| # /// script | |
| # requires-python = ">=3.12" | |
| # dependencies = [ | |
| # "transformers", | |
| # "torch", | |
| # ] | |
| # /// | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| pipe = pipeline("image-text-to-text", model="bharatgenai/patram-7b-instruct", trust_remote_code=True) | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, | |
| {"type": "text", "text": "What animal is on the candy?"} | |
| ] | |
| }, | |
| ] | |
| pipe(text=messages) | |
| # Load model directly | |
| from transformers import AutoModelForCausalLM | |
| model = AutoModelForCausalLM.from_pretrained("bharatgenai/patram-7b-instruct", trust_remote_code=True) |