text
stringlengths
0
696
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
non_blocking,
^^^^^^^^^^^^^
)
^
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 14.69 MiB is free. Process 25490 has 22.28 GiB memory in use. Of the allocated memory 18.42 GiB is allocated by PyTorch, and 3.62 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
Everything was good in inclusionAI_Ling-lite-base-1.5_1.txt
Traceback (most recent call last):
File "/tmp/inclusionAI_Ling-lite-base_0guz83Z.py", line 13, in <module>
pipe = pipeline("text-generation", model="inclusionAI/Ling-lite-base", trust_remote_code=True)
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1210, in pipeline
return pipeline_class(model=model, framework=framework, task=task, **kwargs)
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/transformers/pipelines/text_generation.py", line 121, in __init__
super().__init__(*args, **kwargs)
~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/transformers/pipelines/base.py", line 1043, in __init__
self.model.to(self.device)
~~~~~~~~~~~~~^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/transformers/modeling_utils.py", line 4333, in to
return super().to(*args, **kwargs)
~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1369, in to
return self._apply(convert)
~~~~~~~~~~~^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
[Previous line repeated 4 more times]
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 955, in _apply
param_applied = fn(param)
File "/tmp/.cache/uv/environments-v2/94d848f1d3db5c3e/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1355, in convert
return t.to(
~~~~^
device,
^^^^^^^
dtype if t.is_floating_point() or t.is_complex() else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
non_blocking,
^^^^^^^^^^^^^
)
^
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 2.69 MiB is free. Process 25773 has 22.29 GiB memory in use. Of the allocated memory 18.46 GiB is allocated by PyTorch, and 3.59 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
Everything was good in inclusionAI_Ling-lite-base_1.txt
Traceback (most recent call last):
File "/tmp/inclusionAI_Ling-lite_0sLFCL6.py", line 13, in <module>
pipe = pipeline("text-generation", model="inclusionAI/Ling-lite", trust_remote_code=True)
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/transformers/pipelines/__init__.py", line 1210, in pipeline
return pipeline_class(model=model, framework=framework, task=task, **kwargs)
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/transformers/pipelines/text_generation.py", line 121, in __init__
super().__init__(*args, **kwargs)
~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/transformers/pipelines/base.py", line 1043, in __init__
self.model.to(self.device)
~~~~~~~~~~~~~^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/transformers/modeling_utils.py", line 4333, in to
return super().to(*args, **kwargs)
~~~~~~~~~~^^^^^^^^^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1369, in to
return self._apply(convert)
~~~~~~~~~~~^^^^^^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 928, in _apply
module._apply(fn)
~~~~~~~~~~~~~^^^^
[Previous line repeated 4 more times]
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 955, in _apply
param_applied = fn(param)
File "/tmp/.cache/uv/environments-v2/546d718608379bcd/lib/python3.13/site-packages/torch/nn/modules/module.py", line 1355, in convert
return t.to(
~~~~^
device,
^^^^^^^
dtype if t.is_floating_point() or t.is_complex() else None,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
non_blocking,
^^^^^^^^^^^^^
)
^
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 20.00 MiB. GPU 0 has a total capacity of 22.30 GiB of which 14.69 MiB is free. Process 25489 has 22.28 GiB memory in use. Of the allocated memory 18.42 GiB is allocated by PyTorch, and 3.62 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
Everything was good in inclusionAI_Ling-lite_1.txt
No suitable GPU found for inclusionAI/Ling-plus-base | 708.37 GB VRAM requirement
No suitable GPU found for inclusionAI/Ling-plus-base | 708.37 GB VRAM requirement
No suitable GPU found for inclusionAI/Ling-plus | 708.37 GB VRAM requirement
No suitable GPU found for inclusionAI/Ling-plus | 708.37 GB VRAM requirement
Traceback (most recent call last):
File "/tmp/jina-embeddings-v4_0sguDsi.py", line 12, in <module>
model = AutoModel.from_pretrained("jinaai/jina-embeddings-v4", trust_remote_code=True)
File "/tmp/.cache/uv/environments-v2/3dff24d90291b0dd/lib/python3.13/site-packages/transformers/models/auto/auto_factory.py", line 582, in from_pretrained
model_class = get_class_from_dynamic_module(