(*args, **kwargs) def set_value(self, dt, dn, field, val, modified=None, modified_by=None, update_modified=True, debug=False): """Set a single value in the database, do not call the ORM triggers but update the modified timestamp (unless specified not to). **Warning:** this function will not call Document events and should be avoided in normal cases. :param dt: DocType name. :param dn: Document name. :param field: Property / field name or dictionary of values to be updated :param value: Value to be updated. :param modified: Use this as the `modified` timestamp. :param modified_by: Set this user as `modified_by`. :param update_modified: default True. Set as false, if you don't want to update the timestamp. :param debug: Print the query in the developer / js console. """ if not modified: modified = now() if not modified_by: modified_by = frappe.session.user to_update = {} if update_modified: to_update = {"modified": modified, "modified_by": modified_by} if isinstance(field, dict): to_update.update(field) else: to_update.update({field: val}) if dn and dt!=dn: # with table conditions, values = self.build_conditions(dn) values.update(to_update) set_values = [] for key in to_update: set_values.append('`{0}`=%({0})s'.format(key)) self.sql("""update `tab{0}` set {1} where {2}""".format(dt, ', '.join(set_values), conditions), values, debug=debug) else: # for singles keys = to_update.keys() self.sql(''' delete from tabSingles where field in ({0}) and doctype=%s'''.format(', '.join(['%s']*len(keys))), keys + [dt], debug=debug) for key, value in to_update.iteritems(): self.sql('''insert into tabSingles(doctype, field, value) values (%s, %s, %s)''', (dt, key, value), debug=debug) if dt in self.value_cache: del self.value_cache[dt] def set(self, doc, field, val): """Set value in document. **Avoid**""" doc.db_set(field, val) def touch(self, doctype, docname): """Update the modified timestamp of this document.""" from frappe.utils import now modified = now() frappe.db.sql("""update `tab{doctype}` set `modified`=%s where name=%s""".format(doctype=doctype), (modified, docname)) return modified def set_temp(self, value): """Set a temperory value and return a key.""" key = frappe.generate_hash() frappe.cache().hset("temp", key, value) return key def get_temp(self, key): """Return the temperory value and delete it.""" return frappe.cache().hget("temp", key) def set_global(self, key, val, user='__global'): """Save a global key value. Global values will be automatically set if they match fieldname.""" self.set_default(key, val, user) def get_global(self, key, user='__global'): """Returns a global key value.""" return self.get_default(key, user) def set_default(self, key, val, parent="__default", parenttype=None): """Sets a global / user default value.""" frappe.defaults.set_default(key, val, parent, parenttype) def add_default(self, key, val, parent="__default", parenttype=None): """Append a default value for a key, there can be multiple default values for a particular key.""" frappe.defaults.add_default(key, val, parent, parenttype) def get_default(self, key, parent="__default"): """Returns default value as a list if multiple or single""" d = self.get_defaults(key, parent) return isinstance(d, list) and d[0] or d def get_defaults(self, key=None, parent="__default"): """Get all defaults""" if key: defaults = frappe.defaults.get_defaults(parent) d = defaults.get(key, None) if(not d and key != frappe.scrub(key)): d = defaults.get(frappe.scrub(key), None) return d else: return frappe.defaults.get_defaults(parent) def begin(self): self.sql("start transaction") def commit(self): """Commit current transaction. Calls SQL `COMMIT`.""" self.sql("commit") frappe.local.rollback_observers = [] self.flush_realtime_log() def flush_realtime_log(self): for args in frappe.local.realtime_log: frappe.async.emit_via_redis(*args) frappe.local.realtime_log = [] def rollback(self): """`ROLLBACK` current transaction.""" self.sql("rollback") self.begin() for obj in frappe.local.rollback_observers: if hasattr(obj, "on_rollback"): obj.on_rollback() frappe.local.rollback_observers = [] def field_exists(self, dt, fn): """Return true of field exists.""" return self.sql("select name from tabDocField where fieldname=%s and parent=%s", (dt, fn)) def table_exists(self, tablename): """Returns True if table exists.""" return ("tab" + tablename) in self.get_tables() def get_tables(self): return [d[0] for d in self.sql("show tables")] def a_row_exists(self, doctype): """Returns True if atleast one row exists.""" return self.sql("select name from `tab{doctype}` limit 1".format(doctype=doctype)) def exists(self, dt, dn=None): """Returns true if document exists. :param dt: DocType name. :param dn: Document name or filter dict.""" if isinstance(dt, basestring): if dt!="DocType" and dt==dn: return True # single always exists (!) try: return self.get_value(dt, dn, "name") except: return None elif isinstance(dt, dict) and dt.get('doctype'): try: conditions = [] for d in dt: if d == 'doctype': continue conditions.append('`%s` = "%s"' % (d, cstr(dt[d]).replace('"', '\"'))) return self.sql('select name from `tab%s` where %s' % \ (dt['doctype'], " and ".join(conditions))) except: return None def count(self, dt, filters=None, debug=False): """Returns `COUNT(*)` for given DocType and filters.""" if filters: conditions, filters = self.build_conditions(filters) return frappe.db.sql("""select count(*) from `tab%s` where %s""" % (dt, conditions), filters, debug=debug)[0][0] else: return frappe.db.sql("""select count(*) from `tab%s`""" % (dt,))[0][0] def get_creation_count(self, doctype, minutes): """Get count of records created in the last x minutes""" from frappe.utils import now_datetime from dateutil.relativedelta import relativedelta return frappe.db.sql("""select count(name) from `tab{doctype}` where creation >= %s""".format(doctype=doctype), now_datetime() - relativedelta(minutes=minutes))[0][0] def get_table_columns(self, doctype): """Returns list of column names from given doctype.""" return [r[0] for r in self.sql("DESC `tab%s`" % doctype)] def has_column(self, doctype, column): """Returns True if column exists in database.""" return column in self.get_table_columns(doctype) def add_index(self, doctype, fields, index_name=None): """Creates an index with given fields if not already created. Index name will be `fieldname1_fieldname2_index`""" if not index_name: index_name = "_".join(fields) + "_index" # remove index length if present e.g. (10) from index name index_name = re.sub(r"\s*\([^)]+\)\s*", r"", index_name) if not frappe.db.sql("""show index from `tab%s` where Key_name="%s" """ % (doctype, index_name)): frappe.db.commit() frappe.db.sql("""alter table `tab%s` add index `%s`(%s)""" % (doctype, index_name, ", ".join(fields))) def add_unique(self, doctype, fields, constraint_name=None): if isinstance(fields, basestring): fields = [fields] if not constraint_name: constraint_name = "unique_" + "_".join(fields) if not frappe.db.sql("""select CONSTRAINT_NAME from information_schema.TABLE_CONSTRAINTS where table_name=%s and constraint_type='UNIQUE' and CONSTRAINT_NAME=%s""", ('tab' + doctype, constraint_name)): frappe.db.commit() frappe.db.sql("""alter table `tab%s` add unique `%s`(%s)""" % (doctype, constraint_name, ", ".join(fields))) def get_system_setting(self, key): def _load_system_settings(): return self.get_singles_dict("System Settings") return frappe.cache().get_value("system_settings", _load_system_settings).get(key) def close(self): """Close database connection.""" if self._conn: self._cursor.close() self._conn.close() self._cursor = None self._conn = None def escape(self, s, percent=True): """Excape quotes and percent in given string.""" if isinstance(s, unicode): s = (s or "").encode("utf-8") s = unicode(MySQLdb.escape_string(s), "utf-8").replace("`", "\\`") # NOTE separating % escape, because % escape should only be done when using LIKE operator # or when you use python format string to generate query that already has a %s # for example: sql("select name from `tabUser` where name=%s and {0}".format(conditions), something) # defaulting it to True, as this is the most frequent use case # ideally we shouldn't have to use ESCAPE and strive to pass values via the values argument of sql if percent: s = s.replace("%", "%%") return s
"""vobject module for reading vCard and vCalendar files.""" from __future__ import print_function import copy import codecs import logging import re import six import sys # ------------------------------------ Python 2/3 compatibility challenges ---- # Python 3 no longer has a basestring type, so.... try: basestring = basestring except NameError: basestring = (str, bytes) # One more problem ... in python2 the str operator breaks on unicode # objects containing non-ascii characters try: unicode def str_(s): """ Return byte string with correct encoding """ if type(s) == unicode: return s.encode('utf-8') else: return str(s) except NameError: def str_(s): """ Return string """ return s if not isinstance(b'', type('')): unicode_type = str else: unicode_type = unicode # noqa def to_unicode(value): """Converts a string argument to a unicode string. If the argument is already a unicode string, it is returned unchanged. Otherwise it must be a byte string and is decoded as utf8. """ if isinstance(value, unicode_type): return value return value.decode('utf-8') def to_basestring(s): """Converts a string argument to a byte string. If the argument is already a byte string, it is returned unchanged. Otherwise it must be a unicode string and is encoded as utf8. """ if isinstance(s, bytes): return s return s.encode('utf-8') # ------------------------------------ Logging --------------------------------- logger = logging.getLogger(__name__) if not logging.getLogger().handlers: handler = logging.StreamHandler() formatter = logging.Formatter('%(name)s %(levelname)s %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(logging.ERROR) # Log errors DEBUG = False # Don't waste time on debug calls # ----------------------------------- Constants -------------------------------- CR = '\r' LF = '\n' CRLF = CR + LF SPACE = ' ' TAB = '\t' SPACEORTAB = SPACE + TAB # --------------------------------- Main classes ------------------------------- class VBase(object): """ Base class for ContentLine and Component. @ivar behavior: The Behavior class associated with this object, which controls validation, transformations, and encoding. @ivar parentBehavior: The object's parent's behavior, or None if no behaviored parent exists. @ivar isNative: Boolean describing whether this component is a Native instance. @ivar group: An optional group prefix, should be used only to indicate sort order in vCards, according to spec. Current spec: 4.0 (http://tools.ietf.org/html/rfc6350) """ def __init__(self, group=None, *args, **kwds): super(VBase, self).__init__(*args, **kwds) self.group = group self.behavior = None self.parentBehavior = None self.isNative = False def copy(self, copyit): self.group = copyit.group self.behavior = copyit.behavior self.parentBehavior = copyit.parentBehavior self.isNative = copyit.isNative def validate(self, *args, **kwds): """ Call the behavior's validate method, or return True. """ if self.behavior: return self.behavior.validate(self, *args, **kwds) return True def getChildren(self): """ Return an iterable containing the contents of the object. """ return [] def clearBehavior(self, cascade=True): """ Set behavior to None. Do for all descendants if cascading. """ self.behavior = None if cascade: self.transformChildrenFromNative() def autoBehavior(self, cascade=False): """ Set behavior if name is in self.parentBehavior.knownChildren. If cascade is True, unset behavior and parentBehavior for all descendants, then recalculate behavior and parentBehavior. """ parentBehavior = self.parentBehavior if parentBehavior is not None: knownChildTup = parentBehavior.knownChildren.get(self.name, None) if knownChildTup is not None: behavior = getBehavior(self.name, knownChildTup[2]) if behavior is not None: self.setBehavior(behavior, cascade) if isinstance(self, ContentLine) and self.encoded: self.behavior.decode(self) elif isinstance(self, ContentLine): self.behavior = parentBehavior.defaultBehavior if self.encoded and self.behavior: self.behavior.decode(self) def setBehavior(self, behavior, cascade=True): """ Set behavior. If cascade is True, autoBehavior all descendants. """ self.behavior = behavior if cascade: for obj in self.getChildren(): obj.parentBehavior = behavior obj.autoBehavior(True) def transformToNative(self): """ Transform this object into a custom VBase subclass. transformToNative should always return a representation of this object. It may do so by modifying self in place then returning self, or by creating a new object. """ if self.isNative or not self.behavior or not self.behavior.hasNative: return self else: self_orig = copy.copy(self) try: return self.behavior.transformToNative(self) except Exception as e: # wrap errors in transformation in a ParseError lineNumber = getattr(self, 'lineNumber', None) if isinstance(e, ParseError): if lineNumber is not None: e.lineNumber = lineNumber raise else: msg = "In transformToNative, unhandled exception on line {0}: {1}: {2}" msg = msg.format(lineNumber, sys.exc_info()[0], sys.exc_info()[1]) msg = msg + " (" + str(self_orig) + ")" raise ParseError(msg, lineNumber) def transformFromNative(self): """ Return self transformed into a ContentLine or Component if needed. May have side effects. If it does, transformFromNative and transformToNative MUST have perfectly inverse side effects. Allowing such side effects is convenient for objects whose transformations only change a few attributes. Note that it isn't always possible for transformFromNative to be a perfect inverse of transformToNative, in such cases transformFromNative should return a new object, not self after modifications. """ if self.isNative and self.behavior and self.behavior.hasNative: try: return self.behavior.transformFromNative(self) except Exception as e: # wrap errors in transformation in a NativeError lineNumber = getattr(self, 'lineNumber', None) if isinstance(e, NativeError): if lineNumber is not None: e.lineNumber = lineNumber raise else: msg = "In transformFromNative, unhandled exception on line {0} {1}: {2}" msg = msg.format(lineNumber, sys.exc_info()[0], sys.exc_info()[1]) raise NativeError(msg, lineNumber) else: return self def transformChildrenToNative(self): """ Recursively replace children with their native representation. """ pass def transformChildrenFromNative(self, clearBehavior=True): """ Recursively transform native children to vanilla representations. """ pass def serialize(self, buf=None, lineLength=75, validate=True, behavior=None): """ Serialize to buf if it exists, otherwise return a string. Use self.behavior.serialize if behavior exists. """ if not behavior: behavior = self.behavior if behavior: if DEBUG: logger.debug("serializing {0!s} with behavior {1!s}".format(self.name, behavior)) return behavior.serialize(self, buf, lineLength, validate) else: if DEBUG: logger.debug("serializing {0!s} without behavior".format(self.name)) return defaultSerialize(self, buf, lineLength) def toVName(name, stripNum=0, upper=False): """ Turn a Python name into an iCalendar style name, optionally uppercase and with characters stripped off. """ if upper: name = name.upper() if stripNum != 0: name = name[:-stripNum] return name.replace('_', '-') class ContentLine(VBase): """ Holds one content line for formats like vCard and vCalendar. For example:: <SUMMARY{u'param1' : [u'val1'], u'param2' : [u'val2']}Bastille Day Party> @ivar name: The uppercased name of the contentline. @ivar params: A dictionary of parameters and associated lists of values (the list may be empty for empty parameters). @ivar value: The value of the contentline. @ivar singletonparams: A list of parameters for which it's unclear if the string represents the parameter name or the parameter value. In vCard 2.1, "The value string can be specified alone in those cases where the value is unambiguous". This is crazy, but we have to deal with it. @ivar encoded: A boolean describing whether the data in the content line is encoded. Generally, text read from a serialized vCard or vCalendar should be considered encoded. Data added programmatically should not be encoded. @ivar lineNumber: An optional line number associated with the contentline. """ def __init__(self, name, params, value, group=None, encoded=False, isNative=False, lineNumber=None, *args, **kwds): """ Take output from parseLine, convert params list to dictionary. Group is used as a positional argument to match parseLine's return """ super(ContentLine, self).__init__(group, *args, **kwds) self.name = name.upper() self.encoded = encoded self.params = {} self.singletonparams = [] self.isNative = isNative self.lineNumber = lineNumber self.value = value def updateTable(x): if len(x) == 1: self.singletonparams += x else: paramlist = self.params.setdefault(x[0].upper(), []) paramlist.extend(x[1:]) list(map(updateTable, params)) qp = False if 'ENCODING' in self.params: if 'QUOTED-PRINTABLE' in self.params['ENCODING']: qp = True self.params['ENCODING'].remove('QUOTED-PRINTABLE') if len(self.params['ENCODING']) == 0: del self.params['ENCODING'] if 'QUOTED-PRINTABLE' in self.singletonparams: qp = True self.singletonparams.remove('QUOTED-PRINTABLE') if qp: if 'ENCODING' in self.params: self.value = codecs.decode(self.value.encode("utf-8"), "quoted-printable").decode(self.params['ENCODING']) else: if 'CHARSET' in self.params: self.value = codecs.decode(self.value.encode("utf-8"), "quoted-printable").decode(self.params['CHARSET'][0]) else: self.value = codecs.decode(self.value.encode("utf-8"), "quoted-printable").decode('utf-8') @classmethod def duplicate(clz, copyit): newcopy = clz('', {}, '') newcopy.copy(copyit) return newcopy def copy(self, copyit): super(ContentLine, self).copy(copyit) self.name = copyit.name self.value = copy.copy(copyit.value) self.encoded = self.encoded self.params = copy.copy(copyit.params) for k, v in self.params.items(): self.params[k] = copy.copy(v) self.singletonparams = copy.copy(copyit.singletonparams) self.lineNumber = copyit.lineNumber def __eq__(self, other): try: return (self.name == other.name) and (self.params == other.params) and (self.value == other.value) except Exception: return False def __getattr__(self, name): """ Make params accessible via self.foo_param or self.foo_paramlist. Underscores, legal in python variable names, are converted to dashes, which are legal in IANA tokens. """ try: if name.endswith('_param'): return self.params[toVName(name, 6, True)][0] elif name.endswith('_paramlist'): return self.params[toVName(name, 10, True)] else: raise AttributeError(name) except KeyError: raise AttributeError(name) def __setattr__(self, name, value): """ Make params accessible via self.foo_param or self.foo_paramlist. Underscores, legal in python variable names, are converted to dashes, which are legal in IANA tokens. """ if name.endswith('_param'): if type(value) == list: self.params[toVName(name, 6, True)] = value else: self.params[toVName(name, 6, True)] = [value] elif name.endswith('_paramlist'): if type(value) == list: self.params[toVName(name, 10, True)] = value else: raise VObjectError("Parameter list set to a non-list") else: prop = getattr(self.__class__, name, None) if isinstance(prop, property): prop.fset(self, value) else: object.__setattr__(self, name, value) def __delattr__(self, name): try: if name.endswith('_param'): del self.params[toVName(name, 6, True)] elif name.endswith('_paramlist'): del self.params[toVName(name, 10, True)] else: object.__delattr__(self, name) except KeyError: raise AttributeError(name) def valueRepr(self): """ Transform the representation of the value according to the behavior, if any. """ v = self.value if self.behavior: v = self.behavior.valueRepr(self) return v def __str__(self): try: return "<{0}{1}{2}>".format(self.name, self.params, self.valueRepr()) except UnicodeEncodeError as e: return "<{0}{1}{2}>".format(self.name, self.params, self.valueRepr().encode('utf-8')) def __repr__(self): return self.__str__() def __unicode__(self): return u"<{0}{1}{2}>".format(self.name, self.params, self.valueRepr()) def prettyPrint(self, level=0, tabwidth=3): pre = ' ' * level * tabwidth print(pre, self.name + ":", self.valueRepr()) if self.params: print(pre, "params for ", self.name + ':') for k in self.params.keys(): print(pre + ' ' * tabwidth, k, self.params[k]) class Component(VBase): """ A complex property that can contain multiple ContentLines. For our purposes, a component must start with a BEGIN:xxxx line and end with END:xxxx, or have a PROFILE:xxx line if a top-level component. @ivar contents: A dictionary of lists of Component or ContentLine instances. The keys are the lowercased names of child ContentLines or Components. Note that BEGIN and END ContentLines are not included in contents. @ivar name: Uppercase string used to represent this Component, i.e VCARD if the serialized object starts with BEGIN:VCARD. @ivar useBegin: A boolean flag determining whether BEGIN: and END: lines should be serialized. """ def __init__(self, name=None, *args, **kwds): super(Component, self).__init__(*args, **kwds) self.contents = {} if name: self.name = name.upper() self.useBegin = True else: self.name = '' self.useBegin = False self.autoBehavior() @classmethod def duplicate(cls, copyit): newcopy = cls() newcopy.copy(copyit) return newcopy def copy(self, copyit): super(Component, self).copy(copyit) # deep copy of contents self.contents = {} for key, lvalue in copyit.contents.items(): newvalue = [] for value in lvalue: newitem = value.duplicate(value) newvalue.append(newitem) self.contents[key] = newvalue self.name = copyit.name self.useBegin = copyit.useBegin def setProfile(self, name): """ Assign a PROFILE to this unnamed component. Used by vCard, not by vCalendar. """ if self.name or self.useBegin: if self.name == name: return raise VObjectError("This component already has a PROFILE or " "uses BEGIN.") self.name = name.upper() def __getattr__(self, name): """ For convenience, make self.contents directly accessible. Underscores, legal in python variable names, are converted to dashes, which are legal in IANA tokens. """ # if the object is being re-created by pickle, self.contents may not # be set, don't get into an infinite loop over the issue if name == 'contents': return object.__getattribute__(self, name) try: if name.endswith('_list'): return self.contents[toVName(name, 5)] else: return self.contents[toVName(name)][0] except KeyError: raise AttributeError(name) normal_attributes = ['contents', 'name', 'behavior', 'parentBehavior', 'group'] def __setattr__(self, name, value): """ For convenience, make self.contents directly accessible. Underscores, legal in python variable names, are converted to dashes, which are legal in IANA tokens. """ if name not in self.normal_attributes and name.lower() == name: if type(value) == list: if name.endswith('_list'): name = name[:-5] self.contents[toVName(name)] = value elif name.endswith('_list'): raise VObjectError("Component list set to a non-list") else: self.contents[toVName(name)] = [value] else: prop = getattr(self.__class__, name, None) if isinstance(prop, property): prop.fset(self, value) else: object.__setattr__(self, name, value) def __delattr__(self, name): try: if name not in self.normal_attributes and name.lower() == name: if name.endswith('_list'): del self.contents[toVName(name, 5)] else: del self.contents[toVName(name)] else: object.__delattr__(self, name) except KeyError: raise AttributeError(name) def getChildValue(self, childName, default=None, childNumber=0): """ Return a child's value (the first, by default), or None. """ child = self.contents.get(toVName(childName)) if child is None: return default else: return child[childNumber].value def add(self, objOrName, group=None): """ Add objOrName to contents, set behavior if it can be inferred. If objOrName is a string, create an empty component or line based on behavior. If no behavior is found for the object, add a ContentLine. group is an optional prefix to the name of the object (see RFC 2425). """ if isinstance(objOrName, VBase): obj = objOrName if self.behavior: obj.parentBehavior = self.behavior obj.autoBehavior(True) else: name = objOrName.upper() try: id = self.behavior.knownChildren[name][2] behavior = getBehavior(name, id) if behavior.isComponent: obj = Component(name) else: obj = ContentLine(name, [], '', group) obj.parentBehavior = self.behavior obj.behavior = behavior obj = obj.transformToNative() except (KeyError, AttributeError): obj = ContentLine(objOrName, [], '', group) if obj.behavior is None and self.behavior is not None: if isinstance(obj, ContentLine): obj.behavior = self.behavior.defaultBehavior self.contents.setdefault(obj.name.lower(), []).append(obj) return obj def remove(self, obj): """ Remove obj from contents. """ named = self.contents.get(obj.name.lower()) if named: try: named.remove(obj) if len(named) == 0: del self.contents[obj.name.lower()] except ValueError: pass def getChildren(self): """ Return an iterable of all children. """ for objList in self.contents.values(): for obj in objList: yield obj def components(self): """ Return an iterable of all Component children. """ return (i for i in self.getChildren() if isinstance(i, Component)) def lines(self): """ Return an iterable of all ContentLine children. """ return (i for i in self.getChildren() if isinstance(i, ContentLine)) def sortChildKeys(self): try: first = [s for s in self.behavior.sortFirst if s in self.contents] except Exception: first = [] return first + sorted(k for k in self.contents.keys() if k not in first) def getSortedChildren(self): return [obj for k in self.sortChildKeys() for obj in self.contents[k]] def setBehaviorFromVersionLine(self, versionLine): """ Set behavior if one matches name, versionLine.value. """ v = getBehavior(self.name, versionLine.value) if v: self.setBehavior(v) def transformChildrenToNative(self): """ Recursively replace children with their native representation. Sort to get dependency order right, like vtimezone before vevent. """ for childArray in (self.contents[k] for k in self.sortChildKeys()): for child in childArray: child = child.transformToNative() child.transformChildrenToNative() def transformChildrenFromNative(self, clearBehavior=True): """ Recursively transform native children to vanilla representations. """ for childArray in self.contents.values(): for child in childArray: child = child.transformFromNative() child.transformChildrenFromNative(clearBehavior) if clearBehavior: child.behavior = None child.parentBehavior = None def __str__(self): if self.name: return "<{0}| {1}>".format(self.name, self.getSortedChildren()) else: return u'<*unnamed*| {0}>'.format(self.getSortedChildren()) def __repr__(self): return self.__str__() def prettyPrint(self, level=0, tabwidth=3): pre = ' ' * level * tabwidth print(pre, self.name) if isinstance(self, Component): for line in self.getChildren(): line.prettyPrint(level + 1, tabwidth) class VObjectError(Exception): def __init__(self, msg, lineNumber=None): self.msg = msg if lineNumber is not None: self.lineNumber = lineNumber def __str__(self): if hasattr(self, 'lineNumber'): return "At line {0!s}: {1!s}".format(self.lineNumber, self.msg) else: return repr(self.msg) class ParseError(VObjectError): pass class ValidateError(VObjectError): pass class NativeError(VObjectError): pass # --------- Parsing functions and parseLine regular expressions ---------------- patterns = {} # Note that underscore is not legal for names, it's included because # Lotus Notes uses it patterns['name'] = '[a-zA-Z0-9\-_]+' patterns['safe_char'] = '[^";:,]' patterns['qsafe_char'] = '[^"]' # the combined Python string replacement and regex syntax is a little confusing; # remember that {foobar} is replaced with patterns['foobar'], so for instance # param_value is any number of safe_chars or any number of qsaf_chars surrounded # by double quotes. patterns['param_value'] = ' "{qsafe_char!s} * " | {safe_char!s} * '.format(**patterns) # get a tuple of two elements, one will be empty, the other will have the value patterns['param_value_grouped'] = """ " ( {qsafe_char!s} * )" | ( {safe_char!s} + ) """.format(**patterns) # get a parameter and its values, without any saved groups patterns['param'] = r""" ; (?: {name!s} ) # parameter name (?: (?: = (?: {param_value!s} ) )? # 0 or more parameter values, multiple (?: , (?: {param_value!s} ) )* # parameters are comma separated )* """.format(**patterns) # get a parameter, saving groups for name and value (value still needs parsing) patterns['params_grouped'] = r""" ; ( {name!s} ) (?: = ( (?: (?: {param_value!s} ) )? # 0 or more parameter values, multiple (?: , (?: {param_value!s} ) )* # parameters are comma separated ) )? """.format(**patterns) # get a full content line, break it up into group, name, parameters, and value patterns['line'] = r""" ^ ((?P<group> {name!s})\.)?(?P<name> {name!s}) # name group (?P<params> ;?(?: {param!s} )* ) # params group (may be empty) : (?P<value> .* )$ # value group """.format(**patterns) ' "%(qsafe_char)s*" | %(safe_char)s* ' # what is this line?? - never assigned? param_values_re = re.compile(patterns['param_value_grouped'], re.VERBOSE) params_re = re.compile(patterns['params_grouped'], re.VERBOSE) line_re = re.compile(patterns['line'], re.DOTALL | re.VERBOSE) begin_re = re.compile('BEGIN', re.IGNORECASE) def parseParams(string): """ Parse parameters """ all = params_re.findall(string) allParameters = [] for tup in all: paramList = [tup[0]] # tup looks like (name, valuesString) for pair in param_values_re.findall(tup[1]): # pair looks like ('', value) or (value, '') if pair[0] != '': paramList.append(pair[0]) else: paramList.append(pair[1]) allParameters.append(paramList) return allParameters def parseLine(line, lineNumber=None): """ Parse line """ match = line_re.match(line) if match is None: raise ParseError("Failed to parse line: {0!s}".format(line), lineNumber) # Underscores are replaced with dash to work around Lotus Notes return (match.group('name').replace('_', '-'), parseParams(match.group('params')), match.group('value'), match.group('group')) # logical line regular expressions patterns['lineend'] = r'(?:\r\n|\r|\n|$)' patterns['wrap'] = r'{lineend!s} [\t ]'.format(**patterns) patterns['logicallines'] = r""" ( (?: [^\r\n] | {wrap!s} )* {lineend!s} ) """.format(**patterns) patterns['wraporend'] = r'({wrap!s} | {lineend!s} )'.format(**patterns) wrap_re = re.compile(patterns['wraporend'], re.VERBOSE) logical_lines_re = re.compile(patterns['logicallines'], re.VERBOSE) testLines = """ Line 0 text , Line 0 continued. Line 1;encoding=quoted-printable:this is an evil= evil= format. Line 2 is a new line, it does not start with whitespace. """ def getLogicalLines(fp, allowQP=True): """ Iterate through a stream, yielding one logical line at a time. Because many applications still use vCard 2.1, we have to deal with the quoted-printable encoding for long lines, as well as the vCard 3.0 and vCalendar line folding technique, a whitespace character at the start of the line. Quoted-printable data will be decoded in the Behavior decoding phase. # We're leaving this test in for awhile, because the unittest was ugly and dumb. >>> from six import StringIO >>> f=StringIO(testLines) >>> for n, l in enumerate(getLogicalLines(f)): ... print("Line %s: %s" % (n, l[0])) ... Line 0: Line 0 text, Line 0 continued. Line 1: Line 1;encoding=quoted-printable:this is an evil= evil= format. Line 2: Line 2 is a new line, it does not start with whitespace. """ if not allowQP: val = fp.read(-1) lineNumber = 1 for match in logical_lines_re.finditer(val): line, n = wrap_re.subn('', match.group()) if line != '': yield line, lineNumber lineNumber += n else: quotedPrintable = False newbuffer = six.StringIO logicalLine = newbuffer() lineNumber = 0 lineStartNumber = 0 while True: line = fp.readline() if line == '': break else: line = line.rstrip(CRLF) lineNumber += 1 if line.rstrip() == '': if logicalLine.tell() > 0: yield logicalLine.getvalue(), lineStartNumber lineStartNumber = lineNumber logicalLine = newbuffer() quotedPrintable = False continue if quotedPrintable and allowQP: logicalLine.write('\n') logicalLine.write(line) quotedPrintable = False elif line[0] in SPACEORTAB: logicalLine.write(line[1:]) elif logicalLine.tell() > 0: yield logicalLine.getvalue(), lineStartNumber lineStartNumber = lineNumber logicalLine = newbuffer() logicalLine.write(line) else: logicalLine = newbuffer() logicalLine.write(line) # vCard 2.1 allows parameters to be encoded without a parameter name # False positives are unlikely, but possible. val = logicalLine.getvalue() if val[-1] == '=' and val.lower().find('quoted-printable') >= 0: quotedPrintable = True if logicalLine.tell() > 0: yield logicalLine.getvalue(), lineStartNumber def textLineToContentLine(text, n=None): return ContentLine(*parseLine(text, n), **{'encoded': True, 'lineNumber': n}) def dquoteEscape(param): """ Return param, or "param" if ',' or ';' or ':' is in param. """ if param.find('"') >= 0: raise VObjectError("Double quotes aren't allowed in parameter values.") for char in ',;:': if param.find(char) >= 0: return '"' + param + '"' return param def foldOneLine(outbuf, input, lineLength=75): """ Folding line procedure that ensures multi-byte utf-8 sequences are not broken across lines TO-DO: This all seems odd. Is it still needed, especially in python3? """ if len(input) < lineLength: # Optimize for unfolded line case try: outbuf.write(bytes(input, 'UTF-8')) except Exception: # fall back on py2 syntax outbuf.write(input) else: # Look for valid utf8 range and write that out start = 0 written = 0 counter = 0 # counts line size in bytes decoded = to_unicode(input) length = len(to_basestring(input)) while written < length: s = decoded[start] # take one char size = len(to_basestring(s)) # calculate it's size in bytes if counter + size > lineLength: try: outbuf.write(bytes("\r\n ", 'UTF-8')) except Exception: # fall back on py2 syntax outbuf.write("\r\n ") counter = 1 # one for space if str is unicode_type: outbuf.write(to_unicode(s)) else: # fall back on py2 syntax outbuf.write(s.encode('utf-8')) written += size counter += size start += 1 try: outbuf.write(bytes("\r\n", 'UTF-8')) except Exception: # fall back on py2 syntax outbuf.write("\r\n") def defaultSerialize(obj, buf, lineLength): """ Encode and fold obj and its children, write to buf or return a string. """ outbuf = buf or six.StringIO() if isinstance(obj, Component): if obj.group is None: groupString = '' else: groupString = obj.group + '.' if obj.useBegin: foldOneLine(outbuf, "{0}BEGIN:{1}".format(groupString, obj.name), lineLength) for child in obj.getSortedChildren(): # validate is recursive, we only need to validate once child.serialize(outbuf, lineLength, validate=False) if obj.useBegin: foldOneLine(outbuf, "{0}END:{1}".format(groupString, obj.name), lineLength) elif isinstance(obj, ContentLine): startedEncoded = obj.encoded if obj.behavior and not startedEncoded: obj.behavior.encode(obj) s = six.StringIO() if obj.group is not None: s.write(obj.group + '.') s.write(str_(obj.name.upper())) keys = sorted(obj.params.keys()) for key in keys: paramstr = ','.join(dquoteEscape(p) for p in obj.params[key]) try: s.write(";{0}={1}".format(key, paramstr)) except (UnicodeDecodeError, UnicodeEncodeError): s.write(";{0}={1}".format(key, paramstr.encode('utf-8'))) try: s.write(":{0}".format(obj.value)) except (UnicodeDecodeError, UnicodeEncodeError): s.write(":{0}".format(obj.value.encode('utf-8'))) if obj.behavior and not startedEncoded: obj.behavior.decode(obj) foldOneLine(outbuf, s.getvalue(), lineLength) return buf or outbuf.getvalue() class Stack: def __init__(self): self.stack = [] def __len__(self): return len(self.stack) def top(self): if len(self) == 0: return None else: return self.stack[-1] def topName(self): if len(self) == 0: return None else: return self.stack[-1].name def modifyTop(self, item): top = self.top() if top: top.add(item) else: new = Component() self.push(new) new.add(item) # add sets behavior for item and children def push(self, obj): self.stack.append(obj) def pop(self): return self.stack.pop() def readComponents(streamOrString, validate=False, transform=True, ignoreUnreadable=False, allowQP=False): """ Generate one Component at a time from a stream. """ if isinstance(streamOrString, basestring): stream = six.StringIO(streamOrString) else: stream = streamOrString try: stack = Stack() versionLine = None n = 0 for line, n in getLogicalLines(stream, allowQP): if ignoreUnreadable: try: vline = textLineToContentLine(line, n) except VObjectError as e: if e.lineNumber is not None: msg = "Skipped line {lineNumber}, message: {msg}" else: msg = "Skipped a line, message: {msg}" logger.error(msg.format(**{'lineNumber': e.lineNumber, 'msg': str(e)})) continue else: vline = textLineToContentLine(line, n) if vline.name == "VERSION": versionLine = vline stack.modifyTop(vline) elif vline.name == "BEGIN": stack.push(Component(vline.value, group=vline.group)) elif vline.name == "PROFILE": if not stack.top(): stack.push(Component()) stack.top().setProfile(vline.value) elif vline.name == "END": if len(stack) == 0: err = "Attempted to end the {0} component but it was never opened" raise ParseError(err.format(vline.value), n) if vline.value.upper() == stack.topName(): # START matches END if len(stack) == 1: component = stack.pop() if versionLine is not None: component.setBehaviorFromVersionLine(versionLine) else: behavior = getBehavior(component.name) if behavior: component.setBehavior(behavior) if validate: component.validate(raiseException=True) if transform: component.transformChildrenToNative() yield component # EXIT POINT else: stack.modifyTop(stack.pop()) else: err = "{0} component wasn't closed" raise ParseError(err.format(stack.topName()), n) else: stack.modifyTop(vline) # not a START or END line if stack.top(): if stack.topName() is None: logger.warning("Top level component was never named") elif stack.top().useBegin: raise ParseError("Component {0!s} was never closed".format( (stack.topName())), n) yield stack.pop() except ParseError as e: e.input = streamOrString raise def readOne(stream, validate=False, transform=True, ignoreUnreadable=False, allowQP=False): """ Return the first component from stream. """ return next(readComponents(stream, validate, transform, ignoreUnreadable, allowQP)) # --------------------------- version registry --------------------------------- __behaviorRegistry = {} def registerBehavior(behavior, name=None, default=False, id=None): """ Register the given behavior. If default is True (or if this is the first version registered with this name), the version will be the default if no id is given. """ if not name: name = behavior.name.upper() if id is None: id = behavior.versionString if name in __behaviorRegistry: if default: __behaviorRegistry[name].insert(0, (id, behavior)) else: __behaviorRegistry[name].append((id, behavior)) else: __behaviorRegistry[name] = [(id, behavior)] def getBehavior(name, id=None): """ Return a matching behavior if it exists, or None. If id is None, return the default for name. """ name = name.upper() if name in __behaviorRegistry: if id: for n, behavior in __behaviorRegistry[name]: if n == id: return behavior return __behaviorRegistry[name][0][1] return None def newFromBehavior(name, id=None): """ Given a name, return a behaviored ContentLine or Component. """ name = name.upper() behavior = getBehavior(name, id) if behavior is None: raise VObjectError("No behavior found named {0!s}".format(name)) if behavior.isComponent: obj = Component(name) else: obj = ContentLine(name, [], '') obj.behavior = behavior obj.isNative = False return obj # --------------------------- Helper function ---------------------------------- def backslashEscape(s): s = s.replace("\\", "\\\\").replace(";", "\;").replace(",", "\,") return s.replace("\r\n", "\\n").replace("\n", "\\n").replace("\r", "\\n")
#!/usr/bin/python # -*- coding: utf-8 -*- """ Sub programs for operating some Keithley instruments author : Eoin O'Farrell email : [email protected] last edited : July 2013 Classes for: Keithley 6221 InitializeInstruments ScanInstruments InitializeDataFile WriteDataFile CloseDataFile GraphData """ import rpyc import visa as visa import VisaSubs as VisaSubs import string as string import re as re from collections import namedtuple import time import math import numpy as np import threading import Queue ###################################################### # At the moment each of the instruments we use is a # seperate class ##################################################### class k6221: def __init__(self, address, compliance = 0.1, analogFilter = True, autorange = True, setupOption = "SAV0", doSetup = False, mode = "Wave", wave = "SIN", frequency = 9.2, amplitude = 10e-8): # The setup option sets the setup that we use if doSetup is True self.Address = address self.Visa = VisaSubs.InitializeGPIB(address,0,term_chars = "\\n") # Other 6430 properties self.Compliance = compliance self.AnalogFilter = analogFilter self.AutoRange = autorange self.CurrentRange = currentRange self.Mode = mode self.Wave = wave self.DoSetup = doSetup self.SetupOption = SetupOption self.Output = False self.Frequency = frequency self.Amplitude = amplitude if doSetup: self.Visa.write("*RST") self.Visa.write("".join(("SYST:POS ",setupOption))) ###################################### # Initialization i.e. writing a load of SCPI ####################################### def Initialize(self): # Assume that the source is in Sine mode and that there is no # offset # Determine if the output is on or off Reply = self.Visa.ask("OUTP:STAT?") self.Output = bool(Reply) time.sleep(.1) # if the output is on we now determine the parameters # amplitude, frequency, compliance ... if self.Output: Reply = self.Visa.ask("SOUR:CURR:COMP?") self.Compliance = float(Reply) Reply = self.Visa.ask("SOUR:CURR:FILT?") self.AnalogFilter = bool(Reply) Reply = self.Visa.ask("SOUR:CURR:RANG:AUTO?") self.AutoRange = bool(Reply) if not self.AutoRange: Reply = self.Visa.ask("SOUR:CURR:RANG?") self.CurrentRange = float(Reply) self.Visa.write("".join((":SOUR:FUNC:MODE ",self.Source))) # Configure the auto zero (reference) self.Visa.write(":SYST:AZER:STAT ON") self.Visa.write(":SYST:AZER:CACH:STAT 1") self.Visa.write(":SYST:AZER:CACH:RES") # Disable concurrent mode, measure I and V (not R) self.Visa.write(":SENS:FUNC:CONC 1") if self.Source == "VOLT": self.Sense = "CURR" elif self.Source == "CURR": self.Sense = "VOLT" self.Visa.write("".join((":SENS:FUNC:ON ","\"%s\"," % self.Source,"\"%s\"" % self.Sense))) self.Visa.write("".join((":FORM:ELEM ","%s," % self.Source,"%s" % self.Sense))) self.Visa.write("".join((":SENS:",self.Sense,":RANG:AUTO 0"))) # Set the complicance if not SkipCompliance: self.Visa.write("".join((":SENS:",self.Sense,":RANG 105e-9"))) self.Visa.write("".join((":SENS:",self.Sense,":PROT:LEV %.3e" % self.Compliance))) # # Set some filters self.Visa.write("".join((":SENS:",self.Sense,":NPLC %.2f" % self.Integration))) if not SkipMath: self.Visa.write(":SENS:AVER:REP:COUN %d" % self.Repetition) self.Visa.write(":SENS:MED:RANK %d" % self.Median) self.Visa.write(":SOUR:DEL %.4f" % self.Delay) self.Visa.write(":TRIG:DEL %.4f" % self.Trigger) pass ########################################### # Set the range and compliance ####################################### def SetRangeCompliance(self, Range = 105, Compliance = 105): self.Compliance = Compliance self.Visa.write("".join((":SENS:",self.Sense,":PROT:LEV %.3e" % self.Compliance))) if Range: self.Visa.write("".join((":SENS:",self.Sense,":RANG ","%.2e" % Range))) else: self.Visa.write("".join((":SENS:",self.Sense,":RANG:AUTO 1"))) pass ################################################## # Read data ################################################ def ReadWave(self): Reply = self.Visa.ask("SOUR:WAVE:FREQ?") self.Frequency = float(Reply) Reply = self.Visa.ask("SOUR:WAVE:AMPL?") self.Amplitude = float(Reply) pass ################################################## # Set source ################################################## def SetWave(self,Amp,Freq): self.Visa.write("SOUR:WAVE:CURR %.4e" % Amp) self.Visa.write("SOUR:WAVE:FREQ %.4e" % Amp) pass ################################################# # Switch the output ############################################### def SwitchOutput(self): self.Output = not self.Output self.Visa.write("".join((":OUTP:STAT ","%d" % self.Output))) pass ################################################# # Switch the wave ############################################### def SwitchWave(self): self.Output = not self.Output if self.Output: self.Visa.write("SOUR:WAVE:ARM") self.Visa.write("SOUR:WAVE:INIT") else: self.Visa.write("SOUR:WAVE:ABOR") pass ###################################################### # Manual sweep, this sweep will be run as a separate process # so it doesn't block the program ################################################## def RunSweep(self,Start,Stop,Step,Wait,Mode = "linear",**kwargs): #self.Visa.write("".join((":SOUR:",self.Source,":MODE FIX"))) Targets = [Start, Stop] for kw in kwargs.keys(): if kw == "mid": Mid = kwargs[kw] for i in Mid: Targets.insert(len(Targets)-1,i) Voltage = [Start] for i in range(1,len(Targets)): Points = int(1+abs(Targets[i]-Targets[i-1])/Step) if Mode == "linear": Voltage = np.hstack([Voltage,np.linspace(Targets[i-1],Targets[i],num = Points)[1:Points]]) if Mode == "log": Voltage = np.hstack([Voltage,np.linspace(Targets[i-1],Targets[i],num = Points)[1:Points]]) # self.Visa.write("".join((":SOUR:",self.Source," %.4e" % Voltage[0]))) return Voltage ################################################### # Print a description string ################################################ def Description(self): DescriptionString = "Keithley6221" for item in vars(self).items(): if item[0] == "Frequency" or item[0] == "Amplitude" or item[0] == "Address": DescriptionString = ", ".join((DescriptionString,"%s = %.3f" % item)) DescriptionString = "".join((DescriptionString,"\n")) return DescriptionString ############################################ ######### Ramp the source to a final value ######################################### def Ramp(self,Finish): if self.Output: self.ReadData() VStart = self.Data[0] N = max(100,int(abs(Finish-VStart)/0.1)) VSweep = np.linspace(VStart,Finish,num=N+1) if not self.Output: self.SwitchOutput() for i in range(len(VSweep)): self.SetSource(VSweep[i]) time.sleep(0.05) self.ReadData() return
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Deep Neural Network estimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework.python.framework import experimental from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.layers.python.layers import optimizers from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import prediction_key from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.python import summary from tensorflow.python.ops import nn from tensorflow.python.ops import partitioned_variables from tensorflow.python.ops import variable_scope _CENTERED_BIAS_WEIGHT = "centered_bias_weight" # The default learning rate of 0.05 is a historical artifact of the initial # implementation, but seems a reasonable choice. _LEARNING_RATE = 0.05 def _get_feature_dict(features): if isinstance(features, dict): return features return {"": features} def _get_optimizer(optimizer): if callable(optimizer): return optimizer() else: return optimizer def _add_hidden_layer_summary(value, tag): summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value)) summary.histogram("%s_activation" % tag, value) def _dnn_model_fn(features, labels, mode, params): """Deep Neural Net model_fn. Args: features: `Tensor` or dict of `Tensor` (depends on data passed to `fit`). labels: `Tensor` of shape [batch_size, 1] or [batch_size] labels of dtype `int32` or `int64` in the range `[0, n_classes)`. mode: Defines whether this is training, evaluation or prediction. See `ModeKeys`. params: A dict of hyperparameters. The following hyperparameters are expected: * head: A `_Head` instance. * hidden_units: List of hidden units per layer. * feature_columns: An iterable containing all the feature columns used by the model. * optimizer: string, `Optimizer` object, or callable that defines the optimizer to use for training. If `None`, will use the Adagrad optimizer with a default learning rate of 0.05. * activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. * dropout: When not `None`, the probability we will drop out a given coordinate. * gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. * num_ps_replicas: The number of parameter server replicas. * embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. Returns: predictions: A dict of `Tensor` objects. loss: A scalar containing the loss of the step. train_op: The op for training. """ head = params["head"] hidden_units = params["hidden_units"] feature_columns = params["feature_columns"] optimizer = params.get("optimizer") or "Adagrad" activation_fn = params.get("activation_fn") dropout = params.get("dropout") gradient_clip_norm = params.get("gradient_clip_norm") num_ps_replicas = params.get("num_ps_replicas", 0) embedding_lr_multipliers = params.get("embedding_lr_multipliers", {}) features = _get_feature_dict(features) parent_scope = "dnn" input_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas, min_slice_size=64 << 20)) input_layer_scope = parent_scope + "/input_from_feature_columns" with variable_scope.variable_scope( input_layer_scope, values=list(six.itervalues(features)), partitioner=input_layer_partitioner) as scope: net = layers.input_from_feature_columns( columns_to_tensors=features, feature_columns=feature_columns, weight_collections=[parent_scope], scope=scope) hidden_layer_partitioner = ( partitioned_variables.min_max_variable_partitioner( max_partitions=num_ps_replicas)) for layer_id, num_hidden_units in enumerate(hidden_units): with variable_scope.variable_scope( parent_scope + "/hiddenlayer_%d" % layer_id, values=[net], partitioner=hidden_layer_partitioner) as scope: net = layers.fully_connected( net, num_hidden_units, activation_fn=activation_fn, variables_collections=[parent_scope], scope=scope) if dropout is not None and mode == model_fn.ModeKeys.TRAIN: net = layers.dropout( net, keep_prob=(1.0 - dropout)) _add_hidden_layer_summary(net, scope.name) with variable_scope.variable_scope( parent_scope + "/logits", values=[net], partitioner=hidden_layer_partitioner) as scope: logits = layers.fully_connected( net, head.logits_dimension, activation_fn=None, variables_collections=[parent_scope], scope=scope) _add_hidden_layer_summary(logits, scope.name) def _train_op_fn(loss): """Returns the op to optimize the loss.""" return optimizers.optimize_loss( loss=loss, global_step=contrib_variables.get_global_step(), learning_rate=_LEARNING_RATE, optimizer=_get_optimizer(optimizer), gradient_multipliers=( dnn_linear_combined._extract_embedding_lr_multipliers( # pylint: disable=protected-access embedding_lr_multipliers, parent_scope, input_layer_scope)), clip_gradients=gradient_clip_norm, name=parent_scope, # Empty summaries to prevent optimizers from logging the training_loss. summaries=[]) return head.head_ops(features, labels, mode, _train_op_fn, logits) class DNNClassifier(evaluable.Evaluable, trainable.Trainable): """A classifier for TensorFlow DNN models. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNClassifier( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNClassifier( feature_columns=[sparse_feature_a_emb, sparse_feature_b_emb], hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Input builders def input_fn_train: # returns x, y (where y represents label's class index). pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y (where y represents label's class index). pass estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) # returns predicted labels (i.e. label's class index). ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, hidden_units, feature_columns, model_dir=None, n_classes=2, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=False, config=None, feature_engineering_fn=None, embedding_lr_multipliers=None): """Initializes a DNNClassifier instance. Args: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of label classes. Default is binary classification. It must be greater than 1. Note: Class labels are integers representing the class index (i.e. values from 0 to n_classes-1). For arbitrary label values (e.g. string labels), convert to class indices first. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not `None`, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. embedding_lr_multipliers: Optional. A dictionary from `EmbeddingColumn` to a `float` multiplier. Multiplier will be used to multiply with learning rate for the embedding variables. Returns: A `DNNClassifier` estimator. Raises: ValueError: If `n_classes` < 2. """ self._hidden_units = hidden_units self._feature_columns = feature_columns self._enable_centered_bias = enable_centered_bias self._estimator = estimator.Estimator( model_fn=_dnn_model_fn, model_dir=model_dir, config=config, params={ "head": head_lib._multi_class_head( # pylint: disable=protected-access n_classes, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias), "hidden_units": hidden_units, "feature_columns": feature_columns, "optimizer": optimizer, "activation_fn": activation_fn, "dropout": dropout, "gradient_clip_norm": gradient_clip_norm, "num_ps_replicas": config.num_ps_replicas if config else 0, "embedding_lr_multipliers": embedding_lr_multipliers, }, feature_engineering_fn=feature_engineering_fn) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): """See trainable.Trainable. Note: Labels must be integer class indices.""" # TODO(roumposg): Remove when deprecated monitors are removed. hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) self._estimator.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=hooks, max_steps=max_steps) return self def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None): """See evaluable.Evaluable. Note: Labels must be integer class indices.""" return self._estimator.evaluate( x=x, y=y, input_fn=input_fn, feed_fn=feed_fn, batch_size=batch_size, steps=steps, metrics=metrics, name=name) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict(self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns predicted classes for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes (or an iterable of predicted classes if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.CLASSES preds = self._estimator.predict(x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key].reshape(-1) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba( self, x=None, input_fn=None, batch_size=None, as_iterable=True): """Returns prediction probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted probabilities (or an iterable of predicted probabilities if as_iterable is True). Each predicted class is represented by its class index (i.e. integer from 0 to n_classes-1). """ key = prediction_key.PredictionKey.PROBABILITIES preds = self._estimator.predict(x=x, input_fn=input_fn, batch_size=batch_size, outputs=[key], as_iterable=as_iterable) if as_iterable: return (pred[key] for pred in preds) return preds[key] def _get_predict_ops(self, features): """See `Estimator` class.""" # This method exists to support some models that use the legacy interface. # pylint: disable=protected-access return self._estimator._get_predict_ops(features) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return self._estimator.get_variable_names() def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: `Tensor` object. """ return self._estimator.get_variable_value(name) def export(self, export_dir, input_fn=None, input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, default_batch_size=1, exports_to_keep=None): """See BaseEstimator.export.""" def default_input_fn(unused_estimator, examples): return layers.parse_feature_columns_from_examples( examples, self._feature_columns) return self._estimator.export( export_dir=export_dir, input_fn=input_fn or default_input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, signature_fn=( signature_fn or export.classification_signature_fn_with_prob), prediction_key=prediction_key.PredictionKey.PROBABILITIES, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep) @experimental def export_savedmodel(self, export_dir_base, input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, exports_to_keep=None): return self._estimator.export_savedmodel( export_dir_base, input_fn, default_output_alternative_key=default_output_alternative_key, assets_extra=assets_extra, as_text=as_text, exports_to_keep=exports_to_keep) @property def model_dir(self): return self._estimator.model_dir @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def weights_(self): hiddenlayer_weights = [ self.get_variable_value("dnn/hiddenlayer_%d/weights" % i) for i, _ in enumerate(self._hidden_units) ] logits_weights = [self.get_variable_value("dnn/logits/weights")] return hiddenlayer_weights + logits_weights @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def bias_(self): hiddenlayer_bias = [ self.get_variable_value("dnn/hiddenlayer_%d/biases" % i) for i, _ in enumerate(self._hidden_units) ] logits_bias = [self.get_variable_value("dnn/logits/biases")] if self._enable_centered_bias: centered_bias = [self.get_variable_value(_CENTERED_BIAS_WEIGHT)] else: centered_bias = [] return hiddenlayer_bias + logits_bias + centered_bias @property def config(self): return self._estimator.config class DNNRegressor(dnn_linear_combined.DNNLinearCombinedRegressor): """A regressor for TensorFlow DNN models. Example: ```python sparse_feature_a = sparse_column_with_hash_bucket(...) sparse_feature_b = sparse_column_with_hash_bucket(...) sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, ...) sparse_feature_b_emb = embedding_column(sparse_id_column=sparse_feature_b, ...) estimator = DNNRegressor( feature_columns=[sparse_feature_a, sparse_feature_b], hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=[sparse_feature_a, sparse_feature_b], hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Input builders def input_fn_train: # returns x, y pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, y pass estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: * if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. * for each `column` in `feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn`, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, hidden_units, feature_columns, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, enable_centered_bias=False, config=None, feature_engineering_fn=None, label_dimension=1): """Initializes a `DNNRegressor` instance. Args: hidden_units: List of hidden units per layer. All layers are fully connected. Ex. `[64, 32]` means first layer has 64 nodes and second one has 32. feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Adagrad optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not `None`, the probability we will drop out a given coordinate. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. label_dimension: Dimension of the label for multilabels. Defaults to 1. Returns: A `DNNRegressor` estimator. """ super(DNNRegressor, self).__init__( model_dir=model_dir, weight_column_name=weight_column_name, dnn_feature_columns=feature_columns, dnn_optimizer=optimizer, dnn_hidden_units=hidden_units, dnn_activation_fn=activation_fn, dnn_dropout=dropout, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, config=config, feature_engineering_fn=feature_engineering_fn, label_dimension=label_dimension) self.feature_columns = feature_columns self.optimizer = optimizer self.activation_fn = activation_fn self.dropout = dropout self.hidden_units = hidden_units self._feature_columns_inferred = False @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def weights_(self): return self.dnn_weights_ @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def bias_(self): return self.dnn_bias_
# Copyright 2014 CloudFounders NV # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from ConfigParser import RawConfigParser from ovs.extensions.generic.sshclient import SSHClient from ovs.extensions.generic.system import System from StringIO import StringIO import os import tempfile import time class ClusterNode(object): """ cluster node config parameters """ def __init__(self, name=None, ip=None, client_port=None, messaging_port=None): self.name = name self.ip = ip self.client_port = client_port self.messaging_port = messaging_port def __hash__(self): """ Defines a hashing equivalent for a given ClusterNode """ return hash('{0}_{1}_{2}_{3}'.format(self.name, self.ip, self.client_port, self.messaging_port)) def __eq__(self, other): """ Checks whether two objects are the same. """ if not isinstance(other, ClusterNode): return False return self.__hash__() == other.__hash__() def __ne__(self, other): """ Checks whether to objects are not the same. """ if not isinstance(other, ClusterNode): return True return not self.__eq__(other) class ClusterConfig(): """ contains cluster config parameters """ def __init__(self, base_dir, cluster_name, log_level, plugins=None): self.base_dir = base_dir self.cluster_name = cluster_name self.log_level = log_level self.log_dir = "/var/log/arakoon/" + cluster_name self.home_dir = "/".join([self.base_dir, 'arakoon', cluster_name]) self.tlog_dir = "/".join([self.base_dir, 'tlogs', cluster_name]) self.target_ip = '127.0.0.1' if plugins is None: self.plugins = "" else: self.plugins = plugins self.nodes = [] self.fsync = True def set_base_dir(self, base_dir): self.home_dir = base_dir + '/arakoon/' + self.cluster_name self.tlog_dir = base_dir + '/tlogs/' + self.cluster_name self.base_dir = base_dir def set_cluster_name(self, cluster_name): self.log_dir = "/var/log/arakoon/" + cluster_name self.home_dir = "/".join([self.base_dir, 'arakoon', cluster_name]) self.tlog_dir = "/".join([self.base_dir, 'tlogs', cluster_name]) self.cluster_name = cluster_name class ArakoonInstaller(): """ class to dynamically install/(re)configure arakoon cluster """ ARAKOON_BIN = '/usr/bin/arakoon' ARAKOON_CONFIG_DIR = '/opt/OpenvStorage/config/arakoon' ARAKOON_CONFIG_FILE = '/opt/OpenvStorage/config/arakoon/{0}/{0}.cfg' ARAKOON_UPSTART = """ description "Arakoon upstart" start on (local-filesystems and started networking) stop on runlevel [016] kill timeout 60 respawn respawn limit 10 5 console log setuid root setgid root env PYTHONPATH=/opt/OpenvStorage {0} chdir /opt/OpenvStorage exec /usr/bin/python2 /opt/OpenvStorage/ovs/extensions/db/arakoon/ArakoonManagement.py --start --cluster {1} """ def __init__(self): self.config = None def get_config_file(self, suffix=None): config_dir = '/'.join([ArakoonInstaller.ARAKOON_CONFIG_DIR, self.config.cluster_name]) filename = '/'.join([config_dir, self.config.cluster_name + suffix]) if not os.path.exists(config_dir): os.makedirs(config_dir) return filename def create_config(self, cluster_name, ip, client_port, messaging_port, plugins=None): """ Creates initial config object causing this host to be master :param cluster_name: unique name for this arakoon cluster used in paths :param ip: ip on which service should listen :param client_port: :param messaging_port: :param plugins: optional arakoon plugins :return: """ client = SSHClient.load(ip) node_name = System.get_my_machine_id(client) base_dir = System.read_remote_config(client, 'ovs.core.db.arakoon.location') self.clear_config() self.config = ClusterConfig(base_dir, cluster_name, 'info', plugins) self.config.nodes.append(ClusterNode(node_name, ip, client_port, messaging_port)) self.config.target_ip = ip @staticmethod def get_config_from(cluster_name, master_ip, master_password=None): """ Gets a config object representation for the cluster on master """ client = SSHClient.load(master_ip, master_password) cfg_file = client.file_read(ArakoonInstaller.ARAKOON_CONFIG_FILE.format(cluster_name)) cfg = RawConfigParser() cfg.readfp(StringIO(cfg_file)) return cfg def load_config_from(self, cluster_name, master_ip): """ Reads actual config from master node Assumes this node is up-to-date and is considered valid :param base_dir: base_dir should be identical across multiple nodes """ cfg = ArakoonInstaller.get_config_from(cluster_name, master_ip) global_section = dict(cfg.items('global')) nodes = cfg.sections() nodes.remove('global') # validate config if not nodes: raise ValueError('Expected at least one node in cfg file') first = True for node_id in nodes: node_config = dict(cfg.items(node_id)) if first is True: self.create_config(cluster_name, node_config['ip'], node_config['client_port'], node_config['messaging_port'], plugins=global_section['plugins']) first = False else: self.add_node_to_config(node_id, node_config['ip'], node_config['client_port'], node_config['messaging_port']) def upload_config_for(self, cluster_name): if self.config.cluster_name != cluster_name: raise RuntimeError('Configuration is not setup for: {0} '.format(cluster_name)) cluster_ips = list() for node in self.config.nodes: cluster_ips.append(node.ip) for ip in cluster_ips: client = SSHClient.load(ip) self.generate_config(client) self.generate_upstart_config(client) def clear_config(self): self.config = None def get_config(self): return self.config def add_node_to_config(self, node_id, ip, client_port, messaging_port): node = ClusterNode(node_id, ip, client_port, messaging_port) self.config.nodes.append(node) def remove_node_from_config(self, node_id): for node in self.config.nodes: if node.name == node_id: self.config.nodes.remove(node) break def generate_config(self, client=None): (temp_handle, temp_filename) = tempfile.mkstemp() config_file = self.get_config_file('.cfg') contents = RawConfigParser() contents.add_section('global') contents.set('global', 'cluster_id', self.config.cluster_name) contents.set('global', 'cluster', '') contents.set('global', 'plugins', self.config.plugins) for node in self.config.nodes: if not contents.has_section(node.name): contents.add_section(node.name) contents.set(node.name, 'name', node.name) contents.set(node.name, 'ip', node.ip) contents.set(node.name, 'client_port', node.client_port) contents.set(node.name, 'messaging_port', node.messaging_port) contents.set(node.name, 'tlog_compression', 'snappy') contents.set(node.name, 'log_level', self.config.log_level) contents.set(node.name, 'log_dir', self.config.log_dir) contents.set(node.name, 'home', self.config.home_dir) contents.set(node.name, 'tlog_dir', self.config.tlog_dir) contents.set(node.name, 'fsync', str(self.config.fsync).lower()) if contents.get('global', 'cluster'): contents.set('global', 'cluster', ','.join([contents.get('global', 'cluster'), node.name])) else: contents.set('global', 'cluster', node.name) if client is None: with open(config_file, 'wb') as f: contents.write(f) else: with open(temp_filename, 'wb') as f: contents.write(f) client.dir_ensure(os.path.dirname(config_file)) client.file_upload(config_file, temp_filename) os.remove(temp_filename) def generate_upstart_config(self, client=None): (temp_handle, temp_filename) = tempfile.mkstemp() config_file = '/etc/init/ovs-arakoon-{0}.conf'.format(self.config.cluster_name) ld_config = 'env LD_LIBRARY_PATH=/usr/lib/alba' contents = ArakoonInstaller.ARAKOON_UPSTART.format(ld_config, self.config.cluster_name) if client is None: with open(config_file, 'wb') as f: f.write(contents) else: with open(temp_filename, 'wb') as f: f.write(contents) client.dir_ensure(os.path.dirname(config_file)) client.file_upload(config_file, temp_filename) os.remove(temp_filename) def create_dir_structure(self, client=None, cluster_name=None): if cluster_name is None: cluster_name = self.config.cluster_name cmd = """ mkdir -p {0}/arakoon/{1} mkdir -p {0}/tlogs/{1} mkdir -p /var/log/arakoon/{1} """.format(self.config.base_dir, cluster_name) System.run(cmd, client) def delete_dir_structure(self, client=None, cluster_name=None): if cluster_name is None: cluster_name = self.config.cluster_name cmd = """ rm -rf {0}/arakoon/{1} rm -rf {0}/tlogs/{1} rm -rf /var/log/arakoon/{1} """.format(self.config.base_dir, cluster_name) System.run(cmd, client) def generate_configs(self, client=None): self.generate_config(client) self.generate_upstart_config(client) @staticmethod def create_cluster(cluster_name, ip, exclude_ports, plugins=None): ai = ArakoonInstaller() ai.clear_config() client = SSHClient.load(ip) port_range = System.read_remote_config(client, 'ovs.ports.arakoon') free_ports = System.get_free_ports(port_range, exclude_ports, 2, client) ai.create_config(cluster_name, ip, free_ports[0], free_ports[1], plugins) ai.generate_configs(client) ai.create_dir_structure(client) return {'client_port': free_ports[0], 'messaging_port': free_ports[1]} @staticmethod def start(cluster_name, ip): client = SSHClient.load(ip) cmd = """ from ovs.plugin.provider.service import Service print Service.start_service('arakoon-{0}') """.format(cluster_name) System.exec_remote_python(client, cmd) @staticmethod def stop(cluster_name, ip): client = SSHClient.load(ip) cmd = """ from ovs.plugin.provider.service import Service print Service.stop_service('arakoon-{0}') """.format(cluster_name) System.exec_remote_python(client, cmd) @staticmethod def status(cluster_name, ip): client = SSHClient.load(ip) cmd = """ from ovs.plugin.provider.service import Service print Service.get_service_status('arakoon-{0}') """.format(cluster_name) System.exec_remote_python(client, cmd) @staticmethod def catchup_cluster_node(cluster_name, ip): client = SSHClient.load(ip) cmd = """ from ovs.extensions.db.arakoon.ArakoonManagement import ArakoonManagementEx cluster = ArakoonManagementEx().getCluster('{0}') cluster.catchup_node() """.format(cluster_name) System.exec_remote_python(client, cmd) @staticmethod def extend_cluster(src_ip, tgt_ip, cluster_name, exclude_ports): ai = ArakoonInstaller() ai.load_config_from(cluster_name, src_ip) client = SSHClient.load(tgt_ip) tgt_id = System.get_my_machine_id(client) port_range = System.read_remote_config(client, 'ovs.ports.arakoon') free_ports = System.get_free_ports(port_range, exclude_ports, 2, client) ai.create_dir_structure(client) ai.add_node_to_config(tgt_id, tgt_ip, free_ports[0], free_ports[1]) ai.upload_config_for(cluster_name) return {'client_port': free_ports[0], 'messaging_port': free_ports[1]} @staticmethod def shrink_cluster(remaining_node_ip, deleted_node_ip, cluster_name): ai = ArakoonInstaller() ai.load_config_from(cluster_name, remaining_node_ip) client = SSHClient.load(deleted_node_ip) deleted_node_id = System.get_my_machine_id(client) ai.delete_dir_structure(client) ai.remove_node_from_config(deleted_node_id) ai.upload_config_for(cluster_name) @staticmethod def deploy_config(from_ip, to_ip, cluster_name): ai = ArakoonInstaller() ai.load_config_from(cluster_name, from_ip) client = SSHClient.load(to_ip) ai.generate_config(client) @staticmethod def wait_for_cluster(cluster_name): """ Waits for an Arakoon cluster to be available (by sending a nop) """ from ovs.extensions.db.arakoon.ArakoonManagement import ArakoonManagementEx from ovs.extensions.db.arakoon.arakoon.ArakoonExceptions import ArakoonSockReadNoBytes last_exception = None tries = 3 while tries > 0: try: cluster_object = ArakoonManagementEx().getCluster(str(cluster_name)) client = cluster_object.getClient() client.nop() return True except ArakoonSockReadNoBytes as exception: last_exception = exception tries -= 1 time.sleep(1) raise last_exception @staticmethod def restart_cluster_add(cluster_name, current_ips, new_ip): """ Execute a (re)start sequence after adding a new node to a cluster. """ # Make sure all nodes are correctly (re)started loglevel = logging.root.manager.disable # Workaround for disabling Arakoon logging logging.disable('WARNING') ArakoonInstaller.catchup_cluster_node(cluster_name, new_ip) threshold = 2 if new_ip in current_ips else 1 for ip in current_ips: if ip == new_ip: continue ArakoonInstaller.stop(cluster_name, ip) ArakoonInstaller.start(cluster_name, ip) if len(current_ips) > threshold: # A two node cluster needs all nodes running ArakoonInstaller.wait_for_cluster(cluster_name) ArakoonInstaller.start(cluster_name, new_ip) ArakoonInstaller.wait_for_cluster(cluster_name) logging.disable(loglevel) # Restore workaround @staticmethod def restart_cluster_remove(cluster_name, remaining_ips): """ Execute a restart sequence after removing a node from a cluster """ loglevel = logging.root.manager.disable # Workaround for disabling Arakoon logging logging.disable('WARNING') for ip in remaining_ips: ArakoonInstaller.stop(cluster_name, ip) ArakoonInstaller.start(cluster_name, ip) if len(remaining_ips) > 2: # A two node cluster needs all nodes running ArakoonInstaller.wait_for_cluster(cluster_name) logging.disable(loglevel) # Restore workaround
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for convolutional layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.keras.python import keras from tensorflow.contrib.keras.python.keras import testing_utils from tensorflow.python.platform import test class Convolution1DTest(test.TestCase): def test_dilated_conv1d(self): with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv1D, input_data=np.reshape(np.arange(4, dtype='float32'), (1, 4, 1)), kwargs={ 'filters': 1, 'kernel_size': 2, 'dilation_rate': 1, 'padding': 'valid', 'kernel_initializer': 'ones', 'use_bias': False, }, expected_output=[[[1], [3], [5]]]) def test_conv_1d(self): batch_size = 2 steps = 8 input_dim = 2 kernel_size = 3 filters = 3 for padding in ['valid', 'same']: for strides in [1, 2]: if padding == 'same' and strides != 1: continue with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv1D, kwargs={ 'filters': filters, 'kernel_size': kernel_size, 'padding': padding, 'strides': strides }, input_shape=(batch_size, steps, input_dim)) def test_conv_1d_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 2)))) self.assertEqual(len(layer.losses), 3) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': 'max_norm', 'bias_constraint': 'max_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv1D(**kwargs) layer.build((None, 5, 2)) self.assertEqual(len(layer.constraints), 2) class Conv2DTest(test.TestCase): def test_convolution_2d(self): num_samples = 2 filters = 2 stack_size = 3 kernel_size = (3, 2) num_row = 7 num_col = 6 for padding in ['valid', 'same']: for strides in [(1, 1), (2, 2)]: if padding == 'same' and strides != (1, 1): continue with self.test_session(use_gpu=True): # Only runs on GPU with CUDA, channels_first is not supported on CPU. # TODO(b/62340061): Support channels_first on CPU. if test.is_gpu_available(cuda_only=True): testing_utils.layer_test( keras.layers.Conv2D, kwargs={ 'filters': filters, 'kernel_size': kernel_size, 'padding': padding, 'strides': strides, 'data_format': 'channels_first' }, input_shape=(num_samples, stack_size, num_row, num_col)) def test_convolution_2d_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': 'max_norm', 'bias_constraint': 'max_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.constraints), 2) def test_dilated_conv_2d(self): num_samples = 2 filters = 2 stack_size = 3 kernel_size = (3, 2) num_row = 7 num_col = 6 # Test dilation with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv2D, kwargs={ 'filters': filters, 'kernel_size': kernel_size, 'dilation_rate': (2, 2) }, input_shape=(num_samples, num_row, num_col, stack_size)) class Conv2DTransposeTest(test.TestCase): def test_conv2d_transpose(self): num_samples = 2 filters = 2 stack_size = 3 num_row = 5 num_col = 6 for padding in ['valid', 'same']: for strides in [(1, 1), (2, 2)]: if padding == 'same' and strides != (1, 1): continue with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv2DTranspose, kwargs={ 'filters': filters, 'kernel_size': 3, 'padding': padding, 'strides': strides, 'data_format': 'channels_last' }, input_shape=(num_samples, num_row, num_col, stack_size)) def test_conv2dtranspose_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv2DTranspose(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': 'max_norm', 'bias_constraint': 'max_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv2DTranspose(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.constraints), 2) class Conv3DTransposeTest(test.TestCase): def test_conv3d_transpose(self): num_samples = 2 filters = 2 stack_size = 3 num_row = 5 num_col = 6 depth = 4 for padding in ['valid', 'same']: for strides in [(1, 1, 1), (2, 2, 2)]: if padding == 'same' and strides != (1, 1, 1): continue with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Conv3DTranspose, kwargs={ 'filters': filters, 'kernel_size': 3, 'padding': padding, 'strides': strides, 'data_format': 'channels_last' }, input_shape=(num_samples, depth, num_row, num_col, stack_size)) def test_conv3dtranspose_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv3DTranspose(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': 'max_norm', 'bias_constraint': 'max_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv3DTranspose(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(len(layer.constraints), 2) class SeparableConv2DTest(test.TestCase): def test_separable_conv_2d(self): num_samples = 2 filters = 6 stack_size = 3 num_row = 7 num_col = 6 for padding in ['valid', 'same']: for strides in [(1, 1), (2, 2)]: for multiplier in [1, 2]: if padding == 'same' and strides != (1, 1): continue with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.SeparableConv2D, kwargs={ 'filters': filters, 'kernel_size': (3, 3), 'padding': padding, 'strides': strides, 'depth_multiplier': multiplier }, input_shape=(num_samples, num_row, num_col, stack_size)) def test_separable_conv2d_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'depthwise_regularizer': 'l2', 'pointwise_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.SeparableConv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.losses), 3) layer(keras.backend.variable(np.ones((1, 5, 5, 2)))) self.assertEqual(len(layer.losses), 4) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'pointwise_constraint': 'unit_norm', 'depthwise_constraint': 'unit_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.SeparableConv2D(**kwargs) layer.build((None, 5, 5, 2)) self.assertEqual(len(layer.constraints), 2) class Conv3DTest(test.TestCase): def test_convolution_3d(self): num_samples = 2 filters = 2 stack_size = 3 input_len_dim1 = 9 input_len_dim2 = 8 input_len_dim3 = 8 for padding in ['valid', 'same']: for strides in [(1, 1, 1), (2, 2, 2)]: if padding == 'same' and strides != (1, 1, 1): continue with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Convolution3D, kwargs={ 'filters': filters, 'kernel_size': 3, 'padding': padding, 'strides': strides }, input_shape=(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size)) def test_convolution_3d_regularization(self): # regularizers kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_regularizer': 'l2', 'bias_regularizer': 'l2', 'activity_regularizer': 'l2', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv3D(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(len(layer.losses), 2) self.assertEqual(len(layer.losses), 2) layer(keras.backend.variable(np.ones((1, 5, 5, 5, 2)))) self.assertEqual(len(layer.losses), 3) # constraints kwargs = { 'filters': 3, 'kernel_size': 3, 'padding': 'valid', 'kernel_constraint': 'max_norm', 'bias_constraint': 'max_norm', 'strides': 1 } with self.test_session(use_gpu=True): layer = keras.layers.Conv3D(**kwargs) layer.build((None, 5, 5, 5, 2)) self.assertEqual(len(layer.constraints), 2) class ZeroPaddingTest(test.TestCase): def test_zero_padding_1d(self): num_samples = 2 input_dim = 2 num_steps = 5 shape = (num_samples, num_steps, input_dim) inputs = np.ones(shape) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.ZeroPadding1D, kwargs={'padding': 2}, input_shape=inputs.shape) testing_utils.layer_test( keras.layers.ZeroPadding1D, kwargs={'padding': (1, 2)}, input_shape=inputs.shape) # correctness test with self.test_session(use_gpu=True): layer = keras.layers.ZeroPadding1D(padding=2) layer.build(shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, :], 1.) layer = keras.layers.ZeroPadding1D(padding=(1, 2)) layer.build(shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) for left_offset in [0]: np.testing.assert_allclose(np_output[:, left_offset, :], 0.) for right_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, right_offset, :], 0.) np.testing.assert_allclose(np_output[:, 1:-2, :], 1.) layer.get_config() def test_zero_padding_2d(self): num_samples = 2 stack_size = 2 input_num_row = 4 input_num_col = 5 for data_format in ['channels_first', 'channels_last']: inputs = np.ones((num_samples, input_num_row, input_num_col, stack_size)) inputs = np.ones((num_samples, stack_size, input_num_row, input_num_col)) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.ZeroPadding2D, kwargs={'padding': (2, 2), 'data_format': data_format}, input_shape=inputs.shape) testing_utils.layer_test( keras.layers.ZeroPadding2D, kwargs={'padding': ((1, 2), (3, 4)), 'data_format': data_format}, input_shape=inputs.shape) # correctness test with self.test_session(use_gpu=True): layer = keras.layers.ZeroPadding2D( padding=(2, 2), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) if data_format == 'channels_last': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :, :], 0.) np.testing.assert_allclose(np_output[:, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.) elif data_format == 'channels_first': for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, :, :, offset], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, :], 1.) layer = keras.layers.ZeroPadding2D( padding=((1, 2), (3, 4)), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) if data_format == 'channels_last': for top_offset in [0]: np.testing.assert_allclose(np_output[:, top_offset, :, :], 0.) for bottom_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, bottom_offset, :, :], 0.) for left_offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, left_offset, :], 0.) for right_offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, right_offset, :], 0.) np.testing.assert_allclose(np_output[:, 1:-2, 3:-4, :], 1.) elif data_format == 'channels_first': for top_offset in [0]: np.testing.assert_allclose(np_output[:, :, top_offset, :], 0.) for bottom_offset in [-1, -2]: np.testing.assert_allclose(np_output[:, :, bottom_offset, :], 0.) for left_offset in [0, 1, 2]: np.testing.assert_allclose(np_output[:, :, :, left_offset], 0.) for right_offset in [-1, -2, -3, -4]: np.testing.assert_allclose(np_output[:, :, :, right_offset], 0.) np.testing.assert_allclose(np_output[:, :, 1:-2, 3:-4], 1.) def test_zero_padding_3d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 4 input_len_dim2 = 5 input_len_dim3 = 3 inputs = np.ones((num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size)) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.ZeroPadding3D, kwargs={'padding': (2, 2, 2)}, input_shape=inputs.shape) # correctness test with self.test_session(use_gpu=True): layer = keras.layers.ZeroPadding3D(padding=(2, 2, 2)) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) for offset in [0, 1, -1, -2]: np.testing.assert_allclose(np_output[:, offset, :, :, :], 0.) np.testing.assert_allclose(np_output[:, :, offset, :, :], 0.) np.testing.assert_allclose(np_output[:, :, :, offset, :], 0.) np.testing.assert_allclose(np_output[:, 2:-2, 2:-2, 2:-2, :], 1.) class UpSamplingTest(test.TestCase): def test_upsampling_1d(self): with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling1D, kwargs={'size': 2}, input_shape=(3, 5, 4)) def test_upsampling_2d(self): num_samples = 2 stack_size = 2 input_num_row = 11 input_num_col = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_num_row, input_num_col) else: inputs = np.random.rand(num_samples, input_num_row, input_num_col, stack_size) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling2D, kwargs={'size': (2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_row in [2]: for length_col in [2, 3]: layer = keras.layers.UpSampling2D( size=(length_row, length_col), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) if data_format == 'channels_first': assert np_output.shape[2] == length_row * input_num_row assert np_output.shape[3] == length_col * input_num_col else: # tf assert np_output.shape[1] == length_row * input_num_row assert np_output.shape[2] == length_col * input_num_col # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_row, axis=2) expected_out = np.repeat(expected_out, length_col, axis=3) else: # tf expected_out = np.repeat(inputs, length_row, axis=1) expected_out = np.repeat(expected_out, length_col, axis=2) np.testing.assert_allclose(np_output, expected_out) def test_upsampling_3d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 10 input_len_dim2 = 11 input_len_dim3 = 12 for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.UpSampling3D, kwargs={'size': (2, 2, 2), 'data_format': data_format}, input_shape=inputs.shape) for length_dim1 in [2, 3]: for length_dim2 in [2]: for length_dim3 in [3]: layer = keras.layers.UpSampling3D( size=(length_dim1, length_dim2, length_dim3), data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) if data_format == 'channels_first': assert np_output.shape[2] == length_dim1 * input_len_dim1 assert np_output.shape[3] == length_dim2 * input_len_dim2 assert np_output.shape[4] == length_dim3 * input_len_dim3 else: # tf assert np_output.shape[1] == length_dim1 * input_len_dim1 assert np_output.shape[2] == length_dim2 * input_len_dim2 assert np_output.shape[3] == length_dim3 * input_len_dim3 # compare with numpy if data_format == 'channels_first': expected_out = np.repeat(inputs, length_dim1, axis=2) expected_out = np.repeat(expected_out, length_dim2, axis=3) expected_out = np.repeat(expected_out, length_dim3, axis=4) else: # tf expected_out = np.repeat(inputs, length_dim1, axis=1) expected_out = np.repeat(expected_out, length_dim2, axis=2) expected_out = np.repeat(expected_out, length_dim3, axis=3) np.testing.assert_allclose(np_output, expected_out) class CroppingTest(test.TestCase): def test_cropping_1d(self): num_samples = 2 time_length = 4 input_len_dim1 = 2 inputs = np.random.rand(num_samples, time_length, input_len_dim1) with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Cropping1D, kwargs={'cropping': (2, 2)}, input_shape=inputs.shape) def test_cropping_2d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 9 input_len_dim2 = 9 cropping = ((2, 2), (3, 3)) for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, stack_size) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Cropping2D, kwargs={'cropping': cropping, 'data_format': data_format}, input_shape=inputs.shape) # correctness test with self.test_session(use_gpu=True): layer = keras.layers.Cropping2D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) # compare with numpy if data_format == 'channels_first': expected_out = inputs[:, :, cropping[0][0]:-cropping[0][1], cropping[ 1][0]:-cropping[1][1]] else: expected_out = inputs[:, cropping[0][0]:-cropping[0][1], cropping[1][ 0]:-cropping[1][1], :] np.testing.assert_allclose(np_output, expected_out) for data_format in ['channels_first', 'channels_last']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, stack_size) # another correctness test (no cropping) with self.test_session(use_gpu=True): cropping = ((0, 0), (0, 0)) layer = keras.layers.Cropping2D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) # compare with input np.testing.assert_allclose(np_output, inputs) def test_cropping_3d(self): num_samples = 2 stack_size = 2 input_len_dim1 = 8 input_len_dim2 = 8 input_len_dim3 = 8 cropping = ((2, 2), (1, 1), (2, 3)) for data_format in ['channels_last', 'channels_first']: if data_format == 'channels_first': inputs = np.random.rand(num_samples, stack_size, input_len_dim1, input_len_dim2, input_len_dim3) else: inputs = np.random.rand(num_samples, input_len_dim1, input_len_dim2, input_len_dim3, stack_size) # basic test with self.test_session(use_gpu=True): testing_utils.layer_test( keras.layers.Cropping3D, kwargs={'cropping': cropping, 'data_format': data_format}, input_shape=inputs.shape) # correctness test with self.test_session(use_gpu=True): layer = keras.layers.Cropping3D( cropping=cropping, data_format=data_format) layer.build(inputs.shape) output = layer(keras.backend.variable(inputs)) np_output = keras.backend.eval(output) # compare with numpy if data_format == 'channels_first': expected_out = inputs[:, :, cropping[0][0]:-cropping[0][1], cropping[1][0]:-cropping[1][1], cropping[2][0]:-cropping[2][1]] else: expected_out = inputs[:, cropping[0][0]:-cropping[0][1], cropping[1][0]:-cropping[1][1], cropping[2][0]:-cropping[2][1], :] print(expected_out.shape) np.testing.assert_allclose(np_output, expected_out) if __name__ == '__main__': test.main()
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, time import pytest from numpy import nan from numpy.random import randn import numpy as np from pandas import (DataFrame, Series, Index, Timestamp, DatetimeIndex, MultiIndex, to_datetime, date_range, period_range) import pandas as pd import pandas.tseries.offsets as offsets from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_index_equal, assert_raises_regex) import pandas.util.testing as tm from pandas.compat import product from pandas.tests.frame.common import TestData class TestDataFrameTimeSeriesMethods(TestData): def test_diff(self): the_diff = self.tsframe.diff(1) assert_series_equal(the_diff['A'], self.tsframe['A'] - self.tsframe['A'].shift(1)) # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = DataFrame({'s': s}).diff() assert rs.s[1] == 1 # mixed numeric tf = self.tsframe.astype('float32') the_diff = tf.diff(1) assert_series_equal(the_diff['A'], tf['A'] - tf['A'].shift(1)) # issue 10907 df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])}) df.insert(0, 'x', 1) result = df.diff(axis=1) expected = pd.DataFrame({'x': np.nan, 'y': pd.Series( 1), 'z': pd.Series(1)}).astype('float64') assert_frame_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_diff_datetime_axis0(self, tz): # GH 18578 df = DataFrame({0: date_range('2010', freq='D', periods=2, tz=tz), 1: date_range('2010', freq='D', periods=2, tz=tz)}) result = df.diff(axis=0) expected = DataFrame({0: pd.TimedeltaIndex(['NaT', '1 days']), 1: pd.TimedeltaIndex(['NaT', '1 days'])}) assert_frame_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_diff_datetime_axis1(self, tz): # GH 18578 df = DataFrame({0: date_range('2010', freq='D', periods=2, tz=tz), 1: date_range('2010', freq='D', periods=2, tz=tz)}) if tz is None: result = df.diff(axis=1) expected = DataFrame({0: pd.TimedeltaIndex(['NaT', 'NaT']), 1: pd.TimedeltaIndex(['0 days', '0 days'])}) assert_frame_equal(result, expected) else: with pytest.raises(NotImplementedError): result = df.diff(axis=1) def test_diff_timedelta(self): # GH 4533 df = DataFrame(dict(time=[Timestamp('20130101 9:01'), Timestamp('20130101 9:02')], value=[1.0, 2.0])) res = df.diff() exp = DataFrame([[pd.NaT, np.nan], [pd.Timedelta('00:01:00'), 1]], columns=['time', 'value']) assert_frame_equal(res, exp) def test_diff_mixed_dtype(self): df = DataFrame(np.random.randn(5, 3)) df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() assert result[0].dtype == np.float64 def test_diff_neg_n(self): rs = self.tsframe.diff(-1) xp = self.tsframe - self.tsframe.shift(-1) assert_frame_equal(rs, xp) def test_diff_float_n(self): rs = self.tsframe.diff(1.) xp = self.tsframe.diff(1) assert_frame_equal(rs, xp) def test_diff_axis(self): # GH 9727 df = DataFrame([[1., 2.], [3., 4.]]) assert_frame_equal(df.diff(axis=1), DataFrame( [[np.nan, 1.], [np.nan, 1.]])) assert_frame_equal(df.diff(axis=0), DataFrame( [[np.nan, np.nan], [2., 2.]])) def test_pct_change(self): rs = self.tsframe.pct_change(fill_method=None) assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1) rs = self.tsframe.pct_change(2) filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = self.tsframe.pct_change(fill_method='bfill', limit=1) filled = self.tsframe.fillna(method='bfill', limit=1) assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = self.tsframe.pct_change(freq='5D') filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, (filled / filled.shift(freq='5D') - 1) .reindex_like(filled)) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) df = DataFrame({'a': s, 'b': s}) chg = df.pct_change() expected = Series([np.nan, 0.5, 0., 2.5 / 1.5 - 1, .2]) edf = DataFrame({'a': expected, 'b': expected}) assert_frame_equal(chg, edf) @pytest.mark.parametrize("freq, periods, fill_method, limit", [('5B', 5, None, None), ('3B', 3, None, None), ('3B', 3, 'bfill', None), ('7B', 7, 'pad', 1), ('7B', 7, 'bfill', 3), ('14B', 14, None, None)]) def test_pct_change_periods_freq(self, freq, periods, fill_method, limit): # GH 7292 rs_freq = self.tsframe.pct_change(freq=freq, fill_method=fill_method, limit=limit) rs_periods = self.tsframe.pct_change(periods, fill_method=fill_method, limit=limit) assert_frame_equal(rs_freq, rs_periods) empty_ts = DataFrame(index=self.tsframe.index, columns=self.tsframe.columns) rs_freq = empty_ts.pct_change(freq=freq, fill_method=fill_method, limit=limit) rs_periods = empty_ts.pct_change(periods, fill_method=fill_method, limit=limit) assert_frame_equal(rs_freq, rs_periods) def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) assert np.issubdtype(df['B'].dtype, np.dtype('M8[ns]')) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng assert np.issubdtype(df['A'].dtype, np.dtype('M8[ns]')) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')).values assert df[unit].dtype == ns_dtype assert (df[unit].values == ex_vals).all() # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')).values assert (tmp['dates'].values == ex_vals).all() def test_shift(self): # naive shift shiftedFrame = self.tsframe.shift(5) tm.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(5) assert_series_equal(shiftedFrame['A'], shiftedSeries) shiftedFrame = self.tsframe.shift(-5) tm.assert_index_equal(shiftedFrame.index, self.tsframe.index) shiftedSeries = self.tsframe['A'].shift(-5) assert_series_equal(shiftedFrame['A'], shiftedSeries) # shift by 0 unshifted = self.tsframe.shift(0) assert_frame_equal(unshifted, self.tsframe) # shift by DateOffset shiftedFrame = self.tsframe.shift(5, freq=offsets.BDay()) assert len(shiftedFrame) == len(self.tsframe) shiftedFrame2 = self.tsframe.shift(5, freq='B') assert_frame_equal(shiftedFrame, shiftedFrame2) d = self.tsframe.index[0] shifted_d = d + offsets.BDay(5) assert_series_equal(self.tsframe.xs(d), shiftedFrame.xs(shifted_d), check_names=False) # shift int frame int_shifted = self.intframe.shift(1) # noqa # Shifting with PeriodIndex ps = tm.makePeriodFrame() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal(unshifted.iloc[:, 0].dropna().values, ps.iloc[:-1, 0].values) shifted2 = ps.shift(1, 'B') shifted3 = ps.shift(1, offsets.BDay()) assert_frame_equal(shifted2, shifted3) assert_frame_equal(ps, shifted2.shift(-1, 'B')) tm.assert_raises_regex(ValueError, 'does not match PeriodIndex freq', ps.shift, freq='D') # shift other axis # GH 6371 df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis=1) assert_frame_equal(result, expected) # shift named axis df = DataFrame(np.random.rand(10, 5)) expected = pd.concat([DataFrame(np.nan, index=df.index, columns=[0]), df.iloc[:, 0:-1]], ignore_index=True, axis=1) result = df.shift(1, axis='columns') assert_frame_equal(result, expected) def test_shift_bool(self): df = DataFrame({'high': [True, False], 'low': [False, False]}) rs = df.shift(1) xp = DataFrame(np.array([[np.nan, np.nan], [True, False]], dtype=object), columns=['high', 'low']) assert_frame_equal(rs, xp) def test_shift_categorical(self): # GH 9416 s1 = pd.Series(['a', 'b', 'c'], dtype='category') s2 = pd.Series(['A', 'B', 'C'], dtype='category') df = DataFrame({'one': s1, 'two': s2}) rs = df.shift(1) xp = DataFrame({'one': s1.shift(1), 'two': s2.shift(1)}) assert_frame_equal(rs, xp) def test_shift_empty(self): # Regression test for #8019 df = DataFrame({'foo': []}) rs = df.shift(-1) assert_frame_equal(df, rs) def test_shift_duplicate_columns(self): # GH 9092; verify that position-based shifting works # in the presence of duplicate columns column_lists = [list(range(5)), [1] * 5, [1, 1, 2, 2, 1]] data = np.random.randn(20, 5) shifted = [] for columns in column_lists: df = pd.DataFrame(data.copy(), columns=columns) for s in range(5): df.iloc[:, s] = df.iloc[:, s].shift(s + 1) df.columns = range(5) shifted.append(df) # sanity check the base case nulls = shifted[0].isna().sum() assert_series_equal(nulls, Series(range(1, 6), dtype='int64')) # check all answers are the same assert_frame_equal(shifted[0], shifted[1]) assert_frame_equal(shifted[0], shifted[2]) def test_tshift(self): # PeriodIndex ps = tm.makePeriodFrame() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_frame_equal(shifted, shifted2) shifted3 = ps.tshift(freq=offsets.BDay()) assert_frame_equal(shifted, shifted3) tm.assert_raises_regex( ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex shifted = self.tsframe.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(self.tsframe, unshifted) shifted2 = self.tsframe.tshift(freq=self.tsframe.index.freq) assert_frame_equal(shifted, shifted2) inferred_ts = DataFrame(self.tsframe.values, Index(np.asarray(self.tsframe.index)), columns=self.tsframe.columns) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_frame_equal(shifted, self.tsframe.tshift(1)) assert_frame_equal(unshifted, inferred_ts) no_freq = self.tsframe.iloc[[0, 5, 7], :] pytest.raises(ValueError, no_freq.tshift) def test_truncate(self): ts = self.tsframe[::3] start, end = self.tsframe.index[3], self.tsframe.index[6] start_missing = self.tsframe.index[2] end_missing = self.tsframe.index[7] # neither specified truncated = ts.truncate() assert_frame_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_frame_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_frame_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_frame_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_frame_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_frame_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_frame_equal(truncated, expected) pytest.raises(ValueError, ts.truncate, before=ts.index[-1] - 1, after=ts.index[0] + 1) def test_truncate_copy(self): index = self.tsframe.index truncated = self.tsframe.truncate(index[5], index[10]) truncated.values[:] = 5. assert not (self.tsframe.values[5:11] == 5).any() def test_truncate_nonsortedindex(self): # GH 17935 df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e']}, index=[5, 3, 2, 9, 0]) with tm.assert_raises_regex(ValueError, 'truncate requires a sorted index'): df.truncate(before=3, after=9) rng = pd.date_range('2011-01-01', '2012-01-01', freq='W') ts = pd.DataFrame({'A': np.random.randn(len(rng)), 'B': np.random.randn(len(rng))}, index=rng) with tm.assert_raises_regex(ValueError, 'truncate requires a sorted index'): ts.sort_values('A', ascending=False).truncate(before='2011-11', after='2011-12') df = pd.DataFrame({3: np.random.randn(5), 20: np.random.randn(5), 2: np.random.randn(5), 0: np.random.randn(5)}, columns=[3, 20, 2, 0]) with tm.assert_raises_regex(ValueError, 'truncate requires a sorted index'): df.truncate(before=2, after=20, axis=1) def test_asfreq(self): offset_monthly = self.tsframe.asfreq(offsets.BMonthEnd()) rule_monthly = self.tsframe.asfreq('BM') tm.assert_almost_equal(offset_monthly['A'], rule_monthly['A']) filled = rule_monthly.asfreq('B', method='pad') # noqa # TODO: actually check that this worked. # don't forget! filled_dep = rule_monthly.asfreq('B', method='pad') # noqa # test does not blow up on length-0 DataFrame zero_length = self.tsframe.reindex([]) result = zero_length.asfreq('BM') assert result is not zero_length def test_asfreq_datetimeindex(self): df = DataFrame({'A': [1, 2, 3]}, index=[datetime(2011, 11, 1), datetime(2011, 11, 2), datetime(2011, 11, 3)]) df = df.asfreq('B') assert isinstance(df.index, DatetimeIndex) ts = df['A'].asfreq('B') assert isinstance(ts.index, DatetimeIndex) def test_asfreq_fillvalue(self): # test for fill value during upsampling, related to issue 3715 # setup rng = pd.date_range('1/1/2016', periods=10, freq='2S') ts = pd.Series(np.arange(len(rng)), index=rng) df = pd.DataFrame({'one': ts}) # insert pre-existing missing value df.loc['2016-01-01 00:00:08', 'one'] = None actual_df = df.asfreq(freq='1S', fill_value=9.0) expected_df = df.asfreq(freq='1S').fillna(9.0) expected_df.loc['2016-01-01 00:00:08', 'one'] = None assert_frame_equal(expected_df, actual_df) expected_series = ts.asfreq(freq='1S').fillna(9.0) actual_series = ts.asfreq(freq='1S', fill_value=9.0) assert_series_equal(expected_series, actual_series) @pytest.mark.parametrize("data,idx,expected_first,expected_last", [ ({'A': [1, 2, 3]}, [1, 1, 2], 1, 2), ({'A': [1, 2, 3]}, [1, 2, 2], 1, 2), ({'A': [1, 2, 3, 4]}, ['d', 'd', 'd', 'd'], 'd', 'd'), ({'A': [1, np.nan, 3]}, [1, 1, 2], 1, 2), ({'A': [np.nan, np.nan, 3]}, [1, 1, 2], 2, 2), ({'A': [1, np.nan, 3]}, [1, 2, 2], 1, 2)]) def test_first_last_valid(self, data, idx, expected_first, expected_last): N = len(self.frame.index) mat = randn(N) mat[:5] = nan mat[-5:] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) index = frame.first_valid_index() assert index == frame.index[5] index = frame.last_valid_index() assert index == frame.index[-6] # GH12800 empty = DataFrame() assert empty.last_valid_index() is None assert empty.first_valid_index() is None # GH17400: no valid entries frame[:] = nan assert frame.last_valid_index() is None assert frame.first_valid_index() is None # GH20499: its preserves freq with holes frame.index = date_range("20110101", periods=N, freq="B") frame.iloc[1] = 1 frame.iloc[-2] = 1 assert frame.first_valid_index() == frame.index[1] assert frame.last_valid_index() == frame.index[-2] assert frame.first_valid_index().freq == frame.index.freq assert frame.last_valid_index().freq == frame.index.freq # GH 21441 df = DataFrame(data, index=idx) assert expected_first == df.first_valid_index() assert expected_last == df.last_valid_index() def test_first_subset(self): ts = tm.makeTimeDataFrame(freq='12h') result = ts.first('10d') assert len(result) == 20 ts = tm.makeTimeDataFrame(freq='D') result = ts.first('10d') assert len(result) == 10 result = ts.first('3M') expected = ts[:'3/31/2000'] assert_frame_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_frame_equal(result, expected) result = ts[:0].first('3M') assert_frame_equal(result, ts[:0]) def test_first_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.first('1D') def test_last_subset(self): ts = tm.makeTimeDataFrame(freq='12h') result = ts.last('10d') assert len(result) == 20 ts = tm.makeTimeDataFrame(nper=30, freq='D') result = ts.last('10d') assert len(result) == 10 result = ts.last('21D') expected = ts['2000-01-10':] assert_frame_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_frame_equal(result, expected) result = ts[:0].last('3M') assert_frame_equal(result, ts[:0]) def test_last_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.last('1D') def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) assert (rs.index.hour == rng[1].hour).all() assert (rs.index.minute == rng[1].minute).all() assert (rs.index.second == rng[1].second).all() result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.loc[time(9, 30)] expected = ts.loc[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') assert len(rs) == 0 def test_at_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.at_time('00:00') def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert t >= stime else: assert t > stime if inc_end: assert t <= etime else: assert t < etime result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert (t >= stime) or (t <= etime) else: assert (t > stime) or (t <= etime) if inc_end: assert (t <= etime) or (t >= stime) else: assert (t < etime) or (t >= stime) def test_between_time_raises(self): # GH20725 df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) with pytest.raises(TypeError): # index is not a DatetimeIndex df.between_time(start_time='00:00', end_time='12:00') def test_operation_on_NaT(self): # Both NaT and Timestamp are in DataFrame. df = pd.DataFrame({'foo': [pd.NaT, pd.NaT, pd.Timestamp('2012-05-01')]}) res = df.min() exp = pd.Series([pd.Timestamp('2012-05-01')], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.Timestamp('2012-05-01')], index=["foo"]) tm.assert_series_equal(res, exp) # GH12941, only NaTs are in DataFrame. df = pd.DataFrame({'foo': [pd.NaT, pd.NaT]}) res = df.min() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) res = df.max() exp = pd.Series([pd.NaT], index=["foo"]) tm.assert_series_equal(res, exp) def test_datetime_assignment_with_NaT_and_diff_time_units(self): # GH 7492 data_ns = np.array([1, 'nat'], dtype='datetime64[ns]') result = pd.Series(data_ns).to_frame() result['new'] = data_ns expected = pd.DataFrame({0: [1, None], 'new': [1, None]}, dtype='datetime64[ns]') tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, 'nat'], dtype='datetime64[s]') result['new'] = data_s expected = pd.DataFrame({0: [1, None], 'new': [1e9, None]}, dtype='datetime64[ns]') tm.assert_frame_equal(result, expected) def test_frame_to_period(self): K = 5 from pandas.core.indexes.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') tm.assert_index_equal(pts.index, exp.index.asfreq('M')) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) tm.assert_index_equal(pts.columns, exp.columns.asfreq('M')) pytest.raises(ValueError, df.to_period, axis=2) @pytest.mark.parametrize("fn", ['tz_localize', 'tz_convert']) def test_tz_convert_and_localize(self, fn): l0 = date_range('20140701', periods=5, freq='D') # TODO: l1 should be a PeriodIndex for testing # after GH2106 is addressed with pytest.raises(NotImplementedError): period_range('20140701', periods=1).tz_convert('UTC') with pytest.raises(NotImplementedError): period_range('20140701', periods=1).tz_localize('UTC') # l1 = period_range('20140701', periods=5, freq='D') l1 = date_range('20140701', periods=5, freq='D') int_idx = Index(range(5)) if fn == 'tz_convert': l0 = l0.tz_localize('UTC') l1 = l1.tz_localize('UTC') for idx in [l0, l1]: l0_expected = getattr(idx, fn)('US/Pacific') l1_expected = getattr(idx, fn)('US/Pacific') df1 = DataFrame(np.ones(5), index=l0) df1 = getattr(df1, fn)('US/Pacific') assert_index_equal(df1.index, l0_expected) # MultiIndex # GH7846 df2 = DataFrame(np.ones(5), MultiIndex.from_arrays([l0, l1])) df3 = getattr(df2, fn)('US/Pacific', level=0) assert not df3.index.levels[0].equals(l0) assert_index_equal(df3.index.levels[0], l0_expected) assert_index_equal(df3.index.levels[1], l1) assert not df3.index.levels[1].equals(l1_expected) df3 = getattr(df2, fn)('US/Pacific', level=1) assert_index_equal(df3.index.levels[0], l0) assert not df3.index.levels[0].equals(l0_expected) assert_index_equal(df3.index.levels[1], l1_expected) assert not df3.index.levels[1].equals(l1) df4 = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) # TODO: untested df5 = getattr(df4, fn)('US/Pacific', level=1) # noqa assert_index_equal(df3.index.levels[0], l0) assert not df3.index.levels[0].equals(l0_expected) assert_index_equal(df3.index.levels[1], l1_expected) assert not df3.index.levels[1].equals(l1) # Bad Inputs # Not DatetimeIndex / PeriodIndex with assert_raises_regex(TypeError, 'DatetimeIndex'): df = DataFrame(index=int_idx) df = getattr(df, fn)('US/Pacific') # Not DatetimeIndex / PeriodIndex with assert_raises_regex(TypeError, 'DatetimeIndex'): df = DataFrame(np.ones(5), MultiIndex.from_arrays([int_idx, l0])) df = getattr(df, fn)('US/Pacific', level=0) # Invalid level with assert_raises_regex(ValueError, 'not valid'): df = DataFrame(index=l0) df = getattr(df, fn)('US/Pacific', level=1)
#! /usr/bin/python import selenium, selenium.webdriver, getpass from sys import exit, stderr, argv, stdout, stdin def safeFindElementByID(driver, theID, failOnError=True): while True: try: return driver.find_element_by_id(theID) except: #errorFile.write("Could not find {0} by id\n".format(theID)) if failOnError: return None def safeFindElementsByTagName(driver, tagName, failOnError=True): while True: try: return driver.find_elements_by_tag_name(tagName) except: #errorFile.write("Could not find {0} by tag name\n".format(tagName)) if failOnError: return None def safeFindElementsByClassName(driver, className, failOnError=True): while True: try: return driver.find_elements_by_class_name(className) except BaseException as e: if failOnError: return None def safeFindElementsByXPath(driver, theXPath, failOnError=True): while True: try: return driver.find_elements_by_xpath(theXPath) except BaseException as e: if failOnError: return None def safeFindElementByName(driver, theName, failOnError=True): while True: try: return driver.find_element_by_name(theName) except: #errorFile.write("Could not find {0} by name\n".format(theName)) if failOnError: return None def clickCloseButton(driver): notClicked = True while notClicked: closeButtons = safeFindElementsByXPath(driver, "//a[@class='enterCodeSuccessClose enterCodeToolTipClose']", False) #outputFile.write("Found {0} button(s)\n".format(len(closeButtons))) for closeButton in closeButtons: try: closeButton.click() #outputFile.write("Clicked close button\n") notClicked = False break except BaseException as e: #print(e) pass def enterCokeCardCode(driver, code, outputFile, errorFile): #Enter coke codes. codeField = safeFindElementByName(driver, "enterCodeField", False) submitButton = safeFindElementsByClassName(driver, "enterCodeSubmit", False) #print(submitButton) codeField.clear() codeField.send_keys(code) submitButton[0].click() message = getCodeStatusMessage(driver) if "try again" in message.lower(): errorFile.write(code + " received an error message: " + message + "\n") else: outputFile.write(code + " received a success message: " + message + "\n") #Returns a 2-tuple. The first element is whether there #was an error (True) or not (False). The second is the #error or success message, whichever the case may be. def getCodeStatusMessage(driver): while True: errorMessages = safeFindElementsByClassName(driver, "enterCodeErrorMessage", True) if errorMessages is not None: errorMessage = "\n".join([msg.text for msg in errorMessages if len(msg.text.strip()) != 0]) if errorMessage != "": return errorMessage successMessages = safeFindElementsByClassName(driver, "enterCodeSuccessMessage", True) if successMessages is not None: successMessage = "\n".join([msg.text for msg in successMessages if len(msg.text.strip()) != 0]) if successMessage != "": return successMessage def enterCokeCapCode(driver, code, outputFile, errorFile): #Enter coke codes. codeField = safeFindElementByName(driver, "enterCodeField", False) submitButton = safeFindElementsByClassName(driver, "enterCodeSubmit", False) #print(submitButton) codeField.clear() codeField.send_keys(code) submitButton[0].click() foundBrand = False while not foundBrand: brandButtons = safeFindElementsByTagName(driver, "a", False) errorMessages = safeFindElementsByClassName(driver, "enterCodeErrorMessage", False) if errorMessages is not None: errorMessage = "\n".join([msg.text for msg in errorMessages if len(msg.text.strip()) != 0]) if errorMessage != "": errorFile.write("{0} received error messages: \n\"{1}\"\n".format(code, errorMessage)) foundBrand = True break for button in brandButtons: if button is not None and button.get_attribute("brand-id") is not None: try: button.click() #print("Clicking button "+button.get_attribute("brand-id") + " succeeded") outputFile.write(code + " entered successfully.\n") clickCloseButton(driver) foundBrand = True break except: pass #print("Clicking button " + button.get_attribute("brand-id") + " failed") def logout(driver): signOutButton = safeFindElementByID(driver, "h-profilePhoto-id", False) signOutButton.click() notClicked = True while notClicked: try: realSignOutButton = safeFindElementByID(driver, "h-signOutLink", False) if realSignOutButton is not None: realSignOutButton.click() notClicked = False else: errorFile.write("Couldn't find the sign out button!\n") except: pass def main(): if len(argv) != 5: errorFile.write("Usage: {0} <codes_caps_file> <codes_cardboard_file> <output_file> <error_file>\n".format(argv[0])) exit(-1) try: outFile = open(argv[3], "a") except: stderr.write("Could not open {0}\n".format(argv[3])) exit(-1) try: errFile = open(argv[4], "a") except: outFile.close() stderr.write("Could not open {0}\n".format(argv[4])) exit(-1) stdout.write("Please enter your email address: ") emailAddr = stdin.readline().strip() passwd = getpass.getpass("Please enter your password: ") #Go to mycokerewards.com driver = selenium.webdriver.Firefox() driver.get("http://www.mycokerewards.com") #Sign in to mycokerewards.com signInButton = safeFindElementByID(driver, "h-signInJoinLink", False) signInButton.click() email = safeFindElementByID(driver, "capture_signIn_traditionalSignIn_emailAddress", False) password = safeFindElementByID(driver, "capture_signIn_traditionalSignIn_password", False) email.send_keys(emailAddr) password.send_keys(passwd) signInButton = safeFindElementByID(driver, "capture_signIn_traditionalSignIn_signInButton", False) signInButton.click() #Get past the "Connect with Facebook and Twitter" garbage for i in range(3): succeeded = False while not succeeded: skipButtons = driver.find_elements_by_class_name("connect-with-provider-skip-for-now") for button in skipButtons: try: button.click() #print("Yay it worked!") succeeded = True break except BaseException as ex: pass #print(type(ex)) #Enter code from bottlecaps with open(argv[1], 'r') as codeCapsFile: for code in codeCapsFile: enterCokeCapCode(driver, code.strip(), outFile, errFile) #Enter code from big cardboard boxes with open(argv[2], 'r') as codeCardFile: for code in codeCardFile: enterCokeCardCode(driver, code.strip(), outFile, errFile) outFile.close() errFile.close() logout(driver) driver.close() if __name__ == "__main__": main()
from os.path import dirname from shutil import rmtree try: from scipy.misc import imread #try: from cv2 import IMREAD_UNCHANGED, imread except ImportError: imread = None from pylab import imshow, show from numpy import (array, arccos, arctan2, cos, cross, dot, hstack, load, pi, sin, square, sqrt) from _core import BlenderModule from _scene import Prop __name__ = 'fauxton' __all__ = ['Camera', 'DepthSensor', 'SurfaceNormalSensor', 'VelocitySensor'] #=============================================================================== # Private Symbols #=============================================================================== bl_camera = BlenderModule(''' from contextlib import contextmanager from os.path import join from tempfile import mkdtemp from numpy import array, reshape, save DEFAULT_RESOLUTION = (256, 256) materials = {} def create_material(source): script_text = bpy.data.texts.new('') script_text.write(source) material = bpy.data.materials.new('') material.use_nodes = True nodes = material.node_tree.nodes nodes.clear() script = nodes.new('ShaderNodeScript') emittor = nodes.new('ShaderNodeEmission') output = nodes.new('ShaderNodeOutputMaterial') bpy.context.scene.render.engine = 'CYCLES' script.script = script_text if len(script.outputs) == 0: raise ValueError('A camera\\'s OSL shader must ' 'provide at least 1 output.') links = material.node_tree.links links.new(script.outputs[0], emittor.inputs[0]) links.new(emittor.outputs[0], output.inputs[0]) material.use_fake_user = True return material def get_material_name(source): if not source in materials: materials[source] = create_material(source) return materials[source].name @contextmanager def use_material(scene, material_name): if material_name is not None: old_horizon_color = scene.world.horizon_color scene.render.engine = 'CYCLES' scene.world.horizon_color = (0, 0, 0) new_material = bpy.data.materials[material_name] old_materials = {} for obj in scene.objects: if hasattr(obj.data, 'materials'): old_materials[obj.name] = list(obj.data.materials) obj.data.materials.clear() obj.data.materials.append(new_material) yield if material_name is not None: scene.world.horizon_color = old_horizon_color for obj in scene.objects: if hasattr(obj.data, 'materials'): obj.data.materials.clear() for material in old_materials[obj.name]: obj.data.materials.append(material) def save_links(links): src = lambda l: (l.from_node, l.from_socket.name) snk = lambda l: (l.to_node, l.to_socket.name) return [src(l) + snk(l) for l in links] def load_links(links, link_info): for src_n, src_s, snk_n, snk_s in link_info: src = src_n.outputs[src_s] snk = snk_n.inputs[snk_s] links.new(src, snk) @contextmanager def use_render_pass(scene, l_render_pass_name): if type(l_render_pass_name) == list: if len(l_render_pass_name) != 0: scene_use_nodes = scene.use_nodes scene.use_nodes = True nodes = scene.node_tree.nodes links = scene.node_tree.links layer = scene.render.layers[0] passes = [a for a in dir(layer) if a.startswith('use_pass_')] scene_enabled_passes = [p for p in passes if getattr(layer, p)] scene_node_links = save_links(links) for p in passes: setattr(layer, p, False) for render_pass in l_render_pass_name: setattr(layer, 'use_pass_' + render_pass, True) links.clear() is_composite = lambda n: n.bl_idname == 'CompositorNodeComposite' src_node = nodes.new('CompositorNodeRLayers') snk_node = next(filter(is_composite, nodes), None) snk_node = snk_node or nodes.new('CompositorNodeComposite') src_socket = next(s for s in src_node.outputs if s.enabled) snk_socket = snk_node.inputs['Image'] links.new(src_socket, snk_socket) else: if l_render_pass_name is not None: scene_use_nodes = scene.use_nodes scene.use_nodes = True nodes = scene.node_tree.nodes links = scene.node_tree.links layer = scene.render.layers[0] passes = [a for a in dir(layer) if a.startswith('use_pass_')] scene_enabled_passes = [p for p in passes if getattr(layer, p)] scene_node_links = save_links(links) for p in passes: setattr(layer, p, False) setattr(layer, 'use_pass_' + l_render_pass_name, True) links.clear() is_composite = lambda n: n.bl_idname == 'CompositorNodeComposite' src_node = nodes.new('CompositorNodeRLayers') snk_node = next(filter(is_composite, nodes), None) snk_node = snk_node or nodes.new('CompositorNodeComposite') src_socket = next(s for s in src_node.outputs if s.enabled) snk_socket = snk_node.inputs['Image'] links.new(src_socket, snk_socket) yield if type(l_render_pass_name) == list: if len(l_render_pass_name)!= 0: nodes.remove(src_node) for render_pass in l_render_pass_name: setattr(layer, 'use_pass_' + render_pass, False) for p in scene_enabled_passes: setattr(layer, p, True) load_links(links, scene_node_links) scene.use_nodes = scene_use_nodes else: if l_render_pass_name is not None: nodes.remove(src_node) setattr(layer, 'use_pass_' + l_render_pass_name, False) for p in scene_enabled_passes: setattr(layer, p, True) load_links(links, scene_node_links) scene.use_nodes = scene_use_nodes @contextmanager def use_render_engine(scene, render_engine_name): if render_engine_name is not None: scene_render_engine = scene.render.engine scene.render.engine = render_engine_name yield if render_engine_name is not None: scene.render.engine = scene_render_engine def create(type_): camera = bpy.data.objects.new('', bpy.data.cameras.new('')) camera['__type__'] = type_ return camera def get_field_of_view(camera): return [camera.data.angle_y, camera.data.angle_x] def set_field_of_view(camera, field_of_view): camera.data.angle_y, camera.data.angle_x = field_of_view def get_resolution(camera): return camera.get('resolution', DEFAULT_RESOLUTION) def set_resolution(camera, resolution): camera['resolution'] = resolution def get_source(camera): return camera.get('source', None) def set_source(camera, source): if 'source' in camera: del camera['source'] del camera['material_name'] if source is not None: camera['source'] = source camera['material_name'] = get_material_name(source) def get_render_pass(camera): return camera.get('render_pass', None) def set_render_pass(camera, render_pass): camera['render_pass'] = render_pass def get_render_engine(camera): return camera.get('render_engine', None) def set_render_engine(camera, render_engine): camera['render_engine'] = render_engine def preset_scene(scene, res, tile): scene.render.engine = 'CYCLES' scene.world.use_nodes = True scene.render.resolution_x = res[0] scene.render.resolution_y = res[1] scene.render.resolution_percentage = 100 scene.render.tile_x = tile[0] scene.render.tile_y = tile[1] return scene def render(camera, filepath, i_gpu = 0, preset = True, \ l_passes = ['combined'], fileformat = 'OPEN_EXR_MULTILAYER'): scene = camera.users_scene[0] scene.render.engine = 'CYCLES' # making sure that the object pass index == 1 (for the object_index pass) #scene.objects["object"].pass_index = 1 try: scene.objects["object"].pass_index = 1 except: pass scene.camera = camera for ppp in l_passes: print(ppp) if ppp == 'vector': scene.render.layers[0].use_pass_vector = True elif ppp == 'normal': scene.render.layers[0].use_pass_normal = True elif ppp == 'z': scene.render.layers[0].use_pass_z = True elif ppp == 'object_index': scene.render.layers[0].use_pass_object_index = True res = [0,0] res[0] = get_resolution(camera)[0] res[1] = get_resolution(camera)[1] #if preset: # tile = res # preset_scene(scene, res, tile) from bpy import context C = bpy.context C.user_preferences.system.compute_device = "CUDA_" + str(i_gpu) scene.cycles.device = 'GPU' scene.render.filepath = filepath scene.render.image_settings.file_format = fileformat scene.render.image_settings.color_mode = 'RGBA' scene.render.resolution_y = res[0] scene.render.resolution_x = res[1] bpy.context.screen.scene = scene with use_render_engine(scene, get_render_engine(camera)): with use_render_pass(scene, get_render_pass(camera)): with use_material(scene, camera.get('material_name', None)): bpy.ops.render.render(write_still=True) if fileformat == 'OPEN_EXR_MULTILAYER': return filepath if fileformat == 'PNG': return filepath ''') #=============================================================================== # Public Symbols #=============================================================================== class Camera(Prop): ''' A prop that can take snapshots of its surroundings. :param dict \**properties: Initial values of instance variables. :var numpy.ndarray field_of_view: *y* and *x* viewing angles, in radians. :var numpy.ndarray resolution: *y* and *x* resolution, in pixels. :var str source: OSL source to use as an emissive material when rendering. :var str render_pass: Blender render pass to use (e.g. "z" or "color"). :var str render_engine: Blender render engine to use (e.g. "CYCLES"). ''' resource_type = 'CAMERA' def __new__(cls, **properties): result = bl_camera.create(cls.resource_type) [setattr(result, k, v) for k, v in properties.items()] return result @property def field_of_view(self): return array(bl_camera.get_field_of_view(self)) @field_of_view.setter def field_of_view(self, field_of_view): bl_camera.set_field_of_view(self, list(map(float, field_of_view))) @property def resolution(self): return array(bl_camera.get_resolution(self)) @resolution.setter def resolution(self, resolution): bl_camera.set_resolution(self, list(map(float, resolution))) @property def source(self): return bl_camera.get_source(self) @source.setter def source(self, source): bl_camera.set_source(self, source) @property def render_pass(self): return bl_camera.get_render_pass(self) @render_pass.setter def render_pass(self, render_pass): bl_camera.set_render_pass(self, render_pass) @property def render_engine(self): return bl_camera.get_render_engine(self) @render_engine.setter def render_engine(self, render_engine): bl_camera.set_render_engine(self, render_engine) def render(self, filepath, i_gpu = 0, l_passes = ['combined'], fileformat = 'OPEN_EXR_MULTILAYER'): ''' Return a snapshot of the camera's containing scene. :rtype: numpy.ndarray ''' preset = True path = bl_camera.render(self, filepath, i_gpu, preset, l_passes, fileformat) return path def look_at(self, target, roll=0): ''' Orient the camera towards a point in space. :param numpy.ndarray target: 3D spatial location to look at. :param float roll: Rotation around the gaze axis, in radians. ''' def norm(v): return sqrt(sum(square(v))) def normalize(v): return array(v, 'd') / norm(v) def rotation(axis, angle): w = cos(angle / 2) xyz = axis / norm(axis) * sin(angle / 2) return hstack([w, xyz]) def compose(rotation_0, rotation_1): w0, x0, y0, z0 = rotation_0 w1, x1, y1, z1 = rotation_1 w2 = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1 x2 = w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1 y2 = w0 * y1 + y0 * w1 + z0 * x1 - x0 * z1 z2 = w0 * z1 + z0 * w1 + x0 * y1 - y0 * x1 return array([w2, x2, y2, z2]) eye = normalize(target - self.position) look_axis = cross((0, 0, -1), eye) if any(eye[:2]) else (1, 0, 0) look = rotation(look_axis, arccos(dot((0, 0, -1), eye))) pivot = rotation(array((0, 0, -1)), pi/2 - arctan2(*eye[1::-1]) + roll) self.rotation = compose(look, pivot) class DepthSensor(Camera): ''' A camera that reports the depth at each pixel. :param dict \**properties: Initial values of instance variables. ''' def __new__(cls, **properties): return Camera.__new__(cls, render_pass='z', **properties) def render(self): ''' Return a snapshot of the camera's containing scene. :rtype: numpy.ndarray ''' return Camera.render(self)[:, :, 0] class SurfaceNormalSensor(Camera): ''' A camera that reports the surface normal at each pixel. :param dict \**properties: Initial values of instance variables. ''' def __new__(cls, **properties): return Camera.__new__(cls, render_pass='normal', **properties) def render(self): ''' Return a snapshot of the camera's containing scene. :rtype: numpy.ndarray ''' return Camera.render(self)[:, :, 0:3] class VelocitySensor(Camera): ''' A camera that reports the velocity at each pixel. :param dict \**properties: Initial values of instance variables. ''' def __new__(cls, **properties): return Camera.__new__(cls, render_pass='vector', **properties) def render(self): ''' Return a snapshot of the camera's containing scene. :rtype: numpy.ndarray ''' return Camera.render(self)[:, :, 0:3]
''' How well do the GBT and VLA data match in the overlap regions? ''' from spectral_cube import SpectralCube import matplotlib.pyplot as plt import os from radio_beam import Beam import astropy.units as u import numpy as np from scipy import stats from statsmodels.nonparametric.smoothers_lowess import lowess from statsmodels.base.model import GenericLikelihoodModel from astropy.visualization import hist from cube_analysis.feather_cubes import feather_compare_cube from paths import fourteenB_HI_data_path, data_path, allfigs_path from constants import hi_freq from plotting_styles import onecolumn_figure, default_figure, twocolumn_figure vla_cube = SpectralCube.read(fourteenB_HI_data_path("M33_14B-088_HI.clean.image.fits")) gbt_path = os.path.join(data_path, "GBT") gbt_registered_cube = SpectralCube.read(os.path.join(gbt_path, "14B-088_items/m33_gbt_vlsr_highres_Tmb_14B088_spectralregrid_registered.fits")) beam_fwhm = lambda diam: ((1.18 * hi_freq.to(u.cm, u.spectral())) / diam.to(u.cm)) * u.rad # The shortest baseline in the 14B-088 data is ~44 m. las = (hi_freq.to(u.cm, u.spectral()) / (44 * u.m)).to(u.arcsec, u.dimensionless_angles()) # Return the distributions of ratios for all channels. radii, ratios, high_pts, low_pts = \ feather_compare_cube(vla_cube, gbt_registered_cube, las, num_cores=6, lowresfwhm=beam_fwhm(90 * u.m)) radii_85, ratios_85, high_pts_85, low_pts_85 = \ feather_compare_cube(vla_cube, gbt_registered_cube, las, num_cores=6, lowresfwhm=beam_fwhm(85 * u.m)) radii_875, ratios_875, high_pts_875, low_pts_875 = \ feather_compare_cube(vla_cube, gbt_registered_cube, las, num_cores=6, lowresfwhm=beam_fwhm(87.5 * u.m)) radii_95, ratios_95, high_pts_95, low_pts_95 = \ feather_compare_cube(vla_cube, gbt_registered_cube, las, num_cores=6, lowresfwhm=beam_fwhm(95 * u.m)) # Test #1 -- what are the slopes between k and ratio per channel? def sentheil_perchan(xvals, yvals, alpha=0.85): slope = np.empty((len(xvals))) upper_uncert = np.empty((len(xvals))) lower_uncert = np.empty((len(xvals))) for i, (xval, yval) in enumerate(zip(xvals, yvals)): out = stats.theilslopes(yval, x=xval, alpha=alpha) slope[i] = out[0] upper_uncert[i] = out[3] - out[0] lower_uncert[i] = out[0] - out[2] return slope, lower_uncert, upper_uncert slope, lower_uncert, upper_uncert = \ sentheil_perchan([rad.to(u.arcmin)**2 for rad in radii], ratios) slope_85, lower_uncert_85, upper_uncert_85 = \ sentheil_perchan([rad.to(u.arcmin)**2 for rad in radii_85], ratios_85) slope_875, lower_uncert_875, upper_uncert_875 = \ sentheil_perchan([rad.to(u.arcmin)**2 for rad in radii_875], ratios_875) slope_95, lower_uncert_95, upper_uncert_95 = \ sentheil_perchan([rad.to(u.arcmin)**2 for rad in radii_95], ratios_95) chans = np.arange(len(radii)) # For visualizing, do a LOWESS smoothing slope_lowess = lowess(slope, chans, frac=0.1, is_sorted=True, return_sorted=False) slope_lowess_85 = lowess(slope_85, chans, frac=0.1, is_sorted=True, return_sorted=False) slope_lowess_875 = lowess(slope_875, chans, frac=0.1, is_sorted=True, return_sorted=False) slope_lowess_95 = lowess(slope_95, chans, frac=0.1, is_sorted=True, return_sorted=False) twocolumn_figure() fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) ax[0, 0].errorbar(chans, slope_85, yerr=[lower_uncert_85, upper_uncert_85], label="85 m", alpha=0.5) ax[0, 0].plot(chans, slope_lowess_85) ax[0, 0].axhline(0, linestyle='--') ax[0, 0].text(0, 0.015, "{}".format(np.round(beam_fwhm(85 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 0].set_ylabel(r"Slope (arcmin$^{-2}$)") ax[0, 0].grid(True) ax[0, 1].errorbar(chans, slope_875, yerr=[lower_uncert_875, upper_uncert_875], label="87.5 m", alpha=0.5) ax[0, 1].plot(chans, slope_lowess_875) ax[0, 1].text(0, 0.015, "{}".format(np.round(beam_fwhm(87.5 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 1].axhline(0, linestyle='--') ax[0, 1].grid(True) ax[1, 0].errorbar(chans, slope, yerr=[lower_uncert, upper_uncert], label="90 m", alpha=0.5) ax[1, 0].plot(chans, slope_lowess) ax[1, 0].axhline(0, linestyle='--') ax[1, 0].text(0, 0.015, "{}".format(np.round(beam_fwhm(90 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 0].set_ylabel(r"Slope (arcmin$^{-2}$)") ax[1, 0].set_xlabel("Channel") ax[1, 0].grid(True) ax[1, 1].errorbar(chans, slope_95, yerr=[lower_uncert_95, upper_uncert_95], label="95 m", alpha=0.5) ax[1, 1].plot(chans, slope_lowess_95) ax[1, 1].axhline(0, linestyle='--') ax[1, 1].text(0, 0.015, "{}".format(np.round(beam_fwhm(95 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 1].set_xlabel("Channel") ax[1, 1].grid(True) fig.tight_layout() fig.savefig(allfigs_path("angres_vs_ratios_vla_gbt.png")) fig.savefig(allfigs_path("angres_vs_ratios_vla_gbt.pdf")) plt.close() # Make a separate plots for the 87.5 m (9.8') beam onecolumn_figure() plt.errorbar(chans, slope_875, yerr=[lower_uncert_875, upper_uncert_875], label="87.5 m", alpha=0.5) plt.plot(chans, slope_lowess_875) plt.axhline(0, linestyle='--') plt.grid(True) plt.ylabel(r"Slope (arcmin$^{-2}$)") plt.xlabel("Channel") plt.tight_layout() plt.savefig(allfigs_path("angres_vs_ratios_vla_gbt_9.8arcmin.png")) plt.savefig(allfigs_path("angres_vs_ratios_vla_gbt_9.8arcmin.pdf")) plt.close() # Test #2 -- Sen-Theil fit to the low and high res points to get scale factor # Do per channel sf_slope, sf_slope_llim, sf_slope_hlim = sentheil_perchan(low_pts, high_pts) sf_slope_85, sf_slope_llim_85, sf_slope_hlim_85 = \ sentheil_perchan(low_pts_85, high_pts_85) sf_slope_875, sf_slope_llim_875, sf_slope_hlim_875 = \ sentheil_perchan(low_pts_875, high_pts_875) sf_slope_95, sf_slope_llim_95, sf_slope_hlim_95 = \ sentheil_perchan(low_pts_95, high_pts_95) twocolumn_figure() fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) ax[0, 0].errorbar(chans, sf_slope_85, yerr=[sf_slope_llim_85, sf_slope_hlim_85], label="85 m", alpha=0.5) # ax[0, 0].plot(chans, slope_lowess_85) ax[0, 0].axhline(1, linestyle='--') ax[0, 0].text(0, 1.2, "{}".format(np.round(beam_fwhm(85 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 0].set_ylabel(r"Scale Factor") ax[0, 0].grid(True) ax[0, 1].errorbar(chans, sf_slope_875, yerr=[sf_slope_llim_875, sf_slope_hlim_875], label="87.5 m", alpha=0.5) # ax[0, 1].plot(chans, slope_lowess_875) ax[0, 1].text(0, 1.2, "{}".format(np.round(beam_fwhm(87.5 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 1].axhline(1, linestyle='--') ax[0, 1].grid(True) ax[1, 0].errorbar(chans, sf_slope, yerr=[sf_slope_llim, sf_slope_hlim], label="90 m", alpha=0.5) # ax[1, 0].plot(chans, slope_lowess) ax[1, 0].axhline(1, linestyle='--') ax[1, 0].text(0, 1.2, "{}".format(np.round(beam_fwhm(90 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 0].set_ylabel(r"Scale Factor") ax[1, 0].set_xlabel("Channel") ax[1, 0].grid(True) ax[1, 1].errorbar(chans, sf_slope_95, yerr=[sf_slope_llim_95, sf_slope_hlim_95], label="95 m", alpha=0.5) # ax[1, 1].plot(chans, slope_lowess_95) ax[1, 1].axhline(1, linestyle='--') ax[1, 1].text(0, 1.2, "{}".format(np.round(beam_fwhm(95 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 1].set_xlabel("Channel") ax[1, 1].grid(True) fig.tight_layout() fig.savefig(allfigs_path("scalefactors_fitted_vla_gbt.png")) fig.savefig(allfigs_path("scalefactors_fitted_vla_gbt.pdf")) plt.close() # Test #3 -- Cauchy fit to the ratios to get the scale factor class Likelihood(GenericLikelihoodModel): # Get the number of parameters from shapes. # Add one for scales, since we're assuming loc is frozen. # Keeping loc=0 is appropriate for log-normal models. nparams = 1 if stats.cauchy.shapes is None else \ len(stats.cauchy.shapes.split(",")) + 1 def loglike(self, params): if np.isnan(params).any(): return - np.inf loglikes = \ stats.cauchy.logpdf(self.endog, *params[:-2], scale=params[-1], loc=params[-2]) if not np.isfinite(loglikes).all(): return - np.inf else: return loglikes.sum() def cauchy_fitter(ratios, verbose=False): init_fit = stats.cauchy.fit(np.log(ratios)) mle_model = Likelihood(np.log(ratios)) fitted_model = mle_model.fit(init_fit, method='nm', disp=0) fitted_model.df_model = len(ratios) fitted_model.df_resid = len(ratios) - 2 if verbose: _ = hist(np.log(ratios), bins='scott', normed=True, alpha=0.5) xvals = np.arange(-3, 3, 0.01) plt.plot(xvals, stats.cauchy.pdf(xvals, *fitted_model.params)) return fitted_model.params[0], fitted_model.bse[0], fitted_model # Fit a Cauchy distribution to the ratios cauchy_fit = cauchy_fitter(np.hstack(ratios)) cauchy_fit_85 = cauchy_fitter(np.hstack(ratios_85)) cauchy_fit_875 = cauchy_fitter(np.hstack(ratios_875)) cauchy_fit_95 = cauchy_fitter(np.hstack(ratios_95)) print(cauchy_fit_85, cauchy_fit_875, cauchy_fit, cauchy_fit_95) # Do per channel def cauchy_channel_fits(ratios, chunk=1): num_chans = vla_cube.shape[0] channels = np.arange(num_chans) chunked_channels = \ np.array_split(channels, [chunk * i for i in xrange(num_chans / chunk)]) if chunked_channels[-1].size == 0: chunked_channels = chunked_channels[:-1] if chunked_channels[0].size == 0: chunked_channels = chunked_channels[1:] sf = np.empty(len(chunked_channels)) sf_uncert = np.empty(len(chunked_channels)) for i, chunk in enumerate(chunked_channels): slicer = slice(chunk[0], chunk[-1]) vals = np.hstack(ratios[slicer]) out = cauchy_fitter(vals, verbose=False)[:-1] sf[i] = out[0] sf_uncert[i] = out[1] return sf, sf_uncert chunk = 10 sf_cauchy, sf_cauchy_uncert = cauchy_channel_fits(ratios, chunk=chunk) sf_cauchy_85, sf_cauchy_uncert_85 = cauchy_channel_fits(ratios_85, chunk=chunk) sf_cauchy_875, sf_cauchy_uncert_875 = \ cauchy_channel_fits(ratios_875, chunk=chunk) sf_cauchy_95, sf_cauchy_uncert_95 = cauchy_channel_fits(ratios_95, chunk=chunk) half_chunk = chunk / 2 chunk_chans = np.arange(1, len(sf_cauchy) + 1) * chunk - half_chunk twocolumn_figure() fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) ax[0, 0].errorbar(chunk_chans, sf_cauchy_85, yerr=sf_cauchy_uncert_85, label="85 m", alpha=0.5) ax[0, 0].axhline(0, linestyle='--') ax[0, 0].text(0, 0.4, "{}".format(np.round(beam_fwhm(85 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 0].set_ylabel(r"ln Scale Factor") ax[0, 0].grid(True) ax[0, 0].set_ylim([-0.3, 0.5]) ax[0, 1].errorbar(chunk_chans, sf_cauchy_875, yerr=sf_cauchy_uncert_875, label="87.5 m", alpha=0.5) ax[0, 1].text(0, 0.4, "{}".format(np.round(beam_fwhm(87.5 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 1].axhline(0, linestyle='--') ax[0, 1].grid(True) ax[1, 0].errorbar(chunk_chans, sf_cauchy, yerr=sf_cauchy_uncert, label="90 m", alpha=0.5) ax[1, 0].axhline(0, linestyle='--') ax[1, 0].text(0, 0.4, "{}".format(np.round(beam_fwhm(90 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 0].set_ylabel(r"ln Scale Factor") ax[1, 0].set_xlabel("Channel") ax[1, 0].grid(True) ax[1, 1].errorbar(chunk_chans, sf_cauchy_95, yerr=sf_cauchy_uncert_95, label="95 m", alpha=0.5) ax[1, 1].axhline(0, linestyle='--') ax[1, 1].text(0, 0.4, "{}".format(np.round(beam_fwhm(95 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 1].set_xlabel("Channel") ax[1, 1].grid(True) fig.tight_layout() fig.savefig(allfigs_path("scalefactors_cauchy_vla_gbt.png")) fig.savefig(allfigs_path("scalefactors_cauchy_vla_gbt.pdf")) plt.close() # Plot comparison of fcal from methods per channel. fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) ax[0, 0].errorbar(chunk_chans, sf_cauchy_85, label="Cauchy", alpha=0.5) ax[0, 0].errorbar(chans, np.log(sf_slope_85), label="Theil-Sen Fit", alpha=0.5) ax[0, 0].axhline(0, linestyle='--') ax[0, 0].text(0, 0.3, "{}".format(np.round(beam_fwhm(85 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 0].set_ylabel(r"ln Scale Factor") ax[0, 0].grid(True) ax[0, 0].set_ylim([-1.0, 0.5]) ax[0, 0].legend(frameon=True, loc='upper right') ax[0, 1].errorbar(chunk_chans, sf_cauchy_875, label="87.5 m", alpha=0.5) ax[0, 1].errorbar(chans, np.log(sf_slope_875), label="Sen-Theil Fit", alpha=0.5) ax[0, 1].text(0, 0.3, "{}".format(np.round(beam_fwhm(87.5 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[0, 1].axhline(0, linestyle='--') ax[0, 1].grid(True) ax[1, 0].errorbar(chunk_chans, sf_cauchy, label="90 m", alpha=0.5) ax[1, 0].errorbar(chans, np.log(sf_slope), label="Sen-Theil Fit", alpha=0.5) ax[1, 0].axhline(0, linestyle='--') ax[1, 0].text(0, 0.3, "{}".format(np.round(beam_fwhm(90 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 0].set_ylabel(r"ln Scale Factor") ax[1, 0].set_xlabel("Channel") ax[1, 0].grid(True) ax[1, 1].errorbar(chunk_chans, sf_cauchy_95, label="95 m", alpha=0.5) ax[1, 1].errorbar(chans, np.log(sf_slope_95), label="Sen-Theil Fit", alpha=0.5) ax[1, 1].axhline(0, linestyle='--') ax[1, 1].text(0, 0.3, "{}".format(np.round(beam_fwhm(95 * u.m).to(u.arcmin), 1)), bbox={"boxstyle": "square", "facecolor": "w"}) ax[1, 1].set_xlabel("Channel") ax[1, 1].grid(True) fig.tight_layout() fig.savefig(allfigs_path("scalefactors_comparison_vla_gbt.png")) fig.savefig(allfigs_path("scalefactors_comparison_vla_gbt.pdf")) plt.close() onecolumn_figure() plt.errorbar(chunk_chans, sf_cauchy_875, label="Cauchy", alpha=0.5) plt.errorbar(chans, np.log(sf_slope_875), label="Sen-Theil Fit", alpha=0.5) plt.axhline(0, linestyle='--') plt.grid(True) plt.legend(frameon=True, loc='upper left') plt.xlabel("Channel") plt.ylabel(r"ln Scale Factor") plt.ylim([-1.0, 0.5]) plt.tight_layout() plt.savefig(allfigs_path("scalefactors_comparison_vla_gbt_9.8arcmin.png")) plt.savefig(allfigs_path("scalefactors_comparison_vla_gbt_9.8arcmin.pdf")) plt.close() # Finally, show the Cauchy fit for the 87.5 m beam, since this is where the # f_cal=1 will come from. cauchy_fit_875_limrange = cauchy_fitter(np.hstack(ratios_875[200:600])) # Using a limited range of channels gives 0.99+/-0.24(since we are near 0) # This is within range of just using the whole range. out = hist(np.log(np.hstack(ratios_875)), bins='scott', normed=True) plt.plot(np.arange(-3, 3, 0.01), stats.cauchy.pdf(np.arange(-3, 3, 0.01), *cauchy_fit_875[-1].params)) plt.grid(True) plt.xlabel(r"ln I$_{\rm int}$ / I$_{\rm SD}$") plt.tight_layout() plt.savefig(allfigs_path("ratio_hist_vla_gbt_9.8arcmin.png")) plt.savefig(allfigs_path("ratio_hist_vla_gbt_9.8arcmin.pdf")) plt.close() # The scale factor we adopt is... print("Scale factor: {0}+/-{1}".format(np.exp(cauchy_fit_875[0]), np.exp(cauchy_fit_875[0]) * cauchy_fit_875[1])) # Open up the GBT cube and update the beam parameters import astropy.io.fits as fits gbt_hdu = fits.open(os.path.join(gbt_path, "14B-088_items/m33_gbt_vlsr_highres_Tmb_14B088_spectralregrid_registered.fits"), mode='update') gbt_hdu[0].header.update(Beam(beam_fwhm(87.5 * u.m).to(u.deg)).to_header_keywords()) gbt_hdu.flush() gbt_hdu.close() # And the low-res version too gbt_hdu = fits.open(os.path.join(gbt_path, "14B-088_items/m33_gbt_vlsr_Tmb_14B088_spectralregrid_registered.fits"), mode='update') gbt_hdu[0].header.update(Beam(beam_fwhm(87.5 * u.m).to(u.deg)).to_header_keywords()) gbt_hdu.flush() gbt_hdu.close() default_figure()
# App.py # Application stuff. # The application is responsible for managing the main frame window. # # We also grab the FileOpen command, to invoke our Python editor " The PythonWin application code. Manages most aspects of MDI, etc " import win32con import win32api import win32ui import sys import string import os from pywin.mfc import window, dialog, afxres from pywin.mfc.thread import WinApp import traceback import regutil from . import scriptutils ## NOTE: App and AppBuild should NOT be used - instead, you should contruct your ## APP class manually whenever you like (just ensure you leave these 2 params None!) ## Whoever wants the generic "Application" should get it via win32iu.GetApp() # These are "legacy" AppBuilder = None App = None # default - if used, must end up a CApp derived class. # Helpers that should one day be removed! def AddIdleHandler(handler): print("app.AddIdleHandler is deprecated - please use win32ui.GetApp().AddIdleHandler() instead.") return win32ui.GetApp().AddIdleHandler(handler) def DeleteIdleHandler(handler): print("app.DeleteIdleHandler is deprecated - please use win32ui.GetApp().DeleteIdleHandler() instead.") return win32ui.GetApp().DeleteIdleHandler(handler) # Helper for writing a Window position by name, and later loading it. def SaveWindowSize(section,rect,state=""): """ Writes a rectangle to an INI file Args: section = section name in the applications INI file rect = a rectangle in a (cy, cx, y, x) tuple (same format as CREATESTRUCT position tuples).""" left, top, right, bottom = rect if state: state = state + " " win32ui.WriteProfileVal(section,state+"left",left) win32ui.WriteProfileVal(section,state+"top",top) win32ui.WriteProfileVal(section,state+"right",right) win32ui.WriteProfileVal(section,state+"bottom",bottom) def LoadWindowSize(section, state=""): """ Loads a section from an INI file, and returns a rect in a tuple (see SaveWindowSize)""" if state: state = state + " " left = win32ui.GetProfileVal(section,state+"left",0) top = win32ui.GetProfileVal(section,state+"top",0) right = win32ui.GetProfileVal(section,state+"right",0) bottom = win32ui.GetProfileVal(section,state+"bottom",0) return (left, top, right, bottom) def RectToCreateStructRect(rect): return (rect[3]-rect[1], rect[2]-rect[0], rect[1], rect[0] ) # Define FrameWindow and Application objects # # The Main Frame of the application. class MainFrame(window.MDIFrameWnd): sectionPos = "Main Window" statusBarIndicators = ( afxres.ID_SEPARATOR, #// status line indicator afxres.ID_INDICATOR_CAPS, afxres.ID_INDICATOR_NUM, afxres.ID_INDICATOR_SCRL, win32ui.ID_INDICATOR_LINENUM, win32ui.ID_INDICATOR_COLNUM ) def OnCreate(self, cs): self._CreateStatusBar() return 0 def _CreateStatusBar(self): self.statusBar = win32ui.CreateStatusBar(self) self.statusBar.SetIndicators(self.statusBarIndicators) self.HookCommandUpdate(self.OnUpdatePosIndicator, win32ui.ID_INDICATOR_LINENUM) self.HookCommandUpdate(self.OnUpdatePosIndicator, win32ui.ID_INDICATOR_COLNUM) def OnUpdatePosIndicator(self, cmdui): editControl = scriptutils.GetActiveEditControl() value = " " * 5 if editControl is not None: try: startChar, endChar = editControl.GetSel() lineNo = editControl.LineFromChar(startChar) colNo = endChar - editControl.LineIndex(lineNo) if cmdui.m_nID==win32ui.ID_INDICATOR_LINENUM: value = "%0*d" % (5, lineNo + 1) else: value = "%0*d" % (3, colNo + 1) except win32ui.error: pass cmdui.SetText(value) cmdui.Enable() def PreCreateWindow(self, cc): cc = self._obj_.PreCreateWindow(cc) pos = LoadWindowSize(self.sectionPos) self.startRect = pos if pos[2] - pos[0]: rect = RectToCreateStructRect(pos) cc = cc[0], cc[1], cc[2], cc[3], rect, cc[5], cc[6], cc[7], cc[8] return cc def OnDestroy(self, msg): # use GetWindowPlacement(), as it works even when min'd or max'd rectNow = self.GetWindowPlacement()[4] if rectNow != self.startRect: SaveWindowSize(self.sectionPos, rectNow) return 0 class CApp(WinApp): " A class for the application " def __init__(self): self.oldCallbackCaller = None WinApp.__init__(self, win32ui.GetApp() ) self.idleHandlers = [] def InitInstance(self): " Called to crank up the app " HookInput() numMRU = win32ui.GetProfileVal("Settings","Recent File List Size", 10) win32ui.LoadStdProfileSettings(numMRU) # self._obj_.InitMDIInstance() if win32api.GetVersionEx()[0]<4: win32ui.SetDialogBkColor() win32ui.Enable3dControls() # install a "callback caller" - a manager for the callbacks # self.oldCallbackCaller = win32ui.InstallCallbackCaller(self.CallbackManager) self.LoadMainFrame() self.SetApplicationPaths() def ExitInstance(self): " Called as the app dies - too late to prevent it here! " win32ui.OutputDebug("Application shutdown\n") # Restore the callback manager, if any. try: win32ui.InstallCallbackCaller(self.oldCallbackCaller) except AttributeError: pass if self.oldCallbackCaller: del self.oldCallbackCaller self.frame=None # clean Python references to the now destroyed window object. self.idleHandlers = [] # Attempt cleanup if not already done! if self._obj_: self._obj_.AttachObject(None) self._obj_ = None global App global AppBuilder App = None AppBuilder = None return 0 def HaveIdleHandler(self, handler): return handler in self.idleHandlers def AddIdleHandler(self, handler): self.idleHandlers.append(handler) def DeleteIdleHandler(self, handler): self.idleHandlers.remove(handler) def OnIdle(self, count): try: ret = 0 handlers = self.idleHandlers[:] # copy list, as may be modified during loop for handler in handlers: try: thisRet = handler(handler, count) except: print("Idle handler %s failed" % (repr(handler))) traceback.print_exc() print("Idle handler removed from list") try: self.DeleteIdleHandler(handler) except ValueError: # Item not in list. pass thisRet = 0 ret = ret or thisRet return ret except KeyboardInterrupt: pass def CreateMainFrame(self): return MainFrame() def LoadMainFrame(self): " Create the main applications frame " self.frame = self.CreateMainFrame() self.SetMainFrame(self.frame) self.frame.LoadFrame(win32ui.IDR_MAINFRAME, win32con.WS_OVERLAPPEDWINDOW) self.frame.DragAcceptFiles() # we can accept these. self.frame.ShowWindow(win32ui.GetInitialStateRequest()) self.frame.UpdateWindow() self.HookCommands() def OnHelp(self,id, code): try: if id==win32ui.ID_HELP_GUI_REF: helpFile = regutil.GetRegisteredHelpFile("Pythonwin Reference") helpCmd = win32con.HELP_CONTENTS else: helpFile = regutil.GetRegisteredHelpFile("Main Python Documentation") helpCmd = win32con.HELP_FINDER if helpFile is None: win32ui.MessageBox("The help file is not registered!") else: from . import help help.OpenHelpFile(helpFile, helpCmd) except: t, v, tb = sys.exc_info() win32ui.MessageBox("Internal error in help file processing\r\n%s: %s" % (t,v)) tb = None # Prevent a cycle def DoLoadModules(self, modules): # XXX - this should go, but the debugger uses it :-( # dont do much checking! for module in modules: __import__(module) def HookCommands(self): self.frame.HookMessage(self.OnDropFiles,win32con.WM_DROPFILES) self.HookCommand(self.HandleOnFileOpen,win32ui.ID_FILE_OPEN) self.HookCommand(self.HandleOnFileNew,win32ui.ID_FILE_NEW) self.HookCommand(self.OnFileMRU,win32ui.ID_FILE_MRU_FILE1) self.HookCommand(self.OnHelpAbout,win32ui.ID_APP_ABOUT) self.HookCommand(self.OnHelp, win32ui.ID_HELP_PYTHON) self.HookCommand(self.OnHelp, win32ui.ID_HELP_GUI_REF) # Hook for the right-click menu. self.frame.GetWindow(win32con.GW_CHILD).HookMessage(self.OnRClick,win32con.WM_RBUTTONDOWN) def SetApplicationPaths(self): # Load the users/application paths new_path = [] apppath=win32ui.GetProfileVal('Python','Application Path','').split(';') for path in apppath: if len(path)>0: new_path.append(win32ui.FullPath(path)) for extra_num in range(1,11): apppath=win32ui.GetProfileVal('Python','Application Path %d'%extra_num,'').split(';') if len(apppath) == 0: break for path in apppath: if len(path)>0: new_path.append(win32ui.FullPath(path)) sys.path = new_path + sys.path def OnRClick(self,params): " Handle right click message " # put up the entire FILE menu! menu = win32ui.LoadMenu(win32ui.IDR_TEXTTYPE).GetSubMenu(0) menu.TrackPopupMenu(params[5]) # track at mouse position. return 0 def OnDropFiles(self,msg): " Handle a file being dropped from file manager " hDropInfo = msg[2] self.frame.SetActiveWindow() # active us nFiles = win32api.DragQueryFile(hDropInfo) try: for iFile in range(0,nFiles): fileName = win32api.DragQueryFile(hDropInfo, iFile) win32ui.GetApp().OpenDocumentFile( fileName ) finally: win32api.DragFinish(hDropInfo); return 0 # No longer used by Pythonwin, as the C++ code has this same basic functionality # but handles errors slightly better. # It all still works, tho, so if you need similar functionality, you can use it. # Therefore I havent deleted this code completely! # def CallbackManager( self, ob, args = () ): # """Manage win32 callbacks. Trap exceptions, report on them, then return 'All OK' # to the frame-work. """ # import traceback # try: # ret = apply(ob, args) # return ret # except: # # take copies of the exception values, else other (handled) exceptions may get # # copied over by the other fns called. # win32ui.SetStatusText('An exception occured in a windows command handler.') # t, v, tb = sys.exc_info() # traceback.print_exception(t, v, tb.tb_next) # try: # sys.stdout.flush() # except (NameError, AttributeError): # pass # Command handlers. def OnFileMRU( self, id, code ): " Called when a File 1-n message is recieved " fileName = win32ui.GetRecentFileList()[id - win32ui.ID_FILE_MRU_FILE1] win32ui.GetApp().OpenDocumentFile(fileName) def HandleOnFileOpen( self, id, code ): " Called when FileOpen message is received " win32ui.GetApp().OnFileOpen() def HandleOnFileNew( self, id, code ): " Called when FileNew message is received " win32ui.GetApp().OnFileNew() def OnHelpAbout( self, id, code ): " Called when HelpAbout message is received. Displays the About dialog. " win32ui.InitRichEdit() dlg=AboutBox() dlg.DoModal() def _GetRegistryValue(key, val, default = None): # val is registry value - None for default val. try: hkey = win32api.RegOpenKey(win32con.HKEY_CURRENT_USER, key) return win32api.RegQueryValueEx(hkey, val)[0] except win32api.error: try: hkey = win32api.RegOpenKey(win32con.HKEY_LOCAL_MACHINE, key) return win32api.RegQueryValueEx(hkey, val)[0] except win32api.error: return default scintilla = "Scintilla is Copyright 1998-2008 Neil Hodgson (http://www.scintilla.org)" idle = "This program uses IDLE extensions by Guido van Rossum, Tim Peters and others." contributors = "Thanks to the following people for making significant contributions: Roger Upole, Sidnei da Silva, Sam Rushing, Curt Hagenlocher, Dave Brennan, Roger Burnham, Gordon McMillan, Neil Hodgson, Laramie Leavitt. (let me know if I have forgotten you!)" # The About Box class AboutBox(dialog.Dialog): def __init__(self, idd=win32ui.IDD_ABOUTBOX): dialog.Dialog.__init__(self, idd) def OnInitDialog(self): text = "Pythonwin - Python IDE and GUI Framework for Windows.\n\n%s\n\nPython is %s\n\n%s\n\n%s\n\n%s" % (win32ui.copyright, sys.copyright, scintilla, idle, contributors) self.SetDlgItemText(win32ui.IDC_EDIT1, text) # Get the build number - written by installers. # For distutils build, read pywin32.version.txt import distutils.sysconfig site_packages = distutils.sysconfig.get_python_lib(plat_specific=1) try: build_no = open(os.path.join(site_packages, "pywin32.version.txt")).read().strip() ver = "pywin32 build %s" % build_no except EnvironmentError: ver = None if ver is None: # See if we are Part of Active Python ver = _GetRegistryValue("SOFTWARE\\ActiveState\\ActivePython", "CurrentVersion") if ver is not None: ver = "ActivePython build %s" % (ver,) if ver is None: ver = "" self.SetDlgItemText(win32ui.IDC_ABOUT_VERSION, ver) self.HookCommand(self.OnButHomePage, win32ui.IDC_BUTTON1) def OnButHomePage(self, id, code): if code == win32con.BN_CLICKED: win32api.ShellExecute(0, "open", "http://starship.python.net/crew/mhammond/win32", None, "", 1) def Win32RawInput(prompt=None): "Provide raw_input() for gui apps" # flush stderr/out first. try: sys.stdout.flush() sys.stderr.flush() except: pass if prompt is None: prompt = "" ret=dialog.GetSimpleInput(prompt) if ret==None: raise KeyboardInterrupt("operation cancelled") return ret def Win32Input(prompt=None): "Provide input() for gui apps" return eval(input(prompt)) def HookInput(): try: raw_input # must be py2x... sys.modules['__builtin__'].raw_input=Win32RawInput sys.modules['__builtin__'].input=Win32Input except NameError: # must be py3k import code sys.modules['builtins'].input=Win32RawInput def HaveGoodGUI(): """Returns true if we currently have a good gui available. """ return "pywin.framework.startup" in sys.modules def CreateDefaultGUI( appClass = None): """Creates a default GUI environment """ if appClass is None: from . import intpyapp # Bring in the default app - could be param'd later. appClass = intpyapp.InteractivePythonApp # Create and init the app. appClass().InitInstance() def CheckCreateDefaultGUI(): """Checks and creates if necessary a default GUI environment. """ rc = HaveGoodGUI() if not rc: CreateDefaultGUI() return rc
import codecs import requests from six import iteritems from six import BytesIO from six.moves.urllib_parse import urljoin from lxml.html import _nons, HTMLParser from .py2compat import parse_headers from .iterable import one from .http import DEFAULT_TIMEOUT, readable_from_response, merge_setting from .etree import get_base_url from .response import Response def create_html_parser(headers): charset = headers.get_content_charset() try: if charset and codecs.lookup(charset).name == 'iso8859-1': charset = 'windows-1252' except LookupError: pass # if charset is not specified in the Content-Type, this will be # None ; encoding=None produces default (ISO 8859-1) behavior. return HTMLParser(encoding=charset) class ParserReadable(object): """ Readable that feeds a parser as it is reads. """ def __init__(self, readable): self.readable = readable self.lines = [] self.code = None self.headers = None self.parser = None self.root = None @classmethod def from_response(cls, response, url, decode_content, context): return cls(readable_from_response(response, url, decode_content=decode_content, context=context)) @property def name(self): return getattr(self.readable, 'name') def read(self, size): buf = self.readable.read(size) if self.parser: self.parser.feed(buf) if len(buf) < size: if self.root is None: self.root = self.parser.close() url = self.headers.get('X-wex-request-url') # this sets the .base_url self.root.getroottree().docinfo.URL = url return buf def readline(self, *args): line = self.readable.readline(*args) if not self.lines: _, _, self.code, _ = Response.parse_status_line(self.readable, line) self.lines.append(line) if not line.strip(): self.headers = parse_headers(BytesIO(b''.join(self.lines[1:]))) if 200 <= self.code < 300: self.parser = create_html_parser(self.headers) return line def close(self): self.readable.close() # just like: # https://github.com/lxml/lxml/blob/master/src/lxml/html/__init__.py#L1004 # but doesn't ignore <input type="submit" ...> elements def form_values(self): """ Return a list of tuples of the field values for the form. This is suitable to be passed to ``urllib.urlencode()``. """ results = [] for el in self.inputs: name = el.name if not name: continue tag = _nons(el.tag) if tag == 'textarea': results.append((name, el.value)) elif tag == 'select': value = el.value if el.multiple: for v in value: results.append((name, v)) elif value is not None: results.append((name, el.value)) else: assert tag == 'input', ( "Unexpected tag: %r" % el) if el.checkable and not el.checked: continue if el.type in ('image', 'reset'): continue value = el.value if value is not None: results.append((name, el.value)) return results def submit_form(url, method, session=None, **kw): if session is None: session = requests.Session() session.stream = True decode_content = kw.get('decode_content', True) proxies = kw.get('proxies', None) headers = merge_setting(method.args.get('headers'), kw.get('headers')) context = kw.get('context', {}) auth = merge_setting(method.args.get('auth'), kw.get('auth')) response = session.request( 'get', url, allow_redirects=False, cookies=method.args.get('cookies', None), data=None, headers=headers, params=method.args.get('params', None), proxies=proxies, timeout=DEFAULT_TIMEOUT, auth=auth, ) readable = ParserReadable.from_response(response, url, decode_content=decode_content, context=context) yield readable redirects = session.resolve_redirects(response, response.request, proxies=proxies, stream=True, timeout=DEFAULT_TIMEOUT) for response in redirects: readable = ParserReadable.from_response(response, url, decode_content=decode_content, context=context) yield readable if readable.root is None: return form_css_selector, values = one(iteritems(method.args)) form = one(readable.root.cssselect(form_css_selector)) if isinstance(values, dict): values = values.items() for name, value in values: if name in form.inputs: input = form.inputs[name] else: input = one(form.cssselect(name)) if hasattr(input, 'add'): input.add(value) else: input.value = value base_url = get_base_url(form) form_action_url = urljoin(base_url, form.get('action', '')) form_method = form.method.upper() if form_method in ('POST', 'PUT'): # this implies 'application/x-www-form-urlencoded' data = form_values(form) params = None else: data = None params = form_values(form) response = session.request( form_method, form_action_url, params=params, allow_redirects=False, cookies=method.args.get('cookies', None), data=data, headers=headers, proxies=proxies, timeout=DEFAULT_TIMEOUT, ) yield readable_from_response(response, url, decode_content=decode_content, context=context) redirects = session.resolve_redirects(response, response.request, proxies=proxies, stream=True, timeout=DEFAULT_TIMEOUT) for redirect in redirects: yield readable_from_response(redirect, url, decode_content=decode_content, context=context)
"""The registration module contains classes for image registration. Image registration aims to align two images using a particular transformation. miapy currently supports multi-modal rigid registration, i.e. align two images of different modalities using a rigid transformation (rotation, translation, reflection, or their combination). See Also: `ITK Registration <https://itk.org/Doxygen/html/RegistrationPage.html>`_ `ITK Software Guide Registration <https://itk.org/ITKSoftwareGuide/html/Book2/ITKSoftwareGuide-Book2ch3.html>`_ """ import abc import enum import os import typing as t import matplotlib matplotlib.use('Agg') # use matplotlib without having a window appear import matplotlib.pyplot as plt import numpy as np import SimpleITK as sitk import miapy.filtering.filter as miapy_fltr class RegistrationType(enum.Enum): """Represents the registration transformation type.""" AFFINE = 1 SIMILARITY = 2 RIGID = 3 BSPLINE = 4 class RegistrationCallback(metaclass=abc.ABCMeta): """Represents the abstract handler for the registration callbacks.""" def __init__(self) -> None: """Initializes a new instance of the abstract RegistrationCallback class.""" self.registration_method = None self.fixed_image = None self.moving_image = None self.transform = None def set_params(self, registration_method: sitk.ImageRegistrationMethod, fixed_image: sitk.Image, moving_image: sitk.Image, transform: sitk.Transform): """Sets the parameters that might be used during the callbacks Args: registration_method (sitk.ImageRegistrationMethod): The registration method. fixed_image (sitk.Image): The fixed image. moving_image (sitk.Image): The moving image. transform (sitk.Transform): The transformation. """ self.registration_method = registration_method self.fixed_image = fixed_image self.moving_image = moving_image self.transform = transform # link the callback functions to the events self.registration_method.AddCommand(sitk.sitkStartEvent, self.registration_started) self.registration_method.AddCommand(sitk.sitkEndEvent, self.registration_ended) self.registration_method.AddCommand(sitk.sitkMultiResolutionIterationEvent, self.registration_resolution_changed) self.registration_method.AddCommand(sitk.sitkIterationEvent, self.registration_iteration_ended) def registration_ended(self): """Callback for the EndEvent.""" pass def registration_started(self): """Callback for the StartEvent.""" pass def registration_resolution_changed(self): """Callback for the MultiResolutionIterationEvent.""" pass def registration_iteration_ended(self): """Callback for the IterationEvent.""" pass class MultiModalRegistrationParams(miapy_fltr.IFilterParams): """Represents parameters for the multi-modal rigid registration.""" def __init__(self, fixed_image: sitk.Image, fixed_image_mask: sitk.Image=None, callbacks: t.List[RegistrationCallback]=None): """Initializes a new instance of the MultiModalRegistrationParams class. Args: fixed_image (sitk.Image): The fixed image for the registration. fixed_image_mask (sitk.Image): A mask for the fixed image to limit the registration. callbacks (t.List[RegistrationCallback]): Path to the directory where to plot the registration progress if any. Note that this increases the computational time. """ self.fixed_image = fixed_image self.fixed_image_mask = fixed_image_mask self.callbacks = callbacks class MultiModalRegistration(miapy_fltr.IFilter): """Represents a multi-modal image registration filter. The filter estimates a 3-dimensional rigid or affine transformation between images of different modalities using - Mutual information similarity metric - Linear interpolation - Gradient descent optimization Examples: The following example shows the usage of the MultiModalRegistration class. >>> fixed_image = sitk.ReadImage('/path/to/image/fixed.mha') >>> moving_image = sitk.ReadImage('/path/to/image/moving.mha') >>> registration = MultiModalRegistration() # specify parameters to your needs >>> parameters = MultiModalRegistrationParams(fixed_image) >>> registered_image = registration.execute(moving_image, parameters) """ def __init__(self, registration_type: RegistrationType=RegistrationType.RIGID, number_of_histogram_bins: int=200, learning_rate: float=1.0, step_size: float=0.001, number_of_iterations: int=200, relaxation_factor: float=0.5, shrink_factors: [int]=(2, 1, 1), smoothing_sigmas: [float]=(2, 1, 0), sampling_percentage: float=0.2, resampling_interpolator=sitk.sitkBSpline): """Initializes a new instance of the MultiModalRegistration class. Args: registration_type (RegistrationType): The type of the registration ('rigid' or 'affine'). number_of_histogram_bins (int): The number of histogram bins. learning_rate (float): The optimizer's learning rate. step_size (float): The optimizer's step size. Each step in the optimizer is at least this large. number_of_iterations (int): The maximum number of optimization iterations. relaxation_factor (float): The relaxation factor to penalize abrupt changes during optimization. shrink_factors ([int]): The shrink factors at each shrinking level (from high to low). smoothing_sigmas ([int]): The Gaussian sigmas for smoothing at each shrinking level (in physical units). sampling_percentage (float): Fraction of voxel of the fixed image that will be used for registration (0, 1]. Typical values range from 0.01 (1 %) for low detail images to 0.2 (20 %) for high detail images. The higher the fraction, the higher the computational time. resampling_interpolator: Interpolation to be applied while resampling the image by the determined transformation. """ super().__init__() if len(shrink_factors) != len(smoothing_sigmas): raise ValueError("shrink_factors and smoothing_sigmas need to be same length") self.registration_type = registration_type self.number_of_histogram_bins = number_of_histogram_bins self.learning_rate = learning_rate self.step_size = step_size self.number_of_iterations = number_of_iterations self.relaxation_factor = relaxation_factor self.shrink_factors = shrink_factors self.smoothing_sigmas = smoothing_sigmas self.sampling_percentage = sampling_percentage self.resampling_interpolator = resampling_interpolator registration = sitk.ImageRegistrationMethod() # similarity metric # will compare how well the two images match each other # registration.SetMetricAsJointHistogramMutualInformation(self.number_of_histogram_bins, 1.5) registration.SetMetricAsMattesMutualInformation(self.number_of_histogram_bins) registration.SetMetricSamplingStrategy(registration.RANDOM) registration.SetMetricSamplingPercentage(self.sampling_percentage) # An image gradient calculator based on ImageFunction is used instead of image gradient filters # set to True uses GradientRecursiveGaussianImageFilter # set to False uses CentralDifferenceImageFunction # see also https://itk.org/Doxygen/html/classitk_1_1ImageToImageMetricv4.html registration.SetMetricUseFixedImageGradientFilter(False) registration.SetMetricUseMovingImageGradientFilter(False) # interpolator # will evaluate the intensities of the moving image at non-rigid positions registration.SetInterpolator(sitk.sitkLinear) # optimizer # is required to explore the parameter space of the transform in search of optimal values of the metric if self.registration_type == RegistrationType.BSPLINE: registration.SetOptimizerAsLBFGSB() else: registration.SetOptimizerAsRegularStepGradientDescent(learningRate=self.learning_rate, minStep=self.step_size, numberOfIterations=self.number_of_iterations, relaxationFactor=self.relaxation_factor, gradientMagnitudeTolerance=1e-4, estimateLearningRate=registration.EachIteration, maximumStepSizeInPhysicalUnits=0.0) registration.SetOptimizerScalesFromPhysicalShift() # setup for the multi-resolution framework registration.SetShrinkFactorsPerLevel(self.shrink_factors) registration.SetSmoothingSigmasPerLevel(self.smoothing_sigmas) registration.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() self.registration = registration self.transform = None def execute(self, image: sitk.Image, params: MultiModalRegistrationParams=None) -> sitk.Image: """Executes a multi-modal rigid registration. Args: image (sitk.Image): The moving image. params (MultiModalRegistrationParams): The parameters, which contain the fixed image. Returns: sitk.Image: The registered image. """ if params is None: raise ValueError("params is not defined") dimension = image.GetDimension() if dimension not in (2, 3): raise ValueError('Image dimension {} is not among the accepted (2, 3)'.format(dimension)) # set a transform that is applied to the moving image to initialize the registration if self.registration_type == RegistrationType.BSPLINE: transform_domain_mesh_size = [10] * image.GetDimension() initial_transform = sitk.BSplineTransformInitializer(params.fixed_image, transform_domain_mesh_size) else: if self.registration_type == RegistrationType.RIGID: transform_type = sitk.VersorRigid3DTransform() if dimension == 3 else sitk.Euler2DTransform() elif self.registration_type == RegistrationType.AFFINE: transform_type = sitk.AffineTransform(dimension) elif self.registration_type == RegistrationType.SIMILARITY: transform_type = sitk.Similarity3DTransform() if dimension == 3 else sitk.Similarity2DTransform() else: raise ValueError('not supported registration_type') initial_transform = sitk.CenteredTransformInitializer(sitk.Cast(params.fixed_image, image.GetPixelIDValue()), image, transform_type, sitk.CenteredTransformInitializerFilter.GEOMETRY) self.registration.SetInitialTransform(initial_transform, inPlace=True) if params.fixed_image_mask: self.registration.SetMetricFixedMask(params.fixed_image_mask) if params.callbacks is not None: for callback in params.callbacks: callback.set_params(self.registration, params.fixed_image, image, initial_transform) self.transform = self.registration.Execute(sitk.Cast(params.fixed_image, sitk.sitkFloat32), sitk.Cast(image, sitk.sitkFloat32)) if self.verbose: print('MultiModalRegistration:\n Final metric value: {0}'.format(self.registration.GetMetricValue())) print(' Optimizer\'s stopping condition, {0}'.format( self.registration.GetOptimizerStopConditionDescription())) elif self.number_of_iterations == self.registration.GetOptimizerIteration(): print('MultiModalRegistration: Optimizer terminated at number of iterations and did not converge!') return sitk.Resample(image, params.fixed_image, self.transform, self.resampling_interpolator, 0.0, image.GetPixelIDValue()) def __str__(self): """Gets a nicely printable string representation. Returns: str: The string representation. """ return 'MultiModalRegistration:\n' \ ' registration_type: {self.registration_type}\n' \ ' number_of_histogram_bins: {self.number_of_histogram_bins}\n' \ ' learning_rate: {self.learning_rate}\n' \ ' step_size: {self.step_size}\n' \ ' number_of_iterations: {self.number_of_iterations}\n' \ ' relaxation_factor: {self.relaxation_factor}\n' \ ' shrink_factors: {self.shrink_factors}\n' \ ' smoothing_sigmas: {self.smoothing_sigmas}\n' \ ' sampling_percentage: {self.sampling_percentage}\n' \ ' resampling_interpolator: {self.resampling_interpolator}\n' \ .format(self=self) class PlotCallback(RegistrationCallback): """Represents a plotter for SimpleITK registrations.""" def __init__(self, plot_dir: str, file_name_prefix: str='', slice_no: int=-1) -> None: """ Args: plot_dir (str): Path to the directory where to save the plots. file_name_prefix (str): The file name prefix for the plots. slice_no (int): The slice number to plot (affects only 3-D images). -1 means to use the middle slice. """ super().__init__() self.plot_dir = plot_dir self.file_name_prefix = file_name_prefix self.slice_no = slice_no self.metric_values = [] self.resolution_iterations = [] def registration_ended(self): """Callback for the EndEvent.""" plt.close() def registration_started(self): """Callback for the StartEvent.""" self.metric_values = [] self.resolution_iterations = [] def registration_resolution_changed(self): """Callback for the MultiResolutionIterationEvent.""" self.resolution_iterations.append(len(self.metric_values)) def registration_iteration_ended(self): """Callback for the IterationEvent. Saves an image including the visualization of the registered images and the metric value plot. """ self.metric_values.append(self.registration_method.GetMetricValue()) # Plot the similarity metric values; resolution changes are marked with a blue star plt.plot(self.metric_values, 'r') plt.plot(self.resolution_iterations, [self.metric_values[index] for index in self.resolution_iterations], 'b*') plt.xlabel('Iteration', fontsize=12) plt.ylabel('Metric Value', fontsize=12) # todo(fabianbalsiger): format precision of legends # plt.axes().yaxis.set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:2f}')) # plt.axes().xaxis.set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:d}')) # _, ax = plt.subplots() # ax.yaxis.set_major_formatter(matplotlib.ticker.StrMethodFormatter('{x:f2}')) # todo(fabianbalsiger): add margin to the left side of the plot # Convert the plot to a SimpleITK image (works with the agg matplotlib backend, doesn't work # with the default - the relevant method is canvas_tostring_rgb()) plt.gcf().canvas.draw() plot_data = np.fromstring(plt.gcf().canvas.tostring_rgb(), dtype=np.uint8, sep='') plot_data = plot_data.reshape(plt.gcf().canvas.get_width_height()[::-1] + (3,)) plot_image = sitk.GetImageFromArray(plot_data, isVector=True) # Extract the central axial slice from the two volumes, compose it using the transformation and alpha blend it alpha = 0.7 moving_transformed = sitk.Resample(self.moving_image, self.fixed_image, self.transform, sitk.sitkLinear, 0.0, self.moving_image.GetPixelIDValue()) # Extract the plotting slice in xy and alpha blend them if self.fixed_image.GetDimension() == 3: slice_index = self.slice_no if self.slice_no != -1 else round((self.fixed_image.GetSize())[2] / 2) image_registration_overlay = (1.0 - alpha) * sitk.Normalize(self.fixed_image[:, :, slice_index]) + \ alpha * sitk.Normalize(moving_transformed[:, :, slice_index]) else: image_registration_overlay = (1.0 - alpha) * sitk.Normalize(self.fixed_image) + \ alpha * sitk.Normalize(moving_transformed[:, :]) combined_slices_image = sitk.ScalarToRGBColormap(image_registration_overlay) self._write_combined_image(combined_slices_image, plot_image, os.path.join(self.plot_dir, self.file_name_prefix + format(len(self.metric_values), '03d') + '.png') ) @staticmethod def _write_combined_image(image1, image2, file_name): """Writes an image including the visualization of the registered images and the metric value plot.""" combined_image = sitk.Image( (image1.GetWidth() + image2.GetWidth(), max(image1.GetHeight(), image2.GetHeight())), image1.GetPixelID(), image1.GetNumberOfComponentsPerPixel()) image1_destination = [0, 0] image2_destination = [image1.GetWidth(), 0] if image1.GetHeight() > image2.GetHeight(): image2_destination[1] = round((combined_image.GetHeight() - image2.GetHeight()) / 2) else: image1_destination[1] = round((combined_image.GetHeight() - image1.GetHeight()) / 2) combined_image = sitk.Paste(combined_image, image1, image1.GetSize(), (0, 0), image1_destination) combined_image = sitk.Paste(combined_image, image2, image2.GetSize(), (0, 0), image2_destination) sitk.WriteImage(combined_image, file_name) class PlotOnResolutionChangeCallback(RegistrationCallback): """Represents a plotter for SimpleITK registrations. Saves the moving image on each resolution change and the registration end. """ def __init__(self, plot_dir: str, file_name_prefix: str='') -> None: """ Args: plot_dir (str): Path to the directory where to save the plots. file_name_prefix (str): The file name prefix for the plots. """ super().__init__() self.plot_dir = plot_dir self.file_name_prefix = file_name_prefix self.resolution = 0 def registration_ended(self): """Callback for the EndEvent.""" self._write_image('end') def registration_started(self): """Callback for the StartEvent.""" self.resolution = 0 def registration_resolution_changed(self): """Callback for the MultiResolutionIterationEvent.""" self._write_image('res' + str(self.resolution)) self.resolution = self.resolution + 1 def registration_iteration_ended(self): """Callback for the IterationEvent.""" def _write_image(self, file_name_suffix: str): """Writes an image.""" file_name = os.path.join(self.plot_dir, self.file_name_prefix + '_' + file_name_suffix + '.mha') moving_transformed = sitk.Resample(self.moving_image, self.fixed_image, self.transform, sitk.sitkLinear, 0.0, self.moving_image.GetPixelIDValue()) sitk.WriteImage(moving_transformed, file_name)
import schedule import logging import re import datetime import io import time import traceback import importlib import pkgutil import inspect import reporter.dq_log from datetime import date, datetime from enum import Enum from weasyprint import HTML from jinja2 import Environment, FileSystemLoader from reporter.emailing import send_markdown_email from reporter.connections import DatabaseConnection from reporter.emailing import email_error, get_recipients from reporter.dq_log import log_report_run class Schedule(Enum): def daily(func): schedule.every().day.at("12:00").do(func) def weekly(func): schedule.every().sunday.at("15:00").do(func) def monthly(func): schedule.every(4).saturday.at("15:00").do(func) def never(func): pass class Report: def __init__(self, introduction=None, recipients=None, name=None, send_email=True, schedule=None): self._name = name or type(self).__name__ # Unpick CamelCase self._name = re.sub('([a-z])([A-Z])', r'\1 \2', self._name) self._recipients = recipients or ('DEFAULT_RECIPIENT') self._introduction = introduction or '' self._send_email = send_email self._schedule = schedule or Schedule.weekly def schedule(self): self._schedule(self.run) logging.info("{} scheduled".format(self._name)) def run(self): try: logging.info("{} started".format(self._name)) report, rows, attachments = self.get_report() logging.info("{} ran with {} rows".format(self._name, rows)) if (rows == 0): return if self._send_email: send_markdown_email( self._name, self._recipients, report, attachments) except KeyboardInterrupt as e: raise e except Exception: logging.error(traceback.format_exc()) email_error(self._name, traceback.format_exc()) def get_introduction(self): result = "**{} ({:%d-%b-%Y})**\r\n\r\n".format( self._name, date.today()) result += "_{}_:\r\n\r\n".format(self._introduction) return result def get_report(self): return None, 0, None def get_details(self): return '"{}", "{}", "{}", "{}"'.format( self._name, self._schedule.__name__, "; ".join(self._recipients), "; ".join(get_recipients(self._recipients)), ) class SqlReport(Report): def __init__(self, sql, conn=None, parameters=None, **kwargs): super().__init__(**kwargs) self._sql = sql self._conn = conn or DatabaseConnection.reporting self._parameters = parameters or () def get_report(self): attachments = None start_datetime = datetime.utcnow() try: with self._conn() as conn: conn.execute(self._sql, self._parameters) report, rows = self.get_report_lines(conn) log_report_run( name=self._name, start_datetime=start_datetime, end_datetime=datetime.utcnow(), recipients=self._recipients, report=report, error_count=rows, ) if rows == 0: return None, 0, attachments except Exception as e: print(self._sql) raise e markdown = self.get_introduction() markdown += report markdown += "\r\n\r\n{} Record(s) Found".format(rows) return markdown, rows, attachments def get_report_lines(self, cursor): markdown = '' rows = 0 for row in cursor: line = self.get_report_line(row) if line: rows += 1 markdown += line return markdown, rows def get_report_line(self, row): return '- {}\r\n'.format(row) class PdfReport(SqlReport): def __init__(self, template, **kwargs): super().__init__(**kwargs) self._template = template def get_report(self): env = Environment(loader=FileSystemLoader('./templates')) template = env.get_template(self._template) with self._conn() as conn: conn.execute(self._sql, self._parameters) template_vars = { "rows": conn.fetchall(), "now": datetime.utcnow() } html = template.render(template_vars) buf = io.BytesIO() HTML(string=html, base_url='.').write_pdf(buf) buf.seek(0) mkdn = self.get_introduction() attachments = [{ 'filename': '{}.pdf'.format(self._name), 'inline': False, 'stream': buf }] return mkdn, 1, attachments def get_concrete_reports(cls=None): if (cls is None): cls = Report result = [sub() for sub in cls.__subclasses__() if len(sub.__subclasses__()) == 0 and # If the constructor requires parameters # other than self (i.e., it has more than 1 # argument), it's an abstract class len(inspect.getfullargspec(sub.__init__)[0]) == 1] for sub in [sub for sub in cls.__subclasses__() if len(sub.__subclasses__()) != 0]: result += get_concrete_reports(sub) return result def schedule_reports(): reports = get_concrete_reports() for r in reports: r.schedule() logging.info("---- {} reports scheduled ----".format(len(reports))) while True: try: schedule.run_pending() time.sleep(1) except KeyboardInterrupt: logging.info('Schedule stopped') return def run_reports(report_name, exclude): reports = get_concrete_reports() for r in reports: if type(r).__name__.lower() in exclude: continue if type(r).__name__[:len(report_name)].lower() == report_name.lower(): try: r.run() except KeyboardInterrupt: logging.info('Schedule stopped') return def run_all(exclude): reports = get_concrete_reports() for r in reports: if type(r).__name__.lower() in exclude: continue r.run() def list_all(): for r in get_concrete_reports(): print(r.get_details()) def get_sub_modules(path, prefix): result = [] for m in pkgutil.iter_modules(path): new_module_name = prefix + m[1] result.append(new_module_name) result.extend(get_sub_modules( [path[0] + '/' + m[1]], new_module_name + '.' )) return result def import_sub_reports(path, name): for m in get_sub_modules(path, name + '.'): importlib.import_module(m)
from silverraw import silvershop, silvercom, silverbook, silvercore import os from datetime import datetime from enum import Enum import pyxb # Imports for suds import urllib2, httplib, socket from suds.client import Client from suds.sax.text import Raw from suds.transport.http import HttpTransport, Reply, TransportError # Making binding easier to use b=pyxb.BIND class TRAVEL_TYPE: STATION = "STATION" class FARE_FILTER(Enum): NONE = "NONE" CHEAPEST = "CHEAPEST" CHEAPEST_ONEWAY_AND_ROUNDTRIP = "CHEAPEST_ONEWAY_AND_ROUNDTRIP" OPEN = "OPEN" CHEAPEST_OPEN = "CHEAPEST_OPEN" class CONTACT_TYPE(Enum): HOME = "HOME" BUSINESS = "BUSINESS" UNKNOWN = "UNKNOWN" class CONTACT_MEDIUM(Enum): PHONE = "PHONE" EMAIL = "EMAIL" class PASSENGER_TYPE(Enum): A = "A" C = "C" class ADDRESS_TYPE(Enum): BUSINESS = "BUSINESS" class PAYMENT_TYPE(Enum): CREDIT_CARD = "CC" ON_ACCOUNT = "OA" DEBIT_CARD = "DB" class CONFIRMATION_TYPE(Enum): CREDIT_CARD = "CC" DEBIT_CARD = "DB" ID_CARD = "ID" LOYALTY_CARD = "LC" class TICKET_DELIVERY_OPTION(Enum): EMAIL = "EML" E_TICKET = "ETK" PRINT_AT_HOME = "PAH" SMS = "SMS" CONDUCTOR = "TBC" REGULAR_MAIL = "TBM" OVERNIGHT_MAIL = "TBO" EXPRESS_MAIL = "TBX" METRO_LINK = "TML" TICKETING_OFFICE = "TOF" VENDING_MACHINE = "TVM" class TicketOption: """ Represents a ticket option to add, modify or remove an existing booking """ def __init__(self, code, currency, fee): """ Args: code (TICKET_DELIVERY_OPTION): Type of ticket option. currency (str): Currency of fees involved. fee (int): Amount infolved as fee in order to have this ticket option. """ self.code = code self.currency = currency self.fee = fee class BookingUpdate: """ This class represents a booking update, and allows users to add/remove fees, ticket delivery option/fee, adding passenger IDs, leg solutions, etc. """ def __init__(self, record_locator = None, ticket_option = None): """ Args: record_locator (str): The identifier of the booking record. ticket_option (TicketOption): A TicketOption object specifying the option to add to a specific booking """ self.record_locator = record_locator self.ticket_option = ticket_option class BookingConfirmation: """ This class represents a booking confirmation. """ def __init__(self, record_locator = None, confirmation_type = None, card_number = None, expiration_year=2016, expiration_month=12, card_holder_first_name = None, card_holder_last_name = None): """ Args: record_locator (str): The identifier of the booking record. confirmation_type (CONFIRMATION_TYPE): The form of confirmation for the booking. card_number (str): The card number. expiration_year (int): The year of expiration of card. expiration_month (int): The month of expiration of card. card_holder_first_name (str): The first name of card holder. card_holder_last_name (str): The last name of card holder. """ self.record_locator = record_locator self.confirmation_type = confirmation_type self.card_number = card_number self.expiration_year = expiration_year self.expiration_month = expiration_month self.card_holder_first_name = card_holder_first_name self.card_holder_last_name = card_holder_last_name class BillingAddress: """ This class represents a billing address. It is mostly used for payemnts. """ def __init__(self, address1 = None, city = None, zip_code = None, country = None, type = None): """ Args: address1 (str): Your first line of billing address. city (str): Your billing city. zip_code (str): Your billing zip code. country (str): The country of your billing address. type (ADDRESS_TYPE): The type of payemnt. """ self.address1 = address1 self.city = city self.zip_code = zip_code self.country = country self.type = type class PaymentMethod: """ This class represents a payment method for use in SilverCore API. """ def __init__(self, record_locator = None, payment_form = None, payment_form_type = None, card_number = None, card_type = None, card_holder_first_name = None, card_holder_last_name = None, card_validation_number = None, amount = None, currency = None, expiration_year = None, expiration_month = None, customer_ip_address = None, billing_address = None, response_spec = None): self.record_locator = record_locator self.payment_form = payment_form self.payment_form_type = payment_form_type self.card_number = card_number self.card_type = card_type self.card_holder_first_name = card_holder_first_name self.card_holder_last_name = card_holder_last_name self.card_validation_number = card_validation_number self.amount = amount self.currency = currency self.expiration_year = expiration_year self.expiration_month = expiration_month self.customer_ip_address = customer_ip_address self.billing_address = billing_address self.response_spec = response_spec class ContactInfo: """ Represents contact information for a passenger """ def __init__(self, type, medium, info): self.type = type self.medium = medium self.info = info class Passenger: """Represents a passenger that will be on the relevant trip. The passenger generates a unique ID whenever it is created. """ passenger_count = 0 @staticmethod def _get_new_passenger_id(): """This function returns a unique id to create a passenger. Returns: str. The unique id for the passenger:: """ Passenger.passenger_count = Passenger.passenger_count+1 return "PAX_" + str(Passenger.passenger_count) def __init__(self, age=None, id=None, first_name=None, last_name=None, contact_info=[]): """Initializes passenger with attributes given Args: age (int): The age of the passenger as integer. id (str): The id of passenger - if not given, it's automatically generated. first_name (str): First name of passenger. last_name (str): Last name of passenger. contact_info (ContactInfo[]): The contact information of the passenger. """ if not id: self.id = Passenger._get_new_passenger_id() else: self.id = id self.age = age self.first_name = first_name self.last_name = last_name self.contact_info = contact_info def add_contact(self, contact_info): assert(isinstance(contact_info, ContactInfo)) self.contact_info.append(contact_info) class TravelPoint: """ Stores a pair of origin and destination location as well as the time of departure and arrival """ def __init__(self, origin=None, destination=None, departure=None, arrival=None, type=TRAVEL_TYPE.STATION): """Initializes the Travelpoint with the relevant origin and destination, and optional departure and arrival times. Args: origin (str): Name of station of origin. destination (str): Name of station of arrival. departure (DateTime): Approximate time and date of departure. arrival (DateTime): Approximate time and date of arrival. """ if not departure and not arrival: raise Exception("You must supply either departure time, arrival time.") self.origin = origin self.destination = destination self.departure = departure self.arrival = arrival self.type = type class FareSearch: """ Represents an object which contains all required fields to perform a successful fare search """ def __init__(self, travel_points=[], fare_filter=FARE_FILTER.CHEAPEST, passengers=[], specs=[]): """ Initializes a fare search to find the relevant travel points for the passengers given. Args: travel_points (TravelPoint[]): List of travel points. fare_filter (FARE_FILTER): Fare filter type. passengers (Passenger[]): List of passengers travelling. specs (TRAVEL_SPECS[]): [Not supported yet] List of travel specifications. """ self.travel_points = travel_points self.fare_filter = fare_filter self.passengers = passengers # TODO: Specs are not supported yet self.specs = specs class Leg: """ Represents a travel leg with its respective travel segments """ def __init__(self, id, travel_segments): """FUNC_DESC. Args: id (str): The id of the leg trave_segments (TravelSegment[]): An array of travel segments. """ self.id = id self.travel_segments = travel_segments class TravelSegment: """ This class represents a travel segment for a specific leg """ def __init__(self, type="TRAIN", id = None, sequence = None, origin = None, origin_type = "STATION", destination = None, destination_type = "STATION", departure = None, arrival = None, designator = None, marketing_carrier = None, operating_carrier = None, equipment_type = None, equipment_type_str = None): """ Args: type (str): The type for the medium for transport id (str): The identifier of the travel segment. sequence (int): The ordering sequence number of the travel segment origin (str): The origin of the travel segment. origin_type (str): The type of origin of the travel segment. destination (str): The destination of the travel segment. destination_type (str): The destination type of the travel segment. departure (DateTime): The datetime of departure of the travel segment. arrival (DateTime): The datetime of arrival of the travel segment. designator (str): The designator for the travel segment. marketing_carrier (str): The marketign carrier for the travel segment. operating_carrier (str): The operational carrier for the travel segment. equipment_type (str): The type of equipment for the travel segment defined by the silvercore equipment types. equipment_type_str (str): The printable string version of the equipment type. """ self.id = id self.type = type self.sequence = sequence self.origin = origin self.origin_type = origin_type self.destination = destination self.destination_type = destination_type self.departure = departure self.arrival = arrival self.designator = designator self.marketing_carrier = marketing_carrier self.operating_carrier = operating_carrier self.equipment_type = equipment_type self.equipment_type_str = equipment_type_str class FareCode: """ Represents a fare code for the respective Ticketable Fare """ def __init__(self, code = None, service_class = None, travel_segment_id = None, cabin_class = None, fare_display_name = None): """ Args: code (str): The code that identifies the fare code service_class (str): The type of service class travel_segment_id (str): The travel segment it references cabin_class (str): The class of the cabin for the travel segment fare_display_name (str): The display name for the fare code """ self.code = code self.service_class = service_class self.travel_segment_id = travel_segment_id self.cabin_class = cabin_class self.fare_display_name = fare_display_name class FarePrice: """ Class representing the breakdown costs of a fare total """ def __init__(self, price, type, currency): """ Args: price (int): The price of the current fare breakdown item type (str): The type of the fare price breakdown item currency (str): The currency of the fare price breakdown item """ self.price = price self.type = type self.currency = currency class PassengerReference: """ An agregation of a passenger with respective fare codes for a ticketable fare """ def __init__(self, passenger, class_type, fare_codes): """ Args: ARG (TYPE): DESC1 passenger (Passenger[]): The passenger for this reference. class_type (PASSENGER_TYPE): The class type of passenger travelling. fare_codes (FareCode[]): An array of fare codes for this passenger. """ self.passenger = passenger self.class_type = class_type self.fare_codes = fare_codes class TicketableFare: """ Represents an individual section of a fare total, containing a set of fare codes and passengers """ def __init__(self, price = None, prices = [], currency = None, passenger_references = []): """ Args: price (int): The total amount of the ticketable fare. prices (FarePrice[]): Array of prices for the breakdown of the total currency (str): The currency of the fare. passenger_references (PassengeReference[]): An array of passenger references for this ticketable fare. """ self.price = price self.prices = prices self.currency = currency self.passenger_references = passenger_references class FareTotal: """ This class represents a fare for a specific leg, with specific segments given """ def __init__(self, id = None, currency = None, price = None, expiration = None, ticketable_fares = [], legs = []): """ Args: id (str): The identifier for this fare currency (str): the currency for the fare amount price (int): The of the total cost fare expiration (DateTime): The date of expiration for the fare ticketable_fares (TicketableFare[]): Array of ticketable fares comprising this fare legs (Leg[]): Array of legs that this fare refers to, minimum 1. """ self.id = id self.currency = currency self.price = price self.expiration = expiration self.ticketable_fares = ticketable_fares self.legs = legs class HTTPSClientAuthHandler(urllib2.HTTPSHandler): """ This class handles authentication in the secure ssl tunnel created with the given PEM certificate and RSA key """ def __init__(self, key, cert): urllib2.HTTPSHandler.__init__(self) self.key = key self.cert = cert def https_open(self, req): #Rather than pass in a reference to a connection class, we pass in # a reference to a function which, for all intents and purposes, # will behave as a constructor return self.do_open(self.getConnection, req) def getConnection(self, host, timeout=300): return httplib.HTTPSConnection(host, key_file=self.key, cert_file=self.cert) class HTTPSClientCertTransport(HttpTransport): """ This class creates an SSL tunnel to establish the secure connection between the silverclient and silvercore API """ def __init__(self, key, cert, *args, **kwargs): HttpTransport.__init__(self, *args, **kwargs) self.key = key self.cert = cert def u2open(self, u2request): """ Open a connection. @param u2request: A urllib2 request. @type u2request: urllib2.Requet. @return: The opened file-like urllib2 object. @rtype: fp """ tm = self.options.timeout url = urllib2.build_opener(HTTPSClientAuthHandler(self.key, self.cert)) if self.u2ver() < 2.6: socket.setdefaulttimeout(tm) return url.open(u2request) else: return url.open(u2request, timeout=tm) class SilverSoap: """ The SilverSoap class manages all interactions with the SilverCore API. This class deals with the heavy conversion of objects to their respective SilverRaw format. .. note:: For more thorough documentation check the SilverRail wikipedia. """ booking_wsdl="https://hacktrain.railgds.net/booking-ws/services/Booking/v2?wsdl" booking_location="https://hacktrain.railgds.net/booking-ws/services/Booking/v2" shopping_wsdl="https://hacktrain.railgds.net/shopping-ws/services/Shopping/v2?wsdl" shopping_location="https://hacktrain.railgds.net/shopping-ws/services/Shopping/v2" def __init__(self, distributor, point_of_sale, channel, cert, key): """Gathers the information required to create the context on each request. Args: distributor (str): The name of the distributor for the SilverRail ticketing system provider. point_of_sale (str): The point of sale, which can be location, etc. channel (str): The channel code for the queries. cert (str): The absolute path location for the ssl silverrail certificate that will be used to verify each request. key (str): The absolute path location of the key file. """ self._distributor = distributor self._point_of_sale = point_of_sale self._channel = channel self.shop_client = Client(SilverSoap.shopping_wsdl, transport=HTTPSClientCertTransport(key, cert), location=SilverSoap.shopping_location, retxml=True) self.book_client = Client(SilverSoap.booking_wsdl, transport=HTTPSClientCertTransport(key, cert), location=SilverSoap.booking_location, retxml=True) def _silver_send(self, soap_client, api_func, xml_func, pyxb_xml): """Sends a raw xml message to the SilverCore backend with the function given with the func_enum provided. Args: soap_client (SILVERCORE_API_CLIENT): The SOAP client to use for the request. api_func (SILVERCORE_API_FUNC): SilverCore functions available through the SOAP API. xml_func (SILVERCORE_XML_FUNC): The relevant silvercore xml element to create for the response Returns: SilverRaw.Element. A SilverRaw element containing the response of the SilverCore SOAP request:: """ # Adding SOAP Envelope wrapper senv = silvercore.Envelope() senv.Header = b() senv.Body = b() getattr(senv.Body, xml_func).append(pyxb_xml) xml = str(senv.toxml()) # Until nasty pyxb bug is fixed, we need to add namespace manually. # Basically, when we append a pyxb object to a _PluralObject, # the namespace for that object is not updated, so we have to add # it manually. # If anyone can submit a pull request to pyxb to fix it, or # find a neater walkaround, let's do it. xml = xml.replace(xml_func + ">", "ns3:" + xml_func + ">") print xml # Call the relevant SilverCore function with the raw XML given client_found = getattr(self, soap_client) result = getattr(client_found.service, api_func)(__inject={"msg": xml}) # Create respective SOAP SilverRaw object silver_obj = silvercore.CreateFromDocument(result) # Only one response object is supported at the time assert(len(silver_obj.Body.content()) == 1) # Return SilverCore response return silver_obj.Body.content()[0] def _get_xml_context(self): """Returns a pyxb BIND representation of a silverraw context object. In order for the context to be valid, it has to be assigned to an object's context property. Returns: b. A b object representing a silverraw context object:: """ return b( distributorCode="HACKTRAIN", pointOfSaleCode="GB", channelCode="CH1") def _search_fare(self, fare_query): """This function creates the respective SOAP object from the FareQuery object and returns the results found from the API. Args: fare_query (FareSearch): The fare search object to query the silvercore backend with Returns: FareResult. The results from the FareQuery:: """ # Creating a point to point shopping request p2p = silvershop.pointToPointShoppingRequest() # Obtaining the context p2p.context = self._get_xml_context() p2p.pointToPointShoppingQuery = b() # Setting Fare fixlter to the compatible SilverCore string p2p.pointToPointShoppingQuery.fareFilter = fare_query.fare_filter.value # Adding Travel Point Pairs p2p.pointToPointShoppingQuery.travelPointPairs = b() i = 0 for tp in fare_query.travel_points: p2p.pointToPointShoppingQuery.travelPointPairs.append(b()) p2p.pointToPointShoppingQuery.travelPointPairs.travelPointPair[i].originTravelPoint = b(tp.origin, type=tp.type) p2p.pointToPointShoppingQuery.travelPointPairs.travelPointPair[i].destinationTravelPoint = b(tp.destination, type=tp.type) if tp.departure: p2p.pointToPointShoppingQuery.travelPointPairs.travelPointPair[i].departureDateTimeWindow = \ b(date=datetime.strftime(tp.departure, "%Y-%m-%d"), time=datetime.strftime(tp.departure, "%H:%M:%S")) i = i + 1 for p in fare_query.passengers: p2p.pointToPointShoppingQuery.passengerSpecs = b() p2p.pointToPointShoppingQuery.passengerSpecs.append(b(passengerSpecID=p.id, age=p.age)) # Send point to point search request response = self._silver_send( "shop_client", "PointToPointShop", "pointToPointShoppingRequest", p2p) return response def _create_booking_from_response(self, legs, fares, passengers, parameters=[], response_specs=[]): """Creates a silverraw request to send to SilverCore API with form the legs and fares given from the previous faresearch query, and passengers given. Args: legs (silverraw.Leg[]): An array of SilverRaw Leg objects chosen to book. fares (silverraw.Fare[]): An array of SilverRaw Fare objects chosen to book. passengers (Passenger[]): An array of passengers that will be present on each booking. parameters (CREATE_BOOKING_PARAMS[]): Array of parameters to pass the create booking request (NOT SUPPORTED YET). response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.createBookingResponse. Returns a createBookingResponse object:: """ cb = silverbook.createBookingRecordRequest() # Obtaining the context cb.context = self._get_xml_context() # TODO: Add support for parameters cb.parameters = b() cb.parameters.priceAcceptance = b() cb.parameters.priceAcceptance.acceptAny = True # Adding point to point prices cb.prices = b() cb.prices.pointToPointPrice.extend(fares) # Adding all legs for trip cb.legSolutions = b() cb.legSolutions.legSolution.extend(legs) # Adding passengers cb.passengers = b() for idx1, passenger in enumerate(passengers): cb.passengers.passenger.append(b()) p = cb.passengers.passenger[idx1] p.passengerID = passenger.id p.nameFirst = passenger.first_name p.nameLast = passenger.last_name p.ageAtTimeOfTravel = 40 p.contactInformation = b() # Adding all contact information available for passenger for contact in passenger.contact_info: p.contactInformation.contact.append(b( contactType=contact.type.value, contactMedium=contact.medium.value, contactInfo=contact.info)) # Send create booking request response = self._silver_send( "book_client", "CreateBookingRecord", "createBookingRecordRequest", cb) return response def _create_booking(self, fares, passengers, parameters, response_specs): """Creates the relevant silverraw objects and sends a create booking request to the silvercore api. Args: fares (FareTotal[]): An array of fares chosen to book. passengers (Passenger[]): An array of passengers that will be present on each booking. parameters (CREATE_BOOKING_PARAMS[]): Array of parameters to pass the create booking request (NOT SUPPORTED YET). response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API. Returns: silverraw.createBookingResponse. Returns a createBookingResponse object:: """ cb = silverbook.createBookingRecordRequest() # Obtaining the context cb.context = self._get_xml_context() # TODO: Add support for parameters cb.parameters = b() cb.parameters.priceAcceptance = b() cb.parameters.priceAcceptance.acceptAny = True # TODO: Add support for response_spec # if len(response_specs): # cb.responseSpec = b() # for r in response_specs: # getattr(cb.responseSpec, r) = True # Adding passengers cb.passengers = b() for idx1, passenger in enumerate(passengers): cb.passengers.passenger.append(b()) p = cb.passengers.passenger[idx1] p.passengerID = passenger.id p.nameFirst = passenger.first_name p.nameLast = passenger.last_name p.ageAtTimeOfTravel = 40 p.contactInformation = b() # Adding all contact information available for passenger for contact in passenger.contact_info: p.contactInformation.contact.append(b( contactType=contact.type.value, contactMedium=contact.medium.value, contactInfo=contact.info)) # Adding point to point prices cb.prices = b() for idx2, fare in enumerate(fares): cb.prices.pointToPointPrice.append(b()) pr = cb.prices.pointToPointPrice[idx2] pr.priceID = fare.id pr.totalPrice = b(fare.price, currency=fare.currency) pr.holdExpiration = fare.expiration pr.legReferences = b() for leg in fare.legs: pr.legReferences.legSolutionIDRef.append(b(leg.id)) # Add all ticketable fares pr.ticketableFares = b() for idx5, ticketable in enumerate(fare.ticketable_fares): pr.ticketableFares.ticketableFare.append(b()) tf = pr.ticketableFares.ticketableFare[idx5] tf.totalPrice = b(ticketable.price, currency=ticketable.currency) # Adding all price breakdown tf.prices = b() for price in ticketable.prices: tf.prices.price.append(b(price.price, type=price.type, currency=price.currency)) # Adding passenger references tf.passengerReferences = b() for idx6, p_ref in enumerate(ticketable.passenger_references): tf.passengerReferences.passengerReference.append(b()) r = tf.passengerReferences.passengerReference[idx6] r.passengerIDRef = p_ref.passenger.id r.passengerTypeCode = p_ref.class_type.value # Adding fare codes r.fareCodes = b() for id7, farecode in enumerate(p_ref.fare_codes): r.fareCodes.fareCode.append(b()) fc = r.fareCodes.fareCode[id7] fc.code = farecode.code fc.serviceClass = farecode.service_class fc.travelSegmentIDRef = farecode.travel_segment_id fc.cabinClass = farecode.cabin_class fc.fareDisplayName = farecode.fare_display_name # Adding all legs for trip cb.legSolutions = b() for idx3, leg in enumerate(fare.legs): cb.legSolutions.legSolution.append(b()) l = cb.legSolutions.legSolution[idx3] l.legSolutionID = leg.id # Adding all travel segments for each leg l.travelSegments = b() for idx4, segment in enumerate(leg.travel_segments): l.travelSegments.travelSegment.append(b()) ts = l.travelSegments.travelSegment[idx4] ts.sequence = segment.sequence ts.travelSegmentID = segment.id ts.type = segment.type ts.originTravelPoint = b(segment.origin, type=segment.origin_type) ts.destinationTravelPoint = b(segment.destination, type=segment.destination_type) ts.departureDateTime = segment.departure ts.arrivalDateTime = segment.arrival ts.designator = segment.designator ts.marketingCarrier = segment.marketing_carrier ts.operatingCarrier = segment.operating_carrier ts.equipmentType = b(segment.equipment_type_str, code=segment.equipment_type) # Send create booking request response = self._silver_send( "book_client", "CreateBookingRecord", "createBookingRecordRequest", cb) return response def _add_payment(self, payment, response_specs): """Creates the SilverRaw SOAP objects to communicate to the AddPayment API and add the payment given by the silver.PaymentMethod object Args: payment (PaymentMethod): The payment method to use. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.addPaymentResponse. Returns a addPaymentResponse object:: """ ap = silverbook.addPaymentRequest() # Get context ap.context = self._get_xml_context() # Record locator to identify booking ap.recordLocator = payment.record_locator # Adding method of payment ap.payment = b() ap.payment.formOfPayment = b(payment.payment_form, type=payment.payment_form_type.value) ap.payment.creditCard = b(type = payment.card_type) ap.payment.creditCard.number = payment.card_number expiration_ym = str(payment.expiration_year) + "-" + str(payment.expiration_month) ap.payment.creditCard.expirationYearMonth = b(expiration_ym) fl_name = payment.card_holder_first_name + " " + payment.card_holder_last_name ap.payment.creditCard.cardholderName = fl_name billing_address = payment.billing_address ba = b(address1=billing_address.address1, city=billing_address.city, zipCode=billing_address.zip_code, country=billing_address.country, addressType=billing_address.type.value) ap.payment.creditCard.billingAddress = ba ap.payment.creditCard.validationNumber = payment.card_validation_number ap.payment.amount = b(payment.amount, currency=payment.currency) response = self._silver_send( "book_client", "AddPaymentRequest", "addPaymentRequest", ap) return response def _update_booking(self, booking_update, response_specs): """ Creates an silverraw update booking object based on the update options given and calls the silvercore api with the objects created. Args: booking_update (BookingUpdate): A booking update with the relevant booking update options. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.updateBookingRecordRequest. Returns an updateBookingRecordRequest object:: """ bu = silverbook.updateBookingRecordRequest() # Adding context bu.context = self._get_xml_context() # Adding booking record id bu.recordLocator = booking_update.record_locator # Adding ticket option information to = booking_update.ticket_option if to: bu.fulfillmentInformation = b() bu.fulfillmentInformation.ticketOption = b() bu.fulfillmentInformation.ticketOption.code = to.code.value bu.fulfillmentInformation.ticketOption.code.fee = b(to.fee, currency=to.currency) response = self._silver_send( "book_client", "UpdateBookingRecordRequest", "updateBookingRecordRequest", bu) return response def _confirm_booking(self, confirmation, response_specs=[]): """Creates the SilverRaw objects necessary to send a booking confirmation request to the server Args: confirmation (BookingConfirmation): The confirmation details to finalise and confirm booking. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.confirmBookingResponse. Returns a confirmBookingResponse object:: """ cb = silverbook.confirmBookingRecordRequest() # Retreiving context cb.context = self._get_xml_context() # Record locator cb.recordLocator = confirmation.record_locator cb.confirmationInformation = b() cb.confirmationInformation cb.confirmationInformation.selectedConfirmationOption = b() expiration_ym = str(confirmation.expiration_year) + "-" + str(confirmation.expiration_month) conf_opt = b(cardholderNameLast=confirmation.card_holder_last_name, cardholderNameFirst=confirmation.card_holder_first_name, cardNumber=confirmation.card_number, expirationYearMonth=expiration_ym) cb.confirmationInformation.selectedConfirmationOption.creditCardOption = conf_opt response = self._silver_send( "book_client", "ConfirmBookingRecordRequest", "confirmBookingRecordRequest", cb) return response class SilverCore(SilverSoap): """ The SilerCore class manages all interactions with the client and hides all the complexity from the SilverCore SOAP interface. This exposes a simple interface for p2p search, bookings, and payemnts. .. note:: For more thorough documentation check the SilverRail wikipedia. """ def __init__(self, distributor, point_of_sale, channel, cert=None, key=None): """Gathers the information required to create the context on each request. Args: distributor (str): The name of the distributor for the SilverRail ticketing system provider. point_of_sale (str): The point of sale, which can be location, etc. channel (str): The channel code for the queries. cert (str): The absolute path location for the ssl silverrail certificate that will be used to verify each request. key (str): The absolute path location of the key file. .. note:: Remember never to hardcode the password in the python files. Always set it in the bash environment and request it with pwd = os.ENV["SILVERCORE_PASSWORD"]. """ cert = cert or os.environ.get("SILVERCORE_CERT") key = key or os.environ.get("SILVERCORE_KEY") if not cert or not key: raise Exception("Certificate and key absolute paths must be provided") # Initializes it's parent SilverSoap class which will deal with all the heavy SOAP lifting. SilverSoap.__init__(self, distributor, point_of_sale, channel, cert, key) def set_credentials(self, cert_locat, pwd): """Retreives the location of the certificate to use as ssl verification with each of the requests.. Args: cert_locat (str): The absolute location for the ssl silverrail certificate that will be used to verify each request. pwd (str): The password used alongside with the certificate. .. note:: Remember never to hardcode the password in the python files. Always set it in the bash environment and request it with pwd = os.ENV["SILVERCORE_PASSWORD"]. """ self._set_credentials(cert_locat, pwd) def search_fare(self, fare_query): """This function handles handles the fare_query object and returns the legs found and their respective fare results found. Args: fare_query (FareSearch): The fare search object to query the silvercore backend with Returns: FareResult. The results from the FareQuery:: """ return self._search_fare(fare_query) def create_booking(self, fares, passengers, parameters=[], response_specs = []): """Creates a booking with the fares and passengers given, and returns a response object Args: fares (FareTotal[]): An array of fares chosen to book. passengers (Passenger[]): An array of passengers that will be present on each booking. parameters (CREATE_BOOKING_PARAMS[]): Array of parameters to pass the create booking request (NOT SUPPORTED YET). response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.createBookingResponse. Returns a createBookingResponse object:: """ return self._create_booking(fares, passengers, parameters, response_specs) def create_booking_from_response(self, legs, fares, passengers, parameters=[], response_specs=[]): """Creates a booking with form the legs and fares given from the previous faresearch query, and passengers given. Args: legs (silverraw.Leg[]): An array of SilverRaw Leg objects chosen to book. fares (silverraw.Fare[]): An array of SilverRaw Fare objects chosen to book. passengers (Passenger[]): An array of passengers that will be present on each booking. parameters (CREATE_BOOKING_PARAMS[]): Array of parameters to pass the create booking request (NOT SUPPORTED YET). response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.createBookingResponse. Returns a createBookingResponse object:: """ return self._create_booking_from_response(legs, fares, passengers, parameters, response_specs) def add_payment(self, payment, response_specs=[]): """Adds a form of payment to an existing booking referenced throuhg a record locator object Args: payment (PaymentMethod): The payment method to use. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.addPaymentResponse. Returns a addPaymentResponse object:: """ return self._add_payment(payment, response_specs) def update_booking(self, booking_update, response_specs=[]): """ Args: booking_update (BookingUpdate): A booking update with the relevant booking update options. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.updateBookingRecordRequest. Returns an updateBookingRecordRequest object:: """ return self._update_booking(booking_update, response_specs) def confirm_booking(self, confirmation, response_specs=[]): """Confirms the booking assuming that payments have been added and everything has been finalised Args: confirmation (BookingConfirmation): The confirmation details to finalise and confirm booking. response_specs (CREATE_BOOKING_SPECS[]): Array of specs for the response from the SilverCore API (NOT SUPPORTED YET). Returns: silverraw.confirmBookingResponse. Returns a confirmBookingResponse object:: """ return self._confirm_booking(confirmation, response_specs)
import glob,os # Build a map from REFPROP name to CAS code RP2CAS = {} for file in glob.glob('C:\\Program Files (x86)\\REFPROP\\fluids\\*.fld'): lines = open(file,'r').readlines() root,RPFluid = os.path.split(file) for line in lines: if line.find('CAS number') > -1: CAS_number = line.split('!')[0].strip() if not CAS_number: raise ValueError(file+line) RP2CAS[RPFluid.split('.')[0]] = CAS_number break # Handle pseudo-pure fluids for file in glob.glob('C:\\Program Files (x86)\\REFPROP\\fluids\\*.ppf'): root,RPFluid = os.path.split(file) RP2CAS[RPFluid.split('.')[0]] = RPFluid fluid_lookup = """1BUTENE butene 1-Butene 419.29 * * * - - - 2.59 0.5 1 0.983 1.079 - - - - - - - - - ACETONE propanone Acetone 508.1 - 0.5 - - - - 1.46 0.1 0.2 0.16 9.40E-02 - - - - - - 1.39E+04 - - AIR air Air 132.5306 - - - - - - N/A - - - - - - - - - - - - - AMMONIA ammonia Ammonia 405.4 R-717 X X X - - - N/A - - - 1.0E-01 - - - - - - 1.0E+06 3.50E-01 1.60E+00 ARGON argon Argon 150.687 R-740 0 0 0 - - - N/A - - - - - - - - - - - - - BENZENE benzene Benzene 562.02 * * * - - - 3.65 0.4 0.2 0.318 2.2E-01 1.9E+03 8.4E-05 2.8E-03 6.4E-05 1.3E-03 1.6E-05 - - - BUTANE butane n-Butane 425.125 R-600 N/A 3 N/A - - - 2.15 0.5 0.4 0.485 3.52E-01 - - - - - - - - - C12 dodecane n-Dodecane 658.1 X X X - - - 2.19 0.3 0.4 0.452 3.57E-01 - - - - - - - - - C1CC6 methylcyclohexane CoolProp error: Your fluid name [] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid - 0.639 - - - - N/A 0.5 0.6 0.392 1.87 - - - - - - - - - C2BUTENE cis-2-butene cis-2-Butene 435.75 * * * - - - 2.57 0.4 1 1.15 - - - - - - - - - C3CC6 propylcyclohexane CoolProp error: Your fluid name [] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid * * * - - - - - - - 2.57 - - - - - - - - - C4F10 perfluorobutane CoolProp error: Your fluid name [] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid 6330 8860 12500 - - - N/A - - - - - - - - - - - - - C5F12 perfluoropentane CoolProp error: Your fluid name [] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid 6510 9160 13300 - - - N/A - - - - - - - - - - - - - CF3I trifluoroiodomethane CoolProp error: Your fluid name [] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid 1* 0.4* 0.1* - - - N/A - - - - - - - - - - - - - CO carbon monoxide CarbonMonoxide 132.86 - 1.6* - - - - 0.331 0.04 0.03 0.032 2.70E-02 - - - - - - - - - CO2 carbon dioxide CarbonDioxide 304.1282 1 1 1 - - - 0.108 - - - - - - - - - - - - - COS carbonyl sulphide CarbonylSulfide 378.77 97 27 - - - - N/A - - - - - - - - - - - - - CYCLOHEX cyclohexane CycloHexane 553.64 X X X - - - N/A N/A N/A N/A N/A - - - - - - - - - CYCLOPEN cyclopentane Cyclopentane 511.72 * * * - - - N/A N/A N/A N/A N/A - - - - - - - - - CYCLOPRO cyclopropane CycloPropane 398.3 * * * - - - N/A N/A N/A N/A N/A - - - - - - - - - D2 deuterium Deuterium CoolProp error: Your fluid name [Deuterium] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid 0 0 0 - - - N/A - - - - - - - - - - - - - D2O deuterium oxide DeuteriumOxide CoolProp error: Your fluid name [DeuteriumOxide] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid - - - - - - N/A - - - - - - - - - - - - - D4 octamethylcyclotetrasiloxane D4 586.5 N/A N/A N/A - - - N/A - - - - - - - - - - - - - D5 decamethylcyclotetrasiloxane D5 619.15 N/A N/A N/A - - - N/A - - - - - - - - - - - - - D6 dodecamethylcyclotetrasiloxane D6 645.78 N/A N/A N/A - - - N/A - - - - - - - - - - - - - DECANE decane n-Decane 617.7 * * * - - - 2.45 0.4 0.5 0.509 3.84E-01 - - - - - - - - - DMC dimethyl carbonate DimethylCarbonate 557 N/A N/A N/A - - - N/A - - - 2.50E-02 - - - - - - - - - DME dimethylether DimethylEther 400.378 1 1 <<1 - - - 1.66 0.3 0.3 1.89E-01 - - - - - - - - - ETHANE ethane Ethane 305.322 R-170 N/A 2.9 N/A - - - 1.46 0.1 0.1 0.121 1.23E-01 - - - - - - - - - ETHANOL ethanol Ethanol 514.71 - - - - - - 1.95 0.2 0.3 0.317 3.99E-01 - - - - - - 1.56E+06 - - ETHYLENE ethene Ethylene 282.35 R-1150 N/A 6.8 N/A - - - 3.45 1 1 1 1.0E+00 6.4E-01 1.4E-11 7.9E-11 9.0E-12 7.1E-11 1.3E-12 - - - FLUORINE fluorine Fluorine CoolProp error: Your fluid name [Fluorine] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid - - - - - - 4.86 - - - - - - - - - - - - - H2S hydrogen sulfide HydrogenSulfide 373.1 - - - - - - 6.89 - - - - 2.2E-01 - - - - - 2.3E+09 - - HELIUM helium Helium 5.1953 R-704 - - - - - - N/A - - - - - - - - - - - - HEPTANE heptane n-Heptane 540.13 * * * - - - 2.58 0.5 0.5 0.592 - - - - - - - - - HEXANE hexane n-Hexane 507.82 * 3.1 * - - - 2.57 0.5 0.4 0.495 4.94E-01 - - - - - - - - - HYDROGEN Hydrogen 33.145 R-702 - - - - - - N/A - - - 4.94E-01 - - - - - - - - - IBUTENE 2-methyl-1-propene/methylpropene/isobutene/isobutylene Isobutene 418.09 * * * - - - N/A 0.6 0.6 6.27E-01 - - - - - - 6.67E+04 IHEXANE 2-methylpentane (methylpentane) Isohexane 497.7 * * * - - - N/A - - - - - - - - - - - - IPENTANE 2-methylbutane Isopentane 460.35 * * * - - - 1.8 0.3 0.3 4.05E-01 - - - - - - - - - ISOBUTAN 2-methylpropane IsoButane 407.817 * * * - - - 1.74 0.4 0.3 3.07E-01 - - - - - - - - - KRYPTON kr Krypton 209.48 R-784 - - - - - - N/A - - - - - - - - - - - - - MD2M decamethyltetrasiloxane MD2M 599.4 * * * - - - N/A - - - - - - - - - - - - MD3M dodecamethylcyclotetrasiloxane MD3M 628.36 * * * - - - N/A - - - - - - - - - - - - MD4M tetradecamethylhexasiloxane MD4M 653.2 * * * - - - N/A - - - - - - - - - - - - MDM octamethyltrisiloxane MDM 564.09 * * * - - - N/A - - - - - - - - - - - - METHANE methane Methane 190.564 72 25 7.6 - - - 2.72 0.007 0.007 6.00E-03 - - - - - - - - - METHANOL methanol Methanol CoolProp error: Your fluid name [Methanol] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid N/A 2.8 N/A - - - 1.44 0.2 0.1 0.178 1.40E-01 - - - - - - 1.37E+04 - - MLINOLEA methyl linoleate (methyl (z,z)-9,12-octadecadienoate) MethylLinoleate 799 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MLINOLEN methyl linolenate (methyl (z,z,z)-9,12,15-octadecatrienoate) MethylLinolenate 772 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MM hexamethyldisiloxane MM 518.75 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MOLEATE methyl oleate (methyl cis-9-octadecenoate) MethylOleate 782 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MPALMITA methyl hexadecanoate MethylPalmitate 755 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A MSTEARAT methyl octadecanoate MethylStearate 775 N/A N/A N/A - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N2O nitrous oxide NitrousOxide 309.52 290 320 180 - - - N/A N/A N/A N/A N/A - - - - - - - - - NEON neon Neon 44.4918 R-720 - - - - - - N/A N/A N/A N/A N/A - - - - - - - - - NEOPENTN neopentane (2,2-dimethylpropane) Neopentane 433.74 * * * - - - 2.25 - - - 1.73E-01 - - - - - - - - - NF3 nitrogen trifluoride NitrogenTrifluoride CoolProp error: Your fluid name [NitrogenTrifluoride] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid 12300 17200 20700 - - - N/A - - - - - - - - - - - - NITROGEN nitrogen Nitrogen 126.192 R-728 - - - - - - N/A - - - - - - - - - - - - NONANE nonane n-Nonane 594.55 * * * - - - 2.29 0.4 0.5 0.463 4.14E-01 - - - - - - - - - OCTANE octane n-Octane 569.32 * * * - - - 2.41 0.5 0.5 0.544 4.53E-01 - - - - - - - - - ORTHOHYD orthohydrogen OrthoHydrogen 33.22 - - - - - - N/A - - - - - - - - - - - - - OXYGEN oxygen Oxygen 154.581 - - - - - - N/A - - - - - - - - - - - - - PARAHYD parahydrogen ParaHydrogen 32.938 - - - - - - N/A - - - - - - - - - - - - - PENTANE pentane n-Pentane 469.7 R-601 * * * - - - N/A 0.3 0.4 0.387 3.95E-01 - - - - - - - - - PROPANE propane n-Propane 369.89 R-290 * 3 * - - - 2.24 0.5 0.4 0.518 1.76E-01 - - - - - - - - - PROPYLEN propylene Propylene 364.211 * 3.1 * - - - 2.64 0.6 1 1.06 1.12E+00 - - - - - - - - - PROPYNE propyne/methylacetylene Propyne CoolProp error: Your fluid name [Propyne] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid * * * - - - N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A R11 trichlorofluoromethane R11 471.06 CFC-11 6730 4750 1620 1 1 1 541 - - - - - - - - - - - - - R113 1,1,2-trichloro-1,2,2-trifluoroethane R113 CoolProp error: Your fluid name [R113] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid CFC-113 6540 6130 2700 0.8 0.8 1 659 - - - - - - - - - - - - - R114 1,2-dichloro-1,1,2,2-tetrafluoroethane R114 CoolProp error: Your fluid name [R114] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid CFC-114 8040 10000 8730 1 1 1 1110 - - - - - - - - - - - - - R115 chloropentafluoroethane R115 CoolProp error: Your fluid name [R115] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid CFC-115 5310 7370 9990 0.6 0.6 0.44 1080 - - - - - - - - - - - - - R116 hexafluoroethane/perfluoroethane R116 293.03 FC-116 N/A 9200-12200 (2003) N/A - - - 1380 - - - - - - - - - - - - - R12 dichlorodifluoromethane R12 CoolProp error: Your fluid name [R12] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid CFC-12 11000 10900 5200 1 1 1 1040 - - - - - - - - - - - - - R123 2,2-dichloro-1,1,1-trifluoroethane R123 456.82 HCFC-123 273 77 24 0.02 0.02 0.02 12.3 - - - - - - - - - - - - - R1234YF 2,3,3,3-tetrafluoroprop-1-ene R1234yf 367.85 R-1234yf/HFO-1234yf N/A 4 N/A - - - N/A - - - - - - - - - - - - - R1234ZE trans-1,3,3,3-tetrafluoropropene R1234ze(E) 382.52 R-1234ze N/A 6 N/A - - - N/A - - - - - - - - - - - - - R124 1-chloro-1,2,2,2-tetrafluoroethane R124 395.425 HCFC-124 2070 609 185 0.022 0.022 0.022 55.3 - - - - - - - - - - - - - R125 pentafluoroethane R125 339.173 HFC-125 6350 3500 1100 - - - 354 - - - - - - - - - - - - - R13 chlorotrifluoromethane R13 CoolProp error: Your fluid name [R13] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid CFC-13 10800 14400 16400 1 1 - 1390 - - - - - - - - - - - - - R134A 1,1,1,2-tetrafluoroethane R134a 374.21 HFC-134a 3830 1430 435 - - - 144 - - - - - - - - - - - - - R14 tetrafluoromethane/perfluoromethane R14 CoolProp error: Your fluid name [R14] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid FC-14 5210 7390 11200 - - - 697 - - - - - - - - - - - - - R141B 1,1-dichloro-1-fluoroethane R141b CoolProp error: Your fluid name [R141B] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid HCFC-141b 2250 725 220 0.11 0.11 0.12 80.6 - - - - - - - - - - - - - R142B 1-chloro-1,1-difluoroethane R142b CoolProp error: Your fluid name [R142B] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid HCFC-142b 5490 2310 705 0.065 0.065 0.07 228 - - - - - - - - - - - - - R143A 1,1,1-trifluoroethane R143a 345.857 HFC-143a 5890 4470 1590 - - - 487 - - - - - - - - - - - - - R152A 1,1-difluoroethane R152A 386.411 HFC-152a 437 124 38 - - - 15.5 - - - - - - - - - - - - - R161 fluoroethane/ethylfluoride R161 375.25 N/A 10 N/A - - - N/A - - - - - - - - - - - - - R21 dichlorofluoromethane R21 CoolProp error: Your fluid name [R21] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid HCFC-21 530 151 46 0.04 0.04 N/A N/A - - - - - - - - - - - - - R218 octafluoropropane/perfluoropropane R218 345.02 F-218 6310 8830 12500 - - - N/A - - - - - - - - - - - - - R22 chlorodifluoromethane R22 369.295 HCFC-22 5160 1810 549 0.055 0.055 0.05 194 - - - - - - - - - - - - - R227EA 1,1,1,2,3,3,3-heptafluoropropane R227EA 374.9 HFC-227ea 5310 3220 1040 - - - 365 - - - - - - - - - - - - - R23 trifluoromethane R23 299.293 HFC-23 12000 14800 12200 - - - 1340 - - - - - - - - - - - - - R236EA 1,1,1,2,3,3-hexafluoropropane R236EA 412.44 HFC-236ea N/A 1200 N/A - - - N/A - - - - - - - - - - - - - R236FA 1,1,1,3,3,3-hexafluoropropane R236FA 398.07 HFC-236fa 8100 9810 7660 - - - N/A - - - - - - - - - - - - - R245CA 1,1,2,2,3-pentafluoropropane R245CA CoolProp error: Your fluid name [R245CA] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid HFC-245ca N/A N/A N/A - - - 67.5 - - - - - - - - - - - - - R245FA 1,1,1,3,3-pentafluoropropane R245fa 427.16 HFC-245fa 3380 1030 314 - - - N/A - - - - - - - - - - - - - R32 difluoromethane R32 351.255 HFC-32 2330 675 205 - - - 64.2 - - - - - - - - - - - - - R365MFC 1,1,1,3,3-pentafluorobutane R365MFC 460 HFC-365mfc 2520 794 241 - - - N/A - - - - - - - - - - - - - R404A 44% r-125, 52% r143a, r134a R404A 345.27 Blend N/A 3900 N/A 0.04 0 0 N/A - - - - - - - - - - - - - R407C 23% r-32, 25% r-125, 52% r134a R407C 359.345 Blend N/A 1800 N/A 0 N/A N/A N/A - - - - - - - - - - - - - R41 fluoromethane R41 317.28 HFC-41 323 92 28 - - - N/A - - - - - - - - - - - - - R410A 50% r-32, 50% r-125 R410A 344.494 Blend N/A 2088 N/A - - - N/A - - - - - - - - - - - - - R507A 50% r-125, 50% r-143a R507A 343.765 Blend N/A 3985 N/A - - - N/A - - - - - - - - - - - - - RC318 octafluorocyclobutane/perfluorocyclobutane RC318 CoolProp error: Your fluid name [RC318] is not a CoolProp fluid, a REFPROP fluid, a brine or a liquid FC-C318 7310 10300 14700 - - - 1010 - - - - - - - - - - - - - SF6 sulfur hexafluoride/sulphur hexafluoride SulfurHexafluoride 318.7232 16300 22800 32600 - - - 2760 - - - - - - - - - - - - - SO2 sulfur dioxide/sulphur dioxide SulfurDioxide 430.64 R-764 ** ** ** - - - N/A - - - - - - - - - - - - - T2BUTENE trans-2-butene trans-2-Butene 428.61 C4H8 * * * - - - 2.57 - - - 1.13E+00 - - - - - - - - - TOLUENE methylbenzane Toluene 591.75 N/A 3.3 N/A - - - 1.95 0.5 0.6 0.565 6.4E-01 3.3E-01 7.0E-05 7.0E-04 5.0E-05 5.8E-04 1.6E-05 2.6E+05 - - WATER Water 647.096 *** *** *** - - - N/A - - - - - - - - - - - - - XENON Xenon 289.733 - - - - - - N/A - - - - - - - - - - - - -""" name_dict,ODP_dict,GWP20_dict,GWP100_dict,GWP500_dict = {},{},{},{},{} for row in fluid_lookup.split('\n'): a = row.split('\t') # Refprop fluid name RPName = a[0].strip() # CAS number for this fluid CAS = RP2CAS[RPName] name_dict[CAS] = a[2].strip() ODP_dict[CAS] = a[10].strip() GWP20_dict[CAS] = a[5].strip() GWP100_dict[CAS] = a[6].strip() GWP500_dict[CAS] = a[7].strip() ASHRAE34data = """R11 A1 R12 A1 R13 A1 R21 B1 R22 A1 R23 A1 R30 B2 R32 A2 R40 B2 METHANE A3 R113 A1 R114 A1 R115 A1 R116 A1 R123 B1 R124 A1 R125F A1 R134A A1 R142B A2 R143A A2 R152A A2 ETHANE A3 DME A3 R218 A1 R227EA A1 R236FA A1 R245FA B1 PROPANE A3 RC318 A1 BUTANE A3 ISOBUTANE A3 IPENTANE A3 HYDROGEN A3 HELIUM A1 AMMONIA B2 WATER A1 NEON A1 NITROGEN A1 ARGON A1 CO2 A1 SO2 B1 ETHYLENE A3 PROPYLEN A3 R404A A1 R507A A1 R410A A1 R407C A1 R1234YF A2L""" ASHRAE34_dict = {} for row in ASHRAE34data.split('\n'): a = row.split('\t') if a[0] in RP2CAS: ASHRAE34_dict[RP2CAS[a[0]]] = a[1] else: print 'Missing CAS number for ' + a[0] fluids = """:'1BUTENE.FLD','ACETONE.FLD','AIR.PPF','AMMONIA.FLD','ARGON.FLD', :'BENZENE.FLD','BUTANE.FLD','C1CC6.FLD','C2BUTENE.FLD','C3CC6.FLD', :'C4F10.FLD','C5F12.FLD','C12.FLD','CF3I.FLD','CO.FLD','CO2.FLD', :'COS.FLD','CYCLOHEX.FLD','CYCLOPEN.FLD','CYCLOPRO.FLD','D2.FLD', :'D2O.FLD','D4.FLD','D5.FLD','D6.FLD','DECANE.FLD','DMC.FLD', :'DME.FLD','ETHANE.FLD','ETHANOL.FLD','ETHYLENE.FLD','FLUORINE.FLD' :,'H2S.FLD','HELIUM.FLD','HEPTANE.FLD','HEXANE.FLD','HYDROGEN.FLD', :'IBUTENE.FLD','IHEXANE.FLD','IPENTANE.FLD','ISOBUTAN.FLD', :'KRYPTON.FLD','MD2M.FLD','MD3M.FLD','MDM.FLD','METHANE.FLD', :'METHANOL.FLD','MLINOLEA.FLD','MLINOLEN.FLD','MM.FLD', :'MOLEATE.FLD','MPALMITA.FLD','MSTEARAT.FLD','N2O.FLD','NEON.FLD', :'NEOPENTN.FLD','NF3.FLD','NITROGEN.FLD','NONANE.FLD', :'OCTANE.FLD','ORTHOHYD.FLD','OXYGEN.FLD','PARAHYD.FLD', :'PENTANE.FLD','PROPANE.FLD','PROPYLEN.FLD','PROPYNE.FLD', :'R32.FLD','R41.FLD','R115.FLD','R116.FLD','R124.FLD','R125.FLD', :'R141B.FLD','R142B.FLD','R143A.FLD','R161.FLD','R218.FLD', :'R227EA.FLD','R236EA.FLD','R236FA.FLD','R245CA.FLD','R245FA.FLD', :'R365MFC.FLD','R507A.PPF','R1234YF.FLD','R1234ZE.FLD','SF6.FLD', :'SO2.FLD','T2BUTENE.FLD','TOLUENE.FLD','WATER.FLD','XENON.FLD', :'R11.FLD','R12.FLD','R13.FLD','R14.FLD','R21.FLD','R22.FLD', :'R23.FLD','R113.FLD','R114.FLD','R123.FLD','R134A.FLD','R152A.FLD', :'R404A.PPF','R407C.PPF','R410A.PPF','RC318.FLD'""" HH = """:'0','2','0','3','0', :'2','1','2','0','NA', :'1','NA','2','1','1','1', :'3','1','2','2','NA', :'NA','NA','NA','NA','2','2', :'1','1','2','2','4' :,'4','0','1','2','0', :'1','2','1','1', :'0','1','1','1','0', :'2','NA','NA','2', :'2','1','0','1','0', :'1','1','0','2', :'2','NA','0','NA', :'2','1','1','1', :'1','2','1','1','1','1', :'1','1','1','NA','2', :'1','NA','1','NA','2', :'NA','1','1','1','1', :'3','0','2','0','0', :'1','1','NA','NA','NA','1', :'1','1','1','2','1','1', :'1','1','1','1'""" FH = """:'4','3','0','1','0', :'3','4','3','4','NA', :'0','NA','2','0','4','0', :'4','3','3','2','NA', :'NA','NA','NA','NA','2','3', :'4','4','3','4','3' :,'4','0','3','3','4', :'4','3','4','4', :'0','2','2','2','4', :'3','NA','NA','3', :'1','0','1','0','0', :'4','0','0','3', :'3','NA','0','NA', :'4','4','4','4', :'4','3','0','0','1','1', :'1','1','1','NA','1', :'0','NA','0','NA','0', :'NA','1','2','2','0', :'0','4','3','0','0', :'1','1','NA','NA','NA','1', :'1','0','0','1','1','4', :'1','1','1','0' """ PH = """:'0','0','0','0','0', :'0','0','0','1','NA', :'0','NA','0','0','3','0', :'1','0','1','0','NA', :'NA','NA','NA','NA','0','0', :'2','0','0','2','0' :,'0','0','0','0','0', :'2','1','0','0', :'0','0','0','0','0', :'0','NA','NA','1', :'0','0','0','0','0', :'0','3','0','0', :'0','NA','0','NA', :'0','0','1','1', :'1','2','1','1','0','0', :'0','0','0','NA','1', :'0','NA','1','NA','1', :'NA','0','0','0','0', :'0','1','0','0','3', :'0','0','NA','NA','NA','0', :'0','0','0','0','0','1', :'0','0','0','2'""" pp_fluids = fluids.replace(':','').replace('\n','').replace('.FLD','').replace('.PPF','').replace("'",'').split(",") pp_HH = HH.replace(':','').replace('\n','').replace("'",'').split(",") pp_FH = FH.replace(':','').replace('\n','').replace("'",'').split(",") pp_PH = PH.replace(':','').replace('\n','').replace("'",'').split(",") HH_dict = {RP2CAS[k]:v for k,v in zip(pp_fluids,pp_HH)} FH_dict = {RP2CAS[k]:v for k,v in zip(pp_fluids,pp_FH)} PH_dict = {RP2CAS[k]:v for k,v in zip(pp_fluids,pp_PH)} def get_env_data(fluid): a = dict( HH = HH_dict[fluid], FH = FH_dict[fluid], PH = PH_dict[fluid], ODP = ODP_dict[fluid], GWP20 = GWP20_dict[fluid], GWP100 = GWP100_dict[fluid], GWP500 = GWP500_dict[fluid] ) for k,v in a.iteritems(): try: a[k] = int(v) except ValueError: try: a[k] = float(v) except ValueError: a[k] = -1 for term in ['GWP100','GWP20','GWP500','ODP']: try: a[term] = float(a[term]) except TypeError: a[term] = -1 if fluid in ASHRAE34_dict: a['ASHRAE34'] = ASHRAE34_dict[fluid] else: a['ASHRAE34'] = 'UNKNOWN' a['Name'] = name_dict[fluid] return a import json code = {} for fluid in pp_fluids: fluid = RP2CAS[fluid] if name_dict[fluid]: code[fluid] = get_env_data(fluid) else: continue f = open('DTU_environmental.json','w') f.write(json.dumps(code, sort_keys=True, indent=2, separators=(',', ': '))) f.close()