|
--- |
|
viewer: false |
|
tags: |
|
- ocr |
|
- document-processing |
|
- nanonets |
|
- markdown |
|
- uv-script |
|
- generated |
|
--- |
|
|
|
# Document OCR using Nanonets-OCR-s |
|
|
|
This dataset contains markdown-formatted OCR results from images in [/content/my_dataset](https://huggingface.co/datasets//content/my_dataset) using Nanonets-OCR-s. |
|
|
|
## Processing Details |
|
|
|
- **Source Dataset**: [/content/my_dataset](https://huggingface.co/datasets//content/my_dataset) |
|
- **Model**: [nanonets/Nanonets-OCR-s](https://huggingface.co/nanonets/Nanonets-OCR-s) |
|
- **Number of Samples**: 1 |
|
- **Processing Time**: 4.6 minutes |
|
- **Processing Date**: 2025-08-11 09:33 UTC |
|
|
|
### Configuration |
|
|
|
- **Image Column**: `image` |
|
- **Output Column**: `markdown` |
|
- **Dataset Split**: `train` |
|
- **Batch Size**: 1 |
|
- **Max Model Length**: 8,192 tokens |
|
- **Max Output Tokens**: 4,096 |
|
- **GPU Memory Utilization**: 80.0% |
|
|
|
## Model Information |
|
|
|
Nanonets-OCR-s is a state-of-the-art document OCR model that excels at: |
|
- π **LaTeX equations** - Mathematical formulas preserved in LaTeX format |
|
- π **Tables** - Extracted and formatted as HTML |
|
- π **Document structure** - Headers, lists, and formatting maintained |
|
- πΌοΈ **Images** - Captions and descriptions included in `<img>` tags |
|
- βοΈ **Forms** - Checkboxes rendered as β/β |
|
- π **Watermarks** - Wrapped in `<watermark>` tags |
|
- π **Page numbers** - Wrapped in `<page_number>` tags |
|
|
|
## Dataset Structure |
|
|
|
The dataset contains all original columns plus: |
|
- `markdown`: The extracted text in markdown format with preserved structure |
|
- `inference_info`: JSON list tracking all OCR models applied to this dataset |
|
|
|
## Usage |
|
|
|
```python |
|
from datasets import load_dataset |
|
import json |
|
|
|
# Load the dataset |
|
dataset = load_dataset("{output_dataset_id}", split="train") |
|
|
|
# Access the markdown text |
|
for example in dataset: |
|
print(example["markdown"]) |
|
break |
|
|
|
# View all OCR models applied to this dataset |
|
inference_info = json.loads(dataset[0]["inference_info"]) |
|
for info in inference_info: |
|
print(f"Column: {info['column_name']} - Model: {info['model_id']}") |
|
``` |
|
|
|
## Reproduction |
|
|
|
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) Nanonets OCR script: |
|
|
|
```bash |
|
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \ |
|
/content/my_dataset \ |
|
<output-dataset> \ |
|
--image-column image \ |
|
--batch-size 1 \ |
|
--max-model-len 8192 \ |
|
--max-tokens 4096 \ |
|
--gpu-memory-utilization 0.8 |
|
``` |
|
|
|
## Performance |
|
|
|
- **Processing Speed**: ~0.0 images/second |
|
- **GPU Configuration**: vLLM with 80% GPU memory utilization |
|
|
|
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts) |
|
|